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Abstract

With the increasing number of protein sequences, the protein sequence analysis and
classification is an important issue in Bioinformatics. Many researches show that protein
secondary structure plays an important role in-analyzing and modeling protein structures
when characterizing the structural topology of proteins because protein secondary
structure represents the local conformation of amino acids into regular structures.

The study of protein subcellular localization (PSL) is important for elucidating protein
functions involved in various cellular processes. Most of the PSL prediction systems are
established for single-localized proteins. However, a significant number of eukaryotic
proteins are known to be localized into multiple subcellular organelles. Many studies
have shown that proteins may simultaneously locate or move between different cellular
compartments and be involved in different biological processes with different roles.

The analysis of novel proteins usually starts from searching homologous proteins in
annotated databases. Homologous proteins usually share a common ancestor, and thus
often have similar functions and structures. Based on pairwise identities and some
specific thresholds, sequence search tools retrieve annotated homologous sequences to
infer annotations of the novel sequences. As the number of protein sequences grows,
sensitive strategies of homology detection using simply sequence information are still



demanding and of great importance in post-genomic era. Sequence similarity is a
frequently used simple metric for homology detection and other annotation transfers.
However, sequence itself provides incomplete and noisy information about protein
homology. Many improvements on homology searching and sequence comparisons have
been developed to overcome the limitation of sequence similarity.

Based on above observation, we propose a general approach based on a synonymous
dictionary for protein sequence analysis and classification. We apply it to the problems of
protein secondary structure prediction, protein subcellular localization and remote
homology detection. We adopt the techniques from natural language processing and use
synonymous words to capture local sequence similarities in a group of similar proteins. A
synonymous word is an n-gram pattern of amino acids that reflects the sequence variation
in a protein’s evolution. We generate a protein-dependent synonym dictionary from a set
of protein sequences.

Protein secondary structure prediction: On a large non-redundant dataset of 8,297 protein
chains (DsspNr-25), the average Qs 0f:SymPred and SymPsiPred are 81.0% and 83.9%
respectively. On the two latest independent test sets (EVA_Setl and EVA_Set2), the
average Qs of SymPred is 78.8% and 79.2% respectively. SymPred outperforms other
existing methods by 1.4% to 5.4%. We study two factors that may affect the performance
of SymPred and find that it is very sensitive to the number of proteins of both known and
unknown structures. This finding implies that SymPred and SymPsiPred have the
potential to achieve higher accuracy as the number of protein sequences in the NCBInr
and PDB databases increases.

Protein subcellular localization: We downloaded the dataset from ngLOC, which
consisted of ten distinct subcellular organelles from 1923 species, and performed ten-fold
cross validation experiments to evaluate KnowPredsi,'s performance. The experiment
results show that KnowPredsj, achieves higher prediction accuracy than ngLOC and
Blast-hit method. For single-localized proteins, the overall accuracy of KnowPreds; is
91.7%. For multi-localized proteins, the overall accuracy of KnowPreds. is 72.1%,
which is significantly higher than that of ngLOC by 12.4%. Notably, half of the proteins



in the dataset that cannot find any Blast hit sequence above a specified threshold can still
be correctly predicted by KnowPredsit.

Remote homology detection: We propose a two-stage method called SymDetector for the
problem of remote homology detection. We downloaded a benchmark dataset which
contains 2,476 protein sequences with mutual sequence identity below 25%. When
allowing only one false positive, SymDetector achieves 5,308 true positive pairs while
ConSequenceS and PSI-BLAST report less than 1,000 true homologous ones. As the
error rate grows, SymDetector can identify 6,906 along with 7,666 sequence pairs given
100 and 1000 false positives permitted separately. Under the same setting,
ConSequenceS only reports about 2,000 and 3,500 pairs in the same Fold, which improve
PSI-BLAST by 50% in average.
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Chapter 1 Introduction

1.1 Protein Secondary Structure Prediction

Proteins can perform various functions when they fold into proper three-dimensional
structures. Because determining the structure of a protein through wet-lab experiments
can be time-consuming and labor-intensive, computational approaches are preferable. To
characterize the structural topology of proteins, Linderstrom-Lang proposed the concept
of a protein structure hierarchy with four levels: primary, secondary, tertiary, and
quaternary. The primary structure of a protein refers to its amino acid sequence. The
secondary structure consists of the ‘coiling or bending of amino acids. The tertiary
structure is the folding of a molecule-upon itself by disulfide bridges and hydrogen bonds.
The quaternary structure refers to the complex structure formed by the interaction of 2 or
more polypeptide chains. In the hierarchy, protein secondary structure (PSS) plays an
important role in analyzing and modeling protein structures because it represents the

local conformation of amino acids into regular structures.

There are three basic secondary structure elements (SSEs): «-helices (H), 8-strands (E),
and coils (C). Many researchers employ PSS as a feature to predict the tertiary structure
[1-4], function [5-8], or subcellular localization [9] of proteins. It is noteworthy that,
among the various features used to predict protein function, such as amino acid

composition, disorder patterns, and signal peptides, PSS makes the largest contribution



[10]. Moreover it has been suggested that secondary structure alone may be sufficient for

accurate prediction of a protein’s tertiary structure [11].

Current PSS prediction methods can be classified into two categories: template-based
methods and sequence profile-based methods [12]. Template-based methods use protein
sequences of known secondary structures as templates, and predict PSS by finding
alignments between a query sequence and sequences in the template pool. The
nearest-neighbor method belongs to this category. It uses a database of proteins with
known structures to predict the structure of a query protein by finding nearest neighbors
in the database. By contrast, sequence profile-based methods (or machine learning
methods) generate learning models to classify sequence profiles into different patterns. In
this category, Artificial Neural Networks (ANNS), Support Vector Machines (SVMs) and
Hidden Markov Models (HMMs) are the most widely used machine learning algorithms

[13-19].

Template-based methods are highly accurate if there is a sequence similarity above a
predefined threshold between the query and some of the templates; otherwise, sequence
profile-based methods are more reliable. However, the latter may under-utilize the
structural information in the training set when the query protein has some sequence
similarity to a template in the training set [12]. An approach that combines the strengths
of both types of methods is required for generating reliable predictions irrespective of

whether the query sequence is similar or dissimilar to the templates in the training set.



To measure the accuracy of secondary structure prediction methods, researchers often use
the average three-state prediction accuracy (Qs) accuracy or the segment overlap (SOV)
measure [20-21]. The estimated theoretical limit of the accuracy of secondary structure
assignment from the experimentally determined 3D structure is 88% of the Q3 accuracy
[5, 22], which is deemed the upper bound for secondary structure prediction. However,
PSS prediction has been studied for decades and has reached a bottleneck, since the Qs
accuracy remains at approximately 80 % and further improvement is very difficult, as
demonstrated by the CASP competitions. Currently, the most effective PSS prediction
methods are based on machine learning algorithms, such as PSIPRED [15], SVMpsi [17],
PHDpsi [23], Porter [24] and SPINE [25], which employ ANN or SVM learning models.
The two most successful template-based -methods are NNSSP [26-27] and PREDATOR
[28]. They use the structural information obtained from local alignments among query
proteins and template proteins, and their Qs accuracy is approximately 70%. Thus, the

difference in the accuracy of the two categories is approximately 10%.

In a previous work on PSS prediction [29], we proposed a method called PROSP, which
utilizes a sequence-structure knowledge base to predict a query protein’s secondary
structure. The knowledge base consists of sequence fragments, each of which is
associated with a corresponding structure profile. The profile is a position specific
scoring matrix that indicates the frequency of each SSE at each position. The average Qs

accuracy of PROSP is approximately 75%.

In this study, we present an improved version of PROSP called SymPred, which is a

dictionary-based method for predicting the secondary structure of a protein sequence.
3



Dictionary-based approaches are widely used in the field of natural language processing
(NLP) [30-32]. We generate synonymous words from a protein sequence and its similar
sequences. The definition of a synonymous word is given in the Chapter Two. The major
differences between SymPred and PROSP are as follows. First, the constitutions of the
dictionary (SymPred) and the knowledge base (PROSP) are different. Second, the
scoring systems of SymPred and PROSP are different. Third, unlike PROSP, SymPred
allows inexact matching. Our experiment results show that SymPred can achieve 81.0%
Qs accuracy on a non-redundant dataset, which represents a 5.9% performance

improvement over PROSP.

There are significant differences between SymPred and other methods in the two
categories described earlier. First, in contrast to template-based methods, SymPred does
not generate a sequence alignment between the query protein and the template proteins.
Instead, it finds templates by using local sequence similarities and their possible
variations. Second, SymPred is not a machine learning-based approach. Moreover, it
does not use a sequence profile, so it cannot be classified into the second category.
However, like machine learning-based approaches, SymPred could capture local
sequence similarities and generate reliable predictions. Therefore, SymPred could
combine the strengths of template-based and sequence profile-based methods. The
experiment results on the two latest independent test sets (EVA Setl and EVA_Set2)
show that, in terms of Q3 accuracy, SymPred outperforms other existing methods by 1.4%

to0 5.4%.



1.2  Protein Subcellular Localization Prediction

Protein subcellular localization (PSL) is important to elucidate protein functions as
proteins cooperate towards a common function in the same subcellular compartment [33].
Itis also essential to annotate genomes, to design proteomics experiments, and to identify
potential diagnostic, drug and vaccine targets [34]. Determining the localization sites of a
protein through experiments can be time-consuming and labor-intensive. With the large
number of sequences that continue to emerge from the genome sequencing projects,
computational methods for protein subcellular localization at a proteome scale become

increasingly important.

Most existing PSL predictors are bhased on machine learning algorithms. They can be
categorized by the feature sets used-for building. prediction models. A group of methods
use features derived from primary sequence [35-39]; some utilize various biological
features extracted from literature or public databases [9, 34, 40-44]. Other features are
also used in different methods, e.g., phylogenetic profiling [45], domain projection [46],

sequence homology [38], and compartment-specific features [47].

A simple and reliable way to predict localization site is to inherit subcellular localization
from homologous proteins. Therefore, in [38] a hybrid method was proposed, which
combined an SVM based method with a sequence comparison tool to find homology to
improve the performance. However, some homologous proteins are not similar in
sequences, but in structures. For example, the sequence identity between proteins laab

and 1j46 is only 16.7% but they are structurally homologous and classified into the same

5



family (HMG-box) in the SCOP classification. For such cases, it is difficult to discover
the homologous relationship using sequence comparison methods. Profile-profile
alignment methods [48-52] are capable of identifying remote homology; nevertheless,
they are relatively slow.

Most of the PSL prediction systems are established particularly for single-localized
proteins. A significant number of eukaryotic proteins are, however, known to be localized
into multiple subcellular organelles [53-54]. In fact, proteins may simultaneously locate
or move between different cellular compartments and be involved in different biological
processes with different roles. This type of proteins may take a high proportion, even
more than 35% [53]. In addition, the majority of existing computational methods have the
following disadvantages [54]: 1) they only predict.a limited number of locations; 2) they
are limited to subsets of proteomes which contain signal peptide sequences or with prior
structural/functional information; 3) the datasets used for training are for specific species,
which is not sufficiently robust to represent the entire proteomes. Thus, most of the
computational methods are not sufficient for proteome-wide prediction of PSL across

various species.

Thus in this study, we propose a synonymous dictionary based approach, called
KnowPredsie, using local sequence similarity to find useful proteins as templates for site
prediction of the query protein. It is designed to predict localization site(s) of single- and
multi-localized proteins and is applicable to proteome-wide prediction. Furthermore, it
only requires protein sequence information and no functional or structural information is

required. Notably, prediction results can be explained by the template proteins which are



used to vote for the localization sites. The dictionary based prediction scheme has been
shown to be effective in predicting protein secondary structure [29, 38, 55] and local
structure [56]. To evaluate our prediction method, we used the ngLOC dataset [54] to
perform ten-fold cross validation to compare with existing methods. The dataset consists
of ten subcellular proteomes from 1923 species with single- and multi-localized proteins.
KnowPredsi, achieved 91.7% accuracy for single-localized proteins and 72.1% accuracy

with both sites correctly predicted for multiple localized proteins.



1.3 Remote Homology Detection

The analysis of novel biological sequences usually starts from searching homologous
sequences in annotated databases. Homologous sequences usually share a common
ancestor, and thus often have similar functions and structures. Based on pairwise
identities and some specific thresholds, sequence search tools retrieve similar annotated
sequences for homology inferences, which are crucial in advanced analysis, such as
protein structure modeling, function predictions, protein-protein interaction networks
analysis, and other property annotations. While structural information assists to increase
the understanding of some target proteins, in many situations one has to analyze a protein
based on its sequence information only. The advent of whole genome sequencing
generates large amounts of protein: sequences with undetermined structures and

functions.

Many of these newly sequenced proteins, including those related to diseases, have few
closely related homologs in annotated databases. In addition, as the number of sequenced
genomes and proteins grows, many relationships between distantly related proteins are
observed and needed to be studied further for better understanding the complex structure
of protein universe. Sensitive strategies for analyzing proteins based on simply sequence

information are therefore still demanding and of great importance in genomic era.

Sequence similarity is a frequently used simple metric for homology detection and other
annotation transfers. However, sequence itself provides only incomplete and noisy

information about the protein. The most similar result may not be the most relevant



sequence [57], while some other homologous sequences might be lost in the search
results. For example, two sequences are usually identified as homologs if their pairwise
similarity is higher than 40%, but the problem becomes rather challenging for sequences
sharing similarity between 20% and 35%, i.e., sequences in the twilight zone. Studies
showed that even for protein pairs with sequence identity less than 25%, about slightly
less than 10% of them still homologous [58]. Thus pairwise sequence similarity has its
limit in detecting distant sequence relationships. Using a threshold of pairwise sequence
identity to determine homology relationship is arguable since it is hard to determine
whether protein pairs having sequence identities lower than this threshold are
homologous. Once pairwise similarity of a sequence pair is below a specified threshold,
we can hardly distinguish whether-thepair ‘of sequences is from homology or not.
Therefore many improvements on homology searching and sequence comparisons have

been developed to overcome the limitation-of sequence similarity [59-60].

To improve sequence-based analysis strategies, we have to determine the strategies to
represent proteins and corresponding similarity metrics for such representations. Based
on these two issues, homology detection methods can be roughly divided into two
categories: generative models and discriminative models. Given a protein sequence,
generative models focus on describing a set of known proteins with a probabilistic model,
and propose a probabilistic measurement between the query protein and the model. On

the other hand, discriminative models focus on differences between two sets of proteins.

Homology search tools of generative models consist of profile-profile comparisons and

profile-sequence methods. Since sequence information itself is insufficient, researchers
9



devise probabilistic models to represent the protein sequences, such as PSSM [61] and
profiles [62] and profile Hidden Markov Models [63-65]. Some famous packages include
HMMER and HMMERHEAD [66] , COMPASS [67-69], COACH [70], HHSearch [71],
and profile comparison tools such as PRC [72]. While there might be concerns about the
statistical measurement about accuracies for these model-comparison tools [73-74], they
provide best available results among generative model methods. These tools, however,
are time-consuming. Therefore profile-sequence (sequence-profile) search tools that
strike balances between speed and accuracy are de facto standards for large-scale
database searching. PSI-BLAST [75] is definitely the Google for bioinformatics
community, while CS-BLAST/CSI-BLAST [76] provides more sensitive results based on

similar ideas. More detailed comparison-could be found in [77].

Discriminative models mainly focus on-designing kernel functions based on sequence
patterns to distinguish sequences from two different sets. Most of these methods are
based on support vector machines, and extract frequent patterns from sequences as their
features in the string kernel. The first string kernel might be Fisher’s kernel [78]. Some
popular string kernels includes, but not limited to, Pairwise kernel[79], Spectrum and the
Mismatch kernels [80-81], Local Alignment method [82], and Word Correlation Matrices
[83]. Some methods integrate structural and motif information into the feature set, such as
I-Sites [84], eMOTIF-database search [85], Profile-Based Mismatch methods [86] and
Profile-based direct methods [87]. Readers can find more comprehensive information

about discriminative methods in the following materials [88-89].
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While discriminative models, especially string kernels methods, achieve better
performance than generative models in some comparative studies [79, 81], these results
often lack of evidences for interpretations, such as HSPs in general alignment tools. In
addition, they may lead to over-fitting due to parameter setting and feature selections.
Therefore, many strategies attempt to improve homology detections based on results of
generative models, especially on results of PSI-BLAST. RankProt [90] attempts to
consider pairwise distances between all the query sequences to construct a relation
network, and increase homology detection results based on analyzing the network
information. Ku and Yona [91] propose a framework based on similar ideas. Since there
are already lots of annotated sequences in current databases, a natural thought is to

integrate information from external sequences to boost homology detection.

A simple attempt to integrate external sequence information in homology detection might
be intermediate sequence search (ISS) [92-93]. In short, if protein sequences A and B are
both homologous to the third sequence C, A and B may be detected as homologs although
they share low identities. Improved frameworks based on similar ideas consist of
SCOOP[94] and SIMPRO[95]. Moreover, some strategies tend to apply information from
the probabilistic models, instead of shared sequences only. Consensus-sequence-based
methods are representatives of these kinds of strategies. PHOG-BLAST [96] make
sequence profiles discrete, and generate consensus for a query sequence by substituting
each residue with the most important amino acids in the original sequence. Recently,
Przybylski and Rost generalize such consensus-based concepts for boosting homology

search for sequences of low identities [97-98]. For an unknown sequence, they search it

11



against NCBInr to obtain its PSSM. Then the original sequence is transformed to a
consensus sequence based on this PSSM. They claim that, by using the informative
consensus sequence as the object in comparisons, homology search results would be

better than traditional PSI-BLAST searches.

Based on above observation, we aim to design a computational framework for detecting
distantly relationships between protein sequences in twilight zone (sequence identities
between 25% and 40%) or midnight zone (sequence identities below 25%) with several
properties. First, it should deal with sequence relationships among proteins with low
sequence identity. Second, the results of the framework should be explainable. That is,
we hope the result can provide evidence, and even high quality alignments to support its
identification, instead of some profiles or a set of dozens of features. Third, the
framework is computationally incremental, and we can easily add or delete sequences in
our training set. Besides, this framework should make best use of the power of current
homology search tools to make it simple to be implemented. As a result, we use
fixed-length protein words as possible homology indicator in this framework. For each
word in separate sequences, we use PSI-BLAST to generate its variations. These
variations would be integrated to estimate relations between novel sequences and
annotated sequences. We demonstrate that this framework achieves high sensitivity in
discovering protein homologs even though they share low sequence similarities with

annotated sequences.

12



Chapter 2 Synonymous Words and a

Protein-dependent Synonymous Dictionary

2.1 Synonymous Words versus Similar Words

It is well known that a protein structure is encoded and determined by its amino acid
sequence. Therefore, a protein sequence can be treated as a text written in an unknown
language whose alphabet comprises 20 distinct letters; and the protein’s structure is
analogous to the semantic meaning of the text. Currently, we cannot decipher the “protein
language” with existing biological experiments or natural language processing (NLP)
techniques; thus, the translation from sequence to structure remains a mystery. However,
biologists have found that two proteins with a sequence identity above 40% may have a
similar structure and function. The high degree of robustness of the structure with respect

to the sequence variation shows that the structure is more conserved than the sequence.

In evolutionary biology, protein sequences that derive from a common ancestor can be
traced on the basis of sequence similarity. Such sequences are referred to as homologous
proteins. In terms of natural language, a group of homologous protein sequences can be
treated as texts whose semantic meaning is identical or similar. The homologous
relationship between proteins can be always captured by sequence alignment; thus, we
assume that two sequence fragments have a similar semantic relation if they can be
aligned by a sequence alignment tool, such as BLAST, with a significant e-value, say

0.001. Figure 1 shows an example of a sequence alignment derived by BLAST with an
13



e-value of 0.001. In the alignment, the identical residues are labelled with letters and
conserved substitutions are labelled with + symbols. The sequence identity between the

two sequence fragments in this example is 50% (=20/40).

The idea of treating n-gram patterns as words has been widely used in biological
sequence comparison methods; BLAST is probably the most well known method.
BLAST’s heuristic algorithm uses a sliding window to generate an initial word list from a
query sequence. To further expand the word list, BLAST defines a similar word with
respect to a word on the list based on the score of the aligned word pair. A word whose
alignment score is well above a threshold is called a similar word and is added to the list
to recover the sensitivity lost by only matchingidentical words. However, in BLAST, the
length of a word is only 2 or 3 characters (the default size) for protein sequences and short
words are very likely to generate a large number of false hits of protein sequences that are

not actually semantically related.

In this study, we define synonymous words as follows. Given a protein sequence p, we
use PSI-BLAST to generate a number of significant sequence alignments, called
high-scoring segment pairs (HSPs), between p and its similar proteins sp. All words, i.e.,
n-grams, in p and sp are generated by a sliding window of size n. Given a word w in p, the
synonymous word of w is defined as the word sw in sp that is aligned with w. Please note
that no gap is allowed in either w or sw since there is no structural information in the gap
region. Thus, the major difference between synonymous words and similar words is that
synonymous words are based on sequence alignments (i.e., they are context-sensitive),

whereas similar words are based on word alignments (i.e., they are context-free). Take
14



the sequence alignment (or High-scoring Segment Pair, HSP) in Figure 1 as an example.
The Shjct sequence is a similar protein to the Query sequence; therefore, DFDM is
deemed synonymous to the word EWQL if the word length is 4, and FDMV is deemed
synonymous to the next word WQLYV. Based on the observation of the high robustness of
structures, if the Query is of known structure and the Sbjct is of unknown structure, we
assume that each synonymous word sw adopts the same structure as its corresponding

word w; i.e., sw inherits the structure of w.

Moreover, different synonymous words sw for a word w should have different similarity
scores to w. To estimate the similarity between w and sw, we calculate the similarity level
according to the number of amino acid pairs that are interchangeable. If two amino acids
are aligned in a sequence alignment, they are said to be interchangeable if they have a
positive score in BLOSUMG62. Sincea protein'word is an n-gram pattern, the range of the
similarity level between the components of a word pair is from 0 to n. For example, in
Figure 2, the similarity level between DFDM and EWQL is 3, and that between FDMV

and WQLYV is also 3.
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Query: 7 EWQLVLHVWAKVEADVAGHGQDILIRLFKSHPETLEKFDR 46
+=+ +VL W VEAD A HG +L RLF HPETI+ F +
Shbjct: 3 DFDMVLKCWGPVEADHATHGSLVLTRLFTEHPETLKLFPK 42

Figure 1 — A local sequence alignment (or High-scoring Segment Pair, HSP) derived by
PSI-BLAST. The identical residues are labelled with letters and conserved substitutions are
labelled with + symbols. The alignment in this example shows that the sequence fragment
from position 7 to position 46 of the query sequence is very similar to that from position 3 to
position 42 in the subject sequence. It is assumed that the two sequences have a similar

semantic relation because they form a significant sequence alignment.
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2.2 Advantages of Synonymous Words

The major advantages of using synonymous words over similar words are as follows.
First, since the synonymous words are generated from a group of similar proteins, two
irrelevant proteins would use different groups of similar proteins to generate their own
synonymous words. Two irrelevant proteins would be unlikely to have common
synonymous words, even if their original sequences had contained identical words. This

observation implies that synonymous words probably tend to protein-dependent.

Second, two remote homologous proteins might be very likely to have common similar
proteins because of the transitivity of the homology relationship, so they probably share
some synonymous words. Transitivity refers to deducing a possible similarity between
protein A and protein C from the existence of a third:-protein B, such that A and B as well
as B and C are homologues if the sequence identity between A and B as well as that
between B and C is above the predefined threshold. Figure 2(a) shows an example of
transitivity relationship among protein A, protein B, and protein C. Protein A and protein
B share sequence identity of 34%, and protein B and protein C share sequence identity of
27%, whereas protein A and protein C only share sequence identity of 12%. Using the
transitivity relationship, remote homologous relationship and local similarity between
protein A and protein C can be detected. In this study, we apply the transitivity concept to
peptide fragments instead of the protein sequences to obtain local similarities between
remotely homologues. Protein A and protein C share local similarity if there is a protein
word aligned with the words in protein A and protein C. Figure 2(b) illustrates the idea, in

which protein A and C are aligned with protein B1 and protein B2 (B1 and B2 can be
17



identical, homologous or non-homologous). If there is a protein word shared by both B1
and B2, the corresponding protein words in protein A and protein C are inferred as locally
similar between protein A and protein C. The shared synonymous word may represent a
possible sequence variation in evolution. Moreover, if protein A and protein C are
remotely homologous, there are likely more shared synonymous words in different

protein B’s to characterize their similarity.

Third, a synonymous word is given a similarity score (i.e., the similarity level) respective
to the word it is aligned with. Therefore, a synonymous word may have different
similarity scores depending on which word it is aligned with. Accordingly, a synonymous
word is a protein-dependent similar word-that may also have a similar semantic meaning

in terms of its structure.
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Figure 2 — Two different transitivity relationships. (a) Protein A and protein B share
sequence identity of 34%, and protein B and protein C share sequence identity of 27%,
whereas protein A and protein C only share sequence identity of 12%. We infer the
homologous relationship between A and protein C through'protein B. (b) Protein A and
protein C are aligned with protein B1 and protein,B2. The peptide fragments of B1 and B2
besieged by the rectangles are identical, the two corresponding peptide fragments of Aand C

are considered to be similar.

In this study, we construct a protein-dependent synonymous word dictionary that lists
possible synonyms for words of a protein sequence in a dataset. We use synonymous
words as features to infer structural information for the problems of protein secondary
structure prediction, protein subcellular localization prediction, and remote homology

detection.
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2.3 Construction of a protein-dependent Synonymous
Dictionary

Given a query sequence, we use PSI-BLAST to generate a number of significant
alignments, from which we acquire possible sequence variations. In general, the similar
protein sequences (i.e., the Shjct sequences) reported by PSI-BLAST share highly similar
sequence identities (between 25% and 100%) with the query, which implies that the
sequences may have similar structures. Therefore, we identify synonymous words in

those sequences.

Using a dataset of protein sequences with known secondary structures, we construct a
protein-dependent synonymous dictionary, called SynonymDict. For each protein p in the
dataset, we first extract protein words from its original sequence using a sliding window
of size n. Each protein word, as well as_the corresponding SSEs of the successive n
residues, the protein source p, and the similarity level (here, the similarity level is n), are
stored as an entry in SynonymDict. A protein source p represents the structural
information provider. We then use PSI-BLAST to generate a number of similar protein
sequences. Specifically, to find similar sequences, we perform a PSI-BLAST search of
the NCBInr database with parameters j=3, b=500, and e=0.001 for each protein p in the
dataset. Since the NCBInr database only contains protein sequence information, each
synonymous word inherits the SSEs of its corresponding word in p. A PSI-BLAST search
for a specific query protein p generates a number of local pairwise sequence alignments
between p and its similar proteins. Statistically, an e-value of 0.001 generally produces a

safe search and signifies sequence homology [99]. Similarly, each synonymous word and
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its inherited structure, the protein source p, and the similarity level are stored as an entry

in SynonymDict.

Figure 3 shows the procedure used to extract protein words and synonymous words for a
query protein p. We use a sliding window to screen the query sequence, as well as all the
similar protein sequences found by PSI-BLAST, and extract all words. The query protein
p is the protein source of all the extracted words. Each word is associated with a piece of
structural information of the region from which it is extracted. For example, WGPV is a
synonymous word of WAKYV. Since it is from a similar protein of unknown structure, it is

associated with a piece of structural information of WAKYV, which is HHHH.

Similar protein sp found by PSI-BLAST
... WGPLDADHAGH- -DILTRI... \| Extract WGPV (HHH) ,_-——-—-——__h\
? GPVE (HHC)
o WGPVEADHSTH: VLR | ymons | T |<1__ ILE
. WGPVEADHATHGSLVLTRL.. ) words g
/ N |
... WAKVEADVAGHGQDILIRL.. Extract words —> SynonymDict
. HHHCCCCCCCEEEEEEEE., (T
Query protein p of length L AKVE (HHHC) \ R
KVEA (HHCC)
— /_

Figure 3 — The procedure used to extract protein words and synonymous words for a query
protein p. The procedure used to extract protein words and their synonymous words for a
given query protein p (assuming the window size n is 4). We use a sliding window to screen
the query sequence and all the similar protein sequences found by PSI-BLAST and extract
all words. Each word is associated with a piece of structural information of the region from
which it is extracted. The protein source of all the extracted words is the query protein p,

since all the structural information is derived from p.
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Note that a synonymous word may appear in more than one similar protein when all
similar protein sequences are screened. We cluster identical words together and store the
frequency in the synonymous word entry. Table 1 shows an example of a synonymous
word entry in SynonymDict. In the example, WGPV is a synonymous word of proteins A,
B and C, since it is extracted from the similar proteins of A, B and C. The synonymous
word inherits the corresponding structural information of its source, and we can derive
the corresponding similarity levels and frequencies via the extraction procedure. For
example, the similarity level of WGPV in terms of protein source A is 3 and the frequency
is 7. This implies that WGPV has 3 interchangeable amino acids with the corresponding
protein word of A and it appears 7 times among the similar proteins of A found in the

PSI-BLAST search result.

In Table 1, we store the inherited secondary structural information for the synonymous
word WGPV. We can use the structural information to predict the secondary structure for
a given protein sequence. In fact, we can store other protein related information in a
synonymous word entry, such as protein subcellular localization sites, protein function
labels, or structural classes, etc. In Table 2 we show another example of a synonymous
word entry which stores the protein subcellular localization sites. Using the stored

information, we can study different protein prediction or classification problems.
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Table 1 — An example of a synonymous word entry in SynonymDict. An example of a
synonymous word entry in SynonymDict (assuming the word length n = 4). WGPV is a
synonymous word of proteins A, B and C, since it is extracted from the similar proteins of A,
B and C. We record the structural information of protein sources to the corresponding
synonymous words, and calculate the corresponding similarity levels and frequencies. For
example, the similarity level of WGPV in terms of protein source A is 3 and the frequency is
7.

Synonymous word: WGPV

Protein Source Secondary Structure Similarity Level Frequency
A HHHH 3 7

B HHCH 4 11

C CHHH 2 3

Table 2 — Another example of a synonymous ‘word. entry in SynonymDict. Three protein
sources with known localization sites contain protein words thatare aligned to the word
MYSKILL in the corresponding sequence alignments. \We store the inherited subcellular

localization sites for MY SKILL from the protein sources A, B, and C.

Synonymous word: MYSKILL

Protein Source Localization Sites Similarity Level Frequency
A Cytoplasm 5 21
B Nuclear 4 12
C Cytoplasm
yiop 5 17
Extracellular

23




Chapter 3 Protein Secondary Structure

Prediction

3.1 Methods

In this section, we present our synonymous dictionary based approach for protein
secondary structure prediction, called SymPred, and a meta-predictor, called

SymPsiPred.

3.1.1 SymPred: a PSS predictor basedon SynonymDict

Query sequence

Swilar protemns found by
PSI-BLAST (HSPs)

'\\' GP -\' - Symonymons word: WGPV

S\ no 11\. mous '\'\' (} L\' Protein Sousce Em.m‘..m Soucnze Sttlanty Level | Frequency
- . ) > F | R
words : ’ - ! "
c CHHE
WKPP

Figure 4 — The prediction procedure of SymPred. An HSP represents a high-scoring segment

pair which is a significant sequence alignment reported by PSI-BLAST.
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Preprocessing

Figure 4 shows the prediction procedure of SymPred. Given a target protein t, whose
secondary structure is unknown and to be predicted, we perform a PSI-BLAST search on
t to compile a word set containing its original protein words and synonymous words. The
procedure is similar to the construction of SynonymDict. We also calculate the frequency

and similarity level of each word in the word set.

Exact and inexact matching mechanisms for matching words to SynonymDict

Each word w in the word set is used to match against words in SynonymDict, and the
structural information of each protein source in-the matched entry is used to vote for the
secondary structure of t. When matching a word to SynonymDict, we consider using
straightforward exact matching and a simple inexact matching. Exact matching is rather
strict, so we consider a possible relaxation of inexact matching to increase the sensitivity
to recover synonymous word matches so that SynonymDict can be utilized to more extent
than by using exact matching. Our inexact matching allows at most one mismatched
character, i.e., allowing a don’t-care character (not a gap) in the words. The matched

entries are then evaluated by the following scoring function.

The Scoring Function

To differentiate the effectiveness of matched entries, we design a scoring function based
on the protein sources in the matched entries and the sum of the weighted scores on the

associated structures determines the predicted structure.
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Since we use the structural information of protein sources in the matched entries for
structure prediction, we define the scoring function based on its similarity level and
frequency recorded in the dictionary for the following observation. The similarity level
represents the degree of similarity between a protein word and its synonymous word, and
the frequency represents the degree of sequence conservation in the protein’s evolution.
Intuitively, the greater the similarity between two words, the closer they are in terms of
evolution; likewise, the more frequently a word appears in a group of similar proteins, the

more conserved it is in terms of evolution.

To define the scoring function, we consider the similarity level and the frequency of the
word in the word set of t, denoted by. Sim; andfreq; respectively, as well as those of a
protein source i in its matched entry,-denoted by Sim; and freq; respectively. Note that
Sim; and freq; are obtained in the preprocessing stage. To measure the effectiveness of the
structural information of the protein source i, we define the voting score s; as min(freq,
freqi)x(1+min(Sim;, Sim;)). The structural information provided by i will be highly
effective if: 1) w is very similar to the corresponding words of t and i; and 2) w is well

conserved among the similar proteins of t and i.

Take the synonymous word WGPV in Table 1 as an example. If WGPV is a synonymous
word of t (assuming freq; is 5 and Sim; is 4), then the voting score of the structural
information provided by protein source A is min(5, 7)x(1+min(4, 3)) = 5x(1+3) = 20.
Similarly, the voting score provided by protein source B is min(5, 11)x(1+min(4, 4)) =

5x(1+4) = 25, and the score provided by protein source C is min(5, 3)x(1+min(4, 2)) =
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3x(1+2) = 9. The structural information provided by protein source B has the highest

score in this matched entry and therefore has the most effect on the prediction.

Structure determination

The final structure prediction of the target protein t is determined by summing the voting
scores of all the protein sources in the matched entries. Specifically, for each amino acid x
in a protein t, we associate three variables, H(x), E(x), and C(x), which correspond to the
total voting scores for the amino acid x that has structures H, E, and C, respectively. For
example, if we assume that the above synonymous word WGPV is aligned with the
residues of protein t starting at position 11, then protein A’s contribution to the voting
score of H(11), H(12), H(13), and H(14) would be 20. Similarly, protein B would
contribute a voting score of 25 to H(11), H(12), C(13), and H(14); and protein C would
contribute a voting score of 9 to C(11), H(12), H(13), and H(14). The structure of x is
predicted to be H, E or C based on max(H(x), E(x), C(x)). When two or more variables
have the same highest voting score, C has a higher priority than H, and H has a higher

priority than E.

Confidence level

A confidence measure of a prediction for each residue is important to a PSS predictor
because it reflects the reliability of the predictor’s output. To evaluate the prediction
confidence on each amino acid x, we calculate a confidence level to measure the

reliability of the prediction. The confidence level on amino acid x is defined as follows:
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H(x)+ E(x) + C(X)
Z{( freq, J2r freq) max[l, (Sim, J2r Simi)}}

it

ConLvl(x) =10x

The product in the denominator represents a normalization factor for the scoring function.
Therefore, the confidence level measures the ratio of the voting scores a residue x gets
over the summation of the normalization factors. The range of ConLvl(x) is constrained
between 0 and 9 by rounding down. In the Results section (Section 3.2), we analyze the

correlation coefficient between the confidence level and the average Qs accuracy.

3.1.2 SymPsiPred: a secondary structure meta-predictor

SymPred is different from sequence profile=based methods, such as PSIPRED, which is
currently the most popular PSS prediction tool. PSIPRED achieved the top average Qs
accuracy of 80.6% in the 20 methods evaluated in the CASP4 competition [100].
SymPred and PSIPRED use totally different features and methodologies to predict the
secondary structure of a query protein. Specifically, SymPred relies on synonymous
words, which represent local similarities among protein sequences and their homologies;
however, PSIPRED relies on a position specific scoring matrix (PSSM) generated by
PSI-BLAST, which is a condensed representation of a group of aligned sequences.
Furthermore, SymPred constructs a protein-dependent synonymous dictionary for
inquiries about structural information. In contrast, PSIPRED builds a learning model
based on a two-stage neural network to classify sequence profiles into a vector space;

thus, it is a probabilistic model of structural types.
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It has been shown that combining the prediction results derived by various methods, often
referred to as a meta-predictor approach, is a good way to generate better predictions.
JPred [101] was the first meta-predictor developed for PSS prediction. After examining
the predictions generated by six methods it, JPred returned the consensus prediction
result and achieved a 1% improvement over PHD, which was the best single method
among the six methods. Similar to the concept of the meta-predictor, we have developed
an integrated method called SymPsiPred, which combines the strengths of SymPred and

PSIPRED.

To combine the results derived by the two methods, we compare the prediction
confidence level of each residue from: each -method and return the structure with the
higher confidence. Since SymPred -and PSIPRED use different measures for the
confidence levels, we transform their. .confidence levels into Qz accuracies. For each
method, we generate an accuracy table showing the average Qs accuracy for each
confidence level, i.e., we use the average Qs accuracy of an SSE to reflect the prediction

confidence.

For example, suppose SymPred predicts that a residue in a target sequence has structure
H with a confidence level of 6, PSIPRED predicts that the residue has structure E with a
confidence level of 6, and the corresponding Qs accuracies in the accuracy tables are

77.6% and 64.6% respectively. In this case, SymPsiPred would predict the residue as H.
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3.2 Results

In this section, we first reported performance evaluation of SymPred and SymPsiPred on
a validation dataset, and then compared our methods with existing methods on EVA

benchmark datasets.

3.2.1 Datasets used to develop SymPred
We downloaded all the protein files in the DSSP database [102] and generated three

datasets, i.e., DsspNr-25, DsspNr-60, and DsspNr-90, based on different levels of
sequence identity using the PSI-CD-HIT program [103] following its guidelines. In other
words, DsspNr-25, DsspNr-60 and DsspNr-90 denote the subset of protein chains in
DSSP with mutual sequence identity ;below  25%, 60% and 90%, respectively, and

contain 8297, 12975 and 16391 protein chains, respectively.

3.2.2 Performance evaluation of SymPred and SymPsiPred on the

validation set DsspNr-25
We used all the protein chains in DsspNr-25, DsspNr-60 and DsspNr-90 as template

pools to construct the synonymous dictionaries SynonymDict-25, SynonymDict-60 and
SynonymDict-90, respectively. Furthermore, we used DsspNr-25 as the validation set to
determine the parameters of SymPred by leave-one-out cross validation (LOOCV) since
LOOCYV (also known as full jack-knife) has been shown to provide an almost unbiased
estimate of the generalization error [104] and makes the most use the data. (SymPred
does not need to rebuild model unlike most machine learning methods when using

LOOCV.) Once the parameters of SymPred, including the length n of a word and the
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dictionary, were determined, we also used the validation set DsspNr-25 to evaluate the
performance of SymPred and SymPsiPred by 10-fold cross validation and LOOCV. To
avoid over-estimation of SymPred’s performance, when testing each target protein in the
DsspNr-25, we discarded all the structural information of proteins t in the template pool if

t and the target protein share at least 25% sequence identity.

Choosing the word length 8 with inexact matching criterion and using SynonymDict-60,
we evaluated the performance of SymPred and SymPsiPred on the validation set
DsspNr-25 by LOOCV and 10-fold cross validation as shown in Table 3. SymPred
achieved the Q3 of 80.5% and the SOV of 75.6% in 10-fold cross validation and the Q3 of
81.0% and the SOV of 76.0% in LOOCV; outperforming PROSP by at least 5.4% in Qs

and 6.9% in SOV.

PSIPRED achieved the Q3 of 80.1% and the SOV of 76.9% on the same test set.
However, the prediction performance of PSIPRED might be over-estimated using our
dataset because PSIPRED was trained separately. Some protein sequences in our dataset
might be in the training set of PSIPRED. Therefore, to have a fair comparison with
PSIPRED, we use EVA benchmark datasets. We show the prediction performance with

existing methods in the sub-section of 3.2.6.

The meta-predictor, SymPsiPred which integrates the prediction power of SymPred and
PSIPRED, achieved a further improvement on Q3 of 83.9% on DsspNr-25. This result
demonstrates that SymPsiPred can combines the strengths of the two methods and thus

yield much more accurate predictions.
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It is noteworthy that SymPred can predict helical structure more accurately than others.
The QsHo is 84.3% which is much better that QsEo and Q3zCo. Among the three
secondary structure elements, strands (beta sheets) are the most difficult ones to be
predicted. Because strands are formed by the pairing of multiple strands held together
with hydrogen bonds, they involve interactions between linearly distant residues [105].
Using local sequence or structural information could not predict strands very well. This is
one of major challenges and limitations of our method. The Qs;Eo of SymPred on
DsspNr-25 is 71.6%, which is lower than QsHo by 12.7%, and lower than Qs;Co by
6.1%. However SymPsiPred can improve QsEo to 75.8% by combining the strength of

SymPred and PSIPRED.

32



Table 3 — Performance comparison of SymPred, SymPsiPred, and PROSP on the DsspNr-25
dataset. QzHo (QzEo and QsCo, respectively) represents correctly predicted helix (strand
and coil, respectively) residues (percentage of helix observed). sovH/E/C values are the
specific SOV accuracies of the predicted helix, strand and coil, respectively. SymPred”
represents the experiment result using leave-one-out cross validation and SymPred*

represents the experiment result using 10-fold cross validation.

DsspNr-25

(8,207 0, QsH | Q:E | Q€ sov sov | sov | sov
proteins) ° ° ° : . c

SymPred” 810 | 843 | 716 | 77.7 76.0 | 825 | 76.9 | 70.7
SymPred” 805 | 84.1 | 709 | 775 756 | 823 | 76.4 | 70.3
PSIPRED 80.1 | 788 | 688 | 783 | 76.9 | 79.2 | 744 | 722
SymPsiPred 839 | 815 | 758 | 839 | 80.2 | 823 | 80.3 | 76,5
PROSP 75.1 | 79.7 | 676 | 71.3 68.7 | 770 | 73.0 | 634

The prediction accuracy of SymPred on DsspNr-25 was obtained by optimized the two
factors: (1) the length of protein words and'the matching criterion used for searching the
synonymous dictionary and (2) the size of the template pool, as mentioned earlier.
Below, we analyze the two factors in more detail and the reported accuracies were

obtained by LOOCV.

3.2.3 Factor 1: the word length n and the matching criterion

The choice of word length n is a trade-off between specificity and sensitivity, i.e., long
words tend to have highly specific structural features and short words increase sensitivity
by recovering sequence matches. Regarding the matching, in the previous study of

PROSP, we adopted exact matching when searching a synonymous dictionary. Since the
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exact matching criterion is rather strict in terms of matching efficiency, we also compared
the performance of SymPred using exact matching against using inexact matching, which

allows at most one mismatched character.

We evaluated the performance of SymPred using the smallest SynonymDict-25
dictionary. Table 4 shows the Q3 accuracy of SymPred with exact and inexact matching
on different word lengths. The results reveal that the Q3 accuracy is not always increasing
along the increasing word length in both matching mechanisms. The best Q3 accuracies
are reported at n=7 for exact matching and n=8 for inexact matching. That is, 7 identical
residues yield high specificity for the structural features and a single don t-care character
increases the sensitivity to recover sequence matches. In summary, we can improve the
prediction performance by using -the inexact matching criterion when searching a

synonymous dictionary and choosing the'word length 8.

Table 4 — The Q3 accuracies of SymPred using exact and inexact matching on different word

lengths.

Word length n 6 7 8 9
Qs (exact matching) 78.2 80.1 78.1 76.2
Qs (inexact matching) 74.9 79.2 80.5 79.0
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3.2.4 Factor 2: the effect of the dataset size used to compile a

dictionary

Although the estimated theoretical limit of the accuracy of secondary structure
assignment is 88%, current state-of-the-art PSS prediction methods achieve around 80%
accuracy; there is an 8% accuracy gap. What is the major obstacle to achieving 88%
accuracy? Rost [22] raised this question, and Zhou et al. [106] suggested that the size of
an experimental database is crucial to the performance. However, Rost found that
PHDpsi trained on only 200 proteins was almost as accurate as PSIPRED trained on 2000
proteins, i.e., the performance is insensitive to the size of the training dataset. This is both
the strength and the weakness of..machine. learning-based approaches. Machine
learning-based approaches can generate satisfactory prediction models using a limited
dataset. On the other hand, the benefit of using more instances is also limited. Though
SymPred is not a machine-learning approach, we still concern the relationship between

its performance and the size of a template pool.

We fist studied the sensitivity of the data set size by compiling the SynonymDict-25 using
different percentages of the protein sequences in DsspNr-25. (The following analysis is
based on word length of 8 and using inexact matching in SymPred.) Table 5 summarizes
the prediction performance of SymPred using different percentages of proteins in the
template pool. The performance improves as the number of template proteins increases.
The Qs accuracies for 10% and 100% usage of template proteins are 70.8% and 80.5%,
respectively, a 9.7% improvement. Moreover, SymPred’s performance improves between

0.5% and 2.8% each time the number of template proteins is increased by 10%.With more
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protein sequences in the template pool, the synonymous dictionary can learn more

synonymous words from those sequences and their similar protein sequences.

Table 5 — The Qs accuracy comparison of SymPred using dictionaries compiled from
different percentages of the template proteins. The performance improves as the number of
template proteins increases. SymPred’s performance improves between 0.5% and 2.8% each

time the number of template proteins is increased by 10%.

Percentage | 10% |20% |30% |[40% |50% |60% |70% |80% |90% | 100%
of template

pool

Number of | 830 1660 | 2490 | 3320 | 4150 | 4980 | 5809 | 6638 | 7467 | 8297

template

proteins

Qs on | 70.8 73.6 75.0 76.3 77.3 78.1 78.7 79.3 79.8 80.5
DsspNr-25

Improvement | - +28 | +14 | +13 4+10 [+08 |+06 |+06 |+05 [+07

Since SymPred is sensitive to the size of the template pool, we next evaluated its
performance on SynonymDict-60 and SynonymDict-90, which were compiled from much
larger template pools. Table 6 shows SymPred’s prediction performance using
different-sized template pools. Its prediction accuracy reaches 81.0% on
SynonymDict-60, a 0.5% improvement over using SynonymDict-25. We can learn more
useful synonymous words from the additional template proteins. The implication is that if
protein A and protein B are similar, say the two share 50% of sequence identity, then
PSI-BLAST can find more similar protein sequences by analyzing A and B together,

rather than separately. For example, there might be a protein C that is only similar to
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protein B. In such a case, if A is the query sequence, PSI-BLAST would not report protein
C due to the low sequence identity. However, the advantage decreases when a larger
number of similar proteins are involved in the template pool, as shown by the result for
SynonymDict-90, which is comprised of proteins whose sequence identities are below
90%. The sequence conservation rate contracts to highly similar sequences, and this leads
to a bias in the weighted scores of the scoring system. Therefore, we adopt

SynonymDict-60 as the primary synonymous dictionary for making predictions.

Table 6 — Comparison of SymPred’s prediction performance on different-sized template

pools.

Template pool DsspNr-25 DsspNr-60 DsspNr-90
Number of template proteins 8297 12975 16391
Synonymous dictionary SynonymDict-25 SynonymDict-60 SynonymDict-90
Qs on DsspNr-25 80.5 81.0 80.9

3.2.5 Evaluation of the confidence level

Figure 5 shows the utility of our confidence level and PSIPRED’s confidence level in
judging the prediction accuracy of each residue in the test set. The statistics are based on
more than 2 million residues. The correlation coefficient between the confidence levels
and Q3 scores for SymPred is 0.992, and that for PSIPRED is 0.976. Thus, both methods
provide strong confidence measures for the output. We observe that a confidence level of
7 or above reported by SymPred is attributed to 53% of the residues with more than 81%
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of the Q3 accuracy which is comparable to the confidence level of 8 or above reported by
PSIPRED. Furthermore, it can be observed that the prediction of SymPred is more
reliable when the confidence levels of both methods are low. For example, the average

Q3 score of SymPred for the confidence level of 6 is 77.6%, whereas that of PSIPRED is

64.6%.
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Confidence level of SymPred Confidence level of PSIPRED

Figure 5 — Relationships between Q3 accuracy and confidence level on SymPred and
PSIPRED. The correlation coefficient between the confidence levels and Qs scores for
SymPred is 0.992, and that for PSIPRED is 0.976.

3.2.6 Performance comparison with existing methods on EVA

benchmark datasets

EVA test sets usually serve as benchmarks of protein secondary structure predictors,
particular for CASP competitions [107]. Only proteins without significant sequence
identity to previously known PDB proteins were used to test on different existing

methods. We downloaded two latest EVA benchmark datasets, called EVA_Setl (protein
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list: http://cubic.bioc.columbia.edu/eva/sec/set_coml.html) and EVA_Set2 (protein list:

http://cubic.bioc.columbia.edu/eva/sec/set_com6.html), the former containing 80

proteins tested on the most number of methods and the latter with the maximum number
of proteins (212 proteins). The two datasets serve as independent test sets for

performance comparison of SymPred with other existing methods.

For fair comparison, when predicting the secondary structure of each target protein in an
independent set, SymPred discarded the structural information of all proteins sharing at
least 25% of the sequence identity with the target protein in the template pool, i.e.,
SymPred used in the template pool the structural information of proteins sharing no more

than 25% sequence identity with the target protein.

Table 7 shows the experiment result on-the two benchmark datasets, EVA_Setl and
EVA_Set2, where SymPred’s results were achieved by using n= 8, inexact matching and
SynonymDict-60 It shows that SymPred achieves Q3 accuracies of 78.8% (SOV=76.4%)
and 79.2% (SOV=76.0%), outperforming existing state-of-the-art methods by 1.4% to
5.4%. It can be observed that SymPred performs better than each single predictor on most

of performance measurements.
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Table 7 — The prediction performance of different methods on the EVA benchmark datasets.
sovH/E/C values are the specific SOV accuracies of the predicted helix, strand and coil,
respectively. The prediction results of other methods on EVA_Setl and EVA_Set2 are

reported at http://cubic.bioc.columbia.edu/eva/sec/common3.html.

ERRsi
EVA_Setl ERRsi
] Qs sov g sovH | sovE | sovC
(80 proteins) g Qs
sov
SymPred 78.8 1.4 76.4 +1.9 85.0 76.5 70.4
SAM-T99sec 77.2 +1.2 74.6 1.5 80.9 72.5 71.2
PSIPRED 76.8 1.4 75.4 +2.0 82.1 72.3 69.2
PROFsec 75.5 1.4 74.9 1.9 78.3 75.9 71.3
PHDpsi 73.4 1.4 69.5 1.9 73.7 73.9 65.2
_ ERRsi
EVA Set2 ERRsi
. Qs sov g sovH-| sovE | sovC
(212 proteins) gQs
sov
SymPred 79.2 +0.9 76.0 1.2 85.1 7.7 71.3
PSIPRED 77.8 +0.8 75.4 +1.1 80.6 72.6 70.4
PROFsec 76.7 +0.8 74.8 1.1 79.2 76.2 71.8
PHDpsi 750 | *¥0.8 | 709 | *12 | 770 | 724 | 67.0
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3.3 Discussions

In this section, we analyze the prediction power of SymPred on similar proteins as well as
the relationship between the number of synonymous words and the method’s prediction
performance. We also demonstrate the structure conservation of synonymous words via a

case study of a pair of protein sequences that are very dissimilar at the sequence level.

3.3.1 Evaluation on similar proteins

One weakness of machine learning-based methods is that they may under-utilize the
structural information in the training set when the query protein has a high sequence
similarity to a template in the training set. Therefore, we assess the performance of
SymPred when there are sequence similarities between test proteins and proteins in the
template pool. Since SynonymDict-90 contains-the largest number of known-structure
protein sequences, we conducted an experiment in which we used all the structural
information of the template proteins in the dictionary, except the information of the target
protein itself. Of the 8297 target proteins, 3585 have similar proteins in the template pool

(i.e., the sequence identity =25%). SymPred’s average Qs accuracy on those proteins is

88.1%, which fits the estimated theoretical limit of the accuracy. The result shows that
SymPred can utilize the structural information in the template pool effectively when there

are sequence similarities to the target protein sequence.
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3.3.2 Prediction accuracy affected by enlargement of synonymous

words

Although the parameter b in PSI-BLAST is set at 500 for searches, not every query
protein can have that number of similar proteins in the database used to generate
sequence alignments. Because some query proteins are quite unique, PSI-BLAST only
reports a few similar proteins at most, and may not report any. In such cases, SymPred
would not have enough synonymous words to generate reliable predictions. On the other
hand, some query proteins have many highly similar proteins in the database, which
results in duplicate synonymous words. Apart from the number of sequence alignments,
the number of distinct synonymous words may affect SymPred’s performance. Therefore,
we analyze the relationship between:the number of distinct synonymous words and the

SymPred’s prediction performance.

To study the relationship, we set different thresholds for selecting corresponding subsets
u of test protein sequences. The selection criterion is defined as follows. For each test
protein tin DsspNr-25, let v denote the number of distinct synonymous words in the word
set of t, and let L be the sequence length of t ; then let e = v/L, which denotes the multiple
of L interms of v. If e is greater than or equal to a threshold, the protein t is added to u. We

compare the average Qs accuracy of proteins in u with respect to different thresholds.

Table 8 shows the prediction performance of SymPred and SymPsiPred with respect to
different thresholds. The results show that there is a positive correlation between the
number of distinct synonymous words and the prediction performance of SymPred and

SymPsiPred. For SymPred, the accuracy improves from 81.0% to 83.5% when the
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threshold increases from e=0 to e=150. It is remarkable that SymPred can predict

approximately 75% of the proteins in DsspNr-25 with 83.1% accuracy, and more than
50% of the protein sequences can be predicted with 83.5% accuracy. For SymPsiPred, the

accuracy increases from 83.9% to 85.5% when the threshold increases frome=0to e=

150. The results imply that SymPred and SymPsiPred have the potential to achieve higher

accuracy as the number of protein sequences in the NCBInr database increases.

Table 8 — The relationship between the number of distinct synonymous words and the
prediction performance. For each test protein t of length L in DsspNr-25, let v denote the
number of distinct synonymous words of t. Define e = v/L, the multiplicity of v over L. If e is
greater than or equal to a threshold, the protein t is selected. The results show that there is a
positive correlation between the number of distinct synonymous words and the prediction

performance of SymPred and SymPsiPred.

Selection e=0 e=5 e=25 [ e=50 /|ex=75 |ex=100 |e=125 |ez=150

criterion

Number of selected | 8297 7983 | 7252 6660 6178 5637 5035 4378

proteins

Qs | SymPred 81.0 81.6 82.3 82.8 83.1 83.3 83.4 83.5
SymPsiPred | 83.9 84.3 84.8 85.1 85.2 85.3 85.4 85.5
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3.3.3 Essential Residues

Since the confidence level measures the ratio of voting scores a residue x gets to the
summation of the normalization factors, it reflects the degree of sequence conservation in
protein evolution. We use the confidence levels representing the degrees of importance of

residues in determining the structure and function of a protein sequence.

To study the effectiveness of essential residues, we developed a general prediction
method, called ProtoPred, which only uses the secondary structural information as the
single feature for general proteome prediction problems, such as function prediction and
enzyme/non-enzyme classification. The confidence levels are used as weights to indicate

the degrees of importance of residues when finding protein templates for the prediction.

ProtoPred: A Prototype of Prediction Method

Figure 6 shows the main algorithm of ProtoPred. ProtoPred is a simple template based
method for general prediction problems. It is a standard query-template alignment

algorithm that is used frequently in homology modeling or threading methods [108-110].

For the training of ProtoPred, we used a sliding window of size w to extract the real
secondary structure fragments from each of the training proteins. Each structure fragment
carried the related information from its origin, such as function labels or protein classes.
These fragments were treated as templates for predictions. For test phase we used the
same sliding window to extract the predicted secondary structure fragments from the

target protein. Each structure fragment (denoted as s) was used to search against the
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template pool. We compared the similarities between s and each template t in the

template pool. The similarity was estimated as follows.

For each position x (from 1 to w) if s[x] was identical to t[x], then t would get a weighted
score from s, i.e., the confidence level of s[x]. Each s selects the best template t with the
highest sum of weighted scores (denoted as Sumys). If the best template t was labeled as
class A, then the target protein would get a score of Sum,; for class A. Finally, the target

protein would be predicted as the class with the highest score.

Atraining protein with class A and its real secondary structures Atest protem and its predicted secondary structures on essential residues
CCCHHHHHHHHCCCCCCCC. . HHHHCCCCEEEFFEEEECCCCCC | HHHHHHHH  CCCC HHH CCCEEFEEEE CCCe |
Template extraction using a shiding | window w feature extraction |using a sliding window w

Ternplate pool

seatch agaitist
£ query feature the temnolate nool

Ternplate pool

Class A +35
Class B: +0
Class C: +0

Prediction

Class 20 +0

(a) Template extraction (b} ProtoPred’s prediction procedure

Figure 6 — The main algorithm of ProtoPred. (a) Template extraction (b) The prediction

procedure.

Experiment Result on Protein Function Prediction Using Essential Residues
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The knowledge of protein functions is crucial to the understanding of biological process.
Since the experimental procedures for protein function annotation are inherently low
throughput, the accurate computational techniques for protein function prediction
represent useful tools. Automated protein function prediction methods include direct
homology-based and indirect subsequence/feature-based approaches. For the indirect
subsequence-based approaches, often only specific subsequences are crucial for the
protein to perform its function [109]. This motivated us to use the essential residues in the

function predictions.

We downloaded the protein function labels from the Gene Ontology Annotation Database
(goa_pdb) [111]. Since we needed to compile-a dataset whose protein sequences are not
redundant (mutual sequence identity-less than 25%) and each of them is of known
secondary structure, we then made an intersection set of goa_pdb with DsspNr-25. The
number of proteins is 2677 and the total number of distinct function labels is 1539. It is
worth to note that the function labels contain all GO annotations for the 2677 proteins,
including the function labels of biological process, molecular functions, and cellular
components. For example, the function labels of protein 1ak6 are 3779 (molecular

function: actin binding) and 5622 (cellular component: intracellular).

In this application, we focus on verifying the efficacy of different sources of PSS. These
sources are the real secondary structures, the predicted secondary structures of SymPred,
and the predicted secondary structure of PSIPRED. ProtoPred predicts the most specific
function label among 1539 candidates for a target protein by using one of the sources of

secondary structures rather than general functions. The prediction accuracy is 100% if the
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predicted function label belongs to the target protein, otherwise it is 0%. For example, if
we predict laké as the function 3779 (or 5622) then the accuracy is 100%. The
hierarchical structure of GO annotations is not exploited in our prediction method, though

it could be used to improve prediction accuracy [6].

ProtoPred extract structure fragments using a sliding window of size w. Table 9 shows
the results for several different window sizes. It can be observed that ProtoPred’s
prediction using the predicted secondary structure of SymPred shows the highest
accuracy for all studied window sizes (except the window size of 11 because it is too
short to represent the uniqueness of structures for different function classes). For
example, for the window size of 51, the prediction accuracies of ProtoPred using the
features of real structure, PSIPRED’s prediction, and SymPred’s prediction are 49.8%,
35.4%, and 57.6% respectively. Notably, the Qs of PSIPRED and SymPred on this
dataset are 80.3% and 81.1%. Although the performances of PSS prediction of the two
methods are similar, the effectiveness is quite different. Moreover, the performance of
ProtoPred with SymPred’s prediction is also better than that of ProtoPred with real
structure. A possible explanation for this discrepancy is that different structures within a
protein did not have equal importance for its function. It shows that SymPred could
identify the essential residues which are crucial for proteins to perform their functions.
Structural identities of low relevance residues dilute the influence of major residues when

using the real structure as the feature in the ProtoPred’s prediction.
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Table 9 — The accuracy (%) of function predictions using different structure sources and

different window sizes.

Window Size 11 21 31 41 51 61 71
Real Structure 21.0 21.1 315 45.5 49.8 51.8 53.0

PSIPRED 21.0 |[21.0 23.3 28.9 354 406 44.0
SymPred 21.0 |215 39.4 53.8 57.6 58.3 59.1

Experiment Result on Enzyme/non-enzyme classification Using Essential Residues

Many protein function prediction methods focus on only one specific type of functions
[112-113]. The problem of enzyme and non-enzyme classifications is a special case of
function prediction. We do not have to predict a functional type but only to distinguish
between enzyme and non-enzyme. In Dobson and Doig’s study, they use multiple
features such as secondary structure,.amino acid propensities, and surface properties to
do the binary classifications. They further divide the features into 52 sub-features and
select 36 optimal sub-features for the SVM models to generate the classifier. The overall
accuracies are 77.16% and 80.14% for the two different sizes of sub-features,

respectively.

We download Dobson and Doig’s dataset which contained 1076 proteins. Since
SymPred’s prediction is the most effective feature among different sources of PSS in the
above protein function prediction, ProtoPred uses SymPred’s prediction as the input
feature for the problem of enzyme and non-enzyme classifications. ProtoPred achieves an

overall accuracy 81.8%.
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In this application, we only use the secondary structural information for
enzyme/non-enzyme classification and achieve a better result. It suggests that the
secondary structural information with the essential residue annotation may be sufficient

to predict protein functions, which supports the conclusion of Przytycka et al [11].

3.3.4 Sequence alignment by using synonymous words

From the performance of SymPred, we observe that protein-dependent synonymous
words possess the property of structure conservation. In other words, the synonymous
words show the semantic relationship in terms of protein structures. To further
demonstrate the structure conservation property, we compare the synonymous words of
two proteins and analyze the shared synonymous words with respect to each residue pair
of the two proteins. The distribution-of shared synonymous words can help to generate a

highly accurate alignment for two protein sequences.

Balibase 3.0 [114], a database that serves as an evaluation resource for sequence
alignments, contains manually constructed multiple sequence alignments that are all
based on three-dimensional structural superpositions. Therefore, Balibase can be used as
a benchmark of sequence alignment tools. We downloaded the first test case (BB11001)
and used the first two proteins (laab and 1j46_A) to demonstrate the structure
conservation of synonymous words. The sequence identity of the two proteins is only
16.7%; however, they belong to the same Family (HMG-box) according to the SCOP

classification. This indicates that the two proteins are remotely homologous.
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Figure 7 shows the distribution of synonymous words shared by the two proteins. The x-
and y- axes represent the sequence of 1j46_A and laab respectively. A grayscale pixel
represents the number of shared synonymous words corresponding to a residue pair (x;,
Yi), where x; and y; denote a residue pair comprised of the i-th residue of 1j46_A and the
j-th residue of laab respectively. More specifically, if an identical synonymous word sw
of length w is both derived from 1j46_A and laab beginning with residue x; and y;
respectively, then the residue pairs (Xi, ¥j), (Xi+1, Yj+1), - .., and (Xi+w-1, Yj+w-1) are all counted
to share sw. The darker the pixel, the greater the number synonymous words shared by X;

and y;.

In Figure 7, Box B is a zoom-in of Box'/A."We can see that the fourth residue of 1j46_A
shares some synonymous words with the first residue of 1aab, the fifth residue of 1j46_A
shares more synonymous words with the second residue of laab, and so on. It is
noteworthy that the Box C shows some residues of 1j46_A shares synonymous words
with multiple and continuous residues of 1aab. Since the experiment results suggest that
synonymous words are likely expressing similar structures, the Box C implies a possible

tolerance of deletions in protein 1aab.
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Figure 7 — The distribution of synonymous words shared by laab and 1j46_A. The x- and y-
axes represent the sequence of 1j46_A and laab respectively. A grayscale pixel represents
the number of shared synonymous words corresponding to a residue pair (x;, y;), where x;
and y; denote a residue pair comprised of the i-th residue of 1j46_A and the j-th residue of
laab respectively. Box B is a zoom-in of Box A. The red lines indicate the alignment based
on the number of shared synonymous words, and the alignment is very close to that reported
in Balibase for the two proteins. Notably, it can be observed that the path of the darker pixels

is nearly perfectly matched the suggested alignment.
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We align the two sequences based on the distribution of synonymous words shared by the
two sequences. Instead of using a substitution matrix to calculate the score of an aligned
residue pair, we use the number of shared synonymous words between a residue pair
since the number of shared synonymous words can reflect both the sequence and the
structure similarities of a residue pair. As a result, it generates an alignment indicated by
the red lines shown in the figure, i.e., the fourth residue of 1j46_A is aligned with the first
residue of laab, the fifth residue of 1j46_A with the second residue of laab, etc, and there
are two gaps in the midst of the alignment. (The red lines are drawn shifted a little bit in
order to avoid overlapping the dark pixels.) Notably, the resulting alignment is very close
to the alignment reported in Balibase for the two proteins, matching 76 out of 78 correct
residues pairs, i.e., 97% of alignment accuracy, while ClustalW aligns 64 out of 78
residue pairs (82.1% accuracy) correctly. More examples of highly accurate alignment by
using synonymous words could be found in-ather protein pairs. Overall speaking, the
distribution of shared synonymous words could indicate three-dimensional structural

superpositions as well as the possible alignment of a protein sequence pair.
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3.4 Availability

A major limitation of our synonymous dictionary based approach is that the storage of
synonymous dictionary takes a lot of space. For the consideration of efficiency, we
implement SymPred and SymPsiPred as parallel programs in a pc-cluster framework. To
provide prediction service for the public domain, SymPred and SymPsiPred are also
implemented as web servers. They accept either single sequence or multiple sequences
and predict the secondary structure of the query protein(s). The web servers are available

at http://bio-cluster.iis.sinica.edu.tw/prospref/. Figure 8 shows a screenshot of SymPred

web server.

The sequence input should be in fasta format and the sequence length of each of query
protein should be longer than 30 in-order to have significant sequence alignment when
performing a PSI-BLAST search. If an E-mail-address is assigned, the prediction result of

each query protein will be sent to the user immediately when the prediction is completed.
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Figure 8 — The SymPred and SymPsiPred web servers. We accept either single sequence or
multiple sequences and predict the secondary structure of the protein(s).
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3.5 Summaries

In this study, we have proposed an improved dictionary-based approach called SymPred
for PSS prediction. We have also presented a meta-predictor called SymPsiPred, which
combines a dictionary-based approach (SymPred) and a machine learning-based
approach (PSIPRED). Tests on a proteome-scale dataset of 8297 protein chains show that
the overall average Q3 accuracy of SymPred and SymPsiPred is 81.0% and 83.9%
respectively. Through the blind test on the two independent test sets, SymPred achieves
the average Q3 accuracies of 78.8% and 79.2% respectively, which are better than other
state-of-the-art PSS predictors. SymPred can be regarded as a special case of a
template-based approach because it predicts PSS by finding template sequences based on
local similarities, i.e., synonymous words. However, the accuracy gap between the
template-based methods and machine learning-based methods is approximately 10%. We

show that SymPred can reduce that gap by using n-gram patterns.

From the analysis of two factors, we find that the prediction accuracy of SymPred can be
gradually improved based on each factor’s optimization. In particular, SymPred is very
sensitive to the size of the template pool, as shown by the fact that its performance
improves between 0.5% and 2.8% each time the number of template proteins is increased
by 10%. Therefore, the performance accuracy will improve further as the number of
known-structure proteins increases. Furthermore, from the analysis of the number of
distinct synonymous words, we posit that, as the number of protein sequences of
unknown structures increases in the NCBInr database, we will be able to discover more

sequence variations and derive more synonymous words to improve SymPred’s
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performance. The average Qs accuracy of SymPred is above 83% for proteins that have

synonymous words satisfying e =75. Meanwhile, the Q3 accuracy of SymPsiPred is

above 85%, which is even closer to the estimated theoretical limit of PSS prediction
accuracy. The results imply that SymPred and SymPsiPred have the potential to achieve
higher accuracy as the number of protein sequences in the PDB database and the NCBInr

database increases.

When SymPred is tested on proteins that have sequence similarities to the template
proteins, the average Qs accuracy is approximately 88%. The result shows that SymPred
can utilize the structural information in the template pool effectively. We also
demonstrate the power of synonymous words.in the sequence comparisons. The
information about shared synonymous words can be used to infer three-dimensional
structural superpositions. The experiments and the analysis results indicate that
synonymous words are reliable short templates that can provide protein-related

information.

A major advantage of dictionary-based methods is that the prediction process is
transparent and easy to understand. Unlike machine learning-based methods, which are
computationally intractable, we can examine the prediction process to observe how
SymPred generates predictions, including the synonymous words it matches against the
dictionary and the template proteins involved in the prediction process. To differentiate
the prediction model from machine learning-based methods, it is often referred to as a
black box model. Another major advantage of dictionary-based methods is that adding

more proteins with known structures is much easier than under machine learning-based
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methods. Unlike most machine learning-based methods, which need to retrain the
prediction models, the proposed dictionary-based method can be expanded incrementally
by simply adding new synonymous words or by updating existing entries with new

protein sources and the associated structural information.
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Chapter 4 Protein Subcellular Localization

Prediction

4.1 Methods

4.1.1 KnowPredse: a localization prediction method based on

SynonymDict

The main idea of KnowPredsie is illustrated in Figure 9. Given a target protein t, whose

localization annotation is unknown and to be predicted, we perform PSI-BLAST search

and compile a word set of t. Each word sw is then matched against words in SynonymDict,

and the synonymous word entry with index sw. is called a hit.

Query sequence of length /

Similar proteins found by
PSI-BLAST

7

MYSSIFF *— @ protein word of the query
sequence

_I-m;m g;-un: ] |..-“\:|.[;<';1.1-‘II -‘iil.:s h'-lr.n.:.l.;ml;.: i_c':r-l .“Fmpmn,\

MYSKILL——™™™ .« ytophasm : 21
MY SSIFF's Sz B unclear ' 12
SVnonymous MYSSKILI ¢

words

| extoplasm, extracellula 3 17

A matched synonyvmous word entry in SynonvmDiet

MYSSILY

Figure 9 — The prediction procedure of KnowPredsi.
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For each hit, we calculate two types of scores associated with each localization site i: the
voting score s; and the confidence score CS(i). The calculation of the voting score s; is as
follows: Let f denote the frequency of sw found in all t’s high-scoring segment pairs
(HSPs). For each synonymous word entry in SynonymDict, we calculate the score loc;
associated with each localization site by summing up the frequencies of the synonymous
words that contain the specific site. For example, for the peptide record MYSKILL
shown in Table 2, the score of cytoplasm is 38 (21+17; since protein source A and C are
both localized into cytoplasm), and those of nuclear and extracellular are 12 and 17,
respectively. Then the voting score s; is defined as f multiplied by (loc; / total frequencies
in that record). For example, if MYSKILL is a synonymous word of t and its frequency is
10 in t’s HSPs, then the voting scores of cytoplasm, nuclear, and extracellular are 7.6
(=10x38/50), 2.4 (=10x12/50), and-3.4.(=10x17/50), respectively, while those of other

localization sites are all O.

The localization site prediction of the protein t is determined by the confidence score
CS(i), which is the total voting score aggregated from all hit records. Finally, each CS(i)
is divided by the summation of all frequencies f of all t s hits and then multiplied by 100 to
normalize the confidence score in the range of 0 and 100. KnowPredsi, predicts t being
localized into the site with the highest confidence score for single-localized proteins or
into the sites with the two highest confidence scores for multi-localized proteins (All

multi-localized proteins in ngLOC dataset have two localization sites).

To differentiate single-localized proteins from those that are multi-localized, we followed

King and Guda’s method [54] to calculate the multi-localized confidence score (MLCS)
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associated with a protein t, which gives a relative measure of the likelihood that the
protein t is multi-localized. It is derived from the two highest confidence scores (denoted

as CS; and CS;) and is defined as follows.

) (CS?-CS?)
2

MLCS(t) = (CS, +CS
(t) = (CS, 1000

and MLCS(t) is bounded by 100, i.e., when the calculated MLCS(t) is over 100, it is

assigned 100.

4.1.2 Best BLAST prediction method

Since BLAST is the most popular method for sequence comparison, we implemented a
simple prediction method based on the BLAST search result. Given a dataset of proteins
with known localization site(s), to predict the localization site(s) of a test protein t we first
perform the BLAST search against the dataset and then assign the localization
annotations of the best BLAST hit to the protein t. If there is no hit at the e-value cutoff
0.001, no annotation will be assigned to the protein t. As reported by Jones and Swindells,
the e-value of 0.001 generally produces a safe searching [99]. The performance of
BLAST-based prediction method is usually treated as the baseline to compare with those

of other methods [115].

4.1.3 Evaluation measure

The performance is estimated using the following measurements. To assess the

performance in each localization site, precision, accuracy and Matthew's correlation
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coefficient (MCC) are calculated by Equations (2) and (3), respectively. The overall

accuracy is defined in Equation (4).

Precision= l><1OO% 1)
TP +FP
Accuracy = %xlOO% (2

MCC — TR xTN; —FRxFN, (3)
! \/G—P. +FR)(MTP + FN,)(TN, + FR)(TN, + FN,)

10
2R

Accuracy=| =

W |x100% (4)

2N

where TPi, TNi, FPi, FNi, and Ni are, respectively, the number of true positives, true
negatives, false positives, false negatives, and proteins in localization site i. MCC, which
considers both under- and over-predictions, provides a complementary measure of the
predictive performance, where MCC = 1 indicates a perfect prediction, MCC = 0
indicates a completely random assignment, and MCC = -1 indicates a perfectly reverse

correlation.

4.2 Results

KnowPredsj Was implemented as a parallel program under the Linux environment. It was

implemented using C++ and MPICH library. We used the ngLOC dataset [54] to compile
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the synonymous dictionary and test the performance of KnowPreds.. The dataset is
compiled from 1923 different species and contains 28056 protein sequences, including
25887 single localized proteins and 2169 multi-localized proteins. There are ten different
subcellular locations among these proteins, which are Cytoplasm (CYT), Cytoskeleton
(CSK), Endoplasmic Reticulum (END), Extracellular (EXC), Golgi Apparatus (GOL),
Lysosome (LYS), Mitochondria (MIT), Nuclear (NUC), Plasma Membrane (PLA), and

Perixosome (POX).

We conducted two types of experiment on the dataset. First, in order to take advantages of
local similarities from as many proteins as possible, we conducted the leave-one-out
cross validation experiment to determine the parameters and to evaluate the performance
of KnowPredsie. In this experiment,-each protein was in turn used as the test protein and
the remaining 28055 proteins were used to compile the synonymous dictionary. Second,
we compared the performance of KnowPredsi with existing methods. Since the dataset is
from ngLOC and ngLOC has been shown to be better than PSORT [116], pTARGET
[117] and PLOC [118] using the same dataset, we directly compare KnowPreds;, against
ngLOC using ten-fold cross validation. In this experiment, all proteins are partitioned
into 10 subsets, and each subset was in turn used as the test set and the remaining nine

subsets were used to compile the synonymous dictionary.
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4.2.1 Determining window size w and similarity threshold k for

KnowPreds;

KnowPredsie aims to utilize the localization annotations of synonymous words. The
determination of semantic relations, which depends on the window size w and the
threshold of similarity level k, can affect the performance of KnowPredse. Using a
smaller w, synonymous words have a higher probability to be hit against words in the
synonymous dictionary; however, shorter synonymous words are likely to appear in
many unrelated proteins. Given a fixed w, there is also a trade-off in choosing the
threshold of similarity level k. A smaller k produces looser semantic relations, which
leads to extracting more, but less reliable, synonymous words. To make an appropriate
selection of w and k, we conducted a leave-one-out cross validation experiments on only
the single-localized proteins in the ngLOC dataset for w ranging from 3 to 11 and k

ranging from O to w.

Figure 10 shows the overall accuracies of KnowPredsje using different window size w
with fixed similarity threshold (k = 0). It shows that the appropriate window size is 7 or 8.
Then we further investigate the performance using different thresholds of similarity

levels.
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Table 10 shows the overall accuracies ranging from 90.9% to 92.0% for all combinations
of window sizes (w = 7, 8) and similarity thresholds. According to the experiment results,
we chose the combination of w = 7 and k = 6 for the following experiments since they

provided the best accuracy 92.0%.
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Figure 10 — The overall accuracies of KnowPreds;, using different size of word length.
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Table 10 — The overall accuracies using different thresholds of similarity levels for window
size 7 and 8. The combination of w = 7 and k = 6 provides the best accuracy. Some results
are shown to have identical overall accuracies due to the rounding off to the first decimal

place.

Similarity Level
Threshold k

Overall
Accuracy (%) 91.2 91.2 91.3 91.4 91.5 91.8 92.0 91.6 —

w=7

Overall
Accuracy (%) 91.4 91.4 91.4 91.4 91.4 915 91.6 91.7 90.9

w=28

4.2.2 Prediction performance of. KnowPreds;.

After the best parameters have been determined, we conducted a ten-fold cross validation
experiment on the entire dataset to compare KnowPredsi, with ngLOC and Blast-hit
prediction. We used the top N accuracy for evaluation, where N ranges from 1 to 4. A
protein is considered to be correctly predicted when the real localization site(s) rank
among the top N of the predicted sites. (Top 1 accuracy is simply the Accuracy defined in
Equation (4).) Notably, for multi-localized proteins, the accuracy is measured in two
ways: first, at least one site correctly predicted and second, both sites correctly predicted.
Using the first measurement, a true positive is a multi-localized protein with at least one
localization site correctly predicted; whereas a true positive using the second

measurement is a multi-localized protein with both sites correctly predicted.

The prediction performance of KnowPredsie, NgLOC, and Blast-hit is summarized in
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Table 11, in which KnowPreds; performance is reported with ten-fold cross validation
and leave-one-out cross validation as denoted by *KnowPredse and ~KnowPredse,

respectively. It is observed that KnowPredsi, outperforms ngLOC and Blast-hit.

For single-localized proteins, the overall accuracies of KnowPreds;. are from 91.7 to 98.1
when the correct prediction is considered within the top 1 to top 4 most probable sites.
Those of ngLOC are from 88.8% to 96.3%. The accuracy of Blast-hit is 86.0%, which
means 86.0% of single-localized proteins could be correctly predicted by BLAST
searches. It is noteworthy that 2114 sequences among all single-localized proteins failed
to find significant similar proteins by Blast-hit method; however, 58.8% of them were
correctly predicted by KnowPredsie.. It shows that the local similarity helps identify

related sequences for subcellular localization prediction.
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Table 11 — Prediction performance of KnowPredg,, ngLOC, and Blast-hit. "KnowPreds

represents the experiment result using leave-one-out cross validation; *KnowPredg,

represents the experiment result using 10-fold cross validation.

Overall Accuracy (%) Methods Top1 Top 2 Top 3 Top 4

"KnowPredg 92.0 95.7 96.8 98.1

Single-localized *KnowPredge 91.7 95.4 96.6 97.9

ngLOC 88.8 92.2 945 96.3
Blast-hit 86.0 - - -

"KnowPredg 90.8 96.4 98.2 98.9

Multi-localized *KnowPredge 90.1 96.1 98.1 98.9

(at least 1 correct) ngLOC 81.9 92.0 96.1 97.4
Blast-hit 78.8 - - —

“KnowPrede 74.3 83.3 88.7

Multi-localized *KnowPredsi 72.1 82.2 87.5

(both correct) ngLOC 59.7 73.8 83.2
Blast-hit 45.7 — —

The experiment result shows that KnowPreds . has much higher accuracy on
multi-localized proteins than the other methods. Using the first accuracy measurement,
I.e., at least one site correctly predicted, KnowPredsj, achieves more than 90% of the top
1 accuracy, which is higher than ngLOC by 8.2%. Using the tighter second accuracy
measurement, KnowPredsj. achieves 72.1% of the top 2 accuracy, which is higher than

ngLOC by 12.4%. Further observing the top N accuracy, we find that KnowPredsit is

more able to narrow down the number of false positives than ngLOC.
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The top 1 and top 2 accuracies of the Blast-hit method are 78.8% and 45.7% for the two
accuracy measurements. Notably, 318 proteins among all multi-localized proteins failed
to find any significant Blast hit; however, 73.3% and 49.7% of them were correctly

predicted by KnowPredsi, using the two accuracy measurements, respectively.

4.2.3 Site-specific prediction performance

In contrast to the overall accuracy of the dataset reported in Table 11, we further analyze
the prediction performance on each of the 10 distinct localization sites. The results are
summarized in Table 12. Among the 10 localization sites, the precision ranges from
75.7% to 98.5% and the Accuracy; ranges from 52.0% to 96.4%. It is observed that higher
occurrence of the localization site, e.g., EXC (29.1%) and PLA (25.2%), leads to better
prediction, e.g., the precision and accuracy on EXC-are 98.5% and 93.9%, respectively.
Low occurrence of the localization site could deteriorate prediction, for example, CSK
(1%) and GOL (1.1%) have MCCi of 0.645 and 0.746, respectively. However, if the
synonymous words of a site have higher specificity, prediction performance could be
good despite low occurrence. For example, the precision and accuracy on LYS (0.6%)
and POX (0.8%) are 87.2% and 81.9%, and 87.3% and 85.1%, respectively. Furthermore,
it is noteworthy that although CYT represents 11.1% of the dataset, its MCCi is 0.774,
much lower than other highly occurring sites. Its low MCCi is due to low precision since
KnowPredsie yields more false positives for CYT. High false positives usually occur
when the synonymous word entries of a site have lower specificity and higher diversity.

As a result, proteins of other localization sites are misclassified as CYT.
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Table 12 — Prediction performance of KnowPreds;, for each site using precision, accuracy,
and MCC.

Site i Oceurrence In the dataset Precision (%) Accuracy; (%) MCC;
(%)
CYT 111 75.7 84.4 0.774
CSK 1.0 81.1 52.0 0.645
END 3.6 92.9 84.1 0.88
EXC 29.1 98.5 93.9 0.946
GOL 11 79.1 70.9 0.746
LYS 0.6 87.2 81.9 0.844
MIT 9.4 96.7 86.9 0.907
NUC 18.0 87.3 93.8 0.884
PLA 25.2 94.4 96.4 0.938
POX 0.8 87.3 85.1 0.861

Figure 11 shows the site-specific comparison between KnowPredsi,. and ngLOC in terms
of accuracy and MCC. KnowPredsi. outperforms ngLOC in eight localization sites (CSK,
END, EXC, GOL, MIT, NUC, PLA, POX) in terms of MCC. The two sites where ngLOC
performs better are CYT (0.777 for ngLOC and 0.774 for KnowPredsije) and LY'S (0.902
for ngLOC and 0.844 for KnowPredsir). In terms of accuracy, KnowPredsi, outperforms
ngLOC in all sites except for LYS (represents around 0.6% of the whole dataset), where

ngLOC and KnowPreds;t Yields 85.5% and 81.9% of accuracy, respectively.
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Figure 11 — Matthew’s correlation coefficient (MCC) and.accuracy comparison between
KnowPreds;,e and ngLOC.

4.2.4 Evaluation of the multi-localized confidence score (MLCS)

A significant number of eukaryotic proteins are known to be localized into multiple
subcellular organelles; therefore, it is important to differentiate single-localized proteins
from multi-localized proteins. We used the entire ngLOC dataset to compare different
MLCS thresholds on the correct distinction between single-localized and multi-localized
proteins. Specifically, we used the portions of true positives in the multi-localized
proteins and true negatives in the single-localized proteins as the performance measures.
A true positive represents a multi-localized protein whose MLCS is above the threshold
and a true negative represents a single-localized protein whose MLCS is below the

threshold.
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We illustrate the cumulative percentages of true positive and true negative versus the
MLCS threshold in Figure 12, which shows that the true negative curve is increasing
along the MLCS axis whereas the true positive curve is decreasing. If the MLCS
threshold is set to be 40, 60.7% of multi-localized proteins are true positives and 96.5% of
single-localized proteins are true negatives. It shows that 60.7% of multi-localized
proteins obtained MLCS of 40 or better, whereas only 3.5% of single-localized proteins
within this range. If the MLCS threshold is set to be 20, 86.3% of multi-localized proteins
are true positives and 82.8% of single-localized proteins are true negatives. In ngLOC,
the best result shows that 76% of multi-localized proteins belong to true positives and
81% of single-localized proteins belong to true negatives when 40 of MLCS threshold is
applied. The result shows that KnowPreds;. better differentiate multi-localized proteins

from those that are single-localized.:
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Figure 12 — MLCS analysis. A true positive represents a multi-localized protein whose
MLCS is above the threshold and a true negative represents a single-localized protein whose
MLCS is below the threshold. We compare the ratio of true positives/true negatives to the

total number of multi-/single-localized proteins.

71



4.3 Discussions

Unlike most machine learning methods that the parameters of the prediction models are
not biologically explainable, the prediction result of KnowPred;;. is explainable and the
prediction process is transparent and traceable. To predict the localization sites of a
protein, KnowPredsj, can show the template sequences and their associated contributive
confidence scores for a query protein. Such information is useful for interpretation of the
prediction results. In this section, we select the four sequences EF1A2 RABIT,
RASH_HUMAN, MCA3_MOUSE, and CFDP2_BOVIN from the ngLOC dataset, to

demonstrate the interpretation of KnowPredsi prediction results.

The prediction result of each of the first three proteins and its template sequences
extracted from the synonymous dictionary used for prediction are shown in Table 13 to
Table 15, respectively. In each table, the prediction result shows the MLCS and the
confidence score of each localization site that the query protein would be localized into.
Moreover, the template proteins which are used to vote for the localization sites are
shown in each table. We only list the top eight template proteins which contribute most to
the confidence scores of the query sequence. For each template sequence, its contribution
to confidence score of each localization site and the sequence identity to the query protein

calculated by ClustalW (denoted by SI) are shown.

In the example of EF1A2_RABIT shown in Table 13, KnowPredsie predicts it being
single-localized at cytoplasm (CYT) since MLCS is very low (7.40) and CYT has the
highest confidence score. However, the localization site of EF1IA2_RABIT reported in

the ngLOC dataset is nuclear (NUC). Examining the eight template proteins, we find that
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they all have high sequence identities with EF1A2_RABIT and most of them are
localized into CYT except EF1A2_RAT localized into NUC. According to the Gene
Ontology annotation, it is localized into CYT and NUC, which are the two sites with the

highest confidence scores in KnowPredsix’s prediction.
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Table 13 — Prediction result of EFIA2_RABIT.

Query CYT CSK END EXC GOL LYS MIT NUC* PLA POX MLCS

EF1IA2_RABIT 9545 0 0 1.45 0 0 0.04 297 0.05 0 7.40

Template CYT CSK END EXC GOL LYS MIT NuUC PLA POX SI

EF1A2_RAT 0 0 0 0 0 0 0 2.94 0 0 99.78

EF1A_CHICK 2.77 0 0 0 0 0 0 0 0 0 92.22

EF1A1_HUMAN 2.75 0 0 0 0 0 0 0 0 0 92.22

EF1AL1_RAT 2.75 0 0 0 0 0 0 0 0 0 92.22

EF1AO0_XENLA 2.69 0 0 0 0 0 0 0 0 0 90.06

EF1A_BRARE 2.64 0 0 0 0 0 0 0 0 0 90.06

EF1A2_XENLA 2.64 0 0 0 0 0 0 0 0 0 88.79

EF1A3_XENLA 2.60 0 0 0 0 0 0 0 0 0 88.55

*: correct answer; Sl: sequence identity.

In the example of RASH_HUMAN shown in Table 14, KnowPreds. predicts
RASH_HUMAN being localized into plasma membrane (PLA) and cytoplasm (CYT).
However, the correct localization site is cytoplasm and Golgi apparatus (GOL). Referring
to the prediction result, the confidence score of PLA is much higher than those of CYT
and GOL. It is also observed that most of the template proteins are localized into PLA.
According to the annotation in Gene Ontology and SwissProt, RASH_HUMAN is

localized into PLA and GOL, and the template protein, RASN_HUMAN, is also
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localized into PLA and GOL. If applying the new annotation data, KnowPredsi, can

predict RASH_HUMAN correctly.

Table 14 — Prediction result of RASH_HUMAN.

Query CYT* CSK END EXC GOL* LYS MIT NUC PLA POX MLCS

RASH_HUMAN 1895 0.06 0.09 0.09 13.74 0.04 024 025 8361 O 36.24

Template CYT CSK END EXC GOL LYS MIT NUC PLA POX Si

RASK_HUMAN 0 0 0 0 0 0 0 0 1388 0 86.32

RASK_MOUSE 0 0 0 0 0 0 0 0 1381 O 86.32

RASN_HUMAN 1319 0 0 0 —13.19 . 0 0 0 0 0 85.19

LET60_CAEEL 0 0 0 0 0 0 0 0 1055 O 74.07

RAS3_RHIRA 0 0 0 0 0 0 0 0 5.05 0 57.07

RAS1_RHIRA 0 0 0 0 0 0 0 0 4.88 0 58.62

RAS2_RHIRA 0 0 0 0 0 0 0 0 4.33 0 35.20

RAS_LIMLI 0 0 0 0 0 0 0 0 4.15 0 46.03

*: correct answer; Sl: sequence identity.
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As for MCAS_MOUSE shown in Table 15, KnowPredsi. predicts its MLCS 100 and it
being localized into cytoplasm (CYT) and nuclear (NUC) correctly. Examining the
template proteins, we observe that KnowPredsi. identifies some related proteins, i.e.,
which have the same localization with the query protein. EF1G1 YEAST and
NU155 RAT, even though they share very low sequence identity 8.67% and 3.17%,
respectively, with the query protein. Notably, the two template proteins rank second and
seventh, respectively, among all template proteins. Furthermore, though GSTA_PLEPL
has higher sequence identity (15.86%) with the query protein than EF1G1_YEAST, the
confidence score contributed by EF1G1 YEAST is much higher than that by
GSTA_PLEPL (2.74 vs. 0.35). It shows that the contributive confidence score is not
necessary to be positively correlated with-the sequence identity when template sequences
are dissimilar with the query sequence. In-this example, EF1G1_YEAST shares more
local similarities (peptide fragments) with the query protein than GSTA_PLEPL does. If
MCA3_HUMAN, the one that shares 88.51% sequence identity with the query protein, is
taken out from the template pool, KnowPredsi. can still predict correctly for protein

MCA3_MOUSE.
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Table 15 — Prediction result of MCA3_MOUSE. Templates marked with ‘+” are those that

have the same localization annotation with the query protein.

Query CYT* CSK END EXC GOL LYS MIT NUC* PLA POX MLCS

MCA3_MOUSE 9546 03 027 036 02 001 113 9359 182 022 100

Template CYT CSK END EXC GOL LYS MIT NuC PLA POX SI

MCA3_HUMAN" 89.16 0 0 0 0 0 0 8916 O 0 88.51
EF1G1_YEAST" 274 0 0 0 0 0 0 2.47 0 0 8.67
EF1G2_YEAST 0.49 0 0 0 0 0 0.49 0 0 0 8.50
GSTA_PLEPL 0.35 0 0 0 0 0 0 0 0 0 15.86
SYEC_YEAST 0.16 0 0 0 0 0 0 0 0 0 3.86
CCNA1_MOUSE 0 0.15 0 0 0 0 0 0 0 0 7.36
NU155_RAT" 0.14 0 0 0 0 0 0 0.14 0 0 3.17

GCYB2_HUMAN 0.14 0 0 0 0 0 0 0 0 0 4.86

*: correct answer; Sl: sequence identity.

For the multi-localized proteins, there are 318 proteins unable to find similar sequences
by the Blast-hit method. However, the localization sites of around half of them can be
correctly predicted by KnowPredsi.. We randomly choose an example, CFDP2_BOVIN,
to demonstrate the KnowPredsi.’s capability of identifying related sequences from the
template pool. The two highest confidence scores of CFDP2_BOVIN are 32.07 (CYT)
and 41.18 (NUC). Among the top 100 templates (ranked by the contribution to the

confidence scores), 12 of them are localized into CYT and NUC, 18 are localized into
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CYT only, and 32 are localized into NUC only. Their sequence identities against
CFDP2_BOVIN are very low, ranging from 3.47% to 13.8%. The result suggests that
local similarity captured by our method is beneficial for PSL prediction when global

sequence similarity is very low.

Another example comes form a user’s query. We also implement KnowPredsi. as a web
server to provide prediction service for the public domain. This example also

demonstrates the local similarities among proteins with low sequence identities.
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Table 16 shows the prediction result of the query protein sent by a user. The query
protein, X1005941 should be the protein of the first template since the two share 100% of
sequence identity. Therefore, its correct localization site should be the nuclear. In
addition to the 100% identical sequence, we also identify more other sequences localized
into the same site. However, their sequence identities are very low with the query protein,
which range from 7.67% to 15.82%. According to the prediction result, we can still
correctly predict the query protein without referring to the first template sequence. It
shows that proteins with low sequence similarities actually not only share synonymous

words but also move to the same localization site.
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Table 16 — An example from user’s query.

Query CYT CSK END EXC GOL LYS MIT NUC PLA POX MLCS
X1005941 0.83 0.08 01 032 011 O 0.16 98.18 05 001 262
Template CYT CSK END EXC GOL LYS MIT NuC PLA POX SI

PBX1_MOUSE 0 0 0 0 0 0 0 90.25 0 0 100

MEIS1_MOUSE 0 0 0 0 0 0 0 115 0 0 12.09

MEIS1I_XENLA O 0 0 0 0 0 0 114 0 0 12.79

PKNX2_HUMAN 0 0 0 0 0 0 0 087 0 0 15.82

TGIF_ HUMAN 0 0 0 0 0 0 0 053 O 0 11.34

B3_USTMA 0 0 0 0 0 0 0 047 O 0 10.71

TGIF2_HUMAN 0 0 0 0 0 0 0 036 O 0 7.67

TGIF_MOUSE 0 0 0 0 0 0 0 03 0 0 10.47
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44  Availability

The KnowPredsie web server as well as the ngLOC dataset is available at

http://bio-cluster.iis.sinica.edu.tw/kbloc/. Figure 13 shows a screenshot of KnowPredsit

web server. Like SymPred and SymPsiPred web servers, KnowPredsi. takes either single
sequence or multiple sequences and predict the localization sites of the protein(s). The
sequence input should be in fasta format and the sequence length of each of query protein
should be longer than 30 in order to have significant sequence alignment when
performing a PSI-BLAST search. If an E-mail address is assigned, the prediction result of
each query protein will be sent to the user immediately when the prediction is completed.
Moreover, users can set the threshold of similarity level freely before the prediction. The
prediction result is an html file showing the prediction scores and the template proteins
we used. We list template proteins and their sequence identities with the query protein to

show how we make the prediction.
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Prof. Sung

Figure 13 — The KnowPreds;;, Web server.
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4.5 Summaries

In this study, we propose a highly accurate subcellular localization prediction method for
single- and multi-localized proteins, called KnowPredsi., which is based on a
synonymous dictionary instead of frequently used machine learning approaches. The
synonymous dictionary, called SynonymDict, is compiled from a given dataset of proteins
with known localization site annotation to capture local similarity between proteins so
that related proteins with the same localization can be identified. Using these related
proteins obtained from the synonymous dictionary, the localization site of a query protein

can be better predicted.

We used the ngLOC dataset to evaluate the performance of KnowPredsie. The dataset
consists of 25887 single-localized -proteins and 2169 multi-localized proteins of ten
subcellular proteomes from 1923 species. In order to compare KnowPredsj. with ngLOC
and the baseline Blast-hit method, we performed ten-fold cross validation on the dataset.
The experiment results show that KnowPredsi. achieves higher prediction accuracy than
ngLOC and Blast-hit. Particularly, on multi-localized sequences KnowPredsite
outperformed ngLOC by 8.2% in accuracy when a protein is correctly predicted if at least
one site is correctly identified and by 12.4% in accuracy when a protein is correctly

predicted if both sites are correctly identified.

A major advantage of dictionary based approaches is that the prediction process is
transparent and explainable. We can examine the prediction process to see how

KnowPredsie generates the prediction. Furthermore, with close observation from the
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prediction results in our experiments, we find that KnowPredsi. can efficiently use local
similarity to identify related sequences even when their sequence identity is low so as to

predict localization site with high accuracy.

When more proteins have known localization sites, most machine learning based
methods need to retrain the prediction models, In contrast, KnowPredsi. can be easily
improved by incrementally expanding the synonymous dictionary, i.e., adding new
synonymous word entries or updating existing entries with new protein sources and their
localization site information. This feature indicates the expansibility and efficiency in

maintaining the KnowPredsi. prediction system.
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Chapter 5 Remote Homology Detection

5.1 Methods

Since remote homologs share low sequence identity, it is hard to use a traditional
homology tool to search a novel protein against a large-scale annotated database to infer
their relationship. Therefore, we use a traditional homology tool, e.g., PSI-BLAST, to
search a protein against a protein sequence database, e.g., NCBInr, and extract short
conserved peptides from high-scoring segment pairs of the protein’s PSI-BLAST results
to define its synonymous words that represent the sequence conservation and variation

information.

In this study, we propose a two-stage framework-to detect remotely homologous proteins.
Our proposed framework can be exemplified by the book classification scenario. For
example, we have four books at hand, entitled Introduction to Algorithms, Introduction to
Psychology, The Art of Computer Programming, and Interpretation of Dreams. To group
them by relatedness, one may consider using book titles or keywords for similarity
comparison. Using titles, the first two books would be grouped together; however, they
belong to different disciplines. Using keywords (keywords of these books could be found
in Amazon), the first and the third books would be grouped together since they share the
following keywords: "Algorithms”, "Data structures”, and "Languages and
Programming". Similarly, though the second book and the fourth book look dissimilar in
their titles, but they share keywords of "Psychology"”, "Health, Mind and Body",
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"Philosophy & Social Sciences”, and "Behavioral Sciences”, and thus can be grouped

together.

In sequence analysis, we face similar problems to book classification. A protein sequence
is like a book. Likewise, when sequence similarity is insufficient to reveal protein
homology relationship, we try to define "keywords", later referred to as protein
synonymous words, to represent a protein sequence. The critical issue is how to
determine corresponding keywords for a protein sequence. Clearly, subsequences as
features for a protein are insufficient. We thus consider using available sequence
comparison results of a target protein, e.g., PSI-BLAST output, to select similar proteins

of the target protein and determine its synonymaous words accordingly.

The proposed method, called SymDetector, employs a two-stage mechanism to detect
remotely homologous protein sequences. Figure 14 shows the idea of SymDetector. In
the figure, we are given 5 protein sequences whose mutual sequence identities are all
below 25%. For example, protein A and protein B share a sequence identity of 17%, and
protein A and protein D share a sequence identity of 22%. Based on their low sequence
similarities, it is difficult to distinguish homologous proteins from non-homologous
proteins. It is not reliable to determine the homologous relations by setting a sequence
similarity threshold among those protein sequences. SymDetector predicts the SCOP
classifications of these protein sequences using their synonymous words and a reference
of synonymous dictionary. We label those sequences as SCOP classifications and then
infer the homologous relations according to the prediction results. For example,

SymbDetector predicts both protein A and protein B as type 1, and protein C and protein E
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as type 2, and protein D as type 3. Therefore, we could divided the five protein sequences

into three groups and infer their homologous relations.

SymDetector for

SCOP Classifications SynonymDict

Figure 14 — The main idea of SymDetector.

The First stage of SymDetector: prediction of SCOP classification

The prediction procedure of SymDetector is shown in Figure 15. Given a query protein t,
we perform a PSI-BLAST search on t to compile a word set containing its original protein
words and synonymous words. Like SymPred and KnowPredsj,, we also calculate the

frequency and similarity level of each word in the word set.
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- The Scoring Function

The scoring function of SymDetector is like that of SymPred. To define the scoring
function, we consider the similarity level and the frequency of the word w in the word set
of t, denoted by Sim; and freq; respectively, as well as those of a protein source i in its
matched entry, denoted by Sim; and freq; respectively. Sim; and freg; are obtained in the
preprocessing stage. To measure the effectiveness of the SCOP classification of the
protein source i, we define the voting score s; as min(freq, freq;)x(1+min(Sim;, Sim;)). We
choose the minimum value in our formula here to avoid biases derived from those regions
of a large amount of HSPs. Although this formula can be refined further, we intend to
show that such a simple mechanism already. performs well in predicting SCOP
classification. The annotation information provided by protein source i will be highly
effective if: 1) w is very similar to the corresponding words of t and i; and 2) w is well

conserved among the similar proteins of t and i.

Take the synonymous word MYSKILL in Figure 15 as an example. In the figure,
MY SKILL is a synonymous word of MLDAQT]I which is the original word of the query
protein. Assume freq: and Sim; of MYSKILL for the query protein are 10 and 2
respectively. We match a synonymous word entry in SynonymDict. The voting score of
protein source A is min(10, 22)x(1+min(2, 6)) = 10x(1+2) = 30. Similarly, the voting
score of protein source B is min(10, 14)x(1+min(2, 3)) = 10x(1+2) = 30, and the voting
score of protein source C is min(10, 6)x(1+min(2, 2)) = 6x(1+2) = 18. In this example,

protein sources A and B contribute equal voting scores to the query protein.
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The final prediction SCOP classification for the query protein is determined by summing
up the voting scores of all the protein sources in the matched entries. The query protein is
predicted as the SCOP class with the highest voting score. The score is then used as a

confidence score indicating the amount of confidence we make the prediction.

Query sequence of length /

Similar proteins found by

PSI-BLAST
MLDAQTI <+— @ protein word of the query
) sequence
Frotemn sonree | SCOP classification | Sinulanty Level Frequency
MYS[\ILL _—r A Type 1 G 22
MLDAQTI 's MLDKILY B [Type2 [ 14
synonvmaous : 19 Type 3 1 6
words - i ;
2 A matched synonvmous word entry in SynonymDict
MLSSITI B : I

Figure 15 — The prediction procedure of SymDetector. An HSP represents a high-scoring

segment pair which is a significant sequence alignment reported by PSI-BLAST.

The Second stage of SymDetector: pairing of protein sequences with the same
SCOP prediction

- SCOP classification

We use the Structural Classification of Protein (SCOP) database as our standards for
determining protein homology relations, and focus on detecting distantly related protein
pairs based on their SCOP-Superfamily or SCOP-Fold annotations. SCOP classifies

proteins into a four-level hierarchy: Class, Fold, Superfamily, and Family. Currently, the
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entire protein domains in SCOP are partitioned into 11 Classes, while sequences in each
Class would be further classified into different Folds by their secondary structures.
According to functions and structural information, homologous sequences in a Fold are
further clustered into different Superfamilies, in which highly similar sequences would

then be assigned to the same Family.

Remote homology detection targets at any pair of sequences with low sequence identity
to determine whether they are homologous. In terms of SCOP classifications, remote
homology detection is conventionally referred to determining whether two sequences in
the twilight zone (sequence identities between 25% and 40%) or midnight zone
(sequence identities below 25%) are from-the same Superfamily. Specifically, a sequence
pair is regarded as a true positive-(TP) of remote-homology if they are in the same
Superfamily, but not in the same Family, since sequence pairs from the same Family

often have sequence identity over 30% and most homology tools can perform well.

In this application, we study not only the conventional remote homology detection but
also detection of remote homology with structure similarity, which will be referred to as
structurally remote homology detection, in which a pair of sequences share even lower
sequence identity than that in the conventional case. A sequence pair is regarded as a true
positive of structurally remote homology if the two sequences are in the same Fold, but in

different Families.
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Figure 16 — Remote Homology Detection and SCOP Classifications: The major four-level

hierarchy of SCOP classifications.

Figure 16 shows the four-level hierarchy of SCOP-classification. In remote homology
detection, sequence pairs from the same Superfamilies but different Families are treated
as true positives (TPs). For example, the pairs of (p1, p5), (02, 3), and (v1, v2) are true
positives. Those pairs such as (p1, p2) and (p1, q1) would be ignored in this metric.
Sequence pairs from different Folds, such as (p1, ul), would then be considered as false
positives (FPs). In structurally remote homology detection, the definition of FPs is
identical to that in remote homology detection. The definition of TPs is relaxed such that
pairs in the same Fold but different Families are counted. The major difference is that,
pairs in different Superfamilies, such as (pi, g;) and (u,Vvi), are defined as TPs here, but are

ignored in the traditional remote homology detection problem.
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- Pairing

In the first stage of SymDetector, we predict each protein sequence a SCOP classification
as well as a voting score indicating the reliability of our prediction. In the second stage,
we pair two protein sequences with the same SCOP classification as a putative true
positive and assign a confidence score showing the reliability of begin a homologous
protein pair of the two sequences. The confidence score is given by the smaller of voting
scores of the two proteins. For example, if protein A is predicted as SCOP Superfamily of
Globin-like with the voting score of 5820, and protein B is predicted as the same SCOP
Superfamily with the voting score of 4175, then the confidence score of pairing protein A

and B as a homologous pair is min(5820, 4175) = 4175.
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5.2 Results

5.2.1 Datasets and evaluations

Remote homology detection methods are often evaluated by qualities of detected
sequence pairs from a set of non-redundant SCOP sequences. We adopt the dataset of
2,476 non-redundant SCOP sequences used in Przybylski and Rost's ConSequenceS
[119] (https://rostlab.org/owiki/index.php/ConSequenceS) as a benchmark dataset,
which is called the PR dataset. In short, they selected sequences from SCOP 1.69 (The
latest version is SCOP 1.75) such that, while searching against UniProt, none of sequence

pairs could be aligned by BLAST with e-value better than 0.001.

Performances of our approach would benefit from the synonymous dictionary
constructed based on a reference SCOP.set. To obtain the reference dataset, we use the
PSI-CD-HIT to select sequences from SCOP such that the selected sequences would
share no more than 25% of sequence identities to each sequence in the PR dataset. The
resultant reference set consists of 8,442 SCOP sequences sharing low identities to any of

the 2,476 benchmark sequences.

Among millions of all possible sequence pairs generated from the PR dataset, 52,620 and
18,780 order pairs of sequences belong to identical Folds and Superfamilies, respectively.
According to ClustalW, these two sets of sequence pairs have average sequence identities
of 11.63% (pairs in identical Folds) and 12.02% (pairs in identical Superfamilies), while
average identities of all possible pairs being 9.70%. The average sequence identity about

the benchmark dataset will be discussed more detailed in section 5.3.3. By ordered pairs,
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we indicate that for sequences A and B in benchmark set, pairs (A, B) and (B, A) would be
treated as different cases in evaluations. The notion of ordered pairs reflects that, in most
homology search tools, relatedness between A and B would be assigned with different
significances due to different query sequences. While detection results of our framework
are symmetric, in which scores of pairs (A, B) and (B, A) are both equal to the minimum of
their voting scores of the predicted SCOP classifications, we still provide evaluations

based on ordered pairs for convenient comparisons.

To evaluate the performance of SymDetector, we count the cumulative number of true
positive pairs given a number of cumulative false positive pairs. This evaluation serves as
the standard measurement of remote homology detection. Protein sequence pairs are
sorted by their confidence scores and regarded into true positive pairs and false positive
pairs by the real SCOP classification.. Two proteins in a pair classified into the same
Superfamily or Fold but not the same Family are regarded as a true positive pair. On the
contrary, two proteins in a pair classified into different Folds are regarded as a false

positive pair.

5.2.2 Experiment result on Remote Homology Detection

Figure 17 shows the experiment results of SymDetector on remote homology detection.
We evaluate the performance of SymDetector using Superfamily prediction and Fold
prediction respectively in the first stage. We can see that before the first false positive pair
appears, SymDetector can identify 5,294 true positive pairs and 186 true positive pairs

respectively, and before the 100" false positive pair appears, SymDetector can identify
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6,892 and 4,368 true positive pairs respectively. The ROC curves in Figure 17 become
stable when the cumulative numbers of false positives are larger than 300. It shows that
most true positive pairs identified by SymDetector have higher confidence scores than
false positive pairs. Therefore our confidence scores are good indicators showing the

reliability of being homologous protein pairs.

In this experiment, we find that the performance of SymDetector with Superfamily
prediction is better than that with Fold prediction since in this problem we define a true
positive pair consisting of two proteins with the same Superfamily. Therefore,
SymbDetector perform better with Superfamily prediction than with Fold prediction in the

first stage of our method.
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Figure 17 — Performances of our framework on remote homology detection.
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5.2.3 Experiment result on Structurally Remote Homology Detection

Figure 18 shows the experiment results of SymDetector on structurally remote homology
detection. In this problem, we also evaluate the performance of SymDetector using
Superfamily prediction and Fold prediction respectively in the first stage and compare

with ConSequenceS and PSI-BLAST.

We can see that before the first false positive pair appears, SymDetector can identify
5,308 true positive pairs and 772 true positive pairs respectively, and before the 100"
false positive pair appears, SymDetector can identify 6,906 and 12,805 true positive pairs
respectively. It can be observed that SymDetector could identify more true positive pairs
given a specific number of false positive pairsthan ConSequenceS and PSI-BLAST. For
example, ConSequence$ identified around 2,100 true positive pairs before the 100" false
positive pair appears and PSI-BLAST. identified around 1,400 true positive pairs at the

same cutoff.

Both ConSequenceS and PSI-BLAST to identify remote homology sequences are mainly
based on sequence similarities (sequence alignments). However, it is rather difficult to
distinguish homologous protein sequences from non-homologous protein sequences
when the sequences are in the midnight zone. Therefore, SymDetector identifies
homologous proteins by transforming protein sequences into SCOP classifications. We
avoid direct sequence comparison and transform the sequences into other annotations to
find some relations with other sequences. We show that our method is more efficient than

sequence alignment based approaches. Therefore, given a query protein sequence,
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SymDetector could find all possible related sequences by predicting its SCOP

classification no matter how similar or dissimilar those protein sequences are.
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Figure 18 — Performances of SymDetector on structurally remote’homology detection and

Comparison with ConSequenceS and PSI-BLAST.

5.2.4 Prediction performance of SymDetector on PR dataset

Below we provide the basic statistics about SCOP annotations of 2,476 sequences in the
benchmark dataset. Statistics of 8,442 sequences in the reference dataset which are used
to compile the SynonymDict would also be shown. There are 607 Folds and 969
Superfamilies in the benchmark dataset, while reference dataset contains 975 Folds and
1,609 Superfamilies. Among these annotations, the two sets share 500 Folds and 763

Superfamilies. It implies that not all sequences in PR dataset have sequence templates
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with the same Fold or Superfamily annotations in the reference dataset. Therefore, our

prediction performance is limited to the number of sequences with the same annotations.

We measure the prediction accuracy based on sequence level. In other words, we evaluate
the number of sequences that share their Folds or Superfamilies with at least one of 8,442
reference sequences. There are 2,352 sequences and 2,234 sequences respectively
permitting the constraint above. Therefore, these ratios could be treated as the theoretical
upper bounds for annotation prediction accuracy for the benchmark dataset. Since
SymDetector only assigns query sequences annotations from SynonymbDict, the
annotation assignment accuracy should be therefore adjusted accordingly. After all, for
the remaining 124 (or 242) sequences whose Fold (or Superfamily) annotations are not in
SynonymbDict, it would be impossible for SymbDetector to assign them with correct

annotations.

Table 17 shows the prediction accuracies of SymDetector. It can be observed that there
are 2,352 protein sequences in the PR dataset which share the same Fold with protein
sequences in the reference dataset. Therefore, the theoretical upper bound of prediction
accuracy is about 95.0%. Among those protein sequences, 1,759 proteins are correctly
predicted, therefore, the prediction accuracy of SymDetector for Fold classification is
about 74.8%. Likewise, there are 2,234 protein sequences in the PR dataset which share
the same Superfamily with proteins in the reference dataset. The theoretical upper bound

is 90.2% and the prediction accuracy for Superfamily classification is about 78.0%.
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Table 17 — The prediction accuracy of SymDetector.

Evaluation Number of Upper Bounds | Number of Prediction | Adjusted
Types proteins in PR | for Prediction | proteins with Accuracy Prediction

dataset (A) Accuracy correct Accuracy

predictions (B) | (B/2476)
(B/A)

Sequences 2352 95.0% 1759 71.0% 74.8%
belong to 500
shared Fold
Sequences 2234 90.2% 1742 70.4% 78.0%
belong to 763
shared
Superfamily
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5.3 Discussions

5.3.1 Sequence Classification: Different Annotations Capture

Different Relations

The efficacy of SymDetector relies on the integrating information from SynonymDict to
infer relations among query proteins. Because SymDetector is adaptive to different types
of sequence annotations, the sequence relations would be affected by different sequence
annotations. Although we use the identical SynonymDict to analyze the benchmark
dataset, detection results based on Superfamily classification and Fold classification are

different.

In Figure 19, we adopt two different evaluations to assess the detection results only based
on Superfamily classification. It shows.that, even though the evaluation for structurally
remote homology allows sequence pairs in the same Fold to be true positives, the
detection result does not benefit to capture such sequence pairs when we perform
Superfamily prediction in the first stage. On the other hand, most of reported pairs based
on Fold classification belong to those sequence pairs in the same Fold but different
Superfamilies. Therefore, the detection result based on Fold classification could achieve

a remarkable improvement under structurally remote homology detection evaluation.
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Figure 19 — Performance of Classification by Superfamily,under two metrics: We evaluate
the same ranked list by two different metrics: remote homology detection and structural
remote homology detection. The performances are similar, and indicate that such

classification strategy mainly capture sequence:relations.in the same superfamily.

5.3.2 Remote homology detection in the real world

In the previous experiment results, we infer the homologous relations among proteins in
the benchmark dataset. That is, we focus on the identification of homologous relations
among a group of unknown proteins. However, in the real world we are often given an
unknown protein and asked to identify other proteins of known annotations that are
homologous to the query protein. By referring to those protein sequences, we could
transfer the structure or function of the query sequence. Therefore, we here analyze the

detection performance of SymDetector under this situation.
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Given an unknown protein sequence, SymDetector will predict its Superfamily
classification and identify protein sequences which have been annotated with the same
Superfamily classification. For example, given a query sequence A, if its Superfamily
prediction is S1 with a voting score of 3,500, then we pair protein A and all protein
sequences, say protein B, C, and D, of real Superfamily S1 in the benchmark dataset. In
this example, we can have the pairs of (A, B), (A, C), and (A, D) all with the confidence

score 3,500.

Figure 20 shows results of such evaluations for remote homology detection. We first
predict a sequence to some specific Superfamily or Fold classification, and examine the
relations between this sequence and all-protein sequences truly of this classification.
Given 1, 100, and 1000 false positives, the result based on Superfamily prediction can
report 9083, 9867, and 10168 homologous pairs. On the other hand, the result based on

Fold prediction only reports 9095, 9450, and 9856 homologous pairs.
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Remote Homology Detection in the Real World
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Figure 20 — The experiment result of remote homology detection in the real world.

On structurally remote homology detection, we apply the same rules to evaluate the
performance. The difference is that, pairs in.the-same Fold but different Family are now
considered as true positives. Figure 21 shows that, once we classify query sequence based
on Fold, reliability of structurally homology detection based on Fold prediction would be

higher than that based on Superfamily prediction.
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Structurally Remote Homology Detection in the Real World
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Figure 21 — The experiment result of structurally remote homology detection in the real

5.3.3 SymDetector Assists to Qvercome Difficulties Due to Low

Sequence Identities

SymDetector identifies homologous protein pairs with confidence scores showing the

reliability of the identifications. In this subsection, we study the relationship between

sequence identities and confidence scores of correctly identified homologous protein

pairs. For 2,476 sequences in the benchmark dataset, we consider all 9,218 correctly

detected homologous pairs based on Superfamily classifications. We calculate their

sequence identities using ClustalW, and get the following regression line (in Figure 22)

between the sequence identities and the confidence scores reported by SymDetector. The

correlation coefficient between the two is -0.017. Apparently, the confidence scores in

SymDetector are irrelevant to the sequence identities. The behavior of regression line is

similar for all 31,670 detected structurally remote homologous pairs (in Figure 23). The
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correlation coefficient in this case is 0.002. It implies that SymDetector could identify

remotely homologous protein pairs without considering their sequence identities.

Relations Between Scores and Identities
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Figure 22 —The relationship between sequence identities and confidence scores reported by

SymbDetector for the problem of remote homology detection.
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Figure 23 — The relationship between sequence-identities and confidence scores reported by

SymDetector for the problem of structurally remote homology detection.

In Table 18 we shows the average sequence identities between sequences in different
categories. Among all 3,064,050 possible pairs generated from 2,476 sequences, the
average sequence identity is about 9.70%. For sequences in the same Fold, the
Superfamily, and same Family, their average identities are 11.63%, 12.02%, and 14.68%,
respectively. All the average segeunce identities in different catories are much lower than
25%, which shows the benchmark dataset is a very challenging one for remote homology
detection. The identification of homologous protein pairs based on sequence alignment
approaches is very difficult by only thresholding a single cut-off value of sequence
identity. Therefore SymDetector adopts the two-stage framework to identify the

homologous relations between proteins in the midnight zone.
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Table 18 — The average sequence identities of protein sequences in different categories.

Category Type Number of | Average ldentities
Sequence
Pairs
All Seugence 3064050 9.70%
Pairs
Structurally | True 24035 11.63%
Remote Positives
Homology
Detection True 3037693 9.68%
negatives
Remote True 7066 12.02%
Homology Positives
Detection
True 3037693 9.68%
negatives
Sequences in | True 2322 14.68%
the same Positives
Family
True 3061798 9.69%
negatives
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5.4 Summaries

Based on the concepts of the synonymous words described above, we extend it to design
a two-stage framework for analyzing homology-based inference problems, especially for
those in twilight zone and midnight zone. We achieve this goal by using synonymous
words as intermediates so that information from other annotated sequences could be
applied to boost detections of relatedness on the unknown sequence set. Conceptually,
the analysis framework contains three steps: 1) the construction of synonymous
dictionary from a set of reference sequences; 2) the extraction of synonymous words from
query sequences; 3) and relation detections by SCOP classification based on the

synonymous dictionary.

Since the first stage of SymDetector is independent of any type of annotations, this
framework allows for great flexibility to solving different kinds of problems. The
integration of synonymous words and information from dictionary provides a different
point of view for evaluating relatedness between sequences. As a result, while the
pairwise similarities between homologous and non-homologous sequences are of the
same level, our framework can boost detection results from PSI-BLAST search results.
Moreover, based on the design of this framework, it can be easily to be applied for
improving results from other search and alignment tools, such as CSI-BLAST,

HHSearch, COMPASS, and so on.
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Chapter 6 Concluding remarks and outlook

The N-gram models (protein words) have been used in protein sequence analysis since
1970s. BLAST extended the idea of N-gram models and devised similar words for
identifying more similar proteins while performing sequence searches. BLAST used
similar words to recover the sensitivity lost by only matching identical words. However,
the generation of similar words is from a substitution matrix and there is no guarantee of
structure similarity between similar words. Based on the observation that protein
structures are more conserved than protein sequences, we treat two protein sequences
which form a significant alignment as two paragraphs which have similar meanings in
terms of structure. We define synonymous relations-between two words that are aligned

together in a significant sequence alignment.

In this study, we proposed synonymous words as protein sequence features to study some
problems in Bioinformatics. We devised a synonymous dictionary based approach to
study those problems. We demonstrated that our approach could deal with protein
secondary structure prediction, protein subcellular localization prediction, remote

homology detection, and protein sequence alignments.

Using a set of protein sequences with structural or functional annotations, we performed
PSI-BLAST searches and used the reported sequence alignments to extract synonymous
words and then compiled a synonymous dictionary. By looking up the dictionary, we

treated protein prediction or classification problems as translation problems. According
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to the experiment results, we show that synonymous words would tend to express similar
structures or have similar functions. In the application of protein secondary structure
prediction, we show that SymPred achieves around 81% of Qs accuracy and outperforms
existing PSS predictors. In the application of protein subcellular localization prediction,
we show that KnowPredsi, can predict both single-localized and multi-localized proteins
at high accuracy. We demonstrated that KnowPredsie could identify related protein
sequences (with the same localization sites) using synonymous words. In the application
of remote homology detection, we suggest that a two-stage mechanism seems more
efficient than traditional sequence comparison methods. And in the application of protein
sequence alignment, we demonstrated that synonymous words could be used to measure

the alignment scores between amino:acid-pairs.

From the experiment results of four different applications, we find that synonymous
words could represent the local sequence similarities among protein sequences and they
tended to express similar structures and functions. We find that even if the sequence
identity between two homologous (related) proteins is low, they might share a number of
synonymous words. Moreover, we also show that our synonymous dictionary based
approach is sensitive to the size of template pool and the number of sequence variations in
protein evolution. With the increasing number of protein sequences and structures, our

method could improve further in the future.
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