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Protein-Protein Interaction Site Predictions with
Three-Dimensional Probability Distributions of Interacting Atoms
on Protein Surface

Student: Ching-Tai Chen
Advisors: Dr. Wen-Lian Hsu and Dr. Shinn-Ying Ho

Institute of Bioinformatics and Systems Biology
National Chiao-Tung University

Abstract

Protein-protein interactions are key to many biological processes. Computational
methodologies devised to predict protein-protein interaction (PPI) sites on protein
surfaces are important tools in providing insights-into the biological functions of proteins
and in developing therapeutics targeting the protein-protein interaction sites. One of the
general features of PPI sites is that the core regions from the two interacting protein
surfaces are complementary to each other, similar to the interior of proteins in packing
density and in the physicochemical nature of the amino acid composition. In this work, we
simulated the physicochemical complementarities by constructing three-dimensional
probability density maps of non-covalent interacting atoms on the protein surfaces. The
interacting probabilities were derived from the interior of known structures. Machine
learning algorithms were applied to learn the characteristic patterns of the probability

density maps specific to the PPI sites. The trained predictors for PPI sites were

iv



cross-validated with the training cases (consisting of 432 proteins) and were tested on an
independent dataset (consisting of 142 proteins). The residue-based Matthews correlation
coefficient for the independent test set was 0.423; the accuracy, precision, sensitivity,
specificity were 0.753, 0.519, 0.677, and 0.779 respectively. The benchmark results
indicate that the optimized machine learning models are among the best predictors in
identifying PPI sites on protein surfaces. In particular, the PPI site prediction accuracy
increases with increasing size of the PPI site and with increasing hydrophobicity in amino
acid composition of the PPI interface; the core interface regions are more likely to be
recognized with high prediction confidence. The results indicate that the physicochemical
complementarity patterns on protein surfaces are important determinants in PPIs, and a
substantial portion of the PPI sites can-be predicted correctly with the physicochemical
complementarity features based-on the non-covalent interaction data derived from protein

interiors.
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Chapter 1

Introduction

Proteins perform essential functions in biological systems through recognizing their
protein partners and by forming permanent or transient protein complexes.
Computational predictions of the protein-protein interaction (PPI) sites on protein
surfaces can provide insights into the biological functions of the proteins at the
proteomics level and into the sequence-function relationships critical in identifying key
targets for therapeutics development. Works on PPI site prediction and analysis have been

summarized in many recent reviews .

Protein-protein interactions have been perceived as a process driven in large part by
hydrophobic interactions in the core interfaces and by polar interactions in the interface
rims. The core interface regions are tightly packed as in protein interior with key residues
that are mostly hydrophobic in nature (except for Arg, which is also frequently observed
in PPI sites) [2-5]. Energetically, only a few buried hot-spot residues in the PPI sites are
responsible for the protein binding free energy (see review [6] and references therein).
The rim regions surrounding the PPI core interfaces are integral parts of the PPI sites[2, 7],
but the interface packing in these regions are loose with water molecules frequently
observed bridging the interfaces [8]. The hydrophilic nature of the rim regions is largely
indistinguishable from the hydrophilic property of the overall protein surfaces [4].

Although the trends in physicochemical and geometrical complementarity in the PPI



interfaces have been demonstrated in many analyses [4], identifying clear determinants
that correlate with the surface regions mediating PPIs remains challenging [9, 10]. This is
particularly true for the protein surfaces mediating non-obligated protein-protein

interactions[11].

Computational algorithms have been developed for PPI site predictions. A large portion
of these methods are based on information embedded in amino acid sequences and on
evolutionary information derived from multiple sequence alignments of homologues in
the sequence databases [12-18]. In addition, prediction algorithms combining sequence
and structure information have also shown successes in identifying PPI sites [9, 19-23].
Structural features are taken into account for better predictive capability as structure
conservation is one of the impaortant factors among interfaces [24]. Moreover, Murakami
and Jones characterized surface patches with six physicochemical properties and then
linearly combined the six values for a final score-as PPI interface [25]. Negi and Braun
used a clustering method on surface residues based on amino acid interface propensity
scale for interface prediction [26]. Kufareva et al. devised 12 physical descriptors for
surface patches along with a partial least square regression to predict PPI interfaces [27].
Overall, combining various sequence and structural features in training machine learning
models has been succeeded to an extent in predicting PPI sites, but the PPI site predictions

remain challenging with considerable difficulties [9].

The three-dimensional arrangement of amino acid residues in the PPI sites determines the
affinity and specificity of the protein interactions, and hence the complementarities of

surface geometry and physicochemical nature of the PPI interfaces are expected to be
2



critical determinants in PPIs. Following this rationale, Sacquin-Mora et al. employed a
rigid-body, coarse-grain docking method to detect interfaces within a small dataset [28]. A
large scale PPI site prediction with docking algorithms has also been carried out recently
by Wass et al., [29]. While the three-dimensional protein-protein complex model
structures are likely to be predicted incorrectly, it has been found that the location of the
PPI sites can be reasonably predicted with the docking algorithms [30]. The downsides of
the docking algorithms are that exploring the large conformation space consumes huge
computational resources and that binding geometry evaluations based on various ranking
systems are not clearly effective in distinguishing the actual structures from a large set of
possibilities. Template-based prediction' approaches reduce the solution space of the
docking approaches [31] on the premise that PPI sites are relatively conserved throughout
proteins with similar sequence and structural features-[24]. With the template-based
approaches, high-throughput modeling of PPI sites based on protein docking have been

shown with accuracy feasible for low to medium resolution models [32].

The successes of the current prediction methods, albeit limited in accuracy, have indicated
that not only sequence and structural features of the query proteins are critical
determinants for PPI sites, the physicochemical complementarities of the partner surfaces
are also important factors in predicting the interface locations. But for most of the proteins,
the complementarity information is unavailable without knowing the binding partners and
the binding interfaces, which are the targets of the PPI site predictions in the first place. In
this work, we circumvent the difficulty by simulating the binding surface

physicochemical complementarity with three-dimensional probability density maps



(PDMs), which were derived based on the distributions of non-covalent interacting atoms
in protein interiors. The PDMs provide information of possible interacting atoms from the
protein partners in the PPI interfaces, because the PPI interface cores share similar amino
acid composition with protein interiors [4]. The PDMs were encoded into numerical
features to train machine learning algorithms coupled with bootstrap aggregation
(bagging) techniques [33]. One machine learning model was trained for each of the 30
protein atom types. The trained models were then used to predict PPI sites by integrating
the prediction results for all the protein surface atoms on the query proteins. Five-fold
cross validation was carried out with the training set composed of 432 non-redundant
proteins. The cross validation yielded overall residue-based MCC (Matthews correlation
coefficient) of 0.424. An independent group of 142 proteins was used as the test set. The
residue-based MCC for the independent test set was 0.423, and the residue-based
accuracy, precision, sensitivity, specificity. were /0.753, 0.519, 0.677, and 0.779
respectively. The results are among the best predictions for PPI sites, indicating that the
physicochemical complementarity derived from PDMs for protein interaction interfaces

is a critical determinant for protein-protein interactions.



Chapter 2
Methods

2.1 Constructing three-dimensional probability
density maps (PDMs) for non-covalent interacting
atoms on protein surfaces

2.1.1 Amino acid conformation clustering

Amino acids in proteins are limited in structural diversity. Protein structures are
determined by mainchain and sidechain torsion angles of the constituent amino acids. The
distributions of the torsion angles are clustered around prevalent conformational centers,
instead of spreading continuously. over the torsion angle space. The mainchain torsion
angles are clustered at the o- and the f-regions in the Ramachandran plot; the
distributions of the sidechain torsion angles are also concentrated on only a few allowable
regions, depending on the chemical constituents of the sidechain [34, 35]. Moreover, the
distribution of each of the sidechain torsion angles is dependent on the torsion angles of
the backbone of the amino acids [36]. Thus, amino acid conformations in proteins can be
organized into limited sets of clusters based on the mainchain and sidechain torsion angle
set of each of the amino acid types, allowing interacting atom pair database retaining

conformational information of the parent amino acids.

Database for non-covalent interacting atom pairs in proteins was organized according to



parent amino acid conformational types. To cluster amino acid conformations into a
limited set of clusters for each type of amino acid, we assigned torsion angles to each of
the amino acids in known protein structures with the computer program DSSP [37] and
MOLEMAN 2 [38]. For each type of amino acid from the protein structure entries in PDB,
a set of vectors with torsion angle elements in degree ({9, v, 11, ..., Xi}, Where ¢, y are
backbone torsion angles and y; are sidechain torsion angles as defined conventionally)
was established; amino acid residues with incomplete structure were excluded from the
data sets. The vectors were used as input to the fuzzy c-means algorithm [39] for
clustering. The number of the clusters was determined as the minimal integer satisfying
the condition that increasing the number of clusters beyond this minimal integer made
little change to the partition index and-separation.index — two fuzzy c-means algorithm
indexes describing the relative mean distance within-and between clusters [40]. To
augment the optimal decision on cluster numbers, we. calculated the distribution of the
intra-cluster RMSD (root mean squared: deviation) in A for superimposed amino acid
structures between cluster members and the centroid conformation within a cluster for
each cluster sets. The convergence of this intra-cluster RMSD to a minimal RMSD
provided a more structure-related reference in contrast to the torsion angle-based
structural descriptors in determining the optimal cluster number. After the determination
of the cluster numbers, the centroid conformation of each of the clusters was determined
as the center of mass of the vectors in the cluster. Details of the number of clusters, the
torsion angles of the centroid conformations, and the distribution information of the

members in the clusters are listed in Yu. et al. [41].



2.1.2 Protein atomistic non-covalent interacting database

It is straightforward to construct the database of atomistic non-covalent interacting pairs
with real protein complexes and real interfaces. The available tertiary structures for
protein complexes, however, are statistically insufficient for meaningful distribution of
each of the 31 atom types with respect to 152 centroid conformations (from 20 amino acid
types). Instead of using real protein complexes, we determined to randomly and
sequentially dissect a single protein chain into two parts as a simulation for
protein-protein interaction. The rationale for the concept comes from the fact that the
correlation between the amino acid frequency.vectors of PPI core and protein interior is
considerably high (correlation coefficient of 0.71) as opposed to that of protein surface
and protein interior (correlation coefficient of 0.33) [42]. Another study using
intramolecular contact propensities  for ranking: residues in PPI sites indicates that
intramolecular contact propensities may.replace interface propensities in protein interface
residue identification [43]. The aforementioned facts have hint the potential possibility of
predicting protein interface residues with the information extracted from protein interior,
thus supporting our approach of simulating protein-protein interactions with random

separation of a single protein.

Atomistic contact interactions in proteins of known structures were organized into a
database containing non-covalent atomistic interaction information for atom pairs in
protein structures. For each of the atoms in residue X of a protein, the non-covalent
interacting atoms were recorded as the following: Following the work of Laskowski et al.

7



[44], for each atom (P) in residue X, the relative location of the atom P was defined with
two consecutive atoms R and Q, where R is covalently linked to P, and Q is covalently
linked to R. Atom R was set at the origin of the reference coordinate system; atom P was
located on the z-axis; atom Q was on the z-x plane of the reference coordination system.
In principle, all non-covalent interacting atoms to atom P were recorded in the database
with the reference coordination system. In this work, only non-covalent atomistic
interactions in protein interiors were organized into the atomistic interaction database:
First, a protein structure was randomly separated into two parts by cleaving at a random
peptide bond. Interface residues with solvent accessible surface area (SASA) change
more than 40% of the total SASA due to the separation of the two protein halves were
considered for non-covalent atomistic interactions. The solvent accessible surface area
(SASA) for each of the amino-acid residues was calculated with DSSP. Only the atoms
from the other half of the proteins were recorded for interacting with atom P when the
pairwise distance between the two atoms was less than 5 A . Atoms within 9 consecutive
residues from the N and C directions of the atom P were excluded as interacting atoms to
the atom P. This was to record the atomistic contact interactions mimicking the
interactions in protein-protein interfaces. After all the interface residues were surveyed,
the protein structure was again randomly separated at a different cleavage site and the
survey for the atomistic contact interactions of each of the interface residues was repeated.
This process repeated 40 times for each of the protein structures in the 9468
non-redundant protein structures with less than 60% sequence identity [45]. After the
survey on all the non-covalent interacting atom pairs, the database was organized into a

large number of files; each file is specific to an amino acid type, a conformational type
8



based on the torsion angle vector of the amino acid, an atom type in the parent amino acid,
and the interacting atom type. The structure of the data files facilitates the speedy random
access of the database in predicting distribution of probability density maps (PDM) of
non-covalent interacting atoms as described in the following section. Atoms in the 20
natural amino acids are assigned to one of the 30 interacting atom types found in proteins

plus the crystal water oxygen as the 31% atom type (Table 1).

Water oxygen distributions around the surface amino acids in 915 non-redundant protein
structures solved to high resolution (resolution<1.5A , sequence identity less than 30%,
different graph topology and subunit structure) [46] were recorded with the same P-R-Q
reference coordination system and.were stored in the same file system as described above.
Water oxygens within 3.2 A radius (within hydrogen bonding distance) to the interacting
amino acid atoms were recorded in the database. This database was used for evaluating
the desolvation penalties and water-mediated interactions in protein-protein interaction

interfaces.



Table 1 —Atom types for 20 natural amino acids in proteins. The
Table was derived from Laskowski et al [44] with modifications.

ID # Atom Type  Radius(A) Description

1 NH1 1.65 Backbone NH

2 C 1.76 Backbone C

3 CH1E 1.87 Backbone CA (exc. Gly)

4 @] 1.40 Backbone O

5 CHO 1.76 Arg CZ, Asn CG, Asp CG, GIn CD, Glu CD

6 CH1S 1.87 Sidechain CH1: Ile CB, Leu CG, Thr CB, Val CB
7 CH2E 1.87 Tetrahedral CH2 (except CH2P,CH2G) All CB
8 CH3E 1.87 Tetrahedral CH3

9 CR1E 1.76 Aromatic CH (except CR1W, CRHH, CR1H)
10 OH1 1.40 Alcohol OH (Ser OG, Thr OG1, Tyr OH)

11 oC 1.40 Carboxyl O (Asp OD1, OD2, Glu OE1, OE2)
12 (OF] 1.40 Sidechain O: Asn OD1, GIn OE1

13 CH2G 1.87 Gly CA

14 CH2P 1.87 Pro CB, CG;CD

15 NH1S 1.65 Sidechain NH:Arg NE, HisND1, NE1, Trp NE1
16 NC2 1.65 Arg NH1, NH2

17 NH2 1.65 Asn ND2, GIn NE2

18 CR1W 1.76 Trp CZ2, CH2

19 CY2 1.76 Tyr CZ

20 SC 1.85 Cys S

21 CF 1.76 Phe CG

22 SM 1.85 Met S

23 CcYy 1.76 Tyr CG

24 CwW 1.76 Trp CD2, CE2

25 CRHH 1.76 His CE1

26 NH3 1.50 Lys NZ

27 CR1H 1.76 His CD2

28 C5 1.76 His CG

29 N 1.65 ProN

30 C5W 1.76 Trp CG

31 HOH 1.40 Water

10



2.1.3 Predicting probability density maps (PDM) of
non-covalent interacting atoms for protein surfaces

A probability density map (PDM) of a non-covalent interacting atom type is a
three-dimensional distribution of likelihood for the type of atom to appear around protein
surface amino acids. In this work, the PDMs were reconstructed from the interacting atom
pair databases described in the previous section for the 31 interacting atom types shown in

Table 1.

To construct a PDM for an interacting atom type on a target protein surface, the computer
algorithm first enclosed the target protein: structure in a rectangular box clearing the
structure by a margin of at least .7 A/ from all Sides of the protein’s edge. The
three-dimensional rectangular- box was then gridded with 0.5 A per unit in
three-dimensional space. This grid size was a balance between the resolution of the PDM
and the computational resources needed for the PDM construction. The grid points
enclosed within the Connolly surface [47] of the target protein were masked from

assigning PDM.

The torsion angles of sidechain and mainchain of all the amino acids in the protein
structure were calculated with MOLMANZ2 and DSSP respectively. For each of the amino
acid residues in the protein, the conformational type of the amino acid X was determined
by the torsion angle vector, which had the least Euclidean distance to the centroid
conformation of the assigned conformational cluster. With the assignment of the

conformational type for each of the amino acids in the protein structure, the non-covalent

11



interacting atoms around each atom P in the protein structure were allocated from the
database according to the atom type of P, the assigned three-atom reference system P-R-Q
as described in the previous section, the amino acid type of the parent residue containing
atom P, and the conformational type of the parent amino acid. Interacting atoms outside
the sphere with the radius equal to the sum of the van der Waals radii of the interacting
atom and atom P plus a tolerance of 0.5 A were not included as the interacting atoms with
atom P. The coordinates of the allocated interacting atoms were transformed to the
coordination system of the protein structure and mapped around the protein surface. An
atom of non-covalent interaction was to be mapped only once for which the distance of
the atom to P was the shortest. 31 PDMs were constructed from all the interacting atoms

allocated for all the protein atoms (30-atom types).in the protein structure.

In order to keep PDMs high in information content-and low in noise from irrelevant
interactions, two strategies have been.implemented. First, allocation of interacting atoms
according to the amino acid conformational type (as described above) is crucial for
retaining information content in PDMs. Alternative approach for PDM construction with
interacting atoms allocated from mixed amino acid conformational types would lead to
loss of fidelity in relative orientations of the interacting atoms, resulting in spreading
PDMs around dihedral bonds. We found that mapping interacting atoms obtained from an
atom in an amino acid conformational type onto the surroundings of the atom in another
amino acid conformational type led to serious spatial distortion of the distribution of the
interacting atoms. Second, only interacting atomic pairs in the database are used for PDM

constructions. Atom pairs in the database were recorded by a threshold of distance in

12



proximity. But frequently, many of such distributions of proximal atom pairs are results of
covalent structures of non-interaction pairs in a nevertheless stable structure. In this work,
non-interacting atomic pairs were eliminated with a filter Table as shown in Table 2 [1].
Only the atomic pairs with the value in the matrix of the Table less than -0.1 were
considered as interacting pairs and only these interacting atoms were included in the PDM

constructions.

PDMs were constructed by mapping the interacting atoms allocated from the database
as described in the previous paragraphs to the 3D grid system. To construct the PDM, each
of the interacting atoms was distributed to 8 nearest grid points; the portion of the
distribution was normalized by the database redundancy and was inversely proportional

to the square of the distance from the atom to the grid:

s

37 (1)

Vii

, where vj; is the value to be accumulated at a nearest grid point j for interacting atom i; dj;
is the distance of grid point j to the center of the interacting atom i; grid points indexed
k=1~8 are the nearest grids to the atom i; n is the number of residues collected in the
database for the amino acid in the target protein with the conformational type defined by
the torsion angle vector; p; is the background probability for atom type i to appear in all
protein structures (when calculating water oxygen PDM, p; equals to 1). The factor 1/n in
the Equation is to normalize the interacting atom density according to one conformation

for each of the residues in the target protein and the background probability p; is to

13



normalize the PDM based on the appearance frequency of the atom type i in proteins
(except for water oxygen). The PDM for each of the interacting atom types was additively
accumulated to completion as each of the atoms in the target protein surface finished

contributing to the PDMs.

PDMs constructed for 31 interacting atomic types on the surface of 20 natural amino acids
and their various conformations are displayed online:

http://ismblab.genomics.sinica.edu.tw/introduction/diaa/. Figure 1 shows a set of PDMs

on the example protein surface.
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Figure 1 — Probability density maps and encoded features of human vascular
endothelial growth factor A (VEGF). Structure of VEGF is extracted from PDB ID
2FJG chain V and W. Number 1 to 31 in each cell of the table corresponds to each of the
interacting atom types defined in Table 1 of the main text. The PDMs are shown in
contours colored according to the interacting atom type: cyan for nitrogen, black for
carbon, and magenta for oxygen. The contour level is set to 0.0005. Color spectrum of
protein atoms in each cell are based on the corresponding a;; values. Solvent
inaccessible atoms are colored in gray. Interactive 3-D graphic presentation of the

PDMs can be viewed from the web server http://ismblab.genomics.sinica.edu.tw/ >

gallery.
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2.2 Machine learning for probability density maps
(PDMs) on protein surfaces

2.2.1 PDM-based attributes as inputs for machine learning
algorithms

One machine learning model was trained for each of the 30 protein atom types (atom
types 1~30 in Table 1). The input attributes for each of the machine learning models were
calculated from the PDMs on the protein surface. For each protein atom i, the PDM values
for interacting atom type j associated with the grids within 5 A radius centered at the atom

i were summed and associated with the center of the atom as S;;:

i K<5A
Si,jzzkl'k Ok, j )

where riy is the distance between atom i to a grid_point k; gyis the PDM value of atom

type j at grid point k.

The distance-weighted sum (A;; ; j=1~31 for the 31 interacting atom types 1~31 in Table 1)

over Sy for atoms k within 10A from atom i was calculated with Equation (3).

d;  <10A _

Z M, xd

=S, 4= J L
Aiyj i d; ,<10A

g 3)

where S;j is defined in Equation (2); d;y is the distance between atom i and atom k; d is
the distance between atom i and atom n. A;; encodes complementarity information on

interacting atom type j over a circular protein surface patch centered at atom i on the
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protein. The 32" attribute for the atom i was the fraction of the space not occupied by the

van der Waals volume of the protein in the 10 A sphere centered at the atom i.

The attributes a;; (j=1~31 for the 31 interacting atom types in Table 1, and j=32 for the
geometry attribute) associated with protein atom i as inputs for the machine learning
algorithms were scaled between 0 and 1. Equation (4) shows the calculation of a;; from

Ai'j (j:1~32)1
if Aij > Mmaxjthen a;;=1; otherwise,

if Aij < Mminjthen a;;=0; otherwise,

Aij_Mminj
a. =—— 4
1] M M ()

max,j ~ 'V'min,j

where Mmax j iS the median of the distribution of the maximal A;; from each of the proteins
in the S432 non-redundant protein  data.set (see below) and Mpinj is the median of the
distribution of the minimal A;; of the same dataset. Figure 2 shows the plots of Myin; and

Mmaxj against the 32 attribute types.
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Figure 2 — Mpn; (in square symbols) and My, (in‘diamond symbols) against the 32
attribute types. The maximum and minimum.A;; values were derived from each protein
in S432 and the medians of the maximum (Mpay; J=1=82; shown.in diamond symbols)
and the minimum (Mpy;,; j=1~32, shown-in square symbols) are plotted-against the

attribute index. These values were used for normalization of A;; (Equation'(4)).

2.2.2 Datasets

Three datasets were downloaded from the SPPIDER website [23]. These data sets include
a training set, S435, a test set, S149, and an unbound dataset, S21a. We made several
modifications to the datasets as the following: Chain A of PDB ID 1GY9 was removed
because the complex described in Elkins et al. [48] could not be found in the current PDB.
Chain A and C of PDB ID 1DF9 were removed since the records were obsolete. By
removing the three proteins from S435, we obtained a dataset named S432. For the
independent test set, seven proteins were removed for the following reasons: Chain A and

B of PDB ID 1NRJ were removed because they already existed in the training set. Chain
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Kand L of PDB ID 1N13, chain D of PDB ID 1NF3, and chain D of PDB ID 1L9W were
removed because they were identical to chain A and B of PDB ID 1N13, chain C of PDB
ID INF3, and chain A of PDB ID 1L93 in the training set, respectively. Chain A of PDB
ID 1PUG was removed because it was a hypothetical protein. By removing seven proteins
from S149, we obtained the independent test set S142. For the unbound dataset, chain A
of PDB ID 1GQN and chain A of PDB ID 1RZX were removed because they were
identical to chain A of PDB ID 1193 and chain C of PDB ID 1NF3 in the training set,
respectively. Chain Aof PDB ID 1J8B was removed because it was a hypothetical protein.
Chain A of PDB ID 1NX6 was removed because its interface was engineered with two
insertions compared to its bound state protein, chain A of PDB ID 1T4B. By removing the

four proteins from S21a, we obtained the unbound dataset S17a.

In order to test the performance of the predictors devised in this work with other
comparable predictors in the public domain, we downloaded protein complex structures
released in 2011 from PDB website with the following criteria: 1) resolution is less than
3.0 A, 2) chain length is greater than 100 amino acids, 3) entry has two subunits in
biological ensemble, 4) entry does not have DNA, RNA, ligands, or modified residues, 5)
there is no missing atom in the PDB files, and 6) pairwise sequence identity between any
two proteins is less than 30%. The protein chains were further filtered to ensure none of
them share greater than 30% sequence identity to proteins in S432, the training set used in
this work as described in the previous paragraph. This set of 58 protein chains, denoted
S58, was used as the test set for the comparison of prediction capabilities among different

PPI site prediction servers.
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2.2.3 Determining biologically relevant PPI sites

All PDB chain records in the three datasets above were checked with PQS (protein
quaternary structure) server [49] to determine the biologically relevant PPI sites, so that
crystal packing interfaces were removed and biological units were reassembled from
asymmetric units. PPI sites at atomistic level were defined with the difference of solvent
accessible surface area (dASASA) upon complex formation by NACCESS software [50] as
below.

SASA, ; — SASA,,
SASA, ,

dSASA = (5)
where SASA,;; and SASA.; are the SASA of atom i in the uncomplexed and complexed
state, respectively. An atom i was defined as a PPI site atom when dSASA; is greater than

0.

2.2.4 Artificial neural network (ANN)

The standard feed-forward back-propagation neural network [51] was used to learn the
weight of the network by employing gradient descent to minimize the sum of squared
error between the network output values and the target values. The input layer consisted
of 32 nodes for the input attributes described in Equation (4). The only hidden layer
contained 15 nodes. The output layer had a single node with the activity value between 0
and 1, matching the negative and positive cases respectively for the atoms in PPI sites as
defined in Equation (5). Sigmoid function, denoted as sf, was used as the transfer function

for the hidden and output layers of of the ANN network.
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sf(x)=[1+exp(—x)]" (6)

As an alternative to the more common Levenberg-Marquardt back-propagation training
algorithm [52], the very high speed resilient back-propagation (RPROP) training
technique was used [53, 54]. Resilient propagation is capable of automatic adjustment for
learning rate and momentum. It has the advantage of faster convergence while requiring
less manual determination of network parameters. Each of the ANN models was trained
for 1000 iterations. During training, the model was tested on validation set after every ten
training iterations. The number of training iteration which yielded the best MCC (see
below for MCC definition) on the validation set was used to determine the predictors. The

open source java-based neural network library ENCOG was used for the implementation.

2.2.5 Support vector machines(SVM)

The details of the standard SVM methodology implemented with LIBSVM package has
been described previously [33]. In brief, the SVM is a two-class classification approach
with a maximized-margin hyperplane, where margin is the distance from the separating
hyperplane to the closest data point [55, 56]. The cost (¢) and gamma (y) parameters of the
SVM were optimized with grid searching for the optimal MCC using only the training

dataset.

2.2.6 Bootstrap aggregation (BAGGING)

Since non-binding atoms in the training set greatly outnumbered binding atoms, ordinary

machine learning algorithms would produce learning biases without suitable treatment.
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The methodology included multiple predictors to produce an ensemble of prediction
results [57]. Each individual classifier in the predictor ensemble was trained with a
different sampling (bag) of the training set, and the final prediction was calculated by
averaging with equal weight the output values from the predictors [58]. In each bag, all of
the positive cases were included, along with randomly sampled negative cases that were
1.5 times as many as positive cases. The bag number was set to ten, which balanced the
need for effectiveness and training efficiency. All the ten bags were used to train either a
set of ANN models (named ANN_BAGGING) or a set of SVM models (named

SVM_BAGGING).

The machine learning parameters can be downloaded from the web-server
http://ismblab.genomics.sinica.edu.tw/ >Download. The attributes a;; (j=1~31 for the 31
interacting atom types in Table 1, and j=32 for the geometry attribute) associated with
protein atom i for all proteins in the data sets S432, 5142, S17a, S58 can be downloaded

from the same web-server.

2.2.7 Prediction capacity benchmarking
The prediction capabilities of the machine learning models were benchmarked by
accuracy (Acc), precision (Pre), sensitivity (Sen), specificity (Spe), F-score, and

Matthews correlation coefficient (MCC) [59].

Ace— TP+TN @)
TP+TN +FP + FN

26



TP

Pre= —— (8)
TP+ FP
ne—T1" 9)
TP+FN
TN
Spe=—— 10
P TN + FP (10)
F-score = M (11)
Pre+Sen

MCC=
JTP+FP)(TP + FN)(TN + FP)(TN + FN)

where TP is the number of true positives; TN the number of true negatives; FP the number
of false positives; and FN the number of false negatives. Sensitivity (also known as recall)
can be viewed as a measurement of completeness, whereas precision is a measurement of
exactness or fidelity. MCC, as a measurement of the quality of two class classifications
(positive and negative), is generally regarded as a balanced measurement which can be
used even if the classes are of very different sizes. Its value ranges between -1 and 1;

random correlation gives MCC of zero while perfect correlation yields MCC of one.

2.2.8 Prediction confidence level

Prediction activity (ANN_BAGGING) or probability (SVM_BAGGING) with value
ranging from O to 1 from the output of the machine learning algorithm was normalized to
prediction confidence level so that the prediction results from different machine learning

models can be compared on a level ground. For each of the 30 protein atom types, the
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machine learning outputs from the validation sets were sorted into bins of interval 0.1.

The prediction confidence level for each of the bins was calculated as the fraction of the

true positives over the total number of predictions in the bin. In the end, lookup-tables for

output-confidence relationships were constructed; the machine learning outputs can be

converted to prediction confidence levels with these lookup tables. Figure 3 shows the

relationships between machine learning outputs and the prediction confidence levels for

each of the trained machine learning models.
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Figure 3 — Lookup charts converting output activity- (probability) from the
corresponding machine learning predictor to prediction confidence level. For each of
the 30 protein atom types, the machine learning outputs from the validation sets were
sorted into bins of interval 0.1. The confidence level of each of the bins was calculated
as the fraction of true positive over the total number of predictions in the bin. The
panels (a) and (b) are derived from ANN_BAGGING and SVM_BAGGING
predictions respectively. In each of the panel, two sets of curves are shown; one set for
the prediction confidence level described as above (i.e., the positive prediction
confidence); the other set for the negative prediction confidence. The sum of the
positive prediction confidence level and the negative prediction confidence level equals

to one.
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2.2.9 Five-fold cross validation and independent test

Five-fold cross validation was performed for each of the 30 protein atom types in the
S432 dataset. Each dataset was randomly divided into 5 equal portions with similar
distributions of positive and negative cases. One portion of the dataset was selected as test
set, another one portion as validation set, and the rest as training set. The training set was
used to train the models, and the validation set was used to optimize the prediction
parameters so as to achieve the best predictive capability without over-fitting. The
optimized models were then benchmarked by the test set. The process took turns to
benchmark prediction accuracy on the 5 non-overlapping test sets with the predictors
optimized with the corresponding training and validation set. The accuracy benchmarks

were the averaged results from the 5-fold cross validation.

For each of the predictors, an optimal -threshold for the output activity value was
determined with the validation set. Positive predictions have the output activity values
greater than or equal to the threshold; the negative predictions have the output activity
values smaller than the threshold. With these thresholds, the TP, TN, FP, and FN in
Equations (7)~(12) were determined and the accuracy benchmarks were calculated. The
thresholds for the predictors of all 30 atom types were determined to optimize the MCC

for the predictions with the validation set.

Five predictors for each protein atom type were optimized after performing the 5-fold
cross validation on the S432 dataset. The predictors which yielded the best testing

performance were assessed in the independent test with S142, S17a, and S58 dataset.
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2.3 Prediction of patches of atoms as protein-protein
binding sites

A protein-protein binding site was predicted by a cluster of surface atoms predicted as
positive cases with high prediction confidence level. Protein surface atoms in PPI sites
with prediction confidence level greater than 60% were used as cluster centers to include
neighboring surface atoms within radius of 11 A. Within each of the surface patches, all
the surface atoms with the confidence level for positive prediction greater than 20% were
included in the tentative patch of atoms as a PPI site. If the pairwise distance of any two
seeds was within 10 A, the two corresponding patches were merged as one patch. The

parameters were optimized for residue-based prediction accuracy with the validation set.

2.4 Residue-based predictions for the PPI sites

To facilitate comparison of this work with previous methods predicting binding sites at
the residue level, a heuristic procedure was used to transform the atom-based binding site
predictions as described in the previous paragraph into binding site predictions at the
residue level: only the residues with more than 30% of the surface atoms (SASA,>0)
included in the atom-based binding patch were considered as positive residues of the
residue-based patch. Similarly, actual PPI sites at the residue level were defined by
patches of positive residues, each of which has more than 30% of the surface atoms
(SASA,>0 in the uncomplexed structure) on the residue defined as PPl atoms (dSASA>0,
as shown in Equation (5)). This definition enabled the comparison of prediction results

with actual binding sites at the residue level. The percentage parameter was optimized for
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residue-based prediction accuracy with the validation set.

2.5 Computational efficiency for predicting PPI sites in
a typical protein

The building of PDMs for a typical protein of 200 residues with Intel Xeon X5650
(2.67GHz) CPU is around 50 minutes with single thread and around 23 minutes with two
threads. The following procedures for generating input attributes and for predicting with

machine learning models take less than 20 seconds.

2.6 Mann-Whitney U-test

Mann-Whitney U-test is a non-parametric statistical method to test whether two groups of
numerical values come from-identical continuous distributions of equal medians —
increasing p-value indicates decreasing difference-of the two distributions and p-value of
1 indicates that the two distributions are statistically indistinguishable. The
Mann-Whitney U-tests were carried out with the statistic tool ranksum in MATLAB

(http://www.mathworks.com/help/toolbox/stats/ranksum.html).

2.7 Web site

Predictions can be submitted to the webserver

http://ismblab.genomics.sinica.edu.tw/. All the benchmark results can also be accessed in

interactive graphic presentations from the same web address above.
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Chapter 3

Results and Discussions

3.1 Statistical analysis of physicochemical
complementarities in known PPI interfaces

It has been well-established that geometrical and physicochemical complementarities are
critical determinants in PPl interfaces [5]. The amino acid preferences and packing
density for PPI core interfaces resemble those of protein interior [4, 60]. The
physicochemical complementarities among interface residues are characterized by
hydrophobic interactions in the core interface regions and polar interactions in the rim
regions of the interfaces [2-4, 7,61, 62]. Based on the general description of typical PPI
interfaces, we hypothesized that the distribution-patterns of the non-covalent interacting
atoms on a PPI surface should provide abundant information in distinguishing PPI surface

regions from non-PPI surface regions.

Figure 4 demonstrates the validity of the hypothesis above. The physicochemical
complementarities around the protein surface atom i were simulated with the PDMs of
non-covalent interacting atoms and were described with the 32 numerical features
calculated with Equation (2) (i.e., A;; for interacting atom type j=1~31 as shown in Table
1; j=32 derived from protein surface geometry). The matrix element (j,i) in Figure 4
shows the Mann-Whitney U-test result for the two groups of A;j: one group of A;; was

calculated for the interacting atom type j around the surface atom type i in the known PPI
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sites on proteins in the S432 dataset and the other group was calculated for the same

interacting atom type around the non-PPlI site atom type i in the same dataset. The matrix

elements showing decreasing p-value substantially less than the statistical threshold of

0.025 are colored in red with increasing depth. These U-test p-values reflect the

significant statistical differences in the attributes calculated from the PDMs or surface

geometry between the protein surface atoms in known PPI sites and the atoms outside

known PPI sites.
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Figure 4 -Mann-Whitney U-tests for the distributions of numerical attributes around
protein surface atoms. The y-axis of matrix shows the atom type index (i=30 protein
atom types shown in Table 1) and the x-axis shows the j index for the 32 Ai,j features,
where j=1,31 represents the 31 interacting atom types shown in Table 1 and the 32nd
feature reflects the local geometry of the protein surface. The matrix element (j,i) shows
the Mann-Whitney U-test p-value in color-code for the two groups of Ai,j : one group
of Ai,j was calculated for the attribute type j around the surface atom type i in the known
PP1 sites on proteins in the S432 dataset and the other group was calculated for the
same attribute type around the non-PPI site atom type i in the same dataset. The
p-values were calculated with the Mann-Whitney U-test implemented as the function
ranksum in MATLAB. Two sets of data were input to the function and the output
p-value is the probability for the two distributions of data to be statistically
indistinguishable. The plus(+) sign in the matrix element indicates that the averaged
feature value for the PPI site atoms is larger.than the averaged. feature value for the
non-PPI site atoms and the negative(-) is the opposite.- The panel on.the right-hand-side
of the matrix shows the distributions of protein surface atoms in PPI sites (blue) and
non-PP1 protein surfaces (red) against protein atom type. The data were derived from

proteins in S432.

3.2 Consistency of the U-tests of the physicochemical
complementarity features with previous statistical
observations

The U-test results shown in Figure 4 are comparable with general PPI site characteristics
from previous statistical observations. Space around the main chain atoms (rows of
y=1~4) in PPI sites are enriched with higher densities of interacting backbone carbonyl
group (x=2,4) and are neighbored by higher densities of interacting hydrophobic and
aromatic carbons (x=6~9), while the interacting charged atoms (x=11, 15~16, 25~28) are

largely depleted near the main chain atoms in the PPI sites. This is in agreement with the
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observation that main chain atoms are frequently used in polar interactions in PPI [3]. In
particular, the carbonyl oxygen (row of y=4) is most frequently used in hydrogen bonding
in PPl sites [3]. Aliphatic and aromatic carbons (rows of y=6~9) in PPI sites are
surrounded with high density of interacting aliphatic carbons, aromatic carbons, and
atoms from Met and His (x=6~9,18~25, 27~30), while charged interacting atoms (x=11,
in particular x=26 for Lys Nz) are also depleted in the PPI sites. But, interestingly, Arg
(x=15,16) remains favorable in the PPI sites near the aromatic carbons (y=9), in
particularly with atoms from Trp (y=18,24,30). Arg also interacts with carboxyl oxygen
(y=11) more in the PPI sites. This is largely in consistent with the knowledge-based
pairwise potentials devised with protein-protein.interaction datasets [5, 62]. The sulfur
atom of Cys is highly enriched in the PPI sites as interacting atoms (column x=20), in
good agreement with the high interface propensity for Cys [63]. Interacting water
molecules (column x=31) are. more dense in . PPl sites near polar atoms
(y=1~4,10~13,16~17). This is in consistent with the statistical survey by Rodier et al. [8],
suggesting that water molecules in the PPI interfaces play important roles in protein
complex formation. The results in the last column (column of x=32) suggest that PPI sites
are more flat or convex than non-PPI surfaces, which is in good agreement with the
survey by Jones and Thornton [63]. Although the dataset did not provide enough
statistical resolution for rows of y=18~30 (see the dataset distribution indicated by the
histogram next to the U-test matrix), the consistencies listed above nevertheless suggest
that the distribution patterns of the non-covalent interacting atoms predicted with the
PDMs on PPl interfaces can provide statistical characteristics in distinguishing the known

PPI sites from the other protein surface regions that have not been known to bind to
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proteins. Since the PDMs were derived from known protein structures, the correlation
between the PPI interface features (Figure 4) predicted with the PDMs and those derived
from surveys of PPI interfaces also implies that both protein folding and binding are

governed by similar energetic principles.

3.3 Atom-based PPI site predictions with machine
learning models based on physicochemical
complementarity features

The results in Figure 4 indicate that the 31 features calculated with PDMs (a set of
example PDMs on a protein are shown in Figure 1) and the 32" feature based on the
surface atom local geometry for each of the 30 protein atom types can be used as effective
attributes in training machine learning models for PPI site predictions. Machine learning
algorithms ANN_BAGGING and SVM_BAGGING were trained for each of the 30
protein surface atom types with five-fold-cross.validation on the S432 dataset as described
in the Methods section. The atom-based MCCs for the five-fold cross validation for each
of the atom types are summarized in Figure 5. The benchmarks for the prediction models
are shown in Table 3. The differences of the averaged performance for the two machine
learning algorithms are essentially indistinguishable (Figure 5 and Table 3), and thus only
the ANN_BAGGING models with the best performance were used to benchmark on the
S142 dataset as an independent test. The benchmark results on the independent test are
compared with the five-fold cross validation in Figure 5 and in Table 3. The benchmark
results for the independent test were comparable with the five-fold cross validation results,
indicating that the machine learning predictors can be generalized to predict PPI sites on
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Mcc

protein surfaces of unknown interaction partners. Figure 5 shows that the prediction
models for the atom types from hydrophobic residues with aliphatic and aromatic side
chains (atom type index=8,9,18~24,30) were predicted with relatively higher accuracies
than the atom types from main chain and hydrophilic side chains. This suggests that the
core PPI interfaces composed of hot-spot residues (except Arg) are more distinguishable
as PPI sites in comparison with the surrounding rim regions populated with higher

percentage of polar groups.

0.6 -
=5432 ANN_BAGGING
=S432 SVM_BAGGING
0.5 =S142 ANN_BAGGING
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Figure 5 — Atom-based prediction accuracies for each of the 30 protein atom types. The
x-axis represents indexes for the 30 atom types shown in Table 1. The y-axis shows
averaged two-class prediction MCCs from the 5-fold cross validation of the
ANN_BAGGING and SVM_BAGGING predictors trained and tested for each of the
specific protein atom type with the S432 dataset. The prediction MCCs for the
independent test with ANN_BAGGING on the S142 dataset are also shown for

comparison.
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Table 3 — Benchmarks for atom-based PPI site predictions. Five-fold Cross validation
was performed on the S432 dataset with ANN_BAGGING and SVM_BAGGING.
Independent test was performed on the S142 dataset with the best ANN_BAGGING
predictors from the five-fold cross validation. The benchmark measurements are

defined in Equations (7)~(12).

Dataset/method Accuracy Precision Sensitivity Specificity MCC F-score

S432/ANN_BAGGING 0.741 0.418 0.569 0.787 0321 0.481
S432/SVM_BAGGING  0.753 0.434 0.552 0.807 0.330 0.486
S142/ANN_BAGGING 0.732 0.420 0.594 0.771 0.326 0.492

The PPI surface patches on protein surfaces were predicted by combining the machine
learning predictions for each of the surface atoms. The activity (probability) outputs from
the machine learning models were first converted into prediction confidence levels so that
surface atoms with high confidence level predictions can be clustered into surface patches
as PPI sites (see Methods). Figure 6 shows a few examples of protein surface PPI site
predictions, compared side-by-side with actual ‘PPl sites, with various prediction
accuracies (residue-based MCC ranging from 0.7 to 0.1). The complete set of prediction
results on the proteins from the training and test sets can be viewed with interactive 3-D

structural presentation from the web server http://ismblab.genomics.sinica.edu.tw/>

benchmark > protein-protein.
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Figure 6 —Visualization of prediction results for example protein targets with
different prediction accuracy. Panels (A) to (D) demonstrate four proteins with
two-class prediction MCC of 0.650, 0.454, 0.262, and 0.107, respectively. The
target proteins were selected from the S142 dataset. The predictions were carried
out with the best ANN_BAGGING model from the 5-fold cross validation on the
S432 dataset. In each panel, the left structure shows the atom-based positive
prediction confidence level from blue (confidence level of 0) to red (confidence
level 1) for each of the surface atoms. The middle structure shows the residue-based
predictions. The atoms colored in red were predicted with confidence level greater
than 0.6; atoms in orange are the atoms belonging to the residues in the
residue-based PPI site prediction but the prediction confidence levels are less than
0.6. The right-hand-side structure shows the actual PP sites: the PPI surface atoms
are colored according to dSASA (see Equation (5)) from blue (dSASA of 0 for
atoms not involving in PPI) to red (dASASA of 1 for atoms completely buried in the
protein complex). The color-codes are shown at the-top ‘of the figure. Atoms not
used in prediction (colored in yellow) belong to residues with incomplete phi and
psi angles, as in the N-termini or C-termini-of proteins. The non-surface atoms are
colored in gray. The complete prediction results can.also be viewed in:color-coded
3-D protein structures from the web server http://ismblab.genomics.sinica.edu.tw/>

benchmark > protein-protein.

3.4 Residue-based PPI site predictions with machine
learning models based on physicochemical
complementarity features and the comparison of
the prediction benchmarks among comparable
predictors

Residues in the predicted PPI surface patches were predicted based on the atom-based PPI
site predictions (see Methods) and were benchmarked with the residues in actual PPI sites.
The example residue-based PPI site predictions are also compared side-by-side with the
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atom-based predictions and the actual PPI sites in Figure 6. The residue-based MCC for
each of the amino acid types are shown in Figure 7. The accuracy benchmarks are
summarized in Table 3. Again, the two machine learning algorithms are comparable in
terms of the prediction performance (Table 4 and Figure 7). The generalized prediction
capacity of the ANN_BAGGING models was demonstrated with the results of the
independent test, for which the results were essentially indistinguishable from the results
of the five-fold cross validation as shown in Figure 7 and Table 4. The prediction results
can also be viewed in color-coded 3-D protein structures from the web server

http://ismblab.genomics.sinica.edu.tw/> benchmark > protein-protein.

The distribution of prediction accuracy for proteins in the S432 and S142 dataset are
shown in Figure 8, for which the overall benchmark results are summarized in Table 4.
The independent test (MCC=0.423) for the residue-based PPI site predictions, as shown
in Table 4, can be compared with-previous publications based on the same training and
test datasets. Porollo et al. [23] developed SPPIDER predictor for PPI site residue
predictions with essential the same training and test datasets based on a combination of
structural and sequence features. Their residue-based prediction MCC for the independent
dataset is 0.42. In another work, a detailed analysis of the sequence and structural
attributes on the same training and test datasets has concluded that the best performance
for independent PPI site residue-based predictions yielded MCC of 0.37 on the same test
set [9]. By taking away the evolutionary information from the prediction inputs, the MCC
dropped to 0.34. Hence, the PPI site predictions based on the physicochemical

complementarities derived from the PDMs on the protein surfaces are currently the best
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structure-based predictors judging by the MCC of the residue-based predictions. The
performance of the predictors developed in this work would be further improved if the
evolutionary information of the query proteins is to be integrated into the prediction

algorithms.
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Figure 7 — Residue-based two-class prediction MCCs for each of the 20 natural amino
acid types. The MCCs were calculated as the average value from the 5-fold cross
validation with the ANN_BAGGING and SVM_BAGGING predictors on the S432
dataset. The independent test MCCs with the best ANN_BAGGING predictors from

the 5-fold cross validation on the S142 dataset are also shown for comparison.
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Table 4 — Benchmarks for residue-based PPI site predictions. Five-fold Cross
validation was performed on the S432 dataset with ANN_BAGGING and
SVM_BAGGING. Independent test was performed on the S142 dataset with the best
ANN_BAGGING predictors from the five-fold cross validation. The benchmark

measurements are defined in Equations (7)~(12).

Dataset/method Accuracy Precision Sensitivity Specificity MCC F-score TP/TN FP/FN

S432/ANN_BAGGING  0.759 0.512 0.662 0.791 0.420 0.578 13970/50458 13300/7118
S432/SVM_BAGGING  0.748 0.495 0.709 0.761 0.424 0.583 14953/48528 15230/6135
S142/ANN_BAGGING 0.753 0.519 0.677 0.779 0.423 0.588 4060/13298 3763/1934
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Figure 8 —The distributions of the prediction accuracies on the 5-fold cross validations
and on the independent test. The y-axis on the left-hand-side of the panel is associated
with the histograms, showing the distributions of the number of proteins in the 5-fold
cross validations or in the independent test that were predicted with the MCC within the

MCC range shown in x-axis. The y-axis on the right-hand-side of the panel is associated
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with the curves connecting the dots representing the cumulative percentage of the
proteins predicted with the residue-based MCC shown in the x-axis. The 5-fold cross
validations were carried out with the ANN_BAGGING and SVM_BAGGING
predictors on the S432 dataset; the independent test was carried out with the best

ANN_BAGGING predictors from the 5-fold cross validation on the S142 dataset.

Table 5 compares the predictions results of a set of 17 test proteins with both bound and
unbound structures. As expected, the predictions with the unbounded structures are less
accurate than the bound structures. The PPI site predictions with unbound structures
(MCC=0.326) are about the same in prediction accuracy as those by Porollo et al.
(MCC=0.32), while the predictions with_bound structures (MCC=0.364) are also the
same as those by Porollo et al. (MCC=0.36)[23]. Accuracy benchmarks for each of the
protein in S17a are shown in.Table S5. The prediction results can also be viewed in
color-coded 3-D protein structures from the web server

http://ismblab.genomics.sinica.edu.tw/>-benchmark > protein-protein.

Furthermore, the prediction capacities of the predictors devised in this work have been
compared with public domain servers using protein structures as input. The structures
from the independent test set S58 (non-redundant protein complex structures from entries
published in 2011, see Methods) were submitted to comparable public domain servers to
predict PPI sites. The residue-based predictions were benchmarked. The overall MCC of
0.40 of the ANN_BAGGING prediction is consistent with the benchmark results shown
in Tables 4 and 5. The prediction results can also be viewed in color-coded 3-D protein

structures from the web server http://ismblab.genomics.sinica.edu.tw/> benchmark >

protein-protein. Table 6 shows the comparison of the prediction accuracies of the method
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in this work with those from the PredUs [24, 64] server, which had the best performance,
judging by the prediction results of the test set S58, among the comparable prediction
servers accessible in the public domain. The prediction accuracy benchmarks shown in

Table 5 are comparable between the two methods.

Table 5 —Residue-based benchmark comparison between the bound state and unbound
state of the proteins in the S17a dataset. Unbound state performances are based on the
prediction results with the best ANN_BAGGING predictors from the 5-fold cross
validation. Bound state performances are based on corresponding protein structures from

the S142 dataset. The benchmark measurements are defined in Equations (7)~(12).

Protein structure  Accuracy Precision Sensitivity Specificity MCC F-score  TP/TN FP/FN

Unbound state 0.767 0.327 0.626 0.790 0.326 0.430  275/2133  566/164

Bound state 0.777 0.402 0.613 0.811 0.364 0.486  322/2049  479/203

Table 6 —Benchmarks for residue-based PP1 site prediction-for-proteins in the S58 dataset.
PredUs [24, 65] (http://bhapp.c2b2.columbia.edu/PredUs/) was unable to predict chain A
of PDB ID 3myo and chain A of PDB ID 3ulc due to lack of “structural neighbors”. For
the rest of the queries in PredUs predictions, the structural neighbor with PDB ID
identical to the query protein was removed and the remaining structural neighbors were
used for prediction. The PredUs predictions were compared with ANN_BAGGING
prediction results as shown in the Table (detailed results are shown in Table S6). Only the
prediction results for the protein surface residues (defined in Methods) were used for

benchmarking. The benchmark measurements are defined in Equations (7)~(12).

Method Accuracy Precision Sensitivity Specificity MCC F-score TP/TN FP/FN

PredUs 0.785 0.455 0.576 0.835 0.377 0508 1321/8025  1584/974
ANN_BAGGING 0.777 0.446 0.654 0.806 0.403 0530 1500/7744  1865/795
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3.5 Contribution of the attributes to the machine
learning prediction accuracy

Figure 9 shows that the protein surface atoms predicted with high confidence level are
more buried in the actual PPI sites and are mostly from hydrophobic and aromatic
residues. Figure 9A shows the linear correlation between the prediction confidence level
and the burial level — the higher the prediction confidence level for a surface atom to be in
a PPI site, the more buried for the atom to be in an actual PPI interface. As expected, as
shown in Figure 9B, the residues for which the atoms were predicted with confidence
level > 0.6 were mostly hydrophobic residues as lle, Leu, Met, Phe, Tyr, and Val. The
residue atoms predicted with modest .confidence level between 0.2 and 0.6 are not as
hydrophobic as those predicted with-high confidence level (Figure 9B), and are not as
hydrophilic as those predicted with confidence level less than 0.2 (Figure 9B). These
results imply that the PPI sites with less prominent hydrophobic cores are less likely to be

predicted with high accuracy. Indeed, this implication is validated in Figures 10~12.
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Figure 9 — Correlations of PPI site prediction confidence level to atomic burial in
protein complexes and to amino acid type. (A) Atom-based prediction confidence level
range (shown in the x-axis of the panel) is correlated to the averaged burial level
(measured by dSASA (Equation (5)) of the sub-group of atoms in the protein
complexes predicted within the confidence level range. The correlation is shown by the
diamond symbols, corresponding to the y-axis on the left-hand-side of the panel. The
distribution of the atom-based predictions as shown by the curve, corresponding to the
y-axis on the right-hand-side, is plotted against the prediction confidence level range in
the x-axis. The data were derived from the independent test with the ANN_BAGGING
predictors on the S142 dataset. (B) The histograms in this panel show the distributions

of amino acid types in three groups of protein surface residues with various atom-based
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prediction confidence level ranges. The first group of residues contained atom-based
prediction confidence level > 0.6 for at least one atom in each of the residues. The
second group of residues contained atom-based prediction confidence level between
0.6 and 0.2 for at least one atom in each of the residues. The third group of residues
contained atom-based prediction confidence level less than 0.2 for at least one atom in
each of the residues. The distribution of the percentage of the amino acid types in each
of the three groups is shown by a histogram in the panel. The data were derived from the

independent test of the best ANN_BAGGING predictors on the S142 dataset.

Figure 10 shows that the prediction accuracy deteriorates as the actual PPI sites become
smaller in size (Figure 10A) and less hydrophobic in amino acid composition (Figure
10B). Figure 10C shows that the false positive ratios (FP/(TP+TN+FP+FN)) increases
with greater rate than the false negative ratios (FN/(TP+TN+FP+FN)) as the MCC
decreasing. This suggests that the decreasing accuracies.of the PPI site predictions were
resulted more from increasing false positive predictions. It is questionable as to whether
the false positive predictions are truly false positives — these false positive PPI sites could
be perceived as potential PPI sites that have not been validated experimentally. By
comparing Figure 10D with Figure 10A~10C, it is evident that homo-oligomers, each of
which is formed with a single polypeptide chain, have larger PPI interfaces (Figure 10A)
and with more hydrophobic residues in the PPI sites (Figure 10B), and thus were
predicted with less false positives and false negatives (Figure 10C) and higher accuracy
(Figure 10D). In contrast, interfaces in hetero-oligomers are relatively smaller and more
hydrophilic and are more difficult to be predicted accurately than the interfaces in

homo-oligomers.
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Figure 10 — Correlations of PPI site prediction accuracy to PPl features. The data were

derived from the independent test of the best ANN_BAGGING predictors on the S142

dataset. (A) PPl patch size averaged over the proteins predicted within the

residue-based MCC range shown in the x-axis is plotted against the MCC range. Patch

size is defined as the number of residues in the actual PPI-site. (B) PPl patch

hydrophobicity ratio averaged over the proteins predicted within the residue-based

MCC range shown in the x-axis is plotted against the MCC range. Hydrophobic

residues include Ala, Cys, lle, Leu, Met, Phe, Pro, Tyr, Trp, and Val. Ratio of

hydrophobic residues was computed as the number of hydrophobic residues in the
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PPI-site divided by the total number of residues in the site. (C) False negative ratio
(FNR) and false positive ratio (FPR) averaged over the proteins predicted within the
reisude-based MCC range shown in the x-axis is plotted against the MCC range. FNR
was calculated as (FN/(TP+TN+FP+FN))x100%, and FPR was calculated as
(FP/(TP+TN+FP+FN))x100%. The TP (true positive), TN (true negative), FP (false
positive), and FN (false negative) were derived from residue-based predictions. (D)
Distributions of homo-oligomers and hetero-oligomers are plotted against the
residue-based MCC range. The detailed assignments of the PPI type for the proteins in
the S142 dataset are shown in Table S4. MCC was calculated based on residue-based

predictions.

The blue histogram in Figure 11 shows the Pearson’s correlation coefficients between the
prediction confidence level and.the attribute types (j=1~32) calculated in Equation (4).
The prediction confidence-attribute correlations are strongly dependent on the attribute
type. As shown in the histogram, increasing prediction confidence levels are linearly and
positively correlated with increasing values-of the attributes derived from the aliphatic
and aromatic carbons, suggesting that the PDM concentrations of these interacting atoms
are greater around the protein surface atoms that are predicted to be in the PPI sites with
high prediction confidence level. This is in good agreement with the notion that PPI
interface cores are similar to protein interiors in hydrophobic amino acid composition,
and thus are predicted with higher accuracy and confidence level. Attributes of
hydrophilic atoms (NH3, NH1, NC2, OH1, NH1S, OC, NH2, OS, see Table 1) are not
correlated with prediction confidence level (blue histogram in Figure 11), suggesting that
the patterns of the PDMs derived from these hydrophilic atoms are indistinguishable

between the PPI sites and the non-PPI sites, and thus contribute little to the PPI prediction
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accuracy. This is in agreement with the notion that some regions of the PPI sites are as

hydrophilic as the protein surface in general.

The red histogram in Figure 11 shows the Pearson’s correlation coefficients between the
positive (1 for PPI site atoms) or negative (0 for non-PPI site atoms) assignments for
protein surface atoms and the attribute values for the atoms on the protein surface. In
theory, attributes (x-axis) correlated to the positive or negative assignments with higher
correlation coefficients (y-axis) should contribute statistically more weight in prediction
accuracy. This expectation has been validated by the almost identical trends in comparing
the red histogram with the blue histogram shown in Figure 11, indicating that indeed the
contributions of the attributes to the prediction accuracy as indicated in the blue histogram

are in good agreement with the statistical expectations shown in the red histogram.

Moreover, comparison of Figure 4 and Figure 11 shows clearly the extent of contribution
of the attributes to the prediction accuracy. As-shown in Figure 4, the attributes (shown in
the x-axis) with larger p-values from the U-tests (i.e., the columns for which the colors
approach the blue end), such as attributes 1, 5, 10, 11, 12, 15, 16, 17, 27, 28, 31 (these
attributes are denoted as NH1, CHO, OH1, OC, OS, NH1S, NC2, NH2, CR1H, C5, HOH
respectively as defined in Table 1 and shown in Figure 11), are all correlated poorly with
prediction confidence level (blue histogram in Figure 11) and PPI site assignment (red
histogram in Figure 11). This result suggests that the U-tests shown in Figure 4 are strong
predictors for the ranking of the contributions of the attributes to the machine learning

prediction capability.
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Figure 11 — Ranking of the attributes derived from PDMs. Each of the surface atoms i in
the S142 dataset has a confidence level on the prediction of the atom to be-in a PPI site.
This prediction confidence level is correlated to various extents with the 32 attributes
(ai,j (j=1~32) as shown in Equation (4)),-which were used. as.inputs for the machine
learning predictors in making the predictions. The blue histogram shows the
correlations between prediction confidence levels: and' attributes derived from
concentrations of PDMs. The Pearson’s correlation coefficients, which are the
measurements for the linear correlations between the prediction confidence level and
the attributes, are shown in the y-axis. The x-axis shows the feature types (Table 1),
each of which corresponds to one of the ai,j. The red histogram shows the Pearson’s
correlation coefficients between the positive (1 for PPI site atoms) or negative (0 for
non-PPI site atoms) assignments for protein surface atoms and the attribute values for

the protein surface atoms.

3.6 Training of the machine learning models with
subsets of protein-protein interaction interfaces

The results above suggested a possibility that the prediction of PPI sites with more
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hydrophilic residues might be improved with a training set containing only the
hydrophilic interfaces. This possibility was tested by clustering the PPI sites of the
proteins in the training set into two groups with distinguishingly different residue
compositions. Type 1 PPI sites are centered on a representative surface patch with equal
distribution of the hydrophobic and hydrophilic residues (44% hydrophobic, 47%
hydrophilic, and 9% aromatic residues) and type 2 PPI sites are centered on a
representative surface patch with more hydrophilic residues (25% hydrophobic, 66%
hydrophilic, and 9% aromatic residues). Hydrophobic residues are Ala, Pro, Leu, lle, Met,
Cys, and Val; aromatic residues are Phe, Tyr, and Trp. The rest of the amino acid types are
hydrophilic. Two datasets derived from S432, named DS _Typel and DS_Type2, were
generated with atoms labeled as-positive for only type 1 PPI sites and type 2 PPI sites,
respectively. Cross validation benchmark procedures as described above were applied to
the two datasets. Figure 12 shows that prediction models trained and tested with type 1
PPI sites were more accurate than"those trained and tested with type 2 PPI sites,
suggesting that PPI sites with hydrophobic or aromatic cores are predicted with
substantially higher accuracy than the PPI sites composed of mostly hydrophilic residues.
Figure 12 also suggests that training two sets of prediction models with two sets of PPI
sites did not improve prediction accuracy. As shown in the Figure, the prediction models
trained with the overall data set are not inferior to the predictions models trained by either
of the datasets. Evidently, few rules can be learned statistically on the polar interactions in

PPI sites to improve the PPI site prediction accuracy.

Taken together, the PPI sites in homo-oligomers are usually formed with large interface
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area with hydrophobic interface cores and hydrophilic peripheral areas. These PPI sites
can be predicted with reasonable accuracy with the methodology developed in this work.
As the PPI sites become smaller and more hydrophilic, as in the interfaces of some
hetero-oligomers where hydrophobic cores become less prominent, the accuracy of the
PPI site prediction deteriorates. In some of these interfaces, the rim regions make the
dominant parts of the PPI sites and the interface cores become increasingly insignificant
as the interface size decreases [5, 11, 42, 63]. The PPI sites in these complexes are
increasingly indistinguishable from the non-PPI protein surfaces, and as a result, the
machine learning algorithms are less effective in identifying these PPI sites. It seems that
the polar interfaces in some transient PPIs emphasize a different set of energetic terms
distinguishable from those for the homo-oligomers, and that the PDMs derived from
protein interiors fall short to account for the polar interactions in the transient PPI sites.
Increasing understanding of the polar interactions involving perhaps water-mediated
terms [66] on protein surfaces could contribute in establishing a better prediction method

for polar PPI sites predictions.
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Figure 12 — Atom-based MCC comparison among machine learning models trained with the
DS_Overall, DS_Typel, and DS_Type2 dataset. DS_Typel and DS_Type2 are variants of
S432 dataset. The former has all type 1 PPI sites (44% hydrophobic, 47% hydrophilic, and
9% aromatic residues) labeled as positive and the rest labeled as negative; the latter has all
type 2 PPI sites (25% hydrophobic, 66% hydrophilic, and 9% aromatic residues) labeled as
positive and the rest labeled as negative. DS_Overall is the original version of S432 with all
PP1 sites (type 1 and type 2 PPI sites) labeled as positive. Five-fold cross validation was
performed with DS_Typel and DS_Type2 based on the same procedures described in
Methods section. The parameters used for training remained the same, except for the
increased bag number of 20 in an attempt to alleviate the class imbalanced problem since

fewer positive cases were labeled in DS_Typel and DS_Type2..
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Chapter 4

Conclusions

Proteins perform essential functions in biological systems through recognizing their
protein partners and by forming permanent or transient protein complexes.
Computational methodologies for predicting protein-protein interaction sites on protein
surfaces are important tools in providing insights into the biological functions of proteins
and in identifying key targets for therapeutics development. However, identifying
protein-protein interaction sites remains challenging in spite of the availability of tertiary

structure for the proteins of interest.

In this thesis, we devised a novel structure-based protein-protein interaction site
prediction algorithm based on physicochemical complementarity of protein surfaces. First,
amino acid conformation clustering was performed to characterize each of the twenty
amino acids by a set of conformation types represented by mainchain and sidechain
torsion angles. Second, a set of 9486 non-redundant protein structures with less than 60%
sequence identity was used to construct the database for non-covalent interacting atom
pairs, which was organized according to parent amino acid conformational types. Third,
probability density maps were constructed by mapping non-covalent interacting atoms on
protein surfaces allocated from the database to a 3D grid system. Fourth,
ANN_BAGGING and SVM_BAGGING algorithms were employed for learning the

PDM-based attributes for PP1 and non-PPI sites. The predictive performance based on an
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independent dataset indicated that our method was among the best predictors in

identifying PPI sites on protein surfaces.

The study shows that PPI sites on proteins of known structures can be predicted with
accuracy to an extent based on the physicochemical complementarity derived from PDMs
on protein surfaces. Although the PDMs, which describe the three-dimensional
distributions of non-covalent interacting atoms on protein surface, were derived from
protein structures, the physicochemical complementarity in PPl interfaces can be
faithfully reproduced with the numerical features derived from the PDMs, indicating that
protein folding and binding are governed by similar energetic principles. The predictions
based on these PDM-recreated physiochemical complementarity features on protein
surfaces are among the best in PPl site predictions with known protein structures. In
particular, the hydrophobic cores of the PPI'sites are more likely to be correctly predicted.
As the PPI sites become smaller in'size and less hydrophobic in amino acid composition,
the prediction of these PPI sites became increasingly difficult. The difficulties could not
be overcome by training the predictors with the subset of PPI sites characterized with
more hydrophilic residues in the PPI sites. The PPI site predictions are nevertheless likely
to be further improved with additional understanding of polar and water-mediated

interactions in protein-protein recognitions.

Though our web server has proven to rank among the best PPI site predictors, more
functionality can be implemented for better applicability. This includes selective
application of the information acquired from interacting atom pair database so that

features with better discrimination capability can be applied for prediction. In addition,
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we would further construct multiple interacting atom pair databases for different types of
protein complexes, for example, complexes involving transient or non-obligate
interactions. As more interaction types are considered and better understanding for the
application of the interacting atom pair database is achieved, we would explore better

applicability and better predictive accuracy for PPI site prediction.
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