CONTENTS

ABSTRACT (CHINESE)	i
ABSTRACT (ENGLISH)	iii
ACKNOWLEDGEMENT	vi
CONTENTS	vii
TABLE CAPTIONS	х
FIGURE CAPTIONS	xi

CHAPTER 1 INTRODUCTION	1
1.1 BACKGROUND	1
1.2 REVIEW ON ARCHITECTURES OF CMOS	
WIRELESS RECEIVER	2
1.2.1 Heterodyne Receiver	2
1.2.2 Direct-Conversion (Homodyne, Zero-IF) Receiver	3
1.2.3 Image-Reject Receiver	5
1.2.4 Wideband-IF Receiver	6
1.2.5 Low-IF Receiver	7
1.2.6 Double-Quadrature Receiver	8
1.3 ORGANIZATION OF THIS THESIS	9
CHAPTER 2 THE DESIGN OF ACTIVE POLYPHASE	
FILTER	19
2.1 INTRODUCTION	19
2.2 MODEL FOR THE ACTIVE POLYPHASE FILTER	22
2.3 CIRCUIT DESIGNS	25
2.3.1 The Circuit Design of Wideband Active Polyphase Filter	25
2.3.2 The Simulation Results of Active Polyphase Filter	29
2.3.3 Layout Consideration	31

2.3.3 Layout Consideration

,	2.3.4	The Circ	uit Design o	of 1-V Wideband	Active Polyphase	
		Filter				32
2.4	EX	PERIM	NTAL RE	SULTS		32
2.5	SUI	MMARY				34
CHAPT	ER 3	Α	5-GHZ	DOUBLE-Q	UADRATURE	
		RECH	IVER FR	ONT-END FOR	IEEE 802.11A	
		WIRE	LESS I	LOCAL-AREA	NETWORK	
		APPL	ICATION	S		58
3.1	INT	RODU	CTION			58
3.2	SYS	STEM D	ESCRIPTI	ION AND CALC	CULATIONS	60
	3.2.1	l System D	escription			60
	3.2.2	2 System C	alculations	Maren .		61
		3.2.2.A	Noise Figure	e		61
		3.2.2.B	CP1dB and	IIP3		63
		3.2.2.C	Image Rejec	ction Ratio		64
		3.2.2.D	Phase Noise			66
3.3	Mo	del for tl	e double-q	uadrature recei	ver	67
3.4	CIF	RCUIT D	ESIGNS			70
	3.4.1	Low-Noi	se Amplifier ((LNA)		70
2	3.4.2	RF Quad	ature Genera	tor $(RF-QG)$		71
2	3.4.3	Double-Q	uadrature M	fixers (DQ-Mixers)	and Quadrature	
		Voltage-O	Controlled Os	cillator (QVCO)		74
	3.4.4	Active Po	lyphase Filte	er		76
	3.4.5	Overall C	ircuit			77
3.5	EX	PERIMI	NTAL RE	SULTS		78
3.6	SUI	MMARY				81

CHAPTER 4 A 1-V 2.4-GHz DOUBLE-QUADRATURE 112

	RECEIVER FRONT-END FOR LOW-	
	VOLTAGE APPLICATIONS	
4.1 IN	FRODUCTION	112
4.2 CI	RCUIT DESIGNS	114
4.2.1	Low-Noise Amplifier (LNA)	114
4.2.2	RF Quadrature Generator (RF-QG)	116
4.2.3	Quadrature Voltage-Controlled Oscillator (QVCO)	118
4.2.4	Double-Quadrature Mixers (DQ-Mixers)	119
4.3 EX	PERIMENTAL RESULTS	120
4.3.1	1-V 2.4-GHz Low-Noise Amplifier	120
4.3.2	1-V 2.4-GHz Double-Quadrature Receiver	121
4.4 SU	MMARY	122
	ANILLING	
CHAPTER 5	5 CONCLUSIONS AND FUTURE WORKS	141
5.1 MA	AIN RESULTS OF THIS THESIS	141
5.2 FU	TURE WORKS	143
	The second	
REFERENC	ES	

VITA

PUBLICATION LIST

TABLE CAPTIONS

Table 1.1	Comparison of receiver architectures	12
Table 2.1	Dimensions of Devices in Constant-Gm Bias Circuit and	
	Polyphase Filter.	35
Table 2.2	Simulated NF and IIP3 Characteristics of Different Gain	
	Distributions in the Four-Stage Active Polyphase Filter.	36
Table 2.3	Measured Characteristics of the Active Polyphase Filter.	37
Table 2.4	Comparison Between the Recently Proposed Polyphase	
	Filter.	38
Table 3.1	Rate-dependent Parameters in IEEE 802.11a	83
Table 3.2	The Input Blocking Defined in HIPERLAN2 (fC : carrier	
	frequency)	84
Table 3.3	Device Parameters of the 5-GHz DQR	85
Table 3.4	Measured Results of the 5-GHz Double-Quadrature	86
Table 3.5	Performance Summaries of the Recently Proposed CMOS	00
	Double-Quadrature receiver and 5GHz Receivers.	87
Table 4.1	Device Parameters of the 1-V Double-Quadrature	
	Receiver.	124
Table 4.2	Experimental Results of LNA and 1-V Double-Quadrature	
	Receiver	125

FIGURE CAPTIONS

Fig. 1.1	Block diagram of the heterodyne receiver.	13
Fig. 1.2	Block diagram of the direct-conversion receiver.	14
Fig. 1.3	Two sources of DC offsets in the direct-conversion	
	receiver.	14
Fig. 1.4	Block diagram and the spectral flow of Hartley	
	image-reject receiver.	15
Fig. 1.5	Block diagram and the spectral flow of Weaver	
	image-reject receiver.	16
Fig. 1.6	Block diagram of the wideband-IF receiver.	17
Fig. 1.7	Block diagram of the low-IF receiver.	18
Fig. 1.8	Spectral flow of the low-IF receiver.	18
Fig. 2.1	Signal flowgraph for realizing a single-stage complex	
	filter.	39
Fig. 2.2	Transfer curves of H(s) versus frequency.	40
Fig. 2.3	Simulated IRR _{PPF} values (indicated on the curves) of	
	one-stage polyphase filter at $\omega = \omega p$ with gain and pole	
	frequency variations.	41
Fig. 2.4	Required stage versus achievable IRR _{PPF} within the	
	rejection band.	42
Fig. 2.5	(a) Circuit of LHF. (b) Differential type of LHF and its	
	equivalent functionality block LHFD. (c) Block diagram of	
	H(s).	44
Fig. 2.6	Circuit of constant-gm bias.	45
Fig. 2.7	HSPICE simulated transfer curve and IRR _{PPF} of the	
	one-stage CMOS polyphase filter (ωP=24.5MHz).	46
Fig. 2.8	HSPICE simulated IRR variations of the one-stage CMOS	
	polyphase filter with four corners (FF, FS, SF, and SS) of	47

MOS device models.

Fig. 2.9	HSPICE simulated IRR variations of the one-stage CMOS	
	polyphase filter in the temperature between 0° and 80° .	47
Fig. 2.10	HSPICE simulated transfer curve and IRR_{PPF4} of the	
	four-stage CMOS polyphase filter.	48
Fig. 2.11	HSPICE simulated IRR variations of the four-stage CMOS	
	polyphase filter with four corners (FF, FS, SF, and SS) of	
	MOS device models.	49
Fig. 2.12	HSPICE simulated IRR variations of the four-stage CMOS	
	polyphase filter in the temperature between 0° and 80° .	49
Fig. 2.13	Floor planning of the one-stage polyphase filter.	50
Fig. 2.14	Low-voltage version of LHF.	51
Fig. 2.15	HSPICE simulated transfer curve and IRR _{PPF4} of the	
	low-voltage four-stage CMOS polyphase filter.	52
Fig. 2.16	Die micrograph of fabricated four-stage polyphase filter in	
	0.25-µm CMOS technology.	53
Fig. 2.17	Measured IRR _{PPF4} of fabricated four-stage polyphase filter	
	in 0.25-µm CMOS technology.	54
Fig. 2.18	Measured quadrature output signals when 20-MHz	
	differential signals are applied.	55
Fig. 2.19	Two-tone test for $fI = 19.5$ MHz and $f2 = 20.5$ MHz.	56
Fig. 2.20	Measured IIP3 of fabricated four-stage polyphase filter in	
	0.25-µm CMOS technology.	57
Fig. 3.1	Allocated frequency of wireless LAN IEEE 802.11a.	88
Fig. 3.2	Determination of <i>IIP3</i> in a communication system.	89
Fig. 3.3	Noises and image interferers at the input and output of the	
	receiver.	90
Fig. 3.4	The Required IRR_{DQR} in different NF_{CIR} to achieve the data	
	rate of 54Mbits/s.	90

Fig. 3.5	Block diagram of double-quadrature receiver (DQR).	91
Fig. 3.6	Signal spectra in the DQR (a) before the downconversion	
	and (b) after the downconversion.	92
Fig. 3.7	Simulated noise figure versus gate-width of the input	
	transistor of the LNA.	93
Fig. 3.8	Circuit diagram of the low-noise amplifier (LNA).	94
Fig. 3.9	RLC phase shifter.	95
Fig. 3.10	Circuit diagram of the RF quadrature generator (RF-QG).	95
Fig. 3.11	Simulated amplitude errors and ISR at the outputs of the	
	RF-QG.	96
Fig. 3.12	Circuit diagram, which combines the functions of Mixer1	
	and <i>Mixer3</i> in Fig. 3.5.	97
Fig. 3.13	Circuit diagram of quadrature voltage-controlled oscillator	
	(QVCO).	98
Fig. 3.14	Block diagram of current reuse structure.	99
Fig. 3.15	Block diagram of the four-stage active polyphase filter.	100
Fig. 3.16	HSPICE simulated transfer curve and IRR _{PPF4} of the	
	four-stage active polyphase filter.	101
Fig. 3.17	HSPICE simulated IRR variations of the four-stage active	
	polyphase filter with four corners (FF, FS, SF, and SS) of	
	MOS device models.	102
Fig. 3.18	HSPICE simulated IRR variations of the four-stage CMOS	
	polyphase filter in the temperature between 0° and 80° .	102
Fig. 3.19	Complete circuit diagram of the 5-GHz double-quadrature	
	receiver	103
Fig. 3.20	Die micrograph of the fabricated CMOS	
	double-quadrature receiver.	104
Fig. 3.21	Measured S_{11} .	105
Fig. 3.22	Measured tuning range of quadrature VCO.	106

Fig. 3.23	Output spectrum of the <i>DQR</i>	107
Fig. 3.24	Measured results concerning CP1dB and IIP3.	108
Fig. 3.25	Measured frequency response and IRR_{DQR} of fabricated	
	5-GHz CMOS DQR.	109
Fig. 3.26	Results of 30-times Monte-Carlo simulations for	
	DQ-Mixers	110
Fig. 3.27	Results of 30-times Monte-Carlo simulations for	
	DQ-Mixers	111
Fig. 4.1	Circuit diagram of the designed individual low-noise	
	amplifier (LNA).	126
Fig. 4.2	Simulated impedance at the coupled-source node of	
	differential low-noise amplifiers (LNAs) with (a) MOS	
	current source and (b) LC-tank.	127
Fig. 4.3	RLC phase shifter.	128
Fig. 4.4	Circuit diagram of the RF quadrature generator (RF-QG).	128
Fig. 4.5	Simulated amplitude errors and the corresponding image	
	rejection of the 1-V RF-QG	129
Fig. 4.6	Circuit diagram of the quadrature voltage-controlled	
	oscillator (QVCO).	130
Fig. 4.7	Circuit diagram, which combines the functions of Mixer1	
	and <i>Mixer3</i> in Fig. 3.5.	131
Fig. 4.8	Die micrograph of the fabricated LNA in 0.25-µm CMOS	
	technology.	132
Fig. 4.9	Measured S_{21} of 1-V 2.4-GHz low-noise amplifier	133
Fig. 4.10	Measured common-mode gain of 1-V 2.4-GHz low-noise	
	amplifier	134
Fig. 4.11	Measured noise figure of 1-V 2.4-GHz low-noise amplifier	135
Fig. 4.12	Measured IIP3 of 1-V 2.4-GHz low-noise amplifier	136
Fig. 4.13	Die micrograph of the fabricated DQR in 0.25-µm CMOS	137

technology

Fig. 4.14	Output spectrum of the <i>DQR</i>	138
Fig. 4.15	Measured <i>IIP3</i> of the <i>DQR</i>	139
Fig. 4.16	Measured image rejection ratio of the DQR	140

