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Abstract 

A phenomenal increase in the quality of human life is due to tremendous advancements 
and use of computer-aided methods in medicine and various biotechnological applications. Such 
technologies rely on the increasing availability of biochemical data and structural information 
which are highly significant for current advances. The solved crystal structures of 3D compounds 
stored in databases contribute greatly in bioinformatics as they are employed in studies and 
development of numerous lead compounds used in drug design and other industrial applications. 
However, screening and retrieving compounds for various applications presents a challenge for 
in retrieving and analyzing prospect targets. Therefore, a constant improvement of methods and 
tools is necessary for the proper classification, query, retrieval and analysis of available 
compounds data. With advances in computer technology, information management and data 
mining the developments of accurate, rapid and efficient algorithms enable studies in 
biotechnology to have significant improvements. However, mining appropriate candidates for 
various purposes by virtually screening thousands of docked protein-compound complexes is one 
of the biggest challenges. One of the main issues in virtual screening comes from an insufficient 
description of ligand binding mechanisms which results in the development of imprecise scoring 
functions. 

In aiming to provide solutions to this issue we studied various docking algorithms and 
post screening methods used in mining and investigating specific compounds. Comparing 
different virtual screening and post screening analyses we observed that interaction profiles (e.g. 
van der Walls, hydrogen bonding) are highly relevant in the overall performance of compound 
mining. Moreover, this study concluded that a method which uses two combined stages of cluster 
analysis can be more efficient than one-stage clustering methods in selecting appropriate 
candidates for drug design and other biotechnological applications. Our study of interaction 
profiles also provided evidence of the possibility of mining novel compounds for potential uses 
in cosmetics, industry and agriculture in addition to pharmaceutics using similar virtual 
screening and post screening analysis.  

The above findings and observations contributed to the development of our method, Two 
Stage Combinative Clustering (TSCC) where we combine virtual screening and two stages of 
cluster analyses (interaction and physico-chemical). The methodology of TSCC has contributed 
to combinatorial computation approaches used to indentify tetracycline derivatives for inhibiting 
Dengue virus neuraminidases and inhibitors for flaviviruses.  
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TSCC, similar to other post screening analysis methods starts with the virtual screening 
of compounds obtained from various databases e.g., Available Chemical Directory (ACD) or 
Comprehensive Medical Chemistry (CMC) using GEMDOCK. Top ranking compounds are then 
clustered based on their protein-ligand binding interactions and grouped into clusters with 
distinct binding interactions. Compounds are also clustered based on physico-chemical features 
using atom composition and are grouped in similar structure clusters. Compounds with lowest 
energy from each interaction cluster are selected as representatives while active compounds and 
similar to active compounds are chosen as representatives from each structure cluster. Lastly, 
final representatives from both interaction and structure clustering are chosen based on energy 
and structure similarity respectively and can be verified trough bioassays for proper function and 
application. TSCC’s novel feature is the use of two clustering stages to better filter and 
accurately retrieve the final representative compounds. Another key feature is to represent 
interactions at the atomic-level for including measures of interactions strength, enabling better 
descriptions of protein-ligand interactions to achieve a more specific analysis of virtual screening. 
The proposed two-stage clustering method enhanced our post-screening analysis by revealing 
more accurate performances than a one-stage clustering in visualizing and mining compound 
candidates and improving the virtual screening enrichment while being used successfully to 
identify novel inhibitors and functions of some proteins.  

 
Keywords: cluster analysis, data mining, docking, GEMDOCK, lead compound, post 

screening analysis protein-ligand interaction profiles, target, compound database, virtual 
screening. 
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Chapter 1  

Introduction 

1.1 Background 

The transition of many preliminary biochemical studies from the wet to virtual 

laboratories propagated by computer-aided methods and an increase in technology has brought 

new insights and perspectives. Specifically, significant progress in development of novel 

compounds for pharmaceutics, agriculture, cosmetics, nutrition and other industries has been 

mediated by computational techniques and approaches in preliminary steps. In this transition 

process many principles from other disciplines were adopted into the field of biotechnology. 

Applications of information management to aid with compound database management and of 

data mining to successfully retrieve and mine compounds from databases [1] are just a few 

examples of the constantly used, researched and developed applications in the field of 

biotechnology. Data mining, especially, has been given a lot of attention lately because of the 

rapid increase in number of virtual compounds available in databases. Mining of compounds 

from databases involves a series of steps but nowadays it can be done much faster and easier 

using combined methods of virtual screening and post screening analysis. Virtual screening (VS) 

[2, 3] is the first step towards the retrieval of prospect compounds. It is important to note that in a 

virtual setting the key to research and studies of biochemical compounds is the relevance of their 

crystal structures [4, 5] for practical applications in preliminary results which will be further 

confirmed by bioassays [6 – 10]. A crystal structure is composed of a pattern, a set of atoms 

arranged in a particular way (Fig. 1a) and a lattice exhibiting long-range order and symmetry 

(Fig. 1b). Patterns are located upon the points of a lattice (Fig. 1b), which is an array of points 

repeating periodically in three dimensions. The points can be thought of as forming identical tiny 

boxes, called unit cells, that fill the space of the lattice. The lengths of the edges of a unit cell and 

the angles between them are called the lattice parameters. The symmetrical  properties of the 

crystal are embodied in its space group. The crystal structure of a compound and its symmetry 

play a role in determining many of its physical properties, such as cleavage, electronic band 

structure, and optical transparency. Various computer generated tools and programs are 

developed to “visualize and interpret” the characteristics of crystal structures and their 



2 
 

interaction with other crystal structures in specific studies of protein-protein complexes or 

protein-ligand complexes.  

a                                                          b 

                                            

Figure 1. Crystal structure of β-lactoglobulin (β-LG) complexed with vitamin D-3. a) Space-
filling model showing specific ligand binding sites (calyx and exosite) and b) Ribbon-lattice 
crystal structure of β-lactoglobulin. Crystal structures of compounds can provide many clues of 
binding sites and interactions between various proteins and or ligands.  

 

Virtual screening of molecular libraries to mine compounds with an available crystal 

structures has emerged as a practical and inexpensive method in the discovery of novel lead 

compounds especially for drug design and discovery. This current increase in use of VS accounts 

for the following valid reasons: its enrichment and speed, the reduced cost and time of studies 

when using VS, increasing numbers of compounds with crystal structures and the advent of 

structural proteomics technologies. Computational techniques in VS involve two essential 

elements: efficient molecular docking (a technique to predict the preferred orientation of one 

molecule to a second when bound to each other to form a stable complex) and a reliable scoring 

method [11]. VS scoring methods must discriminate between non-native docked conformations 

and correct binding states of compounds during molecular docking phase to distinguish active 

compounds (usually a small number) from non-active compounds (an extremely large number) 

during the post-docking analysis. Scoring methods use three main classes of scoring functions 

that calculate the free binding energy: knowledge-based [12], physics-based [13] and empirical-

based [14] scoring functions. 
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Inconsistencies in performance of scoring functions result in inadequate prediction of true 

binding affinity of a ligand to a receptor, thus, combining various scoring methods in VS may 

improve performance than in the average individual scoring functions. Similar inconsistencies 

have been noticed in information retrieval (IR) and Charifson et al. [15] proposed a study in 

which they used an interaction-based consensus approach to combine scoring functions which 

revealed enrichment in discrimination between active and inactive enzyme inhibitors. Later 

studies by Bissantz et al., Stahl and Rarey and Verdonk et al. [3, 11, 16] showed consensus 

scores which further improved VS enrichment. Although researchers attempt to bring out the 

benefit of combining methods with consensus scoring, the remaining issue for VS users rather 

than researchers is when and how these scoring functions should be combined. Furthermore, 

certain VS methods can identify important interactions or binding-site hot spots obtained from 

known active ligands and target proteins [17]. Because most docking programs [18-20] use 

energy-based scoring methods which are often biased towards selection of high molecular weight 

compounds and charged polar compounds they have problems identifying key features (e.g. hot-

spots) essential to target protein responses. Thus, methods for post-screening analysis employing 

clustering to identify key features through docked compounds and understanding binding 

mechanisms are of great use in bioinformatics. As VS encounters increasingly large databases, 

post screening analysis is an essential step in drug design and discovery. 

The first attempt at a post screening analysis was done by Kroemer et al [21] in their 

work “Interactions-Based Accuracy Classification (IBAC)”, an approach which aimed to 

determine the best way to assess correctness of docking conformations. Their study showed that 

RMSD values alone are insufficient to predict correct poses; therefore, binding modes should be 

closely inspected for specific interactions when assessing pose prediction accuracy. Through this 

study the relevance of interaction profiles emerged as the basis in studies of interaction and 

bindings among protein-protein and protein-ligand complexes.  

Amari et al and Deng et al [22, 23] followed the lead of IBAC and developed post 

screening analysis methods called Visualized Cluster Analysis of Protein−Ligand Interaction 

(VISCANA) and Structural Interaction Fingerprint (SIFt) respectively. Deng et al made a 

pioneering attempt by developing the first method based on binding interactions in order to 

facilitate the visualization, organization, analysis and data mining of virtually screened 
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compounds which all other post screening analysis employed. Amari et al devised a different 

approach for post screening analysis, a method based on the ab Initio Fragment Molecular 

Orbital Method (FMO) [24] to be used for analysis of virtual ligand screening also using the 

binding interactions generated from VS.  

  Attempts to cluster large numbers of compounds from VS by Bocker et al [25] resulted in 

a post screening method for clustering large datasets of compounds in a high dimensional space. 

The key feature of NIPALSTREE is its ability to handle more than 800 000 data points in high-

dimensional descriptor space in less than an hour computation time.  

The above studies implemented post screening analysis in an attempt to enrich the 

screening results of various docking tools (e.g. GOLD, AUTODOCK, GEMDOCK,) [19, 20, 26]  

and to facilitate the visualization, organization, analysis and data mining of virtually screened 

compounds. However, there are two main issues with all post screening analyses including the 

ones mentioned: 1) if a docking tool is used for VS, which post screening analysis should it be 

joined with for the most overall efficiency and accuracy and 2) if a post screening analysis 

method was decided (IBAC, SIFt or VISCANA) [21 – 23] which docking tool or VS method is 

most suitable prior to a particular post screening analysis. In addition, the ideal combination of 

docking tool and post screening analysis should successfully obtain novel compounds following 

the screening of compound databases and post analysis of selection lists obtained from VS.  

This research investigates the potential drawbacks of VS and of various post screening 

analyses in computer aided novel compound mining and discovery. It further investigates the 

role of interaction profiles and proposes an algorithm that specifically optimizes a docking tool 

(GEMDOCK) for screening database compounds which is combined with a new, two-stage 

clustering method for post screening analysis in an attempt to join VS and post screening 

analysis for faster and more efficient compounds mining and analysis.  

 

1.2 Motivation 

The importance of efficient data mining and analysis of potential lead compounds to be 

used in various industries is of high relevance in biotechnology. Compounds can be obtained 

from databases through virtual screening and post screening analysis and contribute greatly in 
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many applications (novel compounds for drug design and industrial uses). The availability of 

compounds found in databases enable studies to be conducted at much cheaper costs and faster 

paces than previously done in “wet” or traditional laboratory settings where the use of natural 

compounds and live specimen was a concern for many reasons (proper disposal of hazardous 

materials and the constant need of live cell cultures and animals). Thus, in the virtual laboratory 

settings, the basis for investigating biologically active compounds is the use of high resolution x-

ray structures of protein-ligand or protein-protein complexes from which a crystal structure is 

developed and to which all its known natural properties assigned.  New functions and roles of 

existing compounds are always discovered; therefore compound databases must constantly be 

updated. Developments of high-throughput X-ray crystallography and advances in genomics [1-9] 

are constantly increasing the number of crystal structures available in protein databases [27, 28] 

leading to multiple therapeutic and industrial targets. Although the great number of available 

structures may present difficulties when retrieving compounds, the growing number of available 

methods aided by computer technology and principles from various disciplines (information 

management, data mining, consensus scoring) are rapidly evolving new and improved techniques 

to aid such studies.  

This study investigates the significance of protein-ligand interaction profiles and 

compares various methods and tools used in virtual screening and post screening analysis for 

mining prospect compounds from databases and also expand their additional uses. It also shows 

the weakness of one-stage clustering methods in post screening analysis and why they have less 

success in identifying specific compounds and their various functions. Moreover, this study 

shows that a combined method of VS and a combined two-stage cluster analysis is more ideal for 

mining specific compounds and investigating their various functions. 

1.3 Organization of Thesis 

 This thesis is organized as follows: In chapter 2 we describe related studies and similar 

methods of mining and analyzing prospect compound candidates from virtual databases along 

with their advantages and shortcomings. In Chapter 3 we perform an in-depth study of protein-

ligand interaction profiles and present novel concepts obtained from our investigations in 

possible future work for additional applications of virtual screening and post screening analysis 

such as cosmetics, nutrition, industry and agriculture. In chapter 4 we describe our core work, the 



6 
 

development of Two-Stage Combinative Clustering (TSCC) and its improvement over one-stage 

post screening analysis methods. Chapter 5 concludes our studies and includes future work 

prospects. In Figure 2 below, the model for this research is presented.  

 

 

Figure 2. The overall research process in investigating of interaction profiles and their role in 
identifying suitable methods for lead compounds retrieval and their applications 
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Chapter 2 

2.1 Related Studies  

 The process of VS and post screening analysis is a common technique used in mining and 

analyzing compound candidates to be used in pharmaceutics or various other applications after 

their retrieval from databases. The VS technique involves docking tools (e. g. DOCK, 

GEMDOCK or GOLD) [19, 20, 26] to screen compound databases and rank compounds 

according to their binding energies. Compound databases store solved crystal structures (Figure 

1) of chemically significant compounds which can be used in various studies (e.g. drug design, 

nutrition and other industries) [6, 9, 10, 29 – 31]. VS and docking is followed by post analyses 

using clustering (SIFt and VISCANA) [22, 23] which aim to reduce the number of false positives 

obtained from VS and propagate true positives to the top of the selection list.  

2.1.1 The emergence of Post Screening Analysis  

 In the early days of computer-aided drug design, docking tools / programs were the only 

means of screening compounds for the possibility of drug design. Given the poor understanding 

of many critical factors at the time especially the incomplete knowledge of ligand binding 

mechanisms, VS was still a major accomplishment in moving forward a revolution in drug 

design and discovery with faster and more practical preliminary approaches than previously done 

through bioassays using biochemical methods. Traditional settings, in addition to requiring an 

extensive period of time to study various properties and make a drug ultimately available, had 

overwhelming expenses inquired through the use of conventional biochemical compounds, 

facilities and specimen. With the advent of computer aided drug design more of the preliminary 

work in drug design is done in virtual labs and when desired results are obtained, the stage 

requiring bioassays to confirm preliminary results is applied. 

Most docking programs [19, 20, 26] use energy-based scoring methods which are often 

biased towards selection of high molecular weight compounds and charged polar compounds 

(Fig, 3). Therefore, they have problems identifying key features (e.g. hot-spots) essential to 

target protein responses resulting in the performance of these scoring functions to be mostly 

inconsistent when conducting a database search [3, 11]. The inaccuracy of various scoring 

methods inadequately predicting the true binding affinity of a ligand for a receptor is a major 

weakness for VS. Moreover, employing VS [2, 3] in computer-aided drug design usually results 
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in a high number of chosen compounds from which few are potential or suitable candidates. 

Thus, it is imperative that a post screening analysis is conducted in order to reduce the number of 

false positives in the selection lists generated from VS and to propagate true hits to the top of the 

selection lists. 

 

Figure 3. The biased ranking of compounds in virtual screening (molecular docking). Unknown 
compounds MFCD00012401 (green color) MFCD00013358 (teal green color) are ranked much 
higher than Vitamin D3 (ranked 816) due to their energy and molecular weight. However, only 
vitamin D3 is known for its ability to bind to the target protein (β-LG) [66, 67] among all 
compounds listed in this table. 

 

2.1.2 Interaction-Based Accuracy Classification (IBAC) 

 IBAC is an approach developed by Kroemer et al [21] which determines the best way to 

assess correctness of docking conformations. It first calculates the RMS deviation of the 

predicted pose from the crystal structure and then it compares the predicted pose to the pose 

experimentally observed. In simple terms, using IBAC, Kroemer et al optimized the binding site 

definitions and docking protocols for 6 VS programs used in their studies (FlexX [32], GOLD 

[20], ICM [33], LigandFit [34], NWU [35, 36] and QXP [37]). They executed docking runs and 
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reported details of the ligand tautomeric forms and bond orders and how RMSDs from crystal 

structures correlated with interactions-based accuracy classifications. Kroemer et al. concluded 

that RMSD values alone lack the ability to predict correct poses and binding modes should be 

investigated further for specific interactions when assessing pose prediction accuracy. Through 

the work of Kroemer et al. the relevance of interaction profiles emerged as the foundation of 

interaction and bindings studies for protein-protein and protein-ligand complexes. 

2.1.2 Structural Interaction Fingerprint (SIFt) 

 SIFt [23] uses a simple, generic and robust approach for representing and analyzing 3D 

protein-ligand interactions. Its key feature is the generation of an interaction fingerprint that 

converts 3D structural binding information into a one-dimensional (1D) binary string (Figure 9). 

The fingerprint representation of the interaction patterns is compact, and allows for rapid 

clustering and analysis of large numbers of complexes. The SIFt is calculated on a set of input 

3D protein–small molecule complexes. To analyse SIFTs the Tanimoto coefficient (Tc) [38] is 

used as the quantitative measure of bit string similarity.  

This representation of interactions as fingerprints using the SIFt method enables 

clustering, filtering and profiling of large docking results libraries and crystal structures of the 

protein kinase family in complexes with various inhibitors. Although SIFt opened a broad road 

for post screening analysis, much of the road is still unpaved and difficult to travel in terms of 

methods used currently in post screening analysis.  

2.1.3 Visualized Cluster Analysis of Protein-Ligand Interaction 

VISCANA [15], a method which stands for Visualized Cluster Analysis of Protein-

Ligand Interaction based on the ab Initio Fragment Molecular Orbital Method (FMO) [24] used 

for virtual ligand screening was proposed by Amari et al. They developed a cluster analysis 

using the dissimilarity defined as the squared Euclidean distance between interfragment 

interaction energies (IFIEs) of two ligands. In VISCANA a clustering method is combined with a 

graphical representation of the IFIEs by representing each data point with colors that 

quantitatively and qualitatively reflect the IFIEs. This method claims to classify structurally 

different ligands into functionally similar clusters according to the interaction pattern of a ligand 

and amino acid residues of a receptor protein. VISCANA also estimates the docking 
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conformation by analyzing patterns of the receptor-ligand interactions of some conformations 

through the docking calculations.  

However, as stated by Amari et al. in their study, VISCANA lacks sufficient descriptions 

of van der Waals forces and hydrogen bond interactions which play an important role in 

receptor-ligand binding [39, 40]. This may account for selection of false positives instead and the 

failure to select true hits or active compounds. This method is aiming to increase VS enrichment; 

however, it doesn’t provide significant improvements over SIFt or extend further uses into drug 

design and discovery or other possible applications. 

2.1.4 A New Hierarchical Clustering Approach for Large Compound Libraries: 

NIPALSTREE 

NIPALSTREE, is an approach by Bocker et al [25] for clustering large datasets of virtual 

compounds in a high dimensional space. It uses the first Principle Component (PC) which 

employs NIPALS (non-linear iterative least squares) where the data set is split at point i or j 

(determined points where two neighbors exceed a predefined distance threshold T). The 

procedure is recursively applied on the resulting subsets until the maximal distance between 

cluster members exceeds a user-defined threshold. NIPALSTREE clustering employs PCA for 

hierarchical clustering algorithm as follows: A d-dimensional descriptor matrix is projected onto 

the first PC. Based on the scoring vector S, the given descriptor matrix is sorted in ascending 

order and split at the median position, i.e., two equally large descriptor sets-from now on termed 

“left” and “right” submatrix s are created. This is repeated for the new subsets until the 

maximum distance between the entries in a submatrix underscores a predefined similarity 

threshold (Θ). In order to judge the quality of a clustering result an index is introduced to assess 

whether molecules interacting with the same target (receptor or receptor family) lie in the same 

subtree. An enrichment factor (EF) is calculated for each cluster, which gives an estimate of how 

well compounds that bind to the same target (or target class) are clustered in a dendrogram node 

i expressed in the following equation: 

 

N i,c being the number of entries in node i belonging to class c, Ni being the total number of 
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entries in node i, Nc being the total number of entries of class c in the data set, and N being the 

overall number of entries. EF > 1 indicates that more compounds belonging to the activity class c 

are clustered in a tree node than expected from an equal distribution. The EF value depends on 

the size of the dendrogram section under consideration: On the upper dendrogram levels, where 

clusters are large, EF values are usually smaller, whereas EF values on the lower dendrogram 

level scan get large without a statistical relevance. A possible way to overcome the cluster size 

dependency of the EF is to additionally divide it by the logarithm of the dendrogram level, 

assuming that at each cluster the data set is separated into equally large partitions. In this way, an 

adoption of the EF to the dendrogram level can be achieved.  

Although NIPALSTREE is able to deal with more than 800 000 data points in high-

dimensional descriptor space in less than an hour computation time it does not specify how false 

positives are addressed; this is a major concern for all methods performing compound retrieval 

and analysis. Besides a rapid clustering of compounds, NIPALSTREE cannot offer visualization 

and accurate data mining of compounds and it is impractical as a method of retrieval and analysis 

for specific compounds in either drug design or other industrial uses.  

2.2. The Use of Protein-Ligand Interaction Profiles in the discovery of Molecular 
Mechanisms and Lead Compounds 

Since protein-ligand and protein-protein complexes are components of a great number of 

pharmaceutical [5, 41], nutritional [10] and industrial compounds [29-31] it is reasonable to 

employ computer-aided lead compound design and discovery methods for other applications 

besides pharmaceutics. Due to its significant role and impact on the quality of human life, drug 

design was the main focus in early days of virtual screening and bioinformatics. However, as 

methods and studies in drug design reveal that VS and post screening analysis are relatively 

inexpensive and efficient we want to explore the other fields (nutrition, agriculture and industry) 

which were not given as much attention. Protein-ligand complexes of various compounds 

interact through similar properties [40] and necessitate similar methods of screening, retrieval 

and analysis of their crystal structures (Figure 1) regardless what their final application may be. 

Therefore, the first part of this research focuses to conduct comparative studies on features and 

properties of protein-ligand interaction profiles to better understand their relevance in the mining 

of novel compounds. Additionally, we investigate possibilities of employing interaction profiles 

in the mining of compounds to be used in other applications besides drug design such as 
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cosmetics, skin care, nutrition, safe fertilizers and pesticides, compounds for scents in perfumes 

and deodorants and safe detergents. Furthermore, we employ interaction profiles in investigating 

mechanisms of significant molecules for human health and nutrition (e.g. uptake of vitamin D in 

the human body by Betalactoglobulin).  

Although the interest of researchers in mining novel compounds for other uses besides 

pharmaceutics is minimal at the present time, as computer-aided methods continue to improve 

and increase in use, other industries (e.g. cosmetics, agriculture, nutrition) look to employ their 

benefits. Therefore, the approaches and techniques used in computer-aided drug design can be of 

particular interest for different biotechnological approaches. VS combined with post screening 

analysis are seemingly efficient in investigating transporter proteins such as β-lactoglobulin (β-

LG), their mechanisms and various functions in the human body. Many compounds having 

various functions and mechanisms in the body are protein-ligand complexes which can be 

investigated based on protein-ligand interactions and physico-chemical features. 
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CHAPTER 3 

The Relevance of Protein-Ligand Interaction Profiles in Computer-Aided 

Lead Compound Discovery, Functions and Applications 

3.1 Introduction 

Identification of protein-ligand interaction networks on a proteome scale is crucial in 

addressing a wide range of biological issues such as correlating molecular functions to 

physiological processes and designing safe and efficient target compounds which can be used in 

therapeutics, nutrition, cosmetics, skin care products, agriculture and industry. In order to 

understand the role and significance of protein-ligand interactions (Fig. 4) in various applications 

throughout the field of bioinformatics and biotechnology the properties and functions of a ligand 

[42, 43] must be well addressed. As seen previously, the ligand (vitamin D, Fig. 1) is a molecule, 

ion or atom which can bind to a specific location or the binding site of a protein [39, 44]. 

Currently, antibodies are the most commonly used ligands in biotechnology and life-science 

investigations, although protein scaffolds (protein regulators), nucleic acids and peptides 

(repeating structural units in amino acids) are also employed. Since protein-ligands complexes of 

various compounds are used in cosmetics, hair dyes, skin care products, fertilizers, detergents 

[29-31] and nutrition supplements [10], protein-ligand interaction profiles and physico-chemical 

features could be used in the identification of such lead compounds.  

a          b 

              
Figure 4. View of protein-ligand binding interactions in Betalactoglobulin (a transporter protein) 
complexed with vitamin D using Swiss PDB viewer. a) Electrostatic potential and molecular 
surface. b) Hydrogen bond interactions among atoms (green dotted lines).  



14 
 

The ligand binding site of the primary target is extracted or predicated from a 3D 

experimental structure or homology model of proteins [35, 45] and characterized by a geometric 

potential. Protein-ligand interactions occur when a ligand binds to a protein which is usually 

integral to the function of its cognate (assimilated or symbiotic) protein. In the binding of a 

ligand to a protein, the following interactions are of significance: electrostatic forces (interaction 

between electrically charged particles explained by Coulomb’s law), van der Walls forces (the 

sum of the attractive or repulsive forces between molecules or parts of the same molecule) and 

hydrogen bonding (the attractive interaction of a hydrogen atom with an electronegative atom 

which can occur inter or intramolecularly) [39, 40]. Based on these interactions, evaluations are 

made using ligand-based approaches employed commonly in pharmacophore modeling by using 

physical and chemical traits of known ligands to identify novel inhibitors. Another approach, the 

receptor-based, identifies ligands that use structural and other features on the target receptor to 

identify the best inhibitor.  

Docking [18, 26, 32, 33, 46] is then used to identify the fit between a receptor and the 

potential ligand by screening a database of ligands against one or more target receptors via two 

distinct parts: docking (the search scheme to identify suitable conformations or poses) and 

scoring (a measure of the affinity of various poses). Scoring methods must discriminate between 

non-native docked conformations and correct binding states of compounds during molecular 

docking phase to distinguish active compounds (usually a small number) from non-active 

compounds (an extremely large number) during the post-docking analysis. Although there are 

over 60 docking programs and tools available [24], we present some of the most popular 

programs made publicly available (Table 1). DOCK [18], incremental construction (FlexX) [32] 

and evolutionary algorithms (GEMDOCK, GOLD, AutoDock) [26, 33, 46] are used to screen 

and downsize compound groups in order to select suitable candidates for post-screening analysis. 

However, inconsistencies in the performance of scoring functions results in inadequate 

prediction of true binding affinity  of a ligand to a receptor; thus, combining various scoring 

methods in VS may improve performance than in the average individual scoring functions. 

Similar inconsistencies have been noticed in information retrieval (IR) and Charifson et al. [15] 

proposed a study in which they used an interaction-based consensus approach to combine 

scoring functions which revealed enrichment in discrimination between active and inactive 

enzyme inhibitors. Studies by Bissantz et al. [3], Stahl and Rarey [11] and Verdonk et al. [16] 
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showed works on consensus scores which further improved VS enrichment. However, the 

remaining issue for VS users rather than researchers is when and how these scoring functions 

should be combined in either drug design or industrial compounds design. 

 
Docking programs URLs REFERENCES

DOCK http://dock.compbio.ucsf.edu/ 18 
FlexX http://biosolveit.de/flexx/index.html?ct=1 32 

AutoDock http://autodock.scripps.edu/ 46 
GEMDOCK http://gemdock.life.nctu.edu.tw/dock/igemdock.php 26 

GOLD http://www.ccdc.cam.ac.uk/products/life_sciences/gold/ 33 
 

Table 1.  Popular docking tools and evolutionary algorithms currently used in VS 

 

Furthermore, certain VS methods can identify important interactions or binding-site hot 

spots obtained from known active ligands and target proteins [17]. However, due to biases 

towards higher molecular weight and charged polar compounds [18] docking alone is not 

sufficient to analyse, determine and retrieve the most adequate lead compounds therefore post 

screening analyses are emerging as useful methods to aid with further elimination of false 

positive hits obtained from VS.   

Methods for post-screening analysis employing clustering to identify key features obtained 

via docked compounds and the understanding of binding mechanisms are of great use in 

bioinformatics. Therefore, computer-aided drug and industrial target design require VS as a 

primary step to generate interaction and structure profiles followed by post screening analysis for 

adequate filtering, visualization and mining of the final candidates. 

 

3.2 The Significance of Protein-Ligand Interaction Profiles in Methods of Compound 

Retrieval and Post Screening Analysis 

Interactions between molecules (Fig. 4) are important for understanding many biological 

phenomena. From gene expression to enzyme reactions, the activities are dictated by molecular 

interactions. Because of DNA microarray success, researchers are studying the protein 

counterpart in greater detail [47]. Protein microarray can be used for studying a variety of 
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biological phenomena such as interactions of protein-ligand, protein–protein, antibody–antigen, 

protein–DNA, analysis of subunits in protein complexes, screening of target proteins expressed 

from phage library, analysis of mutant proteins, quantitative assay, discovery of diagnostic 

markers, analysis of protein expression profiles, development of diagnostic microarray and 

development of microarray-based lead screening system. The interactions of significance in 

analysis and retrieval of lead compounds for drug design are intermolecular interactions such as 

van der Walls forces, electrostatic forces and Hydrogen bonds interactions [39, 40]. Also called 

interaction energies, they can be obtained from virtual screening of docked compounds 

calculations [13]. The calculations of interaction energies are organized into data sets of 

interaction profiles (IPFs) and can be used as one of the criteria in a cluster analysis to further 

filter out and select more specific or the final target compounds. Thus, cluster analysis of various 

compounds with similar interaction energies will group the various compounds into separate 

clusters from which a representative is chosen usually based on RMSD values while undergoing 

what is termed a post screening analysis.  

 

3.2.1 Post Screening Analysis 

Methods of post screening analysis [21-23] are designed to facilitate the visualization 

(interpretation of binding interaction), organization (cluster and organize structures in a 

meaningful way), analysis (compare and profile the binding interactions of different structures) 

and data mining (search for structures containing key interactions or specific features) of 

virtually screened compounds. As mentioned earlier, binding interactions [39] (e.g. van der 

Walls forces, electrostatic forces and hydrogen bond interactions) of protein-ligand complexes 

are a critical part of mining and selecting the target representatives in post analysis methods. 

Descriptions of binding interactions and interaction strength measures for protein-ligand 

complexes are very important for better mining of appropriate candidates from selection lists 

generated by VS [48]. Thorough an in-depth study of protein-ligand interactions in various post 

screening analysis, we attempt to develop an integrated method of VS and post screening 

analysis in order to speed up the screening and analysis of compounds, generate better 

interaction-specific information and to obtain suitable representatives. The overall details of this 

study are shown in Figure 5. 
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Figure 5. Methods from previous works investigated and our studies done in the designing of our 
TSCC method.  

 

Bellow we investigate and compare a few pioneering methods of post screening analysis 

which were all originally designed to enrich virtual screening. Later in our work we will perform 

some comparative studies and inductive analysis which provide a foundation for expanding the 

use of virtual screening and post screening analysis into the mining and analysis of targets used 

in various other applications besides pharmaceutics.  

3.2.2  Structural Interaction Fingerprint (SIFt) 

SIFt [23] uses a simple, generic and robust approach for representing and analyzing 3D 

protein- ligand interactions. Its key feature is the generation of an interaction fingerprint that 

converts 3D structural binding information into a one-dimensional (1D) binary string (Fig. 6).

The fingerprint representation of the interaction patterns is compact, and allows for rapid 

clustering and analysis of large numbers of complexes. The SIFt is calculated on a set of input 

3D protein–small molecule complexes. The protein structure may have been determined 
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experimentally by NMR or crystallography, or generated through homology modeling. The SIFt 

is generated by first defining the union of those residues that are in contact between the protein 

and the small molecule complex. The resulting panel of ligand binding site residues, which act as 

a mask covering all of the interactions occurring between the protein and the ligands, is then 

used as the common reference frame to construct the interaction fingerprints.  

 

 
Figure 6. The 3D binding site of protein with an inhibitor (ligand) revealed as a sequence of 
positions in the binding site in contact with the ligand and their location in the structure of the 
protein (loop and β). Each binding site position is represented by a bitstring. The joining of all 
bitstrings end-to-end for each binding site residue is repeated for all ligands and is used in the 
selection process. 
 

To analyse SIFTs the Tanimoto coefficient (Tc) [38] is used as the quantitative measure 

of bit string similarity. The Tc between two bit strings A and B is defined as: 

           B A/BA B)Tc(A,  UI=  

where  is the number of ON bits common in both A and B and is the number of ON 

bits present in either A or B. Tanimoto coefficients between random bit strings with a length of 

400 bits adopt a near-Gaussian distribution centered at approximately 0.33, with a sigma of about 

0.03. This representation of interactions as fingerprints using the SIFt method enables clustering, 

filtering and profiling of large libraries of docking results as well as crystal structures of the 

protein kinase family in complexes with various inhibitors. 



19 
 

3.2.3 VISCANA (Visualized Cluster Analysis of Protein-Ligand Interaction) 

VISCANA [22] (Fig. 7) is a method based on the ab Initio Fragment Molecular Orbital 

Method (FMO) [24] used for analysis of virtual ligand screening. The ab initio FMO method at 

the Hartree-Fock level is shown in the details following the method figure.  

 

 

Figure 7. a) The overall approach of VISCANA (from VS to the selection of representatives).  
b) The fragmentation of a polypeptide at different bonds. c) Division of biomolecules into a 
collection of small fragments in the molecular orbital calculations (FMO method).  

 

First, biomolecules or molecular clusters are divided into small fragments, and the ab 

initio MO calculations on the fragments (monomers) under the electrostatic potential from 

surrounding fragment pair as seen in Fig 7b and c. This is then solved repeatedly until all 

monomer densities become self-consistent. Finally, through the use of the total energies of the 

monomer EI and the dimer EIJ, the total energy of the system E is calculated by the following 

equation: 
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The FMO method has the advantage of describing the charge-transfer between a receptor 

and a ligand in comparison to a conventional force field method using fixed atomic charges. 

Based on this principle Amari et al. developed a cluster analysis using the dissimilarity defined 

as the squared Euclidean distance between interfragment interaction energies (IFIEs) of two 

ligands. VISCANA combines a clustering method with a graphical representation of the IFIEs by 

representing each data point with colors that quantitatively and qualitatively reflect the IFIEs. 

This method classifies structurally different ligands into functionally similar clusters according 

to the interaction pattern of a ligand and amino acid residues of a receptor protein. VISCANA 

also estimates docking conformation by analyzing patterns of the receptor-ligand interactions of 

some conformations through the docking calculations. VISCANA could be applied not only to 

the FMO method but also any molecular interaction system which can provide interaction 

energies or other properties of interest such as charge distribution. 

 

3.2.4 iGEMDOCK: A Graphical Environment for Recognizing Pharmacological 

Interactions and Virtual Screening 

iGEMDOCK (Fig. 8) is an extension of the original docking tool GEMDOCK developed 

by Yang et el. [26] which adds a post screening analysis method to the original docking 

algorithm  (http://gemdock.life.nctu.edu.tw/dock/igemdock.php).  GEMDOCK’s two key 

functions for VS are used: 1) the searching algorithm [49] and 2) the scoring function [50] which 

is based on an empirical energy function: 

           
ligprepharmabindtot EEEE ++=  

 

where Ebind is the empirical binding energy, Epharma is the energy of binding site pharmacophores 

(hot spots), and Eligpre is a penalty value if a ligand does not satisfy the ligand preferences. Epharma 

and Eligpre are especially helpful in selecting active compounds from hundreds of thousands of 

non-active compounds by excluding ligands that violate the characteristics of known active 

ligands, thereby improving the selection of true positives.   
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Figure 8. The virtual screening and post screening analysis processes in iGEMDOCK 

 

The integration of different-stage programs of VS environments into GEMDOCK 

constituted the emergence of iGEMDOCK for docking, virtual screening and post screening 

analysis of database compounds using a friendly interface. In post-screening analysis 

iGEMDOCK enriches the hit rate and derives pharmacological interactions from screened 

compounds to provide biological insights. The pharmacological interactions represent conserved 

interacting residues which form binding pockets with specific physico-chemical properties 

expressing the essential functions of the target protein.  

      This new algorithm provides both virtual screening and post screening analysis as well as 

a more detailed and complete understanding of ligand binding mechanisms which makes the 

study and discovery of lead compounds much easier and less time consuming than other similar 

post screening analyses. iGEMDOCK is based on the efficiency of GEMDOCK which was able 

to mine various inhibitors such as aurintricarboxylic acid tetracycline derivatives which inhibit 

flaviviruses [6] and influenza virus neuraminidase inhibitors [8].  

 

3.3 Summary 

Methods of post screening analysis that enhance virtual screening enrichment and retrieve target 

compounds more accurately are of great use and interest in current bioinformatics. In this review 

we summarized and compared methods of VS and post screening analysis of lead compounds 

which emphasize the relevance of interaction profiles in mining suitable candidates.  
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      SIFt (structural interaction fingerprint) is one of the pioneer methods in post screening 

analysis to include interaction-specific information into the real number strings. This enables the 

visualization, organization, analysis and retrieval of structures containing key interactions or 

specific features. A combination of SIFt and ChemScore (an empirical scoring function) 

contributed to a modest increase in the enrichment factor (EF) which was calculated based on the 

ability to recover known inhibitors. The enrichment increased from 37.0 EFa (SIFt) to 42. 3 EFa 

(SIFt + ChemScore) [23]. 

VISCANA (Visualized Cluster Analysis of Protein-Ligand Interaction) uses a different 

approach through the FMO method. It has the advantage of describing the charge-transfer 

between a receptor and a ligand in comparison to a conventional force field method using fixed 

atomic charges. The difference between VISCANA and other conventional screening methods is 

that most methods choose the higher rank of a docking score on a point. In VISCANA a 

compound with a low docking score may belong to the same cluster that contains active 

compounds and the compound could be a suitable candidate. However, Amari et al. affirmed in 

their study VISCANA needs further development of quantum mechanical methods (the second-

order Møller-Plesset perturbation theory based on the FMO method) to obtain more reliable 

descriptions of van der Walls interactions and hydrogen bonds which are important in 

determining receptor-ligand binding [22]. Other post screening studies reveal that unreliable or 

insufficient descriptions of important interactions account for increased numbers of false 

positives [48].  

iGEMDOCK, an integration of VS and post screening methods is based on the original 

evolutionary docking algorithm GEMDOCK, currently one of the pioneer methods used for 

combining VS with visualizing, organizing, analysing and data mining of lead compounds. It has 

an advantage over SIFt and VISCANA primarily due to the attempt of eliminating two key 

issues: 1) if a docking tool is used for VS, which post screening analysis can complement it best 

and 2) if a post screening analysis method is decided, which docking tool or VS method is most 

suitable. The difference in the post screening approach of iGEMDOCK and other methods 

(VISCANA and SIFt) is the use of a module which clusters compounds based on interaction 

profiles and atomic compositions. Selecting representative compounds from each cluster enables 

the maintaining of compound diversity and reduces the number of false positives. In addition, its 

pharmacological scoring function can reduce the ill-effect of energy-based scoring functions 



23 
 

which often favor high molecular weight or highly-polar compounds. This improves the 

screening accuracy when the molecular weights of the active compounds are less than 400 

Daltons (Da) [52]. Most notably, GEMDOCK, the earlier version of iGEMDOCK was used 

successfully to screen and identify inhibitors for influenza virus neuraminidases and flaviviruses 

[6, 8].  

We also emphasize on the use of VS and post screening analysis in the mining of novel 

compounds for various other applications (e.g. industry, agriculture, cosmetics and nutritional 

supplements). These areas have not been getting much attention in comparison to drug design 

whereas certain protein-ligand complexes constitute key compounds in developing various 

biochemical products [29-31]. VS and post screening analysis used in computer-aided drug 

design reveal great potential in such applications since prospect candidates used in cosmetics and 

other industries may be retrieved employing interaction profiles.  

Although the methods investigated in this study, SIFt, VISCANA and iGEMDOCK 

employ different techniques (structural interaction fingerprint, ab initio FMO method and 

interaction energy modules) they have one common feature; the use of protein-ligand interaction 

profiles which can be further exploited in developing new and improved methods to retrieve and 

analyze potential candidates for drug design and other applications. Through the development of 

better techniques, measures and description of interaction energies can aid methods of novel 

compounds retrieval and analysis, improve in accuracy and selection of active compounds. In 

addition, these observations point to an important aspect in the computer-aided drug design and 

discovery, the necessity for more than one stage of clustering in post screening analysis. From 

this point we proceeded with developing our new method Two-Stage Combinative Clustering 

(TSCC) [48] which combines our specifically optimized docking tool (GEMDOCK) with two 

stages of clustering for an optimized post screening analysis. 
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CHAPTER 4 

TSCC: Two-Stage Combinative Clustering for Virtual Screening Using Protein-ligand 
Interactions and Physical-Chemical Features 

4.1 Introduction 

Continuous advancements in high-throughput X-ray crystallography and genomics [2, 28] 

account for increased numbers of available crystal structures enabling a more rapid development 

of new therapeutic targets. However, prospect ligands and proteins need to be screened in order 

to downsize groups [22, 23, 53] and select suitable candidates for post-screening analysis. 

Clustering methods based on structural similarity which are employed in post-screening analysis 

generally improve the scoring function performance. In developing methods for 3D compound 

retrieval, a detailed understanding of intermolecular interactions between proteins and their 

ligands is critical to structure-based inhibitor design. Various post-screening analysis methods 

and clustering [23, 54-56] employ RMSD values, protein-ligand interactions and computation 

and comparison platforms for measuring distances. Since the above methods as well as TSCC 

encounter challenges of specific selectivity and false positives, we aim to provide advantages to 

our post screening analysis method by using two combined clustering stages to rank all 

compounds and select final representatives more efficiently and accurately. The final 

representatives can be confirmed through bioassays to verify their target and the proper activity 

and application. 

Although similar methods (IBAC, SIFt and VISCANA) [21-23] have used visualization 

and clustering of compounds to enrich VS, they have not identified novel compounds for any 

practical applications (drug design or industrial purposes). In addition, with the use of such 

methods one main issue remains unsolved: which combination of VS and post screening analysis 

is the most efficient. Our goal is to provide a more efficient method for post screening analysis to 

identify novel compounds, their possible functions and practical applications. Thus, we employ 

the empirical energy function from GEMDOCK [26] and the basic premise of SIFt [23] to 

encode additional interaction-specific information into the real number strings, hydrogen bonds, 

van der Waal and electrostatic forces. By representing interactions at the atomic-level as opposed 

to the residue level and including measures of interactions strength, protein-ligand interactions 

can be described better and a more precise analysis of virtual screening can be obtained. 
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TSCC is accomplished by joining two clustering stages; one of protein-ligand 

interactions (e.g. hydrogen bonds, electrostatic interactions, and van der Waals forces) with 

another of physico-chemical features (e.g. atom composition). We employed our docking tool, 

GEMDOCK, to generate protein-ligand interactions and used the Accelrys Cerius QSAR module 

for obtaining physico-chemical features for the compounds. Based on normalized feature profiles, 

hierarchical and K-mean [57] clustering methods were used to cluster and select compound 

candidates. Since clustering based upon similarity requires a quantitative measure (descriptor) of 

the similarity between two molecules, 2D and 3D methods were used to generate a descriptor 

such as the atom pair descriptor (i.e. compound topological similarity) [58].  

To handle the vast results from virtual screening and use more specific information for 

protein-ligand binding, we utilize the empirical energy function from GEMDOCK [26] 

specifically optimized for virtual screening of ligands. GEMDOCK uses piecewise linear 

potential (PLP), a simple scoring function (Fig. 9), comparable to similar scoring functions for 

estimating binding affinities [60, 61]. Our previous works showed a comparison of GEMDOCK 

and other docking methods for 100 protein-ligand complexes and two virtual screening targets 

[49-50]. In addition, GEMDOCK has been successfully applied to identify inhibitors and binding 

sites for some targets [6, 8]. Here, we utilize the PLP of GEMDOCK to generate the protein-

ligand interaction profiles.   

 

Figure 9. The linear energy functions of the pairwise atoms for the steric interactions and 

Hydrogen bonds in GEMDOCK (bold line) with a standard Lennard-Jones potential (thin line) 

Yang et al. [26].  
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To demonstrate the efficiency of our method we successfully applied its combinative 

two-stage concept in two separate post screening analysis studies. In the first study (sections 4.2, 

4.3) two compound sets (testing and verifying) were designed to determine if the protein-ligand 

interaction descriptor is suitable for identifying compounds with similar binding modes. The two 

sets were also used to determine if the compound structure descriptor is suitable to identify 

similar structure compounds and to evaluate the database enrichment potential and the property 

of compounds in the same cluster by docking a diverse set of compounds spiked with known 

active compounds into the same target protein.  

4.2 Materials and Methods 

The Two-Stage Combinative Clustering (TSCC) Methodology 

The overview of TSCC concept in our first study is shown in Figure 10. We first 

calculated the atom-based protein-ligand interactions by converting every docked pose into a one 

dimensional real number string in order to visualize and analyze large data obtained from virtual 

screening using Yang et al [26].  

 

Figure 10. Overall process of TSCC in our first study (a) First stage clustering using P-L 
interactions generated via GEMDOCK. (b) Second stage clustering of first stage results using 
physico-chemical features. (Figure obtained from our published study [48]). 
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Due to protein-ligand interactions representation, we were able to evaluate the distance of 

binding modes between two docked poses and to carry out hierarchical clustering analysis. 

Compounds with a similar binding mode were visualized and grouped into clusters [59]. In our 

structure based clustering section, each structure was represented by a one dimension atom-pair 

descriptor, an approach proposed by Carhart et al [58]. After analyzing the distance between 

active and non-active compounds, a reference threshold was decided for demarcating similar 

compounds (Fig. 11).  

 

 
 

Figure 11. Designing the reference thresholds for protein-ligand interaction and atom-pair 
descriptor (Figure obtained from our published study [48]). The complementation between atom-
pair descriptor and the protein-ligand interaction descriptor is also shown in this figure. The 
distance threshold of atom-pair descriptor obtained was 0.55 (tanimoto coefficient) and the 
threshold of distance of protein-ligand interaction descriptor was 0.39 (correlation coefficient).  
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We generated two sets of structure-based virtual screening results: 1) to verify if the 

protein-ligand interaction descriptor is suitable for identifying compounds with similar binding 

mode and 2) to evaluate the database enrichment potential and the property of compounds in the 

same cluster by docking a diverse set of compounds spiked with known inhibitors into the same 

target protein. 

4.2.1 Preparation of Target Protein and Compound Databases 

The Ligand binding site was defined as a collection of amino acids using a cutoff radius 

of 10Å from each atom on the bound ligand, since most studies in lead discovery use a cutoff 

radius between 8 to 12 Å. Structure files were stored as a PDB format for GEMDOCK analysis. 

Compound databases 

We constructed two compound sets for screening against each target protein: thymidine 

kinase (TK) PDB id: 1kim, estrogen receptor alpha-agonist (ERα) PDB id: 3ert, estrogen 

receptor alpha-antagonist (ERα) PDB id: 1gwr, human dihydrofolate reductase (hDHFR) PDB 

id: 1hfr, tern n9 influenza virus neuraminidase (NA) PDB id: 1mwe. The structures used were 

obtained from the database Comprehensive Medicinal Chemistry  (CMC) and American 

Chemical Directory (ACD) and compounds with molecular weights between 200 and 800 D 

were chosen only based on the similar size of our active compounds. The active compounds 

(61 compounds, Appendix 1 a) were listed as the following: 1) TK: 10, 2) ER α antagonists: 

11, 3) ER α agonists: 10, 4) hDHFR: 10, and 5) NA: 20. The two crystal structures of human 

estrogen receptors alpha have been intensively studied for their different functions (agonist 

1GWR promotes coactivator binding while antagonist 3ERT blocks it) and ability to bind on 

the same site of the protein. The agonists play an important role in regulation of gene 

expression and prevention of osteoporosis while the antagonists have been used as treatment of 

hormone-dependent breast cancer [60, 61].  
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The testing dataset contained 990 randomly selected compounds combined with known 

active compounds for each target protein using a method from Bissantz et al [3]. This is a small 

scale public set of compounds used by studies in lead compound discovery. All compound 

structures were converted to mol formats and their hydrogen atoms removed using CORINA3.0 

in order to be virtually screened by GEMDOCK. The active compound, target proteins and 

compound sets are available on our web at http://gemdock.life.nctu.edu.tw/dock/download.php. 

4.2.2 Preparation of Virtual Screening Result for Cluster Analysis 

GEMDOCK was substantially modified, in preparation for the docking of different 

complex poses and to predict the binding affinity for each compound in the dataset using two key 

functions: 1) The searching algorithm [49] and 2) The scoring function which is based on an 

empirical energy function [50].  

GEMDOCK scoring function 

The energy function can be expressed by the following terms and equations:         

                             ligprepharmabindtot EEEE ++=                           (1)  

where Ebind is the empirical binding energy, Epharma is the energy of binding site pharmacophores 

(hot spots), and Eligpre is a penalty value if a ligand does not satisfy the ligand preferences. Epharma 

and Eligpre (see Mining pharmacological consensuses subsection) help select active compounds 

by improving the number of true positives. The values of Epharma and Eligpre are set to zero if 

active compounds are not available. Thus, the empirical-binding energy (Ebind) is given as:  

     penalintrainterbind EEEE ++=           (2)  

where Einter and Eintra are the intermolecular and intramolecular energies, respectively, and Epenal 

is a large penalty value if the ligand is out of the range of the search box. For this study, Epenal 

was set to 10,000. The intermolecular energy is defined as:  
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where rij is the distance between the atoms i and j; qi and qj are the formal charges and 332.0 is a 

factor that converts the electrostatic energy into kilocalories per mole. The lig and pro denote the 

numbers of the heavy atoms in the ligand and receptor, respectively. ( )ijB
ijrF  is a simple atomic 
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pairwise potential function (Fig. 9) as defined in our previous study [5] where 
ijB

ijr is the distance 

between atoms i and j with interaction type Bij formed by pair-wise heavy atoms between ligands 

and proteins, Bij is either a hydrogen bond or a steric state. We used the atom formal charge to 

calculate the electrostatic energy [3], which is set to 5 or −5, respectively. The intramolecular 

energy of a ligand is: 

  ( ) ( )[ ]∑ ∑ ∑
= += =

−−+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+=

lig

i

lig

ij

dihed

k
k

ij

jiB
ijintra mA

r
qq

rFE ij

1 2 1
02 cos1

4
0.332 θθ                    (4) 

where ( )ijB
ijrF  is defined as in Equation 3 except the value is set to 1000 when 

ijB
ijr  < 2.0 Å, and 

dihed is the number of rotatable bonds in a ligand. We followed the work of Gehlhaar et al [9] to 

set the values of A, m, and θ0. For the sp3-sp3 bond, A = 3.0, m = 3, and θ0 = π; for the sp3-sp2 

bond, A = 1.5, m = 6, and θ0 = 0. When known active ligands are available, GEMDOCK uses a 

pharmacophore-based scoring function (Equation 1). If known active compounds are not 

available LPelec and LPhb are set to zero and GEMDOCK uses a purely empirical-based scoring 

function (Equation 2). After all of the protein-ligand interactions were calculated, the atom 

interaction-profile weight of the target protein representing the pharmacological consensus of a 

particular interaction was given as:  

N
f

Q
k
jk

j =              (5)  

where N is the number of known active compounds and k
jf is the total interaction number of an 

atom j (in a protein) interacting with an atom of known active ligands with the interaction type k 

(e.g., hydrogen bonding or hydrogen-charged interactions). An atom j in the reference protein 

was considered a hot-spot atom when k
jQ  was more than 0.5.  

4.2.3 Testing and Verifying Datasets 

The lowest energy conformation was retained for generating the representative docked 

pose of each compound. 
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Generation of Descriptors (Protein-Ligand interaction descriptors) 

We converted 3D docked conformations (poses) into a one dimension real number string 

by calculating the energy between each atom present on protein and ligand. The interaction 

energy of each atom j on a protein is defined as: 

 ( ) 2
1

332.0
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i jBij
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where 
ijB

ijr is the distance between atoms i and j with interaction type Bij formed by pair-wise 

heavy atoms between ligands and proteins, Bij is either a hydrogen bond or a steric state. These 

two potentials are calculated by the same function, although from different parameters; V1, . . . , 

V6. qi and qj are the formal charges and 332.0 is a factor that converts the electrostatic energy 

into kilocalories per mole. The lig and pro denote the number of heavy atoms on the ligand. 

( )ijB
ijrF  is a simple atomic pair-wise potential function.  

Atom pair descriptors 

Atom-pair descriptors are 2D topological descriptors counting the distance between two 

atoms as the shortest path of bonds [58]. The procedure for preparing atom pair descriptors: 

1) Structure files in mol format 

2) Remove hydrogen atoms  

3) Convert to mol2 format via CORINA3.0 

4) Calculate atom pair descriptors via AP generator (distance bins: 15) 

5) Store in binary coding form.  

A total of 825 (55 x 15) atom pair descriptors were generated for each molecular structure 

by removing all columns with zero values. 

 Reference Threshold for Protein-Ligand Interaction and Atom-Pair Descriptor 

To design a reference threshold of protein-ligand interaction, a verifying dataset was used 

in establishing a reference threshold of distance by determining a maximum discrimination that  
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exists between similar and non-similar binding modes. The equation is as follows: 

max / 2intra-d t inter-d t

intra inter

C C
C C

< >
⎛ ⎞⎛ ⎞

+⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
                                  (7) 

Where t is the reference threshold, intra-d tC <  is the number of intra active compound pairs with the 

distance < threshold and interC  is the number of compound pairs between active and non-active 

compounds.  

The Cluster Analysis Method 

First, we used a protein-ligand interaction descriptor for clustering compounds with 

similar binding modes and applied the correlation coefficients as similarity measurements. The 

following formula was used:  
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where corr
xyD  is the correlation distance between docked pose X and Y. xS is the standard 

deviation of X. iX  is the ith value of X. n is the number of descriptors. We applied the standard 

UPGMA clustering method for calculating the distance between two clusters while constructing 

the dendrogram. The formula is defined as:  
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The reference threshold was calculated from the verifying dataset using equation (2) to 

determine the number of clusters.  

Second, we applied the AP descriptor for clustering compounds within each clustering stage 

and applied the tanimoto coefficients as similarity measurements. Formula is as follows:     
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U
          (10)  
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where 
tani
xyD  is the tanimoto distance between X and Y. X YI  is the number of ON bits 

common in both X and Y, and the X YU is the number of ON bits present in either X or Y. This 

equation is similar to equation (4); corr
xyD by tani

xyD . The dendrogram graph was plotted for 

visualizing the binding mode of multi docked poses by the protein-ligand interactions. 

4.3 Results  

Molecular Recognition 

I. Thymidine kinase (TK) 

The significance of TK as a target in computer-aided drug design is its involvement in the 

phosphorylation of nucleosides or nucleoside analogs [62]. Various antiviral drugs attack the 

replication of the viral genome with nucleoside analogs. These analogs are activated by 

phosphorylation with TK and prevent DNA synthesis by the introduction of a chain-terminating 

nucleoside at the 3’ end of the growing DNA strand. Thus, we screened against this target and 

choose the crystal coordinates of TK (Appendix 1a) in complex with its natural substrate 

(deoxythymidine). This is reasonable since the active site can accommodate a broad variety of 

ligands. The average RMSD of all ten docked poses was 1.39 Å. (Table 2) 

II and III. Estrogen receptor α (ER α antagonists and agonists)  

Estrogens contribute to the maintenance of bone tissue through a process involving bone 

resorption and bone formation [60] which makes for another appropriate target. The target 

protein structures of ERα (Appendix 1a) were obtained from PDB, whereas antagonists and 

agonists were derived from previous studies [3, 63]. We docked four antagonists into the target 

protein (3ert) and four agonists into another one (1gwr), and concluded their results based on the 

root mean square deviation (RMSD) error in the heavy atoms ligand between the docked pose 

and the crystal structure. The average RMSD of docked antagonists and agonists was 1.42 Å. 

The RMSD values of 1hj1.AOE and 1qkm.GEN were larger than 2.0 Å because the native 

proteins were crystal structures of Erβ-ligand complexes. (Table 2)  
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Table 2. The RMSD between docked poses and crystal ligands [48] 

TK (1kim)  ER (3ert, 1gwr)  DHFR (1hfr)  NA (1mwe) 

Complex 
name 

RMSD
(Å) 

Complex 
name 

RMSD
(Å) 

Complex 
name 

RMSD
(Å) 

Complex 
name 

RMSD
(Å) 

1e2k.TMC  0.69  1err.RALa  1.27  1boz.PRD  1.13  lig1l7f_BCZ  0.88 
1e2m.HPT  0.51  3ert.OHTa  0.71  1dlr.MXA  0.62  lig1nnc_GNA  0.75 
1e2n.RCA  1.34  1hj1.AOEa  3.13  1dls.MTX  1.53  lig2qwf_G20  0.60 
1e2p.CCV  0.67  1uom.PTIa  0.81  1drf.FOL  1.24  lig1bji_G21  0.81 

1ki2.GA2  3.04  1gwr.ESTb  0.71  1hfr.MOT  0.51  lig1f8b_DAN  0.64 
1ki3.PE2  3.21  1l2i.ETCb  0.52  1kms.LIH  1.36  lig1f8c_4AM  0.46 
1ki6.AHU  0.37  1qkm.GENb  2.92  1kmv.LII  0.83  lig1f8d_9AM  0.59 
1ki7.ID2  0.49  3erd.DESb  1.32  1mvs.DTM 0.75  lig1f8e_49A  0.60 

1kim.THM  0.41      1ohj.COP  1.27  lig1ina_ST6  0.79 
2ki5.AC2  3.14      2dhf.DZF  1.12  lig1ing_ST5  1.03 

            lig1inw_AXP  0.93 
            lig1inx_EQP  0.92 
            lig1ivc_ST2  2.09 
            lig1ivd_ST1  1.02 
            lig1ive_ST3  1.03 
            lig1mwe_SIA  0.52 
            lig1xoe_ABX  1.33 
            lig1xog_ABW  2.42 
            lig2qwg_G28  0.80 
            lig2qwh_G39  0.74 

Average 
RMSD (Å) 

1.39  Average 
RMSD (Å) 

1.42  Average 
RMSD (Å) 

1.03  Average 
RMSD (Å) 

0.95 

 
a Four antagonists docked into the target protein (3ert) 
b Four agonists docked into the target protein (1gwr) 

   

IV. Human Dihydrofolate Reductase (hDHFR)  

The inhibition of DHFR activity reduces the intracellular pool of THF resulting in inhibition 

of DNA synthesis and leading to cell death. Based on this mechanism, human DHFR (hDHFR) 

has become a major drug target in anticancer therapy. It is also a target for inhibition of bacterial, 

fungal, and protozoal DHFRs to treat human infectious diseases by many implicated 

microorganisms  [61]. Therefore we screened against hDHFR and also evaluated the docking 

accuracy of GEMDOCK by docking 10 known active compounds (Appendix 1a) into this target 
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protein. Then, the RMSD values between the docked pose and the bound ligand in crystal 

structure were compared. The average RMSD of all ten docked active compounds was 1.03 Å 

(Table 2), substantially lower than 2 Å, which means GEMDOCK computations were within the 

range of accepted accurate values.   

V. Neuraminidase (NA) 

Inhibitors of NA can protect the host from viral infection [62]. Influenza is an RNA virus 

that contains two major surface glycoproteins, neuraminidase (NA) and hemagglutinin (HA).  It 

causes major respiratory infections associated with significant morbidity in the general 

population and mortality in elderly and high-risk patients, therefore NA could be a potential 

target to inhibit the influenza virus [64]. Thus, we docked 20 known active compounds 

(Appendix 1a) of NA into the target protein and obtained an average RMSD of 0.95 Å for all 

docked poses. (Table 2) 

Significance of the Descriptor (Significance of Protein-ligand Interaction Descriptor) 

Significance of known compounds in the five classes: the results are listed in Table 3 

using T-scores as the standard two sample t-test statistics. Using equation 7, the maximum 

discrimination was determined (Figure 10) in distinguishing between similar and non-similar 

binding modes.  

 
 
Table 3. T-test of distance between similar and non-similar binding mode generated by 
converting the docked pose into protein-ligand interaction profile (α=0.01) [48].  
 

Target 
protein 

     H0 
Similar : 
Average 

Distance(Å) 

Non‐similar :
Average      

Distance  (Å) 
P‐value 

Similar : 
Stda of 
Distance 

Non‐similar : 
Stda of 
Distance 

DHFR  Reject  0.21  0.50  1.71E‐58  0.09  0.13 

ESA  Reject  0.25  0.42  7.04E‐20  0.13  0.12 

EST  Reject  0.31  0.48  7.94E‐39  0.09  0.12 

NA  Reject  0.17  0.73  0.00E+00 0.07  0.20 

TK  Reject  0.19  0.47  3.89E‐64  0.08  0.15 
 

a Standard Deviation 
 



36 
 

Significance of similar compounds: For the purpose of post-analysis, we tested similar 

compounds’ docking behavior (pose, interaction) on a protein receptor. There are five classes of 

similar compounds on each target protein. We tested to see whether the mean distance between 

similar compounds represented by protein-ligand interactions is different than the mean distance 

between non-similar compounds and recorded their results in table 4. 

 
 
Table 4. T-test of distance between similar and non-similar structure generated by atom-pair 
representation (α=0.01), [48]. 
 

Target 
protein 

H0 

Similar : 
Average 
Distance 

(Å) 

Non‐similar:
Average 
Distance 

(Å) 

P‐value 
Similar : 
Stda of 
Distance

Non‐
similar : 
Stda of 
Distance 

DHFR  Reject  0.42 0.63 5.84E‐23 0.15 0.12 
ESA  Reject  0.24 0.66 4.60E‐65 0.11 0.14 
EST  Reject  0.27 0.63 2.85E‐56 0.14 0.14 
NA  Reject 

0.32 0.65 1.75E‐
131 0.18 0.17 

TK  Reject  0.22 0.63 2.11E‐93 0.09 0.19 
 

a Standard Deviation 
 
 
 

Significance of an atom pair descriptor: Similar structures were defined as active 

compounds and non-similar structures were defined as non-active compounds (Table 5). Active 

compounds of hDHFR and NA (Appendix 1) were divided into two classes because of their 

diverse compound structures. The maximum discrimination between similar and non-similar 

structures was determined by distinguishing between similar and non-similar structures.  

 

Calculating a reference threshold by verifying dataset 

Using a verifying dataset, we calculated the distance threshold (correlation coefficient: 

0.39) that had the maximum discrimination. The reference threshold of atom-pair (Tanimoto 

coefficient: 0.55 in Fig. 11) was calculated via 7 classes of structures showing the complement 

between atom-pair descriptor and protein-ligand interaction descriptor. 
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Table 5. T-test of distance between similar and non-similar compounds on each target protein. 
The descriptor was generated by converting the docked conformation into a protein-ligand 
interaction profile (α=0.01). (table obtained from our published study [48]) 
 
 

Target 
protein 

Compound 
class 

H0 

Similar :
Average 
Distance

(Å) 

Non‐
similar :
Average 
Distance

(Å) 

P‐value 
Similar : 
Stda of 
Distance 

Non‐
similar : 
Stda of 
Distance

DHFR 

DHFR  Reject  0.21 0.50 1.71E‐58 0.09 0.13 
ESA  Reject  0.52 0.58 2.73E‐03 0.18 0.12 
EST  Reject  0.52 0.63 7.51E‐07 0.21 0.13 
NA  Reject  0.46 0.55 5.34E‐23 0.13 0.14 
TK  Reject  0.38 0.51 8.03E‐11 0.16 0.13 

ESA 

DHFR  Pass  0.55 0.62 0.10111 0.28 0.16 
ESA  Reject  0.23 0.48 2.29E‐31 0.14 0.14 
EST  Pass  0.67 0.76 0.23105 0.25 0.14 
NA  Reject  0.33 0.59 1.51E‐58 0.24 0.20 
TK  Reject  0.46 0.57 0.000121 0.25 0.20 

EST 

DHFR  Pass  0.55 0.57 4.01E‐01 0.21 0.14 
ESA  Reject  0.25 0.42 7.04E‐20 0.13 0.12 
EST  Reject  0.31 0.48 7.94E‐39 0.09 0.12 
NA  Reject  0.40 0.46 1.46E‐09 0.15 0.15 
TK  Reject  0.28 0.43 2.17E‐29 0.09 0.15 

NA 

DHFR  Reject  0.35 0.68 3.46E‐25 0.22 0.25 
ESA  Reject  0.59 0.71 2.91E‐04 0.28 0.24 
EST  Reject  0.56 0.66 2.46E‐04 0.25 0.24 
NA  Reject  0.17 0.73 0.00E+00 0.07 0.20 
TK  Reject  0.48 0.60 3.46E‐07 0.18 0.23 

TK 

DHFR  Reject  0.42 0.62 9.80E‐12 0.13 0.10 
ESA  Reject  0.16 0.52 9.99E‐62 0.07 0.13 
EST  Pass  0.58 0.65 6.28E‐02 0.18 0.14 
NA  Reject  0.40 0.53 2.92E‐53 0.11 0.15 
TK  Reject  0.19 0.47 3.89E‐64 0.08 0.15 

 
a Standard Deviation  
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Protein-ligand interaction clustering 

Cluster analysis of Human Dihydrofolate Reductase Molecular Docking 

The overlays of all 61 docked poses of known active compounds in the vicinity of the target 

protein hDHFR are shown in Figure 12a. Using the reference threshold of protein-ligand 

interaction (correlation coefficient: 0.39), three major clusters can be identified and are shown in 

Figure 12b, clusters c, d and e. Each cluster has interaction details displayed above (e.g. cluster c 

with fig. c). All active compounds were grouped together (Fig. 12c). The hDHFR ligands in 

cluster c had hydrogen bonds (E30-OE1, E30-OE2, V115-O, I7-O in green dotted lines) and van 

der Waals forces shown by a blue arc (I60-CAR, F31-RING) revealing that binding interactions 

of each docked pose within cluster c were similar. Cluster d contained 6 TK ligands and one NA 

ligand and cluster e had only NA ligands, as seen in Figure 12e. Docked poses within both 

clusters d and e had hydrogen bonding (V115, I7-O; E30-OE1, V8-N).  

When comparing the binding interaction between clusters in Figures 12c, d, e, f, and g we 

observe that docked compound poses are clustered into distinct clusters revealing specific 

binding interactions and important protein-ligand interactions residues.  

Cluster analysis of Thymidine Kinase following Molecular Docking  

After filtering out clustered compounds, 53 docked poses were obtained including the 10 

docked poses of active compounds and a total of 305 atoms were identified here (Fig. 13).  
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Figure 12. Cluster analysis of hDHFR (a) Overlay of all 61 docked poses of known active 
compounds in the vicinity of the target protein hDHFR (PDB id: 1hfr). (b) The dendrogram and 
hierarchical clustering results of 61 docked poses of hDHFR. Each cluster has its interaction 
details in the figures above (e.g. cluster c in fig c). Docked poses in the heat map are rearranged 
according to the order given by hierarchical clustering marked by the black bar ‘c’ in the right 
side of the heat map. The amino acids identified for description are shown in the top side of the 
heat map. (c, d, e) Overlay of the known active compounds and their important interactions. (f, g) 
Docked poses overlay of the sub-cluster within hDHFR active compounds. The differences of 
clusters f and g are shown by blue frames in the heat map. (Figure from our published study [48]) 
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Figure 13. (a) Overlay of all 53 docked poses of known active compounds in the vicinity of the 
target protein Thimidine Kinase (PDB id: 1kim). (b) Hierarchical clustering of 53 TK docked 
poses’ protein-ligand interactions (PDB id: 1kim). Each docked pose is one line in the heat map, 
the red being the lowest P-L interaction energy and the green being the highest. The left side of 
the heat map shows the hierarchical clustering results of TK. The hot spots identified from 
known overlapping active compounds are shown at the top. (c) Overlay of docked poses of the 
cluster with most number of known active compounds and important h-bonds between protein 
and ligand. (d) Overlay of docked poses of the cluster with most number of unknown compounds 
and important h-bonds between protein and ligand. The blue frames in the heat map were the 
major interaction differences among clusters c and d. (figure from our published study [48]) 
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Clustering using the atom-pair descriptor 

Cluster analysis of compound structures for the verifying dataset 

Observing these three clusters, we deduced the atom-pair descriptor could group 

compounds with similar structures and sorts them from those with different structures (Fig. 14).  

 

 

 

Figure 14. The hierarchical clustering dendrogram for the 61 known compound structures 
showing the three major clusters. (a) 10 ERα agonists. (b) 11 ERα antagonists. (c) 10 TK and 14 
NA inhibitors were grouped into one cluster due to their structure similarity. The descriptor 
grouped only compounds with similar structures, sorting them out from those with different 
structures. (Figure from our previous study [48]) 

Cluster analysis of virtual screening results on the testing dataset 

Analysis of the hDHFR dataset (first and second stages) 

First stage: We performed virtual screening for a set of 10 hDHFR inhibitors all spiked 

into 990 randomly selected compounds from ACD. A total of 476 involved atoms were 
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identified in 100 docked poses that include 10 known active compounds. Protein ligand 

interactions of all complexes were generated, each complex being composed of 316 real numbers. 

All hDHFR inhibitors were grouped together into one cluster. In Figure 15a indicated by red 

arrows are: F31-stacking forces, I60-van der Waals forces and NAP-stacking forces. Figures 15b 

and 15c shows similar hydrogen bonding (I7-O, V115-O, E30-OE1, E30-OE2, and N64-ND2) 

for the target protein and the 35 unknown compounds, however, the old drug (Fig. 15c) contains 

additional hydrogen bonds (R70-NH1, R70-NH2, and N64-ND2). We also identified and pointed 

out important forces on the heat map using red arrows (I60-van der Waals forces, F31-stacking 

forces, F34-stacking forces, NAP-stacking forces) Residues within old and new drug structures 

(Fig. 15a and b) are shown in yellow and the dendrogram in Figure 14b shows the exact split of 

these two compounds. We utilized 2D topology to select representative compounds within a 

cluster after protein-ligand interaction analysis was performed. A total of 45 compounds (10 

active and 35 unknown compounds were selected via first-stage clustering. 

 

 

Figure 15. The detail of hDHFR binding interactions of new drugs and old drugs on the verifying 
dataset. (a) Important forces (red arrows) on the heat map (I60-van der Waals force, F31-
stacking force, F34-stacking force, NAP-stacking force); (b), (c) The binding interactions of new 
and old drugs and their residues (yellow). The old drug (c) has additional hydrogen bonding with 
the target protein (Q35, N64, and R70). Interactions of residues (Q35, N64, R70) are seen in (b) 
while (N64 and R70) interactions are seen in (c). (Figure from our published study [48]) 
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Figure 16. The process and results of second stage cluster analysis on hDHFR testing dataset.   (a) 
The binding interactions of the largest cluster generated from first stage clustering: 45 
compounds include the 10 active compounds and 35 unknown compounds. (b) The result of 
hierarchical clustering: there were four major clusters identified by the dendrogram (c, d, e, f). 
The active compounds were spliced into two clusters: (d) the old drugs and (e) the new drugs due 
to the difference in carboxylic acid groups. The sub-structures from clusters within the red 
circles in (c) and (f) had similar compounds and the lowest energy compound within each cluster 
was selected as a final representative (g), (h), (i) and (j). (Figure from our published study [48]) 
 

Second Stage: The cluster contained 45 compounds: 10 active compounds and 35 

unknown compounds (Fig. 16a). A one dimension atom-pair binary string of 2D topology 

represented each compound. After performing hierarchical clustering four major clusters were 

identified in the dendrogram (Fig. 16b). The active compounds were spliced into two clusters; 

the old drugs (Fig. 16d) and the new drugs (Fig. 16e) due to the differences in carboxylic acid 

groups. The sub-structures within each cluster inside the circles (Figs. 16c and f) showed similar 

compounds within a cluster with the lowest energy compound from each cluster being selected 

as a final representative (Figs. 16g, h, i and j). The selected candidates are considered suitable for 

investigations by bioassays for further clues, specific functions and possible applications. 
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4.4 Verifying the TSCC method using β-lactoglobulin 

4.4.1 Introduction  

The relevance of VS and post screening analysis in various applications besides drug 

design is well established [65, 66]. In this second part of our TSCC study, we aim to further test 

our method’s two-stage clustering efficiency of ranking compounds by docking non-inhibitor 

type active compounds mixed in a dataset of randomly chosen compounds into a target protein. 

We are interested to explore the uses of TSCC in mining various other compounds besides 

inhibitors, thus, we use a transporter protein (β-lactoglobulin) as our target and three active 

compounds, Riboflavin, Calcitriol (activated vitamin D) and adenosine triphosphate that have 

various important functions in the human body but no known inhibiting functions. Additionally 

instead of using the results from first-stage clustering (a small number of compounds) as done in 

the first part of our TSCC study, we used the same number of compounds in the original dataset 

for both stages. We also used a specific physico-chemical feature for our second-stage clustering, 

an atomic composition clustering stage. In structure clustering, compounds with similar 

structures contain many similar atoms, thus, the atomic composition is a suitable feature in 

clustering chemical compounds based on their atomic composition similarity. The TSCC method 

using a slightly different approach from the first part of our study (Section 4.2) is shown in 

Figure 17. 

The target used, β-lactoglobulin (β-LG) is a whey protein found in bovine, ovine and 

caprine milk and other species of related families. It is known for its ability to transport various 

important molecules in the human body and it’s especially important in the uptake of vitamin D 

[67]. It also has various antimicrobial and cytotoxic functions when glycated with several sugars 

[68] and cholesterol modulating functions [69] and it may have more additional functions and 

mechanisms not yet know. These facts make β-LG a very important protein and studies are 

continuing to investigate current and additional roles of this target.  

The three active compounds used, Calcitriol (vitamin D), Riboflavin (Vitamin B2) and 

Adenosine Triphosphate are ligands known from previous studies to bind to β-LG [67-69] and 

all are involved in significant functions of the human body. Vitamin D is involved in modulating 

calcium, gene expression and it is highly involved in autoimmune and infection suppression. 

Riboflavin plays a key role in energy metabolism and also the necessary factor for preventing 
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pellagra. It also protects the body from invasion by free radicals. Adenosine triphosphate (ATP) 

is a multifunctional nucleotide made of several sugars that inter-convert into ATP, ADP and 

AMP. When ATP is used in DNA synthesis, the ribose sugar is first converted to deoxyribose. In 

this study, we also want to see the efficiency of TSCC when the number of active compounds is 

rather small (three actives in this study vs. 61 actives in previous study and only one target, β-LG 

is used as opposed to five targets in sections 4.2, 4.3). 

 

 

Figure 17.  The overall approach of TSCC in our second study using interaction clustering and 

atomic composition clustering 

 

4. 4.2 Materials and methods 

Target protein, active compounds and dataset 

The protein target, β-LG PDB id: 2gj5 (Fig. 1) was obtained from Protein Data Bank 

(PDB) and its cavity was prepared for molecular docking. The three active compounds (Fig. 18) 

were spiked into a dataset constructed from a 990 compound dataset from ACD [3] and 1306 

compounds randomly selected from FDA databases, a total of 2206 compounds. The 1,306 
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compounds were found after virtually screening FDA database for ligands with a molecular 

weight between 200 and 600 Daltons similar to our active compounds (Fig 18).  

4.4.3 Molecular Docking and Post Screening Analysis 

The method and steps for VS were the same as done in our previous study (section 4.2) 

except iGEMDOCK, an improved version of the old GEMDOCK generic algorithm specifically 

optimized for virtual screening was used to screen and generate profiles for each compound after 

compounds were docked into the cavity of the protein target. After the interactions and atomic 

composition profiles were generated for each compound, the compounds were clustered into 

similar interaction and similar atoms clusters (Fig. 19) and were ranked in order of their 

interaction energies generated by iGEMDOCK.  

 

      

Figure 18. Active compounds used in the validation of the TSCC method. 

Post screening analysis in the β-LG study differs slightly in that it uses atom composition 

as a physico-chemical feature for compound structure clustering. Interaction clustering and atom 

composition clustering was performed on all compounds in single stages and then combined 

interaction and atom composition clustering was performed to compare the efficiencies of a one-

stage vs. a two-stage cluster analysis. Instead of performing compound structure clustering on 

the interaction clustering results, we will combine the two stages clustering together choosing 50 

clusters for each stage. We consider the top 20 compounds as a suitable choice to retrieve active 

and possible novel compounds taking in consideration the biased energy based scoring methods 

of VS [18-20]. We also acknowledge some discrepancy among structures of similar compounds 

(not always perceived as similar by the structure clustering algorithm or the opposite, considered 

as similar when they are not). 
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4.5 RESULTS 

4.5.1 Virtual Screening results 

After VS was applied to the 2206 compound dataset containing the three actives, VS 

ranked the various compounds in the dataset based on their interaction energies. The three active 

compounds were ranked #575 (riboflavin), #591 (adenosine triphosphate) and #816 (calcitriol or 

vitamin D3) out of 2206 total compounds based on their binding energies (-84.81, -84.52 and -

80.39) respectively (Table 6). The 2,206 total compounds obtained from ACD and FDA 

databases were divided into 50 interaction clusters and 50 structure clusters in order to obtain a 

suitable number of compounds in a cluster (not too many or too few compounds, unless they are 

unique; e.g. riboflavin). 

 

Table 6.  Virtual screening results and ranking of the three active compounds (riboflavin: 575, 
adenosine triphosphate: 591 and calcitriol: 816). The shaded area (bottom of table) shows the 
highest ranking compounds (1 – 4) based on interaction energies generated by the docking 
program. 
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The top four ranking unknown compounds (Table 6 green shade) were ranked by VS 

based on their binding energies (-139.19, -136.99, -134.07 and -133.41). They are termed 

“unknowns” because at present time, their complex to β-LG has no known function. Therefore, 

they will be further investigated by TSCC and other criteria (e.g. conserved residue activity) to 

confirm whether they might be novel compounds able to bind β-LG and carry on particular 

functions or may just happen to be false positive hits as it is expected with many compounds 

obtained from VS.  

The three active compounds showed hydrogen bonding activity in the LEU 39 and VAL 

41 residues of the β-LG calyx (Fig. 19) which were also confirmed in previous bioassays as 

important binding residues in the calyx of the β-LG. These important residues can further aid in 

validating TSCC and either support or reject the VS and post screening analysis results. 

 

Figure 19. Conserved residues (LEU 39 and VAL 41) showing interaction through hydrogen 
bonding between β-LG cavity and the three active compounds. 

 

The dendrogram of interaction energies shows the activity of amino acid groups in 

important residues of compounds being an additional source of confirming the binding of a 

compound to the target cavity (Fig. 20). The green color blocks indicate activity or contact 

between the conserved residues of the target and its docked compound. The unknown compound 

MFCD00012401 inside the yellow box shows no bonding activity (black blocks) in any of the 

conserved residues. This is evidence that it may not be able to properly bind the β-LG cavity and 
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form either a functional complex or be able to inhibit it. The other compounds in Figure 20 show 

fair amount of bonding activity in the conserved regions and three of them (active compounds) 

are known from previous experiments to bind at least some of these conserved regions (LEU 39, 

VAL 41). Compound MFCD00010114 is shown to have the most activity with the conserved 

residues and we can use the TSCC to verify whether these findings stand their ground.  

 

Figure 20. The molecular docking dendrogram showing the occurrence of conserved (important) 
residues between the three active compounds (riboflavin, vitamin D3 / calcitriol and adenosine 
triphosphate) and β-LG cavity and also the four highest ranking compounds (MFCD00012401, 
MFCD00009772, MFCD00010114, MFCD00013358) and β-LG cavity. 

 

4.5.2 Cluster Analysis Results 

One-Stage cluster analyses for both interaction energy profiles and atom composition of 

compounds were done on the entire 2206 compound dataset from ACD and FDA databases 

which include the three active compounds to investigate the performance of both one-stage 

clustering methods and our TSCC method. We particularly paid close attention to the three 

active compounds and the top ranking four unknown compounds identified by molecular 

docking. We describe the results obtained based on the criteria used and deductive analysis.  

Riboflavin 

This is the highest ranking active compound by our TSCC method and it also ranked the 

highest among actives with one-stage IC. Its activity with conserved residues is most likely the 

best reason why it obtained a high rank by both TSCC and one-stage IC. Its atomic composition 
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also favors it to fit the cavity of β-LG better than the other actives which gave it a fair ranking 

(#32 Fig. 21) on one-stage AC.  

Adenosine triphosphate (ATP) 

Although ATP is ranked #18 by TSCC it is reasonable considering the large dataset of 

2206 compounds in which almost 600 compounds had better energy rankings than ATP (#591 

Energy Rank, Fig. 21). Our TSCC was able to retrieve and rank this compound (Fig. 21) 

accordingly based on its activity in the conserved residues (Figs. 19 and 20). 

Vitamin D3 (Calcitriol) 

The low rank of this active compound (#1154 by one-stage AC Fig. 21) is expected 

because vitamin D3 requires significant reposition of the calyx in order for it to insert into the 

cavity of β-LG calyx [66]. We therefore have to consider more than the ranking of AC and rely 

on confirmed findings from bioassays [66] and consider the additional criteria such as the 

conserved residues once vitamin D3 is bound to the β-LG cavity where some good activity with 

the target calyx of β-LG is seen (Figs. 19 and 20).   

 

 

Figure 21. Clustering analysis results. The ranking results from TSCC, two methods of one-stage 
clustering (Rank-IC and Rank-AC) and Virtual Screening for the three active compounds and 
four unknowns are shown in the four separate columns.  

 

MFCD00012401 

This is the highest ranking compound based on VS total energy. However, the very low 

ranking (1248 out of 2206) it obtained from Interaction Clustering (IC) depicted in Figure 21 
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affirms the results shown in the dendrogram (Fig. 20 yellow box) which indicate no activity from 

this compound within conserved (important) residues of the target. Somewhat surprising, the 

one-stage atom composition (AC) clustering ranked compound MFCD00012401 better than the 

other unknowns (MFCD00013358, MFCD00010114, MFCD00009772) and better than one of 

the active compounds (calcitriol or vitamin D3). This can be explained by the fact that this 

compound has some similar atoms and some structure similarity with one of the active 

compounds (Fig. 22) and their molecular weight is also similar (541.62 D and 551.14 D). 

However, when our TSCC method was used (IC-AC50 Fig. 21) it ranked this compound quite 

reasonable (1273 out of 2206 compounds) according to the findings shown in the dendrogram 

(no activity in the conserved residues, Fig. 20) and classified it as non-active compound.  

 

 
 

Figure 22. The three active compounds and four highest VS ranking unknown compounds; their 
structures, molecular weight and atom composition. Atom similarity: adenosine triphosphate and 
unknown mfcd00013358 (brown circles), adenosine triphosphate and mfcd00010114 (light blue 
circles), adenosine triphosphate and mfcd00012401 (dark blue circles) and adenosine 
triphosphate and mfcd00013358 (purple circles). 
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MFCD00013358  

Although it has the highest molecular weight of all compounds selected (Fig. 22) which 

may account for its energy rank (Table 6), this compound shows a fair amount of activity in the 

conserved residues (Fig. 20). It also has some atomic similarity to riboflavin and was ranked 

#113 by one-stage AC clustering. Our TSCC method ranked it 4 (Fig. 21), one rank lower than 

one-stage IC and this is likely due to the combined clustering using interaction and AC profiles.  

MFCD00010114 

This compound was ranked 1st by both our TSCC and one-stage IC and it is not 

surprising considering that it had the most activity in the conserved residues (Fig 20.) Its rank by 

one-stage AC is also adequate since it does have some atomic similarity with riboflavin (Fig. 22) 

which ranks # 96 (one-stage AC clustering Fig. 20).  

MFCD00009772 

This compound ranked #2 on both TSCC and one-stage IC, most likely because of its 

good activity in conserved residues (Fig. 20). Its one-stage AC rank is #115 and it shows some 

similarity in its atom composition and structure with both calcitriol and ATP (Fig. 22).  

4.6 Discussion 

We demonstrated that when a one-stage clustering analysis was used on the three known 

actives at least one compound was not identified as a true hit (ranked within the top 20) by both 

IC and AC (one-stage clustering). IC ranked ATP at #35 well below the 20 top compound we 

selected as a suitable limit for identifying more accurate positive hits. We know from previous 

studies our active compounds are able to form a complex with β-LG and setting the limit lower 

than the top ranking 20 compounds would have classified ATP as a non-active compound. We 

therefore conclude that the top 20 ranking compounds present on the list obtained from TSCC 

post screening analysis is a good choice when selective the active compounds and eliminating 

the non-actives. TSCC successfully ranked the three active compounds used in this study within 

the top 20 rankings despite their low VS standings (575, 591 and 816 out of 2206 respectively). 

It also clearly rejected compound MFCD00012401 from the list of actives although it was ranked 

highest by VS. This confirms that TSCC can considerably improve VS enrichment and propagate 

true hits generated from molecular docking to the top of the compound list. Our work also 
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confirmed that virtual screening and TSCC can be successfully employed to mine and study 

compounds used in other applications besides drug design. To further investigate the three top 

ranking compounds for more clues regarding their ability to bind the β-LG cavity and their 

possible functions when complexed with β-LG, bioassays can be performed at this stage for 

unknowns MFCD00013358, MFCD00010114 and MFCD00009772. 

4.7 Summary 

         In search of an improved method for retrieving and post analysing protein-ligand 

complexes we developed a combinative clustering method using two clustering stages to mine 

and visualize compound candidates generated by virtual screening. Six classes of targets and 

three different data sets were used to validate and thoroughly investigate this method. Our TSCC 

method encodes additional interaction-specific information into the real number string, hydrogen 

bond, van der Waal and electrostatic forces in comparison to other post screening analyses. 

These interaction energies are important features of interaction profiles due to their significance 

in receptor-ligand binding and the efficiency of first stage clustering (protein-ligand interaction 

based clustering). The structure clustering stage can use various features; physico-chemical 

features (sections 4.2, 4.3) or atom composition (β-LG study, sections 4.5, 4.6). The final 

representatives can be retrieved either after second-stage clustering is performed on first-stage 

results (sections 4.1 – 4.3) or after combined interaction and compound structure (AC) clustering 

(sections 4.4 – 4.6) depending on the scope of the study.  

VISCANA, [22] a one-stage post screening analysis uses protein-ligand interactions but 

lacks sufficient descriptions of van der Waals forces and hydrogen bond interactions as pointed 

out  by Amari et al. in their study. Such descriptions play an important role in receptor-ligand 

binding and determine for the most part the success of a post screening method which uses 

interaction profiles. In addition, the use of a docking tool not specifically optimized for protein-

ligand interactions during VS and the lack of an additional method (a second clustering stage) to 

eliminate additional false positive hits and to retrieve missed true hits are the downsides of this 

method. Furthermore, VISCANA has not identified novel compounds in any studies, likely to a 

combination of things; lack of a specifically optimized docking program, lack of sufficient 

descriptions of interaction energies and lack of additional screening (a second clustering stage).  

SIFt, [23] another one-stage clustering method encodes more interaction-specific 

descriptions into real number using seven bits per binding-site residue to represent seven 
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different types of interactions which results in the encoding of a protein-ligand interaction into a 

binary string. SIFt represents a ligand by the interactions it forms in the binding site of a protein. 

This approach is ideal in post screening analysis because the more descriptions of binding 

interactions a method provides, an improved enrichment of VS will occur. However, Deng et al. 

does not indicate that novel compounds or inhibitors were identified using SIFt. They do show 

that EF (enrichment factor) varies using different docking tools for VS, confirming one of our 

conclusions that optimizing docking programs is also significant in the overall process of mining 

and visualization of biochemical compounds from databases.  

Our goal was to develop a method for selecting adequate representative compounds from 

a database that could be suitable candidates for various applications. TSCC, with some 

modifications of its original version successfully identified inhibitors for influenza virus and 

flaviviruses [6, 8]. This is a major accomplishment in comparison to other post screening 

methods [21-23] which contributed mainly to visualization and enrichment of VS but were not 

particularly successful in novel compound discovery. In addition, through our studies of 

interaction profiles and β-LG we show that VS and post screening analysis may be successfully 

used in other applications besides drug design.  

Employing GEMDOCK, a specifically optimized VS tool and two stages of combined 

cluster analysis is a much more efficient technique than done by other one-stage post screening 

analyses (SIFt, VISCANA) revealing why our TSCC method was able to identify inhibitors for 

dengue virus and flaviviruses [6, 8]. This study also shows that the overall performance of TSCC 

is due to sufficient descriptions of protein-ligand interactions when mining for ideal targets as 

well as the efficiency of iGEMDOCK in generating suitable interaction and atom composition 

matrixes which are important features in clustering biochemical compounds.  

However, comparing TSCC to other clustering methods can be somewhat ambiguous 

since different approaches may vary in goals and purpose. Some post screening analyses are not 

aiming to identify novel compounds or inhibitors and NIPALSTREE [25] is one of such 

examples. In TSCC one of the main objectives is to select ideal representatives for novel 

compound design and discovery through the combination of an optimized docking tool and two 

clustering stages for. Overall our study confirms that a two-stage combined clustering method is 

superior to one-stage methods because of its two main advantages: 1) lower selection of non-

active compounds and 2) an improvement in the selection of active compounds.  
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Chapter 5  

Conclusion  

5.1 Summary 

This research accomplished and demonstrated the following important aspects:  

(1) It thoroughly investigated the significance of protein-ligand interaction and compound 

structure profiles in the mining of lead compounds using computer-aided methods and various 

interdisciplinary principles and showed that novel compounds can be mined and analyzed more 

efficiently. It revealed that the use of interaction and compound structure profiles may 

successfully be employed in studies of drug design and various other applications such as novel 

compound design for various kinds of industries [65]. 

(2) Post screening analysis methods (SIFt and VISCANA) were studied in detail and two 

main issues were pointed out: a) if a docking tool is used for VS, can a post screening analysis 

complement it? b) If either post screening analysis method (SIFt or VISCANA) is used, how can 

a docking program be optimized to complement the post screening analysis employed? Using 

non-optimized docking is likely to reduce the efficiency of VS since docking optimization is an 

important task as seen during the generation of interaction and compound structure profiles in 

GEMDOCK. In addition, post screening analyses which lack enough descriptions of interaction 

energies (VISCANA) and one-stage clustering methods in general encounter higher number of 

false positives and inefficient retrieval of active compounds as shown in the β-LG study (sections 

4.5, 4.6).  

3) We showed that by optimizing the docking program (GEMDOCK / iGEMDOCK) for 

VS and including two-stages of clustering in post screening analysis (TSCC) more accurate 

results in the mining and analysis of compounds can be obtained. We successfully retrieved the 

selected active compounds through TSCC (sections 4.5, 4.6) while both one-stage clustering 

methods (IC and AC Fig. 21) failed to rank all three active compounds within the top 20. In 

addition, our TSCC method was used with some modifications in other studies to successfully 

identify various inhibitors (influenza virus and flaviviruses inhibitors [6, 8]) revealing significant 

improvements over one-stage post screening methods.  
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5.2 Future works 

Computer-aided methods for virtual screening and post screening analysis can be 

successfully used in identifying a wide range of protein-ligand complexes for a variety of 

biochemical applications. Thus, the following studies are of significance and particular interest in 

our future works:  

1) We want to investigate a new clustering technique, NeatMap [53], a non-clustering 

approach using microarray datasets instead of traditional clustered heat map for the possibility of 

improving accuracy and efficiency of ranking compounds and select more suitable 

representatives.  

2) We aim to investigate targets for nutrition and skin care in future studies. These two 

areas deserve attention because they are an important part of human health and well being since 

both nutrition and skin are important defenses against pathogens of all kinds.  

As concerns of pollution increase around the world, safer and more natural food products, 

fertilizers, pesticides and detergents are highly sought after. People in general are becoming 

more concerned with eating proper diets and maintaining a strong and healthy body therefore, 

new findings in nutrition, supplements and skin care are of particular interest. Therefore, 

computer-aided methods for providing the necessary means in identifying compounds used these 

areas will continue to grow and expand in the near future.  
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Appendix A (Obtained from our published study [48]) 

1) 61 Active compounds used in TSCC obtained from ACD and CMC public databases:  
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 Ten TK (thymidine kinase) active compound structures. 

 



58 
 

S
O

O

O

N

O O

O

N

O
N

O
O

O

O

N

O

O

O

N

OO

O

O

N

OO

O

O

N

NO
O

N

O

O

O

S

F

F
F

F
F

O
O

O O

O

N

EST01

raloxifene

1err.RAL

EST06

EM-343

EST02

4-hydroxy tamoxifene

3ert.OHT

EST03

ICI-164384

1hj1.AOE

EST04

nafoxidene

EST05

LY-326315

EST08

ZK-11901
EST09

RU-58668

EST07

LY-357489

EST10

Sumitomo biphenol

O

CH3
CH3

O

N

O

CH3

EST11

 

 

Eleven ERα (estrogen receptor) antagonist structures.  
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Ten hDHFR (human dihydrofolate reductase) active compound structures.  
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Twenty NA (neuraminidase) active compound structures. 
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