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預測 T細胞後天免疫反應 

 

學生：童俊維            指導教授：何信瑩 教授 

 

國立交通大學生物資訊及系統生物研究所博士班 

 

摘  要 

發展電腦輔助疫苗設計系統能幫助免疫學家能快速有效的辨識候選疫苗，

並且是免疫資訊學的終極目標之一。而精準的預測 T 細胞後天免疫反應是發

展電腦輔助疫苗設計系統的關鍵。本研究之核心為發展能適用於探勘致免疫

路徑（immunogenic pathways）中各種反應之重要物化特性的高性能大量參數

最佳化演算法。此重要物理化學特性探勘系統之研發過程包含了三個重要的

步驟：（1）蒐集各種能夠有效解釋生物現象之物理化學特性；（2）結合生物

知識與演算法技巧來建立最佳化問題；（3）發展特定的高性能演算法來解決

最佳化設計問題。重要特徵探勘系統可從大量資訊中探勘重要特徵來解釋各

種免疫反應，並幫助建立 T 細胞後天免疫反應預測系統。 

T 細胞後天免疫反應包括有細胞毒性與輔助 T 細胞免疫反應。對於預測

T 細胞後天免疫反應，過去的研究多專注於建立主要組織相容性複合物（MHC）

第一及第二型分子的抗原處理與表現路徑之預測模型。然而被主要組織相容

性複合物結合的胜肽抗原並不一定能引起免疫反應。對於更複雜的 T 細胞免

疫反應需要有更深入的研究並建立其預測模型。另外，對於抗原表現有重要

影響的蛋白質泛素化（Ubiquitylation），至今仍未有預測模型。高度泛素化的

蛋白因較容易被裂解，因而容易產生可供 T 細胞辨認用的抗原。因此準確的

蛋白質泛素化預測將有助於辨識容易引起免疫反應的蛋白質抗原。 

本研究專注在研究抗原的內生性物化特性，研發出第一套使用物化特性

來預測與主要組織相容性複合物結合之蛋白質引起的 T 細胞免疫反應預測系

統 POPI 與泛素化預測系統 UbiPred。並發現過去普遍認同的抗原與主要組織

相容性複合物的結合親和力並不足以準確預測 T 細胞免疫反應。針對影響細

胞毒性與輔助 T 細胞免疫反應的重要物化特性之分析比較對於了解免疫反應

有極大助益。本研究接著提出基於字串核函數的細胞毒性 T 細胞免疫反應預

測模型 POPISK。藉由融入主要組織相容性複合物與胺基酸位置的資訊，
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POPISK 不僅能加強細胞毒性 T 細胞免疫反應之預測，同時也能準確預測由

單一胺基酸突變引起的免疫反應變化。本研究並利用 POPISK 之特性來研究

蛋白抗原上被 T 細胞辨認的重要位置。本篇研究結果將能幫助了解免疫系統

並加速新疫苗的發展。 

 

關鍵字：致免疫性路徑，物理化學特性，智慧型基因演算法，疫苗設計 
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Prediction of  adaptive T-cell immune response 

 

Student: Chun-Wei Tung                  Advisor: Shinn-Ying Ho 

 

Institute of  Bioinformatics and Systems Biology 

National Chiao Tung University 

 

Abstract 

 

The development of  computer-aided vaccine design systems is a goal of  

immunoinformatics that can largely accelerate the design of  vaccines. Accurate 

prediction of  adaptive T-cell immune response is the critical step to develop 

computer-aided vaccine design systems. The core of this study is to develop 

high-performance optimization algorithms for solving large-scale parameter 

optimization problems of bioinformatics to mine informative physicochemical 

properties from known experimental data for predicting immunogenic pathway. The 

development of these algorithms involves three major phases: (a) collection of 

physicochemical properties for encoding peptide sequences; (b) formulation of 

optimization problems using domain knowledge and computing techniques and, and 

(c) development of efficient optimization algorithms for solving optimization 

problems. The developed informative feature mining algorithms can be used to mine 

informative physicochemical properties for predicting peptide immunogenicity. 

There are two major T cells including cytotoxic and helper T cells. For the 

prediction of  adaptive T-cell immune response, previous studies mainly focused on 

modeling antigen processing and presentation pathways of  MHC class I and II. 

However, the prediction of  T-cell response is much harder and less addressed 

because of  the complex nature of  T-cell response. Moreover, because 

over-ubiquitylated protein correlated with its half  life, ubiquitylation plays an 
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important role in providing antigen sources. Accurate prediction of  ubiquitylation 

sites is helpful to identify immunogenic peptides.  

This study proposed the first prediction systems POPI and UbiPred for 

predicting T-cell response and ubiquitylation sites, respectively. The poor 

performance of  a well recognized affinity-based method shows that binding affinity 

only is not sufficient for predicting T-cell response. The informative physicochemical 

properties for cytotoxic and helper T cells are identified and analyzed. Subsequently, 

an improved prediction system POPISK is proposed to predict cytotoxic T-cell 

response. The POPISK prediction system incorporating MHC allele information is 

used to identify important positions for T-cell recognition, and can predict 

immunogenicity changes made by single residue modifications. This study yields 

insights into the mechanism of  immune response and can accelerate the 

development of  vaccines. 

 

Keywords: immunogenic pathway; physicochemical properties; intelligent genetic 

algorithm; vaccine design. 
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Chapter 1  

Introduction 

This study aims to develop computer-aided vaccine design systems to help the design 

of  vaccines. For peptide-based vaccine design, the most critical step is to select im-

munogenic peptides capable of  inducing immune responses. Therefore, accurate 

prediction of  adaptive T-cell immune response can greatly accelerate vaccine designs. 

For this propose, efficient optimization algorithms were developed and applied to 

mine informative features for the predictions of  adaptive T-cell immune response. 

This dissertation presents a comprehensive study of  the developed prediction sys-

tems for identifying peptide vaccine candidates.  

1.1 Motivation 
The most significant advance of  medicine is the utilization of  vaccines against dis-

eases. Vaccines can help to prevent infections and prolong peoples‟ life. There are 

mainly five types of  vaccines: live attenuated vaccines, killed vaccines, purified sub-

unit vaccines, recombinant subunit vaccines and gene-based vaccines [1-4].The live 

attenuated vaccines consist of  the pathogens with reduced toxicity to prevent the risk 

of  infections. However, it is hard to develop live attenuated vaccines with high safety. 

The killed vaccines consist of  killed or deactivated pathogens have higher safety, 

compared to live attenuated vaccines.  

The killed vaccines suffered from incapability of  replication result in low im-

munogenicity. The deficiency of  these two types of  vaccines is caused by using 

whole pathogens as vaccines that will dilute the immunogenicity of  vaccines. Thus, 

the subunit vaccines using identified protective antigens are safer and more efficient 

to focus the immune response on specific target. For preventing or curing cancers,  
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Figure 1.1 Comparison between conventional vaccine development and reverse 

vaccinology [7]. 



 3 

the traditional vaccines described above are less effective. By applying deoxyribonuc-

leotide acid (DNA) as vaccines, it can provide effective protections against cancers 

with high immunogenicity of  cytotoxic T lymphocyte (CTL) [1]. 

For developing subunit vaccines and DNA vaccines, traditional experiment 

methods to identify protective antigens cost a lot and is time consuming with often 

five to fifteen years duration. The growing needs of  identifying protective antigen to 

develop vaccines result in the emergence of  reverse vaccinology (shown in Figure1.1). 

Vaccine design using bioinformatics methods can largely reduce the cost of  time and 

money [2-4]. 

Peptide immunogenicity, its ability to induce immune responses, determines the 

effectiveness of  vaccines. T-cell activation, one kind of  immune responses, plays 

important roles in developing adaptive immunity. An immunogenic peptide should 

be processed and presented to a cell surface by antigen processing and presentation 

pathway, and then induce T-cell responses. Major histocompatibility complex (MHC) 

molecules are responsible for both recognition of  antigens and presentation of  anti-

gens to T cells. MHC class I molecules can present processed endogenous peptides 

of  antigen to cytotoxic T lymphocytes (CTL), while processed exogenous peptides 

of  antigen are presented to helper T lymphocytes (HTL) by MHC class II molecules. 

Immune responses will be triggered when CTL or HTL recognize immunogen-

ic antigens. CTL response is mainly characterized by killing target cells (e.g. tumor 

cell and infected cell), presenting immunogenic antigens by the activated CTL. In 

contrast, the activated HTL will induce resting HTLs to proliferate and differentiate 

into memory cells or effector cells, and provide specific help for CTL, B lymphocytes 

and phagocytic cells, as known as HTL response. A simple illustration of  helper and 

cytotoxic T cell responses is shown in Figure 1.2. 

For computer-based vaccine design, previous studies pocus on modeling anti-

gen processing and presentation pathways of  MHC class I and II. The works for 

modeling the pathway of  MHC class I (shown in reaction 2-4 of  Figure1.3) include 

predictions of  antigen proteasomal cleavage sites, binding affinities of  peptides and 

the transporter associated with antigen processing (TAP) and binding affinities of  

peptides and MHC class I molecules. The major work for modeling the pathway of  

MHC class II (shown in reaction 6 of  Figure1.3) is the prediction of  binding affini-

ties between peptides and MHC class II molecules. 

The above studies assume that peptide binding affinity to MHC molecules cor-

relates with its immunogenicity. The prediction problems of  CTL and HTL immune 

responses are rarely studied (reaction 5 and 7 of  Figure1.3). However, recent studies 
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show that peptide binding affinity to MHC molecules is required but not strongly 

correlated to the strength of  immunogenicity. Also, the prediction of  protein ubiqui-

tylation sites is crucial for the prediction of  peptide immunogenicity because ubiqui-

tylation plays key roles in antigen supply (reaction 1 of  Figure1.3). The investigation 

of  these problems is necessary for accurate prediction of  adaptive T-cell immune 

response and development of  computer-aided vaccine design systems.  

1.2 Overview of  the research 
This dissertation presents a comprehensive prediction system for computer-aided 

vaccine design whose architecture is shown in Figure 1.4. The proposed system is 

based on several state-of-the-art methods for predicting antigen processing and 

presentation pathways and newly developed prediction systems for T-cell responses 

and protein ubiquitylation. To develop prediction systems for T-cell responses and 

protein ubiquitylation, An informative physicochemical property mining algorithm is 

proposed to mine informative physicochemical properties for predicting reactions 1, 

5 and 7 in this system that are described as follows.  

 

 

Figure 1.2 A simple illustration of  helper and cytotoxic T cell responses. 
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1)  (reaction 5 in Figure 1.3) The prediction of  immunogenicity of  MHC 

class I binding peptides (CTL response) is important to understand immune 

systems and accelerate vaccine design. Previous studies show that moderate 

binding affinity of  peptides to MHC molecules is required but is not the de-

terministic factor. Because of  the complex effects of  intrinsic factors like 

physicochemical properties and extrinsic factors of  MHC repertoire, it is 

hard to predict immunogenicity. For solving this problem, an informative 

physicochemical property mining algorithm was proposed to simultaneously 

mine informative physicochemical properties from existing experimental da-

ta and design a support vector machine classifier. By mining a subset of  23 

informative physicochemical properties from 531 physicochemical proper-

ties, a prediction system of  POPI was constructed. POPI performs better 

than alignment-based methods and traditional affinity-based methods. For 

 

 

Figure 1.4 The architecture of  proposed peptide immunogenicity prediction 

system for computer-aided vaccine design. 
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HLA-A2-restricted peptides, an improved prediction system POPISK is 

proposed for predicting immunogenicity using string kernels. The prediction 

and analysis ability of  POPISK gives insights into the underlying mechanism 

of  T-cell recognition. Important positions for T-cell responses are identified 

and analyzed. POPISK can accurately predict immunogenicity changes made 

by single residue modifications.  

2)  (reaction 7 in Figure 1.3) For the prediction of  immunogenicity of  MHC 

class II binding peptides (HTL response), the developed informative physi-

cochemical property mining algorithm was applied to mine informative phy-

sicochemical properties from experimental data. A prediction system PO-

PI-MHC2 for predicting immunogenicity of  MHC class II binding peptides 

was implemented by using 21 informative physicochemical properties. The 

same as POPI, POPI-MHC2 performs much better than alignment-based 

methods and traditional affinity-based methods. 

3) (reaction 1 in Figure 1.3) Three kinds of  features were assessed for their 

performances of  ubiquitylation site prediction. For classifier selection, three 

classifiers including k-nearest neighbor classifier, NaïveBayes and support 

vector machines (SVM) were assessed. Results show that SVM using physi-

cochemical properties performs best. Moreover, the informative physico-

chemical property mining algorithm was applied to mine 31 informative 

physicochemical properties from all 531 physicochemical properties. A pre-

diction system UbiPred constructed by using 31 informative physicochemi-

cal properties shows large improvement in prediction performance.  

This dissertation presents the first prediction systems for CTL and HTL res-

ponses and protein ubiquitylation. The obtained informative physicochemical prop-

erties yield insights into the immune systems and are helpful to develop prediction 

systems for vaccine designs.  

1.3 Organization 
In summary, this dissertation focuses on predicting adaptive T-cell immune responses 

for computer-aided vaccine design. For solving optimization problems of  mining 

informative physicochemical properties for the peptide immunogenicity, efficient 

evolutionary algorithms were proposed to develop efficient vaccine design system. 

The rest of  this dissertation is organized as follows. Chapter 2 addresses the related 

works of  this dissertation. The proposed algorithm for mining informative physico-
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chemical properties is presented in Chapter 3. Chapter 4 presents the prediction sys-

tem for predicting ubiquitylation sites. Chapter 5 describes the proposed prediction 

systems for predicting immunogenicity of  MHC class I and II binding peptides. The 

improved prediction of  peptide immunogenicity using string kernels is presented in 

Chapter 6. Finally, conclusions are given in Chapter 7.
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Chapter 2  

Related Work 

This chapter presents related works for predicting adaptive T-cell immune response 

including prediction of  ubiquitylation sites, immunogenicity prediction of  MHC class 

I binding peptides, and immunogenicity prediction of  MHC class II binding pep-

tides.  

2.1 Highly Ubiquitylated Proteins as Antigen 

Sources 
Ubiquitin-proteasome system is an important mechanism for protein degradation 

that the ubiquitylated proteins will be degraded by proteasome. The ubiquitin acts as 

a specific tag for marking proteins for degradation. The proteasome is a major me-

chanism for cells to regulate the concentration of  particular proteins and degrade 

misfolded proteins. The degradation process produces short peptides of  about 7~8 

amino acids. The resulting short peptides can be further degraded into amino acids 

that can be used in protein synthesis [2, 3].  

The proteasome plays an important role in the function of  the adaptive im-

mune system. The peptide antigens presented on the surface of  antigen-presenting 

cells are produced by proteasomal degradation of  pathogen proteins and displayed 

by MHC class I molecules [4]. A previous study investigated the role of  ubiqui-

tin-dependent proteolytic pathway in MHC class I-restricted antigen presentation and 

concluded that ubiquitin-conjugation (also called ubiquitylation) plays an important 

role in the presentation of  a cytosolic antigen with MHC [5]. Another study found 

that an amino-terminal modification of  a viral protein will promote ubiqui-

tin-dependent degradation and lead to the enhancement of  presentation with MHC 

http://en.wikipedia.org/wiki/Cell_%28biology%29
http://en.wikipedia.org/wiki/Concentration
http://en.wikipedia.org/wiki/Protein_folding
http://en.wikipedia.org/wiki/Peptide
http://en.wikipedia.org/wiki/Adaptive_immunity
http://en.wikipedia.org/wiki/Adaptive_immunity
http://en.wikipedia.org/wiki/Antigen
http://en.wikipedia.org/wiki/Antigen-presenting_cell
http://en.wikipedia.org/wiki/Antigen-presenting_cell
http://en.wikipedia.org/wiki/Pathogen
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class I [6]. 

Some recent studies have similar results that ubiquitin-conjugation will enhance 

the efficacy of  polynucleotide viral vaccines [7] and vaccines against tuberculosis [8]. 

Another study claimed that the low frequency of  memory cytotoxic T lymphocyte 

and inefficient antiviral protection of  DNA immunization with minigenes can be 

rectified by ubiquitylation [9]. Therefore, accurate prediction of  ubiquitylation sites 

can provide better understandings of  ubiquitylation mechanism. The selection of  

highly ubiquitylated peptides can improve the effectiveness of  vaccines. In Chapter 4, 

three kinds of  features and three classifiers were assessed for their prediction per-

formances. Subsequently, informative physicochemical property mining algorithm is 

applied to select informative physicochemical properties and improve the prediction 

performance. Finally, a prediction system UbiPred was constructed to predict ubi-

quitylation sites. 

2.2 Immunogenic Pathway of  MHC class I 
Developing a computer-aided system to design peptide vaccines is one goal of  im-

munoinformatics. The major work of  previous studies for peptide vaccine designs is 

to identify cytotoxic T lymphocyte (CTL) epitopes and investigate their correspond-

ing immunogenicity. The CTL cells play a critical role in protective immunity by re-

cognizing and eliminating self-altered cells, which recognize short peptides derived 

from intracellular degradation of  foreign proteins in combination with major histo-

compatibility complex (MHC) class I molecules. The immunogenicity of  MHC class 

I binding peptides is their ability to induce CTL responses. Accurate predictions of  

the CTL epitopes and their corresponding immunogenicity are critical in developing 

a computer-aided system for vaccine designs. 

Direct approach to predicting the CTL epitopes has been studied initially but its 

accuracy is fairly low [10]. Instead, indirect approach to predicting the MHC-binding 

peptides is useful because peptides must be processed prior to inducing cellular im-

munogenicity. The recent studies of  bioinformatics utilized the information about 

antigen processing pathway to predict the CTL epitopes. At first, the peptides are 

cleaved by proteasomal cleavage. Several studies elucidating the specificity of  pro-

teasome have been presented. To predict proteasomal cleavage sites, NetChop used a 

neural network method [11] and Pcleavage is based on a support vector machine 

(SVM) learning model [12]. 

After cleavage, peptide fragments are transported into endoplasmic reticulum 

by TAP which is the transporter associated with antigen processing. Some studies of  



 11 

investigating the TAP transport efficiency were presented such as the affinity predic-

tion of  TAP binding peptides using the cascade SVM [13] and the prediction of  TAP 

transport efficiency of  epitope precursors using a simple scoring matrix [14]. Finally, 

the peptide fragments that bound to MHC class I molecules are subsequently trans-

located to the cell surface, where these complexes may active CTL. Some methods 

have been developed to predict MHC class I binding affinity, such as the SVM-based 

SVMHC [15] and Gibbs sampling method [16]. Moreover, the hybrid approaches 

integrated the above-mentioned methods like the prediction of  proteasomal cleavage, 

TAP transport efficiency and MHC binding to advance the prediction performance 

[17, 18]. 

The problem of  predicting immunogenicity of  MHC class I binding peptides is 

crucial to further identify highly immunogenic peptides. The selection of  highly im-

munogenic peptides can save many experimental efforts and accelerate the develop-

ing progress. In Chapter 5, a prediction system POPI was developed to predict im-

munogenicity of  MHC class I binding peptides. POPI performs better than align-

ment-based and affinity-based methods.  

In Chapter 6, an improved prediction system POPISK was constructed to pre-

dict T-cell responses induced by HLA-A2-restricted peptides. POPISK using string 

kernels is useful for predict peptide immunogenicity and immunogenicity changes 

made by single residue modifications that is especially useful for optimizing pep-

tide-based vaccines. 

2.3 Immunogenic Pathway of  MHC class II 
The immunogenic pathway of  MHC class II includes four steps. First, antigens are 

engulfed by endocytosis forming endosome. Second, endosome fuses with lysosome 

and is cleaved by peptidase in lysosome. Third, the peptide fragments bound to 

MHC class II will be translocated to cell surface. Finally, immune responses (also 

called immunogenicity) will be triggered when helper T lymphocyte (HTL) recognize 

non-self  antigens presented by antigen presenting cell (APC). The activated HTL will 

induce the resting HTLs to proliferate and differentiate into memory cells or effector 

cells and provide specific help to CTL, B lymphocytes and phagocytic cells [19, 20]. 

Previous studies for predicting immunogenic pathway of  MHC class II focus 

on the prediction of  MHC class II-restricted peptides (qualitative methods) and the 

binding affinity of  peptide-MHC complex (quantitative methods). Many methods are 

proposed to predict MHC class II binding peptides. The evolutionary algorithms in-

cluding ant colony algorithms [21], evolutionary algorithms combined with artificial 
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neural networks [22] and multi-objective evolutionary algorithms [23] are developed 

for optimizing a matrix for predicting binding affinity. Other methods including the 

neural network based methods [22, 24, 25], Bayesian neural networks [26], fuzzy 

neural networks [27], the hidden Markov model [28], Gibbs samplers [16], support 

vector machines [29-31] and alignment-based method SMM-align that is a stabiliza-

tion matrix alignment method for predicting MHC class II binding affinity [32]. 

However, the problem of  predicting immunogenicity of  MHC class II binding 

peptides is also important to understand immunogenicity and design effective vac-

cines. In Chapter 5, a prediction system POPI-MHC2 based on informative physi-

cochemical properties was developed to predict immunogenicity of  MHC class II 

binding peptides. The informative physicochemical properties are mined by using the 

informative physicochemical property mining algorithm (described in Chapter 3). 

This study shows similar results to POPI that the traditional affinity-based method 

and alignment-based methods are less effective than the proposed method PO-

PI-MHC2. 
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Chapter 3  

Informative Physicochemical 

Property Mining Algorithm 

For mining informative physicochemical properties from experimental data, a genetic 

algorithm based method was proposed to simultaneously determine optimal subset 

of  physicochemical properties and design a support vector machine classifier. 

3.1 Physicochemical properties 
Physicochemical properties of  amino acids were extensively and successfully used in 

sequence-based prediction methods [33-37]. There are 544 physicochemical proper-

ties of  amino acids extracted from amino acid index database version 9.0 (AAindex), 

which is a collection of  published amino acid indices representing different physico-

chemical and biological properties of  amino acids [38, 39]. Each physicochemical 

property consists of  a set of  20 numerical values for amino acids. The property hav-

ing the value „NA‟ in a value set of  amino acid index was discarded. Finally, 531 

properties were used for the following mining method. 

To encode an input vector from peptide sequences for machine learning clas-

sifiers, a two-step method is utilized. The first step determines a vector Dt of  531 

index values for each amino acid of  peptides. A peptide of  length l has 531 

l-dimensional vectors that can be defined as:  

 1 2D , ,..., , 1,...,531t t t tld d d t  , 

Informative Physicochemical 

Property Mining Algorithm 
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where t denotes the t-th physicochemical properties. In the second step, a vector V 

of  531 mean values is obtained by averaging these l attributes in each vector, defined 

as follows: 

   1 2V , ,..., tv v v , 

 
1

1 l

t ti

i

v d
l 

  , (3-1) 

where 
tv  is the averaged value of  elements in Dt,. 

3.2 Support vector machines 
Support vector machines (SVMs) are powerful tools in the field of  machine learning. 

SVMs cope well with the over-fitting problem arising from a small training dataset by 

finding a linear separation hyperplane that maximizes the distance between two 

classes to create a classifier. SVMs can efficiently deal with classification, prediction, 

and regression problems. Given training vectors xi   Rn and their class values yi 

{-1, 1}, i = 1, …, N, an SVM solves the following problem: 

 min     T

1

1

2

N

i

i

C 


 w w , 

 subject to    T( ) 1i i iy b   w x , (3-2) 

 0i  , 

where w is a normal vector perpendicular to the hyperplane and i  are slack va-

riables allowing for some misclassifications. The cost parameter C > 0 controls the 

trade-off  between the margin and the training error. Larger values of  C will lead to a 

higher error penalty.  

In order to make linear separation of  samples easier, SVM uses one of  various 

kernel functions to transform the samples into a high-dimensional search space. In 

this work, the commonly-used radial basis function is applied to nonlinearly trans-

form the feature space, defined as follows: 

 
2

( , ) exp( ), 0i j i jK x x x x     . (3-3) 
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The kernel parameter γ determines how the samples are transformed into a 

high-dimensional search space. These two parameters C and γ must be tuned to get 

the best prediction performance. 

For multi-class classification problems, „one-against-one‟ strategy is applied to 

transform the multi-class problem into several binary classification problems. Given 

h classes, there are h(h−1)/2 classifiers constructed and each one trains the samples 

from two classes. A voting strategy is applied to give a final prediction for test sam-

ples. In this study, the used SVM is obtained from LIBSVM package version 2.81 

[40]. 

3.3 Orthogonal experimental design 
Statistic design of  experiments is a process of  planning experiments. Orthogonal 

experimental design with orthogonal array and factor analysis is an efficient method 

to analyze the effect of  several factors simultaneously [41, 42]. The factors are the 

parameters, which affect response variables, and a discriminative value of  a factor is 

regarded as a level of  the factor. A “complete factorial” experiment would make 

measurements at each of  all possible level combinations. However, the number of  

level combinations is often so large that this is impractical, and a subset of  level 

combinations must be judiciously selected to be used, resulting in a “fractional fac-

torial” experiment. Orthogonal experimental design utilizes properties of  fractional 

factorial experiments to efficiently determine the best combination of  factor levels to 

use in design problems. 

Orthogonal array is a fractional factorial array, which assures a balanced com-

parison of  levels of  any factor. Orthogonal array can reduce the number of  level 

combinations for factor analysis. Each row of  an orthogonal array represents the le-

vels of  factors in each combination, and each column represents a specific factor that 

can be changed from each combination. The term “main effect” of  one factor de-

signates the effect on response variables that one can trace to a design parameter, 

which does not bother the estimation of  the main effect of  another factor. After 

proper tabulation of  experimental results, the summarized data are analyzed using 

factor analysis to determine the relative level effects of  factors. 

Factor analysis can evaluate the effects of  individual factors on the evaluation 

function, rank the most effective factors, and determine the best level for each factor 

such that the evaluation function is optimized. Table 3.1 shows an illustrative exam-

ple of  orthogonal experimental design using a two-level orthogonal array LM(2M-1) 

with M rows and M-1 columns. In this example of  M=8, there are 7 factors where 
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each corresponds to a physicochemical property and its two levels correspond to ex-

clusion and inclusion of  the feature in the proposed feature selection. Let ft denote a 

function value (prediction accuracy of  10-CV in this study) of  the combination t. 

Define the main effect of  factor j with level k as Sjk where j = 1, …, M-1 and k = 1, 

2: 

Sjk= tf ∙ Ft , t = 1, …, M,           (3-4) 

where Ft = 1 if  the level of  factor j of  combination t is k; otherwise, Ft = 0. Since the 

objective function is to be maximized, the level 1 of  factor j makes a better contribu-

tion to the function than level 2 of  factor j does when Sj1>Sj2. The main effect re-

veals the individual effect of  a factor. After the better one of  two levels of  each fac-

tor is determined, a good combination consisting of  all factors with the better levels 

can be easily reasoned [43]. 

The Rank in Table 3.1 shows the rank of  the combination t in all 128 (=27) 

Table 3.1 An illustration example of  orthogonal array L8(2
7) and factor analysis. 

t 
Factors Accuracy(%) 

ft 
Rank 

1 2 3 4 5 6 7 

1 1 1 1 1 1 1 1 28.8 33/128 

2 1 1 1 2 2 2 2 18.8 97/128 

3 1 2 2 1 1 2 2 28.8 33/128 

4 1 2 2 2 2 1 1 17.5 100/128 

5 2 1 2 1 2 1 2 20.0 88/128 

6 2 1 2 2 1 2 1 41.3 4/128 

7 2 2 1 1 2 2 1 33.8 14/128 

8 2 2 1 2 1 1 2 20.0 88/128 

Sj1 93.8 108.8 101.3 111.3 118.8 86.3 121.3   

Sj2 115.0 100.0 107.5 97.5 90.0 122.5 87.5   

MED 21.3 8.8 6.3 13.8 28.8 36.3 33.8   

Rank 4 6 7 5 3 1 2   

Better 

level 
2 1 2 1 1 2 1 42.5 1/128 
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possible combinations. In this example, the reasoned combination gets the best ac-

curacy with Rank 1. Notably, the reasoned combination is not guaranteed to be the 

best one in general cases. The most effective factor j has the largest main effect dif-

ference MED=|Sj1 –Sj2|. The 6th factor having the largest main effect difference 

36.3 is the most effective factor. 

3.4 Inheritable bi-objective genetic algorithm 
Selecting a minimal number of  informative features while maximizing prediction ac-

curacy is a bi-objective 0/1 combinatorial optimization problem. An efficient inhe-

ritable bi-objective genetic algorithm (IBCGA, [43]) is utilized to solve this optimiza-

tion problem. IBCGA consists of  an intelligent genetic algorithm [44] with an inhe-

ritable mechanism. The intelligent genetic algorithm uses a divide-and-conquer 

strategy and an orthogonal array crossover to efficiently solve large-scale parameter 

optimization problems. In this study, the intelligent genetic algorithm can efficiently 

explore and exploit the search space of  C(n, r). IBCGA can efficiently search the 

space of  C(n, r 1) by inheriting a good solution in the space of  C(n, r) [43]. There-

fore, IBCGA can economically obtain a complete set of  high-quality solutions in a 

single run where r is specified in an interesting range such as [5, 45]. 

The proposed chromosome encoding scheme of  IBCGA consists of  both bi-

nary genes for feature selection and parametric genes for tuning SVM parameters, 

where the gene and chromosome are commonly-used terms of  genetic algorithm 

(GA), named GA-gene and GA-chromosome for discrimination in this paper. The 

GA-chromosome consists of  n=531 binary GA-genes bi for selecting informative 

properties and two 4-bit GA-genes for tuning the parameters C and γ of  SVM. If  

bi=0, the i-th property is excluded from the SVM classifier; otherwise, the i-th prop-

erty is included. This encoding method maps the 16 values of   and C into {2-7, 2-6…, 

28}. Figure 3.1 shows the encoding scheme of  GA-chromosome and process of  

constructing feature vectors for fitness function evaluation using a concise example.  

The feature vector for training the SVM classifier is obtained from decoding a 

GA-chromosome using the following steps. Consider a given peptide sequence, e.g., 

LAL. At first, the index vectors for all selected physicochemical properties (Residue 

volume and Molecular weight in this example) are constructed from AAindex for 

each amino acid. Feature vector of  a peptide consists of  the selected features whose 

values are obtained by averaging the values in their corresponding index vectors. Fi-

nally, all values of  the feature vectors are normalized into [-1, 1] for applying SVM. 

Fitness function is the only guide for IBCGA to obtain desirable solutions. To  
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avoid from the prediction bias for some classes, the averaged accuracies (AA) of  all 

classes, defined in (3-10), is adopted as the fitness function. The performance of  se-

lected properties associated with the parameter values of  SVM is measured by 10-CV. 

Therefore, the fitness value of  a GA-chromosome is obtained by computing the 

mean accuracy of  10 runs. 

IBCGA with the fitness function f(X) can simultaneously obtain a set of  solu-

tions, Xr, where r=rstart, rstart+1, …, rend in a single run. The algorithm of  IBCGA 

with the given values rstart and rend is described as follows: 

Step 1) (Initiation) Randomly generate an initial population of  Npop individuals. 

All the n binary GA-genes have r 1‟s and n-r 0‟s where r = rstart. 

Step 2) (Evaluation) Evaluate the fitness values of  all individuals using f(X). 

Step 3) (Selection) Use the traditional tournament selection that selects the 

winner from two randomly selected individuals to form a mating 

pool. 

Step 4) (Crossover) Select pc·Npop parents from the mating pool to perform 

orthogonal array crossover on the selected pairs of  parents where pc is 

the crossover probability. 

Step 5) (Mutation) Apply the swap mutation operator to the randomly se-

lected pm·Npop individuals in the new population where pm is the muta-

tion probability. To prevent the best fitness value from deteriorating, 

mutation is not applied to the best individual. 

Step 6) (Termination test) If  the stopping condition for obtaining the solu-

tion Xr is satisfied, output the best individual as Xr. Otherwise, go to 

Step 2). 

Step 7) (Inheritance) If  r < rend, randomly change one bit in the binary 

GA-genes for each individual from 0 to 1; increase the number r by 

one, and go to Step 2). Otherwise, stop the algorithm. 

3.5 Performance evaluations 
Four measurements are applied to evaluate developed prediction systems including 

accuracy (ACC) and Matthew‟s correlation coefficient (MCC) for each class, and 

overall accuracy (OA) and averaged accuracy (AA) for all classes, defined as follows:  
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where i is the number of  classes and TPi, TNi, FPi and FNi are the numbers of  true 

positives, true negatives, false positives and false negatives, respectively. N is the total 

number of  sequences and h is the number of  classes. 
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Chapter 4  

Prediction of  ubiquitylation 

sites 

Ubiquitylation plays an important role in regulating protein functions. Recently, expe-

rimental methods were developed toward effective identification of  ubiquitylation 

sites. To efficiently explore more undiscovered ubiquitylation sites, this stud aims to 

develop an accurate sequence-based prediction method to identify promising ubiqui-

tylation sites. 

4.1 Motivation 
Ubiquitylation (also called ubiquitination) is an important mechanism of  

post-translational modification that ubiquitin will be linked to specific lysine residues 

of  target proteins by forming isopeptide bonds. Three enzymes including activating 

enzyme (E1), conjugating enzyme (E2), and ubiquitin ligase (E3) are involved in the 

ubiquitylation process. Another enzyme E4 can help to stabilize and extend polyubi-

quitin chain [45, 46]. The first discovered function of  ubiquitylation is to target pro-

teins for subsequent degradation by the ATP-dependent ubiquitin-proteasome sys-

tem. Subsequently, many regulatory functions of  ubiquitylation were discovered in-

cluding the regulation of  DNA repair and transcription, control of  signal transduc-

tion, and implication of  endocytosis and sorting [45, 46]. 

Because of  the important regulatory roles of  ubiquitylation, numerous methods 

were developed to purify ubiquitylated proteins [47]. Also, the growing number of  

studies of  large-scale identification of  ubiquitylated proteins and analysis of  ubiqui-

Predicting of  ubiquitylation 

sites 
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tin-related proteome reflect the importance of  identifying ubiquitylation proteins and 

sites [48-53]. The three steps affinity purification, proteolytic digestion, and analysis 

using mass spectrometry were applied in most of  these studies [54]. These works 

cost a lot of  experimental efforts. Therefore, developing a prediction system using 

informative features from protein sequences can not only save experimental efforts 

but also provide insights into the mechanism of  ubiquitylation. 

4.2 Assessment of  features and classifiers 
This study focuses on the sequence-based prediction of  ubiquitylation sites. There-

fore, three kinds of  useful features which can be extracted from protein sequences 

 

Figure 4.1 The sequence logo of  the 151 positive samples with w=21. (a) infor-

mation content and (b) frequency plot. 
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and are widely used in bioinformatics studies are evaluated for prediction of  ubiqui-

tylation sites: conventional amino acid identity [55], evolutionary information [56, 57], 

and physicochemical property [58, 59]. For predicting functions of  a residue in a 

protein, it is well recognized that nearby residues will influence the property and 

structure of  a central residue. For machine learning based prediction methods, the 

environmental information will be useful to enhance prediction accuracy that is ex-

tensively used in previous studies [55-57]. The feature representations for applying to 

the mentioned classifiers are described below. 

The conventional feature representation, amino acid identity, uses 20 binary bits 

to represent an amino acid [55]. For example, the amino acid A is represented by 

„00000000000000000001‟ and R is represented by „00000000000000000010‟. To deal 

with the problem of  windows spanning out of  N-terminal or C-terminal, one addi-

tional bit is appended to indicate this situation. A vector of  size (20+1)w bits is used 

for representing a sample where w is the window size. 

Evolutionary information has been successfully applied in many studies [56, 57]. 

To prepare evolutionary information for each protein sequence, the corresponding 

position-specific scoring matrix (PSSM) is obtained by applying PSI-BLAST [60] 

against non-redundant SWISS-PROT database using 3 iteration and default values of  

parameters. For each residue, there are 20 values indicating the probabilities of  oc-

currences for 20 amino acids at the position. One additional bit is applied to deal 

with the terminal spanning windows as used for amino acid identity. A vector of  size 

 

Figure 4.2 The schema for the training and an independent of  3424 putative 

non-ubiquitylation sites in dataset of  w=21. 
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(20+1)w is used for representing a sample. 

Using informative features as well as an appropriate classifier is essential to de-

sign an accurate prediction system. Three machine learning classifiers including 

k-nearest neighbor, NaïveBayes and support vector machine (SVM) are evaluated for 

predicting ubiquitylation sites. Two extensively used classifiers including IBk for 

k-nearest neighbor classifier and NaïveBayes classifier that are included in the ma-

chine learning tool of  WEKA [61] are applied to evaluate prediction performances 

of  features. To optimize the performance of  IBk classifier, five numbers of  nearest 

neighbors k=1, 3, …, 9 used to classify samples are evaluated for selecting the best 

number of  k. For NaïveBayes, in addition to normal distribution, a distribution ob-

tained from kernel estimation is used to model numeric attributes. 

To find the best kind of  feature for SVM-based prediction of  ubiquitylation 

sites, the control parameters C and  of  SVM and associated window size w{11, 

13, …, 29} for each kind of  features should be tuned to obtain best performance for 

 

Figure 4.3 Performance comparisons among amino acid identity, evolutionary in-

formation and physicochemical property with various classifiers. 
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comparison. The grid search method is applied to tune parameters C and  that total 

16*16=256 grids are evaluated. The prediction accuracy of  10-CV is used to deter-

mine the best parameter values for the three kinds of  features for SVM. 

To evaluate the proposed methods, a positive dataset UBIDATA consisting of  

157 ubiquitylation sites from 105 proteins was established by extracting annotated 

proteins from the UbiProt database [62]. By mapping the ubiquitylation sites to the 

corresponding 105 protein sequences retrieved from the UniProt Knowledgebase 

(Swiss-Prot and TrEMBL), the 3676 lysine residues with no annotation of  ubiquityla-

tion sites were regarded as putative non-ubiquitylation sites. A sliding window me-

thod is applied to the central residue to be predicted for gleaning environment in-

formation. A positive sample is denoted as a sequence of  size w with a central resi-

due lysine which is an ubiquitylation site. If  the central residue lysine is not an ubi-

quitylation site, the sequence is regarded as a negative sample. Only one of  the sam-

ples with the same sequences and annotation of  ubiquitylation sites was used. All the 

inconsistent samples which have the same sequences but not the same annotation 

were discarded. The 10 positive datasets were constructed using various values of  w 

from UBIDATA, which have 149 samples of  w=11, 150 samples of  w=13 and 15, 

and 151 samples of  w=17, 19, …, 29. Due to the discard of  duplicate and inconsis-

tent samples, different values of  w would result in different sample numbers of  data-

sets.  

For training an SVM classifier, both positive and negative samples are necessary. 

Table 4.1 Summary of  used parameters and LOOCV performances of  the me-
thods using informative physicochemical properties (UbiPred), amino acid identi-

ty, evolutionary information, and all physicochemical properties. 

# Feature 
Window 

size 
C  

ACC 

(%) 

SEN 

(%) 

SPE 

(%) 
MCC AUC 

1 

31 Informative physico-

chemical properties (Ubi-

Pred) 

21 4 2-1 84.44 83.44 85.43 0.69 0.85 

2 
All physicochemical prop-

erties 
17 1 2-4 72.19 70.86 73.51 0.44 0.74 

3 Amino acid identity 13 2 2-2 65.67 57.33 74.00 0.32 0.70 

4 Evolutionary information 13 1 2-7 66.33 72.00 60.67 0.33 0.71 
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The dataset of  post-translational modification including phosphorylation and ubi-

quitylation sites is unbalanced that the number of  positive samples is much smaller 

than that of  negative samples. The negative samples for training the SVM classifier 

were selected randomly from the 3676 putative non-ubiquitylation sites. In this study, 

the number of  negative samples is the same with that of  positive samples in the da-

taset. For example, there are 151 negative samples in the dataset of  w=21. The rest 

(e.g., 3424 samples with no annotation of  ubiquitylation sites for w=21) are formed 

as an independent dataset to be scored for identifying promising ubiquitylation sites 

(see Fig. 8). Notably, since the value of  C for tuning the error penalty (see the next 

section) is determined subsequently according to the performance measurement of  

SVM, it is not obligatory to select a matched number of  negative peptides for train-

ing the SVM classifier. The used datasets of  various windows sizes can be publicly 

downloaded from the web server of  UbiPred.  

Figure 4.1 shows the sequence logo of  the 151 positive samples with w=21 

generated by the WebLogo tool [63]. The sequence logo with low information con-

tent reveals disadvantages of  the SVM using the two position-based features, amino 

 

Figure 4.4 Performance comparisons between the SVM with informative physi-

cochemical properties (SVM+IPCP) and other compared classifiers. 
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acid identity and evolutionary information, compared with the non-position based 

features, physicochemical properties using averaged measurement of  amino acids in a 

sequence.  

We established ten datasets with window sizes 11, 13, …, 29 from UbiProt, a 

database of  ubiquitylated proteins [62], to evaluate the three kinds of  features for 

applying classifiers. The dataset of  window size 21 is shown in Figure 4.2. According 

to the prediction accuracies using 10-fold cross-validation (10-CV), the physico-

chemical property is the best feature to SVM with best performance among all clas-

sifiers and all kinds of  features shown in Figure 4.3.  

In order to provide insight into the underlying mechanism of  ubiquitylation and 

improve the prediction accuracy, IPMA is applied to mine physicochemical proper-

ties and tune SVM parameters while maximizing the 10-CV accuracy, a set of  31 in-

formative physicochemical properties is obtained. A prediction system UbiPred for 

identifying ubiquitylation sites is implemented by utilizing the 31 informative physi-

cochemical properties. UbiPred performs well with a prediction accuracy of  84.44% 

using leave-one-out cross-validation (LOOCV), compared with the SVM-based me-

thods using amino acid identity (65.67%), evolutionary information (66.33%) and all 

physicochemical properties (72.19%). The performances and area under the ROC 

curve (AUC) are shown in Table 4.1 

4.3 Informative physicochemical properties 
Most of  the 531 physicochemical properties may be irrelevant features or even inter-

fere with prediction of  the SVM classifier. Therefore, it is important to mine infor-

mative physicochemical properties for advancing the prediction accuracy. IPMA de-

termines a feature set of  r informative physicochemical properties and the values of  

SVM parameters (C and ) for a given window size w. Because of  the 

non-deterministic nature of  IPMA, the obtained solutions would be different for 

each run. To obtain the features with robust performance, 30 independent runs of  

IPMA were performed for each window size w. 

The highest, mean, and lowest prediction accuracies of  IPMA using 10-CV are 

shown in Figure 4.4. For comparison, the decision tree method C5.0 [64] with the 

ability of  feature selection based on information gain was also evaluated. The accura-

cies of  C5.0 and SVM with the properties selected by C5.0 for various window sizes 

are also given in Figure 4.4. For all window sizes, the accuracies of  SVM using in-

formative physicochemical properties mined by IPMA are better than those of  C5.0, 

SVM using all 531 physicochemical properties, and SVM using the C5.0-selected 
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properties. Considering the mean accuracies of  SVM with informative physicochem-

ical properties in Figure 4.4, the best window size is w=21.  

Figure 4.5 shows the best 10-CV accuracies of  using IPMA with w=21 for var-

ious numbers of  features from 30 independent runs. The accuracy of  w=21 can be 

improved from 69.87% to 85.43% by using m=31 out of  n=531 physicochemical 

properties, where the values of  SVM parameters are C=4 and =0.5. The 31 infor-

mative physicochemical properties constitute a good feature set obtained by consi-

dering the inter-correlation among properties. 

The quantified effectiveness of  individual physicochemical properties on pre-

diction is useful to characterize the ubiquitylation mechanism by physicochemical 

properties. Orthogonal experimental design with factor analysis [41] [42] can be used 

to estimate the individual effects of  physicochemical properties according to the val-

 

Figure 4.5 The best 10-CV accuracies of  prediction using SVM with the window 

size 21 for various numbers of  features (properties) selected by IPMA from 30 

independent runs. 
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ue of  main effect difference (MED) [59] [58]. The property with the largest value of  

MED is the most effective in predicting ubiquitylation sites.  

According to MED, the 31 informative properties are ranked and their descrip-

tions are shown in Table 4.2. The most effective property with MED=31.79 is 

NADH010102 denoting “hydropathy scale based on self-information values in the 

two-state model of  9% accessibility”. The least effective properties with MED=1.32 

are NAKH900101 and QIAN880129 denoting “amino acid composition of  total 

protein” and “weights for coil at the window position of  -4”, respectively. The 

ranked informative physicochemical properties provide valuable information to bi-

ologists for further experimental verification. 

 

Figure 4.6 The system flow of  prediction system UbiPred. 
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4.4 Prediction system UbiPred 
To implement a prediction system UbiPred for identifying ubiquitylation sites, the 31 

informative physicochemical properties with w=21, C=4, and =0.5 were used. The 

system flow of  UbiPred is shown in Figure 4.6. The required input for UbiPred is 

peptide sequence. UbiPred will automatically encoding the windows with central ly-

sine residue using 31 informative physicochemical properties. Subsequently, the lysine 

residues will be annotated with SVM predicted result and shown in web page.  

The prediction accuracy 84.44% of  UbiPred shows good performance, com-

pared with those of  SVM with physicochemical property (72.19%), amino acid iden-

tity (65.67%) and evolutionary information (66.33%). The SEN, SPE and MCC of  

UbiPred are 83.44%, 85.43% and 0.69, respectively. To compare the robustness of   

 

Figure 4.7 Comparison of  receiver operating characteristic curves among infor-

mative physicochemical properties (UbiPred), amino acid identity, evolutionary 

information and all physicochemical properties. 
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Table 4.2 The MEDs for 31 mined physicochemical property. 

AAindex  

identity 

Description MED 

NADH010102 Hydropathy scale based on self-information values in 

the two-state model of  9% accessibility 

31.79 

BROC820102 Retention coefficient in HFBA  29.80 

MEIH800102 Average reduced distance for side chain  28.48 

LEVM780101 Normalized frequency of  alpha-helix, with weights  25.17 

GUYH850104 Apparent partition energies calculated from Janin index  23.84 

CORJ870101 NNEIG index  23.18 

RACS770102 Average reduced distance for side chain  22.52 

GEOR030108 Linker propensity from helical (annotated by DSSP) da-

taset 

22.52 

HARY940101 Mean volumes of  residues buried in protein interiors  21.85 

GRAR740102 Polarity  19.87 

GUYH850105 Apparent partition energies calculated from Chothia 

index  

19.87 

MEIH800103 Average side chain orientation angle  17.88 

KRIW790102 Fraction of  site occupied by water  17.88 

LEVM780106 Normalized frequency of  reverse turn, unweighted  14.57 

BULH740102 Apparent partial specific volume  13.25 

FAUJ880101 Graph shape index  11.92 

PUNT030102 Knowledge-based membrane-propensity scale from 

3D_Helix in MPtopo databases  

10.60 

HUTJ700103 Entropy of  formation  9.93 

EISD840101 Consensus normalized hydrophobicity scale  8.61 

CEDJ970105 Composition of  amino acids in nuclear proteins (per-

cent) 

7.28 

ZIMJ680102 Bulkiness  7.28 

CEDJ970103 Composition of  amino acids in membrane proteins 

(percent) 

5.96 

CHOC760103 Proportion of  residues 95% buried  5.30 

CEDJ970102 Composition of  amino acids in anchored proteins (per-

cent) 

5.30 

ROSM880102 Side chain hydropathy, corrected for solvation  4.64 

BROC820101 Retention coefficient in TFA  4.64 

FAUJ830101 Hydrophobic parameter pi  1.99 

NAKH920101 AA composition of  CYT of  single-spanning proteins  1.99 

ZHOH040102 The relative stability scale extracted from mutation ex-

periments  

1.99 

NAKH900101 AA composition of  total proteins  1.32 

QIAN880129 Weights for coil at the window position of  -4  1.32 
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UbiPred with other methods, the nonparametric method of  ROC curve is applied by 

using the decision value of  SVM as a tuning parameter. The area under the ROC 

curve (AUC) is calculated, as shown in Figure 4.7. UbiPred with AUC=0.85 performs 

well, compared with the SVM-based methods using all physicochemical properties 

(0.74), amino acid identity (0.70) and evolutionary information (0.71).  

The quantified effectiveness of  individual physicochemical properties on pre-

diction is useful to better characterize the ubiquitylation mechanism by physico-

chemical properties.  According to MED, the 31 informative properties are ranked 

and their descriptions are shown in Table 4.2. The ranked informative physicochem-

ical properties provide valuable information to biologists when further performing 

experimental verification.  

The problem of  sequence redundancy may result in overestimation of  predic-

tion performance. To address this issue, six thresholds of  sequence identity (90%, 

80%, …, 40%) were applied to construct six additional datasets from the dataset of  

w=21 by using CD-HIT [65]. The numbers of  positive and negative samples of  da-

tasets with various sequence identity thresholds are shown in Table 4.3. By using the 

strictest threshold 40%, there are only 36 redundant samples and the resulting dataset 

consists of  145 negative samples and 121 positive samples. By applying LOOCV to 

evaluate prediction accuracies on these datasets, good performance (>79%) was ob-

tained by using SVM with the mined 31 informative physicochemical properties and 

Table 4.3 The LOOCV performances of  the SVM with 31 informative physico-
chemical properties on datasets of  various sequence identity thresholds.  

Sequence identity 

threshold 
Accuracy(%) 

Number of positive 

samples 

Number of negative sam-

ples 

100% 84.44 151 151 

90% 82.71 145 150 

80% 81.72 141 149 

70% 80.63 136 148 

60% 81.23 131 146 

50% 80.80 130 146 

40% 79.70 121 145 
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SVM parameters (shown in Table 4.3). The results show the effectiveness of  the 

proposed UbiPred.  

4.5 Knowledge of  data mining 
Although the prediction accuracy of  SVM is rather high compared with the other 

classifiers evaluated, it is not easy for biologist to interpret the prediction rules. In 

order to acquire interpretable knowledge from experimental data, C5.0 was applied 

to construct a compact decision tree by using the 31 informative physicochemical 

properties selected by IPMA on the whole training dataset. Figure 4.8 shows a con-

structed decision tree by C5.0. By utilizing this decision tree to classify the whole 

training dataset, the accuracy is 72.5%. This decision tree can be directly converted 

into a set of  eight interpretable rules [64], consisting of  three and five if-then rules 

for ubiquitylation sites and non-ubiquitylation sites, respectively.  

To obtain rather simple rules for easy interpretation, five concise if-then rules 

obtained from C5.0 are shown in Table 4.4. The first rule with the highest confi-

dence value 0.96 can be interpreted as „given a peptide with a central residue lysine 

(w=21), if  the average reduced distance for side chain [66] (property MEIH800102)  

Table 4.4 Five concise if-then rules with confidence larger than 0.5 obtained by using 
C5.0 and 31 informative physicochemical properties. 

# Rule Confidence 
Ubiquitylation 

sites 
Covered 
samples 

Misclassified 
samples 

1 MEIH800102 <= 0.95381 0.96 N 23 0 

2 

HARY940101 > 135.2  
AND CORJ870101 > 
49.70762 

0.90 N 49 4 

3 CEDJ970105 > 6.805556 0.85 N 18 2 

4 
GEOR030108 <= 
0.931333 

0.75 N 10 2 

5 MEIH800102 > 0.95381 0.54 Y 279 128 
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is less than or equal to 0.95381, then the residue is a non-ubiquitylation site with a 

confidence value 0.96‟. This rule covers 23 sites in the training dataset and no site is 

misclassified by this rule.  

There is only one of  five classification rules for identifying ubiquitylation sites 

with a moderate confidence value 0.54. This rule means that if  the average reduced 

distance for side chain is larger than 0.95381, then the residue is an ubiquitylation site 

with a confidence value 0.54. This rule reveals that the ubiquitylation sites are not 

easily discriminated from non-ubiquitylation sites. Furthermore, the property 

MEIH800102 plays an important role in predicting ubiquitylation sites. Examining 

 

Figure 4.9 Histogram result of  UbiPred using prediction scores from evaluating 

3424 putative non-ubiquitylation sites in an independent dataset. The site with a 

score close to 1 has a high possibility to be an ubiquitylation site. 
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the MED value (28.48) of  MEIH800102 in Table 4.2, it is rather consistent that 

MEIH800102 is an informative property with a rank 3.  

The second rule means that if  the mean volume of  residues buried in protein 

interiors [67] (property HARY940101) is larger than 135.2 and the NNEIG index [68] 

(property CORJ870101) is larger than 49.70762, then the residue is a 

non-ubiquitylation site with a confidence value 0.90‟. This rule covers 49 samples in 

the training dataset and 4 of  them are misclassified by this rule. 

The third rule indicates that if  the composition of  amino acids in nuclear pro-

teins (percent) [69] is larger than 6.805556, then the residue is a non-ubiquitylation 

site with a confidence value 0.85‟. This rule covers 18 samples in the training dataset 

and 2 of  them are misclassified.  

 

Figure 4.10 The sequence logo of  the 23 peptides of  promising ubiquitylation 

sites with w=21. (a) Information content and (b) Frequency plot. 
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The fourth rule indicates that if  the linker propensity from helical (annotated by 

DSSP) dataset [70] is less than or equal to 0.931333, then the residue is a 

non-ubiquitylation site with a confidence value 0.75‟. This rule covers 10 samples in 

the training dataset and 2 of  them are misclassified.  

4.6 Screening promising ubiquitylation sites 

Recently, a new experimental method was proposed with 2.4-fold increase in the 

number of  identified ubiquitylation sites, compared with previous methods [48]. It 

implies that there may be still many undiscovered ubiquitylation sites. To identify 

promising ubiquitylation sites from putative non-ubiquitylation sites, a scoring me-

thod is designed by normalizing the range of  the decision values of  SVM obtained 

from the training dataset of  w=21 into the range [0, 1] of  prediction scores. Nor-

mally, the default threshold value 0 used by the SVM classifier for discriminating 

ubiquitylation sites from non-ubiquitylation sites is mapped to a prediction score 0.5. 

The site with a prediction score close to 1 has a high possibility to be an ubiquityla-

tion site. If  the high prediction score 0.85 instead of  0.5 was adopted when classify-

ing the peptides in the training dataset for all window sizes, there would be no false 

positive.  

The prediction system UbiPred is applied to score 3424 putative 

Table 4.5 List of  23 promising ubiquitylation sites identified from an independent 
dataset of  3424 putative non-ubiquitylation sites. 

Accession  
number 

Position Score 
Accession  
number 

Position Score 
Accession  
number 

Position Score 

P19358 114 0.99 P39976 323 0.90 P38080 809 0.87 

Q9Y6K9 35 0.96 P38261 147 0.89 P10592 54 0.87 

P25694 6 0.96 P25360 846 0.89 P38080 792 0.87 

P40087 325 0.95 P09936 195 0.88 P12866 129 0.86 

Q08412 232 0.93 P10591 54 0.88 Q05911 460 0.86 

P04629 609 0.91 Q06408 156 0.87 P40087 410 0.86 

P16603 165 0.91 P37303 283 0.87 P38075 10 0.86 

P31539 626 0.91 P32467 38 0.87    
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non-ubiquitylation sites in an independent dataset that are not included in the train-

ing dataset of  w=21, as shown in Figure 4.6. The screening result is shown in Figure 

4.9 using a histogram of  prediction scores. There are 1218 putative 

non-ubiquitylation sites with scores larger than 0.5. There are 23 peptides with scores 

larger than 0.85, which are the most promising ubiquitylation sites, listed in Table 4.5. 

The detailed information can be found in the website of  UbiPred. The sequence 

logo of  the 23 peptides shown in Figure 4.10 represents low information content 

similar to the sequence logo of  the 151 positive samples in training dataset.  

For further validating the 23 peptides as ubiquitylation sites, the five prediction 

rules obtained from C5.0 (shown in Table 4.3) were applied to the 23 peptides. Re-

sults show that all the 23 promising peptides are classified as ubiquitylation sites. For 

example, the average value of  property MEIH800102 for the 23 peptides is 1.001 

which is larger than the threshold of  0.95. This value is close to that (1.007) of  the 

151 positive samples in training dataset. Note that the smallest and largest index val-

ues of  MEIH800102 for 20 amino acids are 0.73 and 1.23, respectively. The predic-

tion system UbiPred can predict ubiquitylation sites with prediction scores to identify 

the most promising ubiquitylation sites for experimental verification or future re-

search. 

4.7 Follow-up works 
Two prediction methods were published after our work. The first method is UbPred 

[71]. UbPred is trained on two datasets. One of  the datasets is the same as our study, 

and the other dataset contains 141 new ubiquitination sites identified by using a 

combination of  liquid chromatography, mass spectrometry, and mutant yeast strains. 

In their assessment, the 141 new sites identified from short-lived proteins are used to 

independently test our UbiPred server. Note that although it is unfair to test our 

server using the 141 new sites because our training dataset does not focus on 

short-lived proteins, our prediction server can still identify ubiquitylation sites in 

short-lived protein with accuracy of  53%. The second method is based on neural 

network [72]. They use the same dataset and window size as ours and conclude only 

slightly better performance of  AUC=0.88, compared to our method of  AUC=0.85. 

The follow-up works show the importance of  this work. 

Furthermore, a published study used our prediction system UbiPred to predict 

ubiquitylation sites and found that 43% of  high-confidence lysine methylation sites 

were also predicted to be ubiquitination sites that is consistent with previous study 

[73]. Their analysis provides additional confidence in the usability of  UbiPred.  



 39 

4.8 Summary 
Ubiquitylation plays many important regulatory roles in the physiology of  eukaryotic 

cell. Nowadays, many experimental studies are working on identifying ubiquitylated 

proteins and their ubiquitylation sites. To accurately predict ubiquitylation sites by 

computational methods is helpful to save experimental efforts. In this study, an 

SVM-based method is presented to assess three kinds of  features, including amino 

acid identity, evolutionary information and physicochemical property, in predicting 

ubiquitylation sites. The ubiquitylation datasets extracted from the UbiProt database 

are established to evaluate the proposed methods. Results show that physicochemical 

property is the best kind of  features for the SVM-based prediction method. 

It is well recognized that irrelevant information will interfere with classifiers. 

This study proposes an algorithm IPMA for mining a small set of  informative phy-

sicochemical properties to advance the prediction performance. The 31 informative 

physicochemical properties improve the prediction accuracy from 72.19% to 84.44%, 

and their individual effectiveness is ranked for further understanding the ubiquityla-

tion mechanism. Finally, the system UbiPred for predicting ubiquitylation sites is de-

signed by using 31 informative physicochemical properties. The web server of  Ubi-

Pred has been implemented and is available at http://iclab.life.nctu.edu.tw/ubipred.
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Chapter 5  

Predicting immunogenicity of  

MHC binding peptides 

Both modeling of  antigen processing and presentation pathways and immunogenici-

ty prediction of  those MHC-binding peptides are essential to develop a comput-

er-aided vaccine design system that is one goal of  immunoinformatics. Numerous 

studies have dealt with modeling the immunogenic pathway but not the intractable 

problem of  immunogenicity prediction due to complex effects of  many intrinsic and 

extrinsic factors. Moderate affinity of  the MHC-peptide complex is essential to in-

duce immunogenicity, but the relationship between the affinity and peptide immu-

nogenicity is too weak to use for predicting immunogenicity.  

This study focuses on mining informative physicochemical properties from 

known experimental immunogenicity data to understand immunogenicity and predict 

immunogenicity of  MHC-binding peptides accurately. 

5.1 Motivations 
After the prediction of  peptides binding to cytotoxic T lymphocyte (CTL) and helper 

T lymphocyte (HTL), defining peptide immunogenicity is desirable to accurately pre-

dict immunogenicity of  epitopes (i.e. CTL and HTL responses) for the vaccine de-

sign. The peptide immunogenicity is influenced by many factors, including intrinsic 

physicochemical properties and extrinsic factors such as host immunoglobulin re-

pertoire [74, 75]. Several studies aimed to clarify the relationship between the peptide 

binding affinity to the MHC molecule and its immunogenicity [76, 77]. These studies 

Predicting immunogenicity of  

MHC binding peptides 
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revealed that moderate binding affinity of  peptide-MHC molecules is essential to 

induce immunogenicity, but the ability of  peptides to induce cytotoxic T lymphocyte 

and helper T lymphocyte responses does not strongly correlate with their affinity for 

the MHC molecule. In some extreme cases, a peptide with nearly-undetectable bind-

ing affinity of  MHC class II molecules can induce strong T-cell responses [78]. Fur-

thermore, peptide-flanking residues other then MHC anchor residues were identified 

as import factors for MHC class II-restricted T-cell responses [79, 80]. These studies 

show great importance of  modeling T-cell responses. 

Physicochemical properties of  amino acids were extensively and successfully 

used in sequence-based prediction methods [33-37]. Because of  the weak correlation 

between peptide immunogenicity and peptide-MHC binding affinity, mining infor-

mative physicochemical properties is a potentially good approach to designing a clas-

sifier for predicting immunogenicity. Because the number of  available physicochemi-

cal properties is as large as more than 500, the properties used in previous studies are 

usually selected according to domain knowledge [36] or the rank-based method [81]. 

Therefore, these methods cannot be effectively applied to the investigated intractable 

problems because of  limited knowledge or neglect of  correlated effects among mul-

tiple properties [33]. This study aims to design an accurate predictor by efficiently 

selecting a small set of  informative physicochemical properties considering the cor-

related effects. 

It is well recognized that feature selection and classifier design should be opti-

mized simultaneously to maximize prediction accuracy [82]. The SVM-based learning 

methods are shown effective for various prediction methods from protein sequences 

[12, 15]. However, internal detection of  relevant-feature correlation is not offered by 

conventional SVMs; meanwhile, appropriate setting of  their control parameters is 

often treated as another independent problem [40]. Let there be n candidates of  phy-

sicochemical properties of  amino acids. To maximize accuracy of  the investigated 

prediction problem by selecting a small number m out of  n properties while coope-

rating with SVM simultaneously, it is equivalent to solve the binary combinatorial op-

timization problem having a huge search space of  C(n, m)=n!/(m!(n-m)!)). To solve 

this problem, an informative physicochemical property mining algorithm (IPMA) 

capable of  simultaneous feature selection and classifier design (described in Chapter 

3) is proposed to mine informative physicochemical properties for predicting CTL 

and HTL responses. 
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5.2 The proposed prediction systems 
Two prediction systems named POPI and POPI-MHC2 were proposed to predict 

immunogenicity of  MHC class I and II binding peptides, respectively. High perfor-

mance of  POPI and POPI-MHC2 arises mainly from the inheritable bi-objective 

genetic algorithm which aims to automatically determine the best number m out of  

531 physicochemical properties, identify these m properties, and tune SVM parame-

ters simultaneously. The datasets of  PEPMHCI and PEPMHCII consisting of  428 

human MHC class I binding peptides and 226 human MHC class II binding peptides. 

All the peptides belongs to four classes of  immunogenicity and are extracted from 

MHCPEP, a database of  MHC-binding peptides [83]. Table 5.1 and Table 5.2 show 

the used datasets PEPMHCI and PEPMHCII of  peptides associated with human 

MHC class I and II molecules, respectively. By applying the proposed IPMA to the 

experimental datasets, two prediction systems of  POPI and POPI-MHC2 were con-

structed by using the selected informative physicochemical properties. 

The IPMA is performed to mine informative physicochemical properties using 

the whole datasets of  PEPMHCI and PEPMHCII. In this study, the parameters of  

IPMA are set as Npop=50, Pc=0.8, Pm=0.05, rstart=5 and rend=45. For each feature set 

with size r, IPMA selected a small set of  physicochemical properties and parameter 

values of  SVM. Figure 5.1 shows a potentially good result for PEPMHCI in terms 

of  averaged accuracy (AA) and the number of  used features obtained from a single 

run of  IPMA using 10-CV. The result reveals that the best number of  selected fea-

tures is m=23 where the SVM classifier with C=2 and γ=2 has the best averaged ac-

curacy AA=63.67% and overall accuracy OA=66.12%. 

Table 5.1 The dataset PEPMHCI and PEPMHCII of  peptides associated with 
human MHC class I and II molecules 

Immunogenicity class PEPMHCI PEPMHCII 

None 144 45 

Little 83 60 

Moderate 100 64 

High 101 57 

Total 428 226 
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To further evaluate the feature selection of  IPMA, a traditional rank-based me-

thod for evaluating performance of  a single feature is also implemented for compar-

ison. The rank-based method suffers from the incapability of  finding appropriate 

values of  C and γ to train SVM classifiers. In order to achieve high performance, two 

parameter settings of  SVM were tested. The first rank-based method named RankD 

using the default values of  SVM parameters that C=1 and γ=1/r. The best perfor-

mance of  RankD is AA=36.08% with 21 features. The second rank-based method 

named RankI using the same values of  C=2 and γ=2 obtained from IPMA. The best 

performance of  RankI is AA=48.87% with 18 features. Figure 5.1 shows the per-

formance of  RankI is better than that of  RankD, revealing that the parameter setting 

of  SVM parameters derived from IPMA is effective. 

Furthermore, the performance of  feature selection of  IPMA is much better 

than that of  the rank-based method. This result is well recognized that the feature 

 

Figure 5.1 Averaged accuracies (AAs) of  10-CV for IPMA, rank-based methods 

(RankD and RankI) and the alignment-based method (ALIGN) for MHC class I 

binding peptides. 
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selection by additionally considering the correlated effects among physicochemical 

properties can advance prediction performance. The results of  mining informative 

physicochemical properties for PEPMHCI2 is similar to PEPMHCI that shown in 

Figure5.2.  

5.3 POPI for predicting immunogenicity of  

Table 5.2 Performance comparisons of  ALIGN, PSI-BLAST and POPI using 
LOOCV on the whole dataset PEPMHCI. 

Immunogenicity 

class 

ALIGN PSI-BLAST POPI 

ACC (%) MCC ACC (%) MCC ACC (%) MCC 

None 69.44 0.61 82.14 0.59 83.33 0.63 

Little 39.76 0.32 45.59 0.40 50.60 0.44 

Moderate 39.00 0.22 34.67 0.12 55.00 0.47 

High 62.38 0.37 46.99 0.37 59.41 0.49 

OA 54.91 53.23 64.72 

AA 52.64 52.35 62.09 

 

 

Table 5.3 Performance comparisons between AFFIPRE and POPI. 

Immunogenicity  

class 

Number of   

peptides 

AFFIPRE POPI 

ACC (%) MCC ACC (%) MCC 

None and Little 87 35.63 0.17 80.46 0.39 

Moderate 31 32.26 0.01 25.81 0.23 

High 42 52.38 0.15 45.24 0.27 

OA  39.38 60.63 

AA  40.09 50.50 
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MHC class I binding peptides 
The immunogenicity of  a peptide is determined by measuring the concentration of  

peptides giving 50% of  maximum specific lysis by CTLs of  target cells displaying the 

peptide, and is given a descriptive value belonging to the four classes, None, Little, 

Moderate, High. POPI utilizing the 23 selected properties performs well with the 

accuracy of  64.72% using leave-one-out cross-validation (LOOCV). For comparison, 

sequence alignment-based and affinity-based methods were implemented to evaluate 

the LOOCV performances.  

Sequence alignment may be an efficient approach to predicting peptide immu-

nogenicity because similar sequences may have similar peptide immunogenicity. In 

order to compare the alignment-based prediction methods with POPI, two methods 

including global sequence alignment tool ALIGN [84] and advanced sequence com-

parison method PSI-BLAST that is capable of  detecting remote homologues [60] 

were applied to search for similar sequences. For each tested peptide, ALIGN and 

PSI-BLAST using three iterations were applied separately to search for its homolo-

gues. Results are shown in Table 5.2. 

In the past, affinity was considered as an important index to predict peptide 

immunogenicity. To evaluate the affinity-driven prediction method, an additional da-

taset was established by extracting MHC class I binding peptides with known activity 

levels in both fields of  „BINDING‟ and „IMMUNOGENICITY‟ from the 

MHCPEP database. However, there are four levels in the field of  „IMMUNOGE-

NICITY‟, but the field of  „BINDING‟ has only three levels without the level „none‟. 

To fairly evaluate the prediction performance of  the affinity-driven prediction, the 

immunogenic class None was combined with the class Little. The dataset contains 

160 peptides belonging to three classes.  

To evaluate the affinity-driven prediction method, a prediction system named 

AFFIPRE to predict peptide immunogenicity was implemented using the following 

criterion. If  the immunogenic level and the affinity level of  a peptide are identical, 

this test is regarded as a successful prediction. Otherwise, this prediction is fail. The 

four measurements were used to evaluate AFFIPRE, which are the same with those 

for IPMA. 

The results shown in Table 5.3 reveal that POPI performs well, compared with 

two sequence alignment-based prediction methods ALIGN (54.91%) and 

PSI-BLAST (53.23%). The poor performance of  AFFIPRE reveals that the affinity 

only can not be directly used to predict peptide immunogenicity and this result is 

consistent with previous studies that the affinity of  peptide-MHC molecules is not 



 46 

the main factor for predicting peptide immunogenicity [76, 77]. 

 

In contrast to the existing affinity-based methods of  predicting immunogenicity 

by way of  predicting MHC-binding peptides, POPI is the first computational system 

based on physicochemical properties to predict peptide immunogenicity using epi-

topes associated with human MHC class I molecules, which has been implemented as 

a web server (http://iclab.life.nctu.edu.tw/POPI). Up to date, there are >18,690 vis-

 

Table 5.4 Performance comparisons of  ALIGN, PSI-BLAST and POPI-MHC2. 

Immunogenicity 
ALIGN PSI-BLAST POPI-MHC2 

ACC (%) MCC ACC (%) MCC ACC (%) MCC 

None 68.89 0.74 66.67 0.69 86.67 0.81 

Little 46.67 0.34 23.21 0.29 68.33 0.54 

Moderate 50.00 0.22 75.86 0.22 57.81 0.53 

High 71.93 0.56 38.00 0.31 85.96 0.73 

OA 58.41  49.75  73.45  

AA 59.37  50.94  74.69  

 

 

Table 5.5 Performance comparison between AFFIPRE and POPI-MHC2. 

Immunogenicity 

class 
Peptides 

AFFIPRE POPI-MHC2 

ACC (%) MCC ACC (%) MCC 

None and Little 21 23.81 0.30 42.86 0.49 

Moderate 6 33.33 -0.08 0.00 -0.07 

High 42 50.00 0.16 92.86 0.41 

OA 40.58  69.57  

AA 35.71  45.24  

 

 

http://iclab.life.nctu.edu.tw/POPI
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its from >20 countries, and >20,000 sequences were analyzed.  

5.4 POPI-MHC2 for predicting immunogenic-

ity of  MHC class II binding peptides 
The 21 informative physicochemical properties and SVM parameters selected by 

IBCGA are applied to construct POPI-MHC2, an SVM-based prediction system for 

immunogenicity of  MHC class II binding peptides. The web server has also been 

implemented and is available at http://iclab.life.nctu.edu.tw/POPI. POPI-MHC2 

performs well with accuracy of  73.45% using leave-one-out cross-validation, com-

pared with two alignment-based methods ALIGN (58%) and PSI-BLAST (<49.75%) 

shown in Table 5.4.  

For comparing with affinity-based prediction, another dataset consisting of  69 

peptides with annotated binding and immunogenicity level was constructed. PO-

 

Figure 5.2 Averaged accuracies (AAs) of  10-CV for IPMA, rank-based methods 

(RankD and RankI) and the alignment-based method (ALIGN) for MHC class II 

binding peptides. 
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PI-MHC2 (69.57%) performs better than the affinity-based method (40.5%) shown 

in Table 5.5.The poor performance of  AFFIRE (OA=40.58 and AA=35.71%) im-

plies that affinity is not the deterministic factor for peptide immunogenicity of  MHC 

class II binding peptide. Instead, physicochemical properties might play more im-

portant roles for determining the immunogenicity. 

Users can use POPI-MHC2 by entering either a sequence or a file of  sequences 

of  MHC binding peptides. The predicted immunogenicity levels will be shown in the 

web page. POPI-MHC2 is publicly available at http://iclab.life.nctu.edu.tw/POPI 

5.5 Analysis of  informative physicochemical 

properties 
After identification of  informative physicochemical properties, it is desired to analyze 

and interpret the obtained knowledge. Revealing individual effects of  identified phy-

sicochemical properties on immunogenicity of  MHC class II-restricted peptides is 

important for immunologist to further investigate immunogenic problems. Factor 

analysis of  the orthogonal experimental design used in IPMA can efficiently estimate 

effects of  an individual feature by evaluating its main effect difference (MED). The 

property with the largest MED value is the most effective property.  

Because IPMA is a non-deterministic algorithm and SVM parameter values will 

slightly affect prediction accuracy, the identified feature sets with the highest accuracy 

obtained from multiple independent runs would be not the same. In order to obtain 

a robust feature set, 60 independent runs of  IPMA were performed for identifying 

informative physicochemical properties. The largest, mean and smallest numbers m 

of  selected features are 45, 28.63 and 12, respectively. The highest, mean and lowest 

AA accuracies in the training phase are 76.84%, 73.64% and 69.68%, respectively. 

The statistic result reveals that a small set of  effective properties is more stable in 

each run of  IPMA. 

Table 5.6 and Table 5.7 show the typical feature sets with MED values consi-

dering both training accuracy and selection frequency for MHC class I and II binding 

peptide, respectively. For CTL immune response, the property of  AAindex identity 

GEIM800103 is the most effective property with MED=33.29, which corresponds 

to „Alpha-helix indices for beta-proteins‟ [85]. The least effective property is 

MIYS850101 with MED=0.80 which corresponds to „Effective partition energy‟ [86]. 

For HTL immune response, the AAindex identity KUHL950101 is the most effective 

property (denoting „Hydrophilicity scale‟) with MED=46.06 [87]. The AAindex  
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Table 5.6 Individual effects of  identified properties for CTL responses in terms 
of  main effect difference (MED). 

ID of  AAindex Description MED Class 

GEIM800103 Alpha-helix indices for beta-proteins  33.29  S 

OOBM770104 Average non-bonded energy per residue  31.97  O 

PALJ810115 Normalized frequency of  turn in alpha+beta class  24.91  S 

QIAN880132 Weights for coil at the window position of  -1  23.90  S 

OOBM850102 Optimized propensity to form reverse turn  17.09  S 

NADH010106 Hydropathy scale based on self-information values in 

the two-state model (36% accessibility)  

14.79  H 

RADA880106 Accessible surface area  11.64  V 

QIAN880112 Weights for alpha-helix at the window position of  5 10.71  S 

WEBA780101 RF value in high salt chromatography 10.65  O 

QIAN880125 Weights for beta-sheet at the window position of  5 10.63  S 

JOND750101 Hydrophobicity 9.27  H 

QIAN880124 Weights for beta-sheet at the window position of  4 9.06  S 

MUNV940101 Free energy in alpha-helical conformation 7.44  S 

HUTJ700102 Absolute entropy  6.62  V 

MITS020101 Amphiphilicity index 5.10  H 

KARP850103 Flexibility parameter for two rigid neighbors  4.63  O 

FAUJ880113 pK-a(RCOOH)  4.37  S 

ISOY800106 Normalized relative frequency of  helix end  4.31  S 

RACS820113 Value of  theta(i)  3.25  S 

GEOR030105 Linker propensity from small dataset (linker length is 

less than six residues) 

3.05  S 

QIAN880114 Weights for beta-sheet at the window position of  -6 2.99  S 

DIGM050101 Hydrostatic pressure asymmetry index, PAI  1.60  O 

MIYS850101 Effective partition energy  0.80  H 

H: hydrophobicity; S: structure; V: volume; O: others 
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Table 5.7 Individual effects of  identified properties for HTL responses in terms 
of  main effect difference (MED). 

ID of  AAindex Description MED Class 

KUHL950101 Hydrophilicity scale 46.06  H 

WERD780103 Free energy change of  alpha(Ri) to alpha(Rh) 37.10  O 

KHAG800101 The Kerr-constant increments  32.78  O 

VHEG790101 Transfer free energy to lipophilic phase  31.92  H 

BIOV880102 Information value for accessibility; average fraction 

23%  

31.20  H 

ENGD860101 Hydrophobicity index  27.79  H 

WOLR810101 Hydration potential  26.18  H 

JOND750102 pK (-COOH)  25.03  H 

GEIM800109 Aperiodic indices for alpha-proteins 23.66  O 

AURR980103 Normalized positional residue frequency at helix 

termini N" 

22.46  S 

ROBB760111 Information measure for C-terminal turn  16.96  S 

YUTK870104 Activation Gibbs energy of  unfolding, pH9.0  15.93  O 

PALJ810113 Normalized frequency of  turn in all-alpha class 15.36  S 

RACS820114 Value of  theta(i-1)  14.21  S 

MAXF760104 Normalized frequency of  left-handed alpha-helix  12.83  S 

KUMS000103 Distribution of  amino acid residues in the al-

pha-helices in thermophilic proteins  

11.13  S 

CHOC750101 Average volume of  buried residue  9.12  V 

RICJ880106 Relative preference value at N3  8.75  H 

FASG760105 pK-C  7.95  H 

ISOY800108 Normalized relative frequency of  coil  5.27  S 

DESM900102 Average membrane preference: AMP07  4.11  H 

H: hydrophobicity; S: structure; V: volume; O: others 
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identity DESM900102 with the smallest MED value of  4.11 denoting „Average 

membrane preference: AMP07‟ [88]. 

5.6 Comparison of  physicochemical properties 

responsible for CTL and HTL responses 
It is interesting to know similarity and difference between the two property sets re-

sponsible for HTL and CTL responses. To analyze compositions of  informative 

physicochemical properties, physicochemical properties of  each set are categorized 

into four classes, hydrophobicity, structure, volume and others. Properties with ob-

vious annotation of  hydrophobicity-, secondary structure- and volume-related words 

can be easily categorized first. For each of  uncategorized properties, its correlation 

coefficients (CCs) to the categorized properties are measured. The same class of  the 

categorized property is assigned to the uncategorized property with the CC value 

larger than or equal to 0.85.  

Figure 5.3 shows pie-chart representations of  the property compositions in 

terms of  the four classes for CTL and HTL responses. As expected, hydrophobici-

ty-related properties play an important role in both HTL (43%) and CTL (17%) im-

mune responses in immunogenicity that is consistent with our knowledge that hy-

drophobicity is important for biomolecular recognition [88, 89]. Recent studies [90, 

91] have reported importance of  antigen structures in influencing T-cell dominance. 

It is also consistent that structure propensity-related properties has a large propor-

tion for both HTL (33%) and CTL (57%) immune responses (Figure 5.3).  

The situation is similar that all the hydrophobicity- and structure-related prop-

erties take a large proportion (close to 75%) among all properties. The major differ-

ence is that the categorized properties with the largest proportion for HTL (43%) 

and CTL (57%) responses are the hydrophobicity and structure classes, respectively. 

In other words, hydrophobicity-related properties are more important for HTL res-

ponses, compared with CTL responses. In contrast, structure-related properties are 

more important for CTL than HTL responses.  

The great importance of  structure- and hydrophobicity-related properties for 

CTL and HTL responses, respectively, can also be observed by the MED-based 

analysis for ranking individual effects of  informative physicochemical properties. For 

CTL responses, the most effective property of  AAindex identity GEIM800103 with 

MED=33.29 is „Alpha-helix indices for beta-proteins‟ [85] (Table 5.6). In contrast, 

the property of  AAindex identity KUHL950101 denoting „Hydrophilicity scale‟ [87] 
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is the most effective property with MED=46.06 for HTL responses (Table 5.7).  

From the perspective of  similarity, the CTL response-related property of  

AAindex identity MIYS850101 denoting „Effective partition energy‟ highly correlate 

with two HTL response-related properties of  AAindex identities BIOV880102 and 

DESM900102 denoting „Information value for accessibility; average fraction 23%‟ 

and „Average membrane preference: AMP07‟ with CC values of  0.93 and 0.83, re-

spectively. All three properties are hydrophobicity-related properties. Both vo-

lume-related properties of  AAindex identities RADA880106 and HUTJ700102 de-

noting „Accessible surface area‟ and „Absolute entropy‟, respectively, for CTL res-

ponses highly correlate with volume-related property of  AAindex identity 

CHOC750101 denoting „Average volume of  buried residue‟ for HTL responses 

(CC=0.87 and 0.80, respectively). Structure-related properties of  RACS820114 and 

MUNV940101 for HTL and CTL responses denoting „Value of  theta(i-1)‟ and „Free 

energy in alpha-helical conformation‟ also show high correlation with CC=0.83. Al-

together, informative physicochemical properties for CTL and HTL responses share 

a few similar properties of  all three major classes except for the class, others.  

 

Figure 5.3 Pie-chart representations of  compositions of  categorized physico-

chemical properties of  peptides responsible for CTL and HTL responses.  
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5.7 Peptides capable of  inducing both CTL 

and HTL responses 
An epitope capable of  inducing both CTL and HTL responses is considered as a 

good candidate for peptide-based vaccine designs [92, 93]. An interesting question is 

whether peptides capable of  inducing one kind of  HTL and CTL responses neces-

sarily induce the other kind of  responses. The POPI 2.0 prediction system is used to 

reveal an answer to the question. For all peptides annotated with known categorized 

immunogenicity „High‟ for one kind of  HTL and CTL responses, its ability to induce 

the other kind of  CTL and HTL responses is predicted by using the POPI 2.0 server. 

All the test peptides are obtained from the PEPMHCII and PEPMHCI datasets. 

Table 5.8 shows results that 69% and 37% of  peptides inducing CTL and HTL res-

ponses were predicted as no inducing capability for HTL and CTL responses, respec-

tively. Only 21% of  peptides with high immunogenicity for HTL responses can in-

duce high immunogenicity of  CTL responses. There is no peptide with high CTL 

responses can induce high immunogenicity of  HTL responses. Results reveal that 

there exists no obvious necessary conduction between peptides inducing the two 

kinds of  responses. It is consistent to the general observation that only a small pro-

portion of  peptides inducing both HTL and CTL responses [78]. This result pro-

vides a good reason to build a prediction system to quickly select peptide candidates 

inducing both CTL and HTL responses. 

5.8 Independent test performance of  PO-

PI-MHC2 
For testing the informative physicochemical properties mined from PEPMHCII da-

taset, we extracted an additional independent test dataset IEDB1500 from IEDB da-

tabase [94] which is a largest collection of  immune epitopes. The IEDB1500 consists 

of  all T-cell response data using proliferation assays, human host, and naturally 

processed peptides restricted by HLA class II molecules. Peptides of  human protein 

source are removed because this study attempts to model normal immune systems 

instead of  host with autoimmune disease. Note that the T cell response data is qua-

litative. A peptide is annotated as either immunogenic or non-immunogenic. After 

removing duplicate and inconsistence records, the numbers of  immunogenic and 

non-immunogenic peptides of  IEDB1500 are 1301 and 199, respectively. 

All peptides in IEDB1500 were encoded using the 21 informative physico-
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chemical properties. Due to the huge difference of  immunogenic levels and dataset 

sizes between datasets PEPMHCII and IEDB1500, it is hard and not fair to directly 

test PEPMHCII-derived model on IEDB1500. To evaluate the prediction perfor-

mance of  the 21 informative physicochemical properties, jackknife test is applied to 

predict peptides in IEDB1500 with default SVM parameters of  C=1 and =1/21. 

The area under ROC (receiver operating characteristic) curve (AUC) is a robust and 

nonparametric performance measurement for binary-class problems and is widely 

used for comparison of  prediction methods. Finally, a reasonable high performance 

of  POPI-MHC2 with AUC=0.67 using jackknife test is obtained with a highly unba-

lanced dataset which is different from PEPMHCII. 

The previous section 5.4 already showed the poor performance of  affini-

ty-based method AFFIPRE on PEPMHCII. However, an additional performance 

comparison between POPI-MHC2 and affinity-based methods on IEDB1500 is de-

sirable to show the robustness of  POPI-MHC2. Due to the lack of  annotated MHC 

binding affinities for peptides in IEDB1500, two state-of-the-art methods of  ARB 

method [95] in IEDB analysis resource [96] and NetMHCIIpan [97] are applied to 

predict binding affinity of  a peptide-MHC complex. The ARB method is based on 

an average relative binding matrix and can directly predict IC50 values. The matrix is 

trained on a large number of  quantitative peptide binding data of  IEDB and regu-

larly updated with new data. Also, it is benchmarked as one of  the best methods for 

binding affinity prediction [96, 98]. The NetMHCIIpan based on neural networks 

allows pan-specific predictions of  peptide binding affinity to many HLA-DR mole-

cules and is ranked as best individual predictor [99]. Therefore, comparing PO-

PI-MHC2 with ARB can provide meaningful results. 

Because most peptides are not annotated with complete supertype and subtype 

information of  restricted MHC alleles, the ARB and NetMHCIIpan methods are not 

Table 5.8 Predicted levels of  peptides to induce both CTL and HTL responses. 

Predicted level High Moderate Little None Total 

Peptides with high-level CTL re-

sponse  
0 17 14 70 101 

Peptides with high-level HTL re-

sponse 
12 16 8 21 57 
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able to predict their binding affinity. Therefor, two datasets of  TEST163 and TEST 

320 consisting of  only 163 and 320 peptides restricted by ARB and NetMHCIIpan 

support alleles were isolated from the IEDB1500 dataset, respectively. For each pep-

tide in TEST163, its corresponding binding affinity was predicted by ARB. The 

scores for calculating ROC curve are minus predicted IC50 values because a large 

IC50 value means a weak binder. The binding score predicted by NetMHCIIpan 

represents the binding strength of  each peptide in TEST320 and is used to calculate 

ROC curve. For POPI-MHC2, jackknife test using the 21 informative physicochem-

ical properties and default SVM parameters is again used to evaluate the prediction 

performance on TEST163.  

Due to the small number of  peptides in TEST163 and TEST320, PO-

PI-MHCII performs slightly worse. However, POPI-MHCII with AUC=0.60 is still 

much better than the affinity prediction method ARB with AUC=0.34 for TEST163. 

The NetMHCIIpan method with AUC=0.43 is worse than POPI-MHCII with 

AUC=0.59 for TEST320. The poor performances of  affinity prediction methods are 

reasonable because they do not intend to directly predict T-cell responses. The results 

confirm the idea that the binding affinity alone is not sufficient for predicting T-cell 

responses. 

5.9 Follow-up works 
A recently published study utilize our POPI prediction server to analyze their the 

secretome of  Candida albicans [100]. The Candida albicans is a pathogenic fungus and 

secrets a large number of  proteins. To select candidates for vaccine developments, 

they applied mass spectrometry to identify secretory proteins and applied our POPI 

server to predict peptide immunogenicity. Finally, 29 highly immunogenic peptides 

originating from 18 proteins were identified as candidates for vaccine development.  

A work done in University of  Tübingen, Germany tried to improve our work by 

constructing a larger datasets and transforming the usage of  averaged values of  in-

formative physicochemical properties to consider the position effects [101]. 

5.10 Summary 
The effectiveness of  vaccination depends on peptide immunogenicity in designing 

peptide-based vaccines. Accurate prediction of  peptide immunogenicity will decrease 

many experimental efforts. This study investigates the prediction problem of  peptide 

immunogenicity and proposes two efficient prediction systems POPI and PO-
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PI-MHC2 to predict immunogenicity of  peptides with variable lengths. POPI and 

POPI-MHC2 are SVM-based classifiers with a set of  informative features selected by 

the proposed informative physicochemical property mining algorithm (IPMA). 

In this study, two datasets PEPMHCI and PEPMHCI2 of  peptides associated 

with human MHC class I and II molecules extracted from MHCPEP was established, 

respectively. Considering the correlated effects among physicochemical properties 

and the cooperation with the SVM classifier, both feature selection and parameter 

tuning are simultaneously optimized using IPMA. A feature set consisting of  23 and 

21 physicochemical properties was selected to implement the prediction system PO-

PI and POPI-MHC2. 

To our knowledge POPI and POPI-MHC2 is the first computational system for 

prediction of  peptide immunogenicity based on physicochemical properties. The 

feature selection method was compared with a rank-based selection method and the 

selected properties were analyzed using the factor analysis of  orthogonal experimen-

tal design. Simulation results show that IPMA can select a small set of  informative 

properties considering the correlated effects, compared with the rank-based method. 

Three prediction methods were tested for comparison, namely the align-

ment-based methods ALIGN and PSI-BLAST, and the affinity-driven prediction 

method AFFIPRE. Because the reference dataset is not sufficiently large, ALIGN 

and PSI-BLST cannot work well. This poor performance of  AFFIPRE shows that 

affinity is not suitable to predict peptide immunogenicity directly. This result is con-

sistent with previous studies that the peptide immunogenicity does not strongly cor-

relate with its affinity for the MHC molecule [76, 77]. 

To cope with the small size of  the training dataset in mining informative physi-

cochemical properties, the proposed method can provide each selected property with 

the effectiveness according to its main effect difference in discriminating immuno-

genic levels and the robustness in terms of  selection frequency. The valuable infor-

mation is helpful in determining a best set of  features to implement an accurate pre-

diction system, as well as to further understand immunogenicity from the informa-

tive physicochemical properties. 
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Chapter 6  

Identification of  T-cell recep-

tor recognition sites 

 

Compared to the knowledge of  anchor positions of  peptides for MHC binding, pre-

vious studies for identifying T-cell receptor (TCR) recognition positions were based 

on small-scale analyses using only a few peptides and concluded different recognition 

positions. Large-scale analyses are necessary to better characterize and predict a pep-

tide‟s T-cell reactivity (and thus immunogenicity). The identification and characteriza-

tion of  important positions influencing T-cell reactivity will provide insights into the 

underlying mechanism of  immunogenicity. In Chapter 5, the POPI prediction sys-

tems are proposed to predict peptide immunogenicity with reasonably high accuracy. 

However, the effect of  MHC alleles on immunogenicity was not considered. Also, it 

is hard to identify T-cell receptor recognition sites because of  the used averaged fea-

tures. In this chapter, a weighted degree string kernel is proposed to identify T-cell 

receptor recognition sites and improve prediction performances by considering the 

effects of  positions and MHC alleles. 

6.1 Motivation 
The first predictor for T-cell reactivity published is POPI [59] (Chapter 5). POPI is a 

support vector machine (SVM)-based method trained on 23 informative physico-

chemical properties of  MHC class I binding peptides. While POPI performs rea-

sonably well, it uses averaged physicochemical properties to represent peptides inde-
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pendent of  their length. It thus does not allow for identifying relevant positions of  

the peptide for T-cell reactivity. The method thus cannot yield structural insights into 

T-cell reactivity. 

In previous studies on the formation of  the TCR-peptide-MHC complex, crys-

tal structures have been analyzed [102-104] to correlate structural features of  the 

TCR with immunogenicity and to identify TCR recognition positions. However, due 

to the low number of  available crystal structures of  the ternary complex, these are 

just case studies, with limited potential for generalization. For example, two studies 

found different important positions of  HLA-A2 binding peptides for TCR recogni-

tion (position 8 [104]; positions 4 and 6 [102]). As an alternative approach to T-cell 

reactivity, experiments with substitutions and cytotoxicity assays have been per-

formed for HLA-B27 [105]. However, so far results are based on only a few peptides. 

Large-scale analyses are thus desirable to better characterize the important positions 

of  MHC binding peptides for immunogenicity.  

In this work, a systematic statistical approach is proposed for the prediction of  

T-cell reactivity. This study presents a more advanced machine learning study consi-

dering the effects of  MHC restriction on immunogenicity. In order to better charac-

terize the immunogenicity induced by MHC class I binding peptides, we employ 

support vector machines (SVMs) using string kernels (SK) that have been successful-

ly applied in many classification tasks [106-110]. This method was applied (1) to pre-

dict peptide immunogenicity and (2) to identify important positions of  MHC binding 

peptides for immunogenicity. The present study is based on a large dataset IMMA2, 

which contains data from databases of  MHCPEP [83], SYFPEITHI [111, 112] and 

IEDB [94]. 

The prediction system POPISK for predicting peptide immunogenicity of  

HLA-A2 binding peptides was built on this machine learning approach. POPISK 

performs well achieving an overall performance of  0.68 for accuracy (ACC) and 0.74 

for area under the receiver operating characteristic curve (AUC). This is significantly 

better than POPI on the same dataset (0.60 for ACC and 0.64 for AUC) IMMA2. In 

an analysis of  seven HLA-A2-binding peptides with known crystal structures, PO-

PISK accurately predicts the immunogenicity for the majority of  peptides and suc-

cessfully predicted the immunogenicity change of  single residue modifications re-

ported in previous studies [113, 114]. We also analyzed the importance of  amino acid 

positions of  the peptides by selecting positions whose deletion significantly decrease 

prediction performance. This technique shows that six positions (1, 4, 5, 6, 8 and 9) 

of  HLA-A2 binding peptides are the most important for T-cell reactivity and thus 
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immunogenicity. Three of  these positions were reported in previous studies (position 

8 [104]; positions 4 and 6 [102]). As a confirmation, graphical analyses using two 

sample logos [115] identified nearly identical important positions 4, 6, 8 and 9.  

6.2 Datasets 
We first extracted peptide binders of  length 9 with associated human MHC class I 

alleles and the corresponding immunogenicity data from MHCPEP [83], SYFPEI-

THI [111, 112] and IEDB [94]. For the MHCPEP database, the peptide sequences 

and their associated MHC alleles, binding and immunogenicity data are extracted 

from the fields of  „SEQUENCE‟, „MHC MOLECULE‟, „BINDING‟ and „ACTIV-

ITY‟, respectively. The „BINDING‟ field annotates a peptide as either a binder or a 

non-binder. The peptide immunogenicity in MHCPEP is defined by its PD50 value, 

which is the peptide concentration giving 50% maximal specific lysis by cytotoxic 

T-cells of  target cells displaying the MHC-peptide complex. According to MHCPEP, 

 

Figure 6.1 Comparison of  nested 10-CV performances of  POPISK and PO-

PI-modified and POPI-IPMA. 
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a peptide with PD50 value (obtained from the field „ACTIVITY‟) larger than 10 μM is 

considered a non-immunogenic peptide, all others are considered immunogenic. For 

the SYFPEITHI database, the data of  binders and immunogenic peptides associated 

with various MHC alleles is extracted from the field „Natural ligands‟ and „T-Cell 

epitopes‟, respectively. For the IEDB database, the peptide sequences and their asso-

ciated MHC alleles, qualitative binding and qualitative immunogenicity data are ex-

tracted from the fields of  „Epitope‟, „MHC Restriction‟, „MHC binding‟, „T cell re-

sponse‟, respectively.  

Only peptides with positive binding annotation were selected for analyses. 

These peptide sequences were grouped into allele-specific datasets according to their 

associated HLA supertypes [116]. In order to utilize all available data for analyses, 

peptides with contradictory annotations (immunogenic and non-immunogenic) were 

regarded as immunogenic peptides. After removing duplicate entries, the dataset of  

allele HLA-A2 (named IMMA2) consists of  558 immunogenic and 527 

non-immunogenic peptides. The IMMA2 dataset is available at 

http://iclab.life.nctu.edu.tw/POPISK/download.php. This study focuses on 

HLA-A2 because it is one of  the best known allele. It is easy to compare results ob-

tained from this study and previous knowledge. Also, due to the small number of  

peptides associated with the other alleles, it is hard to create robust models for the 

other alleles. 

6.3 Weighted degree string kernel 
An effective weighted degree string kernel [109, 117] counting the numbers of  

matched subsequences of  length p at corresponding positions of  two sequences is 

applied to transform samples to high-dimensional space to make linear separation 

easier. Given two sequences si and sj of  equal length L and degree d, the weighted 

degree string kernel computes the total numbers of  matched subsequences of  length 

p  {1, …, d} at corresponding positions l of  two sequences, defined as follows: 

1
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where I(h)=1 if  h is true; otherwise, I(h)=0, up,l(s) is the subsequence of  length p 

starting from position l of  peptide sequence s, and βp are weighted coefficients. In 

this study, sequence length L is 9. The fixed values of  βp=2(d-p+1)/(d(d+1)) are 

adopted as used in previous study [109]. Shogun [118] release 0.6.7 was used and 
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LIBSVM [40] was chosen for the implementation of  the predictor. 

6.4 Prediction of  peptide immunogenicity 
To accurately predict immunogenicity of  HLA-A2 binding peptides, it is necessary to 

tune two parameters (cost parameter C of  the SVM and degree d of  the weighted 

degree kernel) to build an accurate SVM classifier. In this study, a nested 10-fold 

cross-validation (10-CV) procedure was adopted to evaluate the prediction perfor-

mance of  our string kernel-based SVM classifier as it provides an almost unbiased 

estimate of  the prediction error [119].  

The nested 10-CV consists of  two cross-validation loops: an inner loop for 

tuning SVM parameters and an outer loop for evaluating the prediction performance 

of  tuned SVM classifiers. First, the IMMA2 dataset was randomly divided into ten 

subsets of  approximately equal size. For each iteration m (outer loop), the m-th sub-

set is left out for testing the tuned SVM classifier trained by using the selected op-

timal parameters giving highest AUC performance using 10-CV on the remaining 

dataset (inner loop). The grid search method is applied to tune the parameters 

C{2-4, 2-3, …, 24} and d {1, 2, …, 9}.  

To obtain a robust statistical estimation of  prediction performances, a total of  

20 runs of  nested 10-CV procedure were applied to calculate the mean values of  

performance measurements as final prediction performances. The best values of  C 

and d having the highest AUC value on the inner 10-CV loop are always 1 and 9, re-

spectively. The mean prediction performances and corresponding standard deviation 

(SD) values of  nested 10-CV on the IMMA2 dataset are 0.68 and 0.007 for ACC, 

0.74 and 0.004 for AUC and 0.37 and 0.013 for MCC, respectively (Figure 6.1). All 

nine string kernels and five complex string kernels provided by Shogun were eva-

luated. Most of  them perform similarly to or slightly worse than the weighted degree 

string kernel. Except for cost parameters C and degree parameter d, the 

above-mentioned results were obtained by using default values of  parameters. All 

kernels might thus perform better by carefully tuning the respective parameters. 

6.5 Comparison to POPI 
POPI is an SVM-based method using radial basis function kernel and 23 informative 

physicochemical properties mined by using an inheritable bi-objective genetic algo-

rithm. It is not fair to directly compare the results of  POPISK with POPI because 

POPI is a four-class prediction method that predicts a peptide as highly, medium, 
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little and not immunogenic. Furthermore, POPI is based on a smaller dataset. In or-

der to perform a comparison, a modified POPI method (POPI-modified) was con-

structed using the same dataset IMMA2 and the 23 informative physicochemical 

properties for binary prediction problem of  immunogenic and non-immunogenic 

peptides. 

The evaluation procedures of  POPI-modified are described as follows. First, 

the 23 informative physicochemical properties were used to encode peptides of  

IMMA2 dataset. Subsequently, 20 runs of  nested 10-CV were applied as follows. The 

grid search method was applied to tune the cost parameter C{2-4, 2-3, …, 24} and 

the kernel parameter γ{2-4, 2-3, …, 24} in the inner 10-CV loop. The SVM classifiers 

trained by using the selected parameters giving highest AUC performance in inner 

10-CV loop are used to evaluate the prediction performances in the outer 10-CV 

loop. 

Due to the difference of  datasets and assays for measuring immunogenicity 

between the original POPI method and POPISK, another comparison using IPMA 

method to reselect informative physicochemical properties can provide better in-

sights into the advantage of  used string kernel method POPISK. However, due to 

 

Figure 6.2 The decrease in MCC performances evaluated on datasets without 

using residues in specific positions. 
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the time-consuming nature of  genetic algorithm, it is difficult to do 200 runs of  

IPMA. Considering the balance of  preliminary results for comparisons and experi-

ment efforts, 20 runs of  IPMA is applied to give a rough performance for compari-

son with POPISK. The evaluation procedures of  POPI-IPMA are similar with PO-

PI-modified. The only difference is that POPI-IPMA reselect informative physico-

chemical according to the validation performance instead of  using 23 informative 

physicochemical properties selected by previous POPI method 

The comparison of  nested 10-CV performances of  POPISK, POPI-modified 

and POPI-IPMA is shown in Figure 6.1. Obviously, POPISK dominates PO-

PI-modified with 10% improvements of  ACC and AUC. Although the performance 

of  POPISK is 2-5% better than POPI-IPMA, note that the POPI-IPMA utilize av-

erage feature could be further improved by changing the position-independent fea-

ture to consider the position effects of  physicochemical properties. The nested 

10-CV performances and corresponding SD values of  POPI-modified are 0.60 and 

0.009 for ACC, 0.64 and 0.009 for AUC and 0.19 and 0.018 for MCC, respectively. 

The nested 10-CV performances and corresponding SD values of  POPI-IPMA are 

0.65 and 0.017 for ACC, 0.68 and 0.147 for AUC and 0.30 and 0.033 for MCC, re-

spectively. By collecting more data, POPISK is expected to perform better and can 

be applied to analyze immunogenicity of  peptides associated with other MHC alleles. 

6.6 Identification of  important positions for 

immunogenicity 
Compared to well-known MHC binding motifs, T-cell recognition positions of  MHC 

binding peptides are still not fully understood. Some studies have aimed to identify 

the T-cell recognition positions. However, these studies were based on only a few 

crystal structures and identified different recognition positions [102-104]. The com-

putational identification of  important positions for immunogenicity will shed light 

on the mechanism of  T-cell recognition and accelerate the development of  pep-

tide-based vaccines. To assess the individual contributions of  each position of  

MHC-binding peptides to the prediction performance, we proposed an efficient me-

thod to estimate the importance of  positions that is described as follows.  

The proposed method uses the decrease in prediction performance resulted 

from removing the sequence information on a specific position within the peptide to 

designate the importance for each position. The larger the decrease in performance, 

the greater the importance of  the position is. The change in prediction performance 



 64 

is evaluated as follows. First, nine additional datasets for nine positions were created 

by removing residues in the corresponding positions from the IMMA2 dataset. Sub-

sequently, for each of  the nine datasets, 20 runs of  nested 10-CV were performed as 

described above to evaluate prediction performances. For the parameter tuning 

process, the maximum value of  degree parameter d is set to 8 (the same as the re-

maining peptide length). The decreases in performance as measured by MCC 

(ΔMCC) for these datasets are shown in Figure 6.2. Other performance measures 

(AUC, ACC) yield similar results (data not shown). Six positions (1, 4, 5, 6, 8 and 9) 

are identified as important positions since those of  the prediction performance on 

datasets where the corresponding positions have been removed decreased signifi-

cantly.  

To further investigate over- and underrepresented amino acids in corresponding 

positions, two-sample logos [115] are computed to graphically represent the differ-

ences between immunogenic and non-immunogenic peptides of  all peptides in IM-

MA2. Statistically significant residues selected by using a two-sample t-test with p < 

0.05 are represented in the logo. In addition, a widely used multiple-comparison cor-

rection (Bonferroni correction) is applied to eliminate false positives by adjusting the 

significance level. Figure 6.3 shows the resulting two-sample logo representations. 

The residues overrepresented in immunogenic peptides (shown in the upper half  of  

Figure 6.3) are glycine, valine and threonine at positions 4, 6 and 8, respectively. On 

the other hand, the residues underrepresented in immunogenic peptides (shown in 

the lower half  of  Figure 6.3) are threonine and isoleucine at positions 6 and 9, re-

 

Figure 6.3 Two Sample Logo representation of  over- (upper half) and underre-

presented (lower half) residues in immunogenic peptides 
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spectively.  

Our method successfully identified previously reported TCR recognition posi-

tions (4, 6 and 8) for HLA-A2 binding peptides from an analysis of  crystal structures 

[102, 104]. Notably, the underrepresented residue isoleucine in position 9 is the anc-

hor residue for peptides binding to HLA-A2 molecules [120]. However, position 2, 

the primary anchor position of  HLA-A2 binding peptides [120, 121], is not impor-

tant to immunogenicity. These findings of  unimportance of  MHC anchor residues 

for immunogenicity might explain the observation that peptides with high binding 

affinity to MHC class I molecules do not always induce immune responses [76, 77]. It 

is noteworthy to note that the average predicted affinity of  non-immunogenic pep-

tides is significantly stronger than that of  immunogenic peptides (p < 0.05, t-test) in 

IMMA2. This result confirms the idea that binding affinity is not strongly correlated 

 

Figure 6.4 The over- (upper half) and underrepresented (lower half) posi-

tion-specific properties in immunogenic peptides. (A) Hydrophobicity. (B) Nor-

malized van der Waals volume. The symbols S, M and L indicate residues with 

small, medium and large hydrophobicity/volume, respectively. 
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with peptide immunogenicity [76, 77].  

6.7 Analysis of  physicochemical properties 
Physicochemical properties play an important role in biomolecular recognition. The 

identification of  important physicochemical properties will provide insights into the 

underlying mechanism of  immunogenicity. To identify the important posi-

tion-independent physicochemical properties, all HLA-A2 binding peptides were 

encoded as feature vectors with 531 mean values of  physicochemical properties. 

Subsequently, C5.0 was applied to build a decision tree using the whole IMMA2 da-

taset. The feature usage obtained from C5.0 can be used to rank the physicochemical 

properties. Table 6.1 shows physicochemical properties with usage larger than 50%.  

Hydrophobicity (AAindex IDs MEEJ800102, CASG920101, NAKH900110, 

and FASG760105) is obviously a major contributor to peptide immunogenicity. 

Another property with AAindex ID WOLS870102 is correlated with molecular 

weight and residue volume and probably relates to the limited space between MHC 

and TCR. Three properties (QIAN880127, RACS820108 and TANS770109) are re-

Table 6.1 Physicochemical properties with feature usage larger than 50% 

Usage AAindex ID Physicochemical properties 

100%  MEEJ800102 Retention coefficient in HPLC, pH2.1  

  91%  WOLS870102 Principal property value z2  

  87%  CASG920101 Hydrophobicity scale from native proteins  

  84%  NAKH900110 Normalized composition of membrane proteins  

  81%  FASG760105 pK-C  

  79%  FAUJ880105 STERIMOL minimum width of the side chain  

  76%  CHAM830107 A parameter of charge transfer capability  

  61%  QIAN880127 Weights for coil at the window position of -6  

  59%  RACS820108 Average relative fractional occurrence in AR (i-1) 

  58%  DIGM050101 Hydrostatic pressure asymmetry index, PAI  

  56%  TANS770109 Normalized frequency of coil  
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lated to secondary structure propensities and most likely indicate structural prefe-

rences of  the peptide backbone. 

To further investigate the position-dependent effect of  important physico-

chemical properties, two properties were selected to encode amino acids of  IMMA2 

peptides to two three-alphabet sequences (small (S), medium (M) and large (L)):  

hydrophobicity (thresholds 0.5 and 2.5) [122] and normalized van der Waals volume 

(thresholds 2.0 and 6.0) [123]. The encoded sequences yielded the two-sample logos 

shown in Figure 6.4. Both primary and secondary anchor positions for MHC binding 

(positions 2 and 9, respectively) and position 6 prefer residues of  medium hydropho-

bicity (Figure 6.4A). Positions 4, 5, 7 and 8 prefer residues of  small hydrophobicity. 

Positions 1 and 4 prefer residues with small van der Waals volume (Figure 6.4B) 

whereas position 9 prefers medium volume residues. The logos obtained by using the 

other volume-related properties are similar to Figure 6.4B.  

6.8 POPISK 
The prediction system named POPISK (Prediction Of  Peptide Immunogenicity us-

ing String Kernels) was implemented by training an SVM classifier using weighted 

degree string kernel (parameters C=1 and d=9) on the whole dataset IMMA2. Users 

can either input a peptide sequence of  length 9 that binds to HLA-A2 molecules or 

upload a file of  multiple 9-mer sequences. POPISK will output the predicted immu-

nogenicity (immunogenic or non-immunogenic) accompanied with a score (decision 

value of  SVM) for the strength of  immunogenicity. Peptides with a decision value 

larger than zero are considered immunogenic. The web server of  POPISK is publicly 

available at http://iclab.life.nctu.edu.tw/POPISK. 

 

6.9 Prediction and analysis using POPISK 
To evaluate the prediction and analysis abilities of  POPISK, a total of  17 crystal 

structures consisting of  TCR, peptide of  length 9 and HLA-A2 molecule were ex-

tracted from the Protein Data Bank (PDB) [124]. By removing entries with duplicate 

peptide sequences or modified amino acids, seven crystal structures (PDB ID: 1qrn, 

1qse, 1qsf, 1ao7, 1oga, 2bnr and 2bnq) are used for the following analyses. These 

peptides are classified as immunogenic (1qse, 1ao7, 1oga, 2bnr and 2bnq) or 

non-immunogenic (1qrn and 1qsf) according to the original publications [104, 113, 

114]. 
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First, POPISK was trained by using a modified dataset that excludes peptides 

of  the seven test peptides from IMMA2. Subsequently, POPISK was applied to pre-

dict the seven peptides. POPISK classified 5 out of  7 peptides correctly. Although 

the peptide of  1ao7 is misclassified, its score (-0.04) is very close to the decision 

threshold (0). The scores predicted by POPISK are useful for predicting the immu-

nogenicity change made by single residue modifications. For example, the predicted 

results show that modified cancer/testis antigen with valine in position 9 (POPISK 

score: 1.36) is more immunogenic than the original antigen (POPISK score: 1.11) 

 

Figure 6.5 Structures of  PDB IDs 1ao7 and 1qrn. Structures of  PDB IDs 1ao7 

and 1qrn share high structural similarity presenting complexes of  

TCR-peptide-MHC.  
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and are consistent with a previous study [113].  Also, compared to original Tax pro-

tein of  human T-lymphotropic virus (POPISK score: -0.04), the reduced immunoge-

nicity of  three modified Tax proteins (POPISK scores: -0.07, -0.14 and -0.26) as 

shown in a previous study [114] is successfully predicted.  

Among the seven TCR-peptide-MHC structures taken for our analyses, three 

different TCRs, the A6 TCR (1qrn, 1qse, 1qsf, 1ao7), the V17V10.2 TCR from the 

T-cell clone JM22 (1oga), and the 1G4 TCR (2bnr, 2bnq) are present. Hence, a com-

parison from the structural perspective can only be performed for each type of  TCR 

individually. Most interesting here is the A6 TCR, where structures with immuno-

genic as well as non-immunogenic peptides are available. The very high structural 

similarity among the structures with the A6 TCR has been stressed by Ding et al. 

[114]. These authors did not see any correlation between the overall shape of  the 

complexes or rearrangements at the interface and immunogenicity. The overall 

structural similarity of  complexes with the immunogenic peptide LLFGYPVYV 

(wild-type, 1ao7) with a POPISK score of  -0.04 and the non-immunogenic peptide 

LLFGYAVYV (P6A, 1qrn) with a POPISK score of  -0.26 was found to be highest. 

Also, between these two peptides no difference in their solvent-accessible surface 

areas could be determined. Figure 6.5 generated with BALLView 1.3 [125, 126] 

shows the two crystal structures of  1ao7 and 1qrn.  

There is only one significant difference of  the enlarged cavity at position 6 of  

the non-immunogenic peptide LLFGYAVYV in the 1qrn complex, compared with 

the immunogenic peptide LLFGYPVYV in the 1ao7 complex. An ordered water 

molecule entered this cavity, leading to some rearrangements of  amino acids to ac-

commodate the water. However, the formation of  a cavity, the small rearrangements 

and the entropic loss due to the conserved water account for only a fraction of  the 

difference in complex dissociation constants [114]. A second difference was evident 

from shape complementarity analyses, showing a hole in the interface of  P6A and a 

decrease in complementarity [127] affecting binding to residue at position 5. These 

findings show that even an in-depth structural analysis of  the ternary complexes can 

only give hints on the immunogenicity of  peptides, stressing the importance of  

large-scale statistical studies. 

6.10 Summary 
The immunogenicity of  peptides affected by intrinsic physicochemical properties and 

the extrinsic immunoglobulin repertoire determines the effectiveness of  peptide vac-

cines and therapeutic peptides. Prediction of  peptide immunogenicity will be valua-
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ble to the development of  peptide vaccines. This study proposes a computational 

method based on string kernels and support vector machines to predict peptide im-

munogenicity. Compared to the only published predictor of  T-cell reactivity, POPI 

[59], the new method yields insights into the relevance of  specific sequence positions 

of  the peptide for immunogenicity. 

A total of  three central positions (4, 5 and 6) and three terminal positions (1, 8 

and 9) of  HLA-A2 binding peptides are identified as important positions for immu-

nogenicity. Positions 4, 6 and 8 are consistent with previously reported T-cell recog-

nition positions [102, 104]. Physicochemical properties of  peptides play important 

roles in determining immunogenic strength. Finally, a prediction system POPISK is 

constructed and successfully predicts the immunogenicity changes made by single 

residue modifications. By collecting more data, POPISK is expected to perform bet-

ter and can be applied to analyze immunogenicity of  peptides associated with the 

other MHC alleles. 



 71 

 

Chapter 7  

Conclusions 

7.1 Summary 
Accurate prediction of  adaptive T-cell immune response can accelerate the design of  

vaccines. Previous studies focused on the prediction of  antigen processing and pres-

entation pathways and assumed that peptide-MHC binding affinity determines pep-

tide immunogenicity. However, recent studies suggested that binding affinity is re-

quired but do not strongly correlate with the strength of  immunogenicity. To accu-

rately predict immunogenicity, it is necessary to clarify the relation between binding 

affinity and immunogenicity and construct more accurate prediction systems. The 

analysis of  prediction model provides insights into the mechanism of  T-cell immune 

responses.  

In this dissertation, an informative physicochemical property mining algorithm 

(IPMA) was developed for extracting information from experimental data. In order 

to develop a comprehensive computer-aided vaccine design system, three important 

problems that are rarely addressed because of  the huge complexity were investigated 

including the predictions of  immunogenicity induced by MHC class I and II binding 

peptides and ubiquitylation sites. For predicting peptide immunogenicity, informative 

physicochemical properties are mined from experimental immunogenicity data using 

IPMA. Two prediction systems of  POPI and POPI-MHC2 were constructed by us-

ing the informative physicochemical properties for predicting immunogenicity of  

MHC class I and II binding peptides, respectively. Both prediction systems perform 

better than alignment-based and traditional affinity-based methods. The similarity 

and difference are also analyzed to yield insights into the mechanism of  T-cell res-
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ponses. 

Subsequently, a string kernel and MHC allele information are utilized to im-

prove the prediction accuracy of  immunogenicity. The developed POPISK predic-

tion system capable of  accurately predicting immunogenicity changes made by single 

residue modifications is utilized to identify T-cell receptor recognition sites. For pre-

dicting ubiquitylation sites, three kinds of  features and three classifiers were assessed. 

Results show that the SVM classifier based on physicochemical properties performs 

best. A large improvement of  prediction performances is obtained by further select-

ing informative physicochemical properties using IPMA. Finally, a prediction system 

UbiPred was constructed. 

The proposed systems for predicting immunogenicity and ubiquitylation and 

existing methods for predicting antigen processing and presentation pathways pro-

vide an efficient way to identify promising epitopes for vaccine design and are ex-

pected to accelerate the development of  new vaccines. 

7.2 Future works 
This dissertation presents a novel informative physicochemical property mining algo-

rithm (IPMA) and applied IPMA to mine informative physicochemical properties for 

predicting immunogenicity. Three prediction systems are proposed as first methods 

for predicting CTL and HTL responses and protein ubiquitylation sites. While the 

proposed systems perform so well, further improvement of  the proposed systems 

can provide better assistance for vaccine design. 

Future works to improve the proposed systems are shown as follows.  

1) The prediction performances and robustness of  constructed models can be 

improved by collecting more data. It also enables the application of  string 

kernels to analyze important positions for T-cell receptor recognition in an 

allele-specific manner.  

2) The proposed prediction systems based on support vector machines are 

so-called black-box methods. It is hard to interpret how the classifier makes 

decisions. However, the traditional decision tree methods suffering from their 

low prediction accuracies are not suitable to be used to predict the complex 

immune responses. The incorporation of  interpretable method of  fuzzy 

rule-based classifiers proposed by professor Ho [82] is expected to provide 

intuitive fuzzy rules with high prediction accuracies for better understanding 

immune systems. 
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3) The position effect of  physicochemical was not considered by IPMA because 

of  the various length property of  used datasets PEPMHCI and PEPMHCII. 

However, the position effect is an important feature to determine immuno-

genicity. The IPMA method can be improved by using position-dependent 

physicochemical properties instead of  using position-independent physico-

chemical properties. By mining and analyzing position-dependent informative 

physicochemical properties, the prediction performance is expected to per-

form better than the proposed method, and it will yield better insights into 

the T-cell response. 

4) While the use of  position-dependent physicochemical properties is expected 

to have better prediction performances, it can be further improved by incor-

porating weighted physiochemical properties. The weight for each position 

can be obtained by applying the same elimination-and-test method as shown 

in Chapter 6. The analysis result can provide better understanding of  T-cell 

immune response, and can be utilized to further improve the method.  



 74 

Reference 

[1] Ulmer, J. B., Valley, U., Rappuoli, R., Vaccine manufacturing: challenges and solu-

tions. Nat. Biotechnol. 2006, 24, 1377-1383. 

[2] Ciechanover, A., Early work on the ubiquitin proteasome system, an interview 

with Aaron Ciechanover. Interview by CDD. Cell Death Differ. 2005, 12, 

1167-1177. 

[3] Hershko, A., Early work on the ubiquitin proteasome system, an interview with 

Avram Hershko. Interview by CDD. Cell Death Differ. 2005, 12, 1158-1161. 

[4] Wang, J., Maldonado, M. A., The ubiquitin-proteasome system and its role in in-

flammatory and autoimmune diseases. Cell. Mol. Immunol. 2006, 3, 255-261. 

[5] Michalek, M. T., Grant, E. P., Gramm, C., Goldberg, A. L., Rock, K. L., A role for 

the ubiquitin-dependent proteolytic pathway in MHC class I-restricted antigen 

presentation. Nature 1993, 363, 552-554. 

[6] Townsend, A., Bastin, J., Gould, K., Brownlee, G., et al., Defective presentation to 

class I-restricted cytotoxic T lymphocytes in vaccinia-infected cells is overcome 

by enhanced degradation of  antigen. J. Exp. Med. 1988, 168, 1211-1224. 

[7] Liu, W. J., Zhao, K. N., Gao, F. G., Leggatt, G. R., et al., Polynucleotide viral vac-

cines: codon optimisation and ubiquitin conjugation enhances prophylactic and 

therapeutic efficacy. Vaccine 2001, 20, 862-869. 

[8] Wang, Q. M., Sun, S. H., Hu, Z. L., Zhou, F. J., et al., Epitope DNA vaccines 

against tuberculosis: spacers and ubiquitin modulates cellular immune responses 

elicited by epitope DNA vaccine. Scand. J. Immunol. 2004, 60, 219-225. 

[9] Rodriguez, F., An, L. L., Harkins, S., Zhang, J., et al., DNA immunization with mi-

nigenes: low frequency of  memory cytotoxic T lymphocytes and inefficient anti-



 75 

viral protection are rectified by ubiquitination. J. Virol. 1998, 72, 5174-5181. 

[10] Deavin, A. J., Auton, T. R., Greaney, P. J., Statistical comparison of  established 

T-cell epitope predictors against a large database of  human and murine antigens. 

Mol. Immunol. 1996, 33, 145-155. 

[11] Keşmir, C., Nussbaum, A. K., Schild, H., Detours, V., Brunak, S., Prediction of  

proteasome cleavage motifs by neural networks. Protein Eng. 2002, 15, 287-296. 

[12] Bhasin, M., Raghava, G. P. S., Pcleavage: an SVM based method for prediction 

of  constitutive proteasome and immunoproteasome cleavage sites in antigenic 

sequences. Nucleic Acids Res. 2005, 33, W202-W207. 

[13] Bhasin, M., Raghava, G. P., Analysis and prediction of  affinity of  TAP binding 

peptides using cascade SVM. Protein Sci. 2004, 13, 596-607. 

[14] Peters, B., Bulik, S., Tampe, R., Van Endert, P. M., Holzhutter, H. G., Identifying 

MHC class I epitopes by predicting the TAP transport efficiency of  epitope 

precursors. J. Immunol. 2003, 171, 1741-1749. 

[15] Dönnes, P., Elofsson, A., Prediction of  MHC class I binding peptides, using 

SVMHC. BMC Bioinformatics 2002, 3, 25. 

[16] Nielsen, M., Lundegaard, C., Worning, P., Hvid, C. S., et al., Improved prediction 

of  MHC class I and class II epitopes using a novel Gibbs sampling approach. 

Bioinformatics 2004, 20, 1388-1397. 

[17] Dönnes, P., Kohlbacher, O., Integrated modeling of  the major events in the 

MHC class I antigen processing pathway. Protein Sci. 2005, 14, 2132-2140. 

[18] Larsen, M. V., Lundegaard, C., Lamberth, K., Buus, S., et al., An integrative ap-

proach to CTL epitope prediction: a combined algorithm integrating MHC class 

I binding, TAP transport efficiency, and proteasomal cleavage predictions. Eur. J. 

Immunol. 2005, 35, 2295-2303. 

[19] Goldsby, R. A., Kindt, T. J., Osborne, B. A., Kuby, J., Immunology, W.H. Freeman, 

New York 2003. 

[20] van Bergen, J., Ossendorp, F., Jordens, R., Mommaas, A. M., et al., Get into the 

groove! Targeting antigens to MHC class II. Immunol. Rev. 1999, 172, 87-96. 

[21] Karpenko, O., Shi, J., Dai, Y., Prediction of  MHC class II binders using the ant 



 76 

colony search strategy. Artif. Intell. Med. 2005, 35, 147-156. 

[22] Brusic, V., Rudy, G., Honeyman, G., Hammer, J., Harrison, L., Prediction of  

MHC class II-binding peptides using an evolutionary algorithm and artificial 

neural network. Bioinformatics 1998, 14, 121-130. 

[23] Rajapakse, M., Schmidt, B., Feng, L., Brusic, V., Predicting peptides binding to 

MHC class II molecules using multi-objective evolutionary algorithms. BMC 

Bioinformatics 2007, 8, 459. 

[24] Bisset, L. R., Fierz, W., Using a neural network to identify potential HLA-DR1 

binding sites within proteins. J. Mol. Recognit. 1993, 6, 41-48. 

[25] Honeyman, M. C., Brusic, V., Stone, N. L., Harrison, L. C., Neural net-

work-based prediction of  candidate T-cell epitopes. Nat. Biotechnol. 1998, 16, 

966-969. 

[26] Burden, F. R., Winkler, D. A., Predictive Bayesian neural network models of  

MHC class II peptide binding. J. Mol. Graph. Model. 2005, 23, 481-489. 

[27] Noguchi, H., Hanai, T., Honda, H., Harrison, L. C., Kobayashi, T., Fuzzy neural 

network-based prediction of  the motif  for MHC class II binding peptides. J. Bi-

osci. Bioeng. 2001, 92, 227-231. 

[28] Noguchi, H., Kato, R., Hanai, T., Matsubara, Y., et al., Hidden Markov mod-

el-based prediction of  antigenic peptides that interact with MHC class II mole-

cules. J. Biosci. Bioeng. 2002, 94, 264-270. 

[29] Bhasin, M., Raghava, G. P., SVM based method for predicting HLA-DRB1*0401 

binding peptides in an antigen sequence. Bioinformatics 2004, 20, 421-423. 

[30] Cui, J., Han, L. Y., Lin, H. H., Zhang, H. L., et al., Prediction of  MHC-binding 

peptides of  flexible lengths from sequence-derived structural and physicochem-

ical properties. Mol. Immunol. 2007, 44, 866-877. 

[31] Wan, J., Liu, W., Xu, Q., Ren, Y., et al., SVRMHC prediction server for 

MHC-binding peptides. BMC Bioinformatics 2006, 7, 463. 

[32] Nielsen, M., Lundegaard, C., Lund, O., Prediction of  MHC class II binding af-

finity using SMM-align, a novel stabilization matrix alignment method. BMC 

Bioinformatics 2007, 8, 238. 



 77 

[33] Blythe, M. J., Flower, D. R., Benchmarking B cell epitope prediction: underper-

formance of  existing methods. Protein Sci. 2005, 14, 246-248. 

[34] Cao, Y., Liu, S., Zhang, L., Qin, J., et al., Prediction of  protein structural class 

with Rough Sets. BMC Bioinformatics 2006, 7, 20. 

[35] Idicula-Thomas, S., Kulkarni, A. J., Kulkarni, B. D., Jayaraman, V. K., Balaji, P. V., 

A support vector machine-based method for predicting the propensity of  a pro-

tein to be soluble or to form inclusion body on overexpression in Escherichia 

coli. Bioinformatics 2006, 22, 278-284. 

[36] Liu, W., Meng, X., Xu, Q., Flower, D. R., Li, T., Quantitative prediction of  

mouse class I MHC peptide binding affinity using support vector machine re-

gression (SVR) models. BMC Bioinformatics 2006, 7, 182. 

[37] Nanni, L., Lumini, A., An ensemble of  K-local hyperplanes for predicting pro-

tein-protein interactions. Bioinformatics 2006, 22, 1207-1210. 

[38] Kawashima, S., Kanehisa, M., AAindex: amino acid index database. Nucleic Acids 

Res. 2000, 28, 374. 

[39] Kawashima, S., Pokarowski, P., Pokarowska, M., Kolinski, A., et al., AAindex: 

amino acid index database, progress report 2008. Nucleic Acids Res. 2008, 36, 

D202-205. 

[40] Chang, C. C., Lin, C. J., LIBSVM : a library for support vector machines. Soft-

ware available at http://www.csie.ntu.edu.tw/~cjlin/libsvm. 2001. 

[41] Dey, A., Orthogonal fractional factorial designs, Wiley, New York 1985. 

[42] Wu, Q., On the optimality of  orthogonal experimental design. Acta Math. Appl. 

Sinica 1978, 1, 283-299. 

[43] Ho, S. Y., Chen, J. H., Huang, M. H., Inheritable genetic algorithm for biobjec-

tive 0/1 combinatorial optimization problems and its applications. IEEE Trans. 

Syst. Man. Cybern. B Cybern. 2004, 34, 609-620. 

[44] Ho, S. Y., Shu, L. S., Chen, J. H., Intelligent evolutionary algorithms for large pa-

rameter optimization problems. IEEE Trans. Evol. Comput. 2004, 8, 522-541. 

[45] Herrmann, J., Lerman, L. O., Lerman, A., Ubiquitin and ubiquitin-like proteins 

in protein regulation. Circulation Res. 2007, 100, 1276-1291. 



 78 

[46] Welchman, R. L., Gordon, C., Mayer, R. J., Ubiquitin and ubiquitin-like proteins 

as multifunctional signals. Nat. Rev. Mol. Cell. Biol. 2005, 6, 599-609. 

[47] Tomlinson, E., Palaniyappan, N., Tooth, D., Layfield, R., Methods for the purifi-

cation of  ubiquitinated proteins. Proteomics 2007, 7, 1016-1022. 

[48] Denis, N. J., Vasilescu, J., Lambert, J. P., Smith, J. C., Figeys, D., Tryptic digestion 

of  ubiquitin standards reveals an improved strategy for identifying ubiquitinated 

proteins by mass spectrometry. Proteomics 2007, 7, 868-874. 

[49] Hitchcock, A. L., Auld, K., Gygi, S. P., Silver, P. A., A subset of  mem-

brane-associated proteins is ubiquitinated in response to mutations in the en-

doplasmic reticulum degradation machinery. Proc. Natl. Acad. Sci. U.S.A. 2003, 

100, 12735-12740. 

[50] Jeon, H. B., Choi, E. S., Yoon, J. H., Hwang, J. H., et al., A proteomics approach 

to identify the ubiquitinated proteins in mouse heart. Biochem. Biophys. Res. Com-

mun. 2007, 357, 731-736. 

[51] Kirkpatrick, D. S., Weldon, S. F., Tsaprailis, G., Liebler, D. C., Gandolfi, A. J., 

Proteomic identification of  ubiquitinated proteins from human cells expressing 

His-tagged ubiquitin. Proteomics 2005, 5, 2104-2111. 

[52] Matsumoto, M., Hatakeyama, S., Oyamada, K., Oda, Y., et al., Large-scale analysis 

of  the human ubiquitin-related proteome. Proteomics 2005, 5, 4145-4151. 

[53] Peng, J., Schwartz, D., Elias, J. E., Thoreen, C. C., et al., A proteomics approach 

to understanding protein ubiquitination. Nat. Biotechnol. 2003, 21, 921-926. 

[54] Denison, C., Kirkpatrick, D. S., Gygi, S. P., Proteomic insights into ubiquitin and 

ubiquitin-like proteins. Curr. Opin. Chem. Biol. 2005, 9, 69-75. 

[55] Xue, Y., Chen, H., Jin, C., Sun, Z., Yao, X., NBA-Palm: prediction of  palmitoyla-

tion site implemented in Naive Bayes algorithm. BMC Bioinformatics 2006, 7, 458. 

[56] Jones, D. T., Improving the accuracy of  transmembrane protein topology pre-

diction using evolutionary information. Bioinformatics 2007, 23, 538-544. 

[57] Kaur, H., Raghava, G. P., A neural network method for prediction of  beta-turn 

types in proteins using evolutionary information. Bioinformatics 2004, 20, 

2751-2758. 



 79 

[58] Huang, W. L., Tung, C. W., Huang, H. L., Hwang, S. F., Ho, S. Y., ProLoc: Pre-

diction of  protein subnuclear localization using SVM with automatic selection 

from physicochemical composition features. Biosystems 2007, 90, 573-581. 

[59] Tung, C. W., Ho, S. Y., POPI: predicting immunogenicity of  MHC class I bind-

ing peptides by mining informative physicochemical properties. Bioinformatics 

2007, 23, 942-949. 

[60] Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., et al., Gapped BLAST 

and PSI-BLAST: a new generation of  protein database search programs. Nucleic 

Acids Res. 1997, 25, 3389-3402. 

[61] Witten, I. H., Frank, E., Data Mining: Practical machine learning tools and techniques, 

Morgan Kaufmann, San Francisco 2005. 

[62] Chernorudskiy, A. L., Garcia, A., Eremin, E. V., Shorina, A. S., et al., UbiProt: a 

database of  ubiquitylated proteins. BMC Bioinformatics 2007, 8, 126. 

[63] Crooks, G. E., Hon, G., Chandonia, J. M., Brenner, S. E., WebLogo: a sequence 

logo generator. Genome Res. 2004, 14, 1188-1190. 

[64] Quinlan, J. R., Morgan Kaufmann, San Mateo, CA 1993. 

[65] Li, W., Godzik, A., Cd-hit: a fast program for clustering and comparing large sets 

of  protein or nucleotide sequences. Bioinformatics 2006, 22, 1658-1659. 

[66] Meirovitch, H., Rackovsky, S. and Scheraga, H.A., Empirical studies of  hydro-

phobicity. 1. Effect of  protein size on the hydrophobic behavior of  amino acids. 

Macromolecules 1980, 13, 1398-1405. 

[67] Harpaz, Y., Gerstein, M., Chothia, C., Volume changes on protein folding. Struc-

ture 1994, 2, 641-649. 

[68] Cornette, J. L., Cease, K. B., Margalit, H., Spouge, J. L., et al., Hydrophobicity 

scales and computational techniques for detecting amphipathic structures in 

proteins. J. Mol. Biol. 1987, 195, 659-685. 

[69] Cedano, J., Aloy, P., Perez-Pons, J. A., Querol, E., Relation between amino acid 

composition and cellular location of  proteins. J. Mol. Biol. 1997, 266, 594-600. 

[70] George, R. A., Heringa, J., An analysis of  protein domain linkers: their classifica-

tion and role in protein folding. Protein Eng. 2002, 15, 871-879. 



 80 

[71] Radivojac, P., Vacic, V., Haynes, C., Cocklin, R. R., et al., Identification, analysis, 

and prediction of  protein ubiquitination sites. Proteins 2009, 78, 365-380. 

[72] Edwards, Y. J., Lobley, A. E., Pentony, M. M., Jones, D. T., Insights into the reg-

ulation of  intrinsically disordered proteins in the human proteome by analyzing 

sequence and gene expression data. Genome Biol. 2009, 10, R50. 

[73] Pang, C. N., Gasteiger, E., Wilkins, M. R., Identification of  arginine- and ly-

sine-methylation in the proteome of  Saccharomyces cerevisiae and its functional 

implications. BMC Genomics 2010, 11, 92. 

[74] Kanduc, D., Peptimmunology: immunogenic peptides and sequence redundancy. 

Curr. Drug. Discov. Technol. 2005, 2, 239-244. 

[75] Van Regenmortel, M. H., Antigenicity and immunogenicity of  synthetic peptides. 

Biologicals 2001, 29, 209-213. 

[76] Feltkamp, M. C., Vierboom, M. P., Kast, W. M., Melief, C. J., Efficient MHC class 

I-peptide binding is required but does not ensure MHC class I-restricted immu-

nogenicity. Mol. Immunol. 1994, 31, 1391-1401. 

[77] Ochoa-Garay, J., McKinney, D. M., Kochounian, H. H., McMillan, M., The abili-

ty of  peptides to induce cytotoxic T cells in vitro does not strongly correlate 

with their affinity for the H-2Ld molecule: implications for vaccine design and 

immunotherapy. Mol. Immunol. 1997, 34, 273-281. 

[78] Dow, C., Oseroff, C., Peters, B., Nance-Sotelo, C., et al., Lymphocytic choriome-

ningitis virus infection yields overlapping CD4+ and CD8+ T-cell responses. J. 

Virol. 

 2008, 82, 11734-11741. 

[79] Arnold, P. Y., La Gruta, N. L., Miller, T., Vignali, K. M., et al., The majority of  

immunogenic epitopes generate CD4+ T cells that are dependent on MHC class 

II-bound peptide-flanking residues. J. Immunol. 2002, 169, 739-749. 

[80] Conant, S. B., Swanborg, R. H., MHC class II peptide flanking residues of  ex-

ogenous antigens influence recognition by autoreactive T cells. Autoimmun. Rev. 

2003, 2, 8-12. 

[81] Sarda, D., Chua, G. H., Li, K.-B., Krishnan, A., pSLIP: SVM based protein sub-

cellular localization prediction using multiple physicochemical properties. BMC 



 81 

Bioinformatics 2005, 6, 152. 

[82] Ho, S. Y., Hsieh, C. H., Chen, H. M., Huang, H. L., Interpretable gene expres-

sion classifier with an accurate and compact fuzzy rule base for microarray data 

analysis. Biosystems 2006, 85, 165-176. 

[83] Brusic, V., Rudy, G., Harrison, L. C., MHCPEP, a database of  MHC-binding 

peptides: update 1997. Nucleic Acids Res. 1998, 26, 368-371. 

[84] Myers, E. W., Miller, W., Optimal alignments in linear space. Comput. Appl. Biosci. 

1988, 4, 11-17. 

[85] Geisow, M. J., Roberts, R. D. B., Amino acid preferences for secondary structure 

vary with protein class. Int. J. Biol. Macromol. 1980, 2, 387-389. 

[86] Miyazawa, S., Jernigan, R. L., Estimation of  effective interresidue contact ener-

gies from protein crystal structures: Quasi-chemical approximation. Macromole-

cules 1985, 18, 534-552. 

[87] Kuhn, L. A., Swanson, C. A., Pique, M. E., Tainer, J. A., Getzoff, E. D., Atomic 

and residue hydrophilicity in the context of  folded protein structures. Proteins 

1995, 23, 536-547. 

[88] Rajesh, S., Sakamoto, T., Iwamoto-Sugai, M., Shibata, T., et al., Ubiquitin binding 

interface mapping on yeast ubiquitin hydrolase by NMR chemical shift perturba-

tion. Biochemistry 1999, 38, 9242-9253. 

[89] Sundberg, E. J., Urrutia, M., Braden, B. C., Isern, J., et al., Estimation of  the hy-

drophobic effect in an antigen-antibody protein-protein interface. Biochemistry 

2000, 39, 15375-15387. 

[90] Melton, S. J., Landry, S. J., Three dimensional structure directs T-cell epitope 

dominance associated with allergy. Clin. Mol. Allergy 2008, 6, 9. 

[91] Mirano-Bascos, D., Tary-Lehmann, M., Landry, S. J., Antigen structure influ-

ences helper T-cell epitope dominance in the human immune response to HIV 

envelope glycoprotein gp120. Eur. J. Immunol. 2008, 38, 1231-1237. 

[92] Jager, E., Karbach, J., Gnjatic, S., Neumann, A., et al., Recombinant vacci-

nia/fowlpox NY-ESO-1 vaccines induce both humoral and cellular 

NY-ESO-1-specific immune responses in cancer patients. Proc. Natl. Acad. Sci. 

U.S.A. 2006, 103, 14453-14458. 



 82 

[93] Odunsi, K., Qian, F., Matsuzaki, J., Mhawech-Fauceglia, P., et al., Vaccination 

with an NY-ESO-1 peptide of  HLA class I/II specificities induces integrated 

humoral and T cell responses in ovarian cancer. Proc. Natl. Acad. Sci. U.S.A. 2007, 

104, 12837-12842. 

[94] Peters, B., Sidney, J., Bourne, P., Bui, H. H., et al., The immune epitope database 

and analysis resource: from vision to blueprint. PLoS Biology 2005, 3, e91. 

[95] Bui, H. H., Sidney, J., Peters, B., Sathiamurthy, M., et al., Automated generation 

and evaluation of  specific MHC binding predictive tools: ARB matrix applica-

tions. Immunogenetics 2005, 57, 304-314. 

[96] Zhang, Q., Wang, P., Kim, Y., Haste-Andersen, P., et al., Immune epitope data-

base analysis resource (IEDB-AR). Nucleic Acids Res 2008, 36, W513-518. 

[97] Nielsen, M., Lundegaard, C., Blicher, T., Peters, B., et al., Quantitative predictions 

of  peptide binding to any HLA-DR molecule of  known sequence: NetMHCII-

pan. PLoS Comput Biol 2008, 4, e1000107. 

[98] Wang, P., Sidney, J., Dow, C., Mothe, B., et al., A systematic assessment of  MHC 

class II peptide binding predictions and evaluation of  a consensus approach. 

PLoS Comput Biol 2008, 4, e1000048. 

[99] Lin, H. H., Zhang, G. L., Tongchusak, S., Reinherz, E. L., Brusic, V., Evaluation 

of  MHC-II peptide binding prediction servers: applications for vaccine research. 

BMC Bioinformatics 2008, 9 Suppl 12, S22. 

[100] Sorgo, A. G., Heilmann, C. J., Dekker, H. L., Brul, S., et al., Mass spectrometric 

analysis of  the secretome of  Candida albicans. Yeast 2010. 

[101] Ziehm, M., Prediction of  peptide immunogenicity using T cell selection modelling, Univer-

sity of  Tübingen, Diplomarbeit, Tübingen 2009. 

[102] Rudolph, M. G., Luz, J. G., Wilson, I. A., Structural and thermodynamic corre-

lates of  T cell signaling. Annu. Rev. Biophys. Biomol. Struct. 2002, 31, 121-149. 

[103] Silver, M. L., Guo, H. C., Strominger, J. L., Wiley, D. C., Atomic structure of  a 

human MHC molecule presenting an influenza virus peptide. Nature 1992, 360, 

367-369. 

[104] Stewart-Jones, G. B., McMichael, A. J., Bell, J. I., Stuart, D. I., Jones, E. Y., A 

structural basis for immunodominant human T cell receptor recognition. Nat. 



 83 

Immunol. 2003, 4, 657-663. 

[105] Bowness, P., Allen, R. L., McMichael, A. J., Identification of  T cell receptor 

recognition residues for a viral peptide presented by HLA B27. Eur. J. Immunol. 

 1994, 24, 2357-2363. 

[106] Boisvert, S., Marchand, M., Laviolette, F., Corbeil, J., HIV-1 coreceptor usage 

prediction without multiple alignments: an application of  string kernels. Retrovi-

rology 2008, 5, 110. 

[107] El-Manzalawy, Y., Dobbs, D., Honavar, V., Predicting linear B-cell epitopes us-

ing string kernels. J. Mol. Recognit. 2008, 21, 243-255. 

[108] Jacob, L., Vert, J. P., Efficient peptide-MHC-I binding prediction for alleles with 

few known binders. Bioinformatics 2008, 24, 358-366. 

[109] Rätsch, G., Sonnenburg, S., Scholkopf, B., RASE: recognition of  alternatively 

spliced exons in C.elegans. Bioinformatics 2005, 21 Suppl 1, i369-377. 

[110] Sonnenburg, S., Zien, A., Philips, P., Ratsch, G., POIMs: positional oligomer 

importance matrices--understanding support vector machine-based signal de-

tectors. Bioinformatics 2008, 24, i6-14. 

[111] Rammensee, H., Bachmann, J., Emmerich, N. P., Bachor, O. A., Stevanovic, S., 

SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 1999, 

50, 213-219. 

[112] Schuler, M. M., Nastke, M. D., Stevanovikc, S., SYFPEITHI: database for 

searching and T-cell epitope prediction. Meth. Mol. Biol. 2007, 409, 75-93. 

[113] Chen, J. L., Stewart-Jones, G., Bossi, G., Lissin, N. M., et al., Structural and ki-

netic basis for heightened immunogenicity of  T cell vaccines. J. Exp. Med. 2005, 

201, 1243-1255. 

[114] Ding, Y. H., Baker, B. M., Garboczi, D. N., Biddison, W. E., Wiley, D. C., Four 

A6-TCR/peptide/HLA-A2 structures that generate very different T cell signals 

are nearly identical. Immunity 1999, 11, 45-56. 

[115] Vacic, V., Iakoucheva, L. M., Radivojac, P., Two Sample Logo: a graphical re-

presentation of  the differences between two sets of  sequence alignments. Bioin-

formatics 2006, 22, 1536-1537. 



 84 

[116] Lund, O., Nielsen, M., Kesmir, C., Petersen, A. G., et al., Definition of  super-

types for HLA molecules using clustering of  specificity matrices. Immunogenetics 

2004, 55, 797-810. 

[117] Rätsch, G., Sonnenburg, S., MIT Press MIT Press series on Computational Molecular 

Biology 2003, pp. 277-298. 

[118] Sonnenburg, S., Ratsch, G., Schafer, C., Scholkopf, B., Large scale multiple ker-

nel learning. J. Mach. Learn. Res. 2006, 7, 1531-1565. 

[119] Varma, S., Simon, R., Bias in error estimation when using cross-validation for 

model selection. BMC Bioinformatics 2006, 7, 91. 

[120] Hunt, D. F., Henderson, R. A., Shabanowitz, J., Sakaguchi, K., et al., Characteri-

zation of  peptides bound to the class I MHC molecule HLA-A2.1 by mass 

spectrometry. Science 1992, 255, 1261-1263. 

[121] Falk, K., Rotzschke, O., Stevanovic, S., Jung, G., Rammensee, H. G., Al-

lele-specific motifs revealed by sequencing of  self-peptides eluted from MHC 

molecules. Nature 1991, 351, 290-296. 

[122] Jones, D. D., Amino acid properties and side-chain orientation in proteins: a 

cross correlation appraoch. J. Theor. Biol. 1975, 50, 167-183. 

[123] Fauchere, J. L., Charton, M., Kier, L. B., Verloop, A., Pliska, V., Amino acid side 

chain parameters for correlation studies in biology and pharmacology. Int. J. Pept. 

Protein Res. 1988, 32, 269-278. 

[124] Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., et al., The Protein Data 

Bank. Nucleic Acids Res. 2000, 28, 235-242. 

[125] Kohlbacher, O., Lenhof, H. P., BALL--rapid software prototyping in computa-

tional molecular biology. Biochemicals Algorithms Library. Bioinformatics 2000, 16, 

815-824. 

[126] Moll, A., Hildebrandt, A., Lenhof, H. P., Kohlbacher, O., BALLView: an ob-

ject-oriented molecular visualization and modeling framework. J. Comput. Aided 

Mol. Des. 2005, 19, 791-800. 

[127] Baker, B. M., Ding, Y. H., Garboczi, D. N., Biddison, W. E., Wiley, D. C., 

Structural, biochemical, and biophysical studies of  HLA-A2/altered peptide li-

gands binding to viral-peptide-specific human T-cell receptors. Cold Spring Har-



 85 

bor Symposia on Quantitative Biology 1999, 64, 235-241. 

 

 



 86 

Curriculum Vitae 

 Education  

Year Degree Institute 

2001-2005 B.S. Department of Biology,  

National Cheng Kung University 

2005-2006 Master student Institute of Bioinformatics,  

National Chiao Tung University 

2006-2010 PhD Institute of Bioinformatics,  

National Chiao Tung University 
 

 Experience  

Year Position Institute 

2008-2009 Visiting scholar 

Wilhelm Schickard Institute for Computer Science, 

Eberhard Karls University Tübingen, Tübingen, 

Germany (Prof. Oliver Kohlbacher) 
 

 Project 

Year Title Funder 

2004-2005 

Identification of microRNAs 

from Phalaenopsis equestris by 

bioinformatics 

NSC College Student Research 

Project (NSC 93-2815-C-006 -084 -B) 



 87 

 Professional certification and awards 

Year Certification or Awards 

2004 SUN Certified JAVA Programmer (SCJP 1.4) 

2007 
Research Excellence Award (by College of Biological Science and 

Technology, NCTU, Taiwan) 

2008 
Research Excellence Award (by College of Biological Science and 

Technology, NCTU, Taiwan) 

2008 
Scholarship of Sandwich Program for research visits to Germany 

(supported by DAAD of Germany and NSC of Taiwan) 

2010 
Research Excellence Award (by College of Biological Science and 

Technology, NCTU, Taiwan) 

 Academic service 

Year Description 

2009 

Program committee, The special session "Evolutionary Computa-

tion in Bioinformatics and Computational Biology" of  2009 IEEE 

Congress on Evolutionary Computation (IEEE CEC 2009). 

Trondheim, Norway, May 18-21, 2009 

2008-2010 Reviewer for Journal of  Proteomics & Bioinformatics 

2008 Reviewer for Bioinformatics and Biology Insights 

2010 
Reviewer for 2010 IEEE Congress on Evolutionary Computation 

(IEEE CEC 2010). Barcelona, Spain, July 18-23, 2010 



 88 

Publications 

 Journal papers                                                   

1. Tung, C.W., Ziehm, M., Kämper, A., Ho, S.Y. and Kohlbacher, O. (2010) 

POPISK: T-cell reactivity prediction using support vector machines and 

string kernels. PLoS ONE. (under revision) 

2. Tung, C.W. and Ho, S.Y. (2010) Predicting immunogenicity of  MHC class 

II-restricted peptides. IEEE/ACM Transactions on Computational Biology and 

Bioinformatics. (under review) 

3. Huang, W.L., Tung, C.W. and Ho, S.Y. (2010) Predicting promoters by iden-

tifying and analyzing an informative feature set of  DNA sequence descrip-

tors. BMC Bioinformatics (under review) 

4. Huang, W.L., Tung, C.W., Huang, H.L. and Ho, S.Y. (2009) Predicting pro-

tein subnuclear localization using GO-amino-acid composition features. Bio 

Systems, 98, 73-79.  

5. Hsu, K.T., Huang, H.L., Tung, C.W., Chen, Y.H. and Ho, 

S.Y.(2009) Analysis of  physicochemical properties on prediction of  R5, X4, 

and R5X4 HIV-1 coreceptor usage. International Journal of  Biological and Life 

Sciences, 5, 208-215.  

6. Tung, C.W. and Ho, S.Y. (2008) Computational identification of  ubiquityla-

tion sites from protein sequences. BMC Bioinformatics, 9, 310. (Highly ac-

cessed)  

7. Huang, W.L., Tung, C.W., Ho, S.W., Hwang, S.F. and Ho, S.Y. 

(2008) ProLoc-GO: Utilizing informative Gene Ontology terms for se-

quence-based prediction of  protein subcellular localization. BMC Bioinfor-

matics, 9, 80.  

8. Tung, C.W. and Ho, S.Y. (2007) POPI: predicting immunogenicity of  MHC 

class I binding peptides by mining informative physicochemical proper-

ties. Bioinformatics, 23, 942-949.  



 89 

9. Huang, W.L., Tung, C.W., Huang, H.L., Hwang, S.F. and Ho, S.Y. 

(2007) ProLoc: Prediction of  protein subnuclear localization using SVM 

with automatic selection from physicochemical composition features. Bio 

Systems, 90, 573-581.  

10. Tsai, W.C., Hsiao, Y.Y., Lee, S.H., Tung, C.W., Wang, D.P., Wang, H.C., 

Chen, W.H. and Chen, H.H. (2006) Expression analysis of  the ESTs derived 

from the flower buds of Phalaenopsis equestris. Plant Science, 170, 426-432.  

Paper under preparation: 

11. Tung, C.W. and Ho, S.Y. (2010) Towards a consensus feature set for surviv-

al prediction of  hepatic cancer patients.  

12. Huang, W.L., Tung, C.W. and Ho, S.Y. (2010) Informative GO-amino-acid 

composition features for predicting subcellular localization of  both eukaryo-

tic and prokaryotic proteins. 

 International conferences                                         

1. Liaw, C., Tung, C.W., Ho, S.J. and Ho, S.Y. (2010) Sequence-based Predic-

tion Of  Gamma-turn Types Using A Physicochemical Property-based De-

cision Tree Method, International Conference on Computational Biology 

(ICCB2010), Tokyo, Japan. (EI) 

2. Tung, C.W., Liaw, C., Ho, S.J. and Ho, S.Y. (2010) Prediction of  protein 

subchloroplast locations using Random Forests, International Conference on 

Computational Biology (ICCB2010), Tokyo, Japan. (EI) 

3. Huang, W.L., Tung, C.W. and Ho, S.Y. (2010) Human Pol II promoter 

prediction by using nucleotide property composition features, International 

Symposium on Biocomputing (ISB2010), Calicut, Kerala, India. 

4. Hsu, K.T., Huang, H.L., Tung, C.W., Chen, Y.H. and Ho, 

S.Y.(2009) Analysis of  physicochemical properties on prediction of  R5, X4, 

and R5X4 HIV-1 coreceptor usage. International Conference on Bioinformatics 

and Bioengineering (ICBB2009), Tokyo, Japan, 53, 1120-1127. (EI) 

5. Huang, W.L., Tung, C.W., Ho, S.W. and Ho, S.Y. (2008) ProLoc-rGO: Us-

ing rule-based knowledge with Gene Ontology terms for prediction of  

protein subnuclear localization. IEEE Symposium on Computational Intelligence 

in Bioinformatics and Computational Biology (CIBCB2008), Sun Valley, Idaho, 

USA, 201-206. 

6. Tung, C.W. and Ho, S.Y. (2007) Mining physicochemical properties for 

predicting immunogenicity of  MHC class II binding peptides. 18th Interna-



 90 

tional Conference on Genome Informatics (GIW2007), Biopolis, Singapore. 

7. Hsiao, Y.Y., Tsai, W.C., Tung, C.W., Chiu, Y.F., Pan, Z.J., Chen, W.H. and 

Chen, H.H. (2004) Gene expression during Phalaenopsis embryo develop-

ment. International Symposium on Agricultural Genomics and Biotechnology, Tainan, 

Taiwan. 

 Conferences hold by NCTU                                        

1. Tung, C.W. and Ho, S.Y. (2010) Prediction of  adaptive T-cell dependent 

immune response. Inter-discipline biotechnology symposium, National Chiao Tung 

University, Hsinchu, Taiwan. 

2. Liaw C., Tung, C.W. and Ho, S.Y. (2010) Sequence-based Prediction Of  

Gamma-turn Types Using A Physicochemical Property-based Decision 

Tree Method. Inter-discipline biotechnology symposium, National Chiao Tung 

University, Hsinchu, Taiwan. 

3. Yu, Y.Y., Tsai, C.T., Tung, C.W. and Ho, S.Y. (2009) POCP: Prediction of  

Cyclin Proteins by Mining Informative Physicochemical Properties. Compe-

tition of Academic Posters, National Chiao Tung University, Hsinchu, Taiwan.  

4. Tung, C.W. and Ho, S.Y. (2008) Computational identification of  ubiquity-

lation sites from protein sequences. Competition of Academic Posters, National 

Chiao Tung University, Hsinchu, Taiwan.   

5. Tung, C.W. and Ho, S.Y. (2007) The impact of  physicochemical properties 

on predicting immune responses induced by MHC binding peptides. Com-

petition of academic posters, National Tsing Hua University, Hsinchu, Taiwan. 

6. Tsai, C.T., Tung, C.W. and Ho, S.Y. (2006) Predicting continuous B-cell 

epitopes by mining informative physicochemical properties. Academic Sym-

posium of Biotechnology and Competition of Academic Posters, National Chiao Tung 

University, Hsinchu, Taiwan. 

7. Tung, C.W. and Ho, S.Y. (2006) POPI: Predicting immunogenicity of  

MHC class I binding peptides by mining informative physicochemical 

properties. Academic Symposium of Biotechnology and Competition of Academic 

Posters, National Chiao Tung University, Hsinchu, Taiwan. 

 Invited talk                                                      

1. Tung, C.W. and Ho, S.Y. (2008) POPI: predicting immunogenicity of  

MHC class I binding peptides by mining informative physicochemical 

properties. Academic Symposium of  Biotechnology, National Chiao Tung Uni-

versity, Hsinchu, Taiwan. 


