
 

國 立 交 通 大 學 
 

資訊科學與工程研究所 
 

博   士   論   文 
 

 

 

 

 

 

 

比較模組下多處理器系統診斷能力之局部量測 

Determining Diagnosability of Multiprocessor Systems 

with a Local Approach under the Comparison Model 
 

 
 

 

 

研 究 生 ： 江玠峰 

指導教授 ： 譚建民  博士 

 

 

中 華 民 國 一 百 年 六 月 



比較模組下多處理器系統診斷能力之局部量測 

Determining Diagnosability of Multiprocessor Systems 
with a Local Approach under the Comparison Model 

 
 
 
 
 

研 究 生：江玠峰            Student：Chieh-Feng Chiang 

指導教授：譚建民 博士       Advisor：Dr. Jimmy J.M. Tan 

                                
 
 
 

國 立 交 通 大 學 資 訊 學 院 
資 訊 工 程 系 
博 士 論 文 

 
 

A Dissertation submitted to Department of Computer Science 

College of Computer Science 

National Chiao Tung University 

in Partial Fulfillment of the Requirements 

for the Degree of 

Doctor of Philosophy 

in 

 
Computer Science 

 
June 2011 

 
Hsinchu, Taiwan, R.O.C. 

 
 
 
 

中 華 民 國 一 百 年 六 月 
 



誌謝 
 

本篇論文能夠順利完成，要感謝許多人的幫忙與協助。首先，最

感謝我的指導老師譚建民教授，在博士班期間的悉心指導，使我學到

許多專業領域的知識以及做研究的嚴謹態度；謝謝實驗室夥伴們長期

的陪伴，國晃(晃哥)、倫閔(嚕嚕米)、宗翰(韓吉)、元翔(皮卡丘)、

自良(龔學長)、政寬(寬哥)、圓鋼(阿鋼)，在辛苦的研究生活中注入

一股活力。 

除此之外，非常感謝論文計畫指導委員曾文貴教授、陳榮傑教

授，校內口試委員蔡錫鈞教授，以及校外口試委員張貿翔教授、趙坤

茂教授、王炳豐教授、與徐力行教授，因為各位教授的不吝賜教，讓

這本論文能夠更趨完善。 

最後，要把所有的感謝獻給我的家人。感謝爸媽從小到大的栽

培，在我遇到人生抉擇與困頓時給予我勇氣、勇敢面對任何逆境；感

謝老婆瑋琳長期的支持，懹我在求學過程中無後顧之憂；謝謝哥姊的

關心，在我讀書過程中能感受到家人的溫暖。 

對於週遭所有曾經幫助過我的師長朋友們，在此我都致上最深的

謝意。 

 



比較模組下多處理器系統診斷能力之局部量測 
 

研究生：江玠峰    指導教授：譚建民 博士 

 

國立交通大學資訊工程系 

 

摘要 

系統診斷對於多處理器系統的可靠度來說是個相當重要的議題，而計算出一系統

的診斷力也在近年來許多的研究上被廣為討論。在這篇論文當中，我們提出了一

個新穎的診斷觀念─點診斷力，即為一局部的策略、從一點的觀點來計算出整個

系統的全域診斷力，而這個局部點診斷力和整個系統的全域診斷力可謂息息相

關。利用此局部的概念，我們將重心放在任意挑選的一點之上，以比較模組作為

探討的基礎，我們提出了一個充分的條件，以計算出某點的局部點診斷力；我們

也提出了一個稱之為延伸星狀圖的有用架構，以利我們判斷出某點的點診斷力之

大小。除此之外，基於此局部診斷的觀點，我們也討論了一重要的性質─強點診

斷性質；此性質說明了當某種條件成立時，我們可確保在一系統中，某點的局部

點診斷力會等同於他自身的維度。最後，利用延伸星狀圖的特點，我們提出了一

個能夠偵測出系統上所有點好壞的演算法；若一多處理系統上的總點數為 N，我

們提出的演算法將能達到 O(N logN)的表現，運用到大多數遞迴建構起的多處理

器系統上都會有著不錯的效能。 

 

關鍵字：偵錯診斷，比較診斷模組，點診斷力，延伸星狀結構，強點診斷性質，

診斷演算法。 
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ABSTRACT 
 
Diagnosis is an essential subject for the reliability of a multiprocessor system. 
Determining a system’s diagnosability is a widely discussed issue on recent research. 
In this thesis, we present a novel idea on system diagnosis called node diagnosability. 
The node diagnosability can be viewed as a local strategy toward system 
diagnosability. There is a strong relationship between the node diagnosability and the 
traditional diagnosability. For this local sense, we focus more on a single processor 
and require only identifying the status of this particular processor correctly. Under the 
comparison diagnosis model, we propose a sufficient condition to determine the node 
diagnosability of a given processor. We also propose a useful local structure called an 
extended star to guarantee the node diagnosability. Based on the local sense of 
diagnosis, the strongly node-diagnosable property is discussed; this property describes 
the equivalence of the local diagnosability of a node and its degree. Furthermore, we 
provide an efficient algorithm to determine the faulty or fault-free status of each 
processor based on this structure. For a multiprocessor system with total number of 
processors N, the time complexity of our algorithm to diagnose a given processor is 
O(logN) and that to diagnose all the faulty processors is O(N logN) under the 
comparison model, provided that there is an extended star structure at each processor 
and that the time for looking up the testing result of a comparator in the syndrome 
table is constant. This newly proposed diagnosis algorithm has a well performance on 
most recursively constructed multiprocessor systems. 
 
Keywords: fault diagnosis, comparison diagnosis model, node diagnosability, 
extended star structure, strongly node-diagnosable property, diagnosis algorithm. 
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Chapter 1

Introductions and Motivations

Recently, high-speed multiprocessor systems have become more and more popular in

computer technology. The reliability of the processors in a system is significant since even

few faulty processors may cause the system failure. Whenever processors are found faulty,

we should replace the faulty ones with fault-free ones to maintain the reliability of the

system. Identifying all the faulty processors of a system is called diagnosis of the system.

The maximum number of faulty processors that can be ensured to be identified is called

the diagnosability of the system. A system G is t-diagnosable if all the faulty processors

can be precisely pointed out given that the number of faulty processors is at most t. The

maximum number t for which G is t-diagnosable is called the diagnosability of G.

Multiprocessor systems consist of processors and communication links between the

processors. Practically, most multiprocessor systems are based on an underlying bus

structure or fabric, and perfectly feasible for a central test controller (an independent

processor acting as a controller) to check each processor in the system. In such scheme,

the central controller itself can be tested externally. Several relevant papers are selected

in the following, concerning the network on chip (NoC) issue: Pande et al. [28] developed
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an evaluation methodology to compare the performance and characteristics of a variety of

NoC topologies; Bartic et al. [2] presented an NoC design, which is suitable for building

networks with irregular topologies.

Throughout this dissertation, each processor in a system is presented as a node, and

a single edge between two arbitrary nodes represents the communication bus or fabric.

A diagnosis testing signal is supposed to be delivered from one node to another node

through the communication bus at one time. A system performs system-level diagnosis

by making each processor as a tester to test each of the directly connected ones, and such

scheme contains no central test controller instead. All assumptions are given in order to

be consistent with the classic comparison diagnosis model proposed by Maeng and Malek

[26].

Several well-known approaches on diagnosis have been developed. One major ap-

proach, called the PMC diagnosis model, was first proposed by Preparata et al [29]. It

performs diagnosis by sending a test-signal from a processor to another linked one and

getting a returning response in the reverse direction. According to the collective testing

results, the faulty or fault-free status of all processors in a system can be identified. Fol-

lowing the PMC model, Dahbura et al. [12] proposed a diagnosis algorithm with time

complexity O(N2.5) to identify all the faulty processors in a system with N processors.

Another major diagnosis approach is called the comparison model which was proposed by

Maeng and Malek [26][27]. In this model, the diagnosis is performed by simultaneously

sending two identical signals from a processor to two other linked ones and comparing

the responses. Under the comparison model, Sengupta and Dahbura [30] discussed some

characterizations of a t-diagnosable system, and gave a polynomial time algorithm with
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time complexity O(N5) to diagnose a system of N processors.

Following the diagnosis models above, most previous studies focused on the diagnosis

ability of a system in a global sense, but ignored some local systematic details. A system

is t-diagnosable if all the faulty processors can be identified whenever the number of

faulty processors is at most t. However, it is possible to correctly point out all the faulty

processors in a t-diagnosable system when the number of faulty processors is greater than

t. For example, consider two hypercube systems Qm and Qn which are m-diagnosable

and n-diagnosable [31], respectively, where m and n are integers and m � n. A new

system can be generated by integrating these two systems with few communication links

in some way, and such way may cause the diagnosability of the new system to become

n. However, the strong diagnosis ability of some part of the entire system, the part of

the original m-diagnosable subsystem Qm, is ignored. Thus, if only considering the global

status, we lose some local details of the system. See Figure 1.1 for an illustration.

n- diagnosable 
m-

diagnosable

n- diagnosable 

Figure 1.1: an n-diagnosable system generated by integrating an n-diagnosable subsystem
and an m-diagnosable subsystem.

In some circumstances, however, we are only concerned about some substructure of a

multiprocessor system which is implementable in very large scale integration (VLSI). For

example, such substructure can be a ring structure or a path structure. If all processors
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in such a substructure can be guaranteed to be fault-free, the procedure is still workable

even though a few processors in some other part of the system are faulty. Thus, the local

substructure of a system is more critical than the global status of the entire system.

In this dissertation, we present a novel idea on system diagnosis which we call the

node diagnosability. The node diagnosability can be viewed as a local strategy toward

system diagnosability. There is a strong relationship between the node diagnosability and

the traditional one. For this local sense, we focus more on a single processor, and require

only identifying the status of this particular processor correctly. More specifically, every

processor in a system has its own node diagnosability. Under the comparison diagnosis

model, we propose a sufficient condition to determine the node diagnosability of a given

processor x. On the basis of this sufficient condition, we propose an useful local structure

called an extended star at processor x to guarantee its node diagnosability. Following

the concept of node diagnosability, we discuss a property so called the strongly node-

diagnosable property, which states the equivalence of the node diagnosability of a node

and its degree. At last, we have an efficient algorithm to determine the faulty or fault-

free status of each processor based on the extended star structure. For most practical

multiprocessor systems, the number of links connecting to each processor is in the order of

log N , where N is the total number of processors. The time complexity of our algorithm to

diagnose a given processor is bounded by O(log N) and to diagnose all the faulty processors

in a system with N processors is bounded by O(N log N) under the comparison model,

provided that there is an extended star structure at each processor, and that the time

for looking up the testing result of a comparator in the syndrome table is constant. In

general, the time complexity of our algorithm can be represented as O(NΔ), where Δ is

the maximum degree of a processor in the N -processors system.
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1.1 Basic Terms and Notations

The topology of a multiprocessor system can be modeled as an undirected graph G =

(V,E) , where V represents the set of all processors and E represents the set of all connect-

ing links between the processors. Throughout this dissertation, all systems represented as

graphs are assumed to be undirected graphs without loops. That is, each pair of adjacent

nodes are connected by exactly one edge between them.

The degree of a vertex v in a graph G, written dG(v) or deg(v), is the number of edges

incident with v. The maximum degree of G is denoted by Δ(G), whereas the minimum

degree is denoted as δ(G). A graph G is called k-regular if the maximum degree and the

minimum degree both equal to k. The neighborhood set of a node v, denoted by NG(v)

or N(v), is defined as the set of all nodes adjacent to v.

A node cover of G is a subset of nodes Q ⊆ V such that every edge of E has at least

one end node in Q. A node cover with the minimum cardinality is called a minimum node

cover.

Let A and B be two sets of nodes, the symmetric difference of sets A and B is defined

as the set AΔB = (A ∪B)− (A ∩B). For any set of nodes U ⊆ V (G), G[U ] denotes the

subgraph of G induced by the node subset U . Let H be a subgraph of G and v be a node

in H, degH(v) denotes the degree of v in subgraph H. For a given set of nodes S ⊆ V (G),

we use G− S to denote the induced subgraph G[V (G)− S]. Let S be a set of nodes and

x be a node not in S, we use Cx,S to denote the connected component which x belongs

to in G − S.
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1.2 Dissertation Organization

The rest of this doctorial thesis is organized as follows. Chapter 2 provides preliminaries

and necessary background for the comparison diagnosis model. Chapter 3 introduces

the concepts of node diagnosability and provides a sufficient condition to check whether

a system is t-diagnosable at a given processor. The extended star local structure for

guaranteeing a processor’s node diagnosability is also introduced in this chapter. In

Chapter 4, a property called strongly node-diagnosable property is discussed here. In

Chapter 5, we propose an efficient algorithm to determine the faulty or fault-free status

of a given processor. Finally, some conclusions and discussions are given in Chapter 6.

6



Chapter 2

The Comparison Diagnosis Model

2.1 Diagnosis Procedure of the Comparison Model

Under the comparison model [26][27], also called the MM model, the system diagnosis is

performed by a specific testing procedure. For each processor w which has two distinct

links to two other processors u and v, the diagnosis can be performed by simultaneously

sending two identical signals from w to u and from w to v, and then comparing their

returning responses in the reverse direction. Furthermore, in the MM* model [30], it

is assumed that a comparison is performed by each processor for each pair of distinct

connected neighbors. Throughout this dissertation, all discussions are based on the MM*

model, the complete version of MM model.

This diagnosis-by-comparison strategy can be modeled as a labeled multigraph M =

(V,C) , called a comparison graph, where V represents the set of all processors same as

that in G and C represents the set of labeled edges. For each labeled edge (u, v)w ∈ C,

w is a label on the edge, which means that processors u and v are being compared by a

comparator, the processor w.
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In order to be consistent with the MM model, several assumptions are needed [30]:

1. all faults are permanent;

2. a faulty processor produces incorrect output for each of its given testing tasks;

3. the output of a comparison performed by a faulty processor is unreliable; and,

4. two faulty processors with the same input do not produce the same output.

The output on a labeled edge (u, v)w ∈ C is denoted by r((u, v)w) , which represents

the comparison result of w for the two responses from u and v. An agreement is denoted by

r((u, v)w) = 0, whereas a disagreement is denoted by r((u, v)w) = 1. Since the comparator

processor itself might be faulty or not, the testing result might be unreliable. For this

reason, some conclusions are made: if r((u, v)w) = 1 , at least one member of {u, v, w} is

faulty; or, if r((u, v)w) = 0 and w is known to be fault-free, both u and v are fault-free.

After the completion of testing on each comparator in a system, the collection of all

testing results can be defined as a function σ : C → {0, 1} and referred to be a syndrome

of the diagnosis. For a given syndrome σ, a subset of nodes F ⊂ V (G) is consistent with

σ if the syndrome σ can be produced from the situation that all nodes in F are faulty and

all nodes in V −F are fault-free. Let σF denote the set of syndromes which are consistent

with F , that is, the collection of all possible syndromes which can be produced if F is the

faulty set. Notice that for a syndrome σ, there might be more than one faulty subset of

V which are consistent with σ.
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2.2 Preliminaries for the Comparison Diagnosis Model

A system is defined to be diagnosable if, for every syndrome σ, an unique set of nodes

F ⊆ V is consistent with it. In addition, we call a system t-diagnosable if the system

is diagnosable as long as the number of faulty processors is at most t. The maximum

number t for a system to be t-diagnosable is called the diagnosability of the system. Two

distinct subsets of nodes F1, F2 ⊂ V are distinguishable if and only if σF1
∩ σF1

= φ;

otherwise, F1 and F2 are indistinguishable.

The following is an useful characterization, proposed by Sengupta and Dahbura [30],

for the distinguishability of two sets of nodes under the comparison model.

Lemma 1 [30] For every two distinct subsets of nodes F1 and F2, that is, F1 �= F2 and

F1, F2 ⊂ V , (F1, F2) is a distinguishable pair if and only if at least one of the following

conditions is satisfied (as illustrated in Figure 2.1):

1) ∃ u,w ∈ V − F1 − F2 and ∃ v ∈ F1ΔF2 such that (u, v)w ∈ C,

2) ∃ u, v ∈ F1 − F2 and ∃ w ∈ V − F1 − F2 such that (u, v)w ∈ C, or

3) ∃ u, v ∈ F2 − F1 and ∃ w ∈ V − F1 − F2 such that (u, v)w ∈ C.

F1 F2

(2) (3)

(1) (1)V

w

w w 

w

u u 

u u 

v

vv

v

Figure 2.1: illustration of Lemma 1 — the distinguishability of two distinct subsets of
nodes.
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The detailed proof of this lemma was demonstrated by Sengupta and Dahbura [30]. For

the completeness of this thesis, we sketch the proof briefly. If one of the three conditions

holds, the distinguishability is absolutely determined:

i) Suppose condition 1) is satisfied. If v ∈ F1 −F2 then r((u, v)w) = 0 for each

syndrome in σF2
, and r((u, v)w) = 1 for each syndrome in σF1

. Similarly, if

v ∈ F2 − F1 then r((u, v)w) = 0 for each syndrome in σF1
, and r((u, v)w) = 1

for each syndrome in σF2
. Either case implies σF1

∩ σF2
= φ.

ii) Suppose condition 2) is satisfied. Then r((u, v)w) = 0 for each syndrome in

σF2
and r((u, v)w) = 1 for each syndrome in σF1

, which lead to σF1
∩ σF2

= φ.

iii) Suppose condition 3) is satisfied, a similar argument is used as condition

2).

On the contrary, if none of the three conditions holds. We consider a syndrome such

that for each (u, v)w ∈ C, the comparison result can be classified to the following nine

situations [30]:

i) If u, v, w ∈ V − F1 − F2 then r((u, v)w) = 0.

ii) If w ∈ V − F1 − F2 and u, v ∈ F1 then r((u, v)w) = 1.

iii) If w ∈ V − F1 − F2 and u, v ∈ F2 then r((u, v)w) = 1.

iv) If w ∈ V − F1 − F2 and u ∈ F1 and v ∈ F2 then r((u, v)w) = 1.

v) If w ∈ F1 − F2 and v ∈ V − F2 and u ∈ V − F1 − F2 then r((u, v)w) = 0.

vi) If w ∈ F2 − F1 and v ∈ V − F1 and u ∈ V − F1 − F2 then r((u, v)w) = 0.

vii) If w ∈ F1 − F2 and u ∈ F2 then for all v, r((u, v)w) = 1.
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viii) If w ∈ F2 − F1 and u ∈ F1 then for all v, r((u, v)w) = 1.

ix) Other arbitrary comparison results.

Then the syndrome above belongs to σF1
∩ σF2

, and therefore F1 and F2 are indis-

tinguishable. For example, if w ∈ V − F1 − F2, u ∈ F1 ∩ F2, and v ∈ F1 − F2, then

r((u, v)w) = 1 whenever the faulty set of nodes is either F1 or F2. In such circumstance,

pair (F1, F2) can not be distinguished only with such few information.

Let G = (V,E) be a graph and let M = (V,C) be the comparison graph of G. Define

the order graph [30] of a node u ∈ V to be a digraph Gu = (Xu, Yu), where Xu = {v | either

(u, v) ∈ E or (u, v)w ∈ C for some w} and Yu = {(v, w) | v, w ∈ Xu and (u, v)w ∈ C}.

For a given node u ∈ V , the order of u, order(u), is defined as the cardinality of a

minimum node cover of Gu. For a subset of nodes U ⊂ V , define T (G,U) to be the set

{v | (u, v)w ∈ C and u,w ∈ U and v ∈ V − U}.

Next is a characterization proposed by Sengupta and Dahbura which gives a sufficient

condition for a system being t-diagnosable.

Lemma 2 [30] A system G(V,E) with N nodes is t-diagnosable if

1) N ≥ 2t + 1,

2) each node has order at least t, and

3) for each U ⊂ V such that | U |= N − 2t + p and 0 ≤ p ≤ t − 1, | T (G,U) |> p.
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Chapter 3

The Local Approach to Determining

System Diagnosability

There were some studies on system diagnosability of some well-known networks under the

comparison model. For example, Wang [31][32] presented that the diagnosability of an

n-dimensional hypercube Qn is n for n ≥ 5 and the diagnosability of an n-dimensional

enhanced hypercube is n + 1 for n ≥ 6. Fan [16][17] showed that the diagnosability of

an n-dimensional Crossed cube is n, and the diagnosability of an n-dimensional Möbius

cube is n, for n ≥ 4. Lai et al. [24] proposed that the diagnosability of the matching

composition network is n for n ≥ 4.

As we observe, the traditional system diagnosability describes the global status of a

system. The purpose of this dissertation for considering the node diagnosability is to

keep the local connective detail of a system that we might neglect. For example, for any

two integers m and n with m >> n ≥ 4, the diagnosability of two hypercube systems

Qm and Qn is m and n [31][24], respectively. Combining these two systems with few

communication links in some way may cause the diagnosability of the new topology to

become n. In this situation, the strong diagnosis ability of some part of the entire system,

12



the substructure Qm, is ignored. Therefore, the need of keeping local information of each

node is concerned.

In the previous studies on diagnosis, most results focused on the diagnosis ability of a

system in a global sense: a system is t-diagnosable if all the faulty nodes can be identified

given that there are at most t faulty nodes. In contrast to the global sense, we emphasize

more on a single node x in a local sense: we require only identifying the status of one

particular node correctly. More specifically, if x belongs to a set of faulty nodes, we must

correctly identify x to be faulty; or, x is identified to be fault-free if x is indeed fault-free.

In a word, we are only concerned about the status of the node x.

3.1 Node Diagnosability

We now introduce the concept of a system being t-diagnosable at a given node.

Definition 1 A system G(V,E) is t-diagnosable at node x ∈ V (G) if, given a test syn-

drome σ ∈ σF produced by the system under the presence of a set of faulty nodes F con-

taining node x with |F | ≤ t, every set of faulty nodes F ′ consistent with σ and |F ′| ≤ t,

must also contain node x.

An equivalent way of stating the above definition is given below.

Proposition 1 A system G(V,E) is t-diagnosable at node x ∈ V (G) if, for each pair of

distinct sets F1, F2 ⊂ V (G) such that F1 �= F2, |F1|, |F2| ≤ t, and x ∈ F1ΔF2, (F1, F2) is

a distinguishable pair.

Then, we define the node diagnosability of a given node as follows.

13



Definition 2 The node diagnosability tl(x) of a node x ∈ V (G) in a system G(V,E) is

defined to be the maximum number of t for G being t-diagnosable at x, that is, tl(x) =

max{t | G is t − diagnosable at x}.

The concept of a system being t-diagnosable at a node is consistent with the traditional

concept of a system being t-diagnosable in the global sense. The relationship between

these two is as follows.

Proposition 2 A system G(V,E) is t-diagnosable if and only if G is t-diagnosable at

every node.

Proof. We prove the necessary condition first. Suppose that there exists a node y ∈ V (G)

such that G is not t-diagnosable at y. By Proposition 1, there exists an indistinguishable

pair (F1, F2) with |Fi| ≤ t, i = 1, 2, and y ∈ F1ΔF2. This contradicts that G is t-

diagnosable. Next, we prove the sufficiency. Suppose G is not t-diagnosable. Then there

exists an indistinguishable pair (F1, F2) with |Fi| ≤ t, i = 1, 2. Pick any node y in F1ΔF2,

the system is not t-diagnosable at y by Proposition 1, which is a contradiction. �

Proposition 3 The diagnosability t(G) of a system G(V,E) is equal to the minimum

value among the node diagnosability of every node in G, that is, t(G) = min{tl(x) | x ∈

V (G)}.

Proof. The result follows trivially from Definition 2 and Proposition 2. �

From Proposition 2 and 3, the relationship between the traditional diagnosability and

the node diagnosability was pointed out. Through this concept, the system diagnosability
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can be determined by testing the node diagnosability of each node. Especially in some

well-known regular networks, the diagnosability can be easily identified because of the

system symmetry. For example, in some graphs like hypercubes, cube-connected cycles,

or complete graphs, the system diagnosability and the node diagnosability of each node

in the system are the same, and such result can be applied in other applications.

In the following, we propose a sufficient condition for verifying whether a system G is

t-diagnosable at a given node x.

Theorem 1 A system G(V,E) is t-diagnosable at a given node x ∈ V (G) if, for every

set of nodes S ⊂ V (G), |S| = p, 0 ≤ p ≤ t − 1, and x /∈ S, the cardinality of every node

cover including x of the component Cx,S is at least 2(t − p) + 1.

F1 F2S
x

vu
e

F1 F2S
x

vu
e

(a) (b) 

Figure 3.1: illustration of the proof of Theorem 1 — at least one edge lies in Cx,S−F1ΔF2.

Proof. We prove it using contradiction. Suppose system G is not t-diagnosable at node

x. According to Proposition 1, there exists an indistinguishable pair of distinct node set

(F1, F2) with |F1| ≤ t, |F2| ≤ t, and x ∈ F1ΔF2. Let S be the intersection of node sets F1

and F2, then the cardinality of S is less than or equal to t−1. (Otherwise, if |S| = t, then

F1 = F2.) According to the condition that x /∈ S and 0 ≤ |S| ≤ t − 1, the cardinality of

every node cover including x of the component Cx,S is at least 2(t − p) + 1. Comparing

this number with |F1ΔF2| ≤ 2(t−p), and x ∈ F1ΔF2, we get the fact that F1ΔF2 can not
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be a node cover of Cx,S. In other words, at least one member (a node) of the node cover

of Cx,S is outside F1ΔF2 (and also outside S according to the definition of component

Cx,S). Consequently, by the property of node cover, there exists an edge e = (u, v) in Cx,S

but outside F1ΔF2. Since edge e, nodes u, v, and node x belong to the same connected

component Cx,S, there is a path leading from edge e to node x through set F1 (as shown

in Figure 3.1(a)) or F2 (as shown in Figure 3.1(b)). Then by condition 1 of Lemma 1,

(F1, F2) is a distinguishable pair. This is a contradiction, and the result follows. �

3.2 The Extended Star Structure

Let us introduce a structure first.

Definition 3 Let x be a node in a graph G(V,E) with degG(x) ≥ n. Define H(x; n) to be

a subgraph of G of order n at node x, where the set of nodes is {x}∪{vi1, vi2 | 1 ≤ i ≤ n}

and the set of edges is {(x, vi1), (vi1, vi2) | 1 ≤ i ≤ n}. (Figure 3.2 depicts the structure.)

We notice that the term “order” is used in two different places, one is the order of a

node x, order(x), and the other is the order of the substructure defined here.

v11

v12

v21

v22

vn1

vn2

x

Figure 3.2: subgraph H(x; n) of G of order n at node x.

Proposition 4 Let G(V,E) be a graph and x be a node in G. The order of x is at least

n if G contains a subgraph H(x; n) of order n at node x.
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Proposition 5 Let G(V,E) be a graph without cycles of length three, and x be a node in

G. G contains a subgraph H(x; n) of order n at node x if the order of x is at least n.

Proof. Let S1 and S2 be two sets of nodes with distance 1 and 2 to the node x, re-

spectively. Since G contains no cycles of length 3, there is no edge with both ends in

S1. Therefore, the order graph of x forms a bipartite graph with the partition (S1, S2).

Because the node x has order at least n, which means the cardinality of a minimum node

cover of the order graph of x is at least n. By a classical theorem of König [13] and

Egerváry [14], the cardinality of a minimum node cover of a bipartite graph equals the

maximum size of a matching in the bipartite graph. Then, there is a matching between

S1 and S2 with the maximum size n. Consequently, G contains a subgraph H(x; n) of

order n at node x. �

The above two propositions state that the order of node x is at least n if and only

if the system contains a subgraph H(x; n) of order n at x. It implies that if the node

diagnosability of node x is n, then G contains a subgraph H(x; n) at x, provided that

G has no cycles of length 3. However, having the substructure H(x; n) at x, it does not

necessarily guarantee that the node diagnosability of node x is at least n.

We now propose a substructure at node x, called an extended star, which can guarantee

the node diagnosability of node x.

Definition 4 Let x be a node in a graph G(V,E). For n ≤ degG(x), an extended star

ES(x; n) of order n at node x is defined as ES(x; n) = (V (x; n), E(x; n)), where the set

of nodes V (x; n) = {x} ∪ {vij | 1 ≤ i ≤ n, 1 ≤ j ≤ 4} and the set of edges E(x; n) =

{(x, vk1), (vk1, vk2), (vk2, vk3), (vk3, vk4) | 1 ≤ k ≤ n}. (See Figure 3.3 for an illustration.)
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Figure 3.3: extended star structure ES(x; n).

We say that there is an extended star structure ES(x; n) ⊆ G at node x if G contains

an extended star ES(x; n) of order n at node x as a subgraph. Note that in the definition

of the extended star, each node and each edge can occur only once in this structure. In

other words, the problem of setting up the extended star structure turns into the problem

of finding n node-disjoint paths of length 4 (3 hops) with dedicated starting nodes. In

addition, such problem can be done off-line by the systematic structure of most well-known

multiprocessor systems.

Theorem 2 Let x be a node in a system G(V,E). The node diagnosability of x is at least

n if there exists an extended star ES(x; n) ⊆ G at x.

Proof. We use Theorem 1 to prove this result. First, we define lk = (vk1, vk2, vk3, vk4) to

be a quadruple of four consecutive nodes for any k, 1 ≤ k ≤ n, with respect to ES(x; n).

We note that lk is a path of length 3. Accordingly, the cardinality of a node cover of

each lk is at least 2. Let S ⊂ V (G) be a set of nodes in G with |S| = p, 0 ≤ p ≤ n − 1,

and x /∈ S. After deleting S from V (G), there are at least (n − p) complete lk’s still

remaining in ES(x; n), where the word “complete” means that all vk1, vk2, vk3, and vk4

of an lk have not been deleted in G − S. Thus, the cardinality of a node cover including
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x of the connected component Cx,S is at least 1 + 2(n− p). Therefore, the system G with

an extended star ES(x; n) is n-diagnosable at x by Theorem 1. By Definition 2, the node

diagnosability of x is at least n, that is, tl(x) ≥ n. �

Proposition 6 Let x be a node in a system G(V,E) with degG(x) = n. The node diag-

nosability of x is at most n.

By Theorem 2 and Proposition 6, we have the following result.

Theorem 3 Let x be a node in a system G(V,E) with degG(x) = n. The node diagnos-

ability of x is n if there exists an extended star ES(x; n) ⊆ G at x.

We observe that for an extended star structure, if the set of nodes is of the form

V (x; n) = {x} ∪ {vij | 1 ≤ i ≤ n, 1 ≤ j ≤ 3} and the set of edges is of the form

E(x; n) = {(x, vk1), (vk1, vk2), (vk2, vk3) | 1 ≤ k ≤ n}, the node diagnosability n of node

x cannot be guaranteed simply by this kind of substructure. For example, let F1 be the

set of nodes {x, v11, v12, v13} with |F1| = 4, and F2 be the set of nodes {vk2 | 1 ≤ k ≤ n}

with |F2| = n (as shown in Figure 3.4), (F1, F2) is not a distinguishable pair according

to Lemma 1 unless there are other edges or nodes. Thus, the node diagnosability of x

cannot be guaranteed to be n.

In most multiprocessor systems or interconnection networks, an extended star sub-

structure at a given processor does exist. For example, the well-known multiprocessor

systems such as the Hypercube, the Crossed cube [15], the Twisted cube [19], the Möbius

cube [11], the Star [1], the mesh, and other hypercube-like graphs, in which an extended
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Figure 3.4: an example of an indistinguishable pair in an incomplete extended star struc-
ture with only set of nodes {x} ∪ {vij | 1 ≤ i ≤ n, 1 ≤ j ≤ 3} and set of edges
{(x, vk1), (vk1, vk2), (vk2, vk3) | 1 ≤ k ≤ n}.

star at a given processor can be carefully found because of the regular recursive construc-

tion, as long as the dimension n is suitably large.

3.3 Diagnosability of the Hypercube

Among all well-known interconnection networks, the Hypercube is one of the most popular

ones. Following the structure of the Hypercube, lots of similar networks had been pro-

posed, such as the Crossed cube [15], the Twisted cube [19], and the Möbius cube [11]. We

call the category of these systems a cube family. For each cube in the cube family, an n-

dimensional cube can be constructed in recurrence from two identical (n−1)-dimensional

subcubes by adding a perfect matching between the two subcubes. A different perfect

matching leads to a different cube. Because of the recursive construction, an n-dimensional

cube has 2n nodes in it. Each node in the cube is usually represented by an n-bit binary

string. A binary string x of length n can be written as x = xnxn−1 . . . x2x1, where xi is 0

or 1, 1 ≤ i ≤ n.

For each node x in an n-dimensional Hypercube, there are n distinct nodes adjacent to

it and with 1-bit complement to it. It is easy to find an extended star structure ES(x; n)
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at x in an n-dimensional Hypercube with n ≥ 5 as following:

For each node x = xnxn−1 . . . x2x1, there are n nodes adjacent to it, namely, xnxn−1 . . . x2x1,

xnxn−1 . . . x2x1, ..., and xnxn−1 . . . x2x1, where the overline denotes the complement bit.

Let vn,1, vn−1,1, ..., and v1,1 be these nodes respectively. For each vk,1, vk,1 = xnxn−1 . . . xk . . . x2x1,

there are n nodes adjacent to it also. We can find one of these nodes with the (k +

1)(mod n)-th bit complement to vk,1, for all 1 ≤ k ≤ n, and name it vk,2. Then, vk,2 =

xnxn−1 . . . xk+1xk . . . x2x1. Moreover, we can find vk,3 = xnxn−1 . . . xk+2xk+1xk . . . x2x1 and

vk,4 = xnxn−1 . . . xk+3xk+2xk+1xk . . . x2x1 in the same way, where the indices are modulo

n. (Figure 3.5)

xnxn-1xn-2...x3x2x1

xnxn-1xn-2...x3x2x1 xnxn-1xn-2...x3x2x1 xnxn-1xn-2...x3x2x1

xnxn-1xn-2...x3x2x1 xnxn-1xn-2...x3x2x1 xnxn-1xn-2...x3x2x1

xnxn-1xn-2...x3x2x1 xnxn-1xn-2...x3x2x1 xnxn-1xn-2...x3x2x1

xnxn-1xn-2...x3x2x1 xnxn-1xn-2...x3x2x1 xnxn-1xn-2...x3x2x1

Figure 3.5: an extended star structure in an n-dimensional Hypercube with n ≥ 5.

All these nodes do not have the same address (string bits) since the bit length is at

least five. Thus, the procedure described above provides an extended star ES(x; n) for

every node x in V (Qn), for n ≥ 5. Consequently, the node diagnosability of each node

x ∈ V (Qn) is n and the diagnosability of Qn is n, for n ≥ 5, which is the same conclusion

as that proposed by Wang [31]. Note that there are more than one way for searching an

extended star in a Hypercube.
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3.4 Diagnosability of the Star Graph

As another example, we show that the Star graph [1] with dimension 4 or more contains

an extended star structure as a subgraph at each node . Let n be a positive integer. The

Star graph of dimension n, denoted by Sn, is a graph whose set of nodes consists of all

permutations of {1, 2, . . . , n}. Each node is uniquely assigned a label x1x2 . . . xn, and is

adjacent to the nodes xix2 . . . xi−1x1xi+1 . . . xn, for 2 ≤ i ≤ n, that is, nodes obtained by

a transposition of the first symbol with the ith symbol of the node. Consequently, there

are n! nodes in an n-dimensional Star graph, and each node has degree n−1. We can find

an extended star structure ES(x; n − 1) at a given node x in Sn with n ≥ 5 as follows.

For each node x = x1x2 . . . xn, there are n−1 nodes adjacent to it, namely, x2x1x3x4 . . . xn,

x3x2x1x4 . . . xn, . . . , xix2x3x4 . . . xi−1x1xi+1 . . . xn, . . . , and xnx2x3x4 . . . xn−1x1. Let v2,1,

v3,1, . . . , vi,1, . . . , and vn,1 be these nodes respectively. For convenience of description,

we say that two nodes are adjacent to each other with a (1 i) edge if one node can be

obtained by a transposition of the first symbol with the ith symbol of the other node.

Accordingly, x is adjacent to vk,1 with a (1 k) edge, for all 2 ≤ k ≤ n. For each vk,1, there

are (n − 2) more nodes adjacent to it except for x. We can choose one of these adjacent

nodes of vk,1 with a (1 k + 1) edge if 2 ≤ k ≤ n − 1, and with a (1 ((k + 2)mod n))

edge if k = n. Let vk,2 be these nodes, for all 2 ≤ k ≤ n, respectively. We then find vk,3

as one of the adjacent nodes of vk,2 with a (1 k + 2) edge if 2 ≤ k ≤ n − 2, and with a

(1 ((k + 3)mod n)) edge if n − 1 ≤ k ≤ n. Finally, we find vk,4 as one of the adjacent

nodes of vk,3 with a (1 k + 3) edge if 2 ≤ k ≤ n− 3, and with a (1 ((k + 4)mod n)) edge

if n − 2 ≤ k ≤ n. (Figure 3.6)
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Figure 3.6: an extended star structure in an n-dimensional Star graph with n ≥ 5.

Therefore, an extended star ES(x; n − 1) at every node x ∈ V (Sn) can be retrieved

for n ≥ 4. We note however, for n = 4, the construction strategy described above has to

be modified a little bit, since the construction strategy in the last paragraph will cause

all v′

k,4s to be the same node, for all 2 ≤ k ≤ n. We can choose vk,4 as one of the adjacent

nodes of vk,3 with a (1 3) edge for k = 2, a (1 4) edge for k = 3, and a (1 2) edge for

k = 4, as a modified strategy. Therefore, for n ≥ 4, the node diagnosability of each node

x ∈ V (Sn) is n− 1 and the diagnosability of Sn is n− 1, which is the same conclusion as

that proposed by Zheng et al [35].

For most multiprocessor systems or interconnection networks, an extended star at a

given node can be carefully found, as long as the dimension n is suitably large. This

explains the fact that the node diagnosibility of a given node matches its degree in many

cases.
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3.5 An Example of Combining Two Hypercubes of

Different Dimensions

One more example, consider an m-dimensional Hypercube system Qm and an n-dimensional

Hypercube system Qn, for m ≥ n ≥ 5. The node diagnosability of each node in Qm (Qn,

respectively) is m (n, respectively). Let u be a node in Qm and v be a node in Qn. A

new system can be formed by adding an edge (u, v) between Qm and Qn. Applying the

extended star structure, the node diagnosability of each node in Qm (Qn, respectively)

remains m (n, respectively) except u (v, respectively), while the node diagnosability of

node u (v, respectively) increases to m+1 (n+1, respectively). Overall, the diagnosability

of this new system is n.
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Chapter 4

Strongly Node-Diagnosable Property

In this chapter, we discuss the strongly node-diagnosable property, which states the rela-

tionship between a processor’s node diagnosability and its degree. A processor is defined

to be strongly node-diagnosable if the node diagnosability of it equals to its degree, where

degree refers to as the number of links incident with it. A system is defined to be strongly

node-diagnosable if all the processors in this system are strongly node-diagnosable. We

shall prove that both an n-dimensional hypercube and an n-dimensional star graph have

this property.

In some circumstances, some links in a multiprocessor system may be missing. A

missing edge stands for a link which is broken or failure between two processors for some

reasons. The existence of missing edges in a system may reduce the diagnosability of

the whole system and change the node diagnosability of each node. We shall prove that

both an n-dimensional hypercube and an n-dimensional star graph keep the strongly

node-diagnosable property even if there is a bounded amount of missing edges.

We first introduce the definition of a node (respectively, a graph) being strongly node-
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diagnosable as follows.

Definition 5 Let x be a node in a graph G(V,E). Node x is strongly node-diagnosable if

the node diagnosability of x equals to its degree in G. That is, tl(x) = degG(x).

Definition 6 Let G(V,E) be a graph. Graph G is strongly node-diagnosable if the node

diagnosability of every node equals to its degree in G. That is, tl(x) = degG(x), for all

x ∈ V (G).

4.1 Strongly Node-Diagnosable Property of the Hy-

percube

Following the definitions of the so called strongly node-diagnosable property of a node or

of a graph, we shall declare that an n-dimensional hypercube with n ≥ 5 has the strongly

node-diagnosable property in this section. First of all, a lemma is needed to show that

there exists an extended star ES(x; n) ⊆ Qn of order n at every node x in Qn, for n ≥ 5.

Lemma 3 For each node x in an n-dimensional hypercube Qn with n ≥ 5, there exists

an extended star ES(x; n) ⊆ Qn of order n at x.

Proof. Since Qn is node symmetric, we arbitrarily choose x = xnxn−1 . . . x1 to be the

root of an ES(x; n), and try to find an extended star ES(x; n) as a subgraph of the

n-dimensional hypercube Qn at the node x. In this proof, we follow the notations in

Definition 4.
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xnxn-1xn-2...x3x2x1 xnxn-1xn-2...x3x2x1 xnxn-1xn-2...x3x2x1
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xnxn-1xn-2...x3x2x1 xnxn-1xn-2...x3x2x1 xnxn-1xn-2...x3x2x1

Figure 4.1: illustration of the proof of Lemma 3, an ES(x; n) of order n at x =
xnxn−1 . . . x1.

For all n ≥ 5, we can find an extended star ES(x; n) at node x = xnxn−1 . . . x1 (as

shown in Figure 4.1), where the set of nodes is

{x} ∪ {vk1 = xnxn−1 . . . xk . . . x1 | 1 ≤ k ≤ n}

∪ {vk2 = xnxn−1 . . . x(k+1)(mod n) xk . . . x1 | 1 ≤ k ≤ n}

∪ {vk3 = xnxn−1 . . . x(k+2)(mod n) x(k+1)(mod n) xk . . . x1 | 1 ≤ k ≤ n}

∪ {vk4 = xnxn−1 . . . x(k+3)(mod n) x(k+2)(mod n) x(k+1)(mod n) xk . . . x1 | 1 ≤ k ≤ n}

and the set of edges is {(x, vk1), (vk1, vk2), (vk2, vk3), (vk3, vk4) | 1 ≤ k ≤ n}.

As a result, there exists an extended star ES(x; n) ⊆ Qn of order n at each node

x ∈ V (Qn) for n ≥ 5. �

Theorem 4 Let Qn be an n-dimensional hypercube and n ≥ 5. Each node x in Qn is

strongly node-diagnosable; and graph Qn is strongly node-diagnosable.

Proof. By Theorem 3 and Lemma 3, the node diagnosability of each node x ∈ V (Qn) is

n, since the degree of x in Qn is n and there exists an extended star ES(x; n) of order
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n at x, for n ≥ 5. Thus, every node in an n-dimensional star Qn with n ≥ 5 is strongly

node-diagnosable. So graph Qn is strongly node-diagnosable. �

Up to now, we facilitate the procedure of proving that the diagnosability of Qn is n,

for n ≥ 5. As mentioned before, a multiprocessor system may have some links broken

or failure. Consequently, it may affect the reliability of the whole system. Now, we are

proving that even with a total amount n − 2 missing edges, an n-dimensional hypercube

Qn still keeps the strongly node-diagnosable property, for n ≥ 5.

Note that for a given set of edges L ⊆ E(G) in a system G, we use G − L to denote

the subgraph with node set V (G) and edge set E(G) − L.

Lemma 4 Let Qn be an n-dimensional hypercube with n ≥ 5, and let F be an arbitrary

set of missing edges with |F | ≤ n − 2. For each node x in Qn, there exists an extended

star ES(x; degQn−F (x)) ⊆ Qn at x, where degQn−F (x) denotes the remaining degree of

node x in Qn − F .

Proof. We prove this lemma by induction on n.

For the base case n = 5, each node in Qn is labeled as x = x5x4x3x2x1, for each xi = 0

or 1, 1 ≤ i ≤ 5. Since the hypercube is node symmetric, we arbitrarily choose a node

x = x5x4x3x2x1 for description. Since n − 2 = 3 for n = 5, there are at most 3 missing

edges in this incomplete hypercube. It is straightforward but tedious to see that there

indeed exists an extended star ES(x; degQn−F (x)) ⊆ Qn at each node x, for n = 5 and

|F | = 0, 1, 2, or 3.
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For induction hypothesis, suppose that for n ≥ 6 and |F | ≤ n − 3, there exists an

ES(x; degQn−1−F (x)) ⊆ Qn−1 at each node x ∈ V (Qn−1), where F is the set of missing

edges.

Now we claim that for a set of missing edges F with |F | ≤ n − 2, there exists an

ES(x; degQn−F (x)) ⊆ Qn at each node x ∈ V (Qn), for n ≥ 6. Assume that the number

of missing edges is at most n − 2 in an n-dimensional hypercube Qn, for n ≥ 6. Let

f = (u, v) be an arbitrarily missing edge. The n-dimensional hypercube Qn can be seen as

the composition of two subgraphs Q0
n−1 and Q1

n−1, where u ∈ V (Q0
n−1) and v ∈ V (Q1

n−1).

Note that each Qi
n−1 is isomorphic to an (n − 1)-dimensional hypercube Qn−1, i = 0 or

1. Then, the number of all missing edges except f in both Q0
n−1 and Q1

n−1 is at most

n − 3. Therefore, there is an extended star ES(x; n − 1) of order n − 1 at every node

x in this faulty hypercube. Consider an arbitrary node x in Qn, x is in one of the two

induced subgraphs Qi
n−1, i = 0 or 1. Without loss of generality, we let x ∈ Q0

n−1. If the

incident edge of x that has the other end in Q1
n−1 is missing (as shown in Figure 4.2(a)),

we are done. That is, the order of the extended star at x equals to x’s remaining degree

in this Qn − F , and both are n− 1. Otherwise, the incident edge of x that has the other

end in Q1
n−1 is fault-free (as shown in Figure 4.2(b)). Then we can find an ES(x; n) of

order n at node x. As a result, there is an ES(x; degQn−F (x)) ⊆ Qn at x, for n ≥ 6 and

|F | ≤ n − 2. �

Theorem 5 Let Qn be an n-dimensional hypercube and n ≥ 5, and let F be an arbitrary

set of missing edges with |F | ≤ n− 2. For each node x in Qn with missing edges F , node

x is strongly node-diagnosable; and graph Qn − F is strongly node-diagnosable.
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Figure 4.2: illustration for the inductive step in the proof of Lemma 4.

Proof. By Theorem 3 and Lemma 4, the node diagnosability of each node x in an

incomplete n-dimensional hypercube Qn − F is equal to its remaining degree, for n ≥ 5

and |F | ≤ n−2. Thus, every node in Qn−F is strongly node-diagnosable. Consequently,

graph Qn − F is strongly node-diagnosable. �

4.2 Strongly Node-Diagnosable Property of the Star

Graph

In this section, we show that an n-dimensional star with n ≥ 4 has the strongly node-

diagnosable property. Same as that for the hypercube in the last section, we need to

explicitly state that there exists an extended star ES(x; n − 1) ⊆ Sn of order n − 1 at

every node x in Sn, for n ≥ 4.

Lemma 5 For each node x in an n-dimensional star Sn with n ≥ 4, there exists an

extended star ES(x; n − 1) ⊆ Sn of order n − 1 at x.

Proof. We use the notations in Definition 4 to find an extended star ES(x; n − 1) as a

subgraph of an n-dimensional star Sn at a given node x. Since Sn is node symmetric, we

arbitrarily choose x = x1x2 . . . xn to be the root of an ES(x; n − 1).
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Figure 4.3: illustration of the proof of Lemma 5, a) an ES(x; 3) of order 3 at x = x1x2x3x4;
b) an ES(x; n − 1) of order n − 1 at x = x1x2 . . . xn.

For n = 4, we can find an extended star ES(x; 3) of order 3 at node x = x1x2x3x4

(as shown in Figure 4.3(a)), where the set of nodes contains x, v11 = x2x1x3x4, v12 =

x3x1x2x4, v13 = x4x1x2x3, v14 = x2x1x4x3, v21 = x3x2x1x4, v22 = x4x2x1x3, v23 =

x2x4x1x3, v24 = x3x4x1x2, v31 = x4x2x3x1, v32 = x2x4x3x1, v33 = x3x4x2x1, and v34 =

x4x3x2x1, and the set of edges is {(x, vk1), (vk1, vk2), (vk2, vk3), (vk3, vk4) | 1 ≤ k ≤ 3}.

For n ≥ 5, we can find an extended star ES(x; n − 1) at node x = x1x2 . . . xn (as

shown in Figure 4.3(b)), where the set of nodes is

{x} ∪ {vk1 = xk+1 | 1 ≤ k < n}

∪ {vk2 = vk+2
k1 | 1 ≤ k < n − 1} ∪ {vk2 = v

(k+3) mod n

k1 | n − 1 ≤ k < n}

∪ {vk3 = vk+3
k2 | 1 ≤ k < n − 2} ∪ {vk3 = v

(k+4) mod n

k2 | n − 2 ≤ k < n}

∪ {vk4 = vk+4
k3 | 1 ≤ k < n − 3} ∪ {vk4 = v

(k+5) mod n

k3 | n − 3 ≤ k < n}

and the set of edges is {(x, vk1), (vk1, vk2), (vk2, vk3), (vk3, vk4) | 1 ≤ k ≤ n − 1}.

As a result, there exists an extended star ES(x; n − 1) ⊆ Sn of order n − 1 at each

node x ∈ V (Sn) for n ≥ 4. �
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Theorem 6 Let Sn be an n-dimensional star and n ≥ 4. Each node x in Sn is strongly

node-diagnosable; and graph Sn is strongly node-diagnosable.

Proof. By Theorem 3 and Lemma 5, the node diagnosability of each node x ∈ V (Sn) is

n− 1, since the degree of x in Sn is n− 1 and there exists an extended star ES(x; n− 1)

of order n − 1 at x, for n ≥ 4. Thus, every node in an n-dimensional star Sn with n ≥ 4

is strongly node-diagnosable. So graph Sn is strongly node-diagnosable. �

By the theorem above, we conclude that the diagnosability of Sn is n − 1, for n ≥ 4,

which is the same result as that proposed by Zheng et al [35]. In the following, we show

that an n-dimensional star Sn keeps the strongly node-diagnosable property even with up

to n − 3 missing edges, for n ≥ 4.
x=x1x2x3x4

v11=x2x1x3x4

v12=x4x1x3x2

v13=x1x4x3x2

v14=x3x4x1x2

v21=x3x2x1x4

v22=x2x3x1x4

v23=x1x3x2x4

v24=x4x3x2x1

v31=x4x2x3x1

v32=x3x2x4x1

v33=x1x2x4x3

v34=x2x1x4x3

Figure 4.4: an alternative extended star ES(x; 3) at x = x1x2x3x4 described in the proof
of Lemma 6.

Lemma 6 Let Sn be an n-dimensional star with n ≥ 4, and let F be an arbitrary set

of missing edges with |F | ≤ n − 3. For each node x in Sn, there exists an extended star

ES(x; degSn−F (x)) ⊆ Sn at x, where degSn−F (x) denotes the remaining degree of node x

in Sn − F .

Proof. We prove this lemma by induction on n.
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For n = 4, n − 3 = 1, each node in Sn is labeled as a permutation on 〈4〉. We now

consider the situation when the number of missing edges is 0 or 1. Since the star graph

is node symmetric, we choose x = x1x2x3x4 for description. There is an extended star

structure ES(x; 3) as described in the proof of Lemma 5. If there is no missing edges in S4,

then we are done. (See Figure 4.3(a).) If there is one missing edge in S4, one of three cases

happens: 1) if the missing edge is not in the set of edges of the ES(x; 3) found previously,

an ES(x; 3) at x certainly exists; 2) if the missing edge is the 2nd, 3rd or 4th edge of x,

the degree of x is 2 and there is an ES(x; 2) at x; 3) if the missing edge is one of the edges

in the original ES(x; 3) above except the 2nd, 3rd or 4th edge of x, we can alternatively

find a new ES(x; 3) to avoid the missing edge. This alternative extended star of order 3

at x (as shown in Figure 4.4) contains the node set { x, v11 = x2x1x3x4, v12 = x4x1x3x2,

v13 = x1x4x3x2, v14 = x3x4x1x2, v21 = x3x2x1x4, v22 = x2x3x1x4, v23 = x1x3x2x4,

v24 = x4x3x2x1, v31 = x4x2x3x1, v32 = x3x2x4x1, v33 = x1x2x4x3, v34 = x2x1x4x3 } and

the edge set {(x, vk1), (vk1, vk2), (vk2, vk3), (vk3, vk4) | 1 ≤ k ≤ 3}. Thus, there exists an

extended star ES(x; degSn−F (x)) ⊆ Sn at each node x, for n = 4 and |F | = 0 or 1.

For induction hypothesis, suppose that for n ≥ 5 and |F | ≤ n − 4, there exists an

ES(x; degSn−1−F (x)) ⊆ Sn−1 at each node x ∈ V (Sn−1), where F is the set of missing

edges.
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f
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u

v
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(a) (b)

X

X X

Sn-1(xn)

Sn-1(x ) 

Sn-1(xn)

Sn-1(x ) 

Figure 4.5: illustration for the inductive step in the proof of Lemma 6.
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Now we claim that for a set of missing edges F with |F | ≤ n − 3, there exists an

ES(x; degSn−F (x)) ⊆ Sn at each node x ∈ V (Sn), for n ≥ 5. Assume that the number of

missing edges is at most n−3 in an n-dimensional star Sn, for n ≥ 5. Let f = (u, v) be an

arbitrarily missing edge. Since the star graph is edge symmetric, without lost of generality,

we let v = un. The n-dimensional star Sn can be seen as the composition of n subgraphs

Sk
n, for 1 ≤ k ≤ n, where Sk

n is a subgraph of Sn induced by the nodes z′s with (z)n = k.

Thus, the number of all missing edges except f in Sn is at most n − 4. Consider a node

x in Sn, x is in one of the n induced subgraphs Sk
n, 1 ≤ k ≤ n, and each Sk

n is isomorphic

to an (n − 1)-dimensional star Sn−1. Let Sn−1(x) be the substar which x belongs to. By

the induction hypothesis, there is an extended star ES(x; degSn−1(x)−F ′(x)) ⊆ Sn−1(x) at

x, where F ′ is the set of all missing edges in Sn−1(x) and |F ′| ≤ n − 4. If the nth edge

of x is missing (Figure 4.5(a)), the degree of x in Sn−1(x) − F ′ is equal to the degree of

x in this incomplete star Sn − F with at most n − 3 missing edges. If the nth edge of x

is not missing (Figure 4.5(b)), x is adjacent to its nth neighbor, denoted by xn, through

the nth edge. Let Sn−1(x
n) be the subgraph which xn belongs to. Since |F | ≤ n − 3, the

remaining degree of each node in Sn − F is at least 2. Then xn is adjacent to another

node a in Sn−1(x
n), a is adjacent to another node b in Sn−1(x

n), and b is adjacent to

another node c in Sn−1(x
n). As a result, there is an ES(x; degSn−F (x)) ⊆ Sn at x, for

n ≥ 5 and |F | ≤ n − 3. The proof is complete. �

Theorem 7 Let Sn be an n-dimensional star and n ≥ 4, and let F be an arbitrary set of

missing edges with |F | ≤ n − 3. For each node x in Sn with missing edges F , node x is

strongly node-diagnosable; and graph Sn − F is strongly node-diagnosable.
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Proof. By Theorem 3 and Lemma 6, the node diagnosability of each node x in an

incomplete n-dimensional star Sn − F is equal to its remaining degree, for n ≥ 4 and

|F | ≤ n − 3. Thus, every node in Sn − F is strongly node-diagnosable. Consequently,

graph Sn − F is strongly node-diagnosable. �

4.3 Some Conclusions for the Strongly Node-Diagnosable

Property

At the last part of this chapter, we give some conclusions for the strongly node-diagnosable

property. As the previous two sections showed, we observe that both the n-dimensional

hypercube and the n-dimensional star are strongly node-diagnosable if there are at most

deg(x) − 2 missing edges, for any node x in the regular hypercube Qn or star Sn. The

number deg(x) − 2 is tight in the sense that the strongly node-diagnosable property can

not be guaranteed if there are deg(x) − 1 missing edges. We have an example to show

that an Hn or an Sn may not keep the strongly node-diagnosable property if there are

deg(x) − 1 missing edges. Let x be an arbitrary node in Hn (respectively, Sn). Suppose

there are deg(x) − 1 missing edges in Hn (respectively, Sn), which are all incident with

node x (as shown in Figure 4.6). Then, the remaining degree of x in this incomplete

hypercube (respectively, star) with missing edges is 1. Let y be the only node adjacent

to x. Let F1 be the set of nodes {y} ∪ N(y) − {x} with |F1| = deg(y), and F2 be the

set of nodes N(y) with |F2| = deg(y). By Lemma 1, (F1, F2) is not a distinguishable

pair under the comparison diagnosis model, and this incomplete hypercube (respectively,

star) with missing edges is not deg(y)-diagnosable at y. Since the node diagnosability

of y (which is less than deg(y)) does not equal to its degree (which is deg(y)) in this

incomplete network, node y is not strongly node-diagnosable anymore. So an incomplete
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hypercube Hn (respectively, star Sn) with deg(x)−1 missing edges can not be guaranteed

to be strongly node-diagnosable.

x
x
xy

F1 F2

Figure 4.6: an example showing that a deg(x)-regular network is not strongly node-
diagnosable with deg(x) − 1 missing edges, for some node x in this regular network.
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Chapter 5

A Diagnosis Algorithm for the

Comparison Diagnosis Model

Given an extended star structure at a node, we shall present a diagnosis algorithm to

determine whether this node is faulty or not for a given syndrome under the comparison

model. As stated in Theorem 3, the node diagnosability of a node can be determined by

the neighboring nodes (processors) around it. Intuitively, a node’s faulty/fault-free status

should also be determined by the comparison outputs of the nodes surrounding it, and

Theorem 8 provides an algorithm for performing such procedure.

Let ES(x; n) be an extended star at a given node x in V (G), the diagnosing signals are

sent back and forth inside ES(x; n). Since there are communication links between x and

vk1, vk1 and vk2, vk2 and vk3, and vk3 and vk4, for all 1 ≤ k ≤ n, vk1, vk2 and vk3 can be the

comparators of the comparison model. After the comparison test, each comparator has

a testing result denoted by 0 (1, respectively) representing the agreement (disagreement,

respectively). Given an extended star ES(x; n) at a node x, we define rk = (r1, r2, r3) to

be the testing result of an ordered triple (vk1, vk2, vk3) with respect to ES(x; n), where r1

is the comparison result of vk1 for the two responses from x and vk2, r2 is the comparison
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result of vk2 for the two responses from vk1 and vk3, and r3 is the comparison result of vk3

for the two responses from vk2 and vk4. Then, rk can be in one of the eight different states

which are r(0) = (0, 0, 0), r(1) = (0, 0, 1), r(2) = (0, 1, 0), r(3) = (0, 1, 1), r(4) = (1, 0, 0),

r(5) = (1, 0, 1), r(6) = (1, 1, 0) and r(7) = (1, 1, 1). Let R(i) be the set of the collection

of all r(i), for all 0 ≤ i ≤ 7. Obviously, the summation of the cardinality of R(0) to R(7)

is n, that is,
∑7

i=0 |R(i)| = n.

Let x be a node in a system. Suppose that the degree of x is n and suppose that

there is an extended star ES(x; n) at x. Then the node diagnosability of x is n, which

means we may not be able to identify all the faulty nodes, if the number of faulty nodes

in ES(x; n) is n + 1 or more. Therefore, we assume that the number of faulty nodes is

at most n. Under this assumption, we have an efficient algorithm to determine whether

node x is faulty or not.

5.1 The Diagnosis Algorithm

Theorem 8 Let x be a node with degree n in a system G(V,E). Suppose that there is

an extended star ES(x; n) ⊆ G at x. Define rk = (r1, r2, r3) to be the testing result of

(vk1, vk2, vk3) with respect to ES(x; n). Then, rk can be in one of the eight states (as

illustrated in Figure 5.1):

r(0) = (0, 0, 0), r(1) = (0, 0, 1), r(2) = (0, 1, 0), r(3) = (0, 1, 1), r(4) = (1, 0, 0),

r(5) = (1, 0, 1), r(6) = (1, 1, 0), and r(7) = (1, 1, 1).

Let R(i) be the set of the collection of all r(i), and |R(i)| be the cardinality of R(i).

Then, under the assumption that the number of faulty nodes is at most n,
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i) x is fault-free, if |R(0)| ≥ |R(4)|; or,

ii) x is faulty, if |R(0)| < |R(4)|.

0

0

0

0

0

1

x

0

1

0

0

1

1

1

0

0

1

0

1

1

1

0

1

1

1

r(0) r(1) r(2) r(3) r(4) r(5) r(6) r(7) 

Figure 5.1: eight different output states for Theorem 8.

Proof. Let lk = (vk1, vk2, vk3, vk4) be an ordered quadruple, 1 ≤ k ≤ n, with respect

to ES(x; n). We prove the first part of this theorem by contradiction. Suppose that the

number of faulty nodes in ES(x; n) is at most n and suppose that x is faulty, the counting

of all the other faulty nodes is as follows:

For those lk with result r(0), there are at least 3 faulty nodes which are vk1,

vk2 and vk3.

For those lk with result r(1), there are at least 2 faulty nodes which are vk1

and vk2.

For those lk with result r(2), there is at least 1 faulty node which is vk1.

For those lk with result r(3), there are at least 2 faulty nodes which are vk1

and one of vk2, vk3 and vk4 since the output of vk3 is disagreement.

For those lk with result r(4), the number of faulty nodes is uncertain.

For those lk with result r(5), there is at least 1 faulty node which is one of

vk2, vk3 and vk4 since the output of vk3 is disagreement.
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For those lk with result r(6), there is at least 1 faulty node which is one of

vk1, vk2 and vk3 since the output of vk2 is disagreement.

For those lk with result r(7), there is at least 1 faulty node which is one of

vk2, vk3 and vk4 since the output of vk3 is disagreement.

Thus, the number of faulty nodes is at least

1 + 3|R(0)|+ 2|R(1)|+ |R(2)|+ 2|R(3)|+ |R(5)|+ |R(6)|+ |R(7)| = Σ7
i=0|R(i)|+ (1 +

2|R(0)| + |R(1)| + |R(3)| − |R(4)|).

By the assumption that |R(0)| ≥ |R(4)|, the number of faulty nodes is strictly more than

Σ7
i=0|R(i)| which is equal to n. This contradicts to the assumption that the number of

faulty nodes in ES(x; n) is at most n. Therefore, x is fault-free.

Now, we prove the second part of this theorem. Suppose that the number of faulty

nodes in ES(x; n) is at most n and suppose that x is fault-free, the counting of all the

other faulty nodes is as follows:

For those lk with result r(0), the number of faulty nodes is uncertain.

For those lk with result r(1), there is at least 1 faulty node which is one of

vk2, vk3 and vk4 since the output of vk3 is disagreement.

For those lk with result r(2), there is at least 1 faulty node which is one of

vk1, vk2 and vk3 since the output of vk2 is disagreement.

For those lk with result r(3), there is at least 1 faulty node which is one of

vk1, vk2 and vk3 since the output of vk2 is disagreement.
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For those lk with result r(4), there are at least 2 faulty nodes for the reasons

that: i) if vk1 is faulty, vk2 must be faulty since the comparison result of vk2

is wrong; or, ii) if vk1 is fault-free, vk2 must be faulty and vk3 must be faulty

too.

For those lk with result r(5), there is at least 1 faulty node which is one of

vk1, vk2 since the output of vk1 is disagreement.

For those lk with result r(6), there is at least 1 faulty node which is one of

vk1, vk2 since the output of vk1 is disagreement.

For those lk with result r(7), there is at least 1 faulty node which is one of

vk1, vk2 since the output of vk1 is disagreement.

Thus, the number of faulty nodes is at least

|R(1)|+|R(2)|+|R(3)|+2|R(4)|+|R(5)|+|R(6)|+|R(7)| = Σ7
i=0|R(i)|+(|R(4)|−|R(0)|).

By the assumption that |R(0)| < |R(4)|, the number of faulty nodes is larger than

Σ7
n=i|R(i)| which is equal to n. This contradicts to the assumption that the number

of faulty nodes in ES(x; n) is at most n. Therefore, x is faulty. �

Roughly speaking, the collections of testing results R(0) and R(4), with respect to the

extended star ES(x; n) found at node x, dominate the faulty/fault-free status of x. We

can determine the faulty of fault-free status of a node by just comparing the number of

the testing results r(0)’s and r(4)’s on an arbitrary extended star we found.
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5.2 Analysis of the Time Complexity for the Diagno-

sis Algorithm

We now measure the time complexity to diagnose all the faulty nodes in a system. For

most of the practical systems with N nodes, the degree of each node is in the order of

log N . For example, the n-dimensional Hypercube Qn has N = 2n nodes and the degree

of each node is n, n = log N ; the n-dimensional Star Sn has N = n! nodes and the degree

of each node is n − 1 = O(n) = O( log N

log n
) = O( log N

log log N
). We assume that a testing result

of each comparator for each pair of distinct neighbors with which it can communicate

directly is stored in a syndrome table. Given an extended star structure ES(x; n) at a

node x, assume the time for looking up the testing result of a comparator in the syndrome

table is constant c. Then, the time needed for determining the faulty or fault-free status

of node x is 3c log N = O(log N). Consequently, the total time for diagnosing all the

faulty nodes is O(N log N).

As a result, for most practical multiprocessor systems, especially some well-known

symmetric and regular topologies like hypercube systems, the time for self diagnosis is

O(N log N), where N is the total number of processors in it. On the other hand, the

presented diagnosis algorithm is not restricted to symmetric systems only. We can apply

such method to diagnose a system node by node, and consequently to diagnose the whole

system. In general, the time complexity is O(NΔ), where Δ is the maximum degree of a

node in this system.

The time complexity O(N log N) obtained here is based on the symmetry of most

recently practical multiprocessor systems. Applying the traditional approach by Sengupta
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and Dahbura [30] results in an initiate result of time complexity O(N5). However, under

some constraints like symmetry or regularity of the systems, using the classical approach

may result in a better computational complexity than O(N5), especially on some special

cases of hypercubes or other well-known topologies. A recent paper can be referred on this

issue; Yang and Tang [33] address the fault identification of diagnosable multiprocessor

systems under the MM* comparison model, and present an O(NΔ3δ) time diagnosis

algorithm for an N -node system, where Δ and δ are the maximum and minimum degrees

of a node, respectively.
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Chapter 6

Conclusions and Discussions

The issue of identifying all the faulty processors is important in the design of intercon-

nection networks or multiprocessor systems, which is implementable in very large scale

integration (VLSI). The process of identifying all the faulty processors is called diagnosis

of a system. Under the asymmetric comparison diagnosis model, each processor acts as a

comparator to test each pair of adjacent two processors. Further, Sengupta and Dahbura

[30] proposed a polynomial time algorithm with time complexity O(N5) to diagnose a

system with total number N of processors. In some circumstances, it is not necessary to

judge the status of all processors but several ones in some substructure of the system such

as a ring structure or a path structure.

In this dissertation, we proposed a novel idea on system diagnosis called node diagnos-

ability. Opposite to that of the traditional diagnosability, the concept of node diagnos-

ability put more focus on a single processor, and require only identifying the status of this

particular processor correctly. Estimating the node diagnosability of each processor in a

system also provides a new viewpoint for checking the diagnosability of the whole system.

Under the comparison diagnosis model, we proposed a sufficient condition to determine
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a given processor’s node diagnosability, and an efficient algorithm to determine whether

a processor is faulty based on the local syndrome of a given extended star structure. All

these concepts can be applied to many well-known interconnection networks. For most

practical multiprocessor systems, the number of links connecting to each processor is in

the order of log N , where N is the total number of processors. The time complexity of

our algorithm to diagnose a given processor is O(log N) and to diagnose all the faulty

processors in a system is O(N log N).

Finally, we propose a research topic worth studying at the end of this paper, which is

the issue of the underlying assumptions consistent with the comparison diagnosis model.

As referred to those assumptions, all faults are permanent, and the comparison output

performed by a faulty processor is unreliable. However, in future technologies it is likely

that many faults will be transient or non-permanent, making fixed diagnosis strategies

more complex, and violating the comparison diagnosis strategy we are based on. Further-

more, a faulty processor may be able to perform self-diagnosis and identify itself as faulty.

So violating each assumption of the comparison model may lead to a different situation,

and each of the modifications will be an interesting problem for further research.
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