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Abstract

In the past few decades, the knowledge about biological function and systems has grown
rapidly. As structural genomics research provides structural models in genome-wide strategies,
the number of protein structures in.the Protein Data. Bank (PDB) is rapidly rising; as of as of
7-July-2009, there were more than 58,000 proteins. Besides, the accumulating known protein
structures with unknown or unassigned functions emphasize the demand of effective
bioinformatics methods with.which to annotate the structural homology or evolutionary
family.

To address the anterior issues, some approaches have been proposed to encode the 3D
local structural fragments based on C, ‘coordinates into a 1D representation based on several
letters, also called as 'structural alphabets’. In order to make a study of current
structure—function gap, we developed a series of research, including a novel kappa-alpha plot
derived structural alphabet and a novel BLOSUM-like substitution matrix, and explored the
structure information based on the fact that the local structure is generally more evolutionary
conserved than the amino acid sequence.

We have utilized the theory of structural alphabet to rapidly compare protein structure,
homologs search (3D-BLAST) and SCOP superfamily assignment (fastSCOP). We present a
novel protein structure database search tool, 3D-BLAST, that is useful for analyzing novel
structures and can return a ranked list of alignments. This tool has the features of BLAST (for
example, robust statistical basis, and effective and reliable search capabilities). In addition, we
propose a web server, named fastSCOP, which rapidly identifies the structural domains and
determines the evolutionary superfamilies of a query protein structure. fastSCOP server uses

3D-BLAST to scan quickly a large structural classification database and the top ten different
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superfamilies of protein domains are obtained from the hit lists. And then, a detailed structural
alignment tool is adopted to align these top ten structures to refine domain boundaries and to
identify evolutionary superfamilies.

With the encouraging results shown, kappa-alpha plot derived structural alphabet is adopted
to develop represent the backbone fragments and the 3D-BLAST and fastSCOP is robust and
can be a useful server for recognizing the evolutionary classifications and the protein
functions of novel structures. 3D-BLAST and fastSCOP are available at
http://3d-blast.life.nctu.edu.tw/ and http://fastscop.life.nctu.edu.tw/, respectively.
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Chapter 1

Introduction

1.1 Background

In the past few decades, the knowledge about biological function and systems has grown
rapidly. There are many approaches to address this large scale of fields, such as genomics
(DNA sequences), structural genomics (protein structures) and proteomics (protein expression
and interactions). The rapidly increasing rate of new protein structure arising from structural
genomics requires the need for methods to rapidly and reliably infer the molecular and
cellular functions of these proteins. As structural genomics research provides structural
models in genome-wide strategies [1-3], the number of protein structures in the Protein Data
Bank (PDB) is rapidly rising [4];-as of June-2009, there were more than 58,000 proteins.
Besides, the accumulating known protein structures with unknown/unassigned functions
emphasize the demand of effective bioinformatics methods with which to annotate the
structural homology or evolutionary family.

Many sequence and structure alignment- methods: have been developed to discover
homologs of newly determined ‘structures [S]. Protein sequence database similarity search
programs, such as BLAST and PSI-BLAST [6, 7], are effective computational tools for
identifying homologous proteins. However, these approaches are often not reliable for
detecting homologous relationships between distantly related sequences. Many other detailed
protein structure alignment methods, such as DALI [8], CE [9], MAMMOTH [10], and VAST
[11], have also been developed, and these methods compare two known structures, typically
based on the Euclidean distance between corresponding residues rather than the distance
between amino acid "types" used in sequence alignments. These tools often require several
seconds to align two proteins. At this speed, it would take one day to compare a single protein
structure with all of those in the PDB. Recently, however, approaches such as ProtDex2 [12]
and ProteinDBS [13] have been proposed to search protein structures more quickly by
mapping a structure into indexes for measuring the distance of two structures. Other fast
search tools, including TOPSCAN [14], SA-Search [15], and YAKUSA [16], describe protein
structures as one-dimensional (1D) sequences and then use specific sequence alignment

methods to align two structures. Many of these methods have been evaluated based on the



performance of two structure alignments but not on the performance of the database search.
To our knowledge, none of these methods provides a function analogous to the E-value of
BLAST (probably the most widely used database search tool for biologists) with which to
examine the statistical significance of an alignment “hit”. This current structure-function gap
clearly demonstrates the need for more powerful bioinformatics techniques to identify the
structural homology or family of a query protein using known protein structures.

To address the anterior questions, many approaches have been proposed to encode the
3D local structural fragments based on Cartesian coordinates into a 1D representation based
on several letters, also called as 'structural alphabets' [17-24]. The structural alphabet
represents advantageous local structure and has been used to (i) compare/analyze 3D
structures [25-27], (ii) predict protein 3D structures from amino acid sequences [17, 19], (iii)
reconstruct the protein backbone [21], and (iv) loop modeling [28].

There is other methods use regular secondary structure information in their algorithms.
By linear encoding local protein structures, Ramachandran Sequential Transformation (RST)
[29] has been proposed and applied to develop efficient protein similarity search tools,
SARST [29] and iSARST. [30].—These. tools ‘encode 3D protein structures into
two-dimensional Ramachandran® maps [31] ‘and transform them into 1D text letters
(Ramachandran codes). In addition, RST has been demonstrated suitable to detecting
homologs with circular permutations (CPs) in proteins [32].

In order to make a study of cutrent structure-function gap, we developed a series of
research and explored the structure information based on the fact that the local structure is
generally more evolutionary conserved than the amino acid sequence [33]. Accordingly, we
have utilized the theory of structural alphabet to compare protein structure, homologs search
[34, 35] and family assignment [36]. Moreover, many sequence-based methods can be applied
to mine biologic meanings quickly from protein structures based on this 23-state structural
alphabet. However, to the best of our knowledge, structural alphabet has not been used to
discover structural motifs in proteins. Therefore, this 23-state structural alphabet can be
adopted to develop multiple structure alignment and structure pattern/motif search methods.

One of the important topics in the biological data mining is discovery of frequent
patterns in a set of DNA or protein. These patterns usually aim to share biological meanings.
Various pattern discovery algorithms use aligned sequences or multiple sequence alignment
(MSA) as an input such as PRINTS [37], PROSITE [38], and Pfam [39]. Besides,
TEIRESIAS [40], PRATT?2 [41] and a specific pattern growth approach [42] are applied to

directly identify frequent patterns from unaligned biological sequences without aligning them.
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Although pattern discovery approaches with unaligned sequence are more efficiency and less
computationally intensive, it may provide the less biological meanings.

However, many of the most functional and evolutionary relationships between
homologous protein are so distinct that they cannot be clearly detected through MSA and are
evident only by pairwise/multiple structure comparison of the 3D structures. Because of
multiple structure alignment is computationally intensive, it makes more efficient in multiple
structure alignment based on encoding 3D structure to 1D structural alphabet sequence.
Therefore, the application of structural alphabet not only obtains more efficient in multiple
structural alignments but also acquires more biological function and meanings in finding

structure pattern/motif.

1.2 Thesis overview

First of all, we developed a novel kappa-alpha plot derived structural alphabet and a
novel BLOSUM-like substitution matrix, called structural alphabet substitution matrix
(SASM) in Chapter 2. This«structural alphabet was valuable for reconstructing protein
structures from just a small number of structural fragments and for developing a fast structure
database search method. Besides, this SASM matrix was.designed to offer the preference of
aligning structural segments between homologous structures that share low sequence identity.
The aligned score from the SASM matrixprovides structural similarity estimates and
information on evolutionary distance.

In Chapter 3, we described the theory and results of 3D-BLAST based on structural
alphabet and SASM. The 3D-BLAST was used to search protein structure database rapidly for
all known homologs of a query (new) structure and return a ranked list of alignments. The
results showed that our method enhanced BLAST as a search method, using a new structural
alphabet substitution matrix to find the longest common substructures with high-scoring
structured segment pairs from an SADB database.

In Chapter 4, structural alphabet and SASM was also applied to rapidly identify the
structural domains and determine the evolutionary superfamilies of a query protein structure.
The web server we built was named as fastSCOP. fastSCOP was the cooperative integration in
3D-BLAST (a fast structural database search tool) and MAMMOTH (a fast detailed structural
alignment tool); the former is required for efficiency and the latter for accuracy.

Chapter 5 presented our current studies about Space-Related Pharmamotif (SRP) in

interacting site of protein. The SRP is defined as a set of space-related structural motifs that
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prefers a set of similar protein sub-site structures consistently interact with ligand, DNA or
peptide. We demonstrated preliminary results of SRP discovery and motif search. These
results mainly illustrated the feasibility of studying SRP. Finally, Chapter 6 described some

conclusions and future perspectives.



Chapter 2
Kappa-alpha Plot Derived Structural
Alphabet and Structural Alphabet

Substitution Matrix

2.1 Introduction

A major challenge facing structural biology research in the post-genomics era is to
discover the biologic functions of genes identified by large-scale sequencing efforts. As
protein structures increasingly become available and structural genomics research provides
structural models in genome-wide strategies. [1], proteins with unassigned functions are
accumulating, and the number.of protein structures.in the Protein Data Bank (PDB) is rapidly
rising [4]. The current structure-function gap highlights the need for powerful bioinformatics
methods with which to elucidate the structural homology or family of a query protein by
known protein sequences and structures.

The three-state secondary elements; namely a-helix, f-sheet, and coils, are rather crude
for predicting protein structure, and it is not possible to make use of these elements in
three-dimensional (3D) reconstruction without additional information. Many approaches have
been proposed to replace three-state secondary structure descriptions with various local
structural fragments, also known as a 'structural alphabet' [17-23], which can redefine not
only regular periodic structures but also their capping areas. Such studies have described local
protein structures according to various geometric descriptors (for example, C, coordinates, C,
distances, a or ¢, and y dihedral angles) and algorithms (for example, hierarchical clustering,
empirical functions, and hidden Markov models [HMMs] [18]). Many of these methods
involve protein structure prediction; an exception is the SA-Search tool [15], which is based
on C, coordinates and C, distances, and which adopts a structural alphabet and a suffix tree
approach for rapid protein structure searching.

To address the above issues, we have developed a novel kappa-alpha (k, a) plot derived

structural alphabet and a novel BLOSUM-like substitution matrix, called SASM (structural



alphabet substitution matrix), for BLAST [6], which searches in a structural alphabet database
(SADB). This structural alphabet is valuable for reconstructing protein structures from just a
small number of structural fragments and for developing a fast structure database search
method called 3D-BLAST. This tool is as fast as BLAST and provides the statistical
significance (£-value) of an alignment, indicating the reliability of a hit protein structure. For
the purposes of scanning a large protein structure database, 3D-BLAST is fast and accurate
and is useful for the initial scan for similar protein structures, which can be refined by detailed

structure comparison methods (for example, CE [9] and MAMMOTH [10]).

2.2 (x, a)-map cluster and structural alphabet

For coding the structural alphabet and calculating the substitution matrix, a pair database
of structurally similar protein pairs with low sequence identity was obtained from SCOP 1.65
[43]. Of 2051 families in four major classes (all a, all B, a+f, and o/f) with <40% sequence
homology to each other, we excluded a number-of problem entries, including poor-quality
structures, entries with residue-numbering problems, and-small-sized families (i.e., number of
domains <2). We selected 674 structural pairs (i.e., 1348 proteins) based on the following
criteria: (1) one pair was selected for each family, and one extra pair was selected for a family
having >15 domains; (2) pairs must have <40% sequence identity; (3) pairs must have rmsd
<3.5 A, with >70% of aligned resides included-in the rmsd calculation. In total, these protein
pairs had an average sequence identity of 26% (462 pairs below 30% identity), an average
rmsd of 2.3 A, and average aligned residues of 90% (207,492 aligned residues out of 230,915
residues). The amino acid composition of these 1348 proteins was similar to that of proteins

in the Swiss-Prot database.

2.2.1 (x, a)-Map

A structure fragment (five residues long) was defined by the (k, a)-pair angles as shown
in Figure 2.1. The « angle, ranging from 0° to 180°, of a residue i is defined as a bond angle
formed by three C, atoms of residues i — 2, i, and i + 2. The a angle, ranging from —180° to
180°, of a residue i is a dihedral angle formed by the four C,atoms of residues i — 7, i, i + 1,
and i + 2. A specific series of structural fragments, called the (k, o) map, represents a protein
structure. Therefore, each protein structure may form a specific (k, a)-map distribution as

shown in Figure 2.2.



Figure 2.1 Definition of the kappa (i) and alpha (a) angles.

To code the structural alphabet and calculate the substitution matrix we selected 674
structural pairs (1,348 proteins); which-are structurally similar and with low sequence identity,
from SCOP based on two criteria; pairs must have rmsd under 3.5 A, with more than 70% of
aligned resides included in the rmsd calculation; and pairs must have under 40% sequence
identity. The accumulated (x, @)-map matrix (Figure 2.3) consists of 225,523 protein
fragments derived from 1348 proteins. When the angles of (k, a) are divided by 10°, this
matrix has 648 cells (36*18). The fragment frequency of each cell in this matrix is unbalanced
because the protein structures are significantly conserved with regard to a-helix (82,843
segments) and B-strand structures (52,371 segments). Of these helix segments, 71.1% (58,897
segments) are located in four cells that contain 22,310, 15,736, 13,013, and 7,838 segments.
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Figure 2.2 The (k, o) distribution map of 1brbl (square) and 1bf0 (circle).

In the study, the structural distance of a pair of 5-mer protein segments i and j is

determined from the rmsd value of the five C, atom positions, and is given as follows:

{Z[ +(Y-n) (k—Zk)z]/S}l/z

Where (X, Yi, Zi) and (xx, yx, zx) denote the coordinates of the kth C, atom of segments i
and j, respectively. The structural distance is also used to define the intra-segment and

inter-segment distances.
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Figure 2.3 The distribution of accumulated (i, @) plot of 225,523 segments derived from the
pair database with 1,348 proteins.

2.2.2 Structural Alphabet

We aimed to use the structural alphabet to represent pattern profiles of the backbone
fragments by clustering the accumulated (x, o)-map matrix (Figure 2.3). A nearest-neighbor
clustering (NNC) algorithm was developed to cluster 225,523 fragments in the accumulated
(x, o)-map matrix (Figure 2.3) into 23 groups using the following steps and goals: (1)
identifying a representative structural segment for each cell in this matrix; (2) clustering 648
representative segments into 23 groups by grouping similar representative segments and

restricting the maximum number of segments in a cluster; (3) in each cluster, identifying a

representative segment based on the cell weight which is defined as w, =(1/S,) / Zil (1/ S,

where S; is the number of segments in cell i and M is the number of cells in this cluster; (4)



assigning the representative segment of a cluster to a structural letter (Figure 2.4); (5)
obtaining a composition of 23 structural letters that is similar to the 20 common amino acids.
We developed an NNC algorithm instead of using a standard clustering algorithm, such as a
hierarchical clustering method or a K-means, which is unable to satisfy the factors (2), (3),

and (5).

Helix Helix-like

Figure 2.4 The representative 3D fragments of 23 structural alphabets.

3D-BLAST used BLAST as the search method and was designed to maintain the
advantages of BLAST. However, 3D-BLAST is slow if the structural alphabet is
un-normalized, because the BLAST algorithm searches a statistically significant alignment by
two main steps [7]. It first scans the database for words that score more than a threshold value
if aligned with words in the query sequence; it then extends each such 'hit' word in both
directions to check the alignment score. To reduce the ill effects of using an un-normalized
structural alphabet, we set a maximum number (y) of segments in a cluster in order to have
similar compositions for the 23 structural letters and 20 amino acids. The value of y was set to
16,000 (about 7.0% of total structural segments in the pair database).

According to the restriction parameter y, the cell with the highest number of segments
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(22,310) in the accumulated (x, a)-map matrix should be divided into two subcells by equally

separating the k and o angles: one is located in 100° <k <105° and 40°<a <45° , and the
other is in 105° <k <110° and 45°< a < 50°. These two subcells were labeled as structural

letters A and Y, respectively. The NNC method was then applied to cluster the remaining
203,213 fragments into 21 groups. A representative segment of each cell in the accumulated
(x, a)-map matrix was first determined. For each cell, a segment distance matrix (d), stored
with the rmsd values by computing all-against-all segments, was created. And the size was N
x N, where N is the total number of the segments in a cell. An entry (d;;), which represents the
structural distance of segments i and j, is computed by the rmsd of five C, atom positions and

isgiven as

\/Z[(Xk —x) + (Y -y +(Z, _Zk)z]/s

where (X,.Y,,Z,)and (x,,y,,z,)are the coordinates of the kth atom of the segments i
and j, respectively. For each segment i, the sum of distance (d;) between the segment i and the

other segments in this cell is ZZ=1 d,—The segment with the minimum sum of distance is

selected as the representative.segment of a cell. After the representative segment of each cell
is identified, a distance matrix-(D) is. stored with the rmsd values by computing all-against-all
representative segments for these 647 segments. Each entry (D, 1<i, j<647) is a measure of
structural similarity, as defined in<Equation.l,-between representative segments i and j. In
order to ensure that the 3D conformations of the segments clustered in the same group are

similar, an rmsd threshold (¢) of the structural similarity is set to 0.5.

Based on the distance matrix D and restriction parameters (¢ and y), the NNC method
works as follows: (1) Create a new cluster (C;, 1<i<20 ) by first selecting an unlabeled cell (@)
with the maximum number of segments. Label this cell as C;. (2) Add an unlabeled cell,
which is the nearest neighbor (i.e., a minimum rmsd value in row a of matrix D) of the cell a,
into this cluster if this rmsd value is less than ¢, and the sum of segments in this cell is less
than y. Label this cell as C;. Repeat this step until an added cell violates the restriction
thresholds, ¢ or 7. (3) Repeat steps 1 and 2 until the number of clusters equals 21 or all of the
cells are labeled. (4) Assign all of the remaining unlabeled cells to a cluster C»,. Here, ¢ = 0.95
A and y = 16,000.

Finally, we determined a representative segment and assigned a structural letter for each

cluster. For each cell i in a cluster, its sum of distance (D;) with all of the other cells in the
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. N . . .
same cluster is equal to Zm=1 ww, D, , where M is the total number of cells in a cluster, w; is

the cell weight, and D;,, is the structural distance between representative segments i and m of
the cells i and m, respectively. The segment with the lowest sum of distance is selected as the
representative segment of this cluster. We sequentially assigned a structural letter for each
cluster except J, O, and U, since these three letters are not used in BLAST. Figure 2.3 shows
the distribution of these 23 clusters and the structural alphabet on 648 cells in the (k, o) map.
Figure 2.4 shows the 3D conformation of each structural segment.

Our new NNC methods, (k, o) map, and the structural alphabet are easily applied to
build new SADB databases from known protein structure databases. We have created several
SADB databases derived from PDB, a non-redundant PDB chain set (nrPDB), all domains of
SCOP1.69, SCOP1.69 with <40% identity to each other, and SCOP1.69 with <95% identity

to each other.
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Figure 2.5 Structural alphabet substitution matrix (SASM).

2.3 Structural Alphabet Substitution Matrix (SASM)

A substitution matrix is the key component of a protein alignment method. In general, a
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similar underlying mathematical structure is used to construct these matrices [44]. Here, we
developed a Structural Alphabet Substitution Matrix (SASM) (Figure 2.5) by applying this
mathematical structure to a structural pairing database consisting of 207,492 structural letters
derived from 207,492 structural segments based on the aligned residues in the pair database.
This SASM matrix was designed to offer the preference of aligning structural segments
between homologous structures that share low sequence identity. The aligned score from the
SASM matrix provides structural similarity estimates and information on evolutionary
distance.

The entry (S;), which is the substitution score for aligning a structural letter 7, j pair (1<i,

J=<23), of the SASM matrix is defined as S, =/'Llog2ﬂ, where 4 is a scale factor for the

i

matrix. g; and e;; are the observed probability and the expected probability, respectively, of the
occurrence of each i, j pair. The observed probability is f; / Z::l zkm:I fow » Where fj; is the

total number of letter i, j pairs in these 207,492 structural letters. The expected probability is
pip; for i = j and 2p;p; for i #+j ; where p;isthe background probability of occurrence of

letter i. The p; is given as g, + ZZ, g, /2 . The substitution score is greater than zero (S; > 0) if

the observed probability is greater than the €xpected probability. By contrast, Sj; <0 if g;; < e;.
The optimal 4 value is yielded by testing various values ranging from 0.1 to 5.0; is set to 1.89
for the best performance and efficiency.-The-final score S; is rounded to the nearest integer

value.

2.4 Evaluation of (x, a)-Map and Structural Alphabet

The goal of creating a structural alphabet is to define the 3D structure of fragments of the
protein backbone and then represent a protein structure in 3D by a series of structural letters.
A structural letter represents pattern profiles of the fragment backbones (five residues long)
derived from the pair database; therefore, a protein structure of L residues is described by a
structural alphabet sequence of L-4 letters. Here, we used the pair angles, k (from 0° to 180°)
and a (from —180° to 180°) as shown in Figure 2.1, to divide a 3D protein structure into a
series of 3D protein fragments.

Figure 2.3 shows the accumulated (k, o) map matrix (648 cells) of 225,523 3D segments

derived from 1348 proteins in the pair database when the « and o angles are divided by 10°.
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The number of 3D segments in each cell ranges from 0 to 22,310, and the color bar on the
right side shows the distribution scale. According to the definitions in DSSP, the numbers of
a-helix and B-strand segments are 82,482 (36.57%) and 52,371 (23.33%), respectively. In this
(x, o) map, most of the a-helix segments are located on four cells in which the o angle ranges
from 40° to 60° and the k angle ranges from 100° to 120°. In contrast, the k angle of most of
the B-strand segments ranges from 0° to 30°, and the a angle ranges from —180° to —120° or
from 160° to 180°. The number of cells having no segments is 183. We observed that most of
the 3D segments in a cell have similar conformations; that is, the root-mean-square deviation
(rmsd) is less than 0.3 A on five contiguous C,-atom coordinates. Moreover, the
conformations of 3D segments located in adjacent cells are often more similar than ones in
distant cells. These results indicate that the (k, o) map matrix is useful for clustering these 3D

segments and for determining a representative segment for each cluster.
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Figure 2.6 The (x, a) plots of an all-a protein (Protein Data Bank [PDB] code 1J41-A; red)
and an all-P protein (PDB code 1RZF-L; blue).

Each structure has a specific (k, o) plot (Figure 2.6) when governed by these two angles.
For instance, a typical (k, a) plot (blue diamond) of an all-B protein (human anti-HIV-1

GP120-reactive antibody E51, PDB code 1RZF-L [45]) is significantly different from that
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(red cross) of an all-a protein (human hemoglobin, PDB code 1J41-A [46]). Conversely, two
similar protein structures have similar (k, o) plots.

The (x, a) plot is similar to a Ramachandran plot, based on the following observations.
First, the a-helices are located in very restricted areas, in which o ranges from 40° to 60°, and
k ranges from 100° to 120°. Additionally, B-sheet segments are restricted to some regions in
the (k, a) plot. All residues are fairly restricted in their possibilities in both plots. Second,
angles ¢ and y in the Ramachandran plot, denoting a protein structure with a series of 3D
positions of amino acids, are widely adopted to develop various structural segments (blocks).
Here, the (x, a) plot was utilized to develop a structural alphabet, which represents a protein
structure as a series of 3D protein fragments, each of which are five residues long. The angles
¢ and y represent the position relationship of two contiguous amino acids, whereas the angles
K and o represent the position relationship of five amino acids. These observations indicate
that the (k, o) plot is an effective means of both developing short sequence structure motifs

and assessing the quality of a protein structure.

Helix Helix-like

Y

Strand

Figure 2.7 The three-dimensional (3D) segment conformations of the five main classes of the

23-state structural alphabet.
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A set of representative segments with 23 states and its respective structural letters are
identified (Figure 2.7) after performing the NNC method. Here, this 23-state structural
alphabet was adopted for both protein structure reconstructions and protein structure database
searches. The intra-segment structural distances (blue) are much greater than the
inter-segment structural distances (Figure 2.8), and the average rmsd values of these 3D
representative segments located in the same (or similar) cluster are frequently below 0.8 A.
The composition of the 23-state structural alphabet resembles that of the 20 amino acids
obtained from the pair database. The distribution of the 23-state structural segments is

consistent with that of the eight-state secondary structures defined by the DSSP program.
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Figure 2.8 The average intra-segment and inter-segment root mean square deviation values of

the 23-state structural alphabet.

Based on the (k, o)) plot and a new nearest neighbor clustering, a new 23-state structural
alphabet was derived to represent the profiles of most 3D fragments, and was roughly
categorized into five groups (Figure 2.7): helix letters (A, Y, B, C, and D), helix-like letters (G,
I, and L), strand letters (E, F, and H), strand-like letters (K and N), and others. The 3D shapes
of representative segments in the same category are similar; conversely, the shapes of

different categories are significantly different. For instance, the shapes of representative 3D
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segments in the helix letters are similar to each other, as are those in strand alphabets. In
contrast, the shapes of helix letters and strand letters obviously differ. The average structural
distance (determined from the rmsd value of five continuous C, atom positions between a pair
of 5-mer segments) of inter-segments in both helix and strand letters is less than 0.4 A (Figure
2.8), and is much less that those of other letters in the structural alphabet. Additionally, most
a-helix secondary structures based on the definition of the DSSP program are encoded as
helix or helix-like alphabets, and none are encoded as strand or strand-like alphabets (Figure

2.9). Conversely, most B-strand segments are encoded as strand or strand-like letters.
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Figure 2.9 The distributions of the 23-state structural alphabet on a-helix, B-strand, and the
coil segments defined by the DSSP program.
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All residues were fairly restricted in their possibilities in the (k, a) plot (Figure 2.3). The
proportion of cells with 0 segments, which were encoded as structural letter 'Z', was 28.2%
(183 cells among 648). Additionally, the numbers of cells and segments with structural letter
'Z" were 272 (42.0%) and 989 (0.4%), respectively. Restated, only 0.44% segments were
widely distributed in 41.98% of cells. If the segments of a new protein structure are located on
these 41.98% cells, then they may be regarded as poor structural segments. Conversely, five
helix letters (A, Y, B, C, and D) and three strand letters (E, F, and H) were located in 7 and 30
cells (Figure 2.3), respectively. The total number of segments located in these 37 (4.4%) cells
was 75,477 (33.5%).

The distribution of a structural alphabet is a key determinant of speed in 3D-BLAST.
Since the structure database contained high percentages of a-helix and B-strand structures, we
restricted the maximum number of structural segments in a cluster for the NNC algorithm to
increase the speed of 3D-BLAST. A structural letter, which represents all of the a-helix
segments, will occupy 36.57% of total segments without the restriction based on the NNC
algorithm. Here, the restriction.maximum number of segments was set to 16,000, which is
~7% of the total segments according to the distribution of 20 amino acids. In the structural
alphabet, there are 8 letters (the helix and helix-like) for the o-helix structure and 5 letters
(strand and strand-like) for theB-strand structure (Figure 2.4). 3D-BLAST is ~64 times faster
if the restriction is applied to the NNC.method.

In addition, a greedy algorithm and the same evaluation criteria (global-fit score)
proposed by Kolodny et al. [21] were used to evaluate the structural alphabet on
reconstructing 10 test proteins. This greedy algorithm reconstructed the protein for
increasingly larger segments of the protein by using the best structural fragment, i.e. the one
whose concatenation yields a structure of minimal rmsd from the corresponding segment in
the protein. The experimental results showed that the global rmsd values were from 2.4 A to
4.5 A for these 10 proteins and were lightly worse than Kolodny et al. [21] work. In the future,

we will enhance the structural alphabet for protein structure prediction.

2.5 Evaluation of SASM

Substitution matrices are the key component of protein alignment methods. We

developed a new SASM (Figure 2.5) using a method similar to that used to construct
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BLOSUMBS62 (22) based on a pair database consisting of 674 pairs of proteins. BLOSUMG62 is
the most commonly used substitution matrix for protein sequence alignment in BLAST. To
calculate the preference of structural letters, we prepared this pair database by selecting
structurally similar protein pairs having low sequence identity.

The SASM matrix (23*23) offers insights about substitution preferences of 3D segments

between homologous structures having low sequence identity. The highest substitution score
in this matrix is for the alignment of a letter “W” with a letter “W”, in which the shape of the
representative segment is similar to that of B-turns (Figure 2.4), which allows the peptide
backbone to fold back and therefore has great significance in protein structure and function
[47]. This substitution score is 11 (Figure 2.5). Based on the tool PROMOTIF [48], most of
the segments in “W” are B-turns. When two identical structural letters (e.g., diagonal entries)
are aligned, the substitution scores are also high. For example, the alignment scores are 9 and
8 when “I” and “S” are aligned with “I” and “S”, respectively. Most of the substitution scores
are positive if two structural letters in the same category (e.g., helix letters A, Y, B, C, and D
shown in Figure 2.4) are aligned..On the other hand, the lowest substitution score (—15) in this
SASM is for the alignment of the ““Y”>(a helix letter) with the “E” (a strand letter). All of the
substitution scores are low when the helix letters (A, Y, B, C, and D) are aligned with strand
letters (E, F, and H). The above relationships are in good-agreement with biological functions
of the relevant structures, showing that the matrix SASM embodies conventional knowledge
about secondary structure conservation in-proteins.

We compared the SASM matrix and BLOSUMG62 [44]. The highest substitution score is
11 for both matrices. In contrast, the lowest score for SASM (—15) is much lower than that for
BLOSUMG62 (—4). The main reasons for this large difference are that a-helices and B-strands
constitute very different protein secondary structures, and the structural letters pertaining to
these two types of structure are more conserved than amino acid sequences. Because the gap
penalty is an important factor, various combinations of gap penalties were systematically
tested for 3D-BLAST and the SASM matrix based on the pair database (1,348 proteins). Here,
the optimal values for the open gap penalty and the extended one are 8 and 2, respectively.
These results demonstrate that the structural alphabet, SADB and SASM, may be able to more

accurately predict protein structures than simple amino acid sequence analyses.
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2.6 Reconstructing protein using Structural Alphabet

A greedy algorithm and the evaluation criteria (global-fit score) presented by Kolodny
and coworkers [21] were applied to measure the performance of 23-state structural alphabet
(structural segments) in reconstructing the a-p-barrel protein (PDB code 1TIM-A [49]) and 38
structures selected from the SCOP95-1.69 set, which comprises 516 proteins. This greedy
algorithm reconstructs the protein in increasingly large segments using the best structural
fragment, namely the one whose concatenation produces a structure with the minimum rmsd
from the corresponding segment in the protein from 23 structural segments. No energy
minimization procedure was utilized to optimize the reconstructing structures in this study.
The global rmsd values were from 0.58 A to 2.45 A, and the average rmsd value was 1.15 A
for these 38 proteins. Figures 2.10A and B illustrate the reconstructed structures of the
a-B-barrel protein and ribonucleotide reductase (PDB code 1SYY-A [50]), respectively. The
C, carbon rmsd values were 0.80 A (1TIM-A) and 0.63 A (1SYY-A) between the X-ray
structures (red) and reconstructed proteins (green). The reconstructed structures are frequently
close to the X-ray structures on both-e@-helix and (-sheet segments, and the loop segments
account for the main differences. If all representative segments (465 segments) of the
non-zero cells in the (k, o) plot were considered when-reconstructing structures, then the
global rmsd values would be in the range 0.35 t0-2.32 A, and the average rmsd value would

be 0.94 A.

Figure 2.10 Reconstruction protein structures using the 23-state structural alphabet.
Reconstruction of the (A) a-B-barrel protein (PDB code 1TIM-A) and (B) ribonucleotide
reductase (PDB code 1SYY-A).
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The 23-state structural alphabet should be able to represent more biologic meaning than
standard three-state secondary structural alphabets. First, the classic regular zones of
three-state secondary structures are flexible structures. For instance, a-helices may be curved
[51] and more than one-quarter of them are irregular [52], and the ¢ and y dihedral angles of
B-sheets are widely dispersed. The proposed 23-state alphabet describes a-helices with eight
segments (five helix letters and three helix-like letters) and B-sheets with five segments
(Figure 2.7). Figure 2.10 reveals that the 23 structural segments performed well in
reconstructing protein structures, particularly in the structure segments of classic a-helices
and B-sheets. Second, the three-state secondary structure cannot represent the large
conformational variability of coils. Nonetheless, some similar structures can be identified for
many of the protein fragments, such as B-turns [47], n-turns, and B-bulges [53]. Here, 10
structural segments in the 23-state alphabet were utilized to describe the loop conformations.
An analysis using the PROMOTIF [48] tool reveals that most of the segments (>80%) in the

letter "W' are B-turns.

2.7 Summary

This study demonstrates the robustness and feasibility of the (k, o) plot derived structural
alphabet for developing a small'set of sequence-structure fragments and a fast one-against-all
structure database search tool. The (k; a)-plot.is-an effective means of assessing the quality of
protein 3D structure.

Future investigations can adopt the (k, a) plot derived 3D fragment library to develop a
small 3D fragment library and predict protein structures. Moreover, many sequence-based
methods can be applied to mine biologic meanings quickly from protein structures based on

this 23-state structural alphabet.
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Chapter 3
Protein Structure Database Search

and Evolutionary Classification

3.1 Introduction

Numerous sequence alignment methods (for instance BLAST [6], SSEARCH [54], SAM
[55], and PSI-BLAST [7]) and structure alignment methods (for instance, DALI [8], CE [9],
and MAMMOTH [10]) have been demonstrated to identify homologs of newly determined
structures. Sequence alignment methods are rapid but frequently unreliable in detecting the
remote homologous relationships that can be.suggested by structural alignment tools; also,
although the latter may be useful; they are slow at scanning homologous structures in large
structure databases such as PDB [4]. Various.tools. including ProtDex2 [12], YAKUSA [16],
TOPSCAN [14], and SA-Search [15] have recently been developed to search protein
structures quickly. TOPSCAN, SA-Search, and YAKUSA describe protein structures as
one-dimensional sequences and then use specific sequence alignment methods to replace
BLAST for aligning two structures, because BLAST needs a specific substitution matrix for a
new alphabet. Many of these methods have been evaluated based on the performance of two
structure alignments but not on the performance of the database search. Additionally, none of
these methods provides a function analogous to the E£-value of BLAST (which is probably the
most adopted database search tool by biologists) for investigating the statistical significance
of an alignment 'hit'.

To the best of our knowledge, 3D-BLAST is the first tool that permits rapid protein
structure database searching (and provides an E-value) by using BLAST, which searches a
SADB database with a SAMS matrix. The SADB database and the SASM matrix improve the
ability of BLAST to search for structural homology of a query sequence to a known protein
structure or a family of proteins. This tool searches for the structural alphabet high-scoring
segment pairs (SAHSPs) that exist between a query structure and each structure in the
database. Experimental results reveal that the search accuracy of 3D-BLAST is significantly

better than that of PSI-BLAST at 25% sequence identity or less.
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3.2 3D-BLAST: Protein structure database search

We designed 3D-BLAST to search a protein structure database for all known homologs
of a query (new) structure and for determining its evolutionary classification. Users input a
PDB code with a protein chain (for example, IGR3-A) or a domain structure with a SCOP
identifier (for example, d1gr3a ). When the query has a new protein structure, the 3D-BLAST
tool enables users to input the structure file in the PDB format. The tool returns a list of
protein structures that are similar to the query, ordered by E-values, within several seconds.
When we searched databases such as SCOP or CATH [56], which are based on structural
classification schemes, the evolutionary classification (family/superfamily) of the query
protein was based on the first structure in the 3D-BLAST hit list. The output allows users to
directly view the superposition of the structures online or download them in the PDB format.
The main advantages of 3D-BLAST using BLAST as a search tool include robust statistical
basis, effective and reliable database search capabilities, and established reputation in biology.

Figure 3.1 provides an outline of 3D-BLAST: The program quickly scans a structural
alphabet sequence database (SADB), which is derived from known protein structures. Here,
we used two proteins, 1brb with I chain (blue)-and 1bf0 (gray), to describe these steps and
concepts. First, we divided a 3D protein structure into 3D-fragments, each five residues long,
using x and a angles (Figure 3:1B) as defined in the DSSP program (21). Second, as governed
by these angles, each structure in the protein structure database has a specific (k, o) map
distribution (Figure 3.1C), which was"then ‘encoded into a corresponding 1D structural
alphabet sequence and stored in the SADB database (Figure 3.1D). Third, we used a
generalized theory of a substitution matrix to develop a new matrix, SASM, based on 674
structural protein pairs. We then enhanced the sequence alignment tool BLAST, which
searches SADB using this SASM, to quickly discover homology structures or evolutionary
classifications. The resulting structural alphabet alignment (Figure 3.1E) is reported along
with an E-value similar to the one assigned by BLAST, and the structure alignment (Figure
3.1F) is also reported. For example, the (k, o) map distributions (Figure 3.1C) of 1brbl (filled
squares) and 1bf0 (open circles) are similar, as are their protein structures (Figure 3.1F). In
Figures 3.1C, D, and E, the B-strand structures (green) and helix structure (red) of these two
proteins were aligned by 3D-BLAST. The structures are similar even though the amino acid

sequence identity is only 21.3%.
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Figure 3.1 Stepwise illustration of 3D-BLAST using the protein 1brb chain I as the query

protein.

3.3 Datasets and Evaluation Criteria

To evaluate the utility of 3D-BLAST for discovery of homologous proteins and
evolutionary classification of a query structure, we selected one query protein set, termed
SCOP-894, from SCOP 1.67 and SCOP 1.69, in which the sequence identity is <95%. For
evolutionary classification, we considered the first position of the hit list of a query as the
evolutionary family/superfamily of this query protein. SCOP-894 contains 894 query proteins
from two subsets, SCOP95-1.69 and SCOP95-1.67. The first subset (SCOP95-1.69) contains
516 query proteins that are in SCOP 1.69 but not in SCOP 1.67, and the search database is
SCOP 1.67 (11,001 structures). The second subset (SCOP95-1.67) contains 378 query
proteins that are in SCOP 1.67 but not in SCOP 1.65, and the search database is SCOP 1.65
(9354 structures). The total number of alignments in SCOP95-1.67 and SCOP95-1.69 is
3,535,812 (378*%9354) and 5,676,516 (516*11,001), respectively. Here, a query of 3D-BLAST

is a protein sequence with a chain identifier but not a domain sequence.
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For comparison with related work on rapid database searching, 3D-BLAST was also
tested on a dataset of 108 query domains, termed SCOP-108, proposed by Aung and Tan [12].
These queries, which have fewer than 40% sequence homology to each other, were chosen
from medium-sized families in SCOP. The search database (34,055 structures) represents
most domains in SCOP 1.65. Finally, the utility of 3D-BLAST for 319 structural genomics
targets named as SG-319 was analyzed; the search database was SCOP 1.69, with under 95%
identity to each other.

The quality of the 3D-BLAST database search is based on some common metrics,
including precision, recall, false positive rate, and receiver operating characteristic (ROC)
curve. The precision is defined as 4;,/T}, the recall and false positive rate can be given as 4;,/4
and (T, — A)/(T — A), respectively, where A is the number of true hit structures in the hit list,
T is the total number of structures in the hit list, 4 is total number of true hits in the databases,
and T is total number of structures in the databases. The ROC curve plots the sensitivity (i.e.,
recall) against the “1.0 — specificity” (i.e.,. false positive rate). The average precision is
defined as (4;/ T;)/ A, where T', is the number of compounds in a hit list containing i correct

structures.

3.4 Statistics of 3D-BLAST

A database search method should allow usersto examine the statistical significance of an
alignment, thereby indicating the reliability of the prediction. 3D-BLAST maintains the
advantages of the BLAST tool to provide hit proteins ordered by E-value for fast structural
database scanning. 3D-BLAST searches SAHSP, which is similar to the high-scoring segment
pair (HSP) in BLAST for protein sequence alignment. Therefore, the statistics of HSPs for
analyzing the BLAST algorithm allow us to estimate the E-value of the SAHSP in
3D-BLAST by using the matrix SASM. In BLAST, the statistical significance of a local
alignment is accessed with an E-value, which is calculated using the formula £ = Kmne™,
where m and n are the lengths of the query and database, respectively, S is the nominal score
of the alignment of finding an HSP, and 4 and K are statistical parameters based on the scoring
system. The E-value is the expected number of chance alignments with a score of S or better.
Protein structures and the structural letters are more conserved than protein sequences; thus,
as one would expect, the E-values of 3D-BLAST are larger than those of BLAST when the

reliable indicators are similar. Here, the 4 was set to 1.89 and K was the default value used in

BLAST (by testing various values).
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To evaluate the accuracy of the E-values reported by 3D-BLAST, we submitted shuftled
SA sequences as queries and found the number of match sequences with E-values below
various thresholds. For simplicity, we used the query set SCOP95-1.69 and the respective
shuffled queries (516 SA sequences) that represent protein structures, and the search database
was SCOP 1.67. Shuffled queries mimic completely random SA sequences, which preserve
only the composition basis of a protein structure, using the typical SA composition. The

20 15 -10
,e ~,and e "~ are 0, 3,

numbers of matches of 516 shuffled queries with E-values below ¢
and 326, respectively. On the other hand, the numbers of matches of 516 queries in the
SCOP95-1.69 dataset with E-values below ¢, ¢ and ¢ are 8,268, 18,700, and 64,440,
respectively. Protein structures and the structural letters are more conserved than protein
sequences; thus, as one would expect, the E-values of 3D-BLAST are larger than those of

BLAST when the reliable indicators are similar.
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Figure 3.2 3D-BLAST performance with E-values: The relationship between precision

and recall for structure database search.

Figures 3.2, 3.3, 3.4 and Table 3.1 show the relationships between 3D-BLAST
performance and the various E-values for SCOP-894. In searching a structural database

containing thousands of sequences, generally only a limited number, if any, will be
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homologous to the query protein structure. Our 3D-BLAST provides cutoff scores to identify
highly significant similarity with the query because the biological significance of the
high-scoring structures can be inferred on the basis of the similarity score. When a lower
E-value is used, the proportion of true positives increases for the database search (Figure 3.2)
and the rate of correct classification increases for evolutionary classification assignment
(Figure 3.3). For structural database searches, the precision is 0.81 and recall is 0.5 if the
E-value is <¢ " (Table 3.1); by comparison, if the cutoff of E-value is <e *°, the precision is
0.91 and recall is 0.43. For classification assignment, we calculated the relation between the
E-value of the first hit and the number of correct (thick line) and false (thin line) classification
assignments for SCOP-894 (Figure 3.3). If the E-value is <e¢ ", 98.53% of 894 protein
structures are assigned correct classifications and the coverage is 91.61% (Table 3.1). When
the E-value is restricted to <e 2°, 99.60% of the predicted cases are correct and the coverage is
84.23%. When the sequence identity is <25% (229 proteins among 894 proteins), the rate of

correct assignments is 92.77% and the coverage is 72.49% if the E-value is restricted to <e¢ '°.

Table 3.1 3D-BLAST performance with different thresholds of the E-value on structural
database searches and automatic SCOP superfamily assignment on the protein query set
SCOP-894

Structural database search Superfamily assignment “
. Sequence identity <
Threshold False 894 proteins 250, b
Recall Precision positive Correct Correct
of . Coverage . Coverage
rate assignment ¢ o assignment o
E—Value (%) ( A)) (%) ( A))

e!? 0.60 0.52 0.0091 96.68% 97.76% 86.32% 92.58%
e 0.50 0.81 0.0020 98.53% 91.61% 92.77% 72.49%
e?? 0.43 0.91 0.00056  99.60% 84.23% 97.60% 54.59%
e 0.39 0.95 0.00016  99.86% 77.96% 98.94% 41.05%

SCOP-894 consists of 894 query proteins from two subsets, SCOP95-1.67 and SCOP95-1.69.
SCOP95-1.67 has 378 query proteins, which are in SCOP 1.67 but not in SCOP 1.65, and the
search database is SCOP 1.65. SCOP95-1.69 consists of 516 query proteins, which are in
SCOP1.69 but not in SCOP1.67, and the search database is SCOP1.69.

“ The first rank in the hit list of a query protein is assigned as the superfamily.

” The predicted accuracy was calculated from 229 query proteins having <25% sequence identity.

“ The coverage is defined as P/T where P is the number of the assigned structures and T is total number of
structures. For example, P is 819 and T is 894 if the threshold of E-value is set to ¢ for the query set
SCOP-894.
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The proposed 3D-BLAST provides a threshold E-value to identify a highly significant
similarity with the query. The SASM matrix reveals that the biologic significance of the
high-scoring structures can be inferred from the similarity score and the proportion of true
positives rises when a lower E-value is utilized. Figure 3.4 shows that 3D-BLAST E-values
correlate with both the Z-scores of CE (blue) and rmsd values (red) of aligned residues. For
the 894 query proteins, the Z-scores of CE are >5 and the rmsd values are often <3 A if the
E-value is restricted to <e *°. Clearly, if the E-values are lowered, the number of true positives
and Z-scores of CE increase. These results demonstrate that the E-value of 3D-BLAST allows

users to examine the reliability of the structure database search and evolutionary superfamily

assignments.
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Figure 3.3 3D-BLAST performance with FE-values: The number of correct and false

family/superfamily assignments.
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Figure 3.4 3D-BLAST performance with E-values: The relationship between 3D-BLAST

E-values and both Z-Scores of CE and rmsd of aligned residues

Figure 3.5 shows details'that E-values on-the protein query set SCOP95-1.69 correlate
strongly with the rmsd values of aligned residues between the query protein and the hit
proteins. A total of 22,415 proteins were randomly chosen from the hit lists of 516 query
proteins in the SCOP95-1.69 dataset. Among these 22,415 proteins, 27.72% (6,215 structures)
had rmsd values below 3.0 A. If the E-value was restricted to under ¢%°, then 83.52% of hit
proteins (2,130 proteins from among 2,549 proteins) had rmsd values less than 3.0 A, and the
average rmsd was 2.37 A. When the E-value was restricted to under ¢ and under ¢, then
72.65% (3,984 proteins among 5,487 proteins) and 51.70% (5,742 proteins among 11,106
proteins) of proteins had rmsd values less than 3.0 A, respectively, and the average rmsd

values were 2.85 A and 3.57 A.
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Figure 3.5 3D-BLAST performance with E values on the protein query set SCOP95-1.69

For classification assignment, the relationship between the E-value of the first hit and the
number of correct (dark line) and false-(gray line) classification assignments for the
SCOP95-1.69 dataset were calculated (Figure 3.6). If the E-value was restricted to under ¢,
then 97.67% of 516 query structures are assigned correct classifications and the coverage was
91.47%. The coverage is defined as P/T, where P is the number of assigned structures by a
method and 7 is total number of structures. For example, P is 472 and T is 516 for the set
SCOP95-1.69. When the E-value was less than ¢ and e'lo, 99.31% and 95.26% of the
predicted cases were correct, and the coverage values were 83.72% and 98.06%, respectively.
When the sequence identity was less than 25% (154 proteins from among 516 proteins), the
rate of correct assignment was 90.35%. The coverage was 72.12% when the E-value was less
than e°. For the database search, the precision was 0.80 and the recall was 0.48 when the
E-value was below e”; by comparison, the precision was 0.90 and the recall was 0.42 when

the E-value was below e™°.

These analytical results demonstrate that the E-value of
3D-BLAST enables users to examine the reliability of the structure database search of a

query.

31



— True (Superfamily)
- - - -False (Superfamily)

Precntage (%)

[\ W EEN ()] (@) J oo O
\

O ! 1 a™ 1 1 1 1 1

0 20 40 -60 -80 -100 -120 -140 -160 -180
E-value of 3D-BLAST

Figure 3.6 The relationship” between "E-values and the percentages of true and false

superfamily assignment on the query set SCOP95-1.69.

3.5 Evolutionary Classification

3.5.1 3D-BLAST Database Search Examples

For many query proteins in SCOP-894, 3D-BLAST automatically recognizes the
distantly related protein family members that escape standard sequence database similarity
searches. Here, we discuss two examples involving protein families that have relatively weak
sequence similarities. Tables 3.2 and 3.3 demonstrate these two cases. The first target is
aminoglycoside N-acetyltransferase (NAT) AAC(6")-ly [57] (PDB code 1s3z) (Figures 3.7
and 3.8). The secondary target is a structural genomics target (PDB code 1xi3) that is a
member of a TIM beta/alpha-barrel fold [58] (Figure 3.9). In each case, 3D-BLAST reported

a structurally and functionally relevant relationship in greater detail.
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Table 3.2 3D-BLAST search results using aminoglycoside 6'-N-acetyltransferase as the query

PDB

rmsd Sequence

code Protein name SCOP family name log(£-value) (A) identity * Species
ItigA Protease synthase and sporulation N-acetyl transferase -36.70 1.97 17 Bacillus subtilis
negative regulatory protein PaiA
1gstA  GCNS histone acetyltransferase N-acetyl transferase -32.70 3 14.4  Tetrahymena thermophila
. Glucosamine-phosphate ..
1i112A N-acetyltransferase GNAI N-acetyl transferase -32.40 2.09 21.2  Saccharomyces cerevisiae
IgheA Tabtoxin resistance protein N-acetyl transferase -29.70 2.36 21.5  Pseudomonas syringae
1qsoA Histone acetyltransferase HPA2 N-acetyl transferase -29.15 1.77 18.1  Saccharomyces cerevisiae
Histone acetyltransferase domain of .
Icm0OA P300/CBP associating factor N-acetyl transferase -29.05 2.8 16.4  Homo sapiens
lufthA Putative acetyltransferase YycN N-acetyl transferase -27.52 3.39 21.6  Bacillus subtilis
IvhsA Putative phosphinothricin N-acetyl transferase -26.40 2.68 18.3  Bacillus subtilis
acetyltransferase YwnH
Aminoglycoside .
In71A 6'-N-acetyltransferase N-acetyl transferase -26.40 2.28 18.8  Enterococcus faecium
Im44A A,mlnogIYCOSIde N-acetyl transferase -25.52 2.96 18.9 My CObaCte.r wm
2'-N-acetyltransferase tuberculosis
Imk4A ® Hypothetical protein YqiY N-acetyl transferase -25.00 2.74 24.9  Bacillus subtilis
1pOhA b Mycothiol synthase MshD N-acetyl transferase -24.30 1.51 14.2 My CObaae‘r i
tuberculosis
IcjwA  Serotonin N-acetyltranferase N-acetyl transferase -24.22 3.04 16.6  Ovis aries
1bodA © Aminoglycoside N-acetyl transferase -24.22 2.74 16.8  Serratia marcescens
3-N-acetyltransferase
InslA  Probable acetyltransferase YdaF N-acetyl transferase -23.52 2.92 18.1  Bacillus subtilis
1sqhA Hypothetical protein cg14615-pa Hyp (gtghlf;tgcla 51_11;raotem -21.00 2.39 15.7  Drosophila melanogaster
lyghA GCNS histone acetyltransferase N-acetyl transferase <20.22 3.06 17.5  Saccharomyces cerevisiae
1q2yA Probable acetyltransferase YjcF N-acetyl transferase -19.70 248 19 Bacillus subtilis
Ibob  Histone acetyltransferase HAT1 N-acetyl transferase -16.15 2.18 14.9  Saccharomyces cerevisiae
1ne9A2 Peptidyltransferase FemX FemXAB -16.05 242 15.3  Weissella viridescens
11rzA3 Methicillin resistance protein FemA FemXAB -16.00 2.23 14.9  Staphylococcus aureus
liicA1 N-myristoyl transferase N-myristoyl transferase ~ -16.00 2.71 16.2  Saccharomyces cerevisiae
1liykA2 N-myristoyl transferase N-myristoyl transferase ~ -15.00 3.04 15.3  Candida albicans
1fy7A  Histone acetyltransferase ESA1 N-acetyl transferase -14.00 297 16.2  Saccharomyces cerevisiae
1ro5A Autoinducer synthesis protein Lasl ~ Autoinducer synthetase  -13.22 3.37 19.2  Pseudomonas aeruginosa
liicA2 N-myristoyl transferase N-myristoyl transferase ~ -13.10 2.61 16.8  Saccharomyces cerevisiae
1kzfA gcyl-homoserlnelactone synthase Autoinducer synthetase -12.70 374 13.7 Pantoeq .stewartn subsp.
sal Stewartii
liykA1l N-myristoyl transferase N-myristoyl transferase  -12.30 2.85 18.6  Candida albicans
1lrzA2 Methicillin resistance protein FemA FemXAB -11.52 3.46 16.7  Staphylococcus aureus

“ Sequence identity was calculated by FASTA software.
» These two proteins were found by PSI-BLAST if the threshold of the E-value was 0.01.
“ The protein (bold case) is shown in Figure 6A.

33



6

Query Protein: 1s3zA _—
y(d_108_1_1) 1sqhA (d.108.1.5)

Hypothetical protein
) cg14615-pa
} | =z~ A % ) (1' ,/\/}
2 : ~ M A W™ -
: 4 - | ol

) ,
A {

“1‘\(‘4

| AT J' 1ne9A (d.108.1.4
1b04A (d.10811)  1iykA(d108.12)  1r05A(d.108.13) oo O-108-1.4)

N-acetyl transferase N-myristoyl transferase Autoinducer synthetase peptidyltransferases

Figure 3.7 The structural recurrences of five homologous proteins from the NAT superfamily.

3.5.1.a N-acetyltransferases.

The Salmonella enteritidis aminoglycoside N-acetyltransferase AAC(6')-ly (PDB code
1s3z) is a member of the GCNS5-related N-acetyltransferase (GNAT) superfamily [59] and the
SCOP NAT superfamily. AAC(6")-ly catalyzes acetyl group addition to aminoglycoside
antibiotics, which are important antibacterial agents, and inhibits protein synthesis by
inhibiting initiation and causing code misreading. Three conserved sequence motifs, termed D,
A, and B, are characteristic of the GNAT superfamily, and motif A often contains a
Arg/GIn-X-X-Gly-X-Gly/Ala motif (X denotes some variation) for the NAT family (Figure
3.8) [59].
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3D-BLAST structural alphabet sequences

10 20 30 40 50 60 70 80 90 100 110 120
| | I | | 1 | 1 |
SS structure SSSSSS HHHHHHHHHHHHHH SSSSS HHHHHHHH
Motif DDDDDDDDDDDDDDDDDDDDDDDDDD AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA BBBBBBBBBBBBBBBBBBBBBBBBBBBBB
FHtt+ + bR + +H++ M: Q E-value
1s3zA EFFFHH--V-SQ- - XSTK-——=—————- VQP---M-T-MP = C-DQMQS---QMBACYBBYYCYACD---BSRNMPHHFHKK----CQPMBDYYBABBSRTKH
1ufhA EHFFNH--V-TLDNEXNEEH--KHEE--——-————————— GQP---D-S-RHF-F--HVRXKKKC-BQXQS---RMGCBBBDCBAACDB---BSRHXPHHFHKF----BQNMDCDCYYCBSRNKH  -27 .52
1vhsA HFFEFK--1-SR-TNVPFE----FHKFVT-——————————— QP---D-D-QMQRK--EEEEEKKD-BRVQS---QMBYYYCACYBAGGB---DSRHMPEFFHKK----BQNMACACABBBSQNKN  -26.40
1bo4A EEEFEE--V-WR-TNMPEEHKFEFKEGLT QP FFEF--HXPNHKKC-DQVQS---QMCDYYBYBBBACDA---ASRNMPEEKH -24.22
1sghA NEEFHKFDL-SN-NNXPEEK-—-—-—-—-- TK-—————————— 1S—--Q-T-RZ-------PNNKK1-DQMQS---QMACDYYAYCACACY ---ALTRTNNHFHKK----CQNMDCYACBBBSRNKX -21.00
1ne9A2 HEEFHK--V-WR-THXPEFH--EF-HXW. 1P-NF--HZPEEFKV-WRT-T---QMGBBYBACYBBDAC---ASNNMPHETXPFVTQPLQPG-ACAADGDLR--- -16.05
1liykA2 EEEFHF--K1SR-NHXPEEH--FFHHFFFE-————————- MQT---GLN-MPFHEFKHXPEEK---GXMLTD--QMCACBYCADDBDCBGGGDSPEMPH—--NKK - - - - QXWQMGLQGACSRHKN  -15.00
1ro5A HEEEHH--V-SQ-THXPEFE--EKFGDSPKCDLLLRMGGSTRTKKHX-TCGPF-E--HXPHHKHXT IRNMSKDLDDBDCYBAABYYAYB---BSRHXPEHKXNK----1---DDDBACYBSRTRH -13.22

Amino acid sequences
10 20 30 40 50 60 70 80 90 100 110 120

I
NGC---D-S-SPVVF--LEG IFVLP-SFRQR---GVAKQLIAAVQRWGT---NKGCREMASDTS----PENT I SQKVHQALGFEE
PEH---P-Q-QEA-F--1YDFGLYE-PYRGK---GYAKQALAALDQAAR---SMG IRKLSLHVF----AHNQTARKLYEQTGFQE

| |
1s3zA ASF1AM--A-DG-VAIGFAD--ASIRHDYV-
1ufhA HLWSLK--L-NEKDIVGWLW--1HAE-

1vhsA LYVAED--E-NG-NVAAWI ----SFETFY-- —-GR---P-A-YNKTA--EVS1YIDE-ACRGK---GVGSYLLQEALRIAP---NLG IRSLXAFIF----GHNKPSLKLFEKHGFAE
1bo4A 1ALAAF--D-QE-AVVGALAAYVLPKFEQ PR SEIY--1YDLAVSG-EHRRQ---GIATALINLLKHEAN---ALGAYVI1YVQ

1sghA KSLGICRSD-TG-ELIAWIF: QN DF---S-G-LG XLQVLP-KAERR---GLGGLLAAAXSREIA---RGEEITLTAWIV----ATNWRSEALLKRIGYQK
1ne9A2 RIFVAE--R-EG-KLLSTGI--AL-KYG RK-IW--YMYAGSMD-GNT-Y---YAPYAVQSEMI QWAL ---DTNTDLYDLGG IESESTDDS-LYVFKHVFV---
1iykA2 KSYVVE--DENG-IITDYFS--YYLLPFTV--=—mm—mm— LDN---AQH-DELGIAYLFYYAS---DSFEKP--NYKKRLNEL I TDAL I TSKKFGVDVF--NCL- -~~~ TCQDNTYFLKDCKFGS

1ro5A YYML1Q--E-DG-QVFGCWR-~-1LDTTGPYMLKNTFPELLHGKEAPC-SPHIW-E--LSRFAINSGQKGSLGFSDCTLEAMRALARYSL---QNDIQTLVTVTT----V---GVEKMMIRAGLDV

Figure 3.8 Sequence alignments of both structural alphabets and amino acid sequences of

eight proteins from the NAT superfamily.

Using S. enteritidis AAC(6")-ly as the query protein and an E-value cutoff of 107, a
3D-BLAST search of the database SCOP1:69:found 19 members of the NAT family and 10
distantly related homologs of the NAT superfamily (Table 3.2). The sequence identities
between the query protein and-most-of the homologous structures (25 of 29 proteins) were
<20%. These 29 homologous proteins comprised 14 species. In contrast, a PSI-BLAST search
of SCOP1.69 revealed only two hits (PDB-code Imk4A and 1pohA) with an E-value <0.01 in
the NAT family (Table 3.2).

Figure 3.7 shows the structures of five-distantly related proteins selected from different
families of the NAT superfamily. These five proteins are N-acetyl transferase (PDB code
1bo4A), N-myristoyl transferase (PDB code liykA), autoinducer synthetase (PDB code
Iro5A), FemXAB nonribosomal peptidyltransferase (PDB code 1ne9A), and hypothetical
protein cgl4615-pa (PDB code 1sghA). The aligned structures are very similar, implying
structural recurrence among these homologs. Each protein chain is drawn as a
continuous-color spectrum from red through orange, yellow, green and blue to violet. Hence
the N and C termini are red and violet, respectively. Table 3.2 shows the protein names, SCOP
family names, the E-values, rmsd values, and sequence identities between these proteins and
the query protein.

We produced both multiple structural letter sequence alignments and protein sequence
alignments of eight proteins (Figure 3.8) using a simple star alignment method. This method
uses the query protein as the center protein and seven-pair alignments between the query

protein and seven hit homologous proteins. These eight proteins consisted of the six proteins
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shown in Figure 3.7 and two proteins (PDB code luth and 1vhs) selected from the NAT
family. The alignments yielded several interesting observations, as follows. (1) For four NAT
family proteins (PDB code 1s3zA, luthA, 1vhsA, and 1bo4A), 3D-BLAST automatically
detected the invariant pattern (Arg88, GIn89, Arg90, Gly91, Val92, and Ala93 in the query
protein) of motif A, which is responsible for the binding activity of the NAT family (red
columns in Figure 3.8). (2) The 3D-BLAST structural alphabet sequences are much more
conserved than amino acid sequences and this is the main reason that PSI-BLAST was unable
to detect the invariant residues or to find these distantly related proteins. (3) The 3D-BLAST
structural alphabet is also highly conserved in three motif areas (i.e., D, A, and B) of the NAT
superfamily and in areas of secondary structures (i.e., S and H). (4) For these paired proteins,
the structural alphabet sequence similarities correlate strongly with the E-values. These results
demonstrate that 3D-BLAST can yield considerable information by unifying distantly related

protein families into structurally and functionally conserved superfamilies.

3.5.1.b TIM Barrel Proteins

Thiamine phosphate pyrophosphorylase (PDB. code 1xi3), an o/f protein with a
triosephosphate isomerase (TIM) barrel fold [58], catalyzes the formation of thiamine
phosphate—an essential nutrient for humans [60]. This protein is a structural genomics target
for Southeast Collaboratory for-Structural Genomics, which is a part of the Protein Structure
Initiative [61]. The Pyrococcus furiosus _enzyme was used as the query for a search of the
SCOP 1.69 protein structure database. The TIM barrel has an eight-stranded /B barrel and is
by far the most common tertiary fold observed in protein crystal structures. Members of the
TIM barrel family catalyze very different reactions and are attractive targets for protein
engineering. Moreover, the ancestry of this enzyme remains unknown since there is limited

sequence homology between TIM barrel proteins.
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A 3D-BLAST structural alphabet sequences

10 20 30
| I |
B7 of p8 a8
SS Structure  SSSSS HHHHHH SSS HHHH
Consensus +++  ++ ++++ S HE E-value

Ixi3A 151 TEFHZVQN-TILQMYYYDGSRTVTFHHMILLA

2tpsA 173 PEFHZVRH-NILQQGBACBSRTVTHHHMDLID -67.70
1gpoA 128 FEFHZDRH-KIDQGCACDGSRTMPKEHQGWLL -27.40
IwOmAl1 175 FHEHXVQNXTCBYYCBDBGSQTVTFHHMBLLD -27.40
1viwA 154 FEHEXDQH-TILQMBBABBSPNVTFHHVILL- -27.52

Amino acid sequences

10 20 30

| | |

Consensus +G ++ G + ++
Ixi3A 151 PVVAIGGI-NKDNAREVLKTGVDGIAVISAVM
2tpsA 173 PIVGIGGI-TIDNAAPVIQAGADGVSMISAILS
1gpoA 128 MLESSGGL-SLQTAATYAETGVDYLAVGALTH
1wOmAl 175 SVITGAGIESGDDVAAALRLGTRGVLLASAAV
1vIiwA 154 KFVPTGGV-NLDNVCEWFKAGVLAVGVGSAL-

Figure 3.9 Multiple sequence alignments and multiple structure alignments resulting from a
3D-BLAST search using thiamine phosphate pyrophosphorylase from Pyrococcus furiosus as
the query.

When the E-value was restricted to 10_15, 3D-BLAST identified 74 members from 16
SCOP superfamilies containing a TIM barrel fold (Table 3.3). Figure 3.9 shows multiple
sequence alignments and structure alignments of five homologous proteins derived from the
3D-BLAST pairing alignments. These proteins, thiamine phosphate synthase (PDB code
1xi3A and 2tpsA), quinolinic acid phosphoribosyltransferase (PDB code 1qpo), TIM (PDB
code 1wOm), and aldolase (PDB code 1vlw), were selected from three different superfamilies.
3D-BLAST aligned the common phosphate-binding resides, ranging from -7, loop-7, a-7,
B-8 to a-8, on the last two loops of the barrel sheet [62] of these proteins. The secondary
structures are indicated in red (helices) and blue (strands) and the loops are in gray. The
phosphate-binding residues are indicated in green. Again, the structural alphabet sequences
are highly conserved in this phosphate-binding site and are more conserved than amino acid

Sequences.
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Table 3.3 Structure database search results of 3D-BLAST for finding homologous

superfamilies using thiamine phosphate pyrophosphorylase from Pyrococcus furiosus as the
query

3D-BLAST“
Number of Average Average Average
) , sequence
proteins e) (A) 1 entl}‘sy (%)
Thiamin phosphate synthase 2 -98.3 0.71 66.2
Triosephosphate isomerase (TIM) 2 -25.0 241 22.9
Inosine monophosphate 4 933 789 188
dehydrogenase
Quinolinic acid phosphoribosyltransferase,
C-terminal domain 2 -22.7 2.28 22.9
Phosphoenolpyruvate/pyruvate 6 991 323 19 4
domain
ThiG-like (Pfam 05690) 1 -22.0 2.95 23.4
RuBisCo, C-terminal domain 6 -21.9 2.76 17.9
Ribulose-phoshate binding barrel 19 -20.2 2.68 22.8
Aldolase 16 -18.7 2.79 21.1
UROD/MetE-like 1 -17.7 3.30 16.8
GlpP-like 1 -17.7 2.49 21.6
FMN-linked oxidoreductases 7 -17.6 2.82 18.2
Dihydropteroate synthetase-like 4 -16.8 2.74 21.0
Cobalamin(vitamin
B12)-dependent enzymes ! -16.7 2.99 15.0
CutC-like (Pfam 03932) 1 -16.4 2.46 19.4
Trans-glycosidases 1 -15.7 3.35 19.6

“ Thresholds of the E-values was 107"
b Sequence identity was calculated by FASTA.

3D-BLAST and PSI-BLAST produced 19 and 6 hits, respectively, for members of the
ribulose-phosphate-binding barrel superfamily. The alignment results of both tools are similar,
and the phosphate-binding residues are equivalently aligned (Figure 3.9). Because both
alignment methods yielded confident hits, the homology between thiamine phosphate
synthase and the ribulose-phosphate-binding barrel superfamily are considered reliable,
despite the limited sequence identity. 3D-BLAST and PSI-BLAST also yielded similar
alignments for other paired superfamilies: inosine monophosphate dehydrogenase and

thiamine phosphate synthase, and FMN-linked oxidoreductases and thiamine phosphate
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synthase. These four SCOP superfamilies may be considered a homologous superfamily,
termed the FMN-dependent oxidoreductase and phosphate-binding enzymes (FMOP) family,
as proposed by Nagano et al. [58]

3D-BLAST identified five homologous superfamilies, including quinolinic acid
phosphoribosyltransferase, phosphoenolpyruvate, and dihydropteroate synthetasE-like. These
distant relationships were also reported by Nagano et al. [58] using PSI-BLAST or IMPALA
[63] with different iteration numbers. In addition, 3D-BLAST and sequential structure
alignment program (SSAP) [64] yielded two distantly related superfamilies (RuBisCo and
trans-glycosidases), but PSI-BLAST or IMPALA could not find these two relationships.
However, SSAP was unable to identify two superfamilies (triosephosphate isomerase and
dihydropteroate synthetase-like) that could be retrieved by 3D-BLAST, PSI-BLAST and
IMPALA. The above observations suggest that 3D-BLAST may be able to identify new links

between SCOP superfamilies.

3.5.1.c Yeast copper chaperone for superoxide dismutase

Using the yeast copper chaperone for superoxide dismutase (yCCS) from Arabidopsis
thaliana (PDB code 1JK9-B).[65] as the query protein and an E-value threshold of 107, a
3D-BLAST search of the database SCOP1.69 found 19. members (Table 3.4). Figure 3.10
shows two hits of the search.results.. The protein (yCCS) comprised amino-terminal and
carboxyl-terminal domains. The.  amino-terminal. “domain, called HMA (heavy-metal
associated) domain in the SCOP database, plays a role in copper delivery. This domain
contains an MH/TCXXC metal binding motif (blue box in Figure 3.10A), and is very similar
to the metallochaperone protein Atxl. The carboxyl-terminal domain, termed the Cu,Zn
superoxide dis-mutase-like domain in the SCOP database, comprised an eight-stranded
B-barrel that strongly resembles yeast superoxide dismutase I and human superoxide

dismutase 1.
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Table 3.4 3D-BLAST search results by copper chaperone for superoxide dismutase (PDB

code 1JK9-B) from yeast as query

PDB L rmsd  Sequence SCOP .
code Protein title log(E-value) (A) identity (%) “ sces Species
1EJ8-A  Copper chaperone for yeast sod 50.70  1.10 576 b.1.8.1 Saccharomyces
cerevisiae
1QUP-A Copper chaperone for superoxide dismutase -27.05 0.58 28.3 d.58.17.1 Saccharz.)rfqy ces
cerevisiae
1CC8-A Superoxide dismutase 1 copper chaperone -17.40 1.64 8.6 d.58.17.1 Sacchar@zy ces
cerevisiae
1TO4-A Superoxide dismutase 1722 278 19.6  b.18.1 Schistosoma
mansoni
Human copper chaperone for superoxide
1DOS5-A -16.30 2.57 17.3 b.1.8.1 Homo sapiens
dismutase domain II
Oxidized Merp from Ralstonia metallidurans ;
10SD-A -16.05 161 1.1 d58.17.1 Ralstonia
CH34 metallidurans
1QOE-A Copper, Zinc Superoxide Dismutase -14.22 1.68 17.7 b.1.8.1 Bos taurus
IOAL-A Superoxide dismutase 1400 219 177 big1  Photobacterium
leiognathi
ISRD-A Copper, Zinc Superoxide Dismutase -13:30 2.71 17.5 b.1.8.1 Synthetic construct
1FEO-A Copper transport protein atox1 -13.10 140 9.9 d.58.17.1 Homo sapiens
10ZU-A Copper, Zinc Superoxide Dismutase -12.70 242 18.5 b.1.8.1 Homo sapiens
1ESO  Copper, Zinc Superoxide Dismutase -12.30 249 17.6 b.1.8.1 Escherichia coli
. Saccharomyces
IFVQ-A Copper-transporting Atpase -12.00 1.64 9.9 d.58.17.1 cerevisive
1JCV  Copper, Zinc Superoxide Dismutase 11707 2.24 203  b.18.1 Saccharomyces
cerevisiae
1S6U-A Copper-transporting ATPase 1 -11.15 1.87 8.6 d.58.17.1 Homo sapiens
1XSO-A Copper, Zinc Superoxide Dismutase -10.70 1.88 19.3 b.1.8.1 Xenopus laevis
10Q3-A Potential copper-transporting ATPase -10.40 1.84 11.4 d.58.17.1 Bacillus subtilis
1VCA-A Human vascular cell adhesion molecule-1 -10.30 3.76 15.9 b.1.1.3 Homo sapiens
1KQK-A Potential copper-transporting ATPase -10.22 1.63 12.3 d.58.17.1  Bacillus subtilis
The N-terminal domain of ZntA in the
IMWY-A -10.10 1.67 9.0 d.58.17.1 Escherichia coli

apo-form

“ Amino acid sequence identity is calculated using
square deviation.

FASTA software. PDB, Protein Data Bank; rmsd, root mean
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A (N-terminal domain )

Structural alphabet sequence:
1jk9B: 2 HKHFEFHKNXXSLQ -DQMQPG
1cc8A: 1 HFHEEFHKHHVTI QxC

Identities = 29/68 (42%)
LSRTFEEXTQTFCBAAABABBBSQPEEFHVP 68
GLSRPEEEXPQTFBDYYYYYCGGSQTHE--VP 66

Amino acid sequence:
1jk9B:
1cc8A:

Identities = 12/68 (17%)
~CLKNVP EQQINSVESSVAPST I INTLRNCGKDAIIRG 68

2 TYEATYAIRMHCEN
1 IKHYQFNV\MTCS! LEP LEKQLVDVYTTLPYDFILEKIKKTGKEV--RS 66

B (C-terminal domain )

Structural alphabet sequence: Identities = 49/160 (30%)

1jk9B: 75 PFEFFHKFMTNKCQTFDQTK XTLL NMSXVPFFHKNKGPRHXVSVLGGSKT - ~HVPFFXPFK~=~—= =~ EXXTKFDWTDQ
1g0eA: 1 PEEFFHHNDS---------- QH -TWL TN-VVNKNNNNKMPRHXVSVLMQSZT TRNMSXNNRKN 1QPGQTKCQHTXNFE-FKIS
Amino acid sequence: Identities = 237160 (14%)
1jk9B: 75 SAVAILETFQKYTIDQKKDT VGEN VPEAGNYHAS IHEKGDVSKGVESTGK~~VWHKFDEP | - == —=-=~~ ECFNESDLGKN

190eA: 1 KAVCVLKGDG----------| PV -KGD LT-EGDHGFHVHQFGDNTQGCTSAGPHFNPLSKKHGGPKDEERHVGDLGNVT-ADKN!

C (N-terminal domain)

D (C-terminal domain)

QPKD-DCQ--VQTFHE----HHKNFMPQ-~--MQPMSRHXPNHHEKNPKN 213
GPKMVWIQNXVQTFHEKKVSNEKTQXSQTCGGDLTTQNXTHVPEKKHKT 147

PLPT-WQL--1GRSFV----1SKSLNHP---ENEPSSVKDYSFLGVIAR 213

PLISLSGEYS I 1GRTMVVHEKPDDLGRGGNEESTKTGNAGSRLACGVIGI

Figure 3.10 Sequence and structure alignments of 3D-BLAST search results using yCCS as
the query.

3D-BLAST was able to identify 9 and 10 homologous structures of amino-terminal
domains and carboxyl-terminal domains, respectively, using this two-domain protein (yCCS)
as query. The sequence identities between yCCS and most of the homologous structures (17
out of 19 proteins) were less than 20%. Figures 3.10A and 3.10C illustrate sequence
alignments and the structure alignment between yCCS and an amino-terminal domain
homologous protein (PDB code 1CCS8-A [66]). The sequence identities of structure alphabet
and amino acid sequences were 42% and 17%, respectively. 3D-BLAST can align six amino
acids of the metal binding motif together, and the rmsd is 1.64 A between these two proteins.
The aligned secondary structures are represented as a continuous color spectrum from red
through orange, yellow, green and blue to violet. Figures 3.10B and 3.10D show the sequence
and structure alignments between yCCS and a carboxyl-terminal domain homologous protein
(PDB code 1QOE-A [67]). The sequence identities of the structure alphabet and the amino
acid sequences were 30% and 14%, respectively, and the rmsd between these two proteins
was is 1.68 A. The structural alphabets were strongly conserved in areas of the secondary
structures (green block), which are B-strands represented by structural alphabets, such as E, F,
H, K, and N. These results reveal that the structural alphabet sequences are much better
conserved than the amino acid sequences, which explains why 3D-BLAST could detect the

invariant residues and find these distantly related proteins.
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3.5.2 Structural genomics targets

We analyzed 319 structural genomics targets, called SG-319, using 3D-BLAST with
regard to function assignment. The structural genomics initiative aims to determine
representative structures for all protein families in cells [1, 2, 68]. To sample the protein
structural space more efficiently, structural genomics projects employ various target selection
strategies to filter out proteins that are homologous to the proteins with structures already in
the PDB [3]. As a result, the molecular functions of the proteins targeted by structural
genomics are often unknown. The SG-319 set contains 319 structural genomics targets
contributed by more than 10 structural genomics consortia, and publication dates range from 1
January 2005 to 30 September 2005. There are 126 proteins in SG-319 having the 'unknown

function' annotation.
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Figure 3.11 3D-BLAST function assignment results for 319 proteins targeted by structural

genomics.

3D-BLAST used these 319 proteins as query proteins, and the search classification
database was SCOP 1.69, which contains 12,074 domains. About 38.2% (122 proteins) and
32.6% (104 proteins) of the SG-319 proteins have more than 25% and under 20% sequence
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identity, respectively, to one of the library representatives of the SCOP superfamily, according
to search results with 3D-BLAST. In all, 3D-BLAST assigned 244 (78.5%) proteins to SCOP
superfamilies if the threshold of E-value was set at under ¢ by the SG-319 query set (Figure
3.11). When the sequence identity was more than 25%, 98.4% (120 out of 122) of these cases
could be assigned to a SCOP superfamily by 3D-BLAST, and 62.9% (124 out of 197) of the
remaining proteins could also be assigned.

The following observations help in comparing the characteristics and performance
between applying 3D-BLAST to SG-319 (Figure 3.11) and applying it to SCOP95-1.69
(Figure 3.6). First, the distribution of the sequence identity of these two sets was significantly
different. The sequence identities of 197 (61.8%) and 154 (29.85%) proteins in SG-319 and
SCOP95-1.69, respectively, were under 25%. The average sequence identity in SG-319 is
significantly lower than that of SCOP95-1.69. Second, the assigned parentages of SG-319 and
SCOP95-1.69 were 78.5% and 91.47%, respectively, when the E-value was restricted to under
¢, If the sequence identity was under 25%, then the assigned rates were 62.9% (SG-319)
and 72.12% (SCOP95-1.69). Third, 3D-BLAST achieved similar accuracies for both sets if
the sequence identity was above 25%.-These observations are consistent with recent analyses
of proteins targeted by structural genomics |3, 69].

Figure 3.12 shows that 3D-BLAST assigned a structural genomics target (PDB code
1YRH) to the flavodoxin-related family [70] based on the first-rank protein (PDB code 1E5D
[71]) in the hits. The E-value was 10°*.and the-Z score of CE and rmsd value were 5.7 and
1.56 A, respectively, when these two proteins were aligned. These two proteins have the same
Gene Ontology (GO) annotations [72] and the same domain annotations in three databases,
including PROSITE [38, 73], Pfam [39], and CATH [56]. The aligned structures of these two
proteins are similar, and the FMN-binding motifs (wireframe model) are also aligned well
(Figure 3.12). Eight of the top 10 proteins in the hits are the members of the same SCOP

superfamily. However, PSI-BLAST was unable to yield the same assignment.
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Figure 3.12 Structure alignment between the one of structural genomics target (1yrhA, green)

and the first-rank protein (PDB code 1€5dA, orange)in the hit list

3.6 Method comparison

3.6.1 Comparison with PSI-BLAST

Table 3.5 shows the accuracies of 3D-BLAST and PSI-BLAST in structure database
searches and evolutionary classification assignments using the query protein set SCOP-894.
Here, we compare 3D-BLAST with PSI-BLAST because PSI-BLAST is often much better
than BLAST for these purposes. We installed standalone PSI-BLAST [7] on a personal
computer with a single processor (Pentium 2.8-GHz with 512 Mbytes). The search databases
and substitution matrixes are the main differences between 3D-BLAST and PSI-BLAST. In
3D-BLAST, the substitution matrix is the SASM and the searching database is SADB; in
contrast, PSI-BLAST uses an amino acid sequence database and the substitution matrix is
BLOSUMG62. The number of iterations for PSI-BLAST is set at 3. Since the gap penalty is an

important factor, we systematically tested various combinations of gap penalty for
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3D-BLAST and the SASM matrix. Here, the optimum values of the open gap penalty and the

extended one are 8 and 2, respectively.

Table 3.5 Comparison of 3D-BLAST and PSI-BLAST for automatic SCOP structural function
assignment on the protein query set SCOP-894

894 proteins Sequence identity <25%
3D-BLAST PSI-BLAST 3D-BLAST PSI-BLAST
Class Corrected  Corrected Corrected  Corrected
Number of . . Number of . s
name . assignment  assignment . assignment assignment
queries queries
percentage  percentage percentage  percentage
All alpha 161 94.41% 94.41% 36 75.00% 66.67%
All-beta 199 94.47% 93.97% 49 77.55% 73.33%
o/P 292 97.26% 91.44% 66 87.88% 65.75%
ot 242 94.63% 88.84% 78 83.33% 60.87%

SCOP-894, as shown Table 3.1.

For most sets of sequence identities, 3D-BLAST outperforms PSI-BLAST (Table 3.5).
Nearly 74.4% (665 of 894) of query proteins are >25% identical to one of the library
representatives from the same SCOP superfamily and ~99.5 % of these domains can be
correctly mapped by both 3D-BLAST and PSI-BLAST.~As expected, the accuracy of both
methods is comparable for the 25% sequence identity cutoff. The accuracies are 95.8%
(3D-BLAST) and 94.0% (PSI-BLAST)-if the sequence identity ranges from 20% to 25%.
When the sequence identity is <20% (122 of 894 proteins), the accuracy of 3D-BLAST ranges
from 52.8% to 78.4%, whereas the accuracy of PSI-BLAST ranges from 21.6% to 46.9%.
These proteins are more difficult to assign due to limited similarity of the query proteins to
the representative library domains. In addition, the ROC curve provides an estimation of the
likely number of true-positive and false-positive predictions for a database search tool. Based
on ROC curves, 3D-BLAST is much better in this respect than PSI-BLAST.

3D-BLAST yields significantly better results than PSI-BLAST when working at
sequence identity levels of 25%. One prevalent difficulty in making classification
assignments by automatic methods is correctly assigning proteins that have very limited
sequence similarity to the library representatives. Thus, the general observation is that, as
expected, sequence comparison tools that are more sensitive to distant homology typically are
more successful at making challenging assignments. These results show that 3D-BLAST

achieves more reliable assignments than PSI-BLAST in cases of low sequence identity.
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The false assignments made by 3D-BLAST (41 proteins) and by PSI-BLAST (73
proteins) were compared among 894 query proteins. Indeed, 28 query proteins were given
false assignments by both 3D-BLAST and PSI-BLAST. Only 13 proteins were simultaneously
given correct assignments by PSI-BLAST and false assignments by 3D-BLAST. Conversely,
45 proteins of the missed assignments made by PSI-BLAST were correctly mapped by
3D-BLAST. Most of the remaining proteins assigned by 3D-BLAST but not identified by
PSI-BLAST represent cases that are typically difficult for sequence alignment methods. For
the 41 assignments that 3D-BLAST missed, the sequence identity was <20% and the E-values
of 9 cases were more than the threshold (i.e., ¢ '°). For 46% proteins of these 41 missed cases,
the correct superfamily assignment can be determined using the top 5 ranked hits.

The factors causing 3D-BLAST to generate 41 false assignments can be roughly divided
into five categories. The first factor is that the actual Euclidean distances were not considered
in the structural alphabet. Therefore, 3D-BLAST may have made minor shifts when aligning
two local segments with similar codes, such_as segments a and a’ shown in Figure 3.1E.
Therefore, 3D-BLAST is more sensitive when the query proteins are members of the “all
alpha” (e.g., PDB code 1v2z [64] and Towa [74]) or “all beta” (e.g., PDB code 1sq9 [75] and
1ri9 [76]) classes in SCOP. In the second category, the structural similarity of a query protein
to the representative library domains is very limited (e.g., PDB code 1sp3 [77] and 1q5f [78]).
In the third category, the query.proteins had multiple domains (e.g., PDB code 1535 [79] and
1tua). 3D-BLAST can correctly assign these two-cases if domains are used as query targets. In
the fourth category, an inherent problem of the BLAST algorithm is a lack of detecting remote
homology of structural alphabet sequences. Use of PSI-BLAST as the search algorithm for
3D-BLAST slightly improved the overall performance on the set SCOP-894, and this
procedure correctly assigned four cases (PDB code 1pa4 [80], 1sq9 [75], lovy [81], and 1t3k
[82]) among these 41 false cases. An enhanced position-specific score matrix of the structure
alphabet for SADB databases should be developed to improve the performance of 3D-BLAST.

The final factor is that the E-values of the hits are not significant.
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Figure 3.13 Evaluation of the 3D-BLAST and PSI-BLAST in database search based on ROC

curves
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Figures 3.13 and 3.14 illustrate the accuracies of the 3D-BLAST and PSI-BLAST in
structure database searches and evolutionary classification assignments using the query set
SCOP95-1.69. For this experiment, 3D-BLAST was compared with PSI-BLAST, because
PSI-BLAST often performs much better than BLAST for this purpose. For a database search
tool, the ROC curve (Figure 3.13) provides an estimation of the likely number of true positive
and false positive predictions. A perfect method, which can recover all true hits without any
false positives, can be denoted as a point in the top left corner of this graph, whereas a random
method that generates equal numbers of true positive and false positive predictions uniformly
distributed across all scores would yield a diagonal line from (0,0) to (1,1). Figure 3.13 shows
that 3D-BLAST (dark lines) yields much better predictions than does PSI-BLAST (gray lines).
The sensitivity of family assignments was superior to that of superfamily assignments in both
methods, whereas the false-positive rates of family assignments were higher than those of the

superfamily assignments.
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Figure 3.14 Comparison 3D-BLAST with PSI-BLAST: The percentages of correct

classification assignments.
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For most sets of sequence identities, 3D-BLAST outperformed PSI-BLAST (Figure 3.14)
in protein evolutionary classification assignments. Almost 70.16% (362 out of 516 proteins)
of query proteins were more than 25% identical to one of the library representatives from the
same SCOP superfamily, and 100% of these domains were correctly mapped by both
3D-BLAST and PSI-BLAST. When the sequence identity was less than 25% (154 out of 516
proteins), the accuracy of 3D-BLAST ranged from 96.29% to 50%, whereas the accuracy of
PSI-BLAST ranged from 94.29% to 21.74% (Figure 3.14). These proteins were difficult to
assign because of the limited similarity of the query proteins to the representative library
domains. 3D-BLAST yielded significantly better results than did PSI-BLAST at sequence
identity levels of 25% or less. The analytical results reveal that, as expected, sequence
comparison tools that are more sensitive to distant homology are usually more successful at
making challenging assignments. In summary, 3D-BLAST achieved more reliable
assignments than did PSI-BLAST in cases of low sequence identity for this test set. The
structural alphabet, SADB database, and SASM matrix could predict protein structures more

accurately than simple amino acidsequence analyses:

3.6.2 Comparison with others

Comparing the results of-different structure database search methods is generally neither
straightforward nor completely”fair, because each such method utilizes different accuracy
measures, searching databases, and:test complexes. Figure 3.15 shows the relationship
between recall and precision, and Table 3.6 presents the average search time and average
precision of 3D-BLAST, PSI-BLAST, MAMMOTH, CE, TOPSCAN, and ProtDex2 on 108
query proteins proposed by Aung and Tan [12]. The performance of TOPSCAN and ProtDex2,
which are fast search methods for scanning structure databases, was summarized from
previous studies [12]. Other four programs were installed and run on the same personal
computer with a single processor. Here, the PSI-BLAST and 3D-BLAST used E-values to
order the hit proteins; MAMMOTH and CE (detailed structure alignment tools) utilized Z

scores to rank the hit proteins.
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Figure 3.15 3D-BLAST versus fast structure search, sequence profile search, and detailed

structural alignment.

Table 3.6 Average search time and mean average precision of each program on 108 queries in
SCOP-108

Mean of average  Total searching Average time per ~ Related to
Program

precision time (s) query (s) 3D-BLAST
PSI-BLAST “ 69.8% 18.31 0.170 0.533
3D-BLAST 78.2% 34.35 0.318 1
MAMMOTH" 82.1% 131,855 1220.88 3838.58
CE 83.4% ~13.5 days ~3 hours ~34000

“ PSI-BLAST used E-values to rank the hit proteins
"MAMMOTH and CE utilized Z-scores to rank hit proteins.
Time was measured using a personal computer equipped with an Intel Pentium 2.8 GHz

processor with 1024 Mbytes of RAM memory.
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On average, 3D-BLAST required about 3.18 seconds to scan the database for each query
protein (Table 3.6). It is about 34,000 and 3838 times faster than CE and MAMMOTH,
respectively. 3D-BLAST was about two times slower than PSI-BLAST, because 3D-BLAST
identified many more words (typically of length three for proteins in BLAST) that score more
than a threshold value in the SADB databases than those identified by PSI-BLAST in protein
sequence databases. The reason for this stems from the fact that the BLAST algorithm scans
the database for words that score at least a threshold when aligned with some words within
the query sequence; the algorithm then extends each such 'hit' in both directions to check the
alignment score [7].

MAMMOTH is the best and TOPSCAN is the worst for these 108 queries among these
six methods (Figure 3.15). 3D-BLAST was much better than fast structure database search
methods (TOPSCAN and ProtDex2), and its performance approached those of CE and
MAMMOTH. Notably, PSI-BLAST outperformed both TOPSCAN and ProtDex2, which
considered secondary and 3D protein structures. As shown in Table 3.6, the mean of average
precision of 3D-BLAST (78.2%).was better than that of PSI-BLAST (69.2%) and lightly
worse than those of CE (82.1%) and MAMMOTH (83.4%). For some query proteins, such as
serotonin N-acetyltranferase [83] (PDB code 1CJW-A) and translation initiation factor 1F2/
elF5B [84] (PDB code 1G7S-A), 3D-BLAST, MAMMOTH, and CE were markedly better
than PSI-BLAST because most sequence identities’ between the query proteins and their
members are under 20%. For several query proteins, such as human dihydro-orotate
dehydrogenase [85] (PDB code 1D3G-A) and yeast copper chaperones for SOD [86] (PDB
code 1EJ8-A), CE and MAMMOTH were worse than 3D-BLAST. Interestingly, PSI-BLAST
outperformed CE, MAMMOTH, and 3D-BLAST for S-adenosylhomocysteine hydrolase [87]
(PDB code 1B3R-A).

The recognition performance of 3D-BLAST is expressed as top rankings, using Lindahl's
benchmark [88], together with the performance of eight popular sequence comparison (for
example, HMM and profile methods). The benchmark includes 976 proteins derived from the
SCOP for identifying homologous pairs at different similarity levels. Sequence identities
between the query proteins and their homologous members in the superfamily and fold levels
are much lower than those at the family level. These methods can be divided into two
categories: methods using only single sequence information (BLAST2 and SSEARCH) and
methods using multiple sequence alignments (PSI-BLAST, HMMER-HSSP [89],
HMMER-PSI-BLAST [89], SAM-HSSP [55], SAM-PSI-BLAST [55], and BLAST-LINK
[88]). The methods of constructing profilessHMMs used a larger dataset, comprising the
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SWISSPROT-35 and TREMBL-5 databases [90] together with the benchmark sequences of
the HSSP database [91].

At the family level, 3D-BLAST identified 78.4% of homologous pairs that were ranked
in the top 5. This was comparable to the best performance of any of the other methods
(78.9%), which was achieved by BLAST-LINK. At the superfamily and fold levels,
3D-BLAST significantly outperformed all of the other methods. 3D-BLAST yielded 54.8%
and 39.3% homologous pairs at the superfamily and fold levels, respectively. On the other
hand, the best accuracies for the other methods were 40.6% (by BLAST-LINK) at the
superfamily level and 18.7% (by SAM-PSI-BLAST) at the fold level.

Table 3.7 Average search time and performance of each program on 50 proteins selected from
SCOP95-1.69

Average time of Correct

Average time of a Relative to Mean of average

Program query (seconds) a p?;igﬁggem 3D-BLAST ;isrlf;lr}:grg precision
3D-BLAST 1.298 0:000118 1 94% 85.20%
PSI-BLAST 0.483 0.0000458 0.37 84% 68.16%

YAKUSA 8.880 0.0008072 6.84 90% 74.86%
MAMMOTH 1834.18 0.1667285 1413.08 100% 94.01%
CE 22053.32 2.0047 16990 98% 90.78%

Time was measured using a personal computer equipped with an Intel Pentium 2.8-GHz
processor with 512 Mbytes of RAM memory. SCOP95-1.69 is described in Table 3.1.

Table 3.7 shows the average search time and average precision of 3D-BLAST,
PSI-BLAST, YAKUSA, MAMMOTH, and CE on 50 query proteins. These five programs
were installed and run on the same personal computer with a single processor. Here, the
PSI-BLAST used E-values to order the hit proteins; YAKUSA, MAMMOTH, and CE utilized
Z-scores to rank hit proteins. Because ~228 days are required to evaluate CE on each query in
the set SCOP-894, we uniformly selected 50 proteins from the set SCOP95-1.69 based on the
lengths of these 516 query proteins. On average, 3D-BLAST required ~1.298 seconds to scan
the database for pattern hits for each query protein (this time included system overhead).
3D-BLAST is 16,990 and 1,413 times faster than CE and MAMMOTH, respectively.
3D-BLAST is lightly faster than YAKUSA and ~3 times slower than PSI-BLAST, which
searches amino acid sequence databases. We found that 3D-BLAST was as fast as BLAST

when their performance was similar. In our tests, 3D-BLAST was slightly slower than
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BLAST because 3D-BLAST identified many more hit words in SADB databases compared
with those identified by PSI-BLAST in protein sequence databases. The reason stems from
the fact that the BLAST algorithm scans the database for hit words that score more than a
threshold value when aligned with words in the query sequence; it then extends each hit word
in both directions to check the alignment score.

Among these five methods, MAMMOTH is the best and PSI-BLAST is the worst for
these 50 queries (Table 3.7). The means of average precision of 3D-BLAST (85.20%) was
better than PSI-BLAST (68.16%) and YAKUSA (74.86%) as well as approached those of CE
(90.8%) and MAMMOTH (94.01%). For some query proteins, such as Polyketide synthase
associated protein 5 [92] (PDB code 1q9jA), Hypothetical protein Alr5027 (structural
genomics target and PDB code 1vl7A), and avrpphf orfl [93] (PDB code 1s28), 3D-BLAST,
MAMMOTH, and CE were markedly better than PSI-BLAST because most sequence
identities between the query proteins and their members are < 20%. For several query proteins,
such as Calcium-dependent protein kinase. sk5 [94] (PDB code 1s6iA) and Putative marl
(structural genomics target and PDB code 1x9gA), CE was worse than 3D-BLAST because
CE ranks some false positive proteins prior to ranking true positive cases. Interestingly,
PSI-BLAST lightly outperformed CE and 3D-BLAST for GTP-binding protein YPT1 [95]
(PDB code 1ukvY) and 1s61A.[94].

The main factors causing 3D-BLAST to perform poorly on some cases in both
SCOP95-1.69 and SCOP-108 datasets-are summarized as follows. First, 3D-BLAST might
have made minor shifts when aligning two local segments with similar codes, because the
structural alphabets did not consider the actual Euclidean distances. Hence, 3D-BLAST is
more sensitive when the query proteins (for example, PDB code 1VDL-A and 1PMZ-A in
SCOP95-1.69) are the members of the 'all-a' class in SCOP. Second, the structural similarity
of a query protein to the library members is rather limited. Third, an inherent problem in the
BLAST algorithm is inability to detect remote homology of structural alphabet sequences.
Use of PSI-BLAST as the search algorithm for 3D-BLAST slightly improved the overall
performance on the SCOP95-1.69 set. An enhanced position-specific score matrix of the
structure alphabet for SADB databases should be developed to improve the performance of
3D-BLAST in the future. Finally, the £-values of the hits are not significant.

We demonstrated the robustness and adaptability of 3D-BLAST for the initial scan of
large protein structure databases; conversely, detailed structure alignment tools often align
two structures slowly but accurately. Because of basic differences, comparisons between

3D-BLAST and detailed structure alignment tools are not straightforward. However, detailed

53



structure alignment tools can be applied to refine the searching structures of 3D-BLAST to

improve accuracy of prediction.

3.7 Web service

We have built a website server for global users (http://3d-blast.life.nctu.edu.tw/). Figure

3.16 shows the interface and procedures of 3D-BLAST search. Users may input a PDB code
with a protein chain (e.g. 1JK9-B) or a SCOP identifier (Figures 3.16A). Otherwise, users
need to upload a three-dimensional protein domain structure with PDB format. And then,
users need to choose which SADB will be searched. There are 5 kinds of available structural
databases, including PDB, nr-PDB-90, SCOPall, SCOP95%, and SCOP40%. These SADB
will be checked from the latest version of the source database and auto-updated every 2 weeks.
Besides, users may select the options of E-value. This setting is a threshold for reporting
matching protein structures against structural database. The E-value means that such matches
are expected to be found merely by chance. The lower E-value is more stringent, causing to
fewer number of matches being reported. Users are able to see more detail information about

explanation of 3D-BLAST input on website (http://3d-blast.life.nctu.edu.tw/help.php).

After users click the search button, our server search and discover the structural
homologous of query protein structure in few seconds (Figure 3.16B). The web page of search
results can present the description of-each. SA sequence alignment among query and its
homologous proteins, including the title of homologous protein, alignment length, E-value,
the percent of structural alphabet identity and gaps.

In search results page, there are hyper-links which can link and execute detailed structure
alignment using CE tool for structure superimposition between query and subject structures.
Figure 3.16C shows that the aligned structures are visualized not only in PNG format using
MolScript and Raster3D packages but also in 3D model with Chime software. Our server
allows users to download the aligned structure coordinates in PDB format. Besides,
3D-BLAST server also provide both multiple sequence alignments and multiple structural
alignments (Figure 3.16D) based on users’ requirements in search results page. The server
uses ClustalW software to multiple align structural alphabet and amino acid sequences of
various proteins respectively. Additionally, the number of global queries of web service is

more than 10,000 from June 2006 to June 2009.
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Figure 3.16 The interface and procedures of 3D-BLAST web service.

3.8 Summary

As more protein structures become available and structural genomics efforts provide
structural models in a genome-wide strategy, there is a growing need for fast and accurate
methods for discovering homologous proteins and evolutionary classifications of newly
determined structures. We have developed 3D-BLAST, in part, to address these issues.
3D-BLAST is as fast as BLAST and calculates the statistical significance (£-value) of an
alignment to indicate the reliability of the prediction. Using this method, we first identified 23
states of the structural alphabet that represent pattern profiles of the backbone fragments and
then used them to represent protein structure databases as structural alphabet sequence
databases (SADB). Our method enhanced BLAST as a search method, using a new structural
alphabet substitution matrix to find the longest common substructures with high-scoring
structured segment pairs from an SADB database. Using personal computers with Intel

Pentium4 (2.8 GHz) processors, our method searched more than 10,000 protein structures in
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1.3 seconds and achieved a good agreement with search results from detailed structure

alignment methods.
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Chapter 4
Recognizing Protein Structural

Domains and SCOP Superfamilies

4.1 Introduction

As protein structures become increasingly available and structural genomics provide
structural models in a genome-wide strategy [1], proteins with unassigned functions are
accumulating and the number of protein structures in the Protein Data Bank (PDB) is rapidly
rising [4]. The evolutionary classification databases, such as SCOP [43, 96] and CATH [56],
are valuable resources for understanding. protein functions, structural similarity and
evolutionary relationships. However, these two widely used databases are updated
intermittently using manual and semi-automated methods. This current structure-function gap
clearly reveals the need for powerful automated methods to classify protein domains based on
their tertiary structures and is important in producing manually tuned classification databases.

Many automatic domain classification approaches have been developed to determine
homologs and evolutionary classifications [97;-98] of a query structure. Protein sequence
database search tools, such as BLAST, PSI-BLAST and Superfamily [98], are useful
computational tools. However, these tools are commonly unreliable in detecting remote
homologous relationships that are indicated by such structural alignment tools as DALI,
MAMMOTH and SSM [99]. Structural alignment tools typically take several seconds to align
two known structures. At this speed, about one day is required to compare a single protein
structure with those in PDB. SCOPmap [97], which is computationally more expensive,
combines sequence and structural information for SCOP superfamily assignment.

Recently, we have proposed a fast and efficient tool, called 3D-BLAST [34, 35], to
quickly search similar structures. This tool is as fast as BLAST and provides the statistical
significance (£-value) of an alignment to indicate the reliability of a structure. 3D-BLAST
outperformed fast structural search methods (TOPSCAN and YAKUSA) and approached the
performance of detailed structural alignment approaches (CE and MAMMOTH). 3D-BLAST
is rapid and accurate in scanning a large protein structural database, and is useful in an initial

scan for similar protein structures, which can be refined using detailed structural comparison
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methods. However, several factors that deteriorate 3D-BLAST's performance are (a)
3D-BLAST may have made minor shifts in aligning two local segments with similar letters,
because the structural alphabet do not consider actual Euclidean distances, (b) the E-values of
the hit proteins are insignificant, and (c) the query is a multiple-domain protein.

This work presents an automated server (fastSCOP), which integrates a fast structure
database search tool (3D-BLAST) and a detailed structural alignment tool (MAMMOTH), to
recognize SCOP domains and evolutionary superfamilies of a query structure. The
classification accuracy of this server is 98% for 464 single-domain queries and 122
multiple-domain queries. After a query structure is assigned to a superfamily, this server is
able to provide both multiple sequence alignments and multiple structural alignments of the

selected members in a SCOP superfamily.

4.2 Materials and methods

Figure 4.1 presents an overyiew of the fastSCOP server for rapidly recognizing SCOP
domains and evolutionary superfamilies. This sever uses 3D-BLAST to scan quickly the
SCOP 1.71 database and selected the top ten hit domain structures, which are associated with
different SCOP superfamily entries (Figure 4.1B). MAMMOTH was then adopted to align
sequentially the query structure with each structure of the top ten structures, to refine the
domain boundaries and to recognize SCOP. superfamilies (Figures 4.1C and 4.1D). Our
previous work [34, 35] demonstrated that 3D-BLAST required ~1.4 seconds to scan the
structural domains in SCOP 1.69 and was 16,990 and 1,413 times faster than CE and
MAMMOTH, respectively. These two detailed structural alignment tools perform similarly on
the test set; MAMMOTH was ~12 times faster than CE. The SCOP 1.71 database (October
2006) has 75,930 domains that are derived from 27,599 PDB entries (Jan 18, 2005). The
numbers of folds, superfamilies and families are 971, 1,589 and 3,004, respectively.
3D-BLAST requires structural alphabet sequence databases (SADB) for fast scanning a
protein structural database. In this work, we created an SADB derived from known domain
structures (12,927 domains) in SCOP1.71 with <95% identity to each other based on the (x, @)
plot [34, 35].

The fastSCOP server performs four main steps to identify the SCOP domains and
superfamilies. First, 3D-BLAST was adopted to identify the similar structures (hit SCOP

domains), which are ordered by E-value, of a query structure from an SADB database (Figure

58



4.1B). 3D-BLAST is the first tool to provide fast search of a protein structural database using
the BLAST, which searches on a SADB database with a structural alphabet substitution
matrix (SASM) [34, 35]. The fastSCOP then selected the top ten hit domains that have
different SCOP superfamily entries. Based on the structural alphabet alignments between the
query and hit SCOP domains, this sever can identify multiple domains if a multiple-domain
structure is queried. For each hit domain, the aligned length should be more than 40 residues

and the coverage rate of two neighbor hit domains should be less than 10%.
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Figure 4.1 Overview of the fastSCOP server for SCOP domain recognition and superfamily

assignment.

After the top ten hit SCOP domains were identified, this server applied MAMMOTH to

align sequentially the query structure with each structure of these hit domains, ordered by

E-value. For each structural alignment, MAMMOTH yielded the Z-score and
root-mean-square deviation (RMSD) of the C,, atom positions of the aligned residues between

the query structure and the hit structure (Figure 4.1C). The query structure (or one domain of
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a multiple-domain protein) was assigned to a SCOP superfamily when the pair-structure
alignment satisfied the following criteria: (a) the Z-score exceeds 5.5; (b) the RMSD value is
less than 4 A; (c) the subtraction value, Z-score-RMSD, exceeds 4.0; and (d) the number of
the aligned residues exceeds 40 and the coverage rate between the query protein (domain) and
hit domain exceeds 75%. In the third step, the fastSCOP refined the boundaries (the start and
end positions) of the assigned domain according to the aligned regions and the sequence
length of the hit domain (Figure 4.1D). Finally, the fastSCOP executed steps 1 to 3 when the

length of the unassigned region of the query structure was more than 40 residues.

4.3 Experimental Results and Discussion

4.3.1 Results

A query protein set, SCOP-586 (Table 4.1), was selected to evaluate the utility of the
fastSCOP server for recognizing the structural domains and evolutionary superfamilies of a
query structure. The SCOP-586 ‘query.set has 464 single-domain proteins and 122
multiple-domain proteins that are in SCOP. 1.69 but not in SCOP 1.67, and the search
database was SCOP 1.67 (11,001 structures). Among the 122 multiple-domain queries, 104
proteins have two domains, 14 have three domains and 4 have more than four domains. The
total number of domains is 272 in_the multiple-domain query set and the total number of
domains in the SCOP-586 is 736.

Table 4.1 presents the accuracy of superfamily assignment and the average execution
time of the fastSCOP, 3D-BLAST and MAMMOTH on the query set SCOP-586. Standalone
fastSCOP, 3D-BLAST and MAMMOTH were run on a personal computer with a single
Pentium 2.8 GHz processor with 1024 Mbytes RAM. The 3D-BLAST and MAMMOTH used
E-values and Z-scores, respectively, to order the hit proteins. For 3D-BLAST, the top rank of
a hit list of a query was selected as the SCOP superfamily. For MAMMOTH, the same criteria
(Z-score>5.5; RMSD value<4 A and (Z-score-RMSD)>4.0) of the fastSCOP were adopted to
assign a query protein to an evolutionary superfamily.

On average, the fastSCOP took ~3.09 seconds to recognize the structural domain and
classification assignment for a single-domain query protein in the query set SCOP-586 (Table
4.1). It was ~338 times faster than MAMMOTH and was ~2.6 times slower than 3D-BLAST,
because the fastSCOP required the time of applying MAMMOTH for structure alignments

between the query protein and the top ten hit domains. For multiple-domain query proteins,
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the fastSCOP was ~278 times faster than MAMMOTH and was ~2.7 times slower than
3D-BLAST.

Table 4.1 Accuracy of evolutionary superfamily assignment and average execution time of
fastSCOP, 3D-BLAST and MAMMOTH on 586 queries in the set SCOP-586

Query Number of Number of Assignment Unassigned Average time
) . . Related to
type queries Program assigned  accuracy domain perquery o ocop
(Domains) domains (%) percentage (%) (second)
0,
3D-BLAST 464 od.4% 0% 1.166 0.38
464 query (95.9%°)
Single proteins 98.7% o
Domain (464 MAMMOTH 464 (98.7%°) 0% 1046.47 338.61
domains) 98.5%
* (V)
fastSCOP 455 (99.6%) 1.94% 3.09 1
3D-BLAST 275 86.9% 1.8% 2.238 0.34
122 query MAMMOTH 238 94.1% 12.5% 1859.80 278.40
Multiple proteins
Domain (272 fastSCOP
domains) without 214 98:6% 19.48% 5.11 0.76
reassignment ”
fastSCOP. 254 98% 6.6% 6.68 1

¢ Assignment accuracy at SCOP fold level.
* fastSCOP does not apply-the reassignment step, which is step 4 in Figure 4.1A.
SCOP-586 consists of 586 query proteins, which are in SCOP1.69 but not in SCOP1.67; the
search database is SCOP1.67.
Time was measured using a personal computer with an Intel Pentium 2.8 GHz processor

with 1024 Mbytes of RAM.

As shown in Table 4.1, the fastSCOP server yielded 98.5% and 99.6% assignment
accuracies at the superfamily and fold levels, respectively, for 464 single-domain queries. It
outperformed 3D-BLAST (94.4% and 95.9% at the superfamily and fold levels, respectively)
and performed similarly to MAMMOTH (98.7% and 98.7%). The unassignment percentage
of the fastSCOP is 1.94% (nine query proteins), which slightly exceeds those of the other two
methods. For 122 multiple-domain queries (with 272 domains), the fastSCOP yielded a 98.6%
(214 domains) assignment accuracy and the unassignment percentage was 19.48% (53
domains) when the reassignment step (step 4 in Figure 4.1A) was not applied. However, the
assignment accuracy was 98% (254 domains) and the unassignment percentage was reduced
to 6.6% (18 domains) when the fastSCOP used the reassignment step. The accuracy of
fastSCOP significantly exceeded that of MAMMOTH (94.1%) and 3D-BLAST (86.9%); the
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unassignment percentage was lower than that of MAMMOTH (12.5%, 34 domains).

The fastSCOP was evaluated using the 8700 PDB entries, which have no annotations in
the SCOP database, and whose publishing date range from Jan 1, 2006 to Dec 5, 2006. The

fastSCOP used these 8700 protein structures as queries, and the search classification database

was SCOP 1.71. In this set, 22% (1594 proteins) queries were multi-domain proteins. The

fastSCOP server can automatically assign 7311 (84%) proteins (9420 domains) to the SCOP

superfamilies in 9.6 hours. According to the assignment accuracy (~98%) of the fastSCOP

applied to the query set SCOP-586 and the assignment criteria (step 2 in Figure 4.1A), the

fastSCOP server accurately assigns ~9000 domains.
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Figure 4.2 Evolutionary superfamily assignment and structural alignment of the fastSCOP

server using the structure of multi-domain immunophilin (4(FKBP42) from Arabidopsis

thaliana (PDB code 21F4-A) as the query.
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4.3.2 Example analysis

Figure 4.2 shows a fastSCOP result with multi-domain immunophilin (AtFKBP42) from
Arabidopsis thaliana (PDB code 2IF4-A) [100] as the query structure. The release date of this
protein is Oct 31, 2006, and this protein has not been recorded in SCOP. As shown in Figure
4.2A, the fastSCOP recognized two domains and their SCOP superfamilies, which are the
FKBP-like superfamily (SCOP entry d.26.1) and the TPR-like superfamily (SCOP entry
a.118.8) for this query. The FKBP domain (Figure 4.2C) of AtFKBP42 consists of a
six-stranded anti-parallel [B-sheet, wrapped around a short o-helix, and is similar to those of
FKBP52 (PDB code 1Q1C-A) [101], FKBP 25 (PDB code 1PBK) [102], FKBP 13 (PDB
code 1U79-A) [103] and FKBP 12 (PDB code 1BKF) [104]. The FKBP domain has been
demonstrated to interact with plasma membrane-localized ABC transporters AtPGP1 and
AtPGP, which directly mediate cellular auxin efflux [105]. The TPR domain of AtFKBP42 is
completely helical and binds to AtHSP90, which is critical to plant development and
phenotypic plasticity [106, 107].

After the structural domains and revelutionary- superfamilies were recognized, the
fastSCOP server allowed users to browse similar structures of these superfamilies. Using this
AtFKBP42 as a query, the server can identify 13 and 17 similar structures of the FKBP-like
domain and TPR domain, respectively. Figure-4.2B ‘illustrates the multiple amino-acid
sequence alignment and structural alphabet alighment between AtFKBP42 and five
FKBP-like homologous proteins, including FKBP52, FKBP 25, FKBP 13 and FKBP 12. The
aligned secondary structures are represented as a continuous color spectrum from red through
orange, yellow, green and blue to violet (Figures 4.2B and 4.2C). The structural alphabets
were strongly conserved in areas of the secondary structures, which are p-strands (represented
by structural alphabets E, F, H, K, and N) or a-helices (represented by structural alphabets A,
Y, B, C, and D). These results reveal that the structural alphabet sequences are much better
conserved than the amino acid sequences, which result explains why 3D-BLAST detected

these distantly related proteins.

4.4 Web service

The fastSCOP server is accessible at “http:// fastSCOP.life.nctu.edu.tw/.” The server can
identify the structural domains and determine the evolutionary classification of a query

structure from evolutionary classification databases. Users input a PDB code with a protein
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chain (e.g. 2[F4-A). When the query structure is a new protein structure, the fastSCOP server

enables users to input the structure file in PDB format.

This server typically yielded structural domains and the SCOP superfamilies of a query
structure in an average of 6 seconds (Figure 4.2A). The server can present the members of the
assigned SCOP superfamily and provide both multiple sequence alignments and multiple
structural alignments (Figure 4.2B) based on users’ requirements. The aligned structures are
visualized in PNG format in MolScript and Raster3D packages (Figures 4.2C and 4.2D). The

server allows a user to download the aligned structure coordinates in PDB format.

4.5 Summary

This work demonstrated the robustness and feasibility of the fastSCOP server for
recognizing the structural domains and the evolutionary classifications of protein structures.
The key contribution of this work is the cooperative integration in fastSCOP of 3D-BLAST (a
fast structural database search tool) and MAMMOTH (a fast detailed structural alignment
tool); the former is required for efficiency and the latter for accuracy. Future works will adopt
the fastSCOP for other evolutionary classification databases, such as CATH. Additionally, the
fastSCOP can be applied to develop structural motifs and sequence motifs from multiple

structure and sequence alignments.
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Chapter 5

Conclusions

5.1 Summary

In this thesis, a new approach named 3D-BLAST is proposed for fast structural database
searches. The core idea of 3D-BLAST was to design a structural alphabet—to be used to code
3D protein structure databases into structural alphabet sequence databases (SADB)—and a
structural alphabet substitution matrix (SASM). We then enhanced the sequence alignment
tool BLAST, which searches the SADB using the matrix SASM to rapidly determine protein
structure homology or evolutionary classification. 3D-BLAST was designed to maintain the
advantages of BLAST, including its robust statistical basis, effective and reliable database

search capabilities, and established réputationin biology.

3D-BLAST is rapid and accurate in scanning a large protein structural database, and is
useful in an initial scan for similar protein structures, which can be refined using detailed
structural comparison methods .However, the use of 3D-BLAST as a search tool also has
several limitations, which are (a) 3D-BLAST may have made minor shifts in aligning two
local segments with similar letters, (b) the-E-values of the hit proteins are insignificant, and (c)
the query is a multiple-domain protein. Because of this, an automated server (fastSCOP) is
presented, which integrates a fast structure database search tool (3D-BLAST) and a detailed
structural alignment tool (MAMMOTH), to recognize SCOP domains and evolutionary
superfamilies of a query structure. The classification accuracy of this server is 98% for 464

single-domain queries and 122 multiple-domain queries.

In addition, this study has analyzed the feasibility of studying Space-Related
Pharmamotif (SRP) and demonstrated some preliminary results of SRP applied to
biosynthesis pathway or cancer pathway. We believe that 3D-BLAST is adopted to develop
the motif search tool, called as 3D-PHI-BLAST, for rapidly pharmalogous search.

5.2 Major Contributions

In short, the major contributions of this thesis can be summarized in the following:
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We have developed a novel kappa-alpha (k, a) plot derived structural alphabet and
a novel BLOSUM-like substitution matrix, called structural alphabet substitution
matrix (SASM) which searches in a structural alphabet database (SADB).

We present a novel protein structure database search tool, 3D-BLAST, that is
useful for analyzing novel structures and can return a ranked list of alignments.
This tool has the features of BLAST (for example, robust statistical basis, and
effective and reliable search capabilities) and employs a kappa-alpha (k, o) plot
derived structural alphabet and a new substitution matrix. 3D-BLAST searches
more than 12,000 protein structures in 1.2 s and yields good results in zones with

low sequence similarity.

We have built an automated server (fastSCOP), which integrates a fast structure
database search tool (3D-BLAST) and a detailed structural comparison tool
(MAMMOTH), to recognize SCOP domains and SCOP superfamilies of a query
structure. MAMMOTH' provided the Z-score and root-mean-square deviation
(RMSD) of the C,~atompositions of the-aligned residues between the query
structure and the~hit. structure according to the Euclidean distance between
corresponding residues rather than the distance between amino acid ‘types’ used in
sequence alignments. To,combine 3D-BLAST and MAMMOTH is able to reduce
the ill effects of 3D-BL/AST to improve the assignment accuracy.

5.3 Future Perspectives

5.3.1 Space-Related Pharmamotif discovery in interaction

site of protein

Small protein sequence or structural segments with highly conserved properties that may

have important biological functions. On the basis of conservation of criteria, like

psychochemical property and structural similarity, several conserved segments of proteins

belonging to the same protein family with specific function have been identified. These

segments are termed ‘structural motifs’. These motifs with their spatial orientation and

preservation of structural similarity represent the conserved core of each protein family.

Previous studies have been developed for prediction of fold and function of a protein using
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short segments of sequence and/or structural elements [108-111].

Various methods have been proposed so far for the automated motif discovery in a set of
protein sequences [112]. These discovery methods use aligned sequences or multiple
sequence alignment (MSA) as an input such as PRINTS [37], PROSITE [38, 113], and Pfam
[39]. Besides, TEIRESIAS [40], PRATT2 [41] and a specific pattern growth approach [42]
are applied to directly identify frequent patterns from unaligned biological sequences without
aligning them. Although motif discovery approaches with unaligned sequence only are more
efficiency and less computationally intensive, it may provide the less biological meanings.
Subsequently, many of the most functional and evolutionary relationships between
homologous protein are so distinct that they cannot be clearly detected through MSA and are
evident only by pairwise or multiple structure comparison of the 3D structures. In addition,
sequence-based representations are only an approximation to the underlying structural and
functional information. Therefore, structural motifs identified at 3D structure level provide
significant and reliable information.

A set of functional structural motifs need not to be contiguous in sequence and might
discover from the clustering in space-of similar side chains coming from different parts of
homologous proteins. Finding shared structural motifs in a protein family can be applied to
map the interaction site of different proteins with the same partner [114], for locating of the
binding site for a common ligand. Besides, sequence and structure motifs have an application
in drug design [115] when motifs map to.functional sites and ligand binding sites.

In the future, we will propose a novel approach for systems biology and drug design
based on the recent developed 3D-BLAST method of protein structural identification [34-36].
We will design new structural motifs that can describe the interacting environment in protein
active site named Space-Related Pharmamotif (SRP). The SRP is defined as a set of
space-related structural motifs that prefers a set of similar protein sub-site structures

consistently interact with ligand, DNA or peptide.
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Figure 5.1 The framework of Space-Related Pharmamotif Discovery and pharmalogs search.

Figure 5.1 shows that the conceptual framework of fast SRP discovery and fast
pharmalogs search using SRP. For a group of proteins with similar function and ligand, we
build up a set of interacting environment structural motifs and provide fast SRP discovery.
Using tertiary protein structure, 3D-BLAST not only allows a fast protein similarity search
but also identifies 23 states of the structural alphabet (SA) sequences that represent local
structure of SRP. We integrate 3D-BLAST and a detailed structural alignment tool
(MAMMOTH [10] and MAMMOTH-multi [116]) to recognize sub-site structures
consistently interact with ligand. We use 3D-BLAST to scan quickly the PDB database [4]
and selected the homologous structures. MAMMOTH and MAMMOTH-multi was then

adopted to align sequentially the query structure with each homologous structure to refine the
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detailed amino acid position of alignment. Finally, we identify SRP based on the functional or
ligand-binding sites of protein and their spatial orientation.

Besides, our novel approach can be applied to fast pharmalogous search using SRP, as
named as 3D-PHI-BLAST (Figure 5.1). According to results of the discovery of SRP, we are
able to construct SRP with various functions into a database. Using protein with unknown
function as query, the 3D-PHI-BLAST may provide rapid motif search through the protein
structure and SRP database to predict function and ligand/DNA/peptide pharmacophore
binding model.

5.3.2 Immunoinformatics

In the future, 23-state structural alphabet will be aimed to peptide drug design and
developing immunoinformatics. For peptide drug design, we will focus in peptide-peptide
interaction and build peptide fragment profile database. The peptide fragment profile database
will be constructed by 3D-BLAST, our structural motif database and large information about

various peptide-peptide interactions.

Besides, we will propose -an immunoinformatics system which includes structural
immunoinformatics methodology and immunological databases. The system is able to screen
and design the antibodies/peptides with high “specificity to diagnostic and therapeutic
applications. We will develop several structural bioinformatics methods and enhance/modify
them for immunology purpose. We will build the integrated immunological databases which
include CDR segment database, epitope database and CDR-Epitope interactions database.
Additionally, we will offer services for searching between these databases and present the
statistical significance of a search to indicate the reliability of the prediction. Furthermore, we
will develop an antibody selection platform as the practical application. In this platform, this
platform will be combined with phage-display library and yeast cell-display library. Also, the
antibody selection platform provides rapid motif search to predict therapeutic peptide and

visualization of drug selection.
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Appendix A
Standalone 3D-BLAST program

The package can be downloaded from http://3d-blast.life.nctu.edu.tw/download.php.

Also, you may download the package from Standalone 3d-blast Linux_betal02.tar.gz.

After downloading the package to you Linux-based computer, uncompress it by following
commands in terminal.

1. gunzip Standalone 3d-blast Linux betal(2.tar.gz

2. tar -xpf Standalone 3d-blast Linux betal02.tar
And then, you may check the file "README" in the directory "Standalone 3d-blast Linux"

for more information about compilation and usage of 3D-BLAST.

INSTALLATION

Contents of the package

1. 3d-blast.c - The source code of 3D-BLAST

2. path.h = The path configuration file

3. Makefile - - The compilation file

4. data/ BLOSUMG62 - Structural alphabet substitution matrix

5. blast/bin/blastp - NCBI-BLAST binary

6. blast/bin/formatdb - NCBI-FORMATDB binary

7. dsspcmbi/dsspcmbi - CMBI-DSSP binary

8. example/SCOP 173 40 - The example of Structural alphabet database
10. example/examplel.pdb - The example of protein file in PDB format
11. example/example2.dssp - The example of protein file in DSSP format
12. example/SADB _list - The example of list file for generating database
13. README - This document
Compilation

User make the program with:
make -f Makefile

This produces the executable file 3D-BLAST.
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USAGE

1. Formatting Structural Alphabet DataBase
Before using 3d-blast, user needs to download the structural alphabet database (SADB)
in FASTA format from the following link, and format the database using the program
"formatdb" from NCBI.
http://3d-blast.life.nctu.edu.tw/download.php

The following command line formats the SADB. The results are saved in various files,
including phr, pin, psd, psi, and psq.
./3d-blast -db <SADB file>
where "<SADB file>" is the path and name of SADB file.

For example,
./3d-blast -db example/SCOP_173: 40

2. Running 3D-BLAST to search structural database

This program searches a protein query with pdb or dssp format against a protein database.
If a pdb file is as a query, it fitst transform the pdb-style file into dssp-style one by using the
program "dsspcmbi" from CMBI. And then, it translates the protein 3D structure in 1D
Structural Alphabet (SA) sequence. The primary use.0f 3D-BLAST search is to identify the
SA sequence by finding if match(es) are present in the SADB.

In the example command line below, 3D-BLAST searchs the <query protein file> with
<chain id> against <SADB file>. The result is saved in <output file>.

./3d-blast -p <query protein file> <chain id> -d <SADB file> -o <output file>

There are two examples to demostrate how use pdb and dssp file as query to search
against SADB.
./3d-blast -p example/examplel.pdb A -d example/SCOP_173 40 -o
3d-blast output
./3d-blast -p example/example2.dssp A -d example/SCOP_173 40 -o
3d-blast_output2

Optional arguments

-1 <Temporary SA sequence file> [String] (default = Temp SA.seq)
-v <Number of sequences to show one-line descriptions> [Integer] (default = 50)

-b <Number of sequences to show alignments> [Integer] (default = 50)
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-¢ <E-value threshold> [Real] (default = 10.0)
For instance,
./3d-blast -p example/examplel.pdb A -d example/SCOP_173 40 -o
3d-blast_output -i Other SA.seq
./3d-blast -p example/examplel.pdb A -d example/SCOP_173 40 -o
3d-blast_output -v 10 -b 10
./3d-blast -p example/examplel.pdb A -d example/SCOP_173 40 -o
3d-blast_output -e le-10

3. Generating Structural Alphabet DataBase
There is another way to produce user's SADB instead of downloading it from 3d-blast
website. The following command means the 3d-blast program reads a list of pdb-style or
dssp-style files with chain id, and then translates all of them into the output of SADB file. The
format of the list file in each line is just like "<query protein file> <chain id>" including the
names of pdb/dssp file with the path to a directory and the chain id.
./3d-blast -mkdb <list file> -o.<output SADB file>

For example,
./3d-blast -mkdb example/SADB _list -0 Other SADB

After generating the SADB, user still. have to-format the SADB as the description of step

4. Generating Structural Alphabet sequence only
This program also provides the function of translating protein structure into SA sequence
by using the following command lines. It is also useful to build the custom SADB.
./3d-blast -sq_write <query protein> <chain id> -o <output file>

./3d-blast -sq_append <query protein> <chain id> -o <output file>

Note that the first command line is to write SA sequence in customSADB and second
line is append SA sequence to the same SADB file. For example,
./3d-blast -sq_write example/examplel.pdb A -o customSADB
./3d-blast -sq_append example/example2.dssp A -o customSADB

5. Printing HELP message
It shows the usage message of Standalone 3D-BLAST by following command.
./3d-blast -h
./3d-blast -?
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