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一個基於同義字辭典的蛋白質序列分析與分類

的方法 

 

研究生：林信男 

指導教授：許聞廉  博士 與 何信瑩 博士 

國立交通大學生物資訊與系統生物研究所 

摘     要 

由於蛋白質序列不斷地增加，蛋白質序列的分析與分類在生物資訊中是非常

重要的課題。許多的研究顯示蛋白質二級結構對於了解蛋白質的功能及三級結構

有很大的幫助，並且透過預測蛋白質在細胞中的定位，有助於分析蛋白質的功能

和藥物標靶的發現，此外找出同源蛋白質序列也是另外一個非常重要的課題。藉

由偵測同源蛋白質，可以更迅速地了解未知蛋白質可能的功能和屬性。因此在本

研究中，我們提出一個基於同義字辭典的蛋白質序列分析與分類的方法，用來預

測蛋白質二級結構、蛋白質細胞定位和同源蛋白質偵測等相關重要課題。 

在蛋白質序列分析的方法上我們採用了自然語言處理的概念，提出以同義字

的方法來擷取一群同源蛋白質之間的區域相似性。一個同義字就是一個 n 字元的

胺基酸片段，一組同義字可顯示蛋白質在演化過程中可能發生的序列變化。我們

利用PSI-BLAST從一組蛋白質序列中產生了一個與蛋白質相依的同義字字典，以這

個字典當作蛋白質序列分析與分類的參考依據。 

在蛋白質二級結構預測方面，基於同義字辭典我們發展了  SymPred 與 

SymPsiPred 的方法。使用一組序列相似度在 25% 以下的蛋白質序列測試預測效

率，SymPred 和 SymPsiPred 平均的 Q3 分別為 81.0% 和 83.9%。使用兩組 EVA 公

用測試資料，SymPred 平均的 Q3 分別是 78.8% 和 79.2%，預測準確率比現有方法

高出 1.4% 至 5.4%。我們分析發現 SymPred 的準確率與已知蛋白質序列的數量有
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正相關，這個發現說明 SymPred 和 SymPsiPred 的預測準確率會隨著蛋白質序列的

增加而不斷地提高。 

在蛋白質細胞定位預測中，基於同義字辭典我們發展了 KnowPredsite 的自動

預測方法。KnowPredsite 可同時預測單一胞器定位與多胞器定位。在一組公用的測

試資料中，包含了 取自1923個不同物種的 25887 單一胞器定位蛋白質與 2169 多胞

器定位蛋白質。實驗結果發現KnowPredsite 的預測準確率高於現有許多蛋白質細胞

定位預測方法。在單一胞器定位預測上，KnowPredsite 的準確率為 91.7%，高於 

ngLOC 的 88.8%。在多胞器定位預測上，KnowPredsite 的準確率為 72.1%，高於 

ngLOC 的 59.7%。此外KnowPredsite 的預測結果是可說明的，KnowPredsite 可呈列

預測結果的來源。實驗結果顯示即使序列相似度低，使用同義字辭典仍可以捕捉

到有意義的區域序列相似性用來幫助預測。 

在同源蛋白質序列的偵測中，基於同義字辭典我們發展了 SymDetector 用來

偵測序列相似度很低的同源蛋白質。我們下載了一組公用測試資料，包含了2,476

條相似度極低的蛋白質序列。在允許一個 false positive pair 的條件下，SymDetector 

可偵測到 5,308 組 true positive pair，然而現有的方法 ConSequenceS及PSI-BLAST

僅能偵測到低於1,000組的 true positive pairs。隨著 false positive pair的提高為100和

1000，SymDetector 可分別偵測到6,906及7,666組 true positive pairs，而相同條件下，

現有的方法ConSequenceS 僅能偵測到  2,000 及3,500，而  PSI-BLAST 則僅有 

ConSequenceS 所偵測到的一半。 
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Abstract 

With the increasing number of protein sequences, the protein sequence analysis and 

classification is an important issue in Bioinformatics. Many researches show that protein 

secondary structure plays an important role in analyzing and modeling protein structures 

when characterizing the structural topology of proteins because protein secondary 

structure represents the local conformation of amino acids into regular structures.  

The study of protein subcellular localization (PSL) is important for elucidating protein 

functions involved in various cellular processes. Most of the PSL prediction systems are 

established for single-localized proteins. However, a significant number of eukaryotic 

proteins are known to be localized into multiple subcellular organelles. Many studies 

have shown that proteins may simultaneously locate or move between different cellular 

compartments and be involved in different biological processes with different roles. 

The analysis of novel proteins usually starts from searching homologous proteins in 

annotated databases. Homologous proteins usually share a common ancestor, and thus 

often have similar functions and structures. Based on pairwise identities and some 

specific thresholds, sequence search tools retrieve annotated homologous sequences to 

infer annotations of the novel sequences. As the number of protein sequences grows, 

sensitive strategies of homology detection using simply sequence information are still 
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demanding and of great importance in post-genomic era. Sequence similarity is a 

frequently used simple metric for homology detection and other annotation transfers. 

However, sequence itself provides incomplete and noisy information about protein 

homology. Many improvements on homology searching and sequence comparisons have 

been developed to overcome the limitation of sequence similarity. 

Based on above observation, we propose a general approach based on a synonymous 

dictionary for protein sequence analysis and classification. We apply it to the problems of 

protein secondary structure prediction, protein subcellular localization and remote 

homology detection.  We adopt the techniques from natural language processing and use 

synonymous words to capture local sequence similarities in a group of similar proteins. A 

synonymous word is an n-gram pattern of amino acids that reflects the sequence variation 

in a protein’s evolution. We generate a protein-dependent synonym dictionary from a set 

of protein sequences. 

Protein secondary structure prediction: On a large non-redundant dataset of 8,297 protein 

chains (DsspNr-25), the average Q3 of SymPred and SymPsiPred are 81.0% and 83.9% 

respectively. On the two latest independent test sets (EVA_Set1 and EVA_Set2), the 

average Q3 of SymPred is 78.8% and 79.2% respectively. SymPred outperforms other 

existing methods by 1.4% to 5.4%. We study two factors that may affect the performance 

of SymPred and find that it is very sensitive to the number of proteins of both known and 

unknown structures. This finding implies that SymPred and SymPsiPred have the 

potential to achieve higher accuracy as the number of protein sequences in the NCBInr 

and PDB databases increases. 

Protein subcellular localization: We downloaded the dataset from ngLOC, which 

consisted of ten distinct subcellular organelles from 1923 species, and performed ten-fold 

cross validation experiments to evaluate KnowPredsite's performance. The experiment 

results show that KnowPredsite achieves higher prediction accuracy than ngLOC and 

Blast-hit method. For single-localized proteins, the overall accuracy of KnowPredsite is 

91.7%. For multi-localized proteins, the overall accuracy of KnowPredsite is 72.1%, 

which is significantly higher than that of ngLOC by 12.4%. Notably, half of the proteins 
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in the dataset that cannot find any Blast hit sequence above a specified threshold can still 

be correctly predicted by KnowPredsite. 

Remote homology detection: We propose a two-stage method called SymDetector for the 

problem of remote homology detection. We downloaded a benchmark dataset which 

contains 2,476 protein sequences with mutual sequence identity below 25%. When 

allowing only one false positive, SymDetector achieves 5,308 true positive pairs while 

ConSequenceS and PSI-BLAST report less than 1,000 true homologous ones. As the 

error rate grows, SymDetector can identify 6,906 along with 7,666 sequence pairs given 

100 and 1000 false positives permitted separately. Under the same setting, 

ConSequenceS only reports about 2,000 and 3,500 pairs in the same Fold, which improve 

PSI-BLAST by 50% in average. 
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Chapter 1 Introduction 

1.1 Protein Secondary Structure Prediction 
Proteins can perform various functions when they fold into proper three-dimensional 

structures. Because determining the structure of a protein through wet-lab experiments 

can be time-consuming and labor-intensive, computational approaches are preferable. To 

characterize the structural topology of proteins, Linderstrøm-Lang proposed the concept 

of a protein structure hierarchy with four levels: primary, secondary, tertiary, and 

quaternary. The primary structure of a protein refers to its amino acid sequence. The 

secondary structure consists of the coiling or bending of amino acids. The tertiary 

structure is the folding of a molecule upon itself by disulfide bridges and hydrogen bonds. 

The quaternary structure refers to the complex structure formed by the interaction of 2 or 

more polypeptide chains. In the hierarchy, protein secondary structure (PSS) plays an 

important role in analyzing and modeling protein structures because it represents the 

local conformation of amino acids into regular structures.  

There are three basic secondary structure elements (SSEs): α-helices (H), β-strands (E), 

and coils (C). Many researchers employ PSS as a feature to predict the tertiary structure 

[1-4], function [5-8], or subcellular localization [9] of proteins. It is noteworthy that, 

among the various features used to predict protein function, such as amino acid 

composition, disorder patterns, and signal peptides, PSS makes the largest contribution 
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[10]. Moreover it has been suggested that secondary structure alone may be sufficient for 

accurate prediction of a protein’s tertiary structure [11]. 

Current PSS prediction methods can be classified into two categories: template-based 

methods and sequence profile-based methods [12]. Template-based methods use protein 

sequences of known secondary structures as templates, and predict PSS by finding 

alignments between a query sequence and sequences in the template pool. The 

nearest-neighbor method belongs to this category. It uses a database of proteins with 

known structures to predict the structure of a query protein by finding nearest neighbors 

in the database. By contrast, sequence profile-based methods (or machine learning 

methods) generate learning models to classify sequence profiles into different patterns. In 

this category, Artificial Neural Networks (ANNs), Support Vector Machines (SVMs) and 

Hidden Markov Models (HMMs) are the most widely used machine learning algorithms 

[13-19].  

Template-based methods are highly accurate if there is a sequence similarity above a 

predefined threshold between the query and some of the templates; otherwise, sequence 

profile-based methods are more reliable. However, the latter may under-utilize the 

structural information in the training set when the query protein has some sequence 

similarity to a template in the training set [12]. An approach that combines the strengths 

of both types of methods is required for generating reliable predictions irrespective of 

whether the query sequence is similar or dissimilar to the templates in the training set. 
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To measure the accuracy of secondary structure prediction methods, researchers often use 

the average three-state prediction accuracy (Q3) accuracy or the segment overlap (SOV) 

measure [20-21]. The estimated theoretical limit of the accuracy of secondary structure 

assignment from the experimentally determined 3D structure is 88% of the Q3 accuracy 

[5, 22], which is deemed the upper bound for secondary structure prediction. However, 

PSS prediction has been studied for decades and has reached a bottleneck, since the Q3 

accuracy remains at approximately 80 % and further improvement is very difficult, as 

demonstrated by the CASP competitions. Currently, the most effective PSS prediction 

methods are based on machine learning algorithms, such as PSIPRED [15], SVMpsi [17], 

PHDpsi [23], Porter [24] and SPINE [25], which employ ANN or SVM learning models. 

The two most successful template-based methods are NNSSP [26-27] and PREDATOR 

[28]. They use the structural information obtained from local alignments among query 

proteins and template proteins, and their Q3 accuracy is approximately 70%. Thus, the 

difference in the accuracy of the two categories is approximately 10%. 

In a previous work on PSS prediction [29], we proposed a method called PROSP, which 

utilizes a sequence-structure knowledge base to predict a query protein’s secondary 

structure. The knowledge base consists of sequence fragments, each of which is 

associated with a corresponding structure profile. The profile is a position specific 

scoring matrix that indicates the frequency of each SSE at each position. The average Q3 

accuracy of PROSP is approximately 75%. 

In this study, we present an improved version of PROSP called SymPred, which is a 

dictionary-based method for predicting the secondary structure of a protein sequence. 
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Dictionary-based approaches are widely used in the field of natural language processing 

(NLP) [30-32]. We generate synonymous words from a protein sequence and its similar 

sequences. The definition of a synonymous word is given in the Chapter Two. The major 

differences between SymPred and PROSP are as follows. First, the constitutions of the 

dictionary (SymPred) and the knowledge base (PROSP) are different. Second, the 

scoring systems of SymPred and PROSP are different. Third, unlike PROSP, SymPred 

allows inexact matching. Our experiment results show that SymPred can achieve 81.0% 

Q3 accuracy on a non-redundant dataset, which represents a 5.9% performance 

improvement over PROSP. 

There are significant differences between SymPred and other methods in the two 

categories described earlier. First, in contrast to template-based methods, SymPred does 

not generate a sequence alignment between the query protein and the template proteins. 

Instead, it finds templates by using local sequence similarities and their possible 

variations. Second, SymPred is not a machine learning-based approach. Moreover, it 

does not use a sequence profile, so it cannot be classified into the second category. 

However, like machine learning-based approaches, SymPred could capture local 

sequence similarities and generate reliable predictions. Therefore, SymPred could 

combine the strengths of template-based and sequence profile-based methods. The 

experiment results on the two latest independent test sets (EVA_Set1 and EVA_Set2) 

show that, in terms of Q3 accuracy, SymPred outperforms other existing methods by 1.4% 

to 5.4%. 
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1.2 Protein Subcellular Localization Prediction 

Protein subcellular localization (PSL) is important to elucidate protein functions as 

proteins cooperate towards a common function in the same subcellular compartment [33]. 

It is also essential to annotate genomes, to design proteomics experiments, and to identify 

potential diagnostic, drug and vaccine targets [34]. Determining the localization sites of a 

protein through experiments can be time-consuming and labor-intensive. With the large 

number of sequences that continue to emerge from the genome sequencing projects, 

computational methods for protein subcellular localization at a proteome scale become 

increasingly important. 

Most existing PSL predictors are based on machine learning algorithms. They can be 

categorized by the feature sets used for building prediction models. A group of methods 

use features derived from primary sequence [35-39]; some utilize various biological 

features extracted from literature or public databases [9, 34, 40-44]. Other features are 

also used in different methods, e.g., phylogenetic profiling [45], domain projection [46], 

sequence homology [38], and compartment-specific features [47].  

A simple and reliable way to predict localization site is to inherit subcellular localization 

from homologous proteins. Therefore, in [38] a hybrid method was proposed, which 

combined an SVM based method with a sequence comparison tool to find homology to 

improve the performance. However, some homologous proteins are not similar in 

sequences, but in structures. For example, the sequence identity between proteins 1aab 

and 1j46 is only 16.7% but they are structurally homologous and classified into the same 
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family (HMG-box) in the SCOP classification. For such cases, it is difficult to discover 

the homologous relationship using sequence comparison methods. Profile-profile 

alignment methods [48-52] are capable of identifying remote homology; nevertheless, 

they are relatively slow. 

Most of the PSL prediction systems are established particularly for single-localized 

proteins. A significant number of eukaryotic proteins are, however, known to be localized 

into multiple subcellular organelles [53-54]. In fact, proteins may simultaneously locate 

or move between different cellular compartments and be involved in different biological 

processes with different roles. This type of proteins may take a high proportion, even 

more than 35% [53]. In addition, the majority of existing computational methods have the 

following disadvantages [54]: 1) they only predict a limited number of locations; 2) they 

are limited to subsets of proteomes which contain signal peptide sequences or with prior 

structural/functional information; 3) the datasets used for training are for specific species, 

which is not sufficiently robust to represent the entire proteomes. Thus, most of the 

computational methods are not sufficient for proteome-wide prediction of PSL across 

various species. 

Thus in this study, we propose a synonymous dictionary based approach, called 

KnowPredsite, using local sequence similarity to find useful proteins as templates for site 

prediction of the query protein. It is designed to predict localization site(s) of single- and 

multi-localized proteins and is applicable to proteome-wide prediction. Furthermore, it 

only requires protein sequence information and no functional or structural information is 

required. Notably, prediction results can be explained by the template proteins which are 
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used to vote for the localization sites. The dictionary based prediction scheme has been 

shown to be effective in predicting protein secondary structure [29, 38, 55] and local 

structure [56]. To evaluate our prediction method, we used the ngLOC dataset [54] to 

perform ten-fold cross validation to compare with existing methods. The dataset consists 

of ten subcellular proteomes from 1923 species with single- and multi-localized proteins. 

KnowPredsite achieved 91.7% accuracy for single-localized proteins and 72.1% accuracy 

with both sites correctly predicted for multiple localized proteins. 
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1.3 Remote Homology Detection 
The analysis of novel biological sequences usually starts from searching homologous 

sequences in annotated databases. Homologous sequences usually share a common 

ancestor, and thus often have similar functions and structures. Based on pairwise 

identities and some specific thresholds, sequence search tools retrieve similar annotated 

sequences for homology inferences, which are crucial in advanced analysis, such as 

protein structure modeling, function predictions, protein-protein interaction networks 

analysis, and other property annotations. While structural information assists to increase 

the understanding of some target proteins, in many situations one has to analyze a protein 

based on its sequence information only. The advent of whole genome sequencing 

generates large amounts of protein sequences with undetermined structures and 

functions. 

Many of these newly sequenced proteins, including those related to diseases, have few 

closely related homologs in annotated databases. In addition, as the number of sequenced 

genomes and proteins grows, many relationships between distantly related proteins are 

observed and needed to be studied further for better understanding the complex structure 

of protein universe. Sensitive strategies for analyzing proteins based on simply sequence 

information are therefore still demanding and of great importance in genomic era. 

Sequence similarity is a frequently used simple metric for homology detection and other 

annotation transfers. However, sequence itself provides only incomplete and noisy 

information about the protein. The most similar result may not be the most relevant 
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sequence [57], while some other homologous sequences might be lost in the search 

results. For example, two sequences are usually identified as homologs if their pairwise 

similarity is higher than 40%, but the problem becomes rather challenging for sequences 

sharing similarity between 20% and 35%, i.e., sequences in the twilight zone. Studies   

showed that even for protein pairs with sequence identity less than 25%, about slightly 

less than 10% of them still homologous [58]. Thus pairwise sequence similarity has its 

limit in detecting distant sequence relationships.  Using a threshold of pairwise sequence 

identity to determine homology relationship is arguable since it is hard to determine 

whether protein pairs having sequence identities lower than this threshold are 

homologous. Once pairwise similarity of a sequence pair is below a specified threshold, 

we can hardly distinguish whether the pair of sequences is from homology or not. 

Therefore many improvements on homology searching and sequence comparisons have 

been developed to overcome the limitation of sequence similarity [59-60]. 

To improve sequence-based analysis strategies, we have to determine the strategies to 

represent proteins and corresponding similarity metrics for such representations. Based 

on these two issues, homology detection methods can be roughly divided into two 

categories: generative models and discriminative models. Given a protein sequence, 

generative models focus on describing a set of known proteins with a probabilistic model, 

and propose a probabilistic measurement between the query protein and the model. On 

the other hand, discriminative models focus on differences between two sets of proteins. 

Homology search tools of generative models consist of profile-profile comparisons and 

profile-sequence methods. Since sequence information itself is insufficient, researchers 
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devise probabilistic models to represent the protein sequences, such as PSSM [61] and 

profiles [62] and profile Hidden Markov Models [63-65]. Some famous packages include 

HMMER and HMMERHEAD [66] , COMPASS [67-69], COACH [70], HHSearch [71], 

and profile comparison tools such as PRC [72]. While there might be concerns about the 

statistical measurement about accuracies for these model-comparison tools [73-74], they 

provide best available results among generative model methods. These tools, however, 

are time-consuming. Therefore profile-sequence (sequence-profile) search tools that 

strike balances between speed and accuracy are de facto standards for large-scale 

database searching. PSI-BLAST [75] is definitely the Google for bioinformatics 

community, while CS-BLAST/CSI-BLAST [76] provides more sensitive results based on 

similar ideas. More detailed comparison could be found in [77]. 

Discriminative models mainly focus on designing kernel functions based on sequence 

patterns to distinguish sequences from two different sets. Most of these methods are 

based on support vector machines, and extract frequent patterns from sequences as their 

features in the string kernel. The first string kernel might be Fisher’s kernel [78]. Some 

popular string kernels includes, but not limited to, Pairwise kernel[79], Spectrum and the 

Mismatch kernels [80-81], Local Alignment method [82], and Word Correlation Matrices 

[83]. Some methods integrate structural and motif information into the feature set, such as 

I-Sites [84], eMOTIF-database search [85], Profile-Based Mismatch methods [86] and 

Profile-based direct methods [87]. Readers can find more comprehensive information 

about discriminative methods in the following materials [88-89]. 
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While discriminative models, especially string kernels methods, achieve better 

performance than generative models in some comparative studies [79, 81], these results 

often lack of evidences for interpretations, such as HSPs in general alignment tools. In 

addition, they may lead to over-fitting due to parameter setting and feature selections. 

Therefore, many strategies attempt to improve homology detections based on results of 

generative models, especially on results of PSI-BLAST. RankProt [90] attempts to 

consider pairwise distances between all the query sequences to construct a relation 

network, and increase homology detection results based on analyzing the network 

information. Ku  and Yona [91] propose a framework based on similar ideas. Since there 

are already lots of annotated sequences in current databases, a natural thought is to 

integrate information from external sequences to boost homology detection. 

A simple attempt to integrate external sequence information in homology detection might 

be intermediate sequence search (ISS) [92-93]. In short, if protein sequences A and B are 

both homologous to the third sequence C, A and B may be detected as homologs although 

they share low identities. Improved frameworks based on similar ideas consist of 

SCOOP[94] and SIMPRO[95]. Moreover, some strategies tend to apply information from 

the probabilistic models, instead of shared sequences only. Consensus-sequence-based 

methods are representatives of these kinds of strategies. PHOG-BLAST [96] make 

sequence profiles discrete, and generate consensus for a query sequence by substituting 

each residue with the most important amino acids in the original sequence. Recently, 

Przybylski and Rost generalize such consensus-based concepts for boosting homology 

search for sequences of low identities [97-98]. For an unknown sequence, they search it 
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against NCBInr to obtain its PSSM. Then the original sequence is transformed to a 

consensus sequence based on this PSSM. They claim that, by using the informative 

consensus sequence as the object in comparisons, homology search results would be 

better than traditional PSI-BLAST searches. 

Based on above observation, we aim to design a computational framework for detecting 

distantly relationships between protein sequences in twilight zone (sequence identities 

between 25% and 40%) or midnight zone (sequence identities below 25%) with several 

properties. First, it should deal with sequence relationships among proteins with low 

sequence identity. Second, the results of the framework should be explainable. That is, 

we hope the result can provide evidence, and even high quality alignments to support its 

identification, instead of some profiles or a set of dozens of features. Third, the 

framework is computationally incremental, and we can easily add or delete sequences in 

our training set. Besides, this framework should make best use of the power of current 

homology search tools to make it simple to be implemented. As a result, we use 

fixed-length protein words as possible homology indicator in this framework. For each 

word in separate sequences, we use PSI-BLAST to generate its variations. These 

variations would be integrated to estimate relations between novel sequences and 

annotated sequences. We demonstrate that this framework achieves high sensitivity in 

discovering protein homologs even though they share low sequence similarities with 

annotated sequences. 
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Chapter 2 Synonymous Words and a 

Protein-dependent Synonymous Dictionary 

2.1 Synonymous Words versus Similar Words 
It is well known that a protein structure is encoded and determined by its amino acid 

sequence. Therefore, a protein sequence can be treated as a text written in an unknown 

language whose alphabet comprises 20 distinct letters; and the protein’s structure is 

analogous to the semantic meaning of the text. Currently, we cannot decipher the “protein 

language” with existing biological experiments or natural language processing (NLP) 

techniques; thus, the translation from sequence to structure remains a mystery. However, 

biologists have found that two proteins with a sequence identity above 40% may have a 

similar structure and function. The high degree of robustness of the structure with respect 

to the sequence variation shows that the structure is more conserved than the sequence. 

In evolutionary biology, protein sequences that derive from a common ancestor can be 

traced on the basis of sequence similarity. Such sequences are referred to as homologous 

proteins. In terms of natural language, a group of homologous protein sequences can be 

treated as texts whose semantic meaning is identical or similar. The homologous 

relationship between proteins can be always captured by sequence alignment; thus, we 

assume that two sequence fragments have a similar semantic relation if they can be 

aligned by a sequence alignment tool, such as BLAST, with a significant e-value, say 

0.001. Figure 1 shows an example of a sequence alignment derived by BLAST with an 
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e-value of 0.001. In the alignment, the identical residues are labelled with letters and 

conserved substitutions are labelled with + symbols. The sequence identity between the 

two sequence fragments in this example is 50% (=20/40). 

The idea of treating n-gram patterns as words has been widely used in biological 

sequence comparison methods; BLAST is probably the most well known method. 

BLAST’s heuristic algorithm uses a sliding window to generate an initial word list from a 

query sequence. To further expand the word list, BLAST defines a similar word with 

respect to a word on the list based on the score of the aligned word pair. A word whose 

alignment score is well above a threshold is called a similar word and is added to the list 

to recover the sensitivity lost by only matching identical words. However, in BLAST, the 

length of a word is only 2 or 3 characters (the default size) for protein sequences and short 

words are very likely to generate a large number of false hits of protein sequences that are 

not actually semantically related. 

In this study, we define synonymous words as follows. Given a protein sequence p, we 

use PSI-BLAST to generate a number of significant sequence alignments, called 

high-scoring segment pairs (HSPs), between p and its similar proteins sp. All words, i.e., 

n-grams, in p and sp are generated by a sliding window of size n. Given a word w in p, the 

synonymous word of w is defined as the word sw in sp that is aligned with w. Please note 

that no gap is allowed in either w or sw since there is no structural information in the gap 

region. Thus, the major difference between synonymous words and similar words is that 

synonymous words are based on sequence alignments (i.e., they are context-sensitive), 

whereas similar words are based on word alignments (i.e., they are context-free). Take 
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the sequence alignment (or High-scoring Segment Pair, HSP) in Figure 1 as an example. 

The Sbjct sequence is a similar protein to the Query sequence; therefore, DFDM is 

deemed synonymous to the word EWQL if the word length is 4, and FDMV is deemed 

synonymous to the next word WQLV. Based on the observation of the high robustness of 

structures, if the Query is of known structure and the Sbjct is of unknown structure, we 

assume that each synonymous word sw adopts the same structure as its corresponding 

word w; i.e., sw inherits the structure of w. 

Moreover, different synonymous words sw for a word w should have different similarity 

scores to w. To estimate the similarity between w and sw, we calculate the similarity level 

according to the number of amino acid pairs that are interchangeable. If two amino acids 

are aligned in a sequence alignment, they are said to be interchangeable if they have a 

positive score in BLOSUM62. Since a protein word is an n-gram pattern, the range of the 

similarity level between the components of a word pair is from 0 to n. For example, in 

Figure 2, the similarity level between DFDM and EWQL is 3, and that between FDMV 

and WQLV is also 3. 



 

Figure 1 – A local sequence alignment (or High-scoring Segment Pair, HSP) derived by 

PSI-BLAST. The identical residues are labelled with letters and conserved substitutions are 

labelled with + symbols. The alignment in this example shows that the sequence fragment 

from position 7 to position 46 of the query sequence is very similar to that from position 3 to 

position 42 in the subject sequence. It is assumed that the two sequences have a similar 

semantic relation because they form a significant sequence alignment. 
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2.2 Advantages of Synonymous Words 
The major advantages of using synonymous words over similar words are as follows. 

First, since the synonymous words are generated from a group of similar proteins, two 

irrelevant proteins would use different groups of similar proteins to generate their own 

synonymous words. Two irrelevant proteins would be unlikely to have common 

synonymous words, even if their original sequences had contained identical words. This 

observation implies that synonymous words probably tend to protein-dependent.  

Second, two remote homologous proteins might be very likely to have common similar 

proteins because of the transitivity of the homology relationship, so they probably share 

some synonymous words. Transitivity refers to deducing a possible similarity between 

protein A and protein C from the existence of a third protein B, such that A and B as well 

as B and C are homologues if the sequence identity between A and B as well as that 

between B and C is above the predefined threshold. Figure 2(a) shows an example of 

transitivity relationship among protein A, protein B, and protein C. Protein A and protein 

B share sequence identity of 34%, and protein B and protein C share sequence identity of 

27%, whereas protein A and protein C only share sequence identity of 12%. Using the 

transitivity relationship, remote homologous relationship and local similarity between 

protein A and protein C can be detected. In this study, we apply the transitivity concept to 

peptide fragments instead of the protein sequences to obtain local similarities between 

remotely homologues. Protein A and protein C share local similarity if there is a protein 

word aligned with the words in protein A and protein C. Figure 2(b) illustrates the idea, in 

which protein A and C are aligned with protein B1 and protein B2 (B1 and B2 can be 
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identical, homologous or non-homologous). If there is a protein word shared by both B1 

and B2, the corresponding protein words in protein A and protein C are inferred as locally 

similar between protein A and protein C. The shared synonymous word may represent a 

possible sequence variation in evolution. Moreover, if protein A and protein C are 

remotely homologous, there are likely more shared synonymous words in different 

protein B’s to characterize their similarity. 

Third, a synonymous word is given a similarity score (i.e., the similarity level) respective 

to the word it is aligned with. Therefore, a synonymous word may have different 

similarity scores depending on which word it is aligned with. Accordingly, a synonymous 

word is a protein-dependent similar word that may also have a similar semantic meaning 

in terms of its structure. 



 

Figure 2 – Two different transitivity relationships. (a) Protein A and protein B share 

sequence identity of 34%, and protein B and protein C share sequence identity of 27%, 

whereas protein A and protein C only share sequence identity of 12%. We infer the 

homologous relationship between A and protein C through protein B. (b) Protein A and 

protein C are aligned with protein B1 and protein B2. The peptide fragments of B1 and B2 

besieged by the rectangles are identical, the two corresponding peptide fragments of A and C 

are considered to be similar. 

In this study, we construct a protein-dependent synonymous word dictionary that lists 

possible synonyms for words of a protein sequence in a dataset. We use synonymous 

words as features to infer structural information for the problems of protein secondary 

structure prediction, protein subcellular localization prediction, and remote homology 

detection. 
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2.3 Construction of a protein-dependent Synonymous 
Dictionary 

Given a query sequence, we use PSI-BLAST to generate a number of significant 

alignments, from which we acquire possible sequence variations. In general, the similar 

protein sequences (i.e., the Sbjct sequences) reported by PSI-BLAST share highly similar 

sequence identities (between 25% and 100%) with the query, which implies that the 

sequences may have similar structures. Therefore, we identify synonymous words in 

those sequences. 

Using a dataset of protein sequences with known secondary structures, we construct a 

protein-dependent synonymous dictionary, called SynonymDict. For each protein p in the 

dataset, we first extract protein words from its original sequence using a sliding window 

of size n. Each protein word, as well as the corresponding SSEs of the successive n 

residues, the protein source p, and the similarity level (here, the similarity level is n), are 

stored as an entry in SynonymDict. A protein source p represents the structural 

information provider. We then use PSI-BLAST to generate a number of similar protein 

sequences. Specifically, to find similar sequences, we perform a PSI-BLAST search of 

the NCBInr database with parameters j=3, b=500, and e=0.001 for each protein p in the 

dataset. Since the NCBInr database only contains protein sequence information, each 

synonymous word inherits the SSEs of its corresponding word in p. A PSI-BLAST search 

for a specific query protein p generates a number of local pairwise sequence alignments 

between p and its similar proteins. Statistically, an e-value of 0.001 generally produces a 

safe search and signifies sequence homology [99]. Similarly, each synonymous word and 



its inherited structure, the protein source p, and the similarity level are stored as an entry 

in SynonymDict. 

Figure 3 shows the procedure used to extract protein words and synonymous words for a 

query protein p. We use a sliding window to screen the query sequence, as well as all the 

similar protein sequences found by PSI-BLAST, and extract all words. The query protein 

p is the protein source of all the extracted words. Each word is associated with a piece of 

structural information of the region from which it is extracted. For example, WGPV is a 

synonymous word of WAKV. Since it is from a similar protein of unknown structure, it is 

associated with a piece of structural information of WAKV, which is HHHH. 

 

Figure 3 – The procedure used to extract protein words and synonymous words for a query 

protein p. The procedure used to extract protein words and their synonymous words for a 

given query protein p (assuming the window size n is 4). We use a sliding window to screen 

the query sequence and all the similar protein sequences found by PSI-BLAST and extract 

all words. Each word is associated with a piece of structural information of the region from 

which it is extracted. The protein source of all the extracted words is the query protein p, 

since all the structural information is derived from p. 
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Note that a synonymous word may appear in more than one similar protein when all 

similar protein sequences are screened. We cluster identical words together and store the 

frequency in the synonymous word entry. Table 1 shows an example of a synonymous 

word entry in SynonymDict. In the example, WGPV is a synonymous word of proteins A, 

B and C, since it is extracted from the similar proteins of A, B and C. The synonymous 

word inherits the corresponding structural information of its source, and we can derive 

the corresponding similarity levels and frequencies via the extraction procedure. For 

example, the similarity level of WGPV in terms of protein source A is 3 and the frequency 

is 7. This implies that WGPV has 3 interchangeable amino acids with the corresponding 

protein word of A and it appears 7 times among the similar proteins of A found in the 

PSI-BLAST search result. 

In Table 1, we store the inherited secondary structural information for the synonymous 

word WGPV. We can use the structural information to predict the secondary structure for 

a given protein sequence. In fact, we can store other protein related information in a 

synonymous word entry, such as protein subcellular localization sites, protein function 

labels, or structural classes, etc. In Table 2 we show another example of a synonymous 

word entry which stores the protein subcellular localization sites. Using the stored 

information, we can study different protein prediction or classification problems. 
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Table 1 – An example of a synonymous word entry in SynonymDict. An example of a 

synonymous word entry in SynonymDict (assuming the word length n = 4). WGPV is a 

synonymous word of proteins A, B and C, since it is extracted from the similar proteins of A, 

B and C. We record the structural information of protein sources to the corresponding 

synonymous words, and calculate the corresponding similarity levels and frequencies. For 

example, the similarity level of WGPV in terms of protein source A is 3 and the frequency is 

7. 

Synonymous word: WGPV 

Protein Source Secondary Structure Similarity Level Frequency 

A HHHH 3 7 

B HHCH 4 11 

C CHHH 2 3 

 

Table 2 – Another example of a synonymous word entry in SynonymDict. Three protein 

sources with known localization sites contain protein words that are aligned to the word 

MYSKILL in the corresponding sequence alignments. We store the inherited subcellular 

localization sites for MYSKILL from the protein sources A, B, and C. 

Synonymous word: MYSKILL 

Protein Source Localization Sites Similarity Level Frequency 

A Cytoplasm 5 21 

B Nuclear 4 12 

C Cytoplasm 

Extracellular 
5 17 

 



Chapter 3 Protein Secondary Structure 

Prediction 

3.1 Methods 
In this section, we present our synonymous dictionary based approach for protein 

secondary structure prediction, called SymPred, and a meta-predictor, called 

SymPsiPred. 

3.1.1 SymPred: a PSS predictor based on SynonymDict 

 

Figure 4 – The prediction procedure of SymPred. An HSP represents a high-scoring segment 

pair which is a significant sequence alignment reported by PSI-BLAST. 
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Preprocessing 

Figure 4 shows the prediction procedure of SymPred. Given a target protein t, whose 

secondary structure is unknown and to be predicted, we perform a PSI-BLAST search on 

t to compile a word set containing its original protein words and synonymous words. The 

procedure is similar to the construction of SynonymDict. We also calculate the frequency 

and similarity level of each word in the word set. 

Exact and inexact matching mechanisms for matching words to SynonymDict 

Each word w in the word set is used to match against words in SynonymDict, and the 

structural information of each protein source in the matched entry is used to vote for the 

secondary structure of t. When matching a word to SynonymDict, we consider using 

straightforward exact matching and a simple inexact matching. Exact matching is rather 

strict, so we consider a possible relaxation of inexact matching to increase the sensitivity 

to recover synonymous word matches so that SynonymDict can be utilized to more extent 

than by using exact matching. Our inexact matching allows at most one mismatched 

character, i.e., allowing a don’t-care character (not a gap) in the words. The matched 

entries are then evaluated by the following scoring function. 

The Scoring Function 

To differentiate the effectiveness of matched entries, we design a scoring function based 

on the protein sources in the matched entries and the sum of the weighted scores on the 

associated structures determines the predicted structure. 
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Since we use the structural information of protein sources in the matched entries for 

structure prediction, we define the scoring function based on its similarity level and 

frequency recorded in the dictionary for the following observation. The similarity level 

represents the degree of similarity between a protein word and its synonymous word, and 

the frequency represents the degree of sequence conservation in the protein’s evolution. 

Intuitively, the greater the similarity between two words, the closer they are in terms of 

evolution; likewise, the more frequently a word appears in a group of similar proteins, the 

more conserved it is in terms of evolution. 

To define the scoring function, we consider the similarity level and the frequency of the 

word in the word set of t, denoted by Simt and freqt respectively, as well as those of a 

protein source i in its matched entry, denoted by Simi and freqi respectively. Note that 

Simt and freqt are obtained in the preprocessing stage. To measure the effectiveness of the 

structural information of the protein source i, we define the voting score si as min(freqt, 

freqi)×(1+min(Simt, Simi)). The structural information provided by i will be highly 

effective if: 1) w is very similar to the corresponding words of t and i; and 2) w is well 

conserved among the similar proteins of t and i. 

Take the synonymous word WGPV in Table 1 as an example. If WGPV is a synonymous 

word of t (assuming freqt is 5 and Simt is 4), then the voting score of the structural 

information provided by protein source A is min(5, 7)×(1+min(4, 3)) = 5×(1+3) = 20. 

Similarly, the voting score provided by protein source B is min(5, 11)×(1+min(4, 4)) = 

5×(1+4) = 25, and the score provided by protein source C is min(5, 3)×(1+min(4, 2)) = 
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3×(1+2) = 9. The structural information provided by protein source B has the highest 

score in this matched entry and therefore has the most effect on the prediction. 

Structure determination 

The final structure prediction of the target protein t is determined by summing the voting 

scores of all the protein sources in the matched entries. Specifically, for each amino acid x 

in a protein t, we associate three variables, H(x), E(x), and C(x), which correspond to the 

total voting scores for the amino acid x that has structures H, E, and C, respectively. For 

example, if we assume that the above synonymous word WGPV is aligned with the 

residues of protein t starting at position 11, then protein A’s contribution to the voting 

score of H(11), H(12), H(13), and H(14) would be 20. Similarly, protein B would 

contribute a voting score of 25 to H(11), H(12), C(13), and H(14); and protein C would 

contribute a voting score of 9 to C(11), H(12), H(13), and H(14). The structure of x is 

predicted to be H, E or C based on max(H(x), E(x), C(x)). When two or more variables 

have the same highest voting score, C has a higher priority than H, and H has a higher 

priority than E. 

Confidence level 

A confidence measure of a prediction for each residue is important to a PSS predictor 

because it reflects the reliability of the predictor’s output. To evaluate the prediction 

confidence on each amino acid x, we calculate a confidence level to measure the 

reliability of the prediction. The confidence level on amino acid x is defined as follows: 
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The product in the denominator represents a normalization factor for the scoring function. 

Therefore, the confidence level measures the ratio of the voting scores a residue x gets 

over the summation of the normalization factors. The range of ConLvl(x) is constrained 

between 0 and 9 by rounding down. In the Results section (Section 3.2), we analyze the 

correlation coefficient between the confidence level and the average Q3 accuracy. 

3.1.2 SymPsiPred: a secondary structure meta-predictor 
SymPred is different from sequence profile-based methods, such as PSIPRED, which is 

currently the most popular PSS prediction tool. PSIPRED achieved the top average Q3 

accuracy of 80.6% in the 20 methods evaluated in the CASP4 competition [100]. 

SymPred and PSIPRED use totally different features and methodologies to predict the 

secondary structure of a query protein. Specifically, SymPred relies on synonymous 

words, which represent local similarities among protein sequences and their homologies; 

however, PSIPRED relies on a position specific scoring matrix (PSSM) generated by 

PSI-BLAST, which is a condensed representation of a group of aligned sequences. 

Furthermore, SymPred constructs a protein-dependent synonymous dictionary for 

inquiries about structural information. In contrast, PSIPRED builds a learning model 

based on a two-stage neural network to classify sequence profiles into a vector space; 

thus, it is a probabilistic model of structural types. 
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It has been shown that combining the prediction results derived by various methods, often 

referred to as a meta-predictor approach, is a good way to generate better predictions. 

JPred [101] was the first meta-predictor developed for PSS prediction. After examining 

the predictions generated by six methods it, JPred returned the consensus prediction 

result and achieved a 1% improvement over PHD, which was the best single method 

among the six methods. Similar to the concept of the meta-predictor, we have developed 

an integrated method called SymPsiPred, which combines the strengths of SymPred and 

PSIPRED. 

To combine the results derived by the two methods, we compare the prediction 

confidence level of each residue from each method and return the structure with the 

higher confidence. Since SymPred and PSIPRED use different measures for the 

confidence levels, we transform their confidence levels into Q3 accuracies. For each 

method, we generate an accuracy table showing the average Q3 accuracy for each 

confidence level, i.e., we use the average Q3 accuracy of an SSE to reflect the prediction 

confidence. 

For example, suppose SymPred predicts that a residue in a target sequence has structure 

H with a confidence level of 6, PSIPRED predicts that the residue has structure E with a 

confidence level of 6, and the corresponding Q3 accuracies in the accuracy tables are 

77.6% and 64.6% respectively. In this case, SymPsiPred would predict the residue as H. 
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3.2 Results 
In this section, we first reported performance evaluation of SymPred and SymPsiPred on 

a validation dataset, and then compared our methods with existing methods on EVA 

benchmark datasets. 

3.2.1 Datasets used to develop SymPred 
We downloaded all the protein files in the DSSP database [102] and generated three 

datasets, i.e., DsspNr-25, DsspNr-60, and DsspNr-90, based on different levels of 

sequence identity using the PSI-CD-HIT program [103] following its guidelines. In other 

words, DsspNr-25, DsspNr-60 and DsspNr-90 denote the subset of protein chains in 

DSSP with mutual sequence identity below 25%, 60% and 90%, respectively, and 

contain 8297, 12975 and 16391 protein chains, respectively.  

3.2.2 Performance evaluation of SymPred and SymPsiPred on the 

validation set DsspNr-25 
We used all the protein chains in DsspNr-25, DsspNr-60 and DsspNr-90 as template 

pools to construct the synonymous dictionaries SynonymDict-25, SynonymDict-60 and 

SynonymDict-90, respectively. Furthermore, we used DsspNr-25 as the validation set to 

determine the parameters of SymPred by leave-one-out cross validation (LOOCV) since 

LOOCV (also known as full jack-knife) has been shown to provide an almost unbiased 

estimate of the generalization error [104] and makes the most use the data. (SymPred 

does not need to rebuild model unlike most machine learning methods when using 

LOOCV.) Once the parameters of SymPred, including the length n of a word and the 
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dictionary, were determined, we also used the validation set DsspNr-25 to evaluate the 

performance of SymPred and SymPsiPred by 10-fold cross validation and LOOCV. To 

avoid over-estimation of SymPred’s performance, when testing each target protein in the 

DsspNr-25, we discarded all the structural information of proteins t in the template pool if 

t and the target protein share at least 25% sequence identity. 

Choosing the word length 8 with inexact matching criterion and using SynonymDict-60, 

we evaluated the performance of SymPred and SymPsiPred on the validation set 

DsspNr-25 by LOOCV and 10-fold cross validation as shown in Table 3. SymPred 

achieved the Q3 of 80.5% and the SOV of 75.6% in 10-fold cross validation and the Q3 of 

81.0% and the SOV of 76.0% in LOOCV, outperforming PROSP by at least 5.4% in Q3 

and 6.9% in SOV. 

 PSIPRED achieved the Q3 of 80.1% and the SOV of 76.9% on the same test set. 

However, the prediction performance of PSIPRED might be over-estimated using our 

dataset because PSIPRED was trained separately. Some protein sequences in our dataset 

might be in the training set of PSIPRED. Therefore, to have a fair comparison with 

PSIPRED, we use EVA benchmark datasets. We show the prediction performance with 

existing methods in the sub-section of 3.2.6. 

The meta-predictor, SymPsiPred which integrates the prediction power of SymPred and 

PSIPRED, achieved a further improvement on Q3 of 83.9% on DsspNr-25. This result 

demonstrates that SymPsiPred can combines the strengths of the two methods and thus 

yield much more accurate predictions.  
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It is noteworthy that SymPred can predict helical structure more accurately than others. 

The Q3Ho is 84.3% which is much better that Q3Eo and Q3Co. Among the three 

secondary structure elements, strands (beta sheets) are the most difficult ones to be 

predicted. Because strands are formed by the pairing of multiple strands held together 

with hydrogen bonds, they involve interactions between linearly distant residues [105]. 

Using local sequence or structural information could not predict strands very well. This is 

one of major challenges and limitations of our method. The Q3Eo of SymPred on  

DsspNr-25 is 71.6%, which is lower than Q3Ho  by 12.7%, and lower than Q3Co by 

6.1%. However SymPsiPred can improve Q3Eo to 75.8% by combining the strength of 

SymPred and PSIPRED. 
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Table 3 – Performance comparison of SymPred, SymPsiPred, and PROSP on the DsspNr-25 

dataset. Q3Ho (Q3Eo and Q3Co, respectively) represents correctly predicted helix (strand 

and coil, respectively) residues (percentage of helix observed). sovH/E/C values are the 

specific SOV accuracies of the predicted helix, strand and coil, respectively. SymPred* 

represents the experiment result using leave-one-out cross validation and SymPred+ 

represents the experiment result using 10-fold cross validation. 

DsspNr-25 

(8,297 

proteins) 

Q3
Q3H

o 

Q3E

o 

Q3C

o 
sov 

sov

H 

sov

E 

sov

C 

SymPred* 81.0 84.3 71.6 77.7 76.0 82.5 76.9 70.7

SymPred+ 80.5 84.1 70.9 77.5 75.6 82.3 76.4 70.3

PSIPRED 80.1 78.8 68.8 78.3 76.9 79.2 74.4 72.2

SymPsiPred 83.9 81.5 75.8 83.9 80.2 82.3 80.3 76.5

PROSP 75.1 79.7 67.6 71.3 68.7 77.0 73.0 63.4

 

The prediction accuracy of SymPred on DsspNr-25 was obtained by optimized the two 

factors: (1) the length of protein words and the matching criterion used for searching the 

synonymous dictionary and (2) the size of the template pool, as  mentioned earlier. 

Below, we analyze the two factors in more detail and the reported accuracies were 

obtained by LOOCV. 

3.2.3 Factor 1: the word length n and the matching criterion 
The choice of word length n is a trade-off between specificity and sensitivity, i.e., long 

words tend to have highly specific structural features and short words increase sensitivity 

by recovering sequence matches. Regarding the matching, in the previous study of 

PROSP, we adopted exact matching when searching a synonymous dictionary. Since the 
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exact matching criterion is rather strict in terms of matching efficiency, we also compared 

the performance of SymPred using exact matching against using inexact matching, which 

allows at most one mismatched character. 

We evaluated the performance of SymPred using the smallest SynonymDict-25 

dictionary. Table 4 shows the Q3 accuracy of SymPred with exact and inexact matching 

on different word lengths. The results reveal that the Q3 accuracy is not always increasing 

along the increasing word length in both matching mechanisms. The best Q3 accuracies 

are reported at n=7 for exact matching and n=8 for inexact matching. That is, 7 identical 

residues yield high specificity for the structural features and a single don’t-care character 

increases the sensitivity to recover sequence matches. In summary, we can improve the 

prediction performance by using the inexact matching criterion when searching a 

synonymous dictionary and choosing the word length 8. 

Table 4 – The Q3 accuracies of SymPred using exact and inexact matching on different word 

lengths. 

Word length n 6 7 8 9 

Q3 (exact matching) 78.2 80.1 78.1 76.2 

Q3 (inexact matching) 74.9 79.2 80.5 79.0 
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3.2.4 Factor 2: the effect of the dataset size used to compile a 

dictionary 
Although the estimated theoretical limit of the accuracy of secondary structure 

assignment is 88%, current state-of-the-art PSS prediction methods achieve around 80% 

accuracy; there is an 8% accuracy gap. What is the major obstacle to achieving 88% 

accuracy? Rost [22] raised this question, and Zhou et al. [106] suggested that the size of 

an experimental database is crucial to the performance. However, Rost found that 

PHDpsi trained on only 200 proteins was almost as accurate as PSIPRED trained on 2000 

proteins, i.e., the performance is insensitive to the size of the training dataset. This is both 

the strength and the weakness of machine learning-based approaches. Machine 

learning-based approaches can generate satisfactory prediction models using a limited 

dataset. On the other hand, the benefit of using more instances is also limited. Though 

SymPred is not a machine-learning approach, we still concern the relationship between 

its performance and the size of a template pool. 

We fist studied the sensitivity of the data set size by compiling the SynonymDict-25 using 

different percentages of the protein sequences in DsspNr-25. (The following analysis is 

based on word length of 8 and using inexact matching in SymPred.) Table 5 summarizes 

the prediction performance of SymPred using different percentages of proteins in the 

template pool. The performance improves as the number of template proteins increases. 

The Q3 accuracies for 10% and 100% usage of template proteins are 70.8% and 80.5%, 

respectively, a 9.7% improvement. Moreover, SymPred’s performance improves between 

0.5% and 2.8% each time the number of template proteins is increased by 10%.With more 
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protein sequences in the template pool, the synonymous dictionary can learn more 

synonymous words from those sequences and their similar protein sequences. 

Table 5 – The Q3 accuracy comparison of SymPred using dictionaries compiled from 

different percentages of the template proteins. The performance improves as the number of 

template proteins increases. SymPred’s performance improves between 0.5% and 2.8% each 

time the number of template proteins is increased by 10%. 

Percentage 

of template 

pool 

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Number of 

template 

proteins 

830 1660 2490 3320 4150 4980 5809 6638 7467 8297 

Q3 on 

DsspNr-25 

70.8 73.6 75.0 76.3 77.3 78.1 78.7 79.3 79.8 80.5 

Improvement - +2.8 +1.4 +1.3 +1.0 +0.8 +0.6 +0.6 +0.5 +0.7 

 

Since SymPred is sensitive to the size of the template pool, we next evaluated its 

performance on SynonymDict-60 and SynonymDict-90, which were compiled from much 

larger template pools. Table 6 shows SymPred’s prediction performance using 

different-sized template pools. Its prediction accuracy reaches 81.0% on 

SynonymDict-60, a 0.5% improvement over using SynonymDict-25. We can learn more 

useful synonymous words from the additional template proteins. The implication is that if 

protein A and protein B are similar, say the two share 50% of sequence identity, then 

PSI-BLAST can find more similar protein sequences by analyzing A and B together, 

rather than separately. For example, there might be a protein C that is only similar to 
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protein B. In such a case, if A is the query sequence, PSI-BLAST would not report protein 

C due to the low sequence identity. However, the advantage decreases when a larger 

number of similar proteins are involved in the template pool, as shown by the result for 

SynonymDict-90, which is comprised of proteins whose sequence identities are below 

90%. The sequence conservation rate contracts to highly similar sequences, and this leads 

to a bias in the weighted scores of the scoring system. Therefore, we adopt 

SynonymDict-60 as the primary synonymous dictionary for making predictions. 

Table 6 – Comparison of SymPred’s prediction performance on different-sized template 

pools. 

Template pool DsspNr-25 DsspNr-60 DsspNr-90 

Number of template proteins 8297 12975 16391 

Synonymous dictionary SynonymDict-25 SynonymDict-60 SynonymDict-90 

Q3 on DsspNr-25 80.5 81.0 80.9 

 

3.2.5 Evaluation of the confidence level 
Figure 5 shows the utility of our confidence level and PSIPRED’s confidence level in 

judging the prediction accuracy of each residue in the test set. The statistics are based on 

more than 2 million residues. The correlation coefficient between the confidence levels 

and Q3 scores for SymPred is 0.992, and that for PSIPRED is 0.976. Thus, both methods 

provide strong confidence measures for the output. We observe that a confidence level of 

7 or above reported by SymPred is attributed to 53% of the residues with more than 81% 



of the Q3 accuracy which is comparable to the confidence level of 8 or above reported by 

PSIPRED. Furthermore, it can be observed that the prediction of SymPred is more 

reliable when the confidence levels of both methods are low. For example, the average 

Q3 score of SymPred for the confidence level of 6 is 77.6%, whereas that of PSIPRED is 

64.6%. 

 

Figure 5 – Relationships between Q3 accuracy and confidence level on SymPred and 

PSIPRED. The correlation coefficient between the confidence levels and Q3 scores for 

SymPred is 0.992, and that for PSIPRED is 0.976. 

3.2.6 Performance comparison with existing methods on EVA 

benchmark datasets 
EVA test sets usually serve as benchmarks of protein secondary structure predictors, 

particular for CASP competitions [107]. Only proteins without significant sequence 

identity to previously known PDB proteins were used to test on different existing 

methods. We downloaded two latest EVA benchmark datasets, called EVA_Set1 (protein 
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list: http://cubic.bioc.columbia.edu/eva/sec/set_com1.html) and EVA_Set2 (protein list: 

http://cubic.bioc.columbia.edu/eva/sec/set_com6.html), the former containing 80 

proteins tested on the most number of methods and the latter with the maximum number 

of proteins (212 proteins). The two datasets serve as independent test sets for 

performance comparison of SymPred with other existing methods. 

For fair comparison, when predicting the secondary structure of each target protein in an 

independent set, SymPred discarded the structural information of all proteins sharing at 

least 25% of the sequence identity with the target protein in the template pool, i.e., 

SymPred used in the template pool the structural information of proteins sharing no more 

than 25% sequence identity with the target protein. 

Table 7 shows the experiment result on the two benchmark datasets, EVA_Set1 and 

EVA_Set2, where SymPred’s results were achieved by using n= 8, inexact matching and 

SynonymDict-60 It shows that SymPred achieves Q3 accuracies of 78.8% (SOV=76.4%) 

and 79.2% (SOV=76.0%), outperforming existing state-of-the-art methods by 1.4% to 

5.4%. It can be observed that SymPred performs better than each single predictor on most 

of performance measurements. 

http://cubic.bioc.columbia.edu/eva/sec/set_com1.html
http://cubic.bioc.columbia.edu/eva/sec/set_com6.html
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Table 7 – The prediction performance of different methods on the EVA benchmark datasets. 

sovH/E/C values are the specific SOV accuracies of the predicted helix, strand and coil, 

respectively. The prediction results of other methods on EVA_Set1 and EVA_Set2 are 

reported at http://cubic.bioc.columbia.edu/eva/sec/common3.html. 

EVA_Set1 

(80 proteins) 
Q3

ERRsi

g Q3
sov 

ERRsi

g 

sov 

sovH sovE sovC

SymPred 78.8 ±1.4 76.4 ±1.9 85.0 76.5 70.4

SAM-T99sec 77.2 ±1.2 74.6 ±1.5 80.9 72.5 71.2

PSIPRED 76.8 ±1.4 75.4 ±2.0 82.1 72.3 69.2

PROFsec 75.5 ±1.4 74.9 ±1.9 78.3 75.9 71.3

PHDpsi 73.4 ±1.4 69.5 ±1.9 73.7 73.9 65.2

 

EVA_Set2 

(212 proteins) 
Q3

ERRsi

g Q3
sov 

ERRsi

g 

sov 

sovH sovE sovC

SymPred 79.2 ±0.9 76.0 ±1.2 85.1 77.7 71.3 

PSIPRED 77.8 ±0.8 75.4 ±1.1 80.6 72.6 70.4 

PROFsec 76.7 ±0.8 74.8 ±1.1 79.2 76.2 71.8 

PHDpsi 75.0 ±0.8 70.9 ±1.2 77.0 72.4 67.0 
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3.3 Discussions 
In this section, we analyze the prediction power of SymPred on similar proteins as well as 

the relationship between the number of synonymous words and the method’s prediction 

performance. We also demonstrate the structure conservation of synonymous words via a 

case study of a pair of protein sequences that are very dissimilar at the sequence level. 

3.3.1  Evaluation on similar proteins 
One weakness of machine learning-based methods is that they may under-utilize the 

structural information in the training set when the query protein has a high sequence 

similarity to a template in the training set. Therefore, we assess the performance of 

SymPred when there are sequence similarities between test proteins and proteins in the 

template pool. Since SynonymDict-90 contains the largest number of known-structure 

protein sequences, we conducted an experiment in which we used all the structural 

information of the template proteins in the dictionary, except the information of the target 

protein itself. Of the 8297 target proteins, 3585 have similar proteins in the template pool 

(i.e., the sequence identity ≧25%). SymPred’s average Q3 accuracy on those proteins is 

88.1%, which fits the estimated theoretical limit of the accuracy. The result shows that 

SymPred can utilize the structural information in the template pool effectively when there 

are sequence similarities to the target protein sequence. 
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3.3.2 Prediction accuracy affected by enlargement of synonymous 

words 
Although the parameter b in PSI-BLAST is set at 500 for searches, not every query 

protein can have that number of similar proteins in the database used to generate 

sequence alignments. Because some query proteins are quite unique, PSI-BLAST only 

reports a few similar proteins at most, and may not report any. In such cases, SymPred 

would not have enough synonymous words to generate reliable predictions. On the other 

hand, some query proteins have many highly similar proteins in the database, which 

results in duplicate synonymous words. Apart from the number of sequence alignments, 

the number of distinct synonymous words may affect SymPred’s performance. Therefore, 

we analyze the relationship between the number of distinct synonymous words and the 

SymPred’s prediction performance. 

To study the relationship, we set different thresholds for selecting corresponding subsets 

u of test protein sequences. The selection criterion is defined as follows. For each test 

protein t in DsspNr-25, let v denote the number of distinct synonymous words in the word 

set of t, and let L be the sequence length of t ; then let e = v/L, which denotes the multiple 

of L in terms of v. If e is greater than or equal to a threshold, the protein t is added to u. We 

compare the average Q3 accuracy of proteins in u with respect to different thresholds. 

Table 8 shows the prediction performance of SymPred and SymPsiPred with respect to 

different thresholds. The results show that there is a positive correlation between the 

number of distinct synonymous words and the prediction performance of SymPred and 

SymPsiPred. For SymPred, the accuracy improves from 81.0% to 83.5% when the 
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threshold increases from e≧0 to e≧150. It is remarkable that SymPred can predict 

approximately 75% of the proteins in DsspNr-25 with 83.1% accuracy, and more than 

50% of the protein sequences can be predicted with 83.5% accuracy. For SymPsiPred, the 

accuracy increases from 83.9% to 85.5% when the threshold increases from e≧0 to e≧

150. The results imply that SymPred and SymPsiPred have the potential to achieve higher 

accuracy as the number of protein sequences in the NCBInr database increases. 

Table 8 – The relationship between the number of distinct synonymous words and the 

prediction performance. For each test protein t of length L in DsspNr-25, let v denote the 

number of distinct synonymous words of t. Define e = v/L, the multiplicity of v over L. If e is 

greater than or equal to a threshold, the protein t is selected. The results show that there is a 

positive correlation between the number of distinct synonymous words and the prediction 

performance of SymPred and SymPsiPred. 

Selection 

criterion 

e 0≧  e 5≧  e 25≧  e 50≧  e 75≧  e 100≧  e 125≧  e 150≧  

Number of selected 

proteins 

8297 7983 7252 6660 6178 5637 5035 4378 

SymPred 81.0 81.6 82.3 82.8 83.1 83.3 83.4 83.5 Q3

SymPsiPred 83.9 84.3 84.8 85.1 85.2 85.3 85.4 85.5 
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3.3.3 Essential Residues 
Since the confidence level measures the ratio of voting scores a residue x gets to the 

summation of the normalization factors, it reflects the degree of sequence conservation in 

protein evolution. We use the confidence levels representing the degrees of importance of 

residues in determining the structure and function of a protein sequence. 

To study the effectiveness of essential residues, we developed a general prediction 

method, called ProtoPred, which only uses the secondary structural information as the 

single feature for general proteome prediction problems, such as function prediction and 

enzyme/non-enzyme classification. The confidence levels are used as weights to indicate 

the degrees of importance of residues when finding protein templates for the prediction. 

ProtoPred: A Prototype of Prediction Method 

Figure 6 shows the main algorithm of ProtoPred. ProtoPred is a simple template based 

method for general prediction problems. It is a standard query-template alignment 

algorithm that is used frequently in homology modeling or threading methods [108-110]. 

For the training of ProtoPred, we used a sliding window of size w to extract the real 

secondary structure fragments from each of the training proteins. Each structure fragment 

carried the related information from its origin, such as function labels or protein classes. 

These fragments were treated as templates for predictions. For test phase we used the 

same sliding window to extract the predicted secondary structure fragments from the 

target protein. Each structure fragment (denoted as s) was used to search against the 



template pool. We compared the similarities between s and each template t in the 

template pool. The similarity was estimated as follows. 

For each position x (from 1 to w) if s[x] was identical to t[x], then t would get a weighted 

score from s, i.e., the confidence level of s[x]. Each s selects the best template t with the 

highest sum of weighted scores (denoted as Sumws). If the best template t was labeled as 

class A, then the target protein would get a score of Sumws for class A. Finally, the target 

protein would be predicted as the class with the highest score. 

 

Figure 6 – The main algorithm of ProtoPred. (a) Template extraction (b) The prediction 

procedure. 

Experiment Result on Protein Function Prediction Using Essential Residues 
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The knowledge of protein functions is crucial to the understanding of biological process. 

Since the experimental procedures for protein function annotation are inherently low 

throughput, the accurate computational techniques for protein function prediction 

represent useful tools. Automated protein function prediction methods include direct 

homology-based and indirect subsequence/feature-based approaches. For the indirect 

subsequence-based approaches, often only specific subsequences are crucial for the 

protein to perform its function [109]. This motivated us to use the essential residues in the 

function predictions. 

We downloaded the protein function labels from the Gene Ontology Annotation Database 

(goa_pdb) [111]. Since we needed to compile a dataset whose protein sequences are not 

redundant (mutual sequence identity less than 25%) and each of them is of known 

secondary structure, we then made an intersection set of goa_pdb with DsspNr-25. The 

number of proteins is 2677 and the total number of distinct function labels is 1539. It is 

worth to note that the function labels contain all GO annotations for the 2677 proteins, 

including the function labels of biological process, molecular functions, and cellular 

components. For example, the function labels of protein 1ak6 are 3779 (molecular 

function: actin binding) and 5622 (cellular component: intracellular). 

In this application, we focus on verifying the efficacy of different sources of PSS. These 

sources are the real secondary structures, the predicted secondary structures of SymPred, 

and the predicted secondary structure of PSIPRED. ProtoPred predicts the most specific 

function label among 1539 candidates for a target protein by using one of the sources of 

secondary structures rather than general functions. The prediction accuracy is 100% if the 



 47

predicted function label belongs to the target protein, otherwise it is 0%. For example, if 

we predict 1ak6 as the function 3779 (or 5622) then the accuracy is 100%. The 

hierarchical structure of GO annotations is not exploited in our prediction method, though 

it could be used to improve prediction accuracy [6]. 

ProtoPred extract structure fragments using a sliding window of size w. Table 9 shows 

the results for several different window sizes. It can be observed that ProtoPred’s 

prediction using the predicted secondary structure of SymPred shows the highest 

accuracy for all studied window sizes (except the window size of 11 because it is too 

short to represent the uniqueness of structures for different function classes). For 

example, for the window size of 51, the prediction accuracies of ProtoPred using the 

features of real structure, PSIPRED’s prediction, and SymPred’s prediction are 49.8%, 

35.4%, and 57.6% respectively. Notably, the Q3 of PSIPRED and SymPred on this 

dataset are 80.3% and 81.1%. Although the performances of PSS prediction of the two 

methods are similar, the effectiveness is quite different. Moreover, the performance of 

ProtoPred with SymPred’s prediction is also better than that of ProtoPred with real 

structure. A possible explanation for this discrepancy is that different structures within a 

protein did not have equal importance for its function. It shows that SymPred could 

identify the essential residues which are crucial for proteins to perform their functions. 

Structural identities of low relevance residues dilute the influence of major residues when 

using the real structure as the feature in the ProtoPred’s prediction. 
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Table 9 – The accuracy (%) of function predictions using different structure sources and 

different window sizes. 

Window Size 11 21 31 41 51 61 71 
Real Structure 21.0 21.1  31.5  45.5  49.8  51.8  53.0  

PSIPRED 21.0 21.0  23.3  28.9  35.4  40.6  44.0  

SymPred 21.0 21.5  39.4  53.8  57.6  58.3  59.1  

 

Experiment Result on Enzyme/non-enzyme classification Using Essential Residues 

Many protein function prediction methods focus on only one specific type of functions 

[112-113]. The problem of enzyme and non-enzyme classifications is a special case of 

function prediction. We do not have to predict a functional type but only to distinguish 

between enzyme and non-enzyme. In Dobson and Doig’s study, they use multiple 

features such as secondary structure, amino acid propensities, and surface properties to 

do the binary classifications. They further divide the features into 52 sub-features and 

select 36 optimal sub-features for the SVM models to generate the classifier. The overall 

accuracies are 77.16% and 80.14% for the two different sizes of sub-features, 

respectively. 

We download Dobson and Doig’s dataset which contained 1076 proteins. Since 

SymPred’s prediction is the most effective feature among different sources of PSS in the 

above protein function prediction, ProtoPred uses SymPred’s prediction as the input 

feature for the problem of enzyme and non-enzyme classifications. ProtoPred achieves an 

overall accuracy 81.8%. 
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In this application, we only use the secondary structural information for 

enzyme/non-enzyme classification and achieve a better result. It suggests that the 

secondary structural information with the essential residue annotation may be sufficient 

to predict protein functions, which supports the conclusion of Przytycka et al [11]. 

3.3.4 Sequence alignment by using synonymous words 
From the performance of SymPred, we observe that protein-dependent synonymous 

words possess the property of structure conservation. In other words, the synonymous 

words show the semantic relationship in terms of protein structures. To further 

demonstrate the structure conservation property, we compare the synonymous words of 

two proteins and analyze the shared synonymous words with respect to each residue pair 

of the two proteins. The distribution of shared synonymous words can help to generate a 

highly accurate alignment for two protein sequences. 

Balibase 3.0 [114], a database that serves as an evaluation resource for sequence 

alignments, contains manually constructed multiple sequence alignments that are all 

based on three-dimensional structural superpositions. Therefore, Balibase can be used as 

a benchmark of sequence alignment tools. We downloaded the first test case (BB11001) 

and used the first two proteins (1aab and 1j46_A) to demonstrate the structure 

conservation of synonymous words. The sequence identity of the two proteins is only 

16.7%; however, they belong to the same Family (HMG-box) according to the SCOP 

classification. This indicates that the two proteins are remotely homologous. 
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Figure 7 shows the distribution of synonymous words shared by the two proteins. The x- 

and y- axes represent the sequence of 1j46_A and 1aab respectively. A grayscale pixel 

represents the number of shared synonymous words corresponding to a residue pair (xi, 

yj), where xi and yj denote a residue pair comprised of the i-th residue of 1j46_A and the 

j-th residue of 1aab respectively. More specifically, if an identical synonymous word sw 

of length w is both derived from 1j46_A and 1aab beginning with residue xi and yj 

respectively, then the residue pairs (xi, yj), (xi+1, yj+1), …, and (xi+w-1, yj+w-1) are all counted 

to share sw. The darker the pixel, the greater the number synonymous words shared by xi 

and yj. 

In Figure 7, Box B is a zoom-in of Box A. We can see that the fourth residue of 1j46_A 

shares some synonymous words with the first residue of 1aab, the fifth residue of 1j46_A 

shares more synonymous words with the second residue of 1aab, and so on. It is 

noteworthy that the Box C shows some residues of 1j46_A shares synonymous words 

with multiple and continuous residues of 1aab. Since the experiment results suggest that 

synonymous words are likely expressing similar structures, the Box C implies a possible 

tolerance of deletions in protein 1aab. 



 

Figure 7 – The distribution of synonymous words shared by 1aab and 1j46_A. The x- and y- 

axes represent the sequence of 1j46_A and 1aab respectively. A grayscale pixel represents 

the number of shared synonymous words corresponding to a residue pair (xi, yj), where xi 

and yj denote a residue pair comprised of the i-th residue of 1j46_A and the j-th residue of 

1aab respectively. Box B is a zoom-in of Box A. The red lines indicate the alignment based 

on the number of shared synonymous words, and the alignment is very close to that reported 

in Balibase for the two proteins. Notably, it can be observed that the path of the darker pixels 

is nearly perfectly matched the suggested alignment. 

 51



 52

We align the two sequences based on the distribution of synonymous words shared by the 

two sequences. Instead of using a substitution matrix to calculate the score of an aligned 

residue pair, we use the number of shared synonymous words between a residue pair 

since the number of shared synonymous words can reflect both the sequence and the 

structure similarities of a residue pair. As a result, it generates an alignment indicated by 

the red lines shown in the figure, i.e., the fourth residue of 1j46_A is aligned with the first 

residue of 1aab, the fifth residue of 1j46_A with the second residue of 1aab, etc, and there 

are two gaps in the midst of the alignment. (The red lines are drawn shifted a little bit in 

order to avoid overlapping the dark pixels.) Notably, the resulting alignment is very close 

to the alignment reported in Balibase for the two proteins, matching 76 out of 78 correct 

residues pairs, i.e., 97% of alignment accuracy, while ClustalW aligns 64 out of 78 

residue pairs (82.1% accuracy) correctly. More examples of highly accurate alignment by 

using synonymous words could be found in other protein pairs. Overall speaking, the 

distribution of shared synonymous words could indicate three-dimensional structural 

superpositions as well as the possible alignment of a protein sequence pair. 
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3.4 Availability 
A major limitation of our synonymous dictionary based approach is that the storage of 

synonymous dictionary takes a lot of space. For the consideration of efficiency, we 

implement SymPred and SymPsiPred as parallel programs in a pc-cluster framework. To 

provide prediction service for the public domain, SymPred and SymPsiPred are also 

implemented as web servers. They accept either single sequence or multiple sequences 

and predict the secondary structure of the query protein(s). The web servers are available 

at http://bio-cluster.iis.sinica.edu.tw/prospref/.  Figure 8 shows a screenshot of SymPred 

web server. 

The sequence input should be in fasta format and the sequence length of each of query 

protein should be longer than 30 in order to have significant sequence alignment when 

performing a PSI-BLAST search. If an E-mail address is assigned, the prediction result of 

each query protein will be sent to the user immediately when the prediction is completed.  

http://bio-cluster.iis.sinica.edu.tw/prospref/


 

Figure 8 – The SymPred and SymPsiPred web servers. We accept either single sequence or 

multiple sequences and predict the secondary structure of the protein(s).  
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3.5 Summaries 
In this study, we have proposed an improved dictionary-based approach called SymPred 

for PSS prediction. We have also presented a meta-predictor called SymPsiPred, which 

combines a dictionary-based approach (SymPred) and a machine learning-based 

approach (PSIPRED). Tests on a proteome-scale dataset of 8297 protein chains show that 

the overall average Q3 accuracy of SymPred and SymPsiPred is 81.0% and 83.9% 

respectively. Through the blind test on the two independent test sets, SymPred achieves 

the average Q3 accuracies of 78.8% and 79.2% respectively, which are better than other 

state-of-the-art PSS predictors. SymPred can be regarded as a special case of a 

template-based approach because it predicts PSS by finding template sequences based on 

local similarities, i.e., synonymous words. However, the accuracy gap between the 

template-based methods and machine learning-based methods is approximately 10%. We 

show that SymPred can reduce that gap by using n-gram patterns. 

From the analysis of two factors, we find that the prediction accuracy of SymPred can be 

gradually improved based on each factor’s optimization. In particular, SymPred is very 

sensitive to the size of the template pool, as shown by the fact that its performance 

improves between 0.5% and 2.8% each time the number of template proteins is increased 

by 10%. Therefore, the performance accuracy will improve further as the number of 

known-structure proteins increases. Furthermore, from the analysis of the number of 

distinct synonymous words, we posit that, as the number of protein sequences of 

unknown structures increases in the NCBInr database, we will be able to discover more 

sequence variations and derive more synonymous words to improve SymPred’s 
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performance. The average Q3 accuracy of SymPred is above 83% for proteins that have 

synonymous words satisfying e≧75. Meanwhile, the Q3 accuracy of SymPsiPred is 

above 85%, which is even closer to the estimated theoretical limit of PSS prediction 

accuracy. The results imply that SymPred and SymPsiPred have the potential to achieve 

higher accuracy as the number of protein sequences in the PDB database and the NCBInr 

database increases. 

When SymPred is tested on proteins that have sequence similarities to the template 

proteins, the average Q3 accuracy is approximately 88%. The result shows that SymPred 

can utilize the structural information in the template pool effectively. We also 

demonstrate the power of synonymous words in the sequence comparisons. The 

information about shared synonymous words can be used to infer three-dimensional 

structural superpositions. The experiments and the analysis results indicate that 

synonymous words are reliable short templates that can provide protein-related 

information. 

A major advantage of dictionary-based methods is that the prediction process is 

transparent and easy to understand. Unlike machine learning-based methods, which are 

computationally intractable, we can examine the prediction process to observe how 

SymPred generates predictions, including the synonymous words it matches against the 

dictionary and the template proteins involved in the prediction process. To differentiate 

the prediction model from machine learning-based methods, it is often referred to as a 

black box model. Another major advantage of dictionary-based methods is that adding 

more proteins with known structures is much easier than under machine learning-based 
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methods. Unlike most machine learning-based methods, which need to retrain the 

prediction models, the proposed dictionary-based method can be expanded incrementally 

by simply adding new synonymous words or by updating existing entries with new 

protein sources and the associated structural information. 



Chapter 4 Protein Subcellular Localization 

Prediction 

4.1 Methods 

4.1.1  KnowPredsite: a localization prediction method based on 

SynonymDict 
The main idea of KnowPredsite is illustrated in Figure 9. Given a target protein t, whose 

localization annotation is unknown and to be predicted, we perform PSI-BLAST search 

and compile a word set of t. Each word sw is then matched against words in SynonymDict, 

and the synonymous word entry with index sw is called a hit. 

 

Figure 9 – The prediction procedure of KnowPredsite. 
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For each hit, we calculate two types of scores associated with each localization site i: the 

voting score si and the confidence score CS(i). The calculation of the voting score si is as 

follows: Let f denote the frequency of sw found in all t’s high-scoring segment pairs 

(HSPs). For each synonymous word entry in SynonymDict, we calculate the score loci 

associated with each localization site by summing up the frequencies of the synonymous 

words that contain the specific site. For example, for the peptide record MYSKILL 

shown in Table 2, the score of cytoplasm is 38 (21+17; since protein source A and C are 

both localized into cytoplasm), and those of nuclear and extracellular are 12 and 17, 

respectively. Then the voting score si is defined as f multiplied by (loci / total frequencies 

in that record). For example, if MYSKILL is a synonymous word of t and its frequency is 

10 in t’s HSPs, then the voting scores of cytoplasm, nuclear, and extracellular are 7.6 

(=10×38/50), 2.4 (=10×12/50), and 3.4 (=10×17/50), respectively, while those of other 

localization sites are all 0. 

The localization site prediction of the protein t is determined by the confidence score 

CS(i), which is the total voting score aggregated from all hit records. Finally, each CS(i) 

is divided by the summation of all frequencies f of all t’s hits and then multiplied by 100 to 

normalize the confidence score in the range of 0 and 100. KnowPredsite predicts t being 

localized into the site with the highest confidence score for single-localized proteins or 

into the sites with the two highest confidence scores for multi-localized proteins (All 

multi-localized proteins in ngLOC dataset have two localization sites). 

To differentiate single-localized proteins from those that are multi-localized, we followed 

King and Guda’s method [54] to calculate the multi-localized confidence score (MLCS) 



associated with a protein t, which gives a relative measure of the likelihood that the 

protein t is multi-localized. It is derived from the two highest confidence scores (denoted 

as CS1 and CS2) and is defined as follows. 

0.100
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and MLCS(t) is bounded by 100, i.e., when the calculated MLCS(t) is over 100, it is 

assigned 100. 

4.1.2 Best BLAST prediction method 
Since BLAST is the most popular method for sequence comparison, we implemented a 

simple prediction method based on the BLAST search result. Given a dataset of proteins 

with known localization site(s), to predict the localization site(s) of a test protein t we first 

perform the BLAST search against the dataset and then assign the localization 

annotations of the best BLAST hit to the protein t. If there is no hit at the e-value cutoff 

0.001, no annotation will be assigned to the protein t. As reported by Jones and Swindells, 

the e-value of 0.001 generally produces a safe searching [99]. The performance of 

BLAST-based prediction method is usually treated as the baseline to compare with those 

of other methods [115]. 

4.1.3 Evaluation measure 
The performance is estimated using the following measurements. To assess the 

performance in each localization site, precision, accuracy and Matthew's correlation 
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coefficient (MCC) are calculated by Equations (2) and (3), respectively. The overall 

accuracy is defined in Equation (4). 
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where TPi, TNi, FPi, FNi, and Ni are, respectively, the number of true positives, true 

negatives, false positives, false negatives, and proteins in localization site i. MCC, which 

considers both under- and over-predictions, provides a complementary measure of the 

predictive performance, where MCC = 1 indicates a perfect prediction, MCC = 0 

indicates a completely random assignment, and MCC = -1 indicates a perfectly reverse 

correlation. 

4.2 Results 
KnowPredsite was implemented as a parallel program under the Linux environment. It was 

implemented using C++ and MPICH library. We used the ngLOC dataset [54] to compile 
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the synonymous dictionary and test the performance of KnowPredsite. The dataset is 

compiled from 1923 different species and contains 28056 protein sequences, including 

25887 single localized proteins and 2169 multi-localized proteins. There are ten different 

subcellular locations among these proteins, which are Cytoplasm (CYT), Cytoskeleton 

(CSK), Endoplasmic Reticulum (END), Extracellular (EXC), Golgi Apparatus (GOL), 

Lysosome (LYS), Mitochondria (MIT), Nuclear (NUC), Plasma Membrane (PLA), and 

Perixosome (POX). 

We conducted two types of experiment on the dataset. First, in order to take advantages of 

local similarities from as many proteins as possible, we conducted the leave-one-out 

cross validation experiment to determine the parameters and to evaluate the performance 

of KnowPredsite. In this experiment, each protein was in turn used as the test protein and 

the remaining 28055 proteins were used to compile the synonymous dictionary. Second, 

we compared the performance of KnowPredsite with existing methods. Since the dataset is 

from ngLOC and ngLOC has been shown to be better than PSORT [116], pTARGET 

[117] and PLOC [118] using the same dataset, we directly compare KnowPredsite against 

ngLOC using ten-fold cross validation. In this experiment, all proteins are partitioned 

into 10 subsets, and each subset was in turn used as the test set and the remaining nine 

subsets were used to compile the synonymous dictionary. 
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4.2.1 Determining window size w and similarity threshold k for 

KnowPredsite 
KnowPredsite aims to utilize the localization annotations of synonymous words. The 

determination of semantic relations, which depends on the window size w and the 

threshold of similarity level k, can affect the performance of KnowPredsite. Using a 

smaller w, synonymous words have a higher probability to be hit against words in the 

synonymous dictionary; however, shorter synonymous words are likely to appear in 

many unrelated proteins. Given a fixed w, there is also a trade-off in choosing the 

threshold of similarity level k. A smaller k produces looser semantic relations, which 

leads to extracting more, but less reliable, synonymous words. To make an appropriate 

selection of w and k, we conducted a leave-one-out cross validation experiments on only 

the single-localized proteins in the ngLOC dataset for w ranging from 3 to 11 and k 

ranging from 0 to w. 

Figure 10 shows the overall accuracies of KnowPredsite using different window size w 

with fixed similarity threshold (k = 0). It shows that the appropriate window size is 7 or 8. 

Then we further investigate the performance using different thresholds of similarity 

levels. 



Table 10 shows the overall accuracies ranging from 90.9% to 92.0% for all combinations 

of window sizes (w = 7, 8) and similarity thresholds. According to the experiment results, 

we chose the combination of w = 7 and k = 6 for the following experiments since they 

provided the best accuracy 92.0%. 

 

Figure 10 – The overall accuracies of KnowPredsite using different size of word length. 
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Table 10 – The overall accuracies using different thresholds of similarity levels for window 

size 7 and 8. The combination of w = 7 and k = 6 provides the best accuracy. Some results 

are shown to have identical overall accuracies due to the rounding off to the first decimal 

place.  

Similarity Level 

Threshold k 
0 1 2 3 4 5 6 7 8 

Overall 

Accuracy (%) 

w = 7 

91.2 91.2 91.3 91.4 91.5 91.8 92.0 91.6 － 

Overall 

Accuracy (%) 

w = 8 

91.4 91.4 91.4 91.4 91.4 91.5 91.6 91.7 90.9 

4.2.2 Prediction performance of KnowPredsite 
After the best parameters have been determined, we conducted a ten-fold cross validation 

experiment on the entire dataset to compare KnowPredsite with ngLOC and Blast-hit 

prediction. We used the top N accuracy for evaluation, where N ranges from 1 to 4. A 

protein is considered to be correctly predicted when the real localization site(s) rank 

among the top N of the predicted sites. (Top 1 accuracy is simply the Accuracy defined in 

Equation (4).) Notably, for multi-localized proteins, the accuracy is measured in two 

ways: first, at least one site correctly predicted and second, both sites correctly predicted. 

Using the first measurement, a true positive is a multi-localized protein with at least one 

localization site correctly predicted; whereas a true positive using the second 

measurement is a multi-localized protein with both sites correctly predicted. 

The prediction performance of KnowPredsite, ngLOC, and Blast-hit is summarized in 
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Table 11, in which KnowPredsite performance is reported with ten-fold cross validation 

and leave-one-out cross validation as denoted by #KnowPredsite and *KnowPredsite, 

respectively. It is observed that KnowPredsite outperforms ngLOC and Blast-hit. 

For single-localized proteins, the overall accuracies of KnowPredsite are from 91.7 to 98.1 

when the correct prediction is considered within the top 1 to top 4 most probable sites. 

Those of ngLOC are from 88.8% to 96.3%. The accuracy of Blast-hit is 86.0%, which 

means 86.0% of single-localized proteins could be correctly predicted by BLAST 

searches. It is noteworthy that 2114 sequences among all single-localized proteins failed 

to find significant similar proteins by Blast-hit method; however, 58.8% of them were 

correctly predicted by KnowPredsite. It shows that the local similarity helps identify 

related sequences for subcellular localization prediction. 
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Table 11 – Prediction performance of KnowPredsite, ngLOC, and Blast-hit. *KnowPredsite 

represents the experiment result using leave-one-out cross validation; #KnowPredsite 

represents the experiment result using 10-fold cross validation. 

Overall Accuracy (%) Methods Top 1 Top 2 Top 3 Top 4 

*KnowPredsite 92.0 95.7 96.8 98.1 

#KnowPredsite 91.7 95.4 96.6 97.9 

ngLOC 88.8 92.2 94.5 96.3 

Single-localized 

 

Blast-hit 86.0 － － － 

*KnowPredsite 90.8 96.4 98.2 98.9 

#KnowPredsite 90.1 96.1 98.1 98.9 

ngLOC 81.9 92.0 96.1 97.4 

Multi-localized 

(at least 1 correct) 

Blast-hit 78.8 － － － 

*KnowPredsite  74.3 83.3 88.7 

#KnowPredsite  72.1 82.2 87.5 

ngLOC  59.7 73.8 83.2 

Multi-localized 

(both correct) 

Blast-hit  45.7 － － 

 

The experiment result shows that KnowPredsite has much higher accuracy on 

multi-localized proteins than the other methods. Using the first accuracy measurement, 

i.e., at least one site correctly predicted, KnowPredsite achieves more than 90% of the top 

1 accuracy, which is higher than ngLOC by 8.2%. Using the tighter second accuracy 

measurement, KnowPredsite achieves 72.1% of the top 2 accuracy, which is higher than 

ngLOC by 12.4%. Further observing the top N accuracy, we find that KnowPredsite is 

more able to narrow down the number of false positives than ngLOC. 
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The top 1 and top 2 accuracies of the Blast-hit method are 78.8% and 45.7% for the two 

accuracy measurements. Notably, 318 proteins among all multi-localized proteins failed 

to find any significant Blast hit; however, 73.3% and 49.7% of them were correctly 

predicted by KnowPredsite using the two accuracy measurements, respectively. 

4.2.3 Site-specific prediction performance 
In contrast to the overall accuracy of the dataset reported in Table 11, we further analyze 

the prediction performance on each of the 10 distinct localization sites. The results are 

summarized in Table 12. Among the 10 localization sites, the precision ranges from 

75.7% to 98.5% and the Accuracyi ranges from 52.0% to 96.4%. It is observed that higher 

occurrence of the localization site, e.g., EXC (29.1%) and PLA (25.2%), leads to better 

prediction, e.g., the precision and accuracy on EXC are 98.5% and 93.9%, respectively. 

Low occurrence of the localization site could deteriorate prediction, for example, CSK 

(1%) and GOL (1.1%) have MCCi of 0.645 and 0.746, respectively. However, if the 

synonymous words of a site have higher specificity, prediction performance could be 

good despite low occurrence. For example, the precision and accuracy on LYS (0.6%) 

and POX (0.8%) are 87.2% and 81.9%, and 87.3% and 85.1%, respectively. Furthermore, 

it is noteworthy that although CYT represents 11.1% of the dataset, its MCCi is 0.774, 

much lower than other highly occurring sites. Its low MCCi is due to low precision since 

KnowPredsite yields more false positives for CYT. High false positives usually occur 

when the synonymous word entries of a site have lower specificity and higher diversity. 

As a result, proteins of other localization sites are misclassified as CYT. 
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Table 12 – Prediction performance of KnowPredsite for each site using precision, accuracy, 

and MCC. 

Site i 
Occurrence in the dataset 

(%) 
Precision (%) Accuracyi (%) MCCi

CYT 11.1 75.7 84.4 0.774 

CSK 1.0 81.1 52.0 0.645 

END 3.6 92.9 84.1 0.88 

EXC 29.1 98.5 93.9 0.946 

GOL 1.1 79.1 70.9 0.746 

LYS 0.6 87.2 81.9 0.844 

MIT 9.4 96.7 86.9 0.907 

NUC 18.0 87.3 93.8 0.884 

PLA 25.2 94.4 96.4 0.938 

POX 0.8 87.3 85.1 0.861 

 

Figure 11 shows the site-specific comparison between KnowPredsite and ngLOC in terms 

of accuracy and MCC. KnowPredsite outperforms ngLOC in eight localization sites (CSK, 

END, EXC, GOL, MIT, NUC, PLA, POX) in terms of MCC. The two sites where ngLOC 

performs better are CYT (0.777 for ngLOC and 0.774 for KnowPredsite) and LYS (0.902 

for ngLOC and 0.844 for KnowPredsite). In terms of accuracy, KnowPredsite outperforms 

ngLOC in all sites except for LYS (represents around 0.6% of the whole dataset), where 

ngLOC and KnowPredsite yields 85.5% and 81.9% of accuracy, respectively. 



 

Figure 11 – Matthew’s correlation coefficient (MCC) and accuracy comparison between 

KnowPredsite and ngLOC. 

4.2.4 Evaluation of the multi-localized confidence score (MLCS) 
A significant number of eukaryotic proteins are known to be localized into multiple 

subcellular organelles; therefore, it is important to differentiate single-localized proteins 

from multi-localized proteins. We used the entire ngLOC dataset to compare different 

MLCS thresholds on the correct distinction between single-localized and multi-localized 

proteins. Specifically, we used the portions of true positives in the multi-localized 

proteins and true negatives in the single-localized proteins as the performance measures. 

A true positive represents a multi-localized protein whose MLCS is above the threshold 

and a true negative represents a single-localized protein whose MLCS is below the 

threshold. 
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We illustrate the cumulative percentages of true positive and true negative versus the 

MLCS threshold in Figure 12, which shows that the true negative curve is increasing 

along the MLCS axis whereas the true positive curve is decreasing. If the MLCS 

threshold is set to be 40, 60.7% of multi-localized proteins are true positives and 96.5% of 

single-localized proteins are true negatives. It shows that 60.7% of multi-localized 

proteins obtained MLCS of 40 or better, whereas only 3.5% of single-localized proteins 

within this range. If the MLCS threshold is set to be 20, 86.3% of multi-localized proteins 

are true positives and 82.8% of single-localized proteins are true negatives. In ngLOC, 

the best result shows that 76% of multi-localized proteins belong to true positives and 

81% of single-localized proteins belong to true negatives when 40 of MLCS threshold is 

applied. The result shows that KnowPredsite better differentiate multi-localized proteins 

from those that are single-localized. 

 

Figure 12 – MLCS analysis. A true positive represents a multi-localized protein whose 

MLCS is above the threshold and a true negative represents a single-localized protein whose 

MLCS is below the threshold. We compare the ratio of true positives/true negatives to the 

total number of multi-/single-localized proteins. 
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4.3 Discussions 
Unlike most machine learning methods that the parameters of the prediction models are 

not biologically explainable, the prediction result of KnowPredsite is explainable and the 

prediction process is transparent and traceable. To predict the localization sites of a 

protein, KnowPredsite can show the template sequences and their associated contributive 

confidence scores for a query protein. Such information is useful for interpretation of the 

prediction results. In this section, we select the four sequences EF1A2_RABIT, 

RASH_HUMAN, MCA3_MOUSE, and CFDP2_BOVIN from the ngLOC dataset, to 

demonstrate the interpretation of KnowPredsite prediction results. 

The prediction result of each of the first three proteins and its template sequences 

extracted from the synonymous dictionary used for prediction are shown in Table 13 to 

Table 15, respectively. In each table, the prediction result shows the MLCS and the 

confidence score of each localization site that the query protein would be localized into. 

Moreover, the template proteins which are used to vote for the localization sites are 

shown in each table. We only list the top eight template proteins which contribute most to 

the confidence scores of the query sequence. For each template sequence, its contribution 

to confidence score of each localization site and the sequence identity to the query protein 

calculated by ClustalW (denoted by SI) are shown. 

In the example of EF1A2_RABIT shown in Table 13, KnowPredsite predicts it being 

single-localized at cytoplasm (CYT) since MLCS is very low (7.40) and CYT has the 

highest confidence score. However, the localization site of EF1A2_RABIT reported in 

the ngLOC dataset is nuclear (NUC). Examining the eight template proteins, we find that 
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they all have high sequence identities with EF1A2_RABIT and most of them are 

localized into CYT except EF1A2_RAT localized into NUC. According to the Gene 

Ontology annotation, it is localized into CYT and NUC, which are the two sites with the 

highest confidence scores in KnowPredsite’s prediction. 
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Table 13 – Prediction result of EF1A2_RABIT. 

Query CYT CSK END EXC GOL LYS MIT NUC* PLA POX MLCS

EF1A2_RABIT 95.45 0 0 1.45 0 0 0.04 2.97 0.05 0 7.40 

 

Template  CYT CSK END EXC GOL LYS MIT NUC PLA POX SI 

EF1A2_RAT 0 0 0 0 0 0 0 2.94 0 0 99.78 

EF1A_CHICK 2.77 0 0 0 0 0 0 0 0 0 92.22 

EF1A1_HUMAN 2.75 0 0 0 0 0 0 0 0 0 92.22 

EF1A1_RAT 2.75 0 0 0 0 0 0 0 0 0 92.22 

EF1A0_XENLA 2.69 0 0 0 0 0 0 0 0 0 90.06 

EF1A_BRARE 2.64 0 0 0 0 0 0 0 0 0 90.06 

EF1A2_XENLA 2.64 0 0 0 0 0 0 0 0 0 88.79 

EF1A3_XENLA 2.60 0 0 0 0 0 0 0 0 0 88.55 

*: correct answer; SI: sequence identity. 

In the example of RASH_HUMAN shown in Table 14, KnowPredsite predicts 

RASH_HUMAN being localized into plasma membrane (PLA) and cytoplasm (CYT). 

However, the correct localization site is cytoplasm and Golgi apparatus (GOL). Referring 

to the prediction result, the confidence score of PLA is much higher than those of CYT 

and GOL. It is also observed that most of the template proteins are localized into PLA. 

According to the annotation in Gene Ontology and SwissProt, RASH_HUMAN is 

localized into PLA and GOL, and the template protein, RASN_HUMAN, is also 
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localized into PLA and GOL. If applying the new annotation data, KnowPredsite can 

predict RASH_HUMAN correctly. 

Table 14 – Prediction result of RASH_HUMAN. 

Query CYT* CSK END EXC GOL* LYS MIT NUC PLA POX MLCS

RASH_HUMAN 18.95 0.06 0.09 0.09 13.74 0.04 0.24 0.25 83.61 0 36.24 

 

Template  CYT CSK END EXC GOL LYS MIT NUC PLA POX SI 

RASK_HUMAN 0 0 0 0 0 0 0 0 13.88 0 86.32 

RASK_MOUSE 0 0 0 0 0 0 0 0 13.81 0 86.32 

RASN_HUMAN 13.19 0 0 0 13.19 0 0 0 0 0 85.19 

LET60_CAEEL 0 0 0 0 0 0 0 0 10.55 0 74.07 

RAS3_RHIRA 0 0 0 0 0 0 0 0 5.05 0 57.07 

RAS1_RHIRA 0 0 0 0 0 0 0 0 4.88 0 58.62 

RAS2_RHIRA 0 0 0 0 0 0 0 0 4.33 0 35.20 

RAS_LIMLI 0 0 0 0 0 0 0 0 4.15 0 46.03 

*: correct answer; SI: sequence identity. 



 76

As for MCAS_MOUSE shown in Table 15, KnowPredsite predicts its MLCS 100 and it 

being localized into cytoplasm (CYT) and nuclear (NUC) correctly. Examining the 

template proteins, we observe that KnowPredsite identifies some related proteins, i.e., 

which have the same localization with the query protein. EF1G1_YEAST and 

NU155_RAT, even though they share very low sequence identity 8.67% and 3.17%, 

respectively, with the query protein. Notably, the two template proteins rank second and 

seventh, respectively, among all template proteins. Furthermore, though GSTA_PLEPL 

has higher sequence identity (15.86%) with the query protein than EF1G1_YEAST, the 

confidence score contributed by EF1G1_YEAST is much higher than that by 

GSTA_PLEPL (2.74 vs. 0.35). It shows that the contributive confidence score is not 

necessary to be positively correlated with the sequence identity when template sequences 

are dissimilar with the query sequence. In this example, EF1G1_YEAST shares more 

local similarities (peptide fragments) with the query protein than GSTA_PLEPL does. If 

MCA3_HUMAN, the one that shares 88.51% sequence identity with the query protein, is 

taken out from the template pool, KnowPredsite can still predict correctly for protein 

MCA3_MOUSE. 
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Table 15 – Prediction result of MCA3_MOUSE. Templates marked with ‘+’ are those that 

have the same localization annotation with the query protein. 

Query CYT* CSK END EXC GOL LYS MIT NUC* PLA POX MLCS

MCA3_MOUSE 95.46 0.3 0.27 0.36 0.2 0.01 1.13 93.59 1.82 0.22 100 

 

Template CYT CSK END EXC GOL LYS MIT NUC PLA POX SI 

MCA3_HUMAN+ 89.16 0 0 0 0 0 0 89.16 0 0 88.51

EF1G1_YEAST+ 2.74 0 0 0 0 0 0 2.47 0 0 8.67

EF1G2_YEAST 0.49 0 0 0 0 0 0.49 0 0 0 8.50

GSTA_PLEPL 0.35 0 0 0 0 0 0 0 0 0 15.86

SYEC_YEAST 0.16 0 0 0 0 0 0 0 0 0 3.86

CCNA1_MOUSE 0 0.15 0 0 0 0 0 0 0 0 7.36

NU155_RAT+ 0.14 0 0 0 0 0 0 0.14 0 0 3.17

GCYB2_HUMAN 0.14 0 0 0 0 0 0 0 0 0 4.86

*: correct answer; SI: sequence identity. 

For the multi-localized proteins, there are 318 proteins unable to find similar sequences 

by the Blast-hit method. However, the localization sites of around half of them can be 

correctly predicted by KnowPredsite. We randomly choose an example, CFDP2_BOVIN, 

to demonstrate the KnowPredsite’s capability of identifying related sequences from the 

template pool. The two highest confidence scores of CFDP2_BOVIN are 32.07 (CYT) 

and 41.18 (NUC). Among the top 100 templates (ranked by the contribution to the 

confidence scores), 12 of them are localized into CYT and NUC, 18 are localized into 
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CYT only, and 32 are localized into NUC only. Their sequence identities against 

CFDP2_BOVIN are very low, ranging from 3.47% to 13.8%. The result suggests that 

local similarity captured by our method is beneficial for PSL prediction when global 

sequence similarity is very low. 

Another example comes form a user’s query. We also implement KnowPredsite as a web 

server to provide prediction service for the public domain. This example also 

demonstrates the local similarities among proteins with low sequence identities. 
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Table 16 shows the prediction result of the query protein sent by a user. The query 

protein, X1005941 should be the protein of the first template since the two share 100% of 

sequence identity. Therefore, its correct localization site should be the nuclear. In 

addition to the 100% identical sequence, we also identify more other sequences localized 

into the same site. However, their sequence identities are very low with the query protein, 

which range from 7.67% to 15.82%. According to the prediction result, we can still 

correctly predict the query protein without referring to the first template sequence. It 

shows that proteins with low sequence similarities actually not only share synonymous 

words but also move to the same localization site. 



 80

Table 16 – An example from user’s query. 

Query CYT CSK END EXC GOL LYS MIT NUC PLA POX MLCS

X1005941 0.83 0.08 0.1 0.32 0.11 0 0.16 98.18 0.5 0.01 2.62 

 

Template CYT CSK END EXC GOL LYS MIT NUC PLA POX SI 

PBX1_MOUSE 0 0 0 0 0 0 0 90.25 0 0 100 

MEIS1_MOUSE 0 0 0 0 0 0 0 1.15 0 0 12.09 

MEIS1_XENLA 0 0 0 0 0 0 0 1.14 0 0 12.79 

PKNX2_HUMAN 0 0 0 0 0 0 0 0.87 0 0 15.82 

TGIF_HUMAN  0 0 0 0 0 0 0 0.53 0 0 11.34 

B3_USTMA  0 0 0 0 0 0 0 0.47 0 0 10.71 

TGIF2_HUMAN  0 0 0 0 0 0 0 0.36 0 0 7.67 

TGIF_MOUSE  0 0 0 0 0 0 0 0.3 0 0 10.47 
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4.4 Availability 
The KnowPredsite web server as well as the ngLOC dataset is available at 

http://bio-cluster.iis.sinica.edu.tw/kbloc/. Figure 13 shows a screenshot of KnowPredsite 

web server. Like SymPred and SymPsiPred web servers, KnowPredsite takes either single 

sequence or multiple sequences and predict the localization sites of the protein(s). The 

sequence input should be in fasta format and the sequence length of each of query protein 

should be longer than 30 in order to have significant sequence alignment when 

performing a PSI-BLAST search. If an E-mail address is assigned, the prediction result of 

each query protein will be sent to the user immediately when the prediction is completed. 

Moreover, users can set the threshold of similarity level freely before the prediction. The 

prediction result is an html file showing the prediction scores and the template proteins 

we used. We list template proteins and their sequence identities with the query protein to 

show how we make the prediction.

http://bio-cluster.iis.sinica.edu.tw/kbloc/


 

Figure 13 – The KnowPredsite web server. 
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4.5 Summaries 
In this study, we propose a highly accurate subcellular localization prediction method for 

single- and multi-localized proteins, called KnowPredsite, which is based on a 

synonymous dictionary instead of frequently used machine learning approaches. The 

synonymous dictionary, called SynonymDict, is compiled from a given dataset of proteins 

with known localization site annotation to capture local similarity between proteins so 

that related proteins with the same localization can be identified. Using these related 

proteins obtained from the synonymous dictionary, the localization site of a query protein 

can be better predicted. 

We used the ngLOC dataset to evaluate the performance of KnowPredsite. The dataset   

consists of 25887 single-localized proteins and 2169 multi-localized proteins of ten 

subcellular proteomes from 1923 species. In order to compare KnowPredsite with ngLOC 

and the baseline Blast-hit method, we performed ten-fold cross validation on the dataset. 

The experiment results show that KnowPredsite achieves higher prediction accuracy than 

ngLOC and Blast-hit. Particularly, on multi-localized sequences KnowPredsite 

outperformed ngLOC by 8.2% in accuracy when a protein is correctly predicted if at least 

one site is correctly identified and by 12.4% in accuracy when a protein is correctly 

predicted if both sites are correctly identified. 

A major advantage of dictionary based approaches is that the prediction process is 

transparent and explainable. We can examine the prediction process to see how 

KnowPredsite generates the prediction. Furthermore, with close observation from the 
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prediction results in our experiments, we find that KnowPredsite can efficiently use local 

similarity to identify related sequences even when their sequence identity is low so as to 

predict localization site with high accuracy. 

When more proteins have known localization sites, most machine learning based 

methods need to retrain the prediction models, In contrast, KnowPredsite can be easily 

improved by incrementally expanding the synonymous dictionary, i.e., adding new 

synonymous word entries or updating existing entries with new protein sources and their 

localization site information. This feature indicates the expansibility and efficiency in 

maintaining the KnowPredsite prediction system. 
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Chapter 5 Remote Homology Detection 

5.1 Methods 
Since remote homologs share low sequence identity, it is hard to use a traditional 

homology tool to search a novel protein against a large-scale annotated database to infer 

their relationship. Therefore, we use a traditional homology tool, e.g., PSI-BLAST, to 

search a protein against a protein sequence database, e.g., NCBInr, and extract short 

conserved peptides from high-scoring segment pairs of the protein’s PSI-BLAST results 

to define its synonymous words that represent the sequence conservation and variation 

information. 

In this study, we propose a two-stage framework to detect remotely homologous proteins. 

Our proposed framework can be exemplified by the book classification scenario. For 

example, we have four books at hand, entitled Introduction to Algorithms, Introduction to 

Psychology, The Art of Computer Programming, and Interpretation of Dreams. To group 

them by relatedness, one may consider using book titles or keywords for similarity 

comparison. Using titles, the first two books would be grouped together; however, they 

belong to different disciplines. Using keywords (keywords of these books could be found 

in Amazon), the first and the third books would be grouped together since they share the 

following keywords: "Algorithms", "Data structures", and "Languages and 

Programming". Similarly, though the second book and the fourth book look dissimilar in 

their titles, but they share keywords of "Psychology", "Health, Mind and Body", 
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"Philosophy & Social Sciences", and "Behavioral Sciences", and thus can be grouped 

together. 

In sequence analysis, we face similar problems to book classification. A protein sequence 

is like a book. Likewise, when sequence similarity is insufficient to reveal protein 

homology relationship, we try to define "keywords", later referred to as protein 

synonymous words, to represent a protein sequence. The critical issue is how to 

determine corresponding keywords for a protein sequence. Clearly, subsequences as 

features for a protein are insufficient. We thus consider using available sequence 

comparison results of a target protein, e.g., PSI-BLAST output, to select similar proteins 

of the target protein and determine its synonymous words accordingly. 

The proposed method, called SymDetector, employs a two-stage mechanism to detect 

remotely homologous protein sequences. Figure 14 shows the idea of SymDetector. In 

the figure, we are given 5 protein sequences whose mutual sequence identities are all 

below 25%. For example, protein A and protein B share a sequence identity of 17%, and 

protein A and protein D share a sequence identity of 22%. Based on their low sequence 

similarities, it is difficult to distinguish homologous proteins from non-homologous 

proteins. It is not reliable to determine the homologous relations by setting a sequence 

similarity threshold among those protein sequences. SymDetector predicts the SCOP 

classifications of these protein sequences using their synonymous words and a reference 

of synonymous dictionary. We label those sequences as SCOP classifications and then 

infer the homologous relations according to the prediction results. For example, 

SymDetector predicts both protein A and protein B as type 1, and protein C and protein E 



as type 2, and protein D as type 3. Therefore, we could divided the five protein sequences 

into three groups and infer their homologous relations. 

 

Figure 14 – The main idea of SymDetector. 

The First stage of SymDetector: prediction of SCOP classification 
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The prediction procedure of SymDetector is shown in Figure 15. Given a query protein t, 

we perform a PSI-BLAST search on t to compile a word set containing its original protein 

words and synonymous words. Like SymPred and KnowPredsite, we also calculate the 

frequency and similarity level of each word in the word set. 
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- The Scoring Function 

The scoring function of SymDetector is like that of SymPred. To define the scoring 

function, we consider the similarity level and the frequency of the word w in the word set 

of t, denoted by Simt and freqt respectively, as well as those of a protein source i in its 

matched entry, denoted by Simi and freqi respectively. Simt and freqt are obtained in the 

preprocessing stage. To measure the effectiveness of the SCOP classification of the 

protein source i, we define the voting score si as min(freqt, freqi)×(1+min(Simt, Simi)). We 

choose the minimum value in our formula here to avoid biases derived from those regions 

of a large amount of HSPs. Although this formula can be refined further, we intend to 

show that such a simple mechanism already performs well in predicting SCOP 

classification. The annotation information provided by protein source i will be highly 

effective if: 1) w is very similar to the corresponding words of t and i; and 2) w is well 

conserved among the similar proteins of t and i.  

Take the synonymous word MYSKILL in Figure 15 as an example. In the figure, 

MYSKILL is a synonymous word of MLDAQTI which is the original word of the query 

protein. Assume freqt and Simt of MYSKILL for the query protein are 10 and 2 

respectively. We match a synonymous word entry in SynonymDict. The voting score of 

protein source A is min(10, 22)×(1+min(2, 6)) = 10×(1+2) = 30. Similarly, the voting 

score of protein source B is min(10, 14)×(1+min(2, 3)) = 10×(1+2) = 30, and the voting 

score of protein source C is min(10, 6)×(1+min(2, 2)) = 6×(1+2) = 18. In this example, 

protein sources A and B contribute equal voting scores to the query protein. 



The final prediction SCOP classification for the query protein is determined by summing 

up the voting scores of all the protein sources in the matched entries. The query protein is 

predicted as the SCOP class with the highest voting score. The score is then used as a 

confidence score indicating the amount of confidence we make the prediction. 

 

Figure 15 – The prediction procedure of SymDetector. An HSP represents a high-scoring 

segment pair which is a significant sequence alignment reported by PSI-BLAST. 

The Second stage of SymDetector: pairing of protein sequences with the same 

SCOP prediction 

- SCOP classification 

We use the Structural Classification of Protein (SCOP) database as our standards for 

determining protein homology relations, and focus on detecting distantly related protein 

pairs based on their SCOP-Superfamily or SCOP-Fold annotations. SCOP classifies 

proteins into a four-level hierarchy: Class, Fold, Superfamily, and Family. Currently, the 
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entire protein domains in SCOP are partitioned into 11 Classes, while sequences in each 

Class would be further classified into different Folds by their secondary structures. 

According to functions and structural information, homologous sequences in a Fold are 

further clustered into different Superfamilies, in which highly similar sequences would 

then be assigned to the same Family. 

Remote homology detection targets at any pair of sequences with low sequence identity 

to determine whether they are homologous. In terms of SCOP classifications, remote 

homology detection is conventionally referred to determining whether two sequences in 

the twilight zone (sequence identities between 25% and 40%) or midnight zone 

(sequence identities below 25%) are from the same Superfamily. Specifically, a sequence 

pair is regarded as a true positive (TP) of remote homology if they are in the same 

Superfamily, but not in the same Family, since sequence pairs from the same Family 

often have sequence identity over 30% and most homology tools can perform well. 

In this application, we study not only the conventional remote homology detection but 

also detection of remote homology with structure similarity, which will be referred to as 

structurally remote homology detection, in which a pair of sequences share even lower 

sequence identity than that in the conventional case. A sequence pair is regarded as a true 

positive of structurally remote homology if the two sequences are in the same Fold, but in 

different Families. 



 

Figure 16 – Remote Homology Detection and SCOP Classifications: The major four-level 

hierarchy of SCOP classifications. 

 Figure 16 shows the four-level hierarchy of SCOP classification. In remote homology 

detection, sequence pairs from the same Superfamilies but different Families are treated 

as true positives (TPs). For example, the pairs of (p1, p5), (q2, q3), and (v1, v2) are true 

positives. Those pairs such as (p1, p2) and (p1, q1) would be ignored in this metric. 

Sequence pairs from different Folds, such as (p1, u1), would then be considered as false 

positives (FPs). In structurally remote homology detection, the definition of FPs is 

identical to that in remote homology detection. The definition of TPs is relaxed such that 

pairs in the same Fold but different Families are counted. The major difference is that, 

pairs in different Superfamilies, such as (pi, qj) and (uk,vl), are defined as TPs here, but are 

ignored in the traditional remote homology detection problem. 
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- Pairing 

In the first stage of SymDetector, we predict each protein sequence a SCOP classification 

as well as a voting score indicating the reliability of our prediction. In the second stage, 

we pair two protein sequences with the same SCOP classification as a putative true 

positive and assign a confidence score showing the reliability of begin a homologous 

protein pair of the two sequences. The confidence score is given by the smaller of voting 

scores of the two proteins. For example, if protein A is predicted as SCOP Superfamily of 

Globin-like with the voting score of 5820, and protein B is predicted as the same SCOP 

Superfamily with the voting score of 4175, then the confidence score of pairing protein A 

and B as a homologous pair is min(5820, 4175) = 4175. 
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5.2 Results 

5.2.1 Datasets and evaluations 
Remote homology detection methods are often evaluated by qualities of detected 

sequence pairs from a set of non-redundant SCOP sequences. We adopt the dataset of 

2,476 non-redundant SCOP sequences used in Przybylski and Rost's ConSequenceS  

[119] (https://rostlab.org/owiki/index.php/ConSequenceS) as a benchmark dataset, 

which is called the PR dataset. In short, they selected sequences from SCOP 1.69 (The 

latest version is SCOP 1.75) such that, while searching against UniProt, none of sequence 

pairs could be aligned by BLAST with e-value better than 0.001. 

Performances of our approach would benefit from the synonymous dictionary 

constructed based on a reference SCOP set. To obtain the reference dataset, we use the 

PSI-CD-HIT to select sequences from SCOP such that the selected sequences would 

share no more than 25% of sequence identities to each sequence in the PR dataset. The 

resultant reference set consists of 8,442 SCOP sequences sharing low identities to any of 

the 2,476 benchmark sequences. 

Among millions of all possible sequence pairs generated from the PR dataset, 52,620 and 

18,780 order pairs of sequences belong to identical Folds and Superfamilies, respectively. 

According to ClustalW, these two sets of sequence pairs have average sequence identities 

of 11.63% (pairs in identical Folds) and 12.02% (pairs in identical Superfamilies), while 

average identities of all possible pairs being 9.70%. The average sequence identity about 

the benchmark dataset will be discussed more detailed in section 5.3.3. By ordered pairs, 
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we indicate that for sequences A and B in benchmark set, pairs (A, B) and (B, A) would be 

treated as different cases in evaluations. The notion of ordered pairs reflects that, in most 

homology search tools, relatedness between A and B would be assigned with different 

significances due to different query sequences. While detection results of our framework 

are symmetric, in which scores of pairs (A, B) and (B, A) are both equal to the minimum of 

their voting scores of the predicted SCOP classifications, we still provide evaluations 

based on ordered pairs for convenient comparisons. 

To evaluate the performance of SymDetector, we count the cumulative number of true 

positive pairs given a number of cumulative false positive pairs. This evaluation serves as 

the standard measurement of remote homology detection. Protein sequence pairs are 

sorted by their confidence scores and regarded into true positive pairs and false positive 

pairs by the real SCOP classification. Two proteins in a pair classified into the same 

Superfamily or Fold but not the same Family are regarded as a true positive pair. On the 

contrary, two proteins in a pair classified into different Folds are regarded as a false 

positive pair. 

5.2.2 Experiment result on Remote Homology Detection 
Figure 17 shows the experiment results of SymDetector on remote homology detection. 

We evaluate the performance of SymDetector using Superfamily prediction and Fold 

prediction respectively in the first stage. We can see that before the first false positive pair 

appears, SymDetector can identify 5,294 true positive pairs and 186 true positive pairs 

respectively, and before the 100th false positive pair appears, SymDetector can identify 



6,892 and 4,368 true positive pairs respectively. The ROC curves in Figure 17 become 

stable when the cumulative numbers of false positives are larger than 300. It shows that 

most true positive pairs identified by SymDetector have higher confidence scores than 

false positive pairs. Therefore our confidence scores are good indicators showing the 

reliability of being homologous protein pairs. 

In this experiment, we find that the performance of SymDetector with Superfamily 

prediction is better than that with Fold prediction since in this problem we define a true 

positive pair consisting of two proteins with the same Superfamily. Therefore, 

SymDetector perform better with Superfamily prediction than with Fold prediction in the 

first stage of our method. 

 

Figure 17 – Performances of our framework on remote homology detection. 
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5.2.3 Experiment result on Structurally Remote Homology Detection 
Figure 18 shows the experiment results of SymDetector on structurally remote homology 

detection. In this problem, we also evaluate the performance of SymDetector using 

Superfamily prediction and Fold prediction respectively in the first stage and compare 

with ConSequenceS and PSI-BLAST. 

We can see that before the first false positive pair appears, SymDetector can identify 

5,308 true positive pairs and 772 true positive pairs respectively, and before the 100th 

false positive pair appears, SymDetector can identify 6,906 and 12,805 true positive pairs 

respectively. It can be observed that SymDetector could identify more true positive pairs 

given a specific number of false positive pairs than ConSequenceS and PSI-BLAST. For 

example, ConSequenceS identified around 2,100 true positive pairs before the 100th false 

positive pair appears and PSI-BLAST identified around 1,400 true positive pairs at the 

same cutoff. 

Both ConSequenceS and PSI-BLAST to identify remote homology sequences are mainly 

based on sequence similarities (sequence alignments). However, it is rather difficult to 

distinguish homologous protein sequences from non-homologous protein sequences 

when the sequences are in the midnight zone. Therefore, SymDetector identifies 

homologous proteins by transforming protein sequences into SCOP classifications. We 

avoid direct sequence comparison and transform the sequences into other annotations to 

find some relations with other sequences. We show that our method is more efficient than 

sequence alignment based approaches. Therefore, given a query protein sequence, 



SymDetector could find all possible related sequences by predicting its SCOP 

classification no matter how similar or dissimilar those protein sequences are. 

 

Figure 18 – Performances of SymDetector on structurally remote homology detection and 

Comparison with ConSequenceS and PSI-BLAST. 

5.2.4 Prediction performance of SymDetector on PR dataset 
Below we provide the basic statistics about SCOP annotations of 2,476 sequences in the 

benchmark dataset. Statistics of 8,442 sequences in the reference dataset which are used 

to compile the SynonymDict would also be shown. There are 607 Folds and 969 

Superfamilies in the benchmark dataset, while reference dataset contains 975 Folds and 

1,609 Superfamilies. Among these annotations, the two sets share 500 Folds and 763 

Superfamilies. It implies that not all sequences in PR dataset have sequence templates 
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with the same Fold or Superfamily annotations in the reference dataset. Therefore, our 

prediction performance is limited to the number of sequences with the same annotations. 

We measure the prediction accuracy based on sequence level. In other words, we evaluate 

the number of sequences that share their Folds or Superfamilies with at least one of 8,442 

reference sequences. There are 2,352 sequences and 2,234 sequences respectively 

permitting the constraint above. Therefore, these ratios could be treated as the theoretical 

upper bounds for annotation prediction accuracy for the benchmark dataset. Since 

SymDetector only assigns query sequences annotations from SynonymDict, the 

annotation assignment accuracy should be therefore adjusted accordingly. After all, for 

the remaining 124 (or 242) sequences whose Fold (or Superfamily) annotations are not in 

SynonymDict, it would be impossible for SymDetector to assign them with correct 

annotations. 

Table 17 shows the prediction accuracies of SymDetector. It can be observed that there 

are 2,352 protein sequences in the PR dataset which share the same Fold with protein 

sequences in the reference dataset. Therefore, the theoretical upper bound of prediction 

accuracy is about 95.0%. Among those protein sequences, 1,759 proteins are correctly 

predicted, therefore, the prediction accuracy of SymDetector for Fold classification is 

about 74.8%. Likewise, there are 2,234 protein sequences in the PR dataset which share 

the same Superfamily with proteins in the reference dataset. The theoretical upper bound 

is 90.2% and the prediction accuracy for Superfamily classification is about 78.0%. 
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Table 17 – The prediction accuracy of SymDetector. 

Evaluation 
Types 

Number of 
proteins in PR 
dataset (A) 

Upper Bounds 
for Prediction 
Accuracy 

Number of 
proteins with 
correct 
predictions (B) 

Prediction 
Accuracy 

(B/2476) 

Adjusted 
Prediction 
Accuracy 

(B/A) 

Sequences 
belong to 500 
shared Fold 

2352 95.0% 1759 71.0% 74.8% 

Sequences 
belong to 763 
shared 
Superfamily 

2234 90.2% 1742 70.4% 78.0% 
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5.3 Discussions 

5.3.1 Sequence Classification: Different Annotations Capture 

Different Relations 
The efficacy of SymDetector relies on the integrating information from SynonymDict to 

infer relations among query proteins. Because SymDetector is adaptive to different types 

of sequence annotations, the sequence relations would be affected by different sequence 

annotations. Although we use the identical SynonymDict to analyze the benchmark 

dataset, detection results based on Superfamily classification and Fold classification are 

different. 

In Figure 19, we adopt two different evaluations to assess the detection results only based 

on Superfamily classification. It shows that, even though the evaluation for structurally 

remote homology allows sequence pairs in the same Fold to be true positives, the 

detection result does not benefit to capture such sequence pairs when we perform 

Superfamily prediction in the first stage. On the other hand, most of reported pairs based 

on Fold classification belong to those sequence pairs in the same Fold but different 

Superfamilies. Therefore, the detection result based on Fold classification could achieve 

a remarkable improvement under structurally remote homology detection evaluation. 



 

Figure 19 – Performance of Classification by Superfamily under two metrics: We evaluate 

the same ranked list by two different metrics: remote homology detection and structural 

remote homology detection. The performances are similar, and indicate that such 

classification strategy mainly capture sequence relations in the same superfamily. 

5.3.2 Remote homology detection in the real world 
In the previous experiment results, we infer the homologous relations among proteins in 

the benchmark dataset. That is, we focus on the identification of homologous relations 

among a group of unknown proteins. However, in the real world we are often given an 

unknown protein and asked to identify other proteins of known annotations that are 

homologous to the query protein. By referring to those protein sequences, we could 

transfer the structure or function of the query sequence. Therefore, we here analyze the 

detection performance of SymDetector under this situation. 
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Given an unknown protein sequence, SymDetector will predict its Superfamily 

classification and identify protein sequences which have been annotated with the same 

Superfamily classification. For example, given a query sequence A, if its Superfamily 

prediction is S1 with a voting score of 3,500, then we pair protein A and all protein 

sequences, say protein B, C, and D, of real Superfamily S1 in the benchmark dataset. In 

this example, we can have the pairs of (A, B), (A, C), and (A, D) all with the confidence 

score 3,500. 

Figure 20 shows results of such evaluations for remote homology detection. We first 

predict a sequence to some specific Superfamily or Fold classification, and examine the 

relations between this sequence and all protein sequences truly of this classification. 

Given 1, 100, and 1000 false positives, the result based on Superfamily prediction can 

report 9083, 9867, and 10168 homologous pairs. On the other hand, the result based on 

Fold prediction only reports 9095, 9450, and 9856 homologous pairs. 

 



 

Figure 20 – The experiment result of remote homology detection in the real world. 

On structurally remote homology detection, we apply the same rules to evaluate the 

performance. The difference is that, pairs in the same Fold but different Family are now 

considered as true positives. Figure 21 shows that, once we classify query sequence based 

on Fold, reliability of structurally homology detection based on Fold prediction would be 

higher than that based on Superfamily prediction. 
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Figure 21 – The experiment result of structurally remote homology detection in the real 

world. 

5.3.3 SymDetector Assists to Overcome Difficulties Due to Low 

Sequence Identities 
SymDetector identifies homologous protein pairs with confidence scores showing the 

reliability of the identifications. In this subsection, we study the relationship between 

sequence identities and confidence scores of correctly identified homologous protein 

pairs. For 2,476 sequences in the benchmark dataset, we consider all 9,218 correctly 

detected homologous pairs based on Superfamily classifications. We calculate their 

sequence identities using ClustalW, and get the following regression line (in Figure 22) 

between the sequence identities and the confidence scores reported by SymDetector. The 

correlation coefficient between the two is -0.017. Apparently, the confidence scores in 

SymDetector are irrelevant to the sequence identities. The behavior of regression line is 

similar for all 31,670 detected structurally remote homologous pairs (in Figure 23). The 
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correlation coefficient in this case is 0.002. It implies that SymDetector could identify 

remotely homologous protein pairs without considering their sequence identities. 

 

Figure 22 –The relationship between sequence identities and confidence scores reported by 

SymDetector for the problem of remote homology detection. 
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Figure 23 – The relationship between sequence identities and confidence scores reported by 

SymDetector for the problem of structurally remote homology detection. 

In Table 18 we shows the average sequence identities between sequences in different 

categories. Among all 3,064,050 possible pairs generated from 2,476 sequences, the 

average sequence identity is about 9.70%. For sequences in the same Fold, the 

Superfamily, and same Family, their average identities are 11.63%, 12.02%, and 14.68%, 

respectively. All the average seqeunce identities in different catories are much lower than 

25%, which shows the benchmark dataset is a very challenging one for remote homology 

detection. The identification of homologous protein pairs based on sequence alignment 

approaches is very difficult by only thresholding a single cut-off value of sequence 

identity. Therefore SymDetector adopts the two-stage framework to identify the 

homologous relations between proteins in the midnight zone. 
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Table 18 – The average sequence identities of protein sequences in different categories. 

Category Type Number of 
Sequence 
Pairs 

Average Identities 

All Seuqence 
Pairs 

 3064050 9.70% 

True 
Positives 

24035 11.63% Structurally 
Remote 
Homology 
Detection True 

negatives 
3037693 9.68% 

True 
Positives 

7066 12.02% Remote 
Homology 
Detection 

True 
negatives 

3037693 9.68% 

True 
Positives 

2322 14.68% Sequences in 
the same 
Family 

True 
negatives 

3061798 9.69% 



 108

5.4 Summaries 
Based on the concepts of the synonymous words described above, we extend it to design 

a two-stage framework for analyzing homology-based inference problems, especially for 

those in twilight zone and midnight zone. We achieve this goal by using synonymous 

words as intermediates so that information from other annotated sequences could be 

applied to boost detections of relatedness on the unknown sequence set. Conceptually, 

the analysis framework contains three steps: 1) the construction of synonymous 

dictionary from a set of reference sequences; 2) the extraction of synonymous words from 

query sequences; 3) and relation detections by SCOP classification based on the 

synonymous dictionary. 

Since the first stage of SymDetector is independent of any type of annotations, this 

framework allows for great flexibility to solving different kinds of problems. The 

integration of synonymous words and information from dictionary provides a different 

point of view for evaluating relatedness between sequences. As a result, while the 

pairwise similarities between homologous and non-homologous sequences are of the 

same level, our framework can boost detection results from PSI-BLAST search results. 

Moreover, based on the design of this framework, it can be easily to be applied for 

improving results from other search and alignment tools, such as CSI-BLAST, 

HHSearch, COMPASS, and so on. 
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Chapter 6 Concluding remarks and outlook 

The N-gram models (protein words) have been used in protein sequence analysis since 

1970s. BLAST extended the idea of N-gram models and devised similar words for 

identifying more similar proteins while performing sequence searches. BLAST used 

similar words to recover the sensitivity lost by only matching identical words. However, 

the generation of similar words is from a substitution matrix and there is no guarantee of 

structure similarity between similar words. Based on the observation that protein 

structures are more conserved than protein sequences, we treat two protein sequences 

which form a significant alignment as two paragraphs which have similar meanings in 

terms of structure. We define synonymous relations between two words that are aligned 

together in a significant sequence alignment. 

In this study, we proposed synonymous words as protein sequence features to study some 

problems in Bioinformatics. We devised a synonymous dictionary based approach to 

study those problems. We demonstrated that our approach could deal with protein 

secondary structure prediction, protein subcellular localization prediction, remote 

homology detection, and protein sequence alignments. 

Using a set of protein sequences with structural or functional annotations, we performed 

PSI-BLAST searches and used the reported sequence alignments to extract synonymous 

words and then compiled a synonymous dictionary. By looking up the dictionary, we 

treated protein prediction or classification problems as translation problems. According 



 110

to the experiment results, we show that synonymous words would tend to express similar 

structures or have similar functions. In the application of protein secondary structure 

prediction, we show that SymPred achieves around 81% of Q3 accuracy and outperforms 

existing PSS predictors. In the application of protein subcellular localization prediction, 

we show that KnowPredsite can predict both single-localized and multi-localized proteins 

at high accuracy. We demonstrated that KnowPredsite could identify related protein 

sequences (with the same localization sites) using synonymous words. In the application 

of remote homology detection, we suggest that a two-stage mechanism seems more 

efficient than traditional sequence comparison methods. And in the application of protein 

sequence alignment, we demonstrated that synonymous words could be used to measure 

the alignment scores between amino acid pairs. 

From the experiment results of four different applications, we find that synonymous 

words could represent the local sequence similarities among protein sequences and they 

tended to express similar structures and functions. We find that even if the sequence 

identity between two homologous (related) proteins is low, they might share a number of 

synonymous words. Moreover, we also show that our synonymous dictionary based 

approach is sensitive to the size of template pool and the number of sequence variations in 

protein evolution. With the increasing number of protein sequences and structures, our 

method could improve further in the future. 
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