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Determining Diagnosability of Multiprocessor Systems with
a Local Approach under the Comparison Model

Student: Chieh-Feng Chiang Advisor: Dr. Jimmy J. M. Tan

Department of Computer Science
College of Computer Science
National Chiao Tung University

ABSTRACT

Diagnosis is an essential subject for the reliability of a multiprocessor system.
Determining a system’s diagnosability is a widely discussed issue on recent research.
In this thesis, we present a novel idea on system diagnosis called node diagnosability.
The node diagnosability can be viewed as a local strategy toward system
diagnosability. There is a strong relationship between the node diagnosability and the
traditional diagnosability. For this local sense, we focus more on a single processor
and require only identifying the status of this particular processor correctly. Under the
comparison diagnosis model, we propose a sufficient condition to determine the node
diagnosability of a given processor. We also propose a useful local structure called an
extended star to guarantee the node diagnosability. Based on the local sense of
diagnosis, the strongly node-diagnosable property is discussed; this property describes
the equivalence of the local diagnosability of a node and its degree. Furthermore, we
provide an efficient algorithm to determine the faulty or fault-free status of each
processor based on this structure. For a multiprocessor system with total number of
processors N, the time complexity of our algorithm to diagnose a given processor is
O(logN) and that to diagnose all the faulty processors is O(N logN) under the
comparison model, provided that there is an extended star structure at each processor
and that the time for looking up the testing result of a comparator in the syndrome
table is constant. This newly proposed diagnosis algorithm has a well performance on
most recursively constructed multiprocessor systems.

Keywords: fault diagnosis, comparison diagnosis model, node diagnosability,
extended star structure, strongly node-diagnosable property, diagnosis algorithm.
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Chapter 1

Introductions and Motivations

Recently, high-speed multiprocessor systems have become more and more popular in
computer technology. The reliability of the processors in a system is significant since even
few faulty processors may cause the system failure. Whenever processors are found faulty,
we should replace the faulty ones with fault-free ones to maintain the reliability of the
system. Identifying all the faulty processors of a system is called diagnosis of the system.
The maximum number of faulty processors that can be ensured to be identified is called
the diagnosability of the system. A system G is t-diagnosable if all the faulty processors
can be precisely pointed out given that the number of faulty processors is at most ¢t. The

maximum number ¢ for which G is t-diagnosable is called the diagnosability of G.

Multiprocessor systems consist of processors and communication links between the
processors. Practically, most multiprocessor systems are based on an underlying bus
structure or fabric, and perfectly feasible for a central test controller (an independent
processor acting as a controller) to check each processor in the system. In such scheme,
the central controller itself can be tested externally. Several relevant papers are selected

in the following, concerning the network on chip (NoC) issue: Pande et al. [28] developed



an evaluation methodology to compare the performance and characteristics of a variety of
NoC topologies; Bartic et al. [2] presented an NoC design, which is suitable for building

networks with irregular topologies.

Throughout this dissertation, each processor in a system is presented as a node, and
a single edge between two arbitrary nodes represents the communication bus or fabric.
A diagnosis testing signal is supposed to be delivered from one node to another node
through the communication bus at one time. A system performs system-level diagnosis
by making each processor as a tester to test each of the directly connected ones, and such
scheme contains no central test controller instead. All assumptions are given in order to
be consistent with the classic comparison diagnosis model proposed by Maeng and Malek

126].

Several well-known approaches on diagnosis have been developed. One major ap-
proach, called the PMC diagnosis model, was first proposed by Preparata et al [29]. It
performs diagnosis by sending a test-signal from a processor to another linked one and
getting a returning response in the reverse direction. According to the collective testing
results, the faulty or fault-free status of all processors in a system can be identified. Fol-
lowing the PMC model, Dahbura et al. [12] proposed a diagnosis algorithm with time
complexity O(N??) to identify all the faulty processors in a system with N processors.
Another major diagnosis approach is called the comparison model which was proposed by
Maeng and Malek [26][27]. In this model, the diagnosis is performed by simultaneously
sending two identical signals from a processor to two other linked ones and comparing
the responses. Under the comparison model, Sengupta and Dahbura [30] discussed some

characterizations of a t-diagnosable system, and gave a polynomial time algorithm with



time complexity O(N°®) to diagnose a system of N processors.

Following the diagnosis models above, most previous studies focused on the diagnosis
ability of a system in a global sense, but ignored some local systematic details. A system
is t-diagnosable if all the faulty processors can be identified whenever the number of
faulty processors is at most ¢t. However, it is possible to correctly point out all the faulty
processors in a t-diagnosable system when the number of faulty processors is greater than
t. For example, consider two hypercube systems @),, and @), which are m-diagnosable
and n-diagnosable [31], respectively, where m and n are integers and m > n. A new
system can be generated by integrating these two systems with few communication links
in some way, and such way may cause the diagnosability of the new system to become
n. However, the strong diagnosis ability of some part of the entire system, the part of
the original m-diagnosable subsystem @),,, is ignored. Thus, if only considering the global

status, we lose some local details of the system. See Figure 1.1 for an illustration.

m-
diagnosable

n- diagnosable

n- diagnosable

Figure 1.1: an n-diagnosable system generated by integrating an n-diagnosable subsystem
and an m-diagnosable subsystem.

In some circumstances, however, we are only concerned about some substructure of a
multiprocessor system which is implementable in very large scale integration (VLSI). For

example, such substructure can be a ring structure or a path structure. If all processors
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in such a substructure can be guaranteed to be fault-free, the procedure is still workable
even though a few processors in some other part of the system are faulty. Thus, the local

substructure of a system is more critical than the global status of the entire system.

In this dissertation, we present a novel idea on system diagnosis which we call the
node diagnosability. The node diagnosability can be viewed as a local strategy toward
system diagnosability. There is a strong relationship between the node diagnosability and
the traditional one. For this local sense, we focus more on a single processor, and require
only identifying the status of this particular processor correctly. More specifically, every
processor in a system has its own node diagnosability. Under the comparison diagnosis
model, we propose a sufficient condition to determine the node diagnosability of a given
processor . On the basis of this sufficient condition, we propose an useful local structure
called an extended star at processor x to guarantee its node diagnosability. Following
the concept of node diagnosability, we discuss a property so called the strongly node-
diagnosable property, which states the equivalence of the node diagnosability of a node
and its degree. At last, we have an efficient algorithm to determine the faulty or fault-
free status of each processor based on the extended star structure. For most practical
multiprocessor systems, the number of links connecting to each processor is in the order of
log N, where N is the total number of processors. The time complexity of our algorithm to
diagnose a given processor is bounded by O(log N) and to diagnose all the faulty processors
in a system with NV processors is bounded by O(N log N) under the comparison model,
provided that there is an extended star structure at each processor, and that the time
for looking up the testing result of a comparator in the syndrome table is constant. In
general, the time complexity of our algorithm can be represented as O(NA), where A is

the maximum degree of a processor in the N-processors system.



1.1 Basic Terms and Notations

The topology of a multiprocessor system can be modeled as an undirected graph G =
(V, E) , where V represents the set of all processors and E represents the set of all connect-
ing links between the processors. Throughout this dissertation, all systems represented as
graphs are assumed to be undirected graphs without loops. That is, each pair of adjacent

nodes are connected by exactly one edge between them.

The degree of a vertex v in a graph G, written dg(v) or deg(v), is the number of edges
incident with v. The maximum degree of GG is denoted by A(G), whereas the minimum
degree is denoted as 6(G). A graph G is called k-regular if the maximum degree and the
minimum degree both equal to k. The neighborhood set of a node v, denoted by Ng(v)

or N(v), is defined as the set of all nodes adjacent to v.

A node cover of GG is a subset of nodes () C V' such that every edge of E has at least
one end node in ). A node cover with the minimum cardinality is called a minimum node

cover.

Let A and B be two sets of nodes, the symmetric difference of sets A and B is defined
as the set AAB = (AU B) — (AN B). For any set of nodes U C V(G), G[U] denotes the
subgraph of GG induced by the node subset U. Let H be a subgraph of G and v be a node
in H, degy(v) denotes the degree of v in subgraph H. For a given set of nodes S C V(G),
we use G — S to denote the induced subgraph G[V(G) — S]. Let S be a set of nodes and
x be a node not in S, we use C, g to denote the connected component which x belongs

toin G — S.



1.2 Dissertation Organization

The rest of this doctorial thesis is organized as follows. Chapter 2 provides preliminaries
and necessary background for the comparison diagnosis model. Chapter 3 introduces
the concepts of node diagnosability and provides a sufficient condition to check whether
a system is t-diagnosable at a given processor. The extended star local structure for
guaranteeing a processor’s node diagnosability is also introduced in this chapter. In
Chapter 4, a property called strongly node-diagnosable property is discussed here. In
Chapter 5, we propose an efficient algorithm to determine the faulty or fault-free status

of a given processor. Finally, some conclusions and discussions are given in Chapter 6.



Chapter 2

The Comparison Diagnosis Model

2.1 Diagnosis Procedure of the Comparison Model

Under the comparison model [26][27], also called the MM model, the system diagnosis is
performed by a specific testing procedure. For each processor w which has two distinct
links to two other processors v and v, the diagnosis can be performed by simultaneously
sending two identical signals from w to w and from w to v, and then comparing their
returning responses in the reverse direction. Furthermore, in the MM* model [30], it
is assumed that a comparison is performed by each processor for each pair of distinct
connected neighbors. Throughout this dissertation, all discussions are based on the MM*

model, the complete version of MM model.

This diagnosis-by-comparison strategy can be modeled as a labeled multigraph M =
(V,C) , called a comparison graph, where V' represents the set of all processors same as
that in G and C represents the set of labeled edges. For each labeled edge (u,v), € C,
w is a label on the edge, which means that processors v and v are being compared by a

comparator, the processor w.



In order to be consistent with the MM model, several assumptions are needed [30]:
1. all faults are permanent;
2. a faulty processor produces incorrect output for each of its given testing tasks;
3. the output of a comparison performed by a faulty processor is unreliable; and,

4. two faulty processors with the same input do not produce the same output.

The output on a labeled edge (u,v),, € C' is denoted by 7((u,v),) , which represents
the comparison result of w for the two responses from u and v. An agreement is denoted by
r((u,v),) = 0, whereas a disagreement is denoted by r((u,v),,) = 1. Since the comparator
processor itself might be faulty or not, the testing result might be unreliable. For this
reason, some conclusions are made: if r((u,v),) = 1, at least one member of {u, v, w} is

faulty; or, if r((u,v),) = 0 and w is known to be fault-free, both v and v are fault-free.

After the completion of testing on each comparator in a system, the collection of all
testing results can be defined as a function o : C' — {0, 1} and referred to be a syndrome
of the diagnosis. For a given syndrome o, a subset of nodes F' C V(G) is consistent with
o if the syndrome o can be produced from the situation that all nodes in I’ are faulty and
all nodes in V' — F are fault-free. Let op denote the set of syndromes which are consistent
with F', that is, the collection of all possible syndromes which can be produced if F' is the
faulty set. Notice that for a syndrome o, there might be more than one faulty subset of

V' which are consistent with o.



2.2 Preliminaries for the Comparison Diagnosis Model

A system is defined to be diagnosable if, for every syndrome o, an unique set of nodes
F C V is consistent with it. In addition, we call a system t-diagnosable if the system
is diagnosable as long as the number of faulty processors is at most ¢t. The maximum
number ¢ for a system to be t-diagnosable is called the diagnosability of the system. Two
distinct subsets of nodes Fi, Fy C V are distinguishable if and only if o Nop = ¢;

otherwise, F] and F; are indistinguishable.

The following is an useful characterization, proposed by Sengupta and Dahbura [30],

for the distinguishability of two sets of nodes under the comparison model.

Lemma 1 [30] For every two distinct subsets of nodes Fy and Fy, that is, Iy # Fy and
F\,F, CV, (F\, F,) is a distinguishable pair if and only if at least one of the following
conditions is satisfied (as illustrated in Figure 2.1):

1) Ju,w eV — F — Fy and 3v € F1AF, such that (u,v), € C,

2)Ju,v € Fy — Fy and 3w € V — Fy — Fy such that (u,v),, € C, or

3)Ju,v € Fy—F) and 3w €V — Fy — F; such that (u,v), € C.

w w

w V4 (1) W

Figure 2.1: illustration of Lemma 1 — the distinguishability of two distinct subsets of
nodes.



The detailed proof of this lemma was demonstrated by Sengupta and Dahbura [30]. For
the completeness of this thesis, we sketch the proof briefly. If one of the three conditions

holds, the distinguishability is absolutely determined:

i) Suppose condition 1) is satisfied. If v € F} — F} then r((u, v),,) = 0 for each
syndrome in op,, and r((u,v),) = 1 for each syndrome in op. Similarly, if
v € Fy — Fy then r((u,v),) = 0 for each syndrome in op, and r((u,v),) =1

for each syndrome in op,. Either case implies op Nop, = ¢.

ii) Suppose condition 2) is satisfied. Then r((u,v),) = 0 for each syndrome in

o, and r((u,v),) = 1 for each syndrome in op,, which lead to op, Nog, = ¢.

iii) Suppose condition 3) is satisfied, a similar argument is used as condition

2).

On the contrary, if none of the three conditions holds. We consider a syndrome such
that for each (u,v), € C, the comparison result can be classified to the following nine

situations [30]:

i) f u,v,w € V — Fy — Fy then r((u,v),) = 0.

ii) f we V- F) — Fy and u,v € Fj then r((u,v),) = 1.

iii) If w € V — F} — F; and w,v € F; then r((u,v),) = 1.

iv)IfweV —F —F,and u € Fy and v € F; then r((u,v),) = 1.
v)lfweFy—F,andveV —F,and u € V — Fy — Fy then r((u,v),) = 0.
vi)Ifwe Fy,—Fyandv eV — Fyand u € V — Fy — Fy then r((u,v),) = 0.
vii) If w € Fy — F5 and u € F; then for all v, r((u,v),) = 1.

10



viii) If w € F, — F; and w € F} then for all v, r((u,v),) = 1.

ix) Other arbitrary comparison results.

Then the syndrome above belongs to op N op,, and therefore F; and F;, are indis-
tinguishable. For example, if w € V — F| — Fy, v € Fy N Fy, and v € F} — F3, then
r((u,v),) = 1 whenever the faulty set of nodes is either Fy or Fy. In such circumstance,

pair (Fi, F) can not be distinguished only with such few information.

Let G = (V, E) be a graph and let M = (V,C') be the comparison graph of G. Define
the order graph [30] of a node u € V' to be a digraph G, = (X, Y.,), where X, = {v | either

(u,v) € E or (u,v), € C for some w} and Y, = {(v,w) | v,w € X, and (u,v), € C}.

For a given node u € V, the order of u, order(u), is defined as the cardinality of a
minimum node cover of G,. For a subset of nodes U C V , define T'(G,U) to be the set

{v](u,v)y € Candu,w e U andv eV —U}.

Next is a characterization proposed by Sengupta and Dahbura which gives a sufficient

condition for a system being t-diagnosable.

Lemma 2 [30] A system G(V, E) with N nodes is t-diagnosable if
)N >2+1,
2) each node has order at least t, and

3) for each U CV such that |U |= N =2t +p and0<p<t—1, | T(G,U) |>p.

11



Chapter 3

The Local Approach to Determining
System Diagnosability

There were some studies on system diagnosability of some well-known networks under the
comparison model. For example, Wang [31][32] presented that the diagnosability of an
n-dimensional hypercube @),, is n for n > 5 and the diagnosability of an n-dimensional
enhanced hypercube is n + 1 for n > 6. Fan [16][17] showed that the diagnosability of
an n-dimensional Crossed cube is n, and the diagnosability of an n-dimensional Mobius
cube is n, for n > 4. Lai et al. [24] proposed that the diagnosability of the matching

composition network is n for n > 4.

As we observe, the traditional system diagnosability describes the global status of a
system. The purpose of this dissertation for considering the node diagnosability is to
keep the local connective detail of a system that we might neglect. For example, for any
two integers m and n with m >> n > 4, the diagnosability of two hypercube systems
Qm and @, is m and n [31][24], respectively. Combining these two systems with few
communication links in some way may cause the diagnosability of the new topology to

become n. In this situation, the strong diagnosis ability of some part of the entire system,

12



the substructure @),,, is ignored. Therefore, the need of keeping local information of each

node is concerned.

In the previous studies on diagnosis, most results focused on the diagnosis ability of a
system in a global sense: a system is t-diagnosable if all the faulty nodes can be identified
given that there are at most ¢ faulty nodes. In contrast to the global sense, we emphasize
more on a single node z in a local sense: we require only identifying the status of one
particular node correctly. More specifically, if x belongs to a set of faulty nodes, we must
correctly identify x to be faulty; or, x is identified to be fault-free if x is indeed fault-free.

In a word, we are only concerned about the status of the node .

3.1 Node Diagnosability

We now introduce the concept of a system being t-diagnosable at a given node.

Definition 1 A system G(V, E) is t-diagnosable at node x € V(Q) if, given a test syn-
drome o € o produced by the system under the presence of a set of faulty nodes F' con-
taining node x with |F| < t, every set of faulty nodes F' consistent with o and |F'| < t,

must also contain node x.
An equivalent way of stating the above definition is given below.

Proposition 1 A system G(V, E) is t-diagnosable at node x € V(QG) if, for each pair of
distinct sets Fy, Fy C V(G) such that Fy # Fy, |Fi|, |Fs] <t, and x € F1AF,, (F1, Fy) is

a distinguishable pair.

Then, we define the node diagnosability of a given node as follows.

13



Definition 2 The node diagnosability t;(x) of a node v € V(G) in a system G(V, E) is
defined to be the mazimum number of t for G being t-diagnosable at x, that is, t;(x) =

maz{t | G is t — diagnosable at x}.

The concept of a system being t-diagnosable at a node is consistent with the traditional
concept of a system being t-diagnosable in the global sense. The relationship between

these two is as follows.

Proposition 2 A system G(V, E) is t-diagnosable if and only if G is t-diagnosable at

every node.

Proof. We prove the necessary condition first. Suppose that there exists a node y € V(G)
such that G is not t-diagnosable at y. By Proposition 1, there exists an indistinguishable
pair (Fy, Fy) with |F;| < t,i = 1,2, and y € FyAF,. This contradicts that G is t-
diagnosable. Next, we prove the sufficiency. Suppose G is not t-diagnosable. Then there
exists an indistinguishable pair (F, Fy) with |F;| < t,i = 1,2. Pick any node y in F1AF,,

the system is not t-diagnosable at y by Proposition 1, which is a contradiction. O

Proposition 3 The diagnosability t(G) of a system G(V,E) is equal to the minimum
value amonyg the node diagnosability of every node in G, that is, t(G) = min{t,(z) | x €

V(G)}-

Proof. The result follows trivially from Definition 2 and Proposition 2. O

From Proposition 2 and 3, the relationship between the traditional diagnosability and

the node diagnosability was pointed out. Through this concept, the system diagnosability

14



can be determined by testing the node diagnosability of each node. Especially in some
well-known regular networks, the diagnosability can be easily identified because of the
system symmetry. For example, in some graphs like hypercubes, cube-connected cycles,
or complete graphs, the system diagnosability and the node diagnosability of each node

in the system are the same, and such result can be applied in other applications.

In the following, we propose a sufficient condition for verifying whether a system G is

t-diagnosable at a given node .

Theorem 1 A system G(V, E) is t-diagnosable at a given node x € V(G) if, for every
set of nodes S C V(G), |S|=p, 0<p<t—1, and x ¢ S, the cardinality of every node

cover including x of the component Cy s is at least 2(t — p) + 1.
e él
u u

(a) (b)

Figure 3.1: illustration of the proof of Theorem 1 — at least one edge lies in C, s — F1 AF5.

Proof. We prove it using contradiction. Suppose system G is not t-diagnosable at node
x. According to Proposition 1, there exists an indistinguishable pair of distinct node set
(F1, Fy) with |Fi| <t, |Fy] <t,and x € F1AF,. Let S be the intersection of node sets F}
and Fy, then the cardinality of S is less than or equal to t — 1. (Otherwise, if | S| = ¢, then
Fy = F;.) According to the condition that z ¢ S and 0 < |S| <t — 1, the cardinality of
every node cover including z of the component C, g is at least 2(¢ — p) + 1. Comparing

this number with |F1AFy| < 2(t—p), and x € F1AF,, we get the fact that F;AF, can not

15



be a node cover of C, . In other words, at least one member (a node) of the node cover
of C,s is outside F1AF, (and also outside S according to the definition of component
C..s). Consequently, by the property of node cover, there exists an edge e = (u,v) in C, g
but outside F1AF,. Since edge e, nodes u, v, and node x belong to the same connected
component C, g, there is a path leading from edge e to node = through set F; (as shown
in Figure 3.1(a)) or Fy (as shown in Figure 3.1(b)). Then by condition 1 of Lemma 1,

(Fy, F) is a distinguishable pair. This is a contradiction, and the result follows. O

3.2 The Extended Star Structure

Let us introduce a structure first.

Definition 3 Let x be a node in a graph G(V, E) with dege(x) > n. Define H(x;n) to be
a subgraph of G of order n at node x, where the set of nodes is {x} U{v;,vn | 1 <i <n}

and the set of edges is {(x,vi), (Vi1, vi2) | 1 <@ < n}. (Figure 3.2 depicts the structure.)

We notice that the term “order” is used in two different places, one is the order of a

node z, order(x), and the other is the order of the substructure defined here.

Figure 3.2: subgraph H(z;n) of G of order n at node z.

Proposition 4 Let G(V, E) be a graph and x be a node in G. The order of x is at least

n if G contains a subgraph H(x;n) of order n at node x.
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Proposition 5 Let G(V, E) be a graph without cycles of length three, and x be a node in

G. G contains a subgraph H(x;n) of order n at node x if the order of x is at least n.

Proof. Let S; and Ss be two sets of nodes with distance 1 and 2 to the node z, re-
spectively. Since G contains no cycles of length 3, there is no edge with both ends in
Si. Therefore, the order graph of z forms a bipartite graph with the partition (S, 55).
Because the node z has order at least n, which means the cardinality of a minimum node
cover of the order graph of = is at least n. By a classical theorem of Konig [13] and
Egervary [14], the cardinality of a minimum node cover of a bipartite graph equals the
maximum size of a matching in the bipartite graph. Then, there is a matching between
S; and Sy with the maximum size n. Consequently, G contains a subgraph H(z;n) of

order n at node z. O

The above two propositions state that the order of node x is at least n if and only
if the system contains a subgraph H(z;n) of order n at x. It implies that if the node
diagnosability of node x is n, then G contains a subgraph H(x;n) at x, provided that
G has no cycles of length 3. However, having the substructure H(x;n) at z, it does not

necessarily guarantee that the node diagnosability of node x is at least n.

We now propose a substructure at node z, called an extended star, which can guarantee

the node diagnosability of node .

Definition 4 Let x be a node in a graph G(V, E). For n < degg(x), an extended star
ES(x;n) of order n at node x is defined as ES(x;n) = (V(x;n), E(x;n)), where the set
of nodes V(z;n) = {x} U{v;; | 1 <i < n,1 <j <4} and the set of edges E(x;n) =

{(z,v51), (Vk1, Vk2), (Vk2, Vk3), (Vk3, Vka) | 1 < k < m}. (See Figure 3.3 for an illustration.)
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Figure 3.3: extended star structure ES(x;n).

We say that there is an extended star structure ES(x;n) C G at node x if G contains
an extended star ES(x;n) of order n at node = as a subgraph. Note that in the definition
of the extended star, each node and each edge can occur only once in this structure. In
other words, the problem of setting up the extended star structure turns into the problem
of finding n node-disjoint paths of length 4 (3 hops) with dedicated starting nodes. In
addition, such problem can be done off-line by the systematic structure of most well-known

multiprocessor systems.

Theorem 2 Let x be a node in a system G(V, E). The node diagnosability of x is at least

n if there exists an extended star ES(x;n) C G at x.

Proof. We use Theorem 1 to prove this result. First, we define Iy = (vg1, Vo, Vg3, Uga) tO
be a quadruple of four consecutive nodes for any k, 1 < k < n, with respect to ES(x;n).
We note that [ is a path of length 3. Accordingly, the cardinality of a node cover of
each [y is at least 2. Let S C V(G) be a set of nodes in G with |[S| =p, 0 <p <n—1,
and = ¢ S. After deleting S from V(G), there are at least (n — p) complete [;’s still
remaining in £S(x;n), where the word “complete” means that all vgy, vk, vks, and vig

of an [, have not been deleted in G — S. Thus, the cardinality of a node cover including
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x of the connected component C, g is at least 1+ 2(n — p). Therefore, the system G with
an extended star ES(x;n) is n-diagnosable at « by Theorem 1. By Definition 2, the node

diagnosability of x is at least n, that is, ;(x) > n. O

Proposition 6 Let x be a node in a system G(V, E) with degs(x) = n. The node diag-

nosability of x is at most n.

By Theorem 2 and Proposition 6, we have the following result.

Theorem 3 Let x be a node in a system G(V, E) with dege(x) = n. The node diagnos-

ability of x is n if there exists an extended star ES(x;n) C G at x.

We observe that for an extended star structure, if the set of nodes is of the form
V(zin) = {z} U{vy; | 1 < i < n,1 < j < 3} and the set of edges is of the form
E(z;n) = {(x,vk1), (vg1, Ug2), (Vk2, vk3) | 1 < k < n}, the node diagnosability n of node
x cannot be guaranteed simply by this kind of substructure. For example, let F} be the
set of nodes {z, vy, v12,v13} with |Fi| = 4, and F, be the set of nodes {vyy | 1 < k < n}
with |F2| = n (as shown in Figure 3.4), (Fi, F») is not a distinguishable pair according
to Lemma 1 unless there are other edges or nodes. Thus, the node diagnosability of x

cannot be guaranteed to be n.

In most multiprocessor systems or interconnection networks, an extended star sub-
structure at a given processor does exist. For example, the well-known multiprocessor
systems such as the Hypercube, the Crossed cube [15], the Twisted cube [19], the Mébius

cube [11], the Star [1], the mesh, and other hypercube-like graphs, in which an extended
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Figure 3.4: an example of an indistinguishable pair in an incomplete extended star struc-
ture with only set of nodes {z} U{v;; | 1 < i < n,1 < j < 3} and set of edges
{(@,v01), (1, Vk2), (Vr2, va3) | 1 < K < nj}.

star at a given processor can be carefully found because of the regular recursive construc-

tion, as long as the dimension n is suitably large.

3.3 Diagnosability of the Hypercube

Among all well-known interconnection networks, the Hypercube is one of the most popular
ones. Following the structure of the Hypercube, lots of similar networks had been pro-
posed, such as the Crossed cube [15], the Twisted cube [19], and the Mobius cube [11]. We
call the category of these systems a cube family. For each cube in the cube family, an n-
dimensional cube can be constructed in recurrence from two identical (n — 1)-dimensional
subcubes by adding a perfect matching between the two subcubes. A different perfect
matching leads to a different cube. Because of the recursive construction, an n-dimensional
cube has 2" nodes in it. Each node in the cube is usually represented by an n-bit binary
string. A binary string x of length n can be written as z = x,x,_1 ...zox1, where z; is 0

orl,1<2<n.

For each node x in an n-dimensional Hypercube, there are n distinct nodes adjacent to

it and with 1-bit complement to it. It is easy to find an extended star structure ES(x;n)
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at x in an n-dimensional Hypercube with n > 5 as following;:

For each node x = x,x,_1 ... x2x1, there are n nodes adjacent to it, namely, T, x,_1 ... T2x1,
TpTp1...T2x1, ..., and x,T,_1...2T277, where the overline denotes the complement bit.
Let vy, 1, Un—11, ..., and vy ; be these nodes respectively. For each vy 1, Vg1 = ZpZpn—1 ... T . .. T2271,
there are n nodes adjacent to it also. We can find one of these nodes with the (k +
1)(mod n)-th bit complement to vy, for all 1 < k < n, and name it vg2. Then, v =

TpTp—1 ... Tpg1Zk - - - Lox1. Moreover, we can find vy 3 = p,Tp—1 ... Tht2Tht12k - - - T2T1 and

Vgd = TpTp—1 ... Tht3Tht2Tkt12k - - - L2271 in the same way, where the indices are modulo

n. (Figure 3.5)

XX, (X, oo

XX, (X, ot

Figure 3.5: an extended star structure in an n-dimensional Hypercube with n > 5.

All these nodes do not have the same address (string bits) since the bit length is at
least five. Thus, the procedure described above provides an extended star ES(x;n) for
every node z in V(Q,), for n > 5. Consequently, the node diagnosability of each node
x € V(Q,) is n and the diagnosability of @, is n, for n > 5, which is the same conclusion
as that proposed by Wang [31]. Note that there are more than one way for searching an

extended star in a Hypercube.
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3.4 Diagnosability of the Star Graph

As another example, we show that the Star graph [1] with dimension 4 or more contains
an extended star structure as a subgraph at each node . Let n be a positive integer. The
Star graph of dimension n, denoted by S, is a graph whose set of nodes consists of all
permutations of {1,2,...,n}. Each node is uniquely assigned a label ;x5 ... x,, and is
adjacent to the nodes x;xs...x; 1212541 ... x,, for 2 < ¢ < n, that is, nodes obtained by
a transposition of the first symbol with the 7th symbol of the node. Consequently, there
are n! nodes in an n-dimensional Star graph, and each node has degree n —1. We can find

an extended star structure ES(zx;n — 1) at a given node z in S, with n > 5 as follows.

For each node x = x125 ... x,, there are n—1 nodes adjacent to it, namely, xox12324 . .. T,
T3T2TITA - .. Ly « oy TiT2T3TY .. . Ti 11 Ljg1 - - Ty, - - ., ANd T Tox3xy ... Tp_121. Let vy,
V31, ..., Vi1, ..., and v, be these nodes respectively. For convenience of description,
we say that two nodes are adjacent to each other with a (1 ¢) edge if one node can be
obtained by a transposition of the first symbol with the ith symbol of the other node.
Accordingly, = is adjacent to vy with a (1 k) edge, for all 2 < k < n. For each vy, there
are (n — 2) more nodes adjacent to it except for z. We can choose one of these adjacent
nodes of vg; with a (1 £+ 1) edgeif 2 <k <n—1, and with a (1 ((k + 2)mod n))
edge if £ = n. Let v 2 be these nodes, for all 2 < k£ < n, respectively. We then find vy 3
as one of the adjacent nodes of vy o with a (1 £+ 2) edge if 2 < k < n — 2, and with a
(1 ((k+3)mod n)) edge if n — 1 < k < n. Finally, we find v; 4 as one of the adjacent
nodes of vy 3 with a (1 k+3) edgeif 2 < k <n—3, and with a (1 ((k+4)mod n)) edge

if n —2 <k <n. (Figure 3.6)
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XPXXK e X X X,

Figure 3.6: an extended star structure in an n-dimensional Star graph with n > 5.

Therefore, an extended star ES(x;n — 1) at every node x € V(S,) can be retrieved
for n > 4. We note however, for n = 4, the construction strategy described above has to
be modified a little bit, since the construction strategy in the last paragraph will cause
all v,’€74s to be the same node, for all 2 < k < n. We can choose vy 4 as one of the adjacent
nodes of vy 3 with a (1 3) edge for £ = 2, a (1 4) edge for £k = 3, and a (1 2) edge for
k = 4, as a modified strategy. Therefore, for n > 4, the node diagnosability of each node
x € V(5,) is n — 1 and the diagnosability of S,, is n — 1, which is the same conclusion as

that proposed by Zheng et al [35].

For most multiprocessor systems or interconnection networks, an extended star at a
given node can be carefully found, as long as the dimension n is suitably large. This
explains the fact that the node diagnosibility of a given node matches its degree in many

cases.
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3.5 An Example of Combining Two Hypercubes of
Different Dimensions

One more example, consider an m-dimensional Hypercube system @),,, and an n-dimensional
Hypercube system @, for m > n > 5. The node diagnosability of each node in @, (Qp,
respectively) is m (n, respectively). Let u be a node in @, and v be a node in @,. A
new system can be formed by adding an edge (u,v) between @, and @,. Applying the
extended star structure, the node diagnosability of each node in @,, (Q.,, respectively)
remains m (n, respectively) except u (v, respectively), while the node diagnosability of
node u (v, respectively) increases to m+1 (n+1, respectively). Overall, the diagnosability

of this new system is n.
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Chapter 4

Strongly Node-Diagnosable Property

In this chapter, we discuss the strongly node-diagnosable property, which states the rela-
tionship between a processor’s node diagnosability and its degree. A processor is defined
to be strongly node-diagnosable if the node diagnosability of it equals to its degree, where
degree refers to as the number of links incident with it. A system is defined to be strongly
node-diagnosable if all the processors in this system are strongly node-diagnosable. We
shall prove that both an n-dimensional hypercube and an n-dimensional star graph have

this property.

In some circumstances, some links in a multiprocessor system may be missing. A
missing edge stands for a link which is broken or failure between two processors for some
reasons. The existence of missing edges in a system may reduce the diagnosability of
the whole system and change the node diagnosability of each node. We shall prove that
both an n-dimensional hypercube and an n-dimensional star graph keep the strongly

node-diagnosable property even if there is a bounded amount of missing edges.
We first introduce the definition of a node (respectively, a graph) being strongly node-
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diagnosable as follows.

Definition 5 Let x be a node in a graph G(V, E). Node x is strongly node-diagnosable if

the node diagnosability of x equals to its degree in G. That is, t;(z) = degg(x).

Definition 6 Let G(V, E) be a graph. Graph G is strongly node-diagnosable if the node
diagnosability of every node equals to its degree in G. That is, t;(x) = degg(x), for all
z e V(G).

4.1 Strongly Node-Diagnosable Property of the Hy-
percube

Following the definitions of the so called strongly node-diagnosable property of a node or
of a graph, we shall declare that an n-dimensional hypercube with n > 5 has the strongly
node-diagnosable property in this section. First of all, a lemma is needed to show that

there exists an extended star £S(x;n) C @, of order n at every node z in @, for n > 5.

Lemma 3 For each node x in an n-dimensional hypercube QQ,, with n > b5, there exists

an extended star ES(z;n) C @Q,, of order n at x.

Proof. Since (), is node symmetric, we arbitrarily choose x = z,x,_1...21 to be the
root of an ES(x;n), and try to find an extended star ES(x;n) as a subgraph of the
n-dimensional hypercube @), at the node x. In this proof, we follow the notations in

Definition 4.
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XXX, X X

XXX, X X
[ X N J

XXX X X

XXX, XX,

Figure 4.1: illustration of the proof of Lemma 3, an ES(x;n) of order n at x =

Tpnlp—-1...2T1.

For all n > 5, we can find an extended star ES(x;n) at node x = z,x,_1 ..

shown in Figure 4.1), where the set of nodes is

{x} U {vm =zpxp_ ..
U {vpe = Tppn_1 - .
U {vks = T2t ..
UA{vrs = Tptp_1 -

and the set of edges is {(x, vk1), (Vk1, Vka), (Vka, Uks), (Uks, Uka) | 1 < k < n}.

Tty (modn) Tk---21 | 1L <k <n}

T (kg 2)(mod n) T(k+1)(modn) Tk ---T1 | 1 <k <n}

.x1 (as

- T(k13)(mod n) T(k42)(mod n) T(k+1)(modn) Tk ---T1 | 1 <k <n}

As a result, there exists an extended star ES(x;n) C @, of order n at each node

x € V(Q,) for n > 5.

O

Theorem 4 Let ), be an n-dimensional hypercube and n > 5. Fach node x in Q, is

strongly node-diagnosable; and graph @, is strongly node-diagnosable.

Proof. By Theorem 3 and Lemma 3, the node diagnosability of each node = € V(Q,,) is

n, since the degree of z in @, is n and there exists an extended star ES(x;n) of order
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n at x, for n > 5. Thus, every node in an n-dimensional star @),, with n > 5 is strongly

node-diagnosable. So graph @, is strongly node-diagnosable. a

Up to now, we facilitate the procedure of proving that the diagnosability of @), is n,
for n > 5. As mentioned before, a multiprocessor system may have some links broken
or failure. Consequently, it may affect the reliability of the whole system. Now, we are
proving that even with a total amount n — 2 missing edges, an n-dimensional hypercube

@, still keeps the strongly node-diagnosable property, for n > 5.

Note that for a given set of edges L C E(G) in a system G, we use G — L to denote

the subgraph with node set V(G) and edge set E(G) — L.

Lemma 4 Let QQ,, be an n-dimensional hypercube with n > 5, and let F' be an arbitrary
set of missing edges with |F| < n — 2. For each node x in Q,, there exists an extended
star ES(x;degg,-r(x)) C @, at x, where degg,_r(x) denotes the remaining degree of

node x in ), — F.

Proof. We prove this lemma by induction on n.

For the base case n = 5, each node in @, is labeled as x = z5r 232921, for each z; =0
or 1, 1 <7 < 5. Since the hypercube is node symmetric, we arbitrarily choose a node
X = x51423797, for description. Since n — 2 = 3 for n = 5, there are at most 3 missing
edges in this incomplete hypercube. It is straightforward but tedious to see that there
indeed exists an extended star ES(z;degg,-r(r)) C @, at each node x, for n = 5 and

|F|=0,1, 2, or 3.
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For induction hypothesis, suppose that for n > 6 and |F| < n — 3, there exists an
ES(x;degg, -r(r)) € Qn-1 at each node z € V(Q,—1), where F' is the set of missing

edges.

Now we claim that for a set of missing edges F' with |F| < n — 2, there exists an
ES(x;degq,-r(x)) € Q, at each node z € V(Q,,), for n > 6. Assume that the number
of missing edges is at most n — 2 in an n-dimensional hypercube @), for n > 6. Let
f = (u,v) be an arbitrarily missing edge. The n-dimensional hypercube @,, can be seen as
the composition of two subgraphs Q° | and Q! |, where u € V(Q° ;) and v € V(Q}_,).
Note that each Q! , is isomorphic to an (n — 1)-dimensional hypercube Q,_1, i = 0 or
1. Then, the number of all missing edges except f in both QY , and Q! , is at most
n — 3. Therefore, there is an extended star ES(x;n — 1) of order n — 1 at every node
2 in this faulty hypercube. Consider an arbitrary node x in (),,, x is in one of the two
induced subgraphs Q! ,, i = 0 or 1. Without loss of generality, we let x € Q% . If the
incident edge of x that has the other end in Q! ; is missing (as shown in Figure 4.2(a)),
we are done. That is, the order of the extended star at x equals to x’s remaining degree
in this @), — F', and both are n — 1. Otherwise, the incident edge of x that has the other
end in Q;_; is fault-free (as shown in Figure 4.2(b)). Then we can find an ES(x;n) of

order n at node x. As a result, there is an ES(x;degg, -r(x)) C @, at x, for n > 6 and

|F| <n-—2. O

Theorem 5 Let (), be an n-dimensional hypercube and n > 5, and let F' be an arbitrary
set of missing edges with |F| < n — 2. For each node x in Q,, with missing edges F', node

x s strongly node-diagnosable; and graph Q, — F is strongly node-diagnosable.
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n-1 n-1

(a) (b)

Figure 4.2: illustration for the inductive step in the proof of Lemma 4.

Proof. By Theorem 3 and Lemma 4, the node diagnosability of each node z in an
incomplete n-dimensional hypercube @),, — F' is equal to its remaining degree, for n > 5
and |F| < n—2. Thus, every node in @), — F' is strongly node-diagnosable. Consequently,

graph @),, — F' is strongly node-diagnosable. O

4.2 Strongly Node-Diagnosable Property of the Star
Graph

In this section, we show that an n-dimensional star with n > 4 has the strongly node-
diagnosable property. Same as that for the hypercube in the last section, we need to
explicitly state that there exists an extended star ES(z;n — 1) C S, of order n — 1 at

every node z in S, for n > 4.

Lemma 5 For each node x in an n-dimensional star S, with n > 4, there ewists an

extended star ES(x;n—1) C S, of order n — 1 at x.

Proof. We use the notations in Definition 4 to find an extended star ES(z;n — 1) as a
subgraph of an n-dimensional star S,, at a given node x. Since S,, is node symmetric, we

arbitrarily choose x = z125 ...z, to be the root of an ES(x;n — 1).
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X=X XXXy X o X 1 X

n-2""n-1""n

X=X XXXy

Vi XX XX, Vi =X XX X, Vol =X XXX, Vi =X XXX X =X XXX, X

V=X XXX, Vo =X KX Xy Vo =XX XX, V12 ZX X XX X V22 X XX XK X -2, . XX XX e X

V=X XXXy V=X Vi =XX, XX, V 3TXX XXX V 3= XXX XX Ko -2, . —xsx"x2x4 X,

Vi XX X Xy Vi =X XX X, Vg =X XXX, VXX XXX e X VT XXX XX X X Vo2 4 TXHX XX X Xy V1,4 =X XXX X
(a) (b)

Figure 4.3: illustration of the proof of Lemma 5, a) an E'S(x; 3) of order 3 at x = x1xow31y4;
b) an ES(x;n — 1) of order n — 1 at x = z122. .. 2.

For n = 4, we can find an extended star FS(x;3) of order 3 at node x = z1222374
(as shown in Figure 4.3(a)), where the set of nodes contains x, vy1 = Tox 12324, V12 =
T3T1T2Ty, Vizg = T4T1T2X3, V14 = T2X1XT4T3, V21 — T3T2aT1Ty4, V22 = T4T2T1X3, V23 =
ToT4T1T3, Voy = T3T4T1T, V3] = TyToT3T1, Uy = ToX4l3T1, U3z = T3TyT2T1, and vy =

xyw329x7, and the set of edges is {(x, V1), (Vk1, Vk2), (Vka, Uks), (Uks, Upa) | 1 < k < 3}

For n > 5, we can find an extended star ES(x;n — 1) at node x = zyz5...x, (as

shown in Figure 4.3(b)), where the set of nodes is

{x} U {vpg =2 1<k <n}

U {vge f2]1<k<n—1}u{vkg—v(k+3)m0dn|n—1§k<n}

U {ngzv'g;3|1§k<n—2}u{vk3:v£§+4)m0d"|n—2§k‘<n}
U{ _ k+4 . _ (k+5) modn .
Upa = U35 |1 <k <n—3} U {vp =14 |n—3<k<n}

and the set of edges is {(x, vk1), (Vk1, Vk2), (Vk2, Vk3), (Vks, Vka) | 1 < kb <mn — 1},

As a result, there exists an extended star ES(x;n — 1) C S, of order n — 1 at each

node x € V(S,,) for n > 4. O
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Theorem 6 Let S, be an n-dimensional star and n > 4. Each node x in S, is strongly

node-diagnosable; and graph S, s strongly node-diagnosable.

Proof. By Theorem 3 and Lemma 5, the node diagnosability of each node x € V/(S,,) is
n — 1, since the degree of z in S,, is n — 1 and there exists an extended star ES(z;n — 1)
of order n — 1 at x, for n > 4. Thus, every node in an n-dimensional star S,, with n > 4

is strongly node-diagnosable. So graph S, is strongly node-diagnosable. O

By the theorem above, we conclude that the diagnosability of S, is n — 1, for n > 4,
which is the same result as that proposed by Zheng et al [35]. In the following, we show
that an n-dimensional star 5, keeps the strongly node-diagnosable property even with up

to n — 3 missing edges, for n > 4.

X=X XX 35Xy

Vil XX XXy V=X XXX Vg =X X XX

Figure 4.4: an alternative extended star FS(x;3) at x = z122x324 described in the proof
of Lemma 6.

Lemma 6 Let S, be an n-dimensional star with n > 4, and let F' be an arbitrary set
of missing edges with |F| < n — 3. For each node x in S,, there exists an extended star
ES(x;degs,-r(x)) C S, at x, where degs, —r(x) denotes the remaining degree of node x

m S, —F.

Proof. We prove this lemma by induction on n.
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For n = 4, n — 3 = 1, each node in S, is labeled as a permutation on (4). We now
consider the situation when the number of missing edges is 0 or 1. Since the star graph
is node symmetric, we choose x = xzox314 for description. There is an extended star
structure £S(x;3) as described in the proof of Lemma 5. If there is no missing edges in Sy,
then we are done. (See Figure 4.3(a).) If there is one missing edge in Sy, one of three cases
happens: 1) if the missing edge is not in the set of edges of the F.S(x;3) found previously,
an FS(x;3) at x certainly exists; 2) if the missing edge is the 2nd, 3rd or 4th edge of x,
the degree of x is 2 and there is an FS(x;2) at x; 3) if the missing edge is one of the edges
in the original ES(x;3) above except the 2nd, 3rd or 4th edge of x, we can alternatively
find a new ES(x;3) to avoid the missing edge. This alternative extended star of order 3
at x (as shown in Figure 4.4) contains the node set { x, v11 = Tow12374, V12 = T4T123T,
V13 = T1T4T3T2, V14 = T3T4T1T2, V21 = T3T2T1L4, V22 = T2X3T1T4, V23 = T1T3T2T4,
V24 = T4T3T2X1, V31 = T4X2T3T1, U3z — T3L2L4X1, U3y = T1X2T4T3, V34 = T2X1T4T3 } and
the edge set {(x,vk1), (Vk1, Vk2), (Vk2, Vk3), (Uks, vka) | 1 < k < 3}. Thus, there exists an

extended star ES(z;degs, r(x)) C S, at each node x, for n =4 and |F| =0 or 1.

For induction hypothesis, suppose that for n > 5 and |F| < n — 4, there exists an

ES(x;degs, ,-r(x)) C S,—1 at each node z € V(S,_1), where F' is the set of missing

e % e %
O

O
S, (x")

edges.

S, (x")

(a) (b)

Figure 4.5: illustration for the inductive step in the proof of Lemma 6.
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Now we claim that for a set of missing edges F' with |F| < n — 3, there exists an
ES(x;degs,—r(x)) C S, at each node z € V(S,), for n > 5. Assume that the number of
missing edges is at most n— 3 in an n-dimensional star S,,, for n > 5. Let f = (u,v) be an
arbitrarily missing edge. Since the star graph is edge symmetric, without lost of generality,
we let v = u™. The n-dimensional star S,, can be seen as the composition of n subgraphs
Sk for 1 < k < n, where S” is a subgraph of S,, induced by the nodes z's with (z),, = k.
Thus, the number of all missing edges except f in S, is at most n — 4. Consider a node
x in S, x is in one of the n induced subgraphs S, 1 < k < n, and each S¥ is isomorphic
to an (n — 1)-dimensional star S,,_;. Let S,_1(x) be the substar which x belongs to. By
the induction hypothesis, there is an extended star ES(x;degs, ,x)-r (X)) C Sp—1(x) at
x, where F’ is the set of all missing edges in S,,_1(x) and |F’| < n — 4. If the nth edge
of x is missing (Figure 4.5(a)), the degree of x in S,,_1(x) — F’ is equal to the degree of
X in this incomplete star S,, — F with at most n — 3 missing edges. If the nth edge of x
is not missing (Figure 4.5(b)), x is adjacent to its nth neighbor, denoted by x", through
the nth edge. Let S, _1(x") be the subgraph which x™ belongs to. Since |F| < n — 3, the
remaining degree of each node in S, — F' is at least 2. Then x" is adjacent to another
node a in S, 1(x"), a is adjacent to another node b in S, _1(x"), and b is adjacent to
another node ¢ in S,_;(x™). As a result, there is an ES(x;degs,_r(x)) C S, at x, for

n > 5 and |F| <n — 3. The proof is complete. O

Theorem 7 Let S, be an n-dimensional star and n > 4, and let F' be an arbitrary set of
missing edges with |F| < n — 3. For each node x in S, with missing edges F, node x is

strongly node-diagnosable; and graph S, — F' is strongly node-diagnosable.
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Proof. By Theorem 3 and Lemma 6, the node diagnosability of each node x in an
incomplete n-dimensional star S,, — F' is equal to its remaining degree, for n > 4 and
|F| < n — 3. Thus, every node in S,, — F' is strongly node-diagnosable. Consequently,

graph S,, — F' is strongly node-diagnosable. O

4.3 Some Conclusions for the Strongly Node-Diagnosable
Property

At the last part of this chapter, we give some conclusions for the strongly node-diagnosable
property. As the previous two sections showed, we observe that both the n-dimensional
hypercube and the n-dimensional star are strongly node-diagnosable if there are at most
deg(z) — 2 missing edges, for any node z in the regular hypercube @, or star S,,. The
number deg(x) — 2 is tight in the sense that the strongly node-diagnosable property can
not be guaranteed if there are deg(z) — 1 missing edges. We have an example to show
that an H, or an S,, may not keep the strongly node-diagnosable property if there are
deg(z) — 1 missing edges. Let x be an arbitrary node in H,, (respectively, S,). Suppose
there are deg(x) — 1 missing edges in H, (respectively, S,), which are all incident with
node x (as shown in Figure 4.6). Then, the remaining degree of x in this incomplete
hypercube (respectively, star) with missing edges is 1. Let y be the only node adjacent
to x. Let F} be the set of nodes {y} U N(y) — {x} with |F}| = deg(y), and F5 be the
set of nodes N(y) with |Fy| = deg(y). By Lemma 1, (Fi, Fy) is not a distinguishable
pair under the comparison diagnosis model, and this incomplete hypercube (respectively,
star) with missing edges is not deg(y)-diagnosable at y. Since the node diagnosability
of y (which is less than deg(y)) does not equal to its degree (which is deg(y)) in this

incomplete network, node y is not strongly node-diagnosable anymore. So an incomplete
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hypercube H,, (respectively, star S,,) with deg(x) — 1 missing edges can not be guaranteed

to be strongly node-diagnosable.

Figure 4.6: an example showing that a deg(x)-regular network is not strongly node-
diagnosable with deg(x) — 1 missing edges, for some node z in this regular network.
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Chapter 5

A Diagnosis Algorithm for the
Comparison Diagnosis Model

Given an extended star structure at a node, we shall present a diagnosis algorithm to
determine whether this node is faulty or not for a given syndrome under the comparison
model. As stated in Theorem 3, the node diagnosability of a node can be determined by
the neighboring nodes (processors) around it. Intuitively, a node’s faulty /fault-free status
should also be determined by the comparison outputs of the nodes surrounding it, and

Theorem 8 provides an algorithm for performing such procedure.

Let ES(z;n) be an extended star at a given node x in V(G), the diagnosing signals are
sent back and forth inside £S(x;n). Since there are communication links between z and
k1, Ukt and vga, Upe and vz, and vz and vy, for all 1 < k& < n, vy, vke and vz can be the
comparators of the comparison model. After the comparison test, each comparator has
a testing result denoted by 0 (1, respectively) representing the agreement (disagreement,
respectively). Given an extended star ES(z;n) at a node x, we define r, = (rt,r% r?) to
be the testing result of an ordered triple (vg1, Vg2, vx3) With respect to £S(z;n), where r!

is the comparison result of vy, for the two responses from = and v, 72 is the comparison
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result of vge for the two responses from vy; and vgs, and 72 is the comparison result of vi3
for the two responses from vge and vgy. Then, 7, can be in one of the eight different states
which are r(0) = (0,0,0), (1) = (0,0,1), (2) = (0,1,0), (3) = (0,1,1), 7(4) = (1,0,0),
r(5) = (1,0,1), 7(6) = (1,1,0) and r(7) = (1,1,1). Let R(7) be the set of the collection
of all r(i), for all 0 <14 < 7. Obviously, the summation of the cardinality of R(0) to R(7)

is n, that is, 3.1_ |R(1)| = n.

Let  be a node in a system. Suppose that the degree of x is n and suppose that
there is an extended star ES(z;n) at x. Then the node diagnosability of z is n, which
means we may not be able to identify all the faulty nodes, if the number of faulty nodes
in £S(z;n) is n 4+ 1 or more. Therefore, we assume that the number of faulty nodes is
at most n. Under this assumption, we have an efficient algorithm to determine whether

node z is faulty or not.

5.1 The Diagnosis Algorithm

Theorem 8 Let x be a node with degree n in a system G(V, E). Suppose that there is
an extended star ES(x;n) C G at x. Define ri, = (r',r%,13) to be the testing result of
(Uk1, Vg2, Vk3) with respect to ES(x;n). Then, 1, can be in one of the eight states (as

illustrated in Figure 5.1):

r(0) = (0,0,0), (1) = (0,0,1), »(2) = (0,1,0), »(3) = (0,1,1), r(4) = (1,0,0),
r(5) = (1,0,1), r(6) = (1,1,0), and r(7) = (1,1,1).

Let R(i) be the set of the collection of all r(i), and |R(i)| be the cardinality of R(7).

Then, under the assumption that the number of faulty nodes is at most n,
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i) x is fault-free, if |R(0)| > |R(4)|; or,

1)  is faulty, if |R(0)] < |R(4)].

n0) (1) n2) 3 r4) n5 r6) 7)

Figure 5.1: eight different output states for Theorem 8.

Proof. Let l; = (vg1, Ve, Vg3, Uga) be an ordered quadruple, 1 < k < n, with respect
to ES(z;n). We prove the first part of this theorem by contradiction. Suppose that the
number of faulty nodes in £S(x;n) is at most n and suppose that « is faulty, the counting

of all the other faulty nodes is as follows:

For those [}, with result r(0), there are at least 3 faulty nodes which are vy,

Vo and vg3.

For those [, with result r(1), there are at least 2 faulty nodes which are vy

and vga.
For those [, with result 7(2), there is at least 1 faulty node which is vy;.

For those [, with result r(3), there are at least 2 faulty nodes which are vy

and one of vye, vz and vy since the output of vy3 is disagreement.
For those [, with result r(4), the number of faulty nodes is uncertain.

For those [ with result r(5), there is at least 1 faulty node which is one of

Uka, Ugs and vgy since the output of vy is disagreement.
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For those [ with result r(6), there is at least 1 faulty node which is one of

Uk1, Vg2 and vg3 since the output of vy is disagreement.

For those [ with result r(7), there is at least 1 faulty node which is one of

Uka, Vs and vy since the output of vy is disagreement.

Thus, the number of faulty nodes is at least

1+ 3|R(0)] + 2|R(1)| + [R(2)] + 2| RB)| + [R(5)| + |R(6)] + [ R(7)| = S| R(3)| + (1 +
2IR(O)] + R+ [RB)] = [R(4)]).

By the assumption that |R(0)| > |R(4)|, the number of faulty nodes is strictly more than
Y7 _o|R(i)| which is equal to n. This contradicts to the assumption that the number of

faulty nodes in E'S(x;n) is at most n. Therefore, z is fault-free.

Now, we prove the second part of this theorem. Suppose that the number of faulty
nodes in ES(z;n) is at most n and suppose that x is fault-free, the counting of all the

other faulty nodes is as follows:

For those [, with result 7(0), the number of faulty nodes is uncertain.

For those [ with result r(1), there is at least 1 faulty node which is one of

Uka, Vg3 and vgy since the output of vy is disagreement.

For those I with result r(2), there is at least 1 faulty node which is one of

Vi1, Ugo and vg3 since the output of vy, is disagreement.

For those I, with result r(3), there is at least 1 faulty node which is one of

Vg1, Uke and vz since the output of vy is disagreement.
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For those [, with result r(4), there are at least 2 faulty nodes for the reasons
that: i) if vy is faulty, vgs must be faulty since the comparison result of vy
is wrong; or, i7) if vg is fault-free, vy must be faulty and vz must be faulty

too.

For those [ with result r(5), there is at least 1 faulty node which is one of

Vi1, Ugo Since the output of vy, is disagreement.

For those [ with result r(6), there is at least 1 faulty node which is one of

Vi1, Vg2 Since the output of vy, is disagreement.

For those I with result r(7), there is at least 1 faulty node which is one of

Vi1, Ugo since the output of vy is disagreement.

Thus, the number of faulty nodes is at least
| R()[+|R2)[+REG)+2[R(4) |+ R(5) [+ R(6)|+|R(T)| = Z_o|R(1)|[+(|R(4)|-| R(0)])-

By the assumption that |[R(0)| < |R(4)|, the number of faulty nodes is larger than
¥7_.|R(i)| which is equal to n. This contradicts to the assumption that the number

of faulty nodes in ES(x;n) is at most n. Therefore, z is faulty. O

Roughly speaking, the collections of testing results R(0) and R(4), with respect to the
extended star ES(x;n) found at node z, dominate the faulty/fault-free status of z. We
can determine the faulty of fault-free status of a node by just comparing the number of

the testing results r(0)’s and r(4)’s on an arbitrary extended star we found.
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5.2 Analysis of the Time Complexity for the Diagno-
sis Algorithm

We now measure the time complexity to diagnose all the faulty nodes in a system. For
most of the practical systems with N nodes, the degree of each node is in the order of
log N. For example, the n-dimensional Hypercube (),, has N = 2" nodes and the degree

of each node is n, n = log N; the n-dimensional Star S,, has N = n! nodes and the degree

of each node is n — 1 = O(n) = O(ll‘;ggJX) = O(log’i]ng). We assume that a testing result
of each comparator for each pair of distinct neighbors with which it can communicate
directly is stored in a syndrome table. Given an extended star structure ES(z;n) at a
node z, assume the time for looking up the testing result of a comparator in the syndrome
table is constant ¢. Then, the time needed for determining the faulty or fault-free status

of node z is 3clog N = O(log N). Consequently, the total time for diagnosing all the
faulty nodes is O(N log N).

As a result, for most practical multiprocessor systems, especially some well-known
symmetric and regular topologies like hypercube systems, the time for self diagnosis is
O(Nlog N), where N is the total number of processors in it. On the other hand, the
presented diagnosis algorithm is not restricted to symmetric systems only. We can apply
such method to diagnose a system node by node, and consequently to diagnose the whole
system. In general, the time complexity is O(NA), where A is the maximum degree of a

node in this system.

The time complexity O(N log N) obtained here is based on the symmetry of most

recently practical multiprocessor systems. Applying the traditional approach by Sengupta
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and Dahbura [30] results in an initiate result of time complexity O(N®). However, under
some constraints like symmetry or regularity of the systems, using the classical approach
may result in a better computational complexity than O(N?®), especially on some special
cases of hypercubes or other well-known topologies. A recent paper can be referred on this
issue; Yang and Tang [33] address the fault identification of diagnosable multiprocessor
systems under the MM* comparison model, and present an O(NA3§) time diagnosis
algorithm for an N-node system, where A and § are the maximum and minimum degrees

of a node, respectively.
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Chapter 6

Conclusions and Discussions

The issue of identifying all the faulty processors is important in the design of intercon-
nection networks or multiprocessor systems, which is implementable in very large scale
integration (VLSI). The process of identifying all the faulty processors is called diagnosis
of a system. Under the asymmetric comparison diagnosis model, each processor acts as a
comparator to test each pair of adjacent two processors. Further, Sengupta and Dahbura
[30] proposed a polynomial time algorithm with time complexity O(N®) to diagnose a
system with total number N of processors. In some circumstances, it is not necessary to
judge the status of all processors but several ones in some substructure of the system such

as a ring structure or a path structure.

In this dissertation, we proposed a novel idea on system diagnosis called node diagnos-
ability. Opposite to that of the traditional diagnosability, the concept of node diagnos-
ability put more focus on a single processor, and require only identifying the status of this
particular processor correctly. Estimating the node diagnosability of each processor in a
system also provides a new viewpoint for checking the diagnosability of the whole system.

Under the comparison diagnosis model, we proposed a sufficient condition to determine
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a given processor’s node diagnosability, and an efficient algorithm to determine whether
a processor is faulty based on the local syndrome of a given extended star structure. All
these concepts can be applied to many well-known interconnection networks. For most
practical multiprocessor systems, the number of links connecting to each processor is in
the order of log N, where N is the total number of processors. The time complexity of
our algorithm to diagnose a given processor is O(log N) and to diagnose all the faulty

processors in a system is O(N log V).

Finally, we propose a research topic worth studying at the end of this paper, which is
the issue of the underlying assumptions consistent with the comparison diagnosis model.
As referred to those assumptions, all faults are permanent, and the comparison output
performed by a faulty processor is unreliable. However, in future technologies it is likely
that many faults will be transient or non-permanent, making fixed diagnosis strategies
more complex, and violating the comparison diagnosis strategy we are based on. Further-
more, a faulty processor may be able to perform self-diagnosis and identify itself as faulty.
So violating each assumption of the comparison model may lead to a different situation,

and each of the modifications will be an interesting problem for further research.
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