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利用物件修補之數位內容還原與修改技術 

 

學生：凌誌鴻                        指導教授：廖弘源 博士 

                                              陳永昇 博士 

 

國立交通大學資訊科學與工程研究所博士班 

 

摘  要 

 

隨著數位攝影機的普及化，人們開始利用影像或影片記錄生活的

點滴；因此，數位內容的還原及修改逐漸成為一個重要的研究議題。

針對數位內容的還原，影片修補技術(video inpainting)可以自動地

修補影片中內容缺失的部分，由於現存的影片修補技術對於影片中移

動物體的修補成效不彰，因此在本論文中，我們提出兩種物件修補技

術來修補影片中移動的物體；針對數位內容的修改，影片超解析度技

術(video super-resolution)可以自動地增加影片在空間軸及時間

軸上的解析度，由於現存的影片超解析度技術對於擴充影片中移動物

體在時間軸上的解析度成效不彰，因此在本論文中，我們提出一種視

訊內容擴充技術用來增加影片的畫面數同時擴充移動物體的動作內

容。 
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 在第一項研究中，我們先利用維度轉換將單張畫面上的物體資訊

轉換成時空切片(spatio-temporal slice)上的物體軌跡資訊，每條軌跡

紀錄物體某個部位沿著時間軸的變化趨勢，接著我們利用影像修補技

術來修補時空切片上軌跡缺失的區域，最後經過維度反轉換，在單張

畫面上我們重建被遮蔽物體可能的輪廓及位置。在下個步驟，根據重

建的物體輪廓，我們從可用的物體姿態(posture)中選取適合的姿態

並利用它取代畫面中被遮蔽的物體；當無可用的姿態時，我們提出一

種姿態合成技術合成所需的姿態。第一種方法的效率容易受物體運動

方向影響，因此我們在第二個方法中提出一種不受限於物體運動方向

的物件修補技術。 

 在第二項研究中，我們先利用流形學習(manifold learning) 將

影片中物體運動的資訊轉換成在流形空間(manifold space) 中運動

軌跡的資訊；根據軌跡在流行空間中的分佈情況，我們描述動作連續

的特性並定義兩種動作預測策略，利用定義的策略，我們可以預測被

遮蔽物體可能的姿態。接著我們結合提出的預測策略及雙向預測方

法，對於每個被遮蔽的物體選出一些可能的姿態，最後利用馬可夫隨

機場(Markov random field)來選來最適當的姿態。 

在第三項研究中，針對畫面數較低的影片，我們提出一種視訊內

容擴充技術。我們先利用流形學習將影片中物體運動的資訊換換成在
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流形空間中運動軌跡的資訊。在步驟二中，我們先利用提出的運動資

料對齊方法將不同的運動資訊對齊並排列至張量(tensor)中，接著利

用張量分解(tensor decomposition)從訓練的影片中抽取動作的資

訊，並結合原始影片的人物資訊重建原始影片在高畫面數情況下動作

軌跡在流形空間中分佈的情形，最後利用接著利用研究二中提出的方

法選出適當的姿態並插入影片中適當的位置。 
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Video Content Recovery and Modification by 

Object Inpainting 

 

Student：Chih-Hung Ling     Advisors： Dr. Hong-Yuan Mark Liao 

                                      Dr. Yong-Sheng Chen 
 

Institute of Computer Science and Engineering  
National Chiao Tung University 

 
Abstract  

 

With the popularization of digital cameras, people use image or video 

to record some snapshots of daily life. Hence, video content recovery and 

modification has become a popular research field in recent years. For 

video content recovery, video inpainting is considered as one of the most 

important techniques that can be used to automatically recover the 

missing regions of videos. However, most video inpainting algorithms 

generate artifacts if the object to be inpainted is seriously occluded or its 

motion is not complicated. To avoid generating such artifacts, we propose 

two different kinds of object-based video inpainting schemes that can 

solve the above-mentioned spatial inconsistency problem and the 

temporal continuity problem simultaneously in this dissertation. As to 

video content modification, video super-resolution is considered as one of 
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important techniques that can be used to automatically increase spatial 

and temporal resolution of videos. However, existing super-resolution 

methods may fail to produce realistic and smooth results while dealing 

with sequences of human motion. Hence, we propose a learning-based 

approach which can increase the frame rate of video and also enrich the 

motion content of human motion. 

 In our first work, we present a novel framework for object 

completion in a video. We transform object in frames into object 

trajectory in spatio-temporal slices, and complete the partially damaged 

object trajectories in the 2-D slices. The completed slices are then 

combined to obtain a sequence of virtual contours of the damaged object. 

Next, a posture sequence retrieval technique is applied to retrieve the 

most similar sequence of object postures based on virtual contours. 

Finally, a synthetic posture generation scheme is proposed to reduce the 

effect of insufficient postures.  

In our second work, we propose a human object inpainting scheme 

that divides the whole process into three steps: human posture synthesis, 

graphical model construction, and posture sequence estimation. Human 

posture synthesis is used to enrich the number of postures. Then, all 
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postures are projected into manifold space to build a graphical model of 

human motion. We also introduce two constraints to confine the local 

motion continuity property. Finally, we perform both forward and 

backward prediction to derive local optimal solutions and then apply the 

Markov Random Field model to compute an overall best solution.  

 In our third work, we propose a learning-based approach to increase 

the temporal resolution of human motion sequences. We summarize the 

proposed framework in the following steps: graphical model construction, 

motion trajectory reconstruction and posture sequence estimation. In the 

first step, each motion sequence is projected into manifold space and 

represented as a motion trajectory. Then, we apply tensor decomposition 

to decompose motion trajectories into orthogonal factors. After that, we 

combine the motion factor from training sequences with the person factor 

from the input sequence to reconstruct the motion trajectory for the input 

sequence. Finally, we use the reconstructed motion trajectory combined 

with object inpainting technique to generate the final result. 
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Chapter 1 

Introduction 

 

1.1 Motivation 

With the popularization of digital cameras, video content recovery 

and modification has become a popular research field in recent years. For 

video content recovery, video inpainting [1]-[11] has attracted a great deal 

of attention in recent years because of its powerful ability to fix/restore 

damaged videos and the flexibility it provides for editing home videos. It 

also ensures visual privacy in security applications [12]. More specifically, 

inpainting techniques have been used extensively for fixing/restoring 

damaged digital images [13]-[18]. Depending on how they restore 

damaged images, the techniques can be categorized into three groups: 

texture synthesis-based methods [13][14], partial difference 

equation-based (PDE-based) methods [15], and patch-based methods 

[16].The concept of texture synthesis is borrowed from computer 

graphics. Its main purpose is to insert a chosen input texture into a 

damaged/missing region. In contrast, PDE-based approaches propagate 

information from the boundary of a missing region toward the center of 
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that region. They are suitable for completing a damaged image in which 

thin regions are missing. Texture synthesis and PDE-based propagation 

cannot handle cases of general image inpainting because the former does 

not consider structural information and the latter frequently introduces 

blurring artifacts. A patch-based approach [16], on the other hand, is 

much more suitable for image inpainting because it can produce 

high-quality visual effects and maintain the consistency of local structures. 

Because of the success of patch-based image inpainting, researchers have 

applied a similar concept in video inpainting; however, the issues that 

need to be addressed in video inpainting are much more challenging. 

Although video inpainting is a relatively new research area, a number of 

methods have been proposed in recent years. Generally, the methods can 

be classified into two types: patch-based methods [1]-[6], and 

object-based methods [7][8]. Patch-based methods often have difficulty 

handling spatial consistency and temporal continuity problems. In 

addition, patch-based approaches often generate inpainting errors in the 

foreground. As a result, many researchers have focused on object-based 

approaches, which usually generate high-quality visual results. Even so, 

some difficult issues still need to be addressed; for example, the artifacts 
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generated by inpainting completely occluded object or inpainting 

occluded object with non-periodic motion. Hence, in this dissertation, we 

propose two different kinds of object-based video inpainting schemes that 

can solve the spatial inconsistency problem and the temporal continuity 

problem simultaneously.  

 As to video content modification, super resolution-based (SR-based) 

methods have attracted much attention for their ability in enhancing the 

spatial or temporal resolution of low-resolution (LR) images/videos 

[48]−[54]. While dealing with sequences of human motion, existing 

SR-based methods may fail to produce realistic and smooth results if no 

special efforts are taken to handle the non-rigid human motion. Since 

human motion usually contains repeated postures, one may insert 

interpolated postures into the LR input sequence to increase the temporal 

resolution. In order to generate postures and animate animal/human 

motion, Xu et al. [39] proposed to animate motions by minimizing a 

predefined energy function. Since the energy minimization process did 

not include a human motion model, the performance is unstable and very 

sensitive to the selected parameters. Therefore, some existing methods 

[10] [59] develop their approach under the constraint of periodic motion. 
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To overcome the above mentioned drawbacks, we propose the use of 

learning-based approach to extract motion tendency from a set of learning 

sequences and then synthesize human motion using the learned motion 

tendency as the prior information. 

 

1.2 Related Work 

Conventional video inpainting methods can be roughly classified into 

two types: the first type is patch-based [1]-[6] and the other type is 

template-based [7][8]. In [1], Patwardhan et al. proposed a video 

inpainting technique that makes use of motion information and image 

inpainting technique together. Motion information is adopted to help find 

the most suitable patch. In [2], the space-time volume is sliced up into 

motion manifolds to perform video completion. The proposed manifolds 

are composed of two-dimensional patches (one for the spatial dimension 

and the other for the temporal dimension). These patches cover the entire 

trajectory of pixels, and the method in [2] applies Sun et al.’s approach 

[17] to inpaint those missing regions. However, these approaches would 

cause spatial or temporal structure inconsistency artifacts. In [4], Wexler 

et al. adopted a 3-D fix-sized patch as a unit for video inpainting. The 
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value of a missing pixel is estimated by a set of constituent patches and a 

multiscale solution is used to speed up the process. In [5], Cheung et al. 

introduced a probabilistic patch model for video inpainting. They use a 

video epitome method to compress an original video by learning, after 

that the epitome is used to synthesize data for the damaged areas of a 

video. 

In the template-based video inpainting category, Cheung et al. [7] 

proposed a technique to deal with the problem of missing objects in 

videos captured by a stationary camera. All available object templates are 

used to inpaint the foreground. Then, for each missing object, a fixed-size 

sliding window that covers the missing object and its neighboring 

templates is used to find the most similar object template. Although the 

sliding window can help find similar object templates, the inpainting 

result may be unsatisfactory if the number of postures is insufficient. 

Furthermore, a good filling position is crucial for an object inpainting 

process because an inappropriate position may cause visually annoying 

artifacts. In [8], Jia et al. proposed a user-assisted video layer 

segmentation technique that decomposes an input video into color and 

illumination videos. A tensor voting technique is then used to address the 
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pertinent spatio-temporal issues in background and foreground. Image 

repairing is used for background inpainting and occluded objects are 

reconstructed by synthesizing other available objects. However, a 

synthesized object created under this approach does not have a real 

trajectory, so the approach is only suitable for objects with periodic 

motion. 

As to human motion animation, Ding et al. [10] proposed a rank 

minimization approach to model and synthesize human motion for video 

inpainting. They first projected the observed data into a low-dimension 

manifold and then organized the embedded features to form a Hankel 

matrix. The missing features in the Hankel matrix are determined by 

minimizing the rank of Hankel matrix. Finally, they applied the Radial 

Basis Function (RBF) to inversely transform the embedded features back 

to the observation domain. This rank minimization approach would 

usually produce good results as far as the object’s motion is periodic. 

Makihara et al. [59] proposed a reconstruction-based method to 

synthesize periodic human motion with high frame rate from a single 

periodic motion sequence. The human motion data are first transformed 

into embedded features in a low-dimension manifold. Then, they 
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iteratively conducted phase registration and motion trajectory 

reconstruction within an energy minimization process. Under the 

constraint of periodic motion, their method could also produce good 

experiment results. 

 

1.3 Overview of the Proposed Methods 

Our literature survey shows that most video inpainting algorithms 

generate artifacts if the object to be inpainted is completely occluded or 

its motion is not periodic. To void generating such artifacts, a posture 

sequence estimation process of good accuracy is required for object 

inpainting. In this dissertation, we propose two different kinds of 

object-based video inpainting schemes that can solve the spatial 

inconsistency problem and the temporal continuity problem 

simultaneously. As to human motion animation, some kinds of method 

[10] [59] have performance limitation of periodic motion. Therefore, in 

this dissertation, we propose to extract motion tendency form a set of 

learning sequences as prior information and then synthesize human 

motion using the extracted motion tendency.  
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Virtual Contour Guided Video Object Inpainting Using Posture 

Mapping and Retrieval 

In this work, we present a novel framework for object completion in 

a video. To complete an occluded object, our method first samples a 3-D 

volume of the video into directional spatio-temporal slices, and performs 

patch-based image inpainting to complete the partially damaged object 

trajectories in the 2-D slices. The completed slices are then combined to 

obtain a sequence of virtual contours of the damaged object. Next, a 

posture sequence retrieval technique is applied to the virtual contours to 

retrieve the most similar sequence of object postures in the available 

non-occluded postures. Key-posture selection and indexing are used to 

reduce the complexity of posture sequence retrieval. We also propose a 

synthetic posture generation scheme that enriches the collection of 

postures so as to reduce the effect of insufficient postures. The 

experiment results demonstrate that the proposed method can maintain 

the spatial consistency and temporal motion continuity of an object 

simultaneously. 

 

Human Object Inpainting Using Manifold Learning-Based Posture 
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Sequence Estimation 

In this work, we propose a human object inpainting scheme that 

divides the process into three steps: human posture synthesis, graphical 

model construction, and posture sequence estimation. Human posture 

synthesis is used to enrich the number of postures in the database, after 

which all the postures are used to build a graphical model that can 

estimate the motion tendency of an object. We also introduce two 

constraints to confine the motion continuity property. The first constraint 

limits the maximum search distance if a trajectory in the graphical model 

is discontinuous; and the second confines the search direction in order to 

maintain the tendency of an object’s motion. We perform both forward 

and backward prediction to derive local optimal solutions. Then, to 

compute an overall best solution, we apply the Markov Random Field 

model and take the potential trajectory with the maximum total 

probability as the final result. The proposed posture sequence estimation 

model can help identify a set of suitable postures from the posture 

database to restore damaged/missing postures. It can also make a 

reconstructed motion sequence look continuous. 
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Object Posture Super-Resolution Using Tensor Decomposition-Based 

Manifold Learning 

In this work, we propose a learning-based approach to increase the 

temporal resolutions of human motion sequences. Given a set of high 

resolution motion sequences, our idea is first to learn the motion tendency 

from this learning dataset and then synthesize new postures for the 

low-resolution sequence according to the learned motion tendency. To 

ensure the synthesized motion should preserve the learned motion 

tendency as well as its personal characteristic, we propose using tensor 

decomposition to decompose motion data into two orthogonal factors. We 

summarize the proposed framework in the following steps: (1) Each 

motion sequence is first projected into a low-dimension manifold space, 

where the local distance between postures could be better preserved. We 

then represent each of the projected motion sequences as a motion 

trajectory, and conduct tensor decomposition on the motion trajectories to 

extract the two orthogonal factors: motion and person. (2) We combine 

the motion factor from training sequences with the person factor from the 

input sequence to reconstruct the motion trajectory for the input sequence. 

(3) We use the reconstructed motion trajectory combined with object 
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inpainting technique to generate the final result. Our experimental results 

demonstrate the effectiveness of the proposed method, and also show its 

outperformance over two existing approaches. 

 

1.4 Dissertation Organization 

The remainder of this dissertation is organized as follows. In Chapter 

2, the proposed framework for virtual contour guided video object 

inpainting using posture mapping and retrieval is described in detail. In 

Chapter 3, the proposed framework for human object inpainting using 

manifold learning-based posture sequence estimation is described in 

detail. In Chapter 4, the proposed object posture super-resolution using 

tensor decomposition-based manifold learning is described in detail. 

Finally, in Chapter 5, we draw our conclusions and future work. 
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Chapter 2 

Virtual Contour Guided Video Object Inpainting Using 

Posture Mapping and Retrieval 

In this Chapter, we describe the proposed framework for virtual 

contour guided video object inpainting using posture mapping and 

retrieval. First, we give an introduction about this research topic. The 

proposed approach is then described. Next, we detail the experiment 

results. Finally, we present our conclusions.  

 

2.1 Introduction  

Video inpainting [1]-[11] has been a very popular research topic 

recently due to its powerful ability to fix/restore damaged videos and the 

flexibility it provides for editing home videos. Researchers working in 

this field divide video inpainting methods into patch-based methods 

[1]-[6] and object-based methods [7][8]. A patch-based method often has 

difficulty handling spatial consistency and temporal continuity problems. 

As a result, many researchers have focused on object-based approaches, 

which usually generate high-quality visual results. Even so, some difficult 

issues still need to be addressed; for example, the unrealistic trajectory 
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problem and the inaccurate representation problem caused by an 

insufficient number of postures in the database. In order to solve these 

problems, we propose an object-based video inpainting scheme. The 

scheme is comprised of three steps: virtual contour construction, 

key-posture selection and mapping, and synthetic posture generation. The 

contribution of this work is three-fold. First, we propose a scheme that is 

able to derive the virtual contour of an occluded object. The contour 

provides a fairly precise initial estimate of the posture and filling location 

of the occluded object, even if the object is completely occluded. 

Therefore, the virtual contour is suitable for finding a good replacement 

for the occluded object from the available postures in the input video. 

Second, we propose a key posture-based mapping scheme that converts 

the posture sequence retrieval problem into a substring matching problem, 

thereby reducing the computational complexity significantly, while 

maintaining the matching accuracy. Since the occluded objects are 

completed for a whole sub-sequence rather than for individual frames, the 

temporal continuity of object motion is maintained as well. Third, for a 

sequence in which we cannot find a sufficiently rich set of available 

postures for completing occluded postures, our proposed synthetic 
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posture generation scheme can effectively enrich the database of postures 

by combining the constituent parts of different available postures. As a 

result, improved inpainting performance is achieved.  

 

2.2 Occluded Object Completion Using Posture Sequence Matching 

 

2.2.1 Overview  

The proposed object-based video inpainting scheme can maintain the 

spatial consistency and temporal motion continuity of an object 

simultaneously. The scheme can also handle the problem of insufficiency 

of available postures. Figure 2.1 shows a block diagram of the proposed 

scheme. Initially, we assume that the objects to be removed and the 

occluded objects to be restored have been extracted by an automatic 

object segmentation scheme [19], or by an interactive extraction scheme 

[20]-[22]. After object extraction, the occluded objects and the 

background are completed separately. We also assume that the trajectory 

of each occluded object can be approximated by a linear line segment 

during the period of occlusion. This assumption is reasonable for many 

practical applications because the duration of an occlusion is typically 

short, and an object does not usually perform complex motions during 
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such a short period.  

 

Building background 
mosaic Background inpainting

Virtual contour 
construction by spatio-
temporal slice sampling 

and inpainting

Posture 
mapping

Replacing a damaged 
object with a synthetic 

posture 

Replacing a damaged 
object with an available 

posture 

Result

Object 
extraction

Input video

Object inpainting

 
Figure 2.1 Simplified flowchart of the proposed video inpainting scheme. 

 

Our primary goal is to solve the problem of completing partially or 

totally occluded objects in a video. Figure 2.2 shows the flowchart of the 

proposed object completion scheme which is comprised of three steps: 

virtual contour construction, key posture-based posture sequence 

matching, and synthetic key posture generation. The first step of object 

inpainting involves sampling a 3-D volume of video into directional 

spatio-temporal slices. Then a patch-based (exemplar-based) image 

inpainting [16] operation is performed to complete the partially damaged 

object trajectories in the 2-D spatio-temporal slices. The objective is to 

maintain the trajectories’ temporal continuity. The completed 
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spatio-temporal slices are then combined to form a sequence of virtual 

contours of the target object to infer the missing part of the object’s 

posture [29]. Next, the derived virtual contours and a posture sequence 

matching technique are used to retrieve the most similar sequence of 

object postures from among the available non-occluded postures. The 

available postures are collected from the non-occluded part of the input 

video. We perform key posture selection, indexing, and coding operations 

to convert the posture sequence retrieval problem into a substring search 

problem, which can be solved efficiently by existing substring-matching 

algorithms [23]. If a virtual contour cannot find a good match in the 

database of available postures, we construct synthetic postures by 

combining the constituent components of key postures to enrich the 

posture database. This process mitigates the problem of insufficient 

available postures. After retrieving the most similar posture sequence, the 

occluded objects are completed by replacing the damaged objects with 

the retrieved ones.  

For background inpainting, we follow the background mosaics 

method proposed in [1]. The method first constructs a background mosaic 

for each video shot based on global motion estimation (GME), and then 
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finds the corresponding available data in the background mosaic for each 

pixel in a missing region. The data is used to fill the missing regions and 

thereby achieve spatio-temporal consistency in the completed background. 

Since background inpainting is not the focus of this work we do not 

consider its implementation in detail.  

 

Input Video

Posture extraction

Spatio-temporal slice 
sampling

Patch-based
image inpainting

Correction of 
completed slices

Virtual contour 
construction

Keyposture selection

Mapping available postures and virtual contours 
to key posture indices

AABC...CV…GG…FGGB

Replace damaged objects 
with synthetic postures

Replace damaged objects 
with available postures

Result

Synthetic 
posture 
creation

Substring matching

Posture alignment & 
normalization 

 
Figure 2.2 Flowchart of the proposed object completion scheme. 
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2.2.2 The Shape Context Descriptor  

Before discussing the proposed method in detail, we describe the 

shape context descriptor in [23][24], which we use for posture 

alignment/normalization and key posture selection. The descriptor is 

invariant to translation, scaling, and rotation; and it is even robust against 

small amounts of geometrical distortion, occlusion and outliers. As 

shown in Figure 2.3, given an object image (Figure 2.3 (a)), the descriptor 

selects a set of feature points to describe the object’s silhouette (Figure 

2.3 (b)). The object’s local shape context is described by the local 

histograms of the regions centered at the feature points. Under this 

method, for each feature point, a circle with radius r (Figure 2.3 (c)) is 

used to find the local histogram. The circle is then divided into binN  

partitions and the number of feature points in each partition is calculated, 

resulting in a histogram with binN  bins. The value of binN  is 

empirically set to be 60 for all sequences. The cost of matching two 

different sampled points which belong to two different postures can be 

defined as follows:  

bin

2

1

( ) ( )1( , )
2 ( ) ( )

i j

i j

N
a c

i j
k a c

h k h k
F a c

h k h k=

 − =
+∑ , (2.1) 

where ( )
iah k  and ( )

jch k  denote the k-th bin of the two sampled points 
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ai and cj, respectively. The value of binN  is empirically set to be 60 for 

all sequences, and the value of r is determined by an algorithm described 

in [24]. The best match between two different postures can be 

accomplished by minimizing the following total matching cost: 

( )( )( ) ,j j
j

H F a cππ =∑ , (2.2) 

where π is a permutation of  1, 2, …, n. Because of the one-to-one 

matching requirement, shape matching can be considered as an 

assignment problem that can be solved by a bipartite graph matching 

method. Therefore, the shape context distance between two shapes A and 

C can be computed by 

( ) ( )
1 1( , ) ( , ) ( , )sc i i j j

i jA C

F A C F a c F a c
N Nπ π= +∑ ∑ , (2.3) 

where NA and NC are the numbers of sample points on the shape A and C, 

respectively. 

 

     

(a) (b) (c) (d) (e) 

Figure 2.3 Extracting the local context of a posture: (a) the object’s original 
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posture; (b) the object’s silhouette described by a set of feature points; (c) the local 
histogram of a significant feature point, (d) extracting significant feature points of the 
object’s silhouette using a convex hull surrounding the silhouette; and (e) the resultant 
significant feature points of the object’s silhouette. 

 

2.2.3 Virtual Contour Construction Using Spatio-Temporal Slices 

The main difficulty in completing a damaged video object is that the 

information left in a badly damaged object is usually insufficient to 

reconstruct the object properly by using spatio-temporal clues. 

Furthermore, completing an object frame-by-frame often causes temporal 

discontinuity in the object’s appearance and motion, since a frame-wise 

completion process does not consider an object’s temporal dependency in 

consecutive frames. Such temporal discontinuity results in visually 

annoying artifacts like flickering and jerkiness. To ensure that a 

completed object is visually pleasing, it is important to extract a set of 

features from a damaged object in a number of consecutive frames. As a 

result, the features not only represent the object’s characteristics (e.g., 

motion, appearance, and posture), but also take its temporal continuity 

into account.  

Manifold learning based methods [10][25] have been proposed to 

recover the damaged/missing poses of an occluded object. Although the 
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consecutive poses of an object with regular and cyclic motion can be well 

represented by a low-dimensional manifold embedded in a 

high-dimensional visual space, poses with non-regular motions (e.g., 

transitions in two types of motions) are usually not the case. As a result, 

mapping reconstructing a high-dimensional video object with irregular or 

non-cyclic motion from the object’s low-dimensional manifold 

approximation usually leads to annoying artifacts (e.g., ghost images).  

As mentioned earlier, we use spatio-temporal slices of a video to 

derive virtual object contours, which are then used as features to infer the 

occluded object poses. More specifically, after object extraction and 

removal, we sample a 3-D video volume comprised of several 

consecutive frames to obtain a set of directional 2-D spatio-temporal 

slices, as shown in Figure 2.4. For example, if a 3-D video volume 

(Figure 2.4 (a)) is sampled at different Y values (Figure 2.4 (b)), each 

resulting XT slice represents the horizontal trajectory of an object over 

time. The trajectory can fully capture an object’s motion if it only has 

horizontal motions. Other directional sampling schemes can be used to 

deal with objects that have different motion directions. Note that a 

non-pure horizontal motion will cause an object’s size to vary over time 
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due to the zoom-in/zoom-out effect, as shown in Figure 2.4(c). In this 

case, posture alignment and normalization can be used to avoid the 

inference of different posture scales. Without loss of generality, we use 

the largest posture of an object as a reference for aligning and 

normalizing the other postures. First, we establish the correspondence 

between the contour points of every two adjacent postures by shape 

matching [23][24]. The affine transformation parameters between the 

largest posture and the others can then be estimated from the 

corresponding points using the least squares optimization method. As a 

result, all postures are aligned and normalized with the largest posture via 

the affine transformations. As shown in Figure 2.4(d), after removing the 

foreground object and posture alignment, after removing the foreground 

object and posture alignment, object occlusion results in incomplete 

trajectories of the object in the spatio-temporal slices. The missing 

regions of object trajectories in the 2-D spatio-temporal slices must be 

completed using an image inpainting method before composing a virtual 

contour. Because an object’s occlusion period is usually short, we assume 

that the occluded part of a motion trajectory in a 2-D slice can be 

approximated by a line. Based on this assumption, the occluded part in 
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each directionally sampled slice can be inpainted well. Since the 

trajectory of an object on each 2-D slice records the locations of the same 

part of object over time, as long as the missing regions of trajectories are 

completed properly, the reconstructed trajectories will be continuous, 

thereby preserving the temporal continuity of an object.  
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(f) 

Figure 2.4 Sampling a 3-D video volume comprised of several consecutive frames: 
(a) the original frame; (b) the object trajectory on a sampled XT plane s, indicated by 
the green lines in (a); (c) the original frame; (d) the object’s trajectory on a sampled 
YT plane, indicated by the red lines in (c); (e) 2-D spatio-temporal slices sampled on 
a video shot, where the object’s size varies due to non-pure horizontal motion; and (f) 
the removed occluded object trajectories on the XT plane sampled on the 2-D plane. 
 

To obtain continuous object trajectories, we use the patch-based 

image inpainting scheme proposed in [16] to complete missing regions in 

the spatio-temporal slices. The method first determines the filling order of 

the missing regions based on the confidence term and data term as 

follows:  

( ) ( ) ( )P p C p D p= ⋅ , (2.4) 

where P(p) represents the priority of a missing region p ; and C(p) and 

D(p) denote the confidence term and the data term expressed in (2.5) and 

(2.6) respectively.  

( )
( )

( ) pq

p

C q
C p ∈Ψ ∩ Ι−Ω=

Ψ

∑
,   (2.5) 
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x 
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( ) p pI n
D p

α

⊥∇ ⋅
= , (2.6) 

where pΨ  represents the area of region pΨ , α  is a normalization 

factor, pn  denotes the unit vector orthogonal to the front δΩ  at point 

p , and ⊥  stands for the orthogonal operator, as illustrated in Figure 2.5. 

 

 
Figure 2.5 The notations used for the data and confidence terms in patch-based 
image inpainting [14]. 

 

Based on the filling order, a missing region is filled with the most 

similar neighboring patches (measured by the sum of squared differences). 

After completing each spatio-temporal slice of a video frame, we use the 

Sobel edge detector to find the boundary of the object’s trajectory in the 

slice. Then, the completed spatio-temporal slices are combined to 

construct a virtual contour, which is used to guide the subsequent posture 

mapping and retrieval process.  
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Sometimes, image inpainting errors lead to imprecise virtual contours, 

making it difficult to retrieve correct postures for object inpainting. To 

resolve this problem, we use the object tracking scheme proposed in [27] 

to correct image inpainting errors. To inpaint an occluded object, our 

method tracks the object in the non-occlusion period to obtain their 

positions. Accordingly, each spatio-temporal slice is then divided into two 

regions, the background region and the foreground trajectory, which 

allows us to apply image inpainting to the regions separately and thereby 

avoid inpainting errors. That is, available foreground information will 

only be used to infill the missing region of foreground region, and vice 

versa. Figure 2.6 shows that the tracking-based correction technique 

significantly reduces the distortion of a virtual contour caused by 

inpainting errors.  

 



 

 27 

 

Figure 2.6 Virtual contours constructed by combining 2-D spatio-temporal slices 
derived via the patch-based inpainting method proposed in [14]. The left-hand side 
shows the virtual contours obtained by combining completed spatio-temproal slices 
without corrections, and the right-hand side shows the virtual contours with 
corrections. 
 

The rationale behind the proposed virtual contour construction 

method is that if the continuity of object trajectories can be maintained in 

individually completed spatio-temporal slices, then the motion continuity 

of an object reconstructed by combining all the inpainted slices will also 

be maintained. Thus, so long as the linear line motion assumption holds 

during the occlusion period, a virtual contour can provide fairly precise 

information about the posture and filling location of an occluded object, 
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even if the object is badly damaged.  

 

2.2.4 Key Posture-based Posture Sequence Matching  

After composing a sequence of consecutive virtual contours, we use 

them to match the most similar posture sequence in the set of available 

postures to complete the occluded objects. To simplify the posture 

sequence matching process, we use the key posture selection method 

proposed in [24] to select the most representative postures from among 

the available postures. The method uses also uses the shape context 

descriptor in [24] to measure the similarity between two postures. As 

illustrated in Figure 2.3, given an object’s posture (Figure 2.3 (a)), a set of 

feature points are selected to describe the object’s silhouette (Figure 2.3 

(b)). To reduce the complexity of posture matching without sacrificing the 

matching accuracy significantly, a convex hull bounding the silhouette 

(Figure 2.3 (d)) is used to select a subset of key feature points (Figure 2.3 

(e)) to describe the shape context of the object. The similarity between 

two postures is evaluated by matching the two corresponding posture 

silhouettes by (2.3). A posture is deemed a key posture if its degree of 

similarity to all key postures exceeds a predefined threshold, THposture, 
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that is empirically set to be 0.08. The key-posture selection algorithm is 

summarized below.  

Algorithm: Key Posture Selection 

The set of key-postures Q = { 1q , 2q ,…, nq } 

The available posture database B = { 1b , 2b ,…, nb } 

For i = 1 to n  
{ 

If ( Q = φ ) 

Q = Q ∪ tb  

     else if ( posture( , )i jH b q TH> , jq∀ ) 

         Q = Q ∪ tb  

} 

After the key posture selection process, each key posture is labeled 

with a unique number. The virtual contour of each available posture is 

then matched with the key posture that has the most similar context, as 

defined in (2.3). If a virtual contour cannot be matched in this way, it is 

given a special label. As a result, a sequence of contiguous available 

postures and virtual contours can be converted into a string of 

key-posture labels based on the temporal order, as shown in Figure 2.7. 
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After the encoding process, the problem of retrieving the most similar 

sequence of postures for a sequence of virtual contours becomes a 

substring matching problem [26] that, given an input segment of codes, 

searches for the most similar substring in a long string of codes. The 

occluded objects are then replaced with the retrieved sequence of 

available postures. Figure 2.8 shows two examples of using substring 

matching to solve the posture mapping problem. During the occlusion 

period, a string of labels in a fixed-size sliding window (the size is 4 in 

the example) is matched to the substring of labels in the normal periods. 

We use two sliding windows that respectively start from the two ends of 

the occlusion period and move toward the center of the period. Each 

sliding window overlaps with the neighboring normal period by half a 

window. As a result, half of the labels in the initial string are derived from 

available postures and the remaining labels are obtained from the virtual 

contours. As illustrated in the first example of Figure 2.8, the left sliding 

window initially consists of four postures encoded as “BBCC” including 

two available postures (the “BB” part) in frames i–2, i–1 and two virtual 

contours (the “CC” part) in frames i, i+1. The right sliding window 

initially contains four postures encoded as “EFGG” where “EF” 
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represents the two virtual contours in frame j–1 and j. and “GG” 

represents the two available postures in frames j+1, and j+2, respectively. 

In this example, the available postures in frames 5, 6, n–5 and n–4 of the 

two initial sliding windows are deemed the best-match sequence to 

replace the damaged objects in frames i, i+1, j–1 and j. In the second 

matching, however, a good match cannot be found for the damaged object 

in frame i+2 (with virtual contour label “V”) after substring matching. 

Our method handles such situations by constructing synthetic 

key-postures, as will be discussed later.  

Using the proposed key-posture selection and mapping method to 

encode a sequence of virtual contours and available postures with a 

compact representation of key-posture labels has two advantages. First, 

since there are many efficient substring matching algorithms, converting 

the posture sequence retrieval problem into a substring matching problem 

reduces the computational complexity substantially. Second, as the 

occluded objects are completed for a whole sub-sequence rather than for 

individual frames, the temporal continuity of object motion is maintained.  
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1,   2,  3,  4,…….…. i,  i+1,i+2,…….. j-1,  j,…………. n-2, n-1, n

Key posture 
selection

Key posture 
database

Similarity measure

AABBCCDEFGGA……BBCCE…EEFGG……AFFEEFGGDBA  
Figure 2.7 The process for converting available postures and virtual contours into 
a sequence of key posture labels. The blue frames and numbers indicate the frames 
with available postures and their corresponding key-posture labels. The orange frames 
and numbers indicate the frames with constructed virtual contours and their 
corresponding key-posture labels. 
 

1,   2,  3,  4,…….…. …………… i,  i+1, i+2,……. j-1,  j,…………………………. n-2, n-1, n

Posture 
mapping 1 B B C C

B B C C
B B C C

E F G G
E F G G

E F G G

Posture 
mapping 2

A A B B C C E F…B B C C V …G E F G G…F G E F G G D B

A A B B C C E F…B B C C V …G E F G G…F G E F G G D B

C C V ?
C C V ?

……………………………………………....………..C C V ?
Can not find same substring => no similar posture for virtual contour V

………………………………..…………E F G G

 
Figure 2.8 Examples of using substring matching to solve the posture mapping 
problem. The length of the substring is 4. The blue numbers indicate the key-posture 
labels of available postures; the brown numbers indicate the labels of virtual contours; 
and the red numbers indicate the labels of available postures used to replace the 
occluded objects. In the first posture mapping, the available postures in frames 5, 6, 
n–5 and n–4 are deemed the best matches to replace the damaged objects in frames i, 
i+1, j–1 and j respectively. In the second mapping, however, a good match cannot be 
found for the damaged object in frame i+2 (with the virtual contour labeled “V”). 

 

2.2.5 Synthetic Posture Generation  
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The occlusion problem occurs in real-world applications all the time; 

hence, a virtual contour generated from an occlusion event may not find a 

good match among the selected key postures due to the lack of available 

non-occluded object postures. The problem of insufficient postures 

usually arises when the occlusion period for a to-be-completed object is 

long, resulting in many reconstructed virtual contours, or when the 

object’s non-occlusion period is too short to collect a sufficiently rich set 

of non-occluded postures. Using a poorly matched posture to complete an 

occluded object can result in visually annoying artifacts. To resolve the 

problem where a virtual contour cannot find a good-match in the 

available key-posture database, we synthesize more postures by 

combining the constituent components of the available postures to enrich 

the content of the database. Figure 2.9 shows how a new posture is 

synthesized by using three constituent components (the head, torso, and 

legs) from different available postures selected by a skeleton matching 

process.  

The flowchart of the proposed synthetic posture generation process is 

shown in Figure 2.10. First, the skeleton of a virtual contour that cannot 

find a good match in the posture database is extracted using the scheme 
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proposed in [28], which is also used to extract the skeletons of all 

available postures. Then, the constituent components of each selected 

key-posture are decomposed based on the distribution of the variance in 

alignment errors between every two aligned key-postures. The component 

decomposition result of key postures is used to help segment the 

extracted skeletons into their constituent components. We use the 

segmented skeleton components of a virtual contour to retrieve similar 

posture components, which are then used to synthesize new postures.  

 

 
Figure 2.9 Synthesizing a new posture using available postures. The new posture 
is comprised of three components (the head, body, and legs) taken from different 
postures. 
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Extract the skeleton of 
the virtual contour

Divide the skeleton 
into its constituent 

components 

Extract the skeletons 
of 

available postures

Divide the skeletons 
into their constituent 

components 

Calculate the local 
variance between two 

key postures

Calculate the 
distribution of local 

variance 

Calculate the 
distribution of local 

variance 

Segment constituent 
components

Virtual contour

Find the most similar components  and 
combine them to obtain a synthetic 

posture

 

...

Key-postures

...

Available postures

 
Figure 2.10  Flowchart of the proposed synthetic posture generation process. 

 

All of the above-mentioned constituent components are derived from 

the components of existing database postures. To use these components, 

we need to perform segmentation on the key-postures in advance, as 

shown in Figure 2.11. After aligning the postures, we compute the 

difference between every two consecutive key postures. From the 

distribution of the variance, it is possible to identify the components that 

move more frequently. Then, we label the “frequently moving” 

components as the constituent components of the posture synthesis 

process.  
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Figure 2.11  The constituent components of a posture are partitioned based on 
local variance extraction. The dashed lines which separate postures into constituent 
components are determined based on the distribution of local variance shown on the 
right-hand side. 
 

We use the skeletons of objects to retrieve similar posture 

components, which are then used to synthesize new postures. To extract 

object skeletons, we employ the method proposed in [28]. It defines 

candidate skeleton points as the centers of the maximal disks located 

inside the planar shape. Then, a Euclidean distance map is used to 

determine whether or not a candidate skeleton point is a genuine skeleton 

point. A candidate skeleton point is deemed a real skeleton point if any 

one of its eight neighbors satisfies the connectivity criterion:  

2 2
22 1 1 and 

max( , )
r r D

x y
ρ−

≤ ≥ , (2.7) 

where 2 1x x x= − and 2 1= −y y y , in which 1 1( , )x y and 2 2( , )x y denote, 

respectively, the coordinates of the two nearest contour points e1 and e2; 

1r and 2r  represent, respectively, the shortest and longest distances 

between the contour point and the neighbors of the skeleton point; D is 
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the distance between the two nearest contour points; and ρ  is a 

pre-determined threshold. 

We use the following relevance metric, K, to measure the 

contribution of an arc to the shape of a contour in order to determine 

whether the arc is a redundant branch of the skeleton: 

1 2 1 2
1 2

1 2

( , ) ( ) ( )( , )
( ) ( )

l l l l l lK l l
l l l l

β
=

+
, (2.8) 

where l1 and l2 represent, respectively, two line segments of the object’s 

contour; 1 2( , )β l l  is the turn angle at the common vertex of segments ls1 

and ls2; and l(·) denotes the length function. 

The relevance metric allows us to select and remove arcs that only 

make a small contribution to an object’s shape. This operation reduces the 

shape’s contour, which is then used to remove unimportant skeleton 

points. We use the thresholds derived in the posture classification step to 

separate the skeletons of virtual contours and those of the available 

postures. After aligning the parts of a skeleton in the virtual contours with 

the corresponding parts in the available postures, the best-matched 

skeleton components of the available postures can be identified based on 

the following similarity metric: 

( ) ( ), ,

, ,( , ) ( , )
x y x y

x y x y
t T s S

S T S w t s
∈ ∩ ∈

= ∑ , (2.9) 
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where T an S denote, respectively, the skeleton component of a virtual 

contour and the corresponding part in an available posture; and 

, ,( , )x y x yw t s  represents the matching score of the corresponding skeleton 

points, ,x yt  and ,x ys , of the virtual contour and the available posture, 

defined as follows:  

1 , ,

, , 2 , ,

, if  and  belong to the skeleton region
( , ) , if  and  belong to the foreground region

0, otherwise

x y x y

x y x y x y x y

score t s
w t s score t s


= 



, (2.10) 

Here, the two score constants, score1 and score2, are set empirically as 3 

and 1 respectively. 

Finally, a new posture can be synthesized by combining all the 

best-matched constituent components of the available postures selected 

by the component-wise skeleton retrieval process. 

 

2.3 Experimental Results 

We used six test sequences to evaluate the efficacy of our method. 

Five sequences were captured by a commercial digital camcorder with a 

frame rate of 30 fps, and a resolution of 352×240 (SIF). The remaining 

one was taken from [1]. In the experiments, we first removed unwanted 

objects and occluded objects completely, and then used the proposed 

inpainting method to reconstruct the occluded objects.  
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Figure 2.12(a) shows some snapshots of test sequence #1, which 

contains a pedestrian. In this experiment, we intentionally removed the 

person from 20 consecutive frames, and then used the proposed method 

to restore the missing person. This test case simulates a real-world 

situation in which objects in a number of consecutive frames are damaged 

due to packet loss during transmission of the video (e.g., the loss of 

several video-object-planes of an MPEG-4 stream), or due to a damaged 

hardware component (e.g., a hard disk or an optical disk). Since we have 

the ground-truth of the missing object in this case, we can evaluate the 

performance of our object completion method based on the ground-truth. 

First, we observe that the virtual contours of the missing objects, 

constructed by combining the completed spatio-temporal slices (shown in 

Figure 2.12(b)), retain most of the objects’ posture information. This 

verifies that the virtual contour of a missing object provides a fairly good 

initial estimate for finding the best-matched available posture to complete 

the missing object. Figure 2.12 (c) shows that the objects completed 

frame-by-frame by the proposed posture mapping scheme conform to the 

ground-truths very well. Moreover, the scheme maintains the temporal 

continuity of object motion even if the object is lost completely in several 
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consecutive frames.  

 

   
(a) 

   
(b) 

      
(c) 

Figure 2.12  Test sequence #1 containing a single pedestrian: (a) some snapshots 
of the original video (ground-truths); (b) the virtual contours (on the left), which are 
constructed by combining the completed spatio-temporal slices and their 
corresponding best-match postures (on the right); (c) the corresponding completed 
frames; (d) comparison of the completed objects (on the left) and the ground-truths 
(on the right)  
 

Test sequence #2, shown in Figure 2.13 (a), simulates a common 

real-life situation that occurs in home videos, i.e., two people walking 
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toward each other. In this scenario, one person is occluded by the other, 

which is not desirable. This case is similar to the situation where a 

moving object is occluded by a stationary object. After removing the 

unwanted object, we use the proposed method to restore the 

partially/completely occluded object. Figure 2.13 (b) shows, once again, 

that the virtual contours of damaged objects provide reasonably good 

estimates of the objects’ postures. We do not have a ground-truth for this 

test sequence. However, Figure 2.13 (c) shows that the restored person 

moves with rather natural and continuous postures. Besides, our method 

maintains the temporal motion continuity of the object well. Note, the 

occluded girl turns her body a bit (i.e., the pose angle is changed) during 

the occlusion period. Since the pose angles of available postures are 

slightly different from the actual ones, the occluded objects are replaced 

with the available postures with similar silhouette information but 

different pose angles, leading to some artifact during the transition of 

pose angle (see the video in [30]). Such pose angle change problem has 

not yet been addressed in this work.  
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(a) 

   
(b) 

   
(c) 

Figure 2.13  Test sequence #2 with two people walking toward each other: (a) 
original video frames; (b) the virtual contours (on the left), which are constructed by 
combining the completed spatio-temporal slices and the corresponding best-match 
postures (on the right); (c) the completed frames (on the left) using the original 
key-postures and the additional synthetic postures and the corresponding frames 
composed from the completed 2-D slices (on the right). 
 

Test sequence #3 (Figure 2.14 (a)) is similar to test sequence #2, 

except that the person is occluded for a significantly longer period than in 

sequence #2. The longer occlusion period made it difficult to complete 

the occluded object because only a small number of available 
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non-occluded postures were available in the sequence. In other words, the 

key-postures selected from the available postures were not sufficiently 

comprehensive, so we could not find a good match among the 

key-postures for the occluded object. Figure 2.14 (b) shows the virtual 

contours of the occluded object and its corresponding matched postures. 

The postures matched with the set of insufficient available postures 

appear to be incorrect in the hands and legs, leading to visually 

unpleasant artifacts in the completed video. Recall that our scheme 

minimizes the effect of insufficient available postures by adding synthetic 

postures to the available posture database to enrich the choice of postures, 

as shown in Figure 2.14 (c) and Figure 2.14 (d).  

 

   
(a) 
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(b) 

   
(c) 

   
(d) 

Figure 2.14  Test sequence #3 containing two people walking toward each other 
(with a long occlusion period): (a) original video frames; (b) the virtual contours (on 
the left) and the corresponding best-match postures (on the right) without including 
synthetic postures; (c) the virtual contours (on the left) and the corresponding 
best-match postures (on the right) with the additional synthetic key-postures; and (d) 
the completed frames (on the left) using the original key-postures and the additional 
synthetic postures and the corresponding frames composed from the completed 2-D 
slices (on the right).  
 

Test sequence #4 shown in Figure 2.15 (a), also shows two people 

walking toward each other, where the subject moves both horizontally 

and vertically. Moreover, the subject changes direction leading to 
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non-linear motion and change of object size. In this scenario, we perform 

posture alignment/normalization prior to sampling the 2-D 

spatio-temporal slices. After removing the unwanted object, we use the 

proposed method to restore the occluded object. Figure 2.15 (c) shows 

that, even with non-pure horizontal motion and non-linear motion, the 

proposed method is still effective in maintaining the spatial consistency 

and temporal continuity.  

 

   
(a) 

   
(b) 
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(c) 

Figure 2.15  Test sequence #4: (a) some snapshots of the original video; (b) the 
corresponding best-match postures; and (c) the result derived by the proposed method.  
 

The proposed system was implemented on a PC equipped with Intel 

Core2 Duo CPU 2.83GHz and 3.5 GB system memory. The codes 

(implemented in MATLAB) for patch -based image inpainting and 

skeleton generation are obtained from [16] and [28], respectively. The 

remaining codes are all implemented in C++. The run time of each step 

for each test sequence is listed in TABLE I. In the four test sequences, the 

number of available postures in sequence #3 is not rich enough to achieve 

satisfactory object inpainting performance. Therefore the synthetic 

posture generation process is used to improve the performance.  

 

Table 2.1 Run-time analysis of key operations in the proposed method 
 Virtual contour 

generation 
Posture 
mapping 

Synthetic 
posture 
generation 

Sequence #1  838.53 s 9.82 s not used 
Sequence #2 181.56 s 9.36 s not used 
Sequence #3 195.64 s 9.06 s  82.89 s 
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Sequence #4 608.16 s 9.21 s not used 
 

2.4 Summary 

To resolve a number of problems related to video completion, in this 

Chapter we propose a novel method that handles the completion of 

objects and completion of the background separately. The method is 

comprised of three steps: virtual contour construction, key posture-based 

sequence retrieval, and synthetic posture generation. An efficient posture 

mapping method has been proposed that uses key posture selection, 

indexing, and coding operations to convert the posture sequence retrieval 

problem into a substring matching problem. In addition, we have 

developed a synthetic posture generation scheme that enhances the 

variety of postures available in the database. Our experiment results show 

that the proposed method generates completed objects with good 

subjective quality in terms of the objects’ spatial consistency and 

temporal motion continuity.  

The proposed method still has a few constraints. First, if an object 

moves nonlinearly during an occlusion period, the virtual contour 

construction may not compose sufficiently accurate postures. But should 

there be enough non-occluded portion of the object, the linear motion 
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constraint may be relaxed. Second, currently the proposed method does 

not deal with the illumination change problem that occurs if lighting is 

not uniform across the scene. Third, the synthetic posture generation 

method can only deal with objects that can be explicitly decomposed into 

constituent components (e.g., a walking person), but may not synthesize 

complex postures.  
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Chapter 3 

Human Object Inpainting Using Manifold Learning-Based 

Posture Sequence Estimation 

In this Chapter, we propose a framework for virtual contour guided 

video object inpainting using posture mapping and retrieval. First, we 

give an introduction about this research topic. The proposed approach is 

then described. Next, we detail the experiment results. Finally, we present 

our conclusions.  

 

3.1 Introduction  

Video inpainting [1]-[11] is a popular research field in recent years 

owing to its powerful capability in video editing and recovering. A 

number of algorithms for automatic video inpainting have been proposed 

in the past few years. Conventional video inpainting methods can be 

roughly classified into two types: the first type is patch-based [1]-[6] and 

the other type is template-based [7][8]. However, patch-based approaches 

would cause spatial or temporal structure inconsistency artifacts and 

template-based approaches would cause temporal discontinuity. 

Recently, Ding et al. [10] proposed a nonlinear dimension 
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reduction-based video inpainting technique that utilizes Local Linear 

Embedding (LLE) [31] to transform data observed in frames into 

embedded features in a low-dimension manifold. Then, the embedded 

features are organized to form a Hankel matrix and missing data can be 

determined by minimizing the rank of the matrix. Finally, the Radial 

Basis Function (RBF) is used for inverse mapping. Again, the drawback 

of this method is that it may cause blurring and ghost image artifacts if 

the object’s motion is not periodic. 

Motion prior models derived from training data have also been 

successfully applied in applications of marker-free human motion capture 

and analysis [31]−[34]. Generally two main classes of motion priors can 

be identified [34]. The first class utilizes an explicit motion model to 

guide motion analysis and tracking of body parts. For example, the 

method proposed in [35] utilizes Variable length Markov Models (VLMM) 

to characterize both the short-term dynamics and long-term history of 

video data.  Similar to Ding et al.’s approach [10] and this work, the 

second class learns a low-dimensional posture manifold and performs 

analysis and tracking in the low-dimensional manifold [36][37]. The 

inverse mapping from the low-dimensional manifold to the 
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high-dimensional full body configuration can be accomplished via RBF 

or Locally Linear Coordination (LLC) [38]. Although the basic 

components for dimensionality reduction and inverse mapping are similar, 

as motion analysis is aimed at tracking of human motion, the key 

component of object inpainting− recovering missing trajectories in the 

learned low-dimensional manifold, was usually not addressed in these 

motion analysis works. 

Our literature survey shows that most video inpainting algorithms 

generate artifacts if the object to be inpainted is completely occluded or 

its motion is not periodic. To void generating such artifacts, a posture 

sequence estimation process of good accuracy is required for object 

inpainting. To this end, Xu et al. [39] proposed a method for animating 

animal motions. The model rearranges available animal templates to form 

a new animal motion sequence by minimizing a predefined energy 

function. In this work, rather than using an optimization approach, which 

is time consuming, we propose a posture sequence estimation method that 

maintains the continuity of local motion. The proposed framework 

consists of three steps: human posture synthesis, graphical model 

construction, and posture sequence estimation. Human posture synthesis 
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is used to enrich the number of postures in the database, after which all 

the postures are used to build a graphical model that can predict motion 

tendency. We also propose two constraints to confine the motion 

continuity property. The first constraint limits the maximum search 

distance if a trajectory in a graphical model is discontinuous; and the 

second confines the search direction in order to maintain the tendency of 

an object’s motion. We perform both forward and backward prediction to 

derive local optimal solutions. Finally, we apply the Markov Random 

Field model to compute an overall best solution, and the potential 

trajectory with the maximum total probability is taken as the final result. 

The proposed posture sequence estimation model can help identify a set 

of suitable postures from the posture database to restore damaged/missing 

postures. It can also make a reconstructed motion look continuous. The 

advantage of this posture sequence estimation strategy is that it can 

handle cases like non-periodic motion or complete occlusion. These 

capabilities are powerful because conventional model-based motion 

prediction methods [31][40][41] must use a training process to achieve 

the same goal. 
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3.2 Human Object Inpainting Using Posture Sequence Estimation  

In this section, we explain how to perform human object inpainting 

based on the proposed posture sequence estimation method. As 

mentioned earlier, the method includes three steps: posture synthesis, 

graphical model construction, and posture sequence estimation. We 

discuss the steps in detail in the following sections. 

 

3.2.1 Human Posture Synthesis 

The problem of an insufficient number of postures will affect the 

visual quality of any video sequence generated by a posture 

prediction-based approach. To solve the shortage-of-posture problem, we 

utilize our previous posture synthesis method [30] that was mainly 

designed for generating synthetics human postures to increase the number 

of postures.  

 

3.2.2 Graphical Model Construction 

After creating synthetic postures, the posture database will contain a 

lot of postures that can be used to build a graphical model of an object’s 

motion, as shown in Figure 3.1. The model provides a simple 
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representation of an object’s motion. To obtain such a model, all postures 

(both synthesized and existing postures) must be projected onto a feature 

space. Then, we link the postures that appear in adjacent frames in the 

constructed feature space. After applying the above procedure, we can 

obtain a graphical representation of the object’s motion. To model the 

distribution of the postures in the feature space, we need to know the 

distances between distinct postures. We use a shape context descriptor 

that we developed in a previous work [24], that is a modified version of 

the descriptor proposed in [23], to compile a detailed description of each 

posture. The value of the shape context is calculated along the silhouette 

of the posture. In the posture sequence estimation stage, the values of the 

shape contexts will be used to compare the degree of similarity between 

two distinct postures. 

 

 

Figure 3.1  A graphical model of an object’s motion in a low-dimension manifold. 
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The blue points represent the feature points of the postures, and the red lines connect 
two feature points whose corresponding postures appear in adjacent frames. In this 
example, occlusion occurs between frames i and j, so we try to find a motion path 
with l internal points that can be used to link points xi and xj. 
 

By using the context descriptor proposed in [23][24], we can calculate the 

degree of similarity between two distinct postures. Then, based on the 

similarity scores of the postures, we cluster all the postures in the 

database by using a nonlinear dimension reduction method called 

isometric feature mapping (Isomap) [44]. In our application, existing and 

synthesized postures are regarded as input data points for Isomap, and the 

distance between two data points is equivalent to the degree of similarity 

between two corresponding postures. We modify the Isomap algorithm to 

fit our requirements as follows: 

Step 1) Construct a neighborhood graph: If xi is one of the K-nearest 

neighbors (K-NN) of xj, define a graph G that connects data points xi and 

xj. The length of the edge between xi and xj is used to measure the degree 

of similarity between postures oi and oj. 

Step 2) Compute the shortest paths: Find the shortest path between 

each pair of feature points in G. The matrix ( ( , ))G G i jD d x x=  contains all 

the shortest paths between all pairs of data points in G. 

Step 3) Construct a d-dimensional embedding: Find the eigenvector 
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λ  of the matrix Γ(DG) (The operator Γ is defined as 

** * *( )G ij j iD a a a aΓ = + − − , where 21 ( ( , ))
2ij G i ja d x x= − , 

*
1

i ij
j

a a
n

= ∑ , 

*
1

j ij
i

a a
n

= ∑ , and 
** 2

1
ija a

n
= ∑∑ ). Then, to derive the final result, we 

apply classical Multi-Dimensional Scaling (MDS) [45] to the matrix of 

graph distances DG. 

 

3.2.3 Posture Sequence Estimation 

Based on the graphical model of an object’s motion shown in Figure 

3.1, we obtain suitable postures to replace damaged/missing postures by 

finding an approximate path that links data points xi and xj in a low 

dimension manifold. Intuitively, a motion path can be reconstructed by 

taking the shortest path between two nodes or by an optimization process 

[39], but these two approaches cannot guarantee the smoothness of a 

recovered motion. To resolve the problem, we propose using two 

constraints to regulate the motion continuity property in the local region 

of a graphical model. Specifically, we need a strategy to select a certain 

number of data points that satisfy the continuous motion constraint. The 

first constraint limits the search range to within a reasonable 

neighborhood, as shown in Figure 3.2. Therefore, we need to define the 
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search range of the complete trajectory of an object’s motion. In the 

manifold domain, such trajectories are comprised of a number of linked 

data points (see Figure 3.1). To determine the distance between any two 

consecutive data points on a trajectory, we calculate the shape context 

difference between their corresponding postures. Then, the maximum 

distance among all the measured distances is taken as the search range to 

satisfy the first constraint. Since the search range is circular, we calculate 

the radius as follows: 

 on a complete trajectory
max

ij
ije

r e
∀

= , (3.1) 

where eij represents the distance between xi and xj on an object’s motion 

trajectory. 

 

 

Figure 3.2 The neighborhood constraint. 
 

The second constraint is introduced to maintain the tendency of an 

object’s motion in each local region. It can be realized by checking the 

tendency of an object’s motion trajectory in a graphical model. In a low 
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dimensional manifold, a motion trajectory does not change direction 

significantly in a neighborhood region. Based on this observation, a 

variance constraint of motion tendency is designed to ensure that the 

variance of motion tendency stays within a reasonable range (see Figure 

3.3). In the manifold domain, the complete trajectory of an object’s 

motion is comprised of a number of linked segments, as shown by the red 

lines in Figure 3.1. For the segments indicated by the lines, we compute 

the change in direction between any two consecutive segments based on 

the inner product of their corresponding vectors. Among all the computed 

direction changes, the largest direction change is taken as the maximum 

allowable angle for direction change. This angle, which is the basis for 

executing the second constraint, is calculated as follows: 

 on a complete trajectory
max

ijk
ijkθ

α θ
∀

= , (3.2) 

where θijk represents the angle between the vectors i jx x


 and j kx x


 on an 

object’s motion trajectory. 

 

 
Figure 3.3 The motion tendency constraint. 
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The above constraints are designed to maintain the local continuity of 

an object’s motion. To maintain the global motion continuity, we propose 

a two-way (forward-backward) prediction mechanism. We use three time 

instants, t−1, t, and t+1, to explain how the proposed mechanism operates. 

In the forward operation, we make a forward prediction on each data 

point at time t−1. The motion tendency constraint and the search range 

constraint are applied to determine m probable data points at the next time 

instant t. The selected data points, m, will be used to predict the candidate 

data points at time t+1. We apply the same strategy in the reverse 

direction and collect related information from t+1 to t, and from t to t−1. 

Then, we combine the results from the bi-directional processing to obtain 

the final results for time t. To illustrate the two-way prediction process 

further, we use a test sequence containing 245 frames. Some snapshots 

extracted from the test sequence, #1, are shown in Figure 3.4. The 

candidate points chosen at time instant 19 (t−1) are indicated by the blue 

dots in Figure 3.5(a), and their corresponding postures are shown on the 

left-hand side of the figure. Those candidate points are used to perform 

forward prediction. The predicted candidate points at time instant 20 are 

shown in Figure 3.5(b). We apply the same procedure in the reverse 
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direction and generate results from t = 21 to t = 20 (shown in Figure 3.5(c) 

and (d)). The two sets of results are then combined to form the final 

results, as shown in Figure 3.5(e). Table I provides detailed information 

about the above mentioned processes, including the distance and angle 

information calculated during the forward and backward prediction steps. 

 

 
Figure 3.4  Some snapshots extracted from test sequence #1. 

 

  
(a) (b) 
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(c) (d) 

 
(e) 

Figure 3.5  (a)−(b) some forward prediction steps, (c)−(d) some backward 
prediction steps, and (e) the combined results of two-way prediction at time t. 

 

Table 3.1. Detailed information derived during the forward-backward prediction 
process 

Forward prediction from time instant 19 to time instant 20 (D: distance; A: angle) 

T:19 
   

  
 

 
 

 
 

T:20 
             

 
D:0.026 

A:13.92 

D:0.046 

A:31.96 

D:0.033 

A:40.45 

D:0.046 

A:14.75 

D:0.049 

A:27.74 

D:0.029 

A:5.957 

D:0.044 

A:8.784 

D:0.042 

A:19.02 

D:0.040 

A:28.32 

D:0.049 

A:19.01 

D:0.043 

A:44.11 

D:0.032 

A:31.16 

D:0.028 

A:15.99 

T:19 
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T:20 
             

 
D:0.041 

A:37.53 

D:0.038 

A:8.025 

D:0.041 

A:8.587 

D:0.024 

A:8.547 

D:0.040 

A:6.434 

D:0.045 

A:24.20 

D:0.034 

A:4.064 

D:0.032 

A:38.05 

D:0.033 

A:35.21 

D:0.048 

A:22.38 

D:0.043 

A:12.17 

D:0.049 

A:22.67 

D:0.035 

A:24.53 

Backward prediction from time instant 21 to time instant 20 (D: distance; A: angle) 

T:21 
   

  
 

 
 

 
 

T:20 
             

 
D:0.031 

A:26.12 

D:0.041 

A:2.623 

D:0.039 

A:19.61 

D:0.049 

A:4.843 

D:0.031 

A:15.55 

D:0.041 

A:26.61 

D:0.043 

A:29.67 

D:0.046 

A:18.70 

D:0.043 

A:13.51 

D:0.028 

A:13.04 

D:0.045 

A:4.683 

D:0.048 

A:5.593 

D:0.037 

A:13.18 

T:21 
   

  
 

 
 

 
 

T:20 
             

 
D:0.045 

A:42.77 

D:0.041 

A:43.72 

D:0.047 

A:31.33 

D:0.031 

A:49.49 

D:0.043 

A:48.23 

D:0.023 

A:1.048 

D:0.049 

A:33.80 

D:0.047 

A:23.55 

D:0.049 

A:9.623 

D:0.032 

A:14.78 

D:0.048 

A:5.354 

D:0.041 

A:5.704 

D:0.035 

A:0.914 

 

Since the motion continuity constraint is only effective on local 

regions, we use the Markov Random Field (MRF) model to derive global 

motion continuity. MRF provides a convenient and accurate way to model 

context-dependent entities, such as image pixels and correlated features. 

The above modeling can be achieved by characterizing the mutual 

influences that relate such entities. To predict an object’s motion, instead 

of following the Markov assumption, we assign one node of the Markov 

network to each time state. Then, the constructed network can reflect 
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statistical dependencies. Given a set of data points located at the 

intervening nodes, every node of a Markov network is statistically 

independent of other nodes in the network. Since our Markov network 

does not contain loops, the above-mentioned Markov assumption results 

in simple “message-passing” rules for computing the probability during 

inference. The data point estimated at node j is 

* 1 1arg max ( )
j

j j
j j j j

c
c p c M M− += , (3.3) 

where cj denotes the candidate point associated with node j, p(cj) is the 

self probability of candidate point cj, and 1j
jM +  is the message derived 

from node j−1 to node j. 1j
jM +  can be calculated as follows: 

1 2
1 2 1 1 1[ ]

max ( , , ) ( )
k

j j j
j j j j j j jc

M c c c p c M M+ +
+ + + + += Ψ   , (3.4) 

where 1
j
jM +
  is the previous message, which is used to generate 

1j
jM +

 by 

executing (3.4). 1j
jM +  includes the probability information of all the 

candidate data points of node k. The initial 1̀
j
jM +
  message is set as a 

column vector with the initial probability of all the elements associated 

with node j. The function 1 2( , , )j j jc c c+ +Ψ  is defined as follows: 

2

1 2 2

1 ( )( , , ) exp( )
22j j jc c c θ µ
σσ π+ +
−

Ψ = − , (3.5) 

where θ is the angle between vectors 1j jc c +



 and 1 2j jc c+ +



; and µ and σ are 

the mean and standard deviation of all angles in a complete trajectory of 
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an object’s motion. 

 

 
Figure 3.6 An example of the MRF process. 

 

To better explain how (3.3), (3.4) and (3.5) find an optimal *
tc , we use 

the three nodes shown in Figure 3.6 as an example. 

Initially, node t receives two messages in the form of a column vector 

with the initial probabilities of the elements associated with node t−1 and 

t+1. It then sends the two messages, 1
t
tM −  and 1

t
tM + , to nodes t−1 and t+1 

respectively. The messages contain the probability information of all the 

candidate data points associated with node t. Before the information is 

sent, it is reordered to form a column vector. On receipt of the 

information, nodes t−1 and t+1 respond by sending messages 1t
tM −  and 

1t
tM + , respectively, to node t. When each candidate point of node t 

receives the message 
1t

tM −

 it finds a matching point in node t−1 as 

follows: 

1
1 1 1 1( ) arg max ( , , ) ( ) ( ) ( )

t
t t t t t t tc

p c c c c p c p c p c
+

− + − += Ψ , (3.6) 

where ( )tp c is the new self probability of candidate point ct, p(ct) denotes 
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the previous self probability of candidate point ct, and p(ct−1) and p(ct+1) 

are the probabilities propagated by messages 1t
tM − and 1t

tM + , respectively. 

After normalizing the probability value of each candidate point calculated 

by (3.6), we obtain a new probability value for each candidate point. Then, 

node t sends the updated message 1
t
tM +  with the new probability to node 

t+1. Similarly, if node t receives an updated message from node t+1, the 

probability values of all the candidate points of node t are recomputed 

and sent to node t−1. Freeman et al. [53] showed that after, at most, one 

global iteration of (3.4) on each node of the network, (3.3) can derive the 

desired optimal estimate of *
jc  at node j. 

 

3.3 Experimental Results 

To test the effectiveness of the proposed posture sequence estimation 

method, we performed experiments on eight test sequences, where part of 

them were captured with a camcorder and the remaining were grabbed 

from the Weizmann database [46] and the Internet. In addition to test 

sequence #1 shown in Figure 3.4, we used sequences #2 and #3 to 

evaluate the proposed method. In the experiments, we first removed 

several consecutive frames to simulate a real-world situation where 
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objects in a number of consecutive frames were damaged due to packet 

loss. Then, we applied the proposed posture sequence estimation method 

to reconstruct the motion of each object. We also compared the 

performance of our approach with that of Ding et al.’s approach [10] and 

Xu et al.’s approach [39]. For all the test sequences, the proposed method 

maintained the motion continuity of a reconstructed motion and yielded 

better results than the compared approaches.  

In the first experiment, we removed 10 of the 245 frames in test 

sequence #1. Part of the sequence (28 frames) is shown in Figure 3.7(a). 

In the Figure 3.7(a), the 10 frames that we removed are bounded by the 

red rectangle. Figure 3.7(b), (c), and (d) show the missing sequence that 

was reconstructed by applying Ding et al.’s approach [10], Xu et al.’s 

approach [39] and our approach, respectively; and Figure 3.7(e) shows 

the corresponding trajectories reconstructed by the three approaches in 

the manifold space. Among the trajectories, the red, blue, yellow and 

green colors represent the ground-truth trajectory, and the trajectories 

reconstructed by Ding et al.’s approach, Xu et al.’s approach and the 

proposed approach, respectively. We observe that the trajectory 

reconstructed by our approach maintains the best motion continuity; and 
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it is also the smoothest of the three trajectories. Because the proposed 

posture sequence estimation method is more effective in recovering an 

object’s motion and maintaining motion continuity simultaneously, we 

conclude that it is more suitable for object inpainting than the compared 

methods. 

Table 3.2 details the results of the ground-truth and the three 

compared methods. The top row shows the sequence of missing ground 

truth postures; and the second, third, and fourth rows show the missing 

frames reconstructed by Ding et al.’s method, Xu et al.’s method, and our 

method, respectively. The black parts of the figures are the ground-truth 

postures; the gray parts are perfectly matched portions; and the red parts 

belong to reconstructed postures. We observe that the frames 

reconstructed by our method are consistently better than those derived by 

the compared methods. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 
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Figure 3.7  The experiments on test sequence #1: (a) partial sequence of test 
sequence #1 in which the red rectangle indicates missing frames; (b) frames 
reconstructed by Ding et al.’s approach; (c) frames reconstructed by Xu et al.’s 
approach; (d) frames reconstructed by the proposed approach; and (e) the 
corresponding trajectory information of predicted object motion generated by the 
three approaches. 
 
Table 3.2  Comparison of the ground-truth postures and the reconstructed missing 
postures (The parts in black, red and gray represent the ground-truth postures, 
reconstructed postures, and perfectly matched portions, respectively) 
Ground-t

ruth           
Average 

Ding et 

al. [10] 
          91.4% 

94.7% 93.0% 91.5% 90.7% 91.1% 90.8% 90.6% 90.6% 90.8% 90.6% 

Xu et al. 

[39]           89.1% 

89.8% 87.8% 85.6% 85.8% 89.5% 90.4% 88.0% 93.1% 90.6% 91.2% 

Ours 

          96.3% 

98.5% 97.7% 96.7% 96.8% 96.5% 95.5% 96.3% 96.4% 92.7% 96.4% 

 

 

In the second experiment, we used test sequence #2, which contained 

100 frames. In the sequence, two people are walking toward each other, 

and one person occludes the other in about 20 frames (some of the frames 

are shown in Figure 3.8(a)). Figure 3.8 (b), (c), and (d) show, respectively, 

the snapshots of human objects reconstructed by the methods in [30] and 

[39] and our approach. From the reconstructed frames, it is apparent that 

our approach was the most effective in recovering the occluded frames. 
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Using the recovered sequence generated by our approach yielded the best 

inpainting results among the three compared approaches, as shown in 

Figure 3.8(e). 

 
(a) 

 

(b) 

 
(c) 



 

 71 

 
(d) 

 
(e) 

Figure 3.8  The experiments on test sequence #2: (a) some snapshots of the 
occluded object in the test sequence; (b) frames reconstructed by Ding et al.’s 
approach; (c) frames reconstructed by Xu et al.’s approach; (d) frames reconstructed 
by the proposed approach; and (e) the inpainting result derived by our approach. 
 

In the third experiment, we used a video sequence (test sequence #3) 

from the Weizmann database [46] to evaluate our method. We removed 7 

of the 55 frames in the sequence. Figure 3.9(a) shows part of the sequence 

(21 frames). The 7 frames bounded by the red rectangle were the ones 

removed before the experiment. Figure 3.9(b), (c), and (d) show, 

respectively, the missing frames reconstructed by the three approaches; 

and Figure 3.9(e) shows the trajectories reconstructed by the three 

approaches in the manifold space. 

 Table 3.3 details the results of the ground-truth method and the three 



 

 72 

compared methods. The top row shows the sequence of missing 

ground-truth postures. The second, third, and fourth rows show the 

missing frames reconstructed by the two methods in [30] and [39] and our 

method, respectively. The black parts of the figures are the ground-truth 

postures; the gray parts are perfectly matched portions; and the red 

portions belong to reconstructed postures. Note that the first frame 

reconstructed by Ding et al.’s method covers a broad area (the red area 

above the head). Only this method may generate such results. In terms of 

the accuracy of the reconstructed frames, our method reconstructed the 

most accurate postures overall. However, Xu et al.’s method reconstructs 

the most accurate postures in the last of the 7 missing frames. The match 

rate was 94.3% compared to that of the ground-truth. In contrast, the 

accuracies of the postures reconstructed by Ding et al.’s method and our 

method are 67.7% and 77.2% respectively compared to that of the 

ground-truth posture. 
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(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

Figure 3.9  The experiments on test sequence #3: (a) partial sequence of the test 
sequence in which the red rectangle indicates the 7 missing frames; (b) the frames 
reconstructed by Ding et al.’s approach; (c) the frames reconstructed by Xu et al.’s 
approach; (d) the frames reconstructed by the proposed approach; and (e) the 
corresponding trajectory information of predicted object motion generated by the 
compared approaches. 
 
Table 3.3 Comparison of the ground-truth postures and the reconstructed missing 
postures (The parts in black, red and gray represent the ground-truth postures, 
reconstructed postures, and perfectly matched portions, respectively) 

Ground- 

truth        

Average  

Ding et 

al. [10]        
71.3% 

72.7% 76.2% 71.1% 69.2% 72.0% 70.3% 67.7% 

Xu et al. 

[39]        
75.7% 

60.6% 94.0% 68.7% 72.8% 73.3% 66.1% 94.3% 
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Ours 
       

80.9% 

83.0% 94.0% 81.3% 73.7% 79.7% 77.5% 77.2% 

 

3.4 Summary 

In this Chapter, we proposed a human object inpainting scheme that 

divides the process into three steps: human posture synthesis, graphical 

model construction, and posture sequence estimation. In addition, we also 

define two constraints on the motion continuity property. The first 

constraint sets a threshold to confine the maximum search distance; and 

the second restricts the range of the search direction. With the two 

constraints, the number of possible candidates between any two 

consecutive postures can be minimized to a satisfactory extent. We then 

apply the MRF model to perform global matching. The experiment results 

demonstrate that the proposed approach outperforms two existing 

state-of-the-art approaches. 

 

 

 

 



 

 76 

Chapter 4 

Object Posture Temporal Super-Resolution Using Tensor 

Decomposition-Based Manifold Learning 

In this Chapter, we describe the proposed framework for Object 

posture super-resolution using tensor decomposition-based manifold 

learning. First, we give an introduction about this research topic. The 

proposed approach is then described. Next, we detail the experiment 

results. Finally, we present our conclusions.  

 

4.1 Introduction 

Super-resolution (SR) [48]−[54] is a class of technique that enhance 

the resolution of existing images/videos. However, existing SR methods 

may fail to produce realistic and smooth results while dealing with 

sequences of human motion. Since human motion usually contains 

repeated postures, one may insert interpolated postures into the LR input 

sequence to increase the temporal resolution. In order to generate postures 

and animate animal/human motion, Xu et al. [39] proposed energy 

minimizing approach to animate motions. However, energy minimization 

process did not include human motion model, the performance is unstable 
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and very sensitive to the selected parameters. In [10], Ding et al. 

proposed a rank minimization approach to model and synthesize human 

motion for video inpainting. This rank minimization approach would 

usually produce good results as far as the object’s motion is periodic. 

Makihara et al. [59] proposed a reconstruction-based method to 

synthesize periodic human motion with high frame rate from a single 

periodic motion sequence. Under the constraint of periodic motion, their 

method could also produce good experiment results. 

Nevertheless, since human motion is not always periodic, a single 

motion sequence could provide only limited and insufficient information 

to generate high quality temporal SR sequences. Therefore, in this work, 

we propose using learning-based approach to extract motion tendency 

from a set of learning sequences and then synthesize interpolated human 

postures using the learned motion tendency as the prior information. Note 

that, the extracted motion tendency should preserve only the 

motion-related information regardless of individual discrepancy in the 

learning sequence. In [60], Elgammal et al. introduced a framework to 

separate motion data into person and motion factors. However, while we 

use this decomposed motion factors to increase the temporal resolution of 
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human motion, we found it difficult to get a stable result. The main 

reason is because the decomposed person and motion factors are not 

guaranteed to be orthogonal. Although the multilinear analysis tool like, 

tensor decomposition, is able to discover the orthogonal factors, the 

limitation of tensor decomposition is that the motion data need to be 

arranged into various orthogonal factors beforehand. Such requirement 

makes it hard if we apply tensor decomposition to decompose motion 

data into orthogonal factors. Typically, human motion sequences would 

have different lengths or different sampling rates. In this work, we 

propose a motion data alignment scheme which can automatically arrange 

motion data in tensor. Then, we can apply tensor decomposition to 

decompose motion data into orthogonal factors. Based on decomposed 

result, we can reconstruct the motion trajectory of LR input sequence. 

Finally, the global feature, reconstructed motion trajectory and object 

inpainting which can maintain local motion continuity are combined 

together to obtain final result. 

The proposed framework consists of three steps: graphical model 

construction, motion trajectory reconstruction and posture selection. The 

first step, graphical model construction, projects each input motion 
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sequence into a manifold space and then represent the projected sequence 

by a motion trajectory. This low-dimensional representation provides a 

simple and concise representation for human motion. Secondly, we 

extract the motion and person factors via tensor decomposition, and then 

use the motion factor extracted from learning sequences and the person 

factor extracted from the LR input sequence to reconstruct the motion 

trajectory for the input sequence. Finally, we adopt the human object 

inpainting technique [61] to select interpolated postures based on the 

reconstructed motion trajectory. 

 

4.2 Object Posture Temporal Super-Resolution 

 

4.2.1 Overview of the Proposed Method 

We propose an object posture super-resolution scheme that can 

increase the temporal resolution of human motion sequence. Initially, we 

assume that the objects have been extracted by an automatic object 

segmentation scheme [19], or by an interactive extraction scheme 

[20]-[22]. We also assume that the posture number is enough for posture 

selection based on the observation that human motion usually contains 
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repeated postures.  

Our primary goal is to transfer the motion factor from HR learning 

sequences to LR input sequence in order to increase the temporal 

resolution of LR input sequence. Figure 4.1 shows the flowchart of the 

proposed posture super-resolution scheme which is comprised of three 

steps: graphical representation of object postures, temporal 

super-resolution using tensor decomposition-based manifold learning and 

posture selection. The first step of posture super-resolution involves 

calculating the similarity value between postures. Then, all postures are 

projected onto manifold space and we link the postures that appear in 

adjacent frames in manifold space. After applying the above procedure, 

we can obtain a graphical representation of the object’s motion which 

provides a simple representation of an object’s motion. Next, we extract 

some significant points along motion trajectory of each learning sequence. 

These significant points are invariant to different persons and are used to 

align the motion data of different learning sequences. This process can 

avoid the affect of different capture rate of cameras and different motion 

speed. After data alignment, a fixed number of m sampled points is 

extracted and used to represent the motion trajectory for each training 
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sequence. As to the LR input sequence alignment, we find k postures (k 

represents the posture number of LR input sequence) among the m 

position of tensors and arrange the coordinate value of all postures in 

tensor. After the above data alignment, we extract the motion factor from 

only the learning sequence, and extract the person factor form only the 

column with complete postures. Next, we calculate the value of core 

tensor using the extracted orthogonal factors and available tensor data. 

Finally, with the obtained orthogonal factors and the core tensor, we 

obtain the complete tensor data and then use the tensor data to reconstruct 

the motion trajectory for the LR input sequence. Finally, the reconstructed 

motion trajectory and object inpainting are used to select suitable object 

postures in order to increase the temporal resolution of LR input 

sequence. 
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Result
 

Figure 4.1 Flowchart of the proposed posture super-resolution scheme  
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4.2.2 Graphical Representation of Object Motion 

The graphical representation aims to provide a simple and concise 

representation of a human motion sequence. To obtain motion trajectory 

of motion sequence, we utilize our previous Graphical Representation 

method [47] that was mainly designed for generating motion trajectory of 

input human motion.  

 

4.2.3 Temporal Super-Resolution Using Tensor Decomposition–based 

Manifold Learning 

After constructing the graphical model, we next wish to transform 

each human motion sequence into a motion trajectory in the manifold 

domain. However, since the LR input sequence usually contains poor 

motion content with low frame rate, its projected motion trajectory in the 

manifold space would become non-smooth and unreliable. Therefore, we 

propose to first apply tensor decomposition to separate motion 

trajectories into two orthogonal factors: motion and person factors. Next, 

we transfer the motion factor extracted from HR learning sequences to the 

input sequence and combine the input sequence’s person factor to 

synthesize the motion trajectory for the input sequence with high frame 
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rate. However, the limitation of tensor decomposition is that the motion 

data need to be arranged into various orthogonal factors beforehand. Such 

requirement makes it hard if we apply tensor decomposition to 

decompose motion data into orthogonal factors. Typically, human motion 

sequences would have different lengths or different sampling rates. In this 

work, we propose a motion data alignment scheme which can 

automatically arrange motion data in tensor. Then, we can apply tensor 

decomposition to decompose motion data into orthogonal factors. 

Tensor is a general form of matrices which defines multi-linear 

operators over a set of vector spaces and provides a unified mathematical 

framework for linear analysis. The decomposition of tensor can be seen 

as a generalization of Singular Value Decomposition (SVD) of matrices. 

The tensor could be expressed as the product of N-orthogonal spaces as: 

1 1 2 2 3 ... N NT C S S S= × × × ×  (4.1) 

as illustrated in Figure 4.2(a),  denotes the tensor data,  denotes the 

core tensor, and  stands for the n-th orthogonal sub-space. 

The tensor decomposition process includes two steps: 
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1. For , computing the matrix  by conducting SVD on 

the flattened matrix  (as shown in Figure 4.2(b)) and then setting 

 to be the left matrix of the SVD. 

2. Finding the core tensor in (4.1). 

 

 
(a) 

 

(b) 

Figure 4.2 Illustration of tensor decomposition and arrangement: (a) a tensor data 
is decomposed into the product of core tensor and orthogonal factors, and (b) a tensor 
is flattened in two different ways to obtain flattened matrices. 

 

Before using tensor decomposition to obtain the orthogonal factors, 

we will need to arrange motion data in the subspaces of tensor in terms of 

certain attributes. Since human motion sequences contain no definite 

labels, we need to take special care to correctly organize motion data in 

tensor. Below we present our proposed motion data alignment method. 

We first use a continue motion curve to represent the motion 

trajectory for each HR learning sequence. Each motion trajectory is 
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normalized into the same temporal duration and then mapped into a 

motion curve by polynomial regression. Next, we find some points with 

significant motion content along the motion trajectory for data alignment. 

Two examples are shown in Figure 4.3, where each motion trajectory 

along the first dimension in the manifold domain has some wave crests 

and troughs. These wave crests and troughs occur just when the person 

finishes a previous motion and starts to perform the next motion. The 

other postures in-between the wave crests and troughs would usually 

contain slow motion due to the human body constraint. These properties 

as shown in Figure 4.3 are actually invariant to different persons. 

Therefore, we could sample the points on the wave crests and troughs as 

the significant points for each motion curve. 

 

 
Figure 4.3 Illustration of the low-dimensional manifolds of two different posture 
sequences and the corresponding postures at the crests and troughs of the manifold. 

 

In addition, to make sure that the sampled points contain sufficient 

information to represent the original motion trajectory, we additionally 

 

s1 s2 s3 s4 

s1 s3 s5 s6 s2 s4 s7 s8 
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sample n points on the motion curve between every two neighboring key 

points. These additional points are uniformly sampled under the constant 

motion assumption between two neighboring key points. The number n is 

determined by minimizing the distortion between the original motion 

trajectory and the reconstructed motion trajectory from the sampled 

points. The threshold is set as the shape context distance between two 

continuous postures of human motion with static motion. Finally, a fixed 

number of m sampled points is used to represent the motion trajectory for 

each training sequence. We then arrange these m points in tensor. 

As to the input sequence alignment, since the LR input sequence 

usually does not contain reliable low-dimensional motion trajectory 

information, we choose to align the motion data using the raw postures 

instead of the points along the motion trajectory of test sequence. In order 

to find k postures among the m sampled points, we arrange the coordinate 

value of all postures to form a histogram distribution with k bins as 

shown in Figure 4.4. Then, we find k out of m sampled points along the 

mean motion trajectory of HR training sequences, where the histogram of 

k sampled points is similar to the histogram of the input sequence. The 

similarity between two histogram distributions is calculated by using the 

Bhattacharyya coefficient as follows: 

1
( , ) ( ) ( )

k

in tr in tr
i

BC h h h i h i
=

=∑ , (4.2) 

where  and respectively represent the histogram of the input LR 

sequence and the histogram of training sequence. 
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(a) 

 
 (b) 

Figure 4.4  (a) The coordinates of the k postures of the LR input sequence. (b) We 
try to find k reference points among m reference points along the mean motion curve 
of all the HR learning sequences. The index of the k reference points indicates the 
suitable position in tensor of the input sequence postures. 

 

After the above data alignment, we now arrange all the sequences 

including the HR learning and the LR input sequence in tensor. As shown 

in Figure 4.5, since the tensor is not complete, we cannot directly apply 

tensor decomposition. Thus, we extract the motion factor from only the 

learning sequence as indicated by the red rectangle in Figure 4.5, and 

extract the person factor form only the column with complete postures as 

indicated by the blue rectangles in Figure 4.5. Next, we calculate the 

value of core tensor using the extracted orthogonal factors and available 
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tensor data. Finally, with the obtained orthogonal factors and the core 

tensor, we obtain the complete tensor data and then use the tensor data to 

reconstruct the motion trajectory for the input LR sequence. 

 

 

Figure 4.5 Our scheme of arranging training postures into tensor data, where the 
green rectangles represent unknown object postures in the tensor. In tensor 
decomposition, we extract the motion factor only from the training sequences as 
indicated by the red rectangles and the person factor from the columns with complete 
postures as indicated by the blue rectangles. 

 

4.2.4 Posture Selection  

We utilize our previous object inpainting method [47] that was mainly 

designed for maintaining local motion continuity. In our super-resolution 

application, we determine the values in the above two constraints based 

on the reconstructed motion trajectory. The number of upsampled 

postures p between every two neighboring postures is first specified by 

the user. After the value of p is determined, we next calculate the possible 



 

 90 

positions of the upsampled postures in the manifold space. Once we have 

the coordinate information of all the upsampled and available postures, 

we could determine the values in the above two constraints for each local 

region. 

 

4.3 Experimental Results 

To evaluate the effectiveness of the proposed method, we perform 

experiments on several human object sequences, parts of them were 

captured with a camcorder and the remaining ones were downloaded 

from the Weizmann database [46]. In the experiments, we sub-sample 

each human sequence at different sampling rates to generate the object 

sequences of low temporal resolutions. Then, we apply the proposed 

learning-based temporal SR method to synthesize the HR motion 

sequences. We compare the performance of the proposed method with 

that of the approaches in [10], [39], [59], [60] and [61]. Due to the space 

limit, we only show part of the comparison results. 

In the first experiment, we subsampled test sequence #1 with totally 

85 frames under different subsampling rates ranging from 2 to 10. Figure 

4.6(a) compares the reconstruction accuracies between the ground-truth 
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sequence and the reconstructed sequences obtained using the six different 

approaches for various down-sampling rates. The result shows that the 

proposed temporal SR method does not only consistently outperform the 

other methods, but also achieves stably high accuracy of better than 94% 

under all the nine subsampling rates. Because the proposed motion 

synthesis method is more effective in extending the frame rate of an 

object’s motion and maintaining motion continuity simultaneously, we 

conclude that it is more suitable for increasing temporal resolution than 

the compared methods. On the other hand, the performances of Ding et 

al’s approach [10] and Makihara et al’s approach [59] schemes typically 

degrade as the subsampling rate increases, since the available information 

for reconstructing HR sequence becomes fewer and less accurate when 

the temporal resolution of the input LR sequence decreases. The accuracy 

of Elgammal et al’s approach [58] under different sample rate is about 

91%. Since, the proposed method can ensure the orthogonal property 

between decomposed factors. The proposed method can yield better 

reconstructed result than Elgammal et al’s approach [58]. Our previous 

object inpainting method [60] performs the second best at subsampling 

rates lower than 8. The motion animation scheme [39] composes a 
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sequence of smooth posture motion from a set of available postures by 

executing an energy minimization process. Since the performance of 

motion animation scheme depends mainly on the two postures at both 

ends and the available posture database, this scheme can also achieve 

stable performance under different subsampling rates.  However, since it 

does not take into account the low-dimensional manifold prior of human 

motion, its performance is significantly lower than the proposed method.  

Table 4.1 illustrates the results of the ground-truth and the six 

compared methods during frame 22 to frame 30. The top row shows some 

snapshots of four sequences used for training, which are obtained from 

four different persons taking similar actions. The frame numbers of four 

learning sequences are 65, 75, 65 and 80. The second row shows the 

ground-truths of nine missing postures, which are dropped in 

subsampling. The third to eighth rows show the reconstructed missing 

frames using the six methods. The reconstruction accuracy of each 

posture is also indicated under the posture. From these selected postures, 

it is obvious that the postures reconstructed by our method are 

consistently better than those derived by the compared methods both 

subjectively and objectively.  
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Table 4.1 Comparison of the ground-truth postures and the up-sampled postures 
obtained by different methods for test sequence #1 

Training 
Sequences 

 

 

 

 
Ground-Tr

uth          

Xu et al’s 

approach 

[39] 

 

90.1% 

 

91.1% 

 

89.8% 

 

90.4% 

 

89.7% 

 

94.4% 

 

85.3% 

 

88.5% 

 

87.0% 

Elgammal 

et al’s 

approach 

[58] 

 

91.5% 

 

90.8% 

 

89.7% 

 

90.0% 

 

86.6% 

 

85.4% 

 

85.6% 

 

85.6% 

 

85.4% 

Ding et al’s 

approach 

[10] 

 

82.2% 

 

80.2% 

 

80.2% 

 

79.9% 

 

79.4% 

 

79.9% 

 

84.1% 

 

83.7% 

 

81.8% 

Makihara 

et al’s 

approach 

[59] 

 

82.4% 

 

80.5% 

 

80.0% 

 

79.2% 

 

78.5% 

 

78.3% 

 

83.7% 

 

81.6% 

 

81.8% 

Object 

inpainting 
 

91.5% 

 

91.1% 

 

89.8% 

 

89.3% 

 

86.6% 

 

88.0% 

 

86.1% 

 

85.4% 

 

91.2% 
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[60] 

Proposed 

method 
 

95.5% 

 

96.1% 

 

96.1% 

 

95.8% 

 

95.3% 

 

94.4% 

 

93.1% 

 

91.6% 

 

89.5% 

 

In the second experiment, we sample test sequence #2 with totally 

135 frames under different subsampling rates and perform six different 

approaches to reconstruct sequence #2. Figure 4.6 (b) shows the 

reconstruction accuracies between the ground-truth sequence and the 

reconstructed sequences obtained using the six different approaches for 

various down-sampling rates. Among the six approaches, the proposed 

temporal SR method can achieves better result of better than 94% under 

all the nine subsampling rates and Elgammal et al’s approach [58] 

performs the second best at subsampling rates higher than 5. The high 

reconstructd accuracy of proposed method and Elgammal et al’s approach 

[58] are supported by the global motion tendency extracted from the 

learning sequences. On the other hand, the performances of Ding et al’s 

approach [10] and Makihara et al’s approach [59] schemes without the 

support of learning sequence typically degrade as the subsampling rate 

increases, since the available information for reconstructing HR sequence 
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becomes fewer and less accurate when the temporal resolution of the 

input LR sequence decreases.  

Table 4.2 illustrates the results of the ground-truth and the six 

compared methods. The top row shows some snapshots of four sequences 

used for training, which are obtained from four different persons taking 

similar actions. The frame numbers of four learning sequences are 125, 

110, 120 and 110. The second row shows the ground-truths of nine 

missing postures, which are dropped in subsampling. The third to eighth 

rows show the reconstructed missing frames using the six methods. The 

reconstruction accuracy of each posture is also indicated under the 

posture. From these selected postures, it is obvious that the postures 

reconstructed by our method are consistently better than those derived by 

the compared methods both subjectively and objectively.  

 

Table 4.2 Comparison of the ground-truth postures and the up-sampled postures 
obtained by different methods for test sequence #2 

Training 
Sequences 
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Ground-Tr
uth          

Xu et al’s 

approach 

[39] 

 

95.5% 

 

95.9% 

 

96.% 

 

91.5% 

 

91.9% 

 

94.0% 

 

93.1% 

 

93.4% 

 

91.7% 

Elgammal 

et al’s 

approach 

[58] 

 

90.8% 

 

91.3% 

 

90.4% 

 

92.4% 

 

92.3% 

 

93.0% 

 

93.7% 

 

92.4% 

 

94.2% 

Ding et al’s 

approach 

[10] 

 

85.9% 

 

86.1% 

 

83.5% 

 

88.6% 

 

87.7% 

 

82.9% 

 

80.8% 

 

87.5% 

 

83.5% 

Makihara 

et al’s 

approach 

[59] 

 

90.1% 

 

89.8% 

 

85.3% 

 

86.9% 

 

83.2% 

 

88.8% 

 

89.3% 

 

89.1% 

 

85.5% 

Object 

inpainting 

[60] 

 

85.8% 

 

86.6% 

 

86.2% 

 

90.1% 

 

90.5% 

 

88.8% 

 

78.9% 

 

77.3% 

 

81.2% 

Proposed 

method 
 

95.5% 

 

96.0% 

 

96.0% 

 

95.8% 

 

95.4% 

 

94.0% 

 

93.1% 

 

92.4% 

 

91.7% 

 

 

In the third experiment, we used a video sequence from the 

Weizmann database [46] to evaluate the performance of proposed method. 
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We sample test sequence 3 (totally 75 frames) under different 

subsampling rates and perform six different approaches to reconstruct 

sequence #3. Figure 4.6 (c) shows the reconstruction accuracies between 

the ground-truth sequence and the reconstructed sequences obtained using 

the six different approaches for various down-sampling rates. Due to the 

poor segmentation result of training and test sequences and the small 

object size in frame, the reconstruction accuracies of proposed temporal 

SR method is about 76%. But the proposed method still achieves better 

result among the six approaches when the subsampling rate higher than 2. 

The poor segmentation result also affects the performance of other 

methods. The average reconstructed accuracies of Elgammal et al’s 

approach [58] and Xu et al’s approach [39] are 70.0% and 70.3%. The 

degraded speed of reconstructed accuracy about Ding et al’s approach [10] 

and Makihara et al’s approach [59] is faster than test sequence #1 and test 

sequence #3 because of the poor segmentation result.  

Table 4.3 illustrates the results of the ground-truth and the six 

compared methods. The top row shows some snapshots of four sequences 

used for training, which are obtained from four different persons taking 

similar actions. The frame numbers of four learning sequences are 65, 75, 
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73 and 78. The second row shows the ground-truths of nine missing 

postures, which are dropped in subsampling. The third to eighth rows 

show the reconstructed missing frames using the six methods. The 

reconstruction accuracy of each posture is also indicated under the 

posture. From these selected postures, it is obvious that the postures 

reconstructed by our method are consistently better than those derived by 

the compared methods both subjectively and objectively. 

 

Table 4.3 Comparison of the ground-truth postures and the up-sampled 
postures obtained by different methods for test sequence #3 

Training 
Sequences 

 
 

 

 

 
Ground-Tr

uth          

Xu et al’s 

approach 

[39] 

 

80.2% 

 

72.2% 

 

53.7% 

 

47.2% 

 

45.4% 

 

49.7% 

 

50.7% 

 

61.4% 

 

66.4% 

Elgammal 

et al’s 

approach 

[58] 

 

69.0% 

 

73.6% 

 

76.7% 

 

67.0% 

 

67.4% 

 

65.7% 

 

90.3% 

 

80.5% 

 

66.1% 
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Ding et al’s 

approach 

[10] 

 

83.2% 

 

78.1% 

 

75.2% 

 

69.7% 

 

81.2% 

 

72.3% 

 

89.2% 

 

76.5% 

 

83.2% 

Makihara 

et al’s 

approach 

[59] 

 

86.3% 

 

71.7% 

 

83.0% 

 

69.4% 

 

70.0% 

 

75.3% 

 

68.8% 

 

74.4% 

 

82.0% 

Object 

inpainting 

[60] 

 

72.9% 

 

71.7% 

 

78.9% 

 

69.4% 

 

81.2% 

 

77.5% 

 

75.4% 

 

65.6% 

 

77.1% 

Proposed 

method 
 

75.7% 

 

85.2% 

 

71.6% 

 

73.6% 

 

74.1% 

 

72.4% 

 

73.5% 

 

71.7% 

 

68.1% 

 

Note, in the experiments, we compare the performance between the 

proposed method and our previous object inpainting method [60]. The 

difference between these two approaches is that the proposed method 

reconstructs postures based on the rich information in the 

low-dimensional manifold motion priors learned from the HR training 

sequences, whereas the object inpainting method [61] utilizes 

self-contained information in the available LR postures to reconstruct 

postures without the support of HR training sequences. Since the object 

inpainting method does not need any HR training sequence, it can be 
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regarded as the baseline mode of the proposed method that can achieve 

reasonable reconstruction accuracy without the need of HR training 

sequences. When HR training sequences are available, as an advanced 

tool, the proposed tensor decomposition based on manifold learning can 

significantly improve the accuracy and stability of reconstructed HR 

postures. 

(a) 
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(b) 

 

(c) 

Figure 4.6 Comparison of reconstruction accuracies with respect to the 
ground-truth sequence  with nine subsampling rates for test sequence #1. The five 
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compared methods include Xu et al’s approach [39], Ding et al’s approach [10], 
Makihara et al’s approach [59], object inpainting [60] and the proposed temporal SR 
approach. 

 

4.4 Summary 

We proposed a human motion temporal super-resolution method 

which consists of three steps: (1) graphical models construction; (2) 

motion trajectory reconstruction; and (3) posture selection. In addition, 

we also proposed a motion data alignment method to correctly arrange 

motion data from different persons in a tensor so as to increase the 

accuracy of tensor decomposition. The tensor decomposition effectively 

decomposes the motion data into two orthogonal factors. With the 

orthogonal motion and person factors, we transfer the motion factor 

extracted from training sequences to reconstruct the motion trajectory for 

the input sequence. Finally, we adopt an object inpainting method on the 

reconstructed motion trajectory to select interpolated postures. Both 

global motion tendency and local motion continuity are well preserved in 

the resultant HR sequence. The experiment results also demonstrate that 

the proposed approach outperforms two existing state-of-the-art 

approaches.
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Chapter 5 

Conclusions and Future Work 

 

5.1 Conclusion 

 In this dissertation, we have presented two different kinds of 

object-based video inpainting schemes and a learning-based approach to 

enrich the content of human motion. First, an object inpainting method 

based on virtual contour construction was discussed in Chapter 2. Second, 

we propose an object inpainting method using manifold learning-based 

posture sequence in Chapter 3. In Chapter 4, we presented a posture 

temporal super-resolution method using tensor decomposition-based 

manifold learning. 

In Chapter 2, we have proposed a novel method that treats the 

completion of objects and completion of the background separately. The 

method is comprised of three steps: virtual contour construction, key 

posture-based sequence retrieval, and synthetic posture generation. We 

have also proposed an efficient posture mapping method that uses key 

posture selection, indexing, and coding operations to convert the posture 

sequence retrieval problem into a substring matching problem. In addition, 



 

 104 

we have developed a synthetic posture generation scheme that enhances 

the variety of postures available in the database. Our experiment results 

show that the proposed method generates completed objects with good 

subjective quality in terms of the objects’ spatial consistency and 

temporal motion continuity. The proposed method still has a few 

constraints. First, if an object moves nonlinearly during an occlusion 

period, the virtual contour construction may not compose sufficiently 

accurate postures. But should there be enough non-occluded portion of 

the object, the linear motion constraint may be relaxed. Second, currently 

the proposed method does not deal with the illumination change problem 

that occurs if lighting is not uniform across the scene. Third, the synthetic 

posture generation method can only deal with objects that can be 

explicitly decomposed into constituent components (e.g., a walking 

person), but may not synthesize complex postures.  

In Chapter 3, we have proposed a human object inpainting scheme 

that divides the process into three steps: human posture synthesis, 

graphical model construction, and posture sequence estimation. In 

addition, we define two constraints on the motion continuity property. 

The first constraint sets a threshold to limit the maximum search distance; 
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and the second confines the range of the search direction. With the two 

constraints, the number of possible candidates between any two 

consecutive postures can be reduced significantly. We then apply the 

MRF model to perform global matching. The experiment results 

demonstrate that the proposed approach outperforms two existing 

state-of-the-art approaches. 

 In Chapter 4, we proposed a human motion temporal super-resolution 

method which consists of three steps: (1) graphical models construction; 

(2) motion trajectory reconstruction; and (3) posture selection. In addition, 

we also proposed a motion data alignment method to correctly arrange 

motion data from different persons in a tensor so as to increase the 

accuracy of tensor decomposition. The tensor decomposition effectively 

decomposes the motion data into two orthogonal factors. With the 

orthogonal motion and person factors, we transfer the motion factor 

extracted from training sequences to reconstruct the motion trajectory for 

the input sequence. Finally, we adopt an object inpainting method on the 

reconstructed motion trajectory to select interpolated postures. Both 

global motion tendency and local motion continuity are well preserved in 

the resultant HR sequence. The experiment results also demonstrate that 
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the proposed approach outperforms two existing state-of-the-art 

approaches. 

 

5.2 Future Work 

In our object inpainting and posture temporal super-resolution 

method, we use proposed posture synthesis method to enrich enriches the 

collection of postures. However, the proposed posture synthesis method 

which combines the constituent components of the available postures has 

performance limitation. Therefore, a posture synthesis method should be 

included to improve our system usability in the future.  
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