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使用蛋白質表面三度空間的交互作用原子機率分布以預測蛋

白質-蛋白質交互作用區域 

研究生：陳鯨太 

 

指導教授：許聞廉  博士 與 何信瑩 博士 

 

國立交通大學生物資訊與系統生物研究所 

摘     要 

蛋白質-蛋白質交互作用是很多生物程序的關鍵。用來預測蛋白質-蛋白質交互作用

區域的計算方法論是相當重要的工具，能夠提供對於蛋白質功能的深入瞭解、以

及發展針對於蛋白質-蛋白質交互區域的治療方法。蛋白質-蛋白質交互區域的一項

共通特徵是兩個蛋白質交互作用的表面有互補性，類似蛋白質內部的堆積密度及

氨基酸組成的物理化學特性。在此研究中，我們在蛋白質表面建構非共價鍵交互

作用原子的三度空間機率密度地圖以模擬物理化學性質的互補性。交互作用原子

的機率是從蛋白質內部統計而來，機器學習方法則被應用於學習蛋白質-蛋白質交

互作用區域上機率密度地圖的特徵模式。經過訓練的預測機使用一組學習案例(包

含 432 條蛋白質)作為交互驗證之用，並且使用獨立的資料組(包含 142 條蛋白質)

作測試。獨立測試結果中，以氨基酸為單位的馬修斯相關係數為 0.423，正確率、

精準度、靈敏度、特異性分別為 0.753、0.519、0.677 以及 0.779。量測的結果顯示

我們最佳化的機器學習模型是現今最準確的預測機之一。當蛋白質-蛋白質交互作

用區域變大以及當此區域的氨基酸組成擁有更多疏水性時，預測準確率會提高; 而
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蛋白質交互作用區域的核心較有可能被給予高預測信心值。我們的結果表示蛋白

質表面的物理化學互補性質是決定蛋白質-蛋白質交互作用的重要因素，而使用蛋

白質內部擷取的非共價鍵交互作用資料所產生出的物理化學互補性特徵，能夠準

確地預測出相當大比例的蛋白質-蛋白質交互作用區域。 
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Abstract 

Protein-protein interactions are key to many biological processes. Computational 

methodologies devised to predict protein-protein interaction (PPI) sites on protein 

surfaces are important tools in providing insights into the biological functions of proteins 

and in developing therapeutics targeting the protein-protein interaction sites. One of the 

general features of PPI sites is that the core regions from the two interacting protein 

surfaces are complementary to each other, similar to the interior of proteins in packing 

density and in the physicochemical nature of the amino acid composition. In this work, we 

simulated the physicochemical complementarities by constructing three-dimensional 

probability density maps of non-covalent interacting atoms on the protein surfaces. The 

interacting probabilities were derived from the interior of known structures. Machine 

learning algorithms were applied to learn the characteristic patterns of the probability 

density maps specific to the PPI sites. The trained predictors for PPI sites were 
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cross-validated with the training cases (consisting of 432 proteins) and were tested on an 

independent dataset (consisting of 142 proteins). The residue-based Matthews correlation 

coefficient for the independent test set was 0.423; the accuracy, precision, sensitivity, 

specificity were 0.753, 0.519, 0.677, and 0.779 respectively. The benchmark results 

indicate that the optimized machine learning models are among the best predictors in 

identifying PPI sites on protein surfaces. In particular, the PPI site prediction accuracy 

increases with increasing size of the PPI site and with increasing hydrophobicity in amino 

acid composition of the PPI interface; the core interface regions are more likely to be 

recognized with high prediction confidence. The results indicate that the physicochemical 

complementarity patterns on protein surfaces are important determinants in PPIs, and a 

substantial portion of the PPI sites can be predicted correctly with the physicochemical 

complementarity features based on the non-covalent interaction data derived from protein 

interiors. 

 



 

 vi 

ACKNOWLEDGEMENT 

這篇博士論文的完成，首先要感謝我的指導教授許聞廉、以及帶領研究的楊安

綏老師，兩位老師僅管指導學生的方式不盡相同，但對於學術的熱誠以及嚴謹的

研究態度卻一致，我在接受兩位老師指導的過程中獲益良多，此外這些年的相處

讓我有幸見識到頂尖學者應該具備的特質，不論是學術或待人處世上，都是我學

習的典範。宋定懿老師在我擔任研究助理以及博士班初期也曾經指導過我，她在

論文的論述及英文寫作方面提供我相當大的幫助，此外我還要感謝論文口試委員

黃鎮剛老師、何信瑩老師、以及楊進木老師，他們在百忙之中撥冗前來指教，給

我很多精闢的見解及建議，並指出我個人從事研究以及論文口語報告時的盲點，

讓我警惕自己尚有許多不足之處需要持續努力。 

資訊所實驗室學長、也是博士班同學信男，從申請入學、修課、準備資格考、

到作研究發表論文都給予我相當多的協助，為我減輕許多負擔，基因體中心一同

奮鬥好幾年的優秀伙伴，包括洪斌、耿彰、俊柏、智偉、正義、及伯瑲等人也提

供相當多專業上的幫助，很感謝也很榮幸能與他們共事。在就讀博士班的這些年

裡，還有數十位曾經相處過的實驗室同仁、TIGP的同學、中研院攝影社的朋友，

你們或許沒對論文有直接的貢獻，但你們不時給我加油打氣並帶來研究之餘的歡

樂，讓我可以繼續振作精神向前邁進，是相當重要的輔助力量。 

我的父親及母親為家庭生計不辭勞苦、從小就營造良好的讀書環境給孩子們，

能夠拿到這個學位你們居功厥偉。我也感謝岳父陳天斯上校以及岳母張淑英女

士，你們對我無條件的信賴及支持不亞於親生父母，在我陷入低潮時是你們提供



 

 vii 

柔軟的後盾，把我輕輕托了起來。我也要感謝我的太太詩伊，是你不停鼓勵我相

信我、也是你隨時警惕我告誡我，跟你一起進行的人生很精采過癮，感謝有你的

付出和堅持，我才能夠走到今天。 

對我而言，博士班的過程不只是尋求研究上的突破，它更是一場自我內心的探

索。它給予一些挫敗教我保持謙卑，它給予一些誘惑和考驗來堅定我的意志，同

時它也給予掌聲及讚美，讓我保持前進的鬥志，我感到自己是受祝福的，僅管走

來不免跌跌撞撞，但我相信這一切終將成為生命的養份。此刻完成博士班學業，

心中感到一絲欣喜，卻摻雜著更多的兢兢業業，因為在這個領域中，有太多具有

豐富學識涵養的博士專家學者，已經為人類的文明產生傑出貢獻，同他們一般被

冠上博士頭銜的我，自當以諸多前輩的傑出表現為榜樣，持續充實專業知識，將

來在專業領域中發揮一己之力。 

 

 

鯨太 

2012年 7月于台北南港 

 



 

 viii 

Contents 

摘     要 ............................................................................................................................. ii 

Abstract ............................................................................................................................ iv 

Contents ......................................................................................................................... viii 

List of figures .................................................................................................................... x 

List of tables .................................................................................................................... xi 

Chapter 1 Introduction ...................................................................................................... 1 

Chapter 2 Methods............................................................................................................ 5 

2.1 Constructing three-dimensional probability density maps (PDMs) for 

non-covalent interacting atoms on protein surfaces .......................................... 5 

2.1.1 Amino acid conformation clustering ............................................................ 5 

2.1.2 Protein atomistic non-covalent interacting database ..................................... 7 

2.1.3 Predicting probability density maps (PDM) of non-covalent interacting 

atoms for protein surfaces ................................................................... 11 

2.2 Machine learning for probability density maps (PDMs) on protein surfaces . 20 

2.2.1 PDM-based attributes as inputs for machine learning algorithms .............. 20 

2.2.2 Datasets ....................................................................................................... 22 

2.2.3 Determining biologically relevant PPI sites ................................................ 24 

2.2.4 Artificial neural network (ANN) ................................................................ 24 

2.2.5 Support vector machines (SVM) ................................................................ 25 

2.2.6 Bootstrap aggregation (BAGGING) ........................................................... 25 

2.2.7 Prediction capacity benchmarking .............................................................. 26 

2.2.8 Prediction confidence level ......................................................................... 27 

2.2.9 Five-fold cross validation and independent test.......................................... 30 

2.3 Prediction of patches of atoms as protein-protein binding sites ......................... 31 

2.4 Residue-based predictions for the PPI sites ........................................................ 31 

2.5 Computational efficiency for predicting PPI sites in a typical protein ............... 32 



 

 ix 

2.6 Mann-Whitney U-test ......................................................................................... 32 

2.7 Web site .............................................................................................................. 32 

Chapter 3 Results and Discussions ................................................................................. 33 

3.1 Statistical analysis of physicochemical complementarities in known PPI 

interfaces ......................................................................................................... 33 

3.2 Consistency of the U-tests of the physicochemical complementarity features with 

previous statistical observations ...................................................................... 35 

3.3 Atom-based PPI site predictions with machine learning models based on 

physicochemical complementarity features .................................................... 37 

3.4 Residue-based PPI site predictions with machine learning models based on 

physicochemical complementarity features and the comparison of the 

prediction benchmarks among comparable predictors .................................... 41 

3.5 Contribution of the attributes to the machine learning prediction accuracy ....... 47 

3.6 Training of the machine learning models with subsets of protein-protein 

interaction interfaces ....................................................................................... 53 

Chapter 4 Conclusions .................................................................................................... 57 

References ........................................................................................................................ 1 

 



 

 x 

List of figures 

Figure 1 – Probability density maps and encoded features of human vascular endothelial 

growth factor A (VEGF).. ...................................................................................... 19 

Figure 2 –  Mmin,j (in square symbols) and Mmax,j (in diamond symbols) against the 32 

attribute types......................................................................................................... 22 

Figure 3 – Lookup charts converting output activity (probability) from the corresponding 

machine learning predictor to prediction confidence level.. .................................. 29 

Figure 4 –Mann-Whitney U-tests for the distributions of numerical attributes around 

protein surface atoms.. ........................................................................................... 35 

Figure 5 – Atom-based prediction accuracies for each of the 30 protein atom types. ....... 38 

Figure 6 –Visualization of prediction results for example protein targets with different 

prediction accuracy. ............................................................................................... 41 

Figure 7 – Residue-based two-class prediction MCCs for each of the 20 natural amino 

acid types. .............................................................................................................. 43 

Figure 8 –The distributions of the prediction accuracies on the 5-fold cross validations 

and on the independent test.. ................................................................................. 44 

Figure 9 – Correlations of PPI site prediction confidence level to atomic burial in protein 

complexes and to amino acid type.. ....................................................................... 48 

Figure 10 – Correlations of PPI site prediction accuracy to PPI features. ......................... 50 

Figure 11 – Ranking of the attributes derived from PDMs.. ............................................. 53 

Figure 12 – Atom-based MCC comparison among machine learning models trained with 

the DS_Overall, DS_Type1, and DS_Type2 dataset.............................................. 56 

 



 

 xi 

List of tables 

Table 1 –Atom types for 20 natural amino acids in proteins.. ........................................... 10 

Table 2 – A filter system used to eliminate non-interacting atomic pairs based on the work 

by McConkey et al. [1] with modifications.. ......................................................... 15 

Table 3 – Benchmarks for atom-based PPI site predictions. ............................................. 39 

Table 4 – Benchmarks for residue-based PPI site predictions ........................................... 44 

Table 5 –Residue-based benchmark comparison between the bound state and unbound 

state of the proteins in the S17a dataset.. ............................................................... 46 

Table 6 –Benchmarks for residue-based PPI site prediction for proteins in the S58 dataset..

 ............................................................................................................................... 46 

 

PPI%20site%20prediction%20with%203D%20density%20map%20初稿.doc#_Toc326933995
PPI%20site%20prediction%20with%203D%20density%20map%20初稿.doc#_Toc326933995


 

 1 

Chapter 1  

Introduction 

Proteins perform essential functions in biological systems through recognizing their 

protein partners and by forming permanent or transient protein complexes. 

Computational predictions of the protein-protein interaction (PPI) sites on protein 

surfaces can provide insights into the biological functions of the proteins at the 

proteomics level and into the sequence-function relationships critical in identifying key 

targets for therapeutics development. Works on PPI site prediction and analysis have been 

summarized in many recent reviews  .  

Protein-protein interactions have been perceived as a process driven in large part by 

hydrophobic interactions in the core interfaces and by polar interactions in the interface 

rims. The core interface regions are tightly packed as in protein interior with key residues 

that are mostly hydrophobic in nature (except for Arg, which is also frequently observed 

in PPI sites) [2-5]. Energetically, only a few buried hot-spot residues in the PPI sites are 

responsible for the protein binding free energy (see review [6] and references therein). 

The rim regions surrounding the PPI core interfaces are integral parts of the PPI sites[2, 7], 

but the interface packing in these regions are loose with water molecules frequently 

observed bridging the interfaces [8]. The hydrophilic nature of the rim regions is largely 

indistinguishable from the hydrophilic property of the overall protein surfaces [4]. 

Although the trends in physicochemical and geometrical complementarity in the PPI 
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interfaces have been demonstrated in many analyses [4], identifying clear determinants 

that correlate with the surface regions mediating PPIs remains challenging [9, 10]. This is 

particularly true for the protein surfaces mediating non-obligated protein-protein 

interactions[11]. 

Computational algorithms have been developed for PPI site predictions. A large portion 

of these methods are based on information embedded in amino acid sequences and on 

evolutionary information derived from multiple sequence alignments of homologues in 

the sequence databases [12-18]. In addition, prediction algorithms combining sequence 

and structure information have also shown successes in identifying PPI sites [9, 19-23]. 

Structural features are taken into account for better predictive capability as structure 

conservation is one of the important factors among interfaces [24]. Moreover, Murakami 

and Jones characterized surface patches with six physicochemical properties and then 

linearly combined the six values for a final score as PPI interface [25]. Negi and Braun 

used a clustering method on surface residues based on amino acid interface propensity 

scale for interface prediction [26]. Kufareva et al. devised 12 physical descriptors for 

surface patches along with a partial least square regression to predict PPI interfaces [27]. 

Overall, combining various sequence and structural features in training machine learning 

models has been succeeded to an extent in predicting PPI sites, but the PPI site predictions 

remain challenging with considerable difficulties [9]. 

The three-dimensional arrangement of amino acid residues in the PPI sites determines the 

affinity and specificity of the protein interactions, and hence the complementarities of 

surface geometry and physicochemical nature of the PPI interfaces are expected to be 
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critical determinants in PPIs. Following this rationale, Sacquin-Mora et al. employed a 

rigid-body, coarse-grain docking method to detect interfaces within a small dataset [28]. A 

large scale PPI site prediction with docking algorithms has also been carried out recently 

by Wass et al., [29]. While the three-dimensional protein-protein complex model 

structures are likely to be predicted incorrectly, it has been found that the location of the 

PPI sites can be reasonably predicted with the docking algorithms [30]. The downsides of 

the docking algorithms are that exploring the large conformation space consumes huge 

computational resources and that binding geometry evaluations based on various ranking 

systems are not clearly effective in distinguishing the actual structures from a large set of 

possibilities. Template-based prediction approaches reduce the solution space of the 

docking approaches [31] on the premise that PPI sites are relatively conserved throughout 

proteins with similar sequence and structural features [24]. With the template-based 

approaches, high-throughput modeling of PPI sites based on protein docking have been 

shown with accuracy feasible for low to medium resolution models [32]. 

The successes of the current prediction methods, albeit limited in accuracy, have indicated 

that not only sequence and structural features of the query proteins are critical 

determinants for PPI sites, the physicochemical complementarities of the partner surfaces 

are also important factors in predicting the interface locations. But for most of the proteins, 

the complementarity information is unavailable without knowing the binding partners and 

the binding interfaces, which are the targets of the PPI site predictions in the first place. In 

this work, we circumvent the difficulty by simulating the binding surface 

physicochemical complementarity with three-dimensional probability density maps 
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(PDMs), which were derived based on the distributions of non-covalent interacting atoms 

in protein interiors. The PDMs provide information of possible interacting atoms from the 

protein partners in the PPI interfaces, because the PPI interface cores share similar amino 

acid composition with protein interiors [4]. The PDMs were encoded into numerical 

features to train machine learning algorithms coupled with bootstrap aggregation 

(bagging) techniques [33]. One machine learning model was trained for each of the 30 

protein atom types. The trained models were then used to predict PPI sites by integrating 

the prediction results for all the protein surface atoms on the query proteins. Five-fold 

cross validation was carried out with the training set composed of 432 non-redundant 

proteins. The cross validation yielded overall residue-based MCC (Matthews correlation 

coefficient) of 0.424. An independent group of 142 proteins was used as the test set. The 

residue-based MCC for the independent test set was 0.423, and the residue-based 

accuracy, precision, sensitivity, specificity were 0.753, 0.519, 0.677, and 0.779 

respectively. The results are among the best predictions for PPI sites, indicating that the 

physicochemical complementarity derived from PDMs for protein interaction interfaces 

is a critical determinant for protein-protein interactions. 
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Chapter 2  

Methods 

2.1 Constructing three-dimensional probability 

density maps (PDMs) for non-covalent interacting 

atoms on protein surfaces  

2.1.1 Amino acid conformation clustering 

Amino acids in proteins are limited in structural diversity. Protein structures are 

determined by mainchain and sidechain torsion angles of the constituent amino acids. The 

distributions of the torsion angles are clustered around prevalent conformational centers, 

instead of spreading continuously over the torsion angle space. The mainchain torsion 

angles are clustered at the - and the -regions in the Ramachandran plot; the 

distributions of the sidechain torsion angles are also concentrated on only a few allowable 

regions, depending on the chemical constituents of the sidechain [34, 35]. Moreover, the 

distribution of each of the sidechain torsion angles is dependent on the torsion angles of 

the backbone of the amino acids [36]. Thus, amino acid conformations in proteins can be 

organized into limited sets of clusters based on the mainchain and sidechain torsion angle 

set of each of the amino acid types, allowing interacting atom pair database retaining 

conformational information of the parent amino acids. 

Database for non-covalent interacting atom pairs in proteins was organized according to 
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parent amino acid conformational types. To cluster amino acid conformations into a 

limited set of clusters for each type of amino acid, we assigned torsion angles to each of 

the amino acids in known protein structures with the computer program DSSP [37] and 

MOLEMAN 2 [38]. For each type of amino acid from the protein structure entries in PDB, 

a set of vectors with torsion angle elements in degree ({φ, ψ, χ1, …, χi}, where φ, ψ are 

backbone torsion angles and χi are sidechain torsion angles as defined conventionally) 

was established; amino acid residues with incomplete structure were excluded from the 

data sets. The vectors were used as input to the fuzzy c-means algorithm [39] for 

clustering. The number of the clusters was determined as the minimal integer satisfying 

the condition that increasing the number of clusters beyond this minimal integer made 

little change to the partition index and separation index – two fuzzy c-means algorithm 

indexes describing the relative mean distance within and between clusters [40]. To 

augment the optimal decision on cluster numbers, we calculated the distribution of the 

intra-cluster RMSD (root mean squared deviation) in Å  for superimposed amino acid 

structures between cluster members and the centroid conformation within a cluster for 

each cluster sets. The convergence of this intra-cluster RMSD to a minimal RMSD 

provided a more structure-related reference in contrast to the torsion angle-based 

structural descriptors in determining the optimal cluster number. After the determination 

of the cluster numbers, the centroid conformation of each of the clusters was determined 

as the center of mass of the vectors in the cluster. Details of the number of clusters, the 

torsion angles of the centroid conformations, and the distribution information of the 

members in the clusters are listed in Yu. et al. [41]. 
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2.1.2 Protein atomistic non-covalent interacting database  

It is straightforward to construct the database of atomistic non-covalent interacting pairs 

with real protein complexes and real interfaces. The available tertiary structures for 

protein complexes, however, are statistically insufficient for meaningful distribution of 

each of the 31 atom types with respect to 152 centroid conformations (from 20 amino acid 

types). Instead of using real protein complexes, we determined to randomly and 

sequentially dissect a single protein chain into two parts as a simulation for 

protein-protein interaction. The rationale for the concept comes from the fact that the 

correlation between the amino acid frequency vectors of PPI core and protein interior is 

considerably high (correlation coefficient of 0.71) as opposed to that of  protein surface 

and protein interior (correlation coefficient of 0.33) [42]. Another study using 

intramolecular contact propensities for ranking residues in PPI sites indicates that 

intramolecular contact propensities may replace interface propensities in protein interface 

residue identification [43]. The aforementioned facts have hint the potential possibility of 

predicting protein interface residues with the information extracted from protein interior, 

thus supporting our approach of simulating protein-protein interactions with random 

separation of a single protein. 

Atomistic contact interactions in proteins of known structures were organized into a 

database containing non-covalent atomistic interaction information for atom pairs in 

protein structures. For each of the atoms in residue X of a protein, the non-covalent 

interacting atoms were recorded as the following: Following the work of Laskowski et al. 
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[44], for each atom (P) in residue X, the relative location of the atom P was defined with 

two consecutive atoms R and Q, where R is covalently linked to P, and Q is covalently 

linked to R. Atom R was set at the origin of the reference coordinate system; atom P was 

located on the z-axis; atom Q was on the z-x plane of the reference coordination system. 

In principle, all non-covalent interacting atoms to atom P were recorded in the database 

with the reference coordination system. In this work, only non-covalent atomistic 

interactions in protein interiors were organized into the atomistic interaction database: 

First, a protein structure was randomly separated into two parts by cleaving at a random 

peptide bond. Interface residues with solvent accessible surface area (SASA) change 

more than 40% of the total SASA due to the separation of the two protein halves were 

considered for non-covalent atomistic interactions. The solvent accessible surface area 

(SASA) for each of the amino acid residues was calculated with DSSP. Only the atoms 

from the other half of the proteins were recorded for interacting with atom P when the 

pairwise distance between the two atoms was less than 5 Å . Atoms within 9 consecutive 

residues from the N and C directions of the atom P were excluded as interacting atoms to 

the atom P. This was to record the atomistic contact interactions mimicking the 

interactions in protein-protein interfaces. After all the interface residues were surveyed, 

the protein structure was again randomly separated at a different cleavage site and the 

survey for the atomistic contact interactions of each of the interface residues was repeated. 

This process repeated 40 times for each of the protein structures in the 9468 

non-redundant protein structures with less than 60% sequence identity [45]. After the 

survey on all the non-covalent interacting atom pairs, the database was organized into a 

large number of files; each file is specific to an amino acid type, a conformational type 
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based on the torsion angle vector of the amino acid, an atom type in the parent amino acid, 

and the interacting atom type. The structure of the data files facilitates the speedy random 

access of the database in predicting distribution of probability density maps (PDM) of 

non-covalent interacting atoms as described in the following section. Atoms in the 20 

natural amino acids are assigned to one of the 30 interacting atom types found in proteins 

plus the crystal water oxygen as the 31
st
 atom type (Table 1). 

Water oxygen distributions around the surface amino acids in 915 non-redundant protein 

structures solved to high resolution (resolution<1.5Å , sequence identity less than 30%, 

different graph topology and subunit structure) [46] were recorded with the same P-R-Q 

reference coordination system and were stored in the same file system as described above. 

Water oxygens within 3.2 Å  radius (within hydrogen bonding distance) to the interacting 

amino acid atoms were recorded in the database. This database was used for evaluating 

the desolvation penalties and water-mediated interactions in protein-protein interaction 

interfaces. 
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Table 1 –Atom types for 20 natural amino acids in proteins. The 

Table was derived from Laskowski et al [44] with modifications. 

 

ID # Atom Type Radius(Å ) Description 

1 NH1      1.65 Backbone NH                                                 

2 C        1.76 Backbone C                                                  

3 CH1E     1.87 Backbone CA (exc. Gly)                                      

4 O        1.40 Backbone O                                                  

5 CH0      1.76 Arg CZ, Asn CG, Asp CG, Gln CD, Glu CD 

6 CH1S     1.87 Sidechain CH1: Ile CB, Leu CG, Thr CB, Val CB 

7 CH2E     1.87 Tetrahedral CH2 (except CH2P,CH2G) All CB 

8 CH3E     1.87 Tetrahedral CH3                               

9 CR1E     1.76 Aromatic CH (except CR1W, CRHH, CR1H)  

10 OH1      1.40 Alcohol OH (Ser OG, Thr OG1, Tyr OH) 

11 OC       1.40 Carboxyl O (Asp OD1, OD2, Glu OE1, OE2) 

12 OS       1.40 Sidechain O: Asn OD1, Gln OE1 

13 CH2G     1.87 Gly CA                                        

14 CH2P     1.87 Pro CB, CG, CD  

15 NH1S     1.65 Sidechain NH: Arg NE, His ND1, NE1, Trp NE1  

16 NC2      1.65 Arg NH1, NH2 

17 NH2      1.65 Asn ND2, Gln NE2 

18 CR1W     1.76 Trp CZ2, CH2 

19 CY2      1.76 Tyr CZ                                                      

20 SC       1.85 Cys S                                                       

21 CF       1.76 Phe CG                                                      

22 SM       1.85 Met S                                                       

23 CY       1.76 Tyr CG                                                      

24 CW       1.76 Trp CD2, CE2 

25 CRHH     1.76 His CE1                                                     

26 NH3      1.50 Lys NZ                                                      

27 CR1H     1.76 His CD2                                                     

28 C5       1.76 His CG                                                      

29 N        1.65 Pro N                                                       

30 C5W      1.76 Trp CG                                                      

31 HOH      1.40 Water                                                       
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2.1.3 Predicting probability density maps (PDM) of 

non-covalent interacting atoms for protein surfaces 

A probability density map (PDM) of a non-covalent interacting atom type is a 

three-dimensional distribution of likelihood for the type of atom to appear around protein 

surface amino acids. In this work, the PDMs were reconstructed from the interacting atom 

pair databases described in the previous section for the 31 interacting atom types shown in 

Table 1.  

To construct a PDM for an interacting atom type on a target protein surface, the computer 

algorithm first enclosed the target protein structure in a rectangular box clearing the 

structure by a margin of at least 7 Å  from all sides of the protein’s edge. The 

three-dimensional rectangular box was then gridded with 0.5 Å  per unit in 

three-dimensional space. This grid size was a balance between the resolution of the PDM 

and the computational resources needed for the PDM construction. The grid points 

enclosed within the Connolly surface [47] of the target protein were masked from 

assigning PDM.  

The torsion angles of sidechain and mainchain of all the amino acids in the protein 

structure were calculated with MOLMAN2 and DSSP respectively. For each of the amino 

acid residues in the protein, the conformational type of the amino acid X was determined 

by the torsion angle vector, which had the least Euclidean distance to the centroid 

conformation of the assigned conformational cluster. With the assignment of the 

conformational type for each of the amino acids in the protein structure, the non-covalent 
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interacting atoms around each atom P in the protein structure were allocated from the 

database according to the atom type of P, the assigned three-atom reference system P-R-Q 

as described in the previous section, the amino acid type of the parent residue containing 

atom P, and the conformational type of the parent amino acid. Interacting atoms outside 

the sphere with the radius equal to the sum of the van der Waals radii of the interacting 

atom and atom P plus a tolerance of 0.5 Å  were not included as the interacting atoms with 

atom P. The coordinates of the allocated interacting atoms were transformed to the 

coordination system of the protein structure and mapped around the protein surface. An 

atom of non-covalent interaction was to be mapped only once for which the distance of 

the atom to P was the shortest. 31 PDMs were constructed from all the interacting atoms 

allocated for all the protein atoms (30 atom types) in the protein structure. 

In order to keep PDMs high in information content and low in noise from irrelevant 

interactions, two strategies have been implemented. First, allocation of interacting atoms 

according to the amino acid conformational type (as described above) is crucial for 

retaining information content in PDMs. Alternative approach for PDM construction with 

interacting atoms allocated from mixed amino acid conformational types would lead to 

loss of fidelity in relative orientations of the interacting atoms, resulting in spreading 

PDMs around dihedral bonds. We found that mapping interacting atoms obtained from an 

atom in an amino acid conformational type onto the surroundings of the atom in another 

amino acid conformational type led to serious spatial distortion of the distribution of the 

interacting atoms. Second, only interacting atomic pairs in the database are used for PDM 

constructions. Atom pairs in the database were recorded by a threshold of distance in 
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proximity. But frequently, many of such distributions of proximal atom pairs are results of 

covalent structures of non-interaction pairs in a nevertheless stable structure. In this work, 

non-interacting atomic pairs were eliminated with a filter Table as shown in Table 2 [1]. 

Only the atomic pairs with the value in the matrix of the Table less than -0.1 were 

considered as interacting pairs and only these interacting atoms were included in the PDM 

constructions. 

PDMs were constructed by mapping the interacting atoms allocated from the database 

as described in the previous paragraphs to the 3D grid system. To construct the PDM, each 

of the interacting atoms was distributed to 8 nearest grid points; the portion of the 

distribution was normalized by the database redundancy and was inversely proportional 

to the square of the distance from the atom to the grid: 
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, where vji is the value to be accumulated at a nearest grid point j for interacting atom i; dji 

is the distance of grid point j to the center of the interacting atom i; grid points indexed 

k=1~8 are the nearest grids to the atom i; n is the number of residues collected in the 

database for the amino acid in the target protein with the conformational type defined by 

the torsion angle vector; pi is the background probability for atom type i to appear in all 

protein structures (when calculating water oxygen PDM, pi equals to 1). The factor 1/n in 

the Equation is to normalize the interacting atom density according to one conformation 

for each of the residues in the target protein and the background probability pi is to 
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normalize the PDM based on the appearance frequency of the atom type i in proteins 

(except for water oxygen). The PDM for each of the interacting atom types was additively 

accumulated to completion as each of the atoms in the target protein surface finished 

contributing to the PDMs.  

PDMs constructed for 31 interacting atomic types on the surface of 20 natural amino acids 

and their various conformations are displayed online: 

http://ismblab.genomics.sinica.edu.tw/introduction/diaa/. Figure 1 shows a set of PDMs 

on the example protein surface. 

 

 

 

 

http://ismblab.genomics.sinica.edu.tw/introduction/diaa/
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1  
Contour cutoff = 0.0005 

2  

Contour cutoff = 0.0005 
3  

Contour cutoff = 0.0005 

4  

Contour cutoff = 0.0005 
5  

Contour cutoff = 0.0005 
6  

Contour cutoff = 0.0005 

7  
Contour cutoff = 0.0005 

8  
Contour cutoff = 0.0005 

9  
Contour cutoff = 0.0005 
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10  

Contour cutoff = 0.0005 
11  

Contour cutoff = 0.0005 
12  

Contour cutoff = 0.0005 

13  

Contour cutoff = 0.0005 
14  

Contour cutoff = 0.0005 
15  

Contour cutoff = 0.0005 

16  

Contour cutoff = 0.0005 
17  

Contour cutoff = 0.0005 
18  

Contour cutoff = 0.0005 
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19  

Contour cutoff = 0.0005 
20  

Contour cutoff = 0.0005 
21  

Contour cutoff = 0.0005 

22  

Contour cutoff = 0.0005 
23  

Contour cutoff = 0.0005 
24  

Contour cutoff = 0.0005 

25  

Contour cutoff = 0.0005 
26  

Contour cutoff = 0.0005 
27  

Contour cutoff = 0.0005 
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28  

Contour cutoff = 0.0005 
29  

Contour cutoff = 0.0005 
30  

Contour cutoff = 0.0005 

31  

Contour cutoff = 0.0005 
 

Figure 1 – Probability density maps and encoded features of human vascular 

endothelial growth factor A (VEGF). Structure of VEGF is extracted from PDB ID 

2FJG chain V and W. Number 1 to 31 in each cell of the table corresponds to each of the 

interacting atom types defined in Table 1 of the main text. The PDMs are shown in 

contours colored according to the interacting atom type: cyan for nitrogen, black for 

carbon, and magenta for oxygen. The contour level is set to 0.0005. Color spectrum of 

protein atoms in each cell are based on the corresponding ai,j values. Solvent 

inaccessible atoms are colored in gray. Interactive 3-D graphic presentation of the 

PDMs can be viewed from the web server http://ismblab.genomics.sinica.edu.tw/ > 

gallery. 

http://ismblab.genomics.sinica.edu.tw/
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2.2 Machine learning for probability density maps 

(PDMs) on protein surfaces  

2.2.1 PDM-based attributes as inputs for machine learning 

algorithms 

One machine learning model was trained for each of the 30 protein atom types (atom 

types 1~30 in Table 1). The input attributes for each of the machine learning models were 

calculated from the PDMs on the protein surface. For each protein atom i, the PDM values 

for interacting atom type j associated with the grids within 5 Å  radius centered at the atom 

i were summed and associated with the center of the atom as Si,j: 





Akir

k jkji gS
5,

,,
                             (2) 

where ri,k is the distance between atom i to a grid point k; gk,j is the PDM value of atom 

type j at grid point k. 

The distance-weighted sum (Ai,j ; j=1~31 for the 31 interacting atom types 1~31 in Table 1) 

over Sk,j for atoms k within 10Å  from atom i was calculated with Equation (3). 
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where Si,j is defined in Equation (2); di,k is the distance between atom i and atom k; di,n is 

the distance between atom i and atom n. Ai,j encodes complementarity information on 

interacting atom type j over a circular protein surface patch centered at atom i on the 
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protein. The 32
nd

 attribute for the atom i was the fraction of the space not occupied by the 

van der Waals volume of the protein in the 10 Å  sphere centered at the atom i. 

The attributes ai,j (j=1~31 for the 31 interacting atom types in Table 1, and j=32 for the 

geometry attribute) associated with protein atom i as inputs for the machine learning 

algorithms were scaled between 0 and 1. Equation (4) shows the calculation of ai,j from 

Ai,j (j=1~32):  

if Ai,j > Mmax,j then ai,j=1; otherwise, 

if Ai,j < Mmin,j then ai,j=0; otherwise, 

jj

jji

ji
MM

MA
a

min,max,

min,,

,



                    (4) 

where Mmax,j is the median of the distribution of the maximal Ai,j from each of the proteins 

in the S432 non-redundant protein data set (see below) and Mmin,j is the median of the 

distribution of the minimal Ai,j of the same dataset. Figure 2 shows the plots of Mmin,j and 

Mmax,j against the 32 attribute types. 
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Figure 2 –  Mmin,j (in square symbols) and Mmax,j (in diamond symbols) against the 32 

attribute types. The maximum and minimum Ai,j values were derived from each protein 

in S432 and the medians of the maximum (Mmax,j j=1~32, shown in diamond symbols) 

and the minimum (Mmin,j j=1~32, shown in square symbols) are plotted against the 

attribute index. These values were used for normalization of Ai,j (Equation (4)). 

2.2.2 Datasets 

Three datasets were downloaded from the SPPIDER website [23]. These data sets include 

a training set, S435, a test set, S149, and an unbound dataset, S21a. We made several 

modifications to the datasets as the following: Chain A of PDB ID 1GY9 was removed 

because the complex described in Elkins et al. [48] could not be found in the current PDB. 

Chain A and C of PDB ID 1DF9 were removed since the records were obsolete. By 

removing the three proteins from S435, we obtained a dataset named S432. For the 

independent test set, seven proteins were removed for the following reasons: Chain A and 

B of PDB ID 1NRJ were removed because they already existed in the training set. Chain 
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K and L of PDB ID 1N13, chain D of PDB ID 1NF3, and chain D of PDB ID 1L9W were 

removed because they were identical to chain A and B of PDB ID 1N13, chain C of PDB 

ID 1NF3, and chain A of PDB ID 1L93 in the training set, respectively. Chain A of PDB 

ID 1PUG was removed because it was a hypothetical protein. By removing seven proteins 

from S149, we obtained the independent test set S142. For the unbound dataset, chain A 

of PDB ID 1GQN and chain A of PDB ID 1RZX were removed because they were 

identical to chain A of PDB ID 1L93 and chain C of PDB ID 1NF3 in the training set, 

respectively. Chain A of PDB ID 1J8B was removed because it was a hypothetical protein. 

Chain A of PDB ID 1NX6 was removed because its interface was engineered with two 

insertions compared to its bound state protein, chain A of PDB ID 1T4B. By removing the 

four proteins from S21a, we obtained the unbound dataset S17a.  

In order to test the performance of the predictors devised in this work with other 

comparable predictors in the public domain, we downloaded protein complex structures 

released in 2011 from PDB website with the following criteria: 1) resolution is less than 

3.0 Å , 2) chain length is greater than 100 amino acids, 3) entry has two subunits in 

biological ensemble, 4) entry does not have DNA, RNA, ligands, or modified residues, 5) 

there is no missing atom in the PDB files, and 6) pairwise sequence identity between any 

two proteins is less than 30%. The protein chains were further filtered to ensure none of 

them share greater than 30% sequence identity to proteins in S432, the training set used in 

this work as described in the previous paragraph. This set of 58 protein chains, denoted 

S58, was used as the test set for the comparison of prediction capabilities among different 

PPI site prediction servers. 
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2.2.3 Determining biologically relevant PPI sites 

All PDB chain records in the three datasets above were checked with PQS (protein 

quaternary structure) server [49] to determine the biologically relevant PPI sites, so that 

crystal packing interfaces were removed and biological units were reassembled from 

asymmetric units. PPI sites at atomistic level were defined with the difference of solvent 

accessible surface area (dSASA) upon complex formation by NACCESS software [50] as 

below.  

iu

iciu

i
SASA

SASASASA
dSASA

,

,, 

,

          (5) 

where SASAu,i and SASAc,i are the SASA of atom i in the uncomplexed and complexed 

state, respectively. An atom i was defined as a PPI site atom when dSASAi is greater than 

0. 

2.2.4 Artificial neural network (ANN) 

The standard feed-forward back-propagation neural network [51] was used to learn the 

weight of the network by employing gradient descent to minimize the sum of squared 

error between the network output values and the target values. The input layer consisted 

of 32 nodes for the input attributes described in Equation (4). The only hidden layer 

contained 15 nodes. The output layer had a single node with the activity value between 0 

and 1, matching the negative and positive cases respectively for the atoms in PPI sites as 

defined in Equation (5). Sigmoid function, denoted as sf, was used as the transfer function 

for the hidden and output layers of of the ANN network. 
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1)]xexp(1[)x(sf 

                              

(6) 

As an alternative to the more common Levenberg-Marquardt back-propagation training 

algorithm [52], the very high speed resilient back-propagation (RPROP) training 

technique was used [53, 54]. Resilient propagation is capable of automatic adjustment for 

learning rate and momentum. It has the advantage of faster convergence while requiring 

less manual determination of network parameters. Each of the ANN models was trained 

for 1000 iterations. During training, the model was tested on validation set after every ten 

training iterations. The number of training iteration which yielded the best MCC (see 

below for MCC definition) on the validation set was used to determine the predictors. The 

open source java-based neural network library ENCOG was used for the implementation.  

2.2.5 Support vector machines (SVM) 

The details of the standard SVM methodology implemented with LIBSVM package has 

been described previously [33]. In brief, the SVM is a two-class classification approach 

with a maximized-margin hyperplane, where margin is the distance from the separating 

hyperplane to the closest data point [55, 56]. The cost (c) and gamma (γ) parameters of the 

SVM were optimized with grid searching for the optimal MCC using only the training 

dataset. 

2.2.6 Bootstrap aggregation (BAGGING) 

Since non-binding atoms in the training set greatly outnumbered binding atoms, ordinary 

machine learning algorithms would produce learning biases without suitable treatment. 
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The methodology included multiple predictors to produce an ensemble of prediction 

results [57]. Each individual classifier in the predictor ensemble was trained with a 

different sampling (bag) of the training set, and the final prediction was calculated by 

averaging with equal weight the output values from the predictors [58]. In each bag, all of 

the positive cases were included, along with randomly sampled negative cases that were 

1.5 times as many as positive cases. The bag number was set to ten, which balanced the 

need for effectiveness and training efficiency. All the ten bags were used to train either a 

set of ANN models (named ANN_BAGGING) or a set of SVM models (named 

SVM_BAGGING).  

The machine learning parameters can be downloaded from the web-server 

http://ismblab.genomics.sinica.edu.tw/ >Download. The attributes ai,j (j=1~31 for the 31 

interacting atom types in Table 1, and j=32 for the geometry attribute) associated with 

protein atom i for all proteins in the data sets S432, S142, S17a, S58 can be downloaded 

from the same web-server. 

2.2.7 Prediction capacity benchmarking 

The prediction capabilities of the machine learning models were benchmarked by 

accuracy (Acc), precision (Pre), sensitivity (Sen), specificity (Spe), F-score, and 

Matthews correlation coefficient (MCC) [59].  

FNFPTNTP

TNTP




 Acc

                                               
 (7) 
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where TP is the number of true positives; TN the number of true negatives; FP the number 

of false positives; and FN the number of false negatives. Sensitivity (also known as recall) 

can be viewed as a measurement of completeness, whereas precision is a measurement of 

exactness or fidelity. MCC, as a measurement of the quality of two class classifications 

(positive and negative), is generally regarded as a balanced measurement which can be 

used even if the classes are of very different sizes. Its value ranges between -1 and 1; 

random correlation gives MCC of zero while perfect correlation yields MCC of one. 

2.2.8 Prediction confidence level 

Prediction activity (ANN_BAGGING) or probability (SVM_BAGGING) with value 

ranging from 0 to 1 from the output of the machine learning algorithm was normalized to 

prediction confidence level so that the prediction results from different machine learning 

models can be compared on a level ground. For each of the 30 protein atom types, the 
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machine learning outputs from the validation sets were sorted into bins of interval 0.1. 

The prediction confidence level for each of the bins was calculated as the fraction of the 

true positives over the total number of predictions in the bin. In the end, lookup-tables for 

output-confidence relationships were constructed; the machine learning outputs can be 

converted to prediction confidence levels with these lookup tables. Figure 3 shows the 

relationships between machine learning outputs and the prediction confidence levels for 

each of the trained machine learning models. 

 

 

 

 

(a
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Figure 3 – Lookup charts converting output activity (probability) from the 

corresponding machine learning predictor to prediction confidence level. For each of 

the 30 protein atom types, the machine learning outputs from the validation sets were 

sorted into bins of interval 0.1. The confidence level of each of the bins was calculated 

as the fraction of true positive over the total number of predictions in the bin. The 

panels (a) and (b) are derived from ANN_BAGGING and SVM_BAGGING 

predictions respectively. In each of the panel, two sets of curves are shown; one set for 

the prediction confidence level described as above (i.e., the positive prediction 

confidence); the other set for the negative prediction confidence. The sum of the 

positive prediction confidence level and the negative prediction confidence level equals 

to one. 

(b) 
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2.2.9 Five-fold cross validation and independent test 

Five-fold cross validation was performed for each of the 30 protein atom types in the 

S432 dataset. Each dataset was randomly divided into 5 equal portions with similar 

distributions of positive and negative cases. One portion of the dataset was selected as test 

set, another one portion as validation set, and the rest as training set. The training set was 

used to train the models, and the validation set was used to optimize the prediction 

parameters so as to achieve the best predictive capability without over-fitting. The 

optimized models were then benchmarked by the test set. The process took turns to 

benchmark prediction accuracy on the 5 non-overlapping test sets with the predictors 

optimized with the corresponding training and validation set. The accuracy benchmarks 

were the averaged results from the 5-fold cross validation.  

For each of the predictors, an optimal threshold for the output activity value was 

determined with the validation set. Positive predictions have the output activity values 

greater than or equal to the threshold; the negative predictions have the output activity 

values smaller than the threshold. With these thresholds, the TP, TN, FP, and FN in 

Equations (7)~(12) were determined and the accuracy benchmarks were calculated. The 

thresholds for the predictors of all 30 atom types were determined to optimize the MCC 

for the predictions with the validation set. 

Five predictors for each protein atom type were optimized after performing the 5-fold 

cross validation on the S432 dataset. The predictors which yielded the best testing 

performance were assessed in the independent test with S142, S17a, and S58 dataset. 
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2.3 Prediction of patches of atoms as protein-protein 

binding sites 

A protein-protein binding site was predicted by a cluster of surface atoms predicted as 

positive cases with high prediction confidence level. Protein surface atoms in PPI sites 

with prediction confidence level greater than 60% were used as cluster centers to include 

neighboring surface atoms within radius of 11 Å . Within each of the surface patches, all 

the surface atoms with the confidence level for positive prediction greater than 20% were 

included in the tentative patch of atoms as a PPI site. If the pairwise distance of any two 

seeds was within 10 Å , the two corresponding patches were merged as one patch. The 

parameters were optimized for residue-based prediction accuracy with the validation set. 

2.4 Residue-based predictions for the PPI sites 

To facilitate comparison of this work with previous methods predicting binding sites at 

the residue level, a heuristic procedure was used to transform the atom-based binding site 

predictions as described in the previous paragraph into binding site predictions at the 

residue level: only the residues with more than 30% of the surface atoms (SASAu>0) 

included in the atom-based binding patch were considered as positive residues of the 

residue-based patch. Similarly, actual PPI sites at the residue level were defined by 

patches of positive residues, each of which has more than 30% of the surface atoms 

(SASAu>0 in the uncomplexed structure) on the residue defined as PPI atoms (dSASA>0, 

as shown in Equation (5)). This definition enabled the comparison of prediction results 

with actual binding sites at the residue level. The percentage parameter was optimized for 
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residue-based prediction accuracy with the validation set. 

2.5 Computational efficiency for predicting PPI sites in 

a typical protein 

The building of PDMs for a typical protein of 200 residues with Intel Xeon X5650 

(2.67GHz) CPU is around 50 minutes with single thread and around 23 minutes with two 

threads. The following procedures for generating input attributes and for predicting with 

machine learning models take less than 20 seconds. 

2.6 Mann-Whitney U-test 

Mann-Whitney U-test is a non-parametric statistical method to test whether two groups of 

numerical values come from identical continuous distributions of equal medians – 

increasing p-value indicates decreasing difference of the two distributions and p-value of 

1 indicates that the two distributions are statistically indistinguishable. The 

Mann-Whitney U-tests were carried out with the statistic tool ranksum in MATLAB 

(http://www.mathworks.com/help/toolbox/stats/ranksum.html). 

2.7 Web site 

Predictions can be submitted to the webserver 

http://ismblab.genomics.sinica.edu.tw/. All the benchmark results can also be accessed in 

interactive graphic presentations from the same web address above. 

http://www.mathworks.com/help/toolbox/stats/ranksum.html
http://ismblab.genomics.sinica.edu.tw/
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Chapter 3  

Results and Discussions 

3.1 Statistical analysis of physicochemical 

complementarities in known PPI interfaces 

It has been well-established that geometrical and physicochemical complementarities are 

critical determinants in PPI interfaces [5]. The amino acid preferences and packing 

density for PPI core interfaces resemble those of protein interior [4, 60]. The 

physicochemical complementarities among interface residues are characterized by 

hydrophobic interactions in the core interface regions and polar interactions in the rim 

regions of the interfaces [2-4, 7, 61, 62]. Based on the general description of typical PPI 

interfaces, we hypothesized that the distribution patterns of the non-covalent interacting 

atoms on a PPI surface should provide abundant information in distinguishing PPI surface 

regions from non-PPI surface regions. 

Figure 4 demonstrates the validity of the hypothesis above. The physicochemical 

complementarities around the protein surface atom i were simulated with the PDMs of 

non-covalent interacting atoms and were described with the 32 numerical features 

calculated with Equation (2) (i.e., Ai,j for interacting atom type j=1~31 as shown in Table 

1; j=32 derived from protein surface geometry). The matrix element (j,i) in Figure 4 

shows the Mann-Whitney U-test result for the two groups of Ai,j: one group of Ai,j was 

calculated for the interacting atom type j around the surface atom type i in the known PPI 
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sites on proteins in the S432 dataset and the other group was calculated for the same 

interacting atom type around the non-PPI site atom type i in the same dataset. The matrix 

elements showing decreasing p-value substantially less than the statistical threshold of 

0.025 are colored in red with increasing depth. These U-test p-values reflect the 

significant statistical differences in the attributes calculated from the PDMs or surface 

geometry between the protein surface atoms in known PPI sites and the atoms outside 

known PPI sites.  
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Figure 4 –Mann-Whitney U-tests for the distributions of numerical attributes around 

protein surface atoms. The y-axis of matrix shows the atom type index (i=30 protein 

atom types shown in Table 1) and the x-axis shows the j index for the 32 Ai,j features, 

where j=1,31 represents the 31 interacting atom types shown in Table 1 and the 32nd 

feature reflects the local geometry of the protein surface. The matrix element (j,i) shows 

the Mann-Whitney U-test p-value in color-code for the two groups of Ai,j : one group 

of Ai,j was calculated for the attribute type j around the surface atom type i in the known 

PPI sites on proteins in the S432 dataset and the other group was calculated for the 

same attribute type around the non-PPI site atom type i in the same dataset. The 

p-values were calculated with the Mann-Whitney U-test implemented as the function 

ranksum in MATLAB. Two sets of data were input to the function and the output 

p-value is the probability for the two distributions of data to be statistically 

indistinguishable. The plus(+) sign in the matrix element indicates that the averaged 

feature value for the PPI site atoms is larger than the averaged feature value for the 

non-PPI site atoms and the negative(-) is the opposite. The panel on the right-hand-side 

of the matrix shows the distributions of protein surface atoms in PPI sites (blue) and 

non-PPI protein surfaces (red) against protein atom type. The data were derived from 

proteins in S432. 

3.2 Consistency of the U-tests of the physicochemical 

complementarity features with previous statistical 

observations 

The U-test results shown in Figure 4 are comparable with general PPI site characteristics 

from previous statistical observations. Space around the main chain atoms (rows of 

y=1~4) in PPI sites are enriched with higher densities of interacting backbone carbonyl 

group (x=2,4) and are neighbored by higher densities of  interacting hydrophobic and 

aromatic carbons (x=6~9), while the interacting charged atoms (x=11, 15~16, 25~28) are 

largely depleted near the main chain atoms in the PPI sites. This is in agreement with the 
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observation that main chain atoms are frequently used in polar interactions in PPI [3]. In 

particular, the carbonyl oxygen (row of y=4) is most frequently used in hydrogen bonding 

in PPI sites [3]. Aliphatic and aromatic carbons (rows of y=6~9) in PPI sites are 

surrounded with high density of interacting aliphatic carbons, aromatic carbons, and 

atoms from Met and His (x=6~9,18~25, 27~30), while charged interacting atoms (x=11, 

in particular x=26 for Lys Nz) are also depleted in the PPI sites. But, interestingly, Arg 

(x=15,16) remains favorable in the PPI sites near the aromatic carbons (y=9), in 

particularly with atoms from Trp (y=18,24,30). Arg also interacts with carboxyl oxygen 

(y=11) more in the PPI sites. This is largely in consistent with the knowledge-based 

pairwise potentials devised with protein-protein interaction datasets [5, 62]. The sulfur 

atom of Cys is highly enriched in the PPI sites as interacting atoms (column x=20), in 

good agreement with the high interface propensity for Cys [63]. Interacting water 

molecules (column x=31) are more dense in PPI sites near polar atoms 

(y=1~4,10~13,16~17). This is in consistent with the statistical survey by Rodier et al. [8], 

suggesting that water molecules in the PPI interfaces play important roles in protein 

complex formation. The results in the last column (column of x=32) suggest that PPI sites 

are more flat or convex than non-PPI surfaces, which is in good agreement with the 

survey by Jones and Thornton [63]. Although the dataset did not provide enough 

statistical resolution for rows of y=18~30 (see the dataset distribution indicated by the 

histogram next to the U-test matrix), the consistencies listed above nevertheless suggest 

that the distribution patterns of the non-covalent interacting atoms predicted with the 

PDMs on PPI interfaces can provide statistical characteristics in distinguishing the known 

PPI sites from the other protein surface regions that have not been known to bind to 
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proteins. Since the PDMs were derived from known protein structures, the correlation 

between the PPI interface features (Figure 4) predicted with the PDMs and those derived 

from surveys of PPI interfaces also implies that both protein folding and binding are 

governed by similar energetic principles. 

3.3 Atom-based PPI site predictions with machine 

learning models based on physicochemical 

complementarity features 

The results in Figure 4 indicate that the 31 features calculated with PDMs (a set of 

example PDMs on a protein are shown in Figure 1) and the 32
nd

 feature based on the 

surface atom local geometry for each of the 30 protein atom types can be used as effective 

attributes in training machine learning models for PPI site predictions. Machine learning 

algorithms ANN_BAGGING and SVM_BAGGING were trained for each of the 30 

protein surface atom types with five-fold cross validation on the S432 dataset as described 

in the Methods section. The atom-based MCCs for the five-fold cross validation for each 

of the atom types are summarized in Figure 5. The benchmarks for the prediction models 

are shown in Table 3. The differences of the averaged performance for the two machine 

learning algorithms are essentially indistinguishable (Figure 5 and Table 3), and thus only 

the ANN_BAGGING models with the best performance were used to benchmark on the 

S142 dataset as an independent test. The benchmark results on the independent test are 

compared with the five-fold cross validation in Figure 5 and in Table 3. The benchmark 

results for the independent test were comparable with the five-fold cross validation results, 

indicating that the machine learning predictors can be generalized to predict PPI sites on 
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protein surfaces of unknown interaction partners. Figure 5 shows that the prediction 

models for the atom types from hydrophobic residues with aliphatic and aromatic side 

chains (atom type index=8,9,18~24,30) were predicted with relatively higher accuracies 

than the atom types from main chain and hydrophilic side chains. This suggests that the 

core PPI interfaces composed of hot-spot residues (except Arg) are more distinguishable 

as PPI sites in comparison with the surrounding rim regions populated with higher 

percentage of polar groups. 

 

Figure 5 – Atom-based prediction accuracies for each of the 30 protein atom types.  The 

x-axis represents indexes for the 30 atom types shown in Table 1. The y-axis shows 

averaged two-class prediction MCCs from the 5-fold cross validation of the 

ANN_BAGGING and SVM_BAGGING predictors trained and tested for each of the 

specific protein atom type with the S432 dataset. The prediction MCCs for the 

independent test with ANN_BAGGING on the S142 dataset are also shown for 

comparison. 
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Table 3 – Benchmarks for atom-based PPI site predictions. Five-fold Cross validation 

was performed on the S432 dataset with ANN_BAGGING and SVM_BAGGING. 

Independent test was performed on the S142 dataset with the best ANN_BAGGING 

predictors from the five-fold cross validation. The benchmark measurements are 

defined in Equations (7)~(12). 

Dataset/method Accuracy Precision Sensitivity Specificity MCC F-score 

S432/ANN_BAGGING 0.741 0.418 0.569 0.787 0.321 0.481 

S432/SVM_BAGGING 0.753 0.434 0.552 0.807 0.330 0.486 

S142/ANN_BAGGING 0.732 0.420 0.594 0.771 0.326 0.492 

 

The PPI surface patches on protein surfaces were predicted by combining the machine 

learning predictions for each of the surface atoms. The activity (probability) outputs from 

the machine learning models were first converted into prediction confidence levels so that 

surface atoms with high confidence level predictions can be clustered into surface patches 

as PPI sites (see Methods). Figure 6 shows a few examples of protein surface PPI site 

predictions, compared side-by-side with actual PPI sites, with various prediction 

accuracies (residue-based MCC ranging from 0.7 to 0.1). The complete set of prediction 

results on the proteins from the training and test sets can be viewed with interactive 3-D 

structural presentation from the web server http://ismblab.genomics.sinica.edu.tw/> 

benchmark > protein-protein. 

 

http://ismblab.genomics.sinica.edu.tw/
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Figure 6 –Visualization of prediction results for example protein targets with 

different prediction accuracy. Panels (A) to (D) demonstrate four proteins with 

two-class prediction MCC of 0.650, 0.454, 0.262, and 0.107, respectively. The 

target proteins were selected from the S142 dataset. The predictions were carried 

out with the best ANN_BAGGING model from the 5-fold cross validation on the 

S432 dataset. In each panel, the left structure shows the atom-based positive 

prediction confidence level from blue (confidence level of 0) to red (confidence 

level 1) for each of the surface atoms. The middle structure shows the residue-based 

predictions. The atoms colored in red were predicted with confidence level greater 

than 0.6; atoms in orange are the atoms belonging to the residues in the 

residue-based PPI site prediction but the prediction confidence levels are less than 

0.6. The right-hand-side structure shows the actual PPI sites: the PPI surface atoms 

are colored according to dSASA (see Equation (5)) from blue (dSASA of 0 for 

atoms not involving in PPI) to red (dSASA of 1 for atoms completely buried in the 

protein complex). The color-codes are shown at the top of the figure. Atoms not 

used in prediction (colored in yellow) belong to residues with incomplete phi and 

psi angles, as in the N-termini or C-termini of proteins. The non-surface atoms are 

colored in gray. The complete prediction results can also be viewed in color-coded 

3-D protein structures from the web server http://ismblab.genomics.sinica.edu.tw/> 

benchmark > protein-protein. 

3.4 Residue-based PPI site predictions with machine 

learning models based on physicochemical 

complementarity features and the comparison of 

the prediction benchmarks among comparable 

predictors 

Residues in the predicted PPI surface patches were predicted based on the atom-based PPI 

site predictions (see Methods) and were benchmarked with the residues in actual PPI sites. 

The example residue-based PPI site predictions are also compared side-by-side with the 
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atom-based predictions and the actual PPI sites in Figure 6. The residue-based MCC for 

each of the amino acid types are shown in Figure 7. The accuracy benchmarks are 

summarized in Table 3. Again, the two machine learning algorithms are comparable in 

terms of the prediction performance (Table 4 and Figure 7). The generalized prediction 

capacity of the ANN_BAGGING models was demonstrated with the results of the 

independent test, for which the results were essentially indistinguishable from the results 

of the five-fold cross validation as shown in Figure 7 and Table 4. The prediction results 

can also be viewed in color-coded 3-D protein structures from the web server 

http://ismblab.genomics.sinica.edu.tw/> benchmark > protein-protein. 

The distribution of prediction accuracy for proteins in the S432 and S142 dataset are 

shown in Figure 8, for which the overall benchmark results are summarized in Table 4. 

The independent test (MCC=0.423) for the residue-based PPI site predictions, as shown 

in Table 4, can be compared with previous publications based on the same training and 

test datasets. Porollo et al. [23] developed SPPIDER predictor for PPI site residue 

predictions with essential the same training and test datasets based on a combination of 

structural and sequence features. Their residue-based prediction MCC for the independent 

dataset is 0.42. In another work, a detailed analysis of the sequence and structural 

attributes on the same training and test datasets has concluded that the best performance 

for independent PPI site residue-based predictions yielded MCC of 0.37 on the same test 

set [9]. By taking away the evolutionary information from the prediction inputs, the MCC 

dropped to 0.34. Hence, the PPI site predictions based on the physicochemical 

complementarities derived from the PDMs on the protein surfaces are currently the best 

http://ismblab.genomics.sinica.edu.tw/
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structure-based predictors judging by the MCC of the residue-based predictions. The 

performance of the predictors developed in this work would be further improved if the 

evolutionary information of the query proteins is to be integrated into the prediction 

algorithms.  

 

 

Figure 7 – Residue-based two-class prediction MCCs for each of the 20 natural amino 

acid types. The MCCs were calculated as the average value from the 5-fold cross 

validation with the ANN_BAGGING and SVM_BAGGING predictors on the S432 

dataset. The independent test MCCs with the best ANN_BAGGING predictors from 

the 5-fold cross validation on the S142 dataset are also shown for comparison. 
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Table 4 – Benchmarks for residue-based PPI site predictions. Five-fold Cross 

validation was performed on the S432 dataset with ANN_BAGGING and 

SVM_BAGGING. Independent test was performed on the S142 dataset with the best 

ANN_BAGGING predictors from the five-fold cross validation. The benchmark 

measurements are defined in Equations (7)~(12). 

Dataset/method Accuracy Precision Sensitivity Specificity MCC F-score TP/TN FP/FN 

S432/ANN_BAGGING 0.759 0.512 0.662 0.791 0.420 0.578 13970/50458 13300/7118 

S432/SVM_BAGGING 0.748 0.495 0.709 0.761 0.424 0.583 14953/48528 15230/6135 

S142/ANN_BAGGING 0.753 0.519 0.677 0.779 0.423 0.588 4060/13298 3763/1934 

 

 

 

Figure 8 –The distributions of the prediction accuracies on the 5-fold cross validations 

and on the independent test. The y-axis on the left-hand-side of the panel is associated 

with the histograms, showing the distributions of the number of proteins in the 5-fold 

cross validations or in the independent test that were predicted with the MCC within the 

MCC range shown in x-axis. The y-axis on the right-hand-side of the panel is associated 



 

 45 

with the curves connecting the dots representing the cumulative percentage of the 

proteins predicted with the residue-based MCC shown in the x-axis. The 5-fold cross 

validations were carried out with the ANN_BAGGING and SVM_BAGGING 

predictors on the S432 dataset; the independent test was carried out with the best 

ANN_BAGGING predictors from the 5-fold cross validation on the S142 dataset. 

 

 

Table 5 compares the predictions results of a set of 17 test proteins with both bound and 

unbound structures. As expected, the predictions with the unbounded structures are less 

accurate than the bound structures. The PPI site predictions with unbound structures 

(MCC=0.326) are about the same in prediction accuracy as those by Porollo et al. 

(MCC=0.32), while the predictions with bound structures (MCC=0.364) are also the 

same as those by Porollo et al. (MCC=0.36) [23]. Accuracy benchmarks for each of the 

protein in S17a are shown in Table S5. The prediction results can also be viewed in 

color-coded 3-D protein structures from the web server 

http://ismblab.genomics.sinica.edu.tw/> benchmark > protein-protein. 

Furthermore, the prediction capacities of the predictors devised in this work have been 

compared with public domain servers using protein structures as input. The structures 

from the independent test set S58 (non-redundant protein complex structures from entries 

published in 2011, see Methods) were submitted to comparable public domain servers to 

predict PPI sites. The residue-based predictions were benchmarked. The overall MCC of 

0.40 of the ANN_BAGGING prediction is consistent with the benchmark results shown 

in Tables 4 and 5. The prediction results can also be viewed in color-coded 3-D protein 

structures from the web server http://ismblab.genomics.sinica.edu.tw/> benchmark > 

protein-protein. Table 6 shows the comparison of the prediction accuracies of the method 

http://ismblab.genomics.sinica.edu.tw/
http://ismblab.genomics.sinica.edu.tw/
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in this work with those from the PredUs [24, 64] server, which had the best performance, 

judging by the prediction results of the test set S58, among the comparable prediction 

servers accessible in the public domain. The prediction accuracy benchmarks shown in 

Table 5 are comparable between the two methods. 

Table 5 –Residue-based benchmark comparison between the bound state and unbound 

state of the proteins in the S17a dataset. Unbound state performances are based on the 

prediction results with the best ANN_BAGGING predictors from the 5-fold cross 

validation. Bound state performances are based on corresponding protein structures from 

the S142 dataset. The benchmark measurements are defined in Equations (7)~(12). 

Protein structure Accuracy Precision Sensitivity Specificity MCC F-score TP/TN FP/FN 

Unbound state 0.767  0.327  0.626  0.790  0.326  0.430  275/2133 566/164 

Bound state 0.777  0.402  0.613  0.811  0.364  0.486  322/2049 479/203 

 

 

Table 6 –Benchmarks for residue-based PPI site prediction for proteins in the S58 dataset. 

PredUs [24, 65] (http://bhapp.c2b2.columbia.edu/PredUs/) was unable to predict chain A 

of PDB ID 3myo and chain A of PDB ID 3ulc due to lack of “structural neighbors”. For 

the rest of the queries in PredUs predictions, the structural neighbor with PDB ID 

identical to the query protein was removed and the remaining structural neighbors were 

used for prediction. The PredUs predictions were compared with ANN_BAGGING 

prediction results as shown in the Table (detailed results are shown in Table S6). Only the 

prediction results for the protein surface residues (defined in Methods) were used for 

benchmarking. The benchmark measurements are defined in Equations (7)~(12). 

Method Accuracy Precision Sensitivity Specificity MCC F-score TP/TN FP/FN 

PredUs 0.785 0.455 0.576 0.835 0.377 0.508 1321/8025 1584/974 

ANN_BAGGING 0.777 0.446 0.654 0.806 0.403 0.530 1500/7744 1865/795 
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3.5 Contribution of the attributes to the machine 

learning prediction accuracy 

Figure 9 shows that the protein surface atoms predicted with high confidence level are 

more buried in the actual PPI sites and are mostly from hydrophobic and aromatic 

residues. Figure 9A shows the linear correlation between the prediction confidence level 

and the burial level – the higher the prediction confidence level for a surface atom to be in 

a PPI site, the more buried for the atom to be in an actual PPI interface. As expected, as 

shown in Figure 9B, the residues for which the atoms were predicted with confidence 

level  0.6 were mostly hydrophobic residues as Ile, Leu, Met, Phe, Tyr, and Val. The 

residue atoms predicted with modest confidence level between 0.2 and 0.6 are not as 

hydrophobic as those predicted with high confidence level (Figure 9B), and are not as 

hydrophilic as those predicted with confidence level less than 0.2 (Figure 9B). These 

results imply that the PPI sites with less prominent hydrophobic cores are less likely to be 

predicted with high accuracy. Indeed, this implication is validated in Figures 10~12. 
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Figure 9 – Correlations of PPI site prediction confidence level to atomic burial in 

protein complexes and to amino acid type. (A) Atom-based prediction confidence level 

range (shown in the x-axis of the panel) is correlated to the averaged burial level 

(measured by dSASA (Equation (5)) of the sub-group of atoms in the protein 

complexes predicted within the confidence level range. The correlation is shown by the 

diamond symbols, corresponding to the y-axis on the left-hand-side of the panel. The 

distribution of the atom-based predictions as shown by the curve, corresponding to the 

y-axis on the right-hand-side, is plotted against the prediction confidence level range in 

the x-axis. The data were derived from the independent test with the ANN_BAGGING 

predictors on the S142 dataset. (B) The histograms in this panel show the distributions 

of amino acid types in three groups of protein surface residues with various atom-based 
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prediction confidence level ranges. The first group of residues contained atom-based 

prediction confidence level  0.6 for at least one atom in each of the residues. The 

second group of residues contained atom-based prediction confidence level between 

0.6 and 0.2 for at least one atom in each of the residues. The third group of residues 

contained atom-based prediction confidence level less than 0.2 for at least one atom in 

each of the residues. The distribution of the percentage of the amino acid types in each 

of the three groups is shown by a histogram in the panel. The data were derived from the 

independent test of the best ANN_BAGGING predictors on the S142 dataset. 

 

Figure 10 shows that the prediction accuracy deteriorates as the actual PPI sites become 

smaller in size (Figure 10A) and less hydrophobic in amino acid composition (Figure 

10B). Figure 10C shows that the false positive ratios (FP/(TP+TN+FP+FN)) increases 

with greater rate than the false negative ratios (FN/(TP+TN+FP+FN)) as the MCC 

decreasing. This suggests that the decreasing accuracies of the PPI site predictions were 

resulted more from increasing false positive predictions. It is questionable as to whether 

the false positive predictions are truly false positives – these false positive PPI sites could 

be perceived as potential PPI sites that have not been validated experimentally. By 

comparing Figure 10D with Figure 10A~10C, it is evident that homo-oligomers, each of 

which is formed with a single polypeptide chain, have larger PPI interfaces (Figure 10A) 

and with more hydrophobic residues in the PPI sites (Figure 10B), and thus were 

predicted with less false positives and false negatives (Figure 10C) and higher accuracy 

(Figure 10D). In contrast, interfaces in hetero-oligomers are relatively smaller and more 

hydrophilic and are more difficult to be predicted accurately than the interfaces in 

homo-oligomers. 
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Figure 10 – Correlations of PPI site prediction accuracy to PPI features. The data were 

derived from the independent test of the best ANN_BAGGING predictors on the S142 

dataset. (A) PPI patch size averaged over the proteins predicted within the 

residue-based MCC range shown in the x-axis is plotted against the MCC range. Patch 

size is defined as the number of residues in the actual PPI-site. (B) PPI patch 

hydrophobicity ratio averaged over the proteins predicted within the residue-based 

MCC range shown in the x-axis is plotted against the MCC range. Hydrophobic 

residues include Ala, Cys, Ile, Leu, Met, Phe, Pro, Tyr, Trp, and Val. Ratio of 

hydrophobic residues was computed as the number of hydrophobic residues in the 
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PPI-site divided by the total number of residues in the site. (C) False negative ratio 

(FNR) and false positive ratio (FPR) averaged over the proteins predicted within the 

reisude-based MCC range shown in the x-axis is plotted against the MCC range. FNR 

was calculated as (FN/(TP+TN+FP+FN))×100%, and FPR was calculated as 

(FP/(TP+TN+FP+FN))×100%. The TP (true positive), TN (true negative), FP (false 

positive), and FN (false negative) were derived from residue-based predictions. (D) 

Distributions of homo-oligomers and hetero-oligomers are plotted against the 

residue-based MCC range. The detailed assignments of the PPI type for the proteins in 

the S142 dataset are shown in Table S4. MCC was calculated based on residue-based 

predictions. 

 

The blue histogram in Figure 11 shows the Pearson’s correlation coefficients between the 

prediction confidence level and the attribute types (j=1~32) calculated in Equation (4). 

The prediction confidence-attribute correlations are strongly dependent on the attribute 

type. As shown in the histogram, increasing prediction confidence levels are linearly and 

positively correlated with increasing values of the attributes derived from the aliphatic 

and aromatic carbons, suggesting that the PDM concentrations of these interacting atoms 

are greater around the protein surface atoms that are predicted to be in the PPI sites with 

high prediction confidence level. This is in good agreement with the notion that PPI 

interface cores are similar to protein interiors in hydrophobic amino acid composition, 

and thus are predicted with higher accuracy and confidence level. Attributes of 

hydrophilic atoms (NH3, NH1, NC2, OH1, NH1S, OC, NH2, OS, see Table 1) are not 

correlated with prediction confidence level (blue histogram in Figure 11), suggesting that 

the patterns of the PDMs derived from these hydrophilic atoms are indistinguishable 

between the PPI sites and the non-PPI sites, and thus contribute little to the PPI prediction 
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accuracy. This is in agreement with the notion that some regions of the PPI sites are as 

hydrophilic as the protein surface in general.  

The red histogram in Figure 11 shows the Pearson’s correlation coefficients between the 

positive (1 for PPI site atoms) or negative (0 for non-PPI site atoms) assignments for 

protein surface atoms and the attribute values for the atoms on the protein surface. In 

theory, attributes (x-axis) correlated to the positive or negative assignments with higher 

correlation coefficients (y-axis) should contribute statistically more weight in prediction 

accuracy. This expectation has been validated by the almost identical trends in comparing 

the red histogram with the blue histogram shown in Figure 11, indicating that indeed the 

contributions of the attributes to the prediction accuracy as indicated in the blue histogram 

are in good agreement with the statistical expectations shown in the red histogram. 

Moreover, comparison of Figure 4 and Figure 11 shows clearly the extent of contribution 

of the attributes to the prediction accuracy. As shown in Figure 4, the attributes (shown in 

the x-axis) with larger p-values from the U-tests (i.e., the columns for which the colors 

approach the blue end), such as attributes 1, 5, 10, 11, 12, 15, 16, 17, 27, 28, 31 (these 

attributes are denoted as NH1, CH0, OH1, OC, OS, NH1S, NC2, NH2, CR1H, C5, HOH 

respectively as defined in Table 1 and shown in Figure 11), are all correlated poorly with 

prediction confidence level (blue histogram in Figure 11) and PPI site assignment (red 

histogram in Figure 11). This result suggests that the U-tests shown in Figure 4 are strong 

predictors for the ranking of the contributions of the attributes to the machine learning 

prediction capability. 
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Figure 11 – Ranking of the attributes derived from PDMs. Each of the surface atoms i in 

the S142 dataset has a confidence level on the prediction of the atom to be in a PPI site. 

This prediction confidence level is correlated to various extents with the 32 attributes 

(ai,j (j=1~32) as shown in Equation (4)), which were used as inputs for the machine 

learning predictors in making the predictions. The blue histogram shows the 

correlations between prediction confidence levels and attributes derived from 

concentrations of PDMs. The Pearson’s correlation coefficients, which are the 

measurements for the linear correlations between the prediction confidence level and 

the attributes, are shown in the y-axis. The x-axis shows the feature types (Table 1), 

each of which corresponds to one of the ai,j. The red histogram shows the Pearson’s 

correlation coefficients between the positive (1 for PPI site atoms) or negative (0 for 

non-PPI site atoms) assignments for protein surface atoms and the attribute values for 

the protein surface atoms. 

3.6 Training of the machine learning models with 

subsets of protein-protein interaction interfaces 

The results above suggested a possibility that the prediction of PPI sites with more 
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hydrophilic residues might be improved with a training set containing only the 

hydrophilic interfaces. This possibility was tested by clustering the PPI sites of the 

proteins in the training set into two groups with distinguishingly different residue 

compositions. Type 1 PPI sites are centered on a representative surface patch with equal 

distribution of the hydrophobic and hydrophilic residues (44% hydrophobic, 47% 

hydrophilic, and 9% aromatic residues) and type 2 PPI sites are centered on a 

representative surface patch with more hydrophilic residues (25% hydrophobic, 66% 

hydrophilic, and 9% aromatic residues). Hydrophobic residues are Ala, Pro, Leu, Ile, Met, 

Cys, and Val; aromatic residues are Phe, Tyr, and Trp. The rest of the amino acid types are 

hydrophilic. Two datasets derived from S432, named DS_Type1 and DS_Type2, were 

generated with atoms labeled as positive for only type 1 PPI sites and type 2 PPI sites, 

respectively. Cross validation benchmark procedures as described above were applied to 

the two datasets. Figure 12 shows that prediction models trained and tested with type 1 

PPI sites were more accurate than those trained and tested with type 2 PPI sites, 

suggesting that PPI sites with hydrophobic or aromatic cores are predicted with 

substantially higher accuracy than the PPI sites composed of mostly hydrophilic residues. 

Figure 12 also suggests that training two sets of prediction models with two sets of PPI 

sites did not improve prediction accuracy. As shown in the Figure, the prediction models 

trained with the overall data set are not inferior to the predictions models trained by either 

of the datasets. Evidently, few rules can be learned statistically on the polar interactions in 

PPI sites to improve the PPI site prediction accuracy. 

Taken together, the PPI sites in homo-oligomers are usually formed with large interface 
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area with hydrophobic interface cores and hydrophilic peripheral areas. These PPI sites 

can be predicted with reasonable accuracy with the methodology developed in this work. 

As the PPI sites become smaller and more hydrophilic, as in the interfaces of some 

hetero-oligomers where hydrophobic cores become less prominent, the accuracy of the 

PPI site prediction deteriorates. In some of these interfaces, the rim regions make the 

dominant parts of the PPI sites and the interface cores become increasingly insignificant 

as the interface size decreases [5, 11, 42, 63]. The PPI sites in these complexes are 

increasingly indistinguishable from the non-PPI protein surfaces, and as a result, the 

machine learning algorithms are less effective in identifying these PPI sites. It seems that 

the polar interfaces in some transient PPIs emphasize a different set of energetic terms 

distinguishable from those for the homo-oligomers, and that the PDMs derived from 

protein interiors fall short to account for the polar interactions in the transient PPI sites. 

Increasing understanding of the polar interactions involving perhaps water-mediated 

terms [66] on protein surfaces could contribute in establishing a better prediction method 

for polar PPI sites predictions. 
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Figure 12 – Atom-based MCC comparison among machine learning models trained with the 

DS_Overall, DS_Type1, and DS_Type2 dataset. DS_Type1 and DS_Type2 are variants of 

S432 dataset. The former has all type 1 PPI sites (44% hydrophobic, 47% hydrophilic, and 

9% aromatic residues) labeled as positive and the rest labeled as negative; the latter has all 

type 2 PPI sites (25% hydrophobic, 66% hydrophilic, and 9% aromatic residues) labeled as 

positive and the rest labeled as negative. DS_Overall is the original version of S432 with all 

PPI sites (type 1 and type 2 PPI sites) labeled as positive. Five-fold cross validation was 

performed with DS_Type1 and DS_Type2 based on the same procedures described in 

Methods section. The parameters used for training remained the same, except for the 

increased bag number of 20 in an attempt to alleviate the class imbalanced problem since 

fewer positive cases were labeled in DS_Type1 and DS_Type2.. 
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Chapter 4  

Conclusions 

Proteins perform essential functions in biological systems through recognizing their 

protein partners and by forming permanent or transient protein complexes. 

Computational methodologies for predicting protein-protein interaction sites on protein 

surfaces are important tools in providing insights into the biological functions of proteins 

and in identifying key targets for therapeutics development. However, identifying 

protein-protein interaction sites remains challenging in spite of the availability of tertiary 

structure for the proteins of interest. 

In this thesis, we devised a novel structure-based protein-protein interaction site 

prediction algorithm based on physicochemical complementarity of protein surfaces. First, 

amino acid conformation clustering was performed to characterize each of the twenty 

amino acids by a set of conformation types represented by mainchain and sidechain 

torsion angles. Second, a set of 9486 non-redundant protein structures with less than 60% 

sequence identity was used to construct the database for non-covalent interacting atom 

pairs, which was organized according to parent amino acid conformational types. Third, 

probability density maps were constructed by mapping non-covalent interacting atoms on 

protein surfaces allocated from the database to a 3D grid system. Fourth, 

ANN_BAGGING and SVM_BAGGING algorithms were employed for learning the 

PDM-based attributes for PPI and non-PPI sites. The predictive performance based on an 
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independent dataset indicated that our method was among the best predictors in 

identifying PPI sites on protein surfaces. 

The study shows that PPI sites on proteins of known structures can be predicted with 

accuracy to an extent based on the physicochemical complementarity derived from PDMs 

on protein surfaces. Although the PDMs, which describe the three-dimensional 

distributions of non-covalent interacting atoms on protein surface, were derived from 

protein structures, the physicochemical complementarity in PPI interfaces can be 

faithfully reproduced with the numerical features derived from the PDMs, indicating that 

protein folding and binding are governed by similar energetic principles. The predictions 

based on these PDM-recreated physiochemical complementarity features on protein 

surfaces are among the best in PPI site predictions with known protein structures. In 

particular, the hydrophobic cores of the PPI sites are more likely to be correctly predicted. 

As the PPI sites become smaller in size and less hydrophobic in amino acid composition, 

the prediction of these PPI sites became increasingly difficult. The difficulties could not 

be overcome by training the predictors with the subset of PPI sites characterized with 

more hydrophilic residues in the PPI sites. The PPI site predictions are nevertheless likely 

to be further improved with additional understanding of polar and water-mediated 

interactions in protein-protein recognitions. 

Though our web server has proven to rank among the best PPI site predictors, more 

functionality can be implemented for better applicability. This includes selective 

application of the information acquired from interacting atom pair database so that 

features with better discrimination capability can be applied for prediction. In addition, 
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we would further construct multiple interacting atom pair databases for different types of 

protein complexes, for example, complexes involving transient or non-obligate 

interactions. As more interaction types are considered and better understanding for the 

application of the interacting atom pair database is achieved, we would explore better 

applicability and better predictive accuracy for PPI site prediction. 
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