

國 立 交 通 大 學

資訊科學與工程研究所

博博博博 士士士士 論論論論 文文文文

軌跡模式探勘與應用之研究

A Study on Trajectory Pattern Mining and Applications

研 究 生：洪智傑

指導教授：彭文志 教授

中中中中 華華華華 民民民民 國國國國 一一一一 百百百百 年年年年 七七七七 月月月月

軌跡模式探勘與應用之研究

A Study on Trajectory Pattern Mining and Applications

研 究 生：洪智傑 Student：Chih-Chieh Hung

指導教授：彭文志 Advisor：Wen-Chih Peng

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

博 士 論 文

A Dissertation

Submitted to Department of Computer Science

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

July 2011

Hsinchu, Taiwan, Republic of China

中華民國一百年七月

i

軌跡模式探勘與應用之研究

學生：洪智傑

指導教授：彭文志

國立交通大學資訊科學與工程學系博士班

摘 要

隨著行動裝置的普及，我們可以由多種的設備及來源收集使用者的軌跡資

料。由於這些軌跡資料中含有使用者的移動資訊，因此由這些資料中可以探勘使

用者的移動行為，此即為本篇論文中所提及之軌跡模式。這些模式在開發新的應

用或是增加既有的位置感知應用上都極具價值。在本篇論文中，我們提出了一連

串有關於軌跡模式探勘相關之演算法。我們首先提出如何大規模地收集使用者的

軌跡資料。緊接著，我們提出兩個探勘軌跡模式的演算法。最後，我們利用使用

者的軌跡模式來判斷使用者間的隱性社群關係。
 在本篇論文的第一個主題，我們研究如何在由車輛所構成之感測網路中進行

大規模收集軌跡資料的方式。我們提出了一個架構 MDC 來降低資料傳輸量以及

車輛的回報數目。在 MDC 中，車輛利用模型來代表其感測到之讀數，並且利用

匯集之方式使得有相類似模型的車輛只需回傳一份至伺服器，因此可以在收集軌

跡資料時的資料傳輸量。
 在本篇論文的第二個主題中，我們利用迴歸的方式自通聯記錄中探勘使用者

的軌跡模式。由於通聯記錄只能夠反應使用者部份的行為，因此在本主題中，我

們主要利用迴歸的方式自通聯記錄中復原使用者的軌跡模式。首先，我們先粹取

出具有相同移動行為的通聯記錄，並將具有時間空間相關性的通聯記錄群聚起

來。最後，使用者的移動模式便可以用數條迴歸曲線表示。
 在本篇論文的第三個主題中，我們提出了利用軌跡中的線索(Clue) 探勘軌跡

模式的演算法。在實際的軌跡中，有許多因素會造成其無法完整表達使用者的移

動路徑。但是，縱使這些軌跡只能表達使用者部份的移動行為，但是我們依然可

利用這些軌跡所隱含的資訊來進行使用者移動行為之探勘。因此，我們首先提出

一利用兩軌跡中所含線索的多寡來衡量兩個軌跡相似度的方式，並利用這個相似

度將具有相同移動行為的軌跡群聚起來，最後再將每一群中的軌跡之時間空間資

訊匯集，推導出使用者的移動模式。

ii

 最後，我們利用使用者的軌跡模式來判斷使用者的隱性社群關係。我們可以

觀察出，有相同移動行為的使用者極有可能在位置感知服務上或是現實生活上有

所互動。因此，在這個主題中我們將判斷並比較使用者的軌跡模式，並將相同軌

跡模式的使用者視為是一社群。首先，我們先將使用者的軌跡模式建成一個樹狀

結構。利用 Editing distance 的概念，我們設計出比較使用者軌跡模式的距離函

數。利用此距離函數，我們便可以推得出使用者的社群關係。

A Study on Trajectory Pattern Mining and Applications

Student: Chih-Chieh Hung Advisor: Prof. Wen-Chih Peng

Department of Computer Science

National Chiao Tung University

ABSTRACT

With the pervasiveness of mobile devices, the location of users can be eas-

ily determined by either GPS devices or some positioning techniques. Moreover,

wireless communication systems enable users to access various kinds of infor-

mation from anywhere at any time. Nowadays, through smart phones or some

portable devices, people could access location-based services or share their loca-

tions to their friends via social web sites, such as Google’s latitude service and

Foursquare service. These phenomenons show that there will be an increasing

amount of user trajectory data available. It is a challenge and interesting task to

discover valuable knowledge. With knowledge mined, we could develop many

novel applications from such a huge amount of user trajectory data.

In this dissertation, we develop a series of research works for trajectory pattern

mining and explore patterns mined for location-based social services. In our study,

we present how to collect users’ trajectories first. Then, two kinds of mining

algorithms are proposed. Finally, we develop a framework for mining location-

based social community structures. We briefly introduce each work as follows:

In the first work, we focused on the problem of data collection of trajectory

data in a vehicular sensor network where every vehicles are equipped GPS and

can communicate with each other in an ad-hoc manner. We proposed a frame-

work MDC to reduce the amount of data transmission and the number of vehicles

iii

reporting their GPS data points. In MDC, model functions are derived to repre-

sent the raw GPS data points such that only some coefficients that describe its

movements are reported. An in-network aggregation mechanism determines a set

of groups and for each group, only one vehicle needs to report traffic data, thereby

further reducing the number of simultaneous connections.

In the second work, we proposed a regression-based approach to mine user

movement patterns from call detail records in a mobile computing system. Call

detail records are viewed as random sample trajectory data, and user movement

patterns are represented as movement functions. At first, the call detail records

that capture frequent user movement behaviors are extracted. By exploring the

spatiotemporal locality of movements, call detail records describing the similar

behaviors are clustered. The movement functions can be represented by regression

lines to best fit the location and time of call detail records.

In the third work, we proposed an algorithm for discovering trajectory patterns

by exploiting trajectory clues. In reality, there are many factors, such as sampling

method, sampling frequency and device constraints, will affect the capability of

original trajectory data capturing the actual movements. Even if trajectories can

only reflect partial movements of a user, they reveal some trajectory clues about

the moving behaviors hidden in trajectories. We first propose a clue-similarity to

measure how much clue between two trajectories. Based on the clue-similarity,

a graph-based clustering algorithm is proposed to group trajectories with similar

moving behaviors into the same cluster. At last, for each group, the spatial and

temporal information are aggregated into trajectory patterns.

In the fourth work, we targeted at the problem of mining user communities

in a location-based social network, where users in the same community have the

similar movement behaviors. At the first, trajectory patterns of each user are orga-

nized into a probabilistic suffix tree, which is viewed as a trajectory profile of each

iv

user. Inspired by the concept of the edit distance of two sequences, the distance

function of two trees is proposed. Finally, in light of the distance of trees, a user

communities in a location-based social network are found by clustering users with

similar trajectory patterns.

v

vi

誌 謝

本篇論文雖然列出了六個章節，但是其中最重要的章節隱藏在空白的地方，而你們都是這個最重要章節的主

角。回首當初決定念博士班時的那個夏天，只是憑著一股衝動，就毅然地「簽」了下去。但是卻是怎麼也沒

料到博士班生涯中將面臨許多令人無法預期的精彩與許多不為人知的苦澀，我想這些是沒有走過這一遭的人

無法深刻體會的。

首先，我想要先感謝的是我的指導教授彭文志老師以及李旺謙老師。記得在某一次的聚會上，彭老師對著與

會的人員說，他覺得現在的學生最重要的就是 Connect to the world (與世界聯結)，而他也使終稟持著這

個信念來訓練我。每當有外賓來訪，我總是第一個被推上去與其交談；而每年我也定期的出國，在國際會議

上做發表我的論文，在這個過程中，我無意間訓練了與人相處的膽量以及英文溝通能力；這些專業的能力使

我在畢業時找工作較一般人來的更加的順利：除了在台灣本地的知名外商公司外，還獲得國外研究機構的面

試機會。在飛機上時，我心中萬般激動，只想跟老師說，我終於不負您期待，與這個世界聯結了。另外，在

做研究方面，不能不提及的是李旺謙老師的指導。我本身個性大而化之，常沒有注意到研究上的細節以及辨

證。在這一點上，李旺謙老師雖然遠在美國，但時常與他有共事的機會。李旺謙老師非常注重問題本身的哲

學意義以及解決問題時的辨證細節，所以有多次在跟他報告我的工作時，才剛進入主題便被打了回票。雖然

這過程難免感到挫折，但是卻一次又一次的提醒了我做為研究人員應有的思維及素養。因此，在這裡我要誠

摯地感謝這兩位對我研究生涯影響最為深刻的導師。另外，在本篇論文中有許多的發表，都是與學弟妹一起

共同完成的。在這裡，我想要感謝的與我共同完成論文的學弟妹們。

最後，我想要感謝我的家人爸爸、媽媽、妹妹以及我的女朋友陳鈺玟。很感謝你們總是支持著我，也總是很

體諒以及包容我的忙碌。在外面別人總是問我能飛多高，而在家人的口中總是擔心我是否飛得太累。當我每

一次挑燈夜戰時，你們不捨的眼神，我都謹記在心，一定不能讓你們失望。也是因為有你們的支持，因此我

才能夠不畏懼地面臨一次又一次的挑戰。也是因為有你們認為我是很優秀的，因此我才能夠總是打起精神面

對一次又一次的挫折。在畢業典禮上接受全場注目以及撥穗的那一刻，我的心中只想將這份榮耀與你們分

享。這一切的一切都要歸功於你們。

謹以本篇論文獻給所有的主角們，沒有你們，這一篇論文是不可能產生的。

Contents

Abstract iii

Contents vi

List of Figures ix

List of Tables xii

1 Introduction 1

1.1 Model-driven Traffic Data Acquisition in Vehicular Sensor Net-

works . 2

1.2 A Regression-based Approach for Mining User Movement Pat-

terns from Random Sampling Data 3

1.3 CACT: Clustering and Aggregating Clues for Trajectories for Min-

ing Trajectory Patterns . 4

1.4 Exploiting Trajectory Profiles for Mining User Communities . . . 5

2 Model-driven Traffic Data Acquisition in Vehicular Sensor Networks 7

2.1 Introduction . 7

2.2 System Overview . 10

2.2.1 Vehicle Side . 10

2.2.2 Server Side . 11

vii

2.3 Model Functions and In-Network Aggregation in Vehicle Sides . . 12

2.3.1 Objective of Model Functions 13

2.3.2 Model Function for Movements of Vehicles 13

2.3.3 Model Function for Speeds of Vehicles 17

2.3.4 In-network Aggregation Mechanism 21

2.4 Statistic Manager in the Server Side 23

2.5 Performance Evaluation . 25

2.5.1 Methodology . 25

2.5.2 Experiments of MDC and CarTel 26

2.5.3 Sensitivity Analysis . 27

2.6 Conclusion . 29

3 A Regression-based Approach for Mining User Movement Patterns

from Random Sample Data 31

3.1 Introduction . 31

3.2 A Regression-based Approach for Mining User Movement Patterns 36

3.2.1 An Overview . 36

3.2.2 Algorithm LS: Extracting the Aggregation Movement Se-

quence . 38

3.2.3 Algorithm TC: Clustering Aggregation Movement Records 43

3.2.4 Algorithm MF: Deriving Movement Functions 49

3.2.5 Estimating A User’s Location Based on a Movement Func-

tion . 55

3.3 Performance Evaluation . 56

3.3.1 Modeling User Behaviors 56

3.3.2 Experiments of UMP and RUMP 60

3.3.3 Sensitivity Analysis of RUMP 63

viii

3.4 Conclusions . 68

4 CACT: Clustering and Aggregating Clues of Trajectories for Mining

Trajectory Patterns 70

4.1 Introduction . 70

4.2 Related Works . 77

4.2.1 Similarity Measurements 77

4.2.2 Trajectory Clustering . 79

4.2.3 Trajectory Pattern Mining 81

4.3 Problem of Trajectory Pattern Mining 83

4.4 Clue-Aware Trajectory Similarity 85

4.4.1 Characteristics of Trajectories 86

4.4.2 Design of Clue-Aware Trajectory Similarity 87

4.4.3 Properties of Clue-based Similarity Measurements 91

4.5 Clue-Aware Trajectory Clustering Algorithm 92

4.5.1 Design of Clue-Aware Trajectory Clustering Algorithm . . 93

4.5.2 Running Example for Clustering Discovery in algorithm

CATC . 100

4.6 Clue-Aware Trajectory Aggregation Algorithm 101

4.6.1 Determine Candidate Line Segments within a Core Set . . 101

4.6.2 Generate Representative Line Segments within a Cluster . 104

4.7 Performance Evaluation . 107

4.7.1 Experimental Environment 108

4.7.2 Performance Comparison of Similarity Measurements . . 110

4.7.3 Performance Comparison of Clustering Algorithms 112

4.7.4 The Impact of Silent Durations for Trajectory Pattern Min-

ing . 116

ix

4.7.5 Sensitivity Analysis for CACT 121

4.8 Conclusions . 127

5 Exploiting Trajectory Profiles for Mining User Communities 128

5.1 Introduction . 128

5.2 The Framework of Mining Communities 130

5.2.1 Constructing Profiles . 131

5.2.2 Formulating Distance of Profiles 133

5.2.3 Identifying Community 139

5.2.4 Selecting Representative PSTs 141

5.2.5 Performance Comparison 143

5.2.6 Sensitivity Analysis . 144

5.3 Conclusion . 145

6 Conclusion 147

x

List of Figures

1.1 A road map of this chapter . 2

2.1 The speed distribution from highway sensors. 9

2.2 The MDC framework. 12

2.3 An illustrative example for algorithm LR. 18

2.4 The kernel regression model by (a) two and (b) three data points. . 22

2.5 Cost ratio with (a) grid length and (b) bandwidth varied. 25

2.6 (a) Cost ratio and (b) RMSE with β varied. 28

2.7 (a) Cost ratio and (b) RMSE with ε` varied. 28

2.8 (a) Cost ratio and (b) RMSE with εs varied. 29

3.1 An example of call detail records 34

3.2 A movement function of a user 35

3.3 An illustrative example of deriving confident movement functions. 54

3.4 A snapshot of a complete movement function F (t) 56

3.5 The frequent movement behavior in CarWeb dataset 57

3.6 Performance comparisons of UMP and RUMP on the synthetic

dataset . 61

3.7 Data utilization of UMP and RUMP on the synthetic dataset . . 62

3.8 Performance comparisons of UMP and RUMP on the CarWeb

dataset . 62

3.9 Data utilization of UMP and RUMP on the CarWeb dataset . . . 63

xi

3.10 Execution time for various numbers of movement sequences . . . 64

3.11 Precision ratio of RUMP with varying w 65

3.12 Precision ratio of RUMP with min freq varied 66

3.13 Precision ratio of RUMP with min sim varied 67

3.14 Precision ratio with min var varied 68

3.15 Precision ratio of RUMP with min sim varied 69

4.1 An example of trajectory pattern mining. 71

4.2 An example of trajectories from CarWeb dataset. 73

4.3 Two sampling methods for collecting trajectories. 76

4.4 Examples for trajectory convoy and moving clusters. 82

4.5 A trajectory pattern. 84

4.6 Overview of our proposed framework CACT. 86

4.7 An illustrative example for clue-aware similarity of T1 and T2. . . 90

4.8 An example to show the asymmetric property of CATS. 93

4.9 An illustrative example for CATC. 95

4.10 An example of generating candidate line segments in a core set. . 104

4.11 An example of tuning representative line segments from other

candidate line segments. 105

4.12 Trajectories in CarWeb dataset. 109

4.13 Average error rates with k varied. 112

4.14 Average error rates with varying the distribution of silent periods. . 113

4.15 Combination of CATS and different clustering algorithms. 114

4.16 Comparison of trajectory clustering algorithms. 116

4.17 Comparison of TPM, SPF, and CACT. 118

4.18 Precision and recall of SFP-L, SFP-C, TMP-L, TMP-C and CACT

with Pclue varied. 120

xii

4.19 Normalized distance of LCSS, EDR, and CATS with Pclue, r, and

t varied. 122

4.20 Purity and Entropy of CACT with λ varied. 124

4.21 Precision and recall of CACT with ε varied. 125

4.22 Precision and recall of CACT with τ varied. 125

4.23 Execution time under (a) short and (b) long trajectories. 126

5.1 Frequent regions by the density-based approach. 131

5.2 An example profile of PSTs. 134

5.3 An execution scenario for the distance of T1 and T3. Only under-

lined values will be stored in this table. 140

5.4 Comparison of GSP and our approach. 143

5.5 Sensitivity analysis when MinSup varied. 144

xiii

List of Tables

3.1 An example of call detail records 33

3.2 Notations used in our algorithms 39

3.3 An example of algorithm LS . 42

3.4 An execution scenario of algorithm TC 47

3.5 Data points with their corresponding weights 51

3.6 The parameters used in experiments 60

4.1 Comparison of similarity measurements. 78

4.2 Statistic information about the selected trajectories in CarWeb

dataset. 110

4.3 Execution Time (in seconds). 120

5.1 Tree size and error sum of three PSTs 141

5.2 Example of selecting an r-PST. 142

xiv

Chapter 1

Introduction

With the advancement of mobile technology, users’ locations are easily obtained

by the positioning devices embedded in their smart phones. Nowadays, these lo-

cation information are widely used in various kinds of interesting location-based

services, such as Google Latitude and Facebook Places. These services also lead

to an increasing amount of users who are willing to contribute their locations infor-

mation. There will be a huge volume of users’ location data which are available

to discovery valuable knowledge in near future. Since one’s trajectories reflect

where he moves and stays in the real world, trajectory patterns are one of the

most valuable knowledge which can be discovered from his trajectories. These

trajectory patterns can be widely used to develop many innovative applications,

such as customized business advertisement, personalized services design, traffic

flow estimation, urban planning, and so on. This dissertation aims at deriving a

series of algorithms for trajectory pattern mining and its application.

Figure 1.1 shows a road map of this dissertation. Specifically, Chapter 2 pro-

vides an overview of location data collection, including a discussion of location

data properties and an example of a large-scale data collection mechanism in ve-

hicular sensor networks. The location data collected can be then capitalized to

mine trajectory patterns of users. According to the different types of location

1

Figure 1.1: A road map of this chapter

data, Chapter 3 and Chapter 4 focuses on mining trajectory patterns by call detail

records and GPS points. In light of the concept that two users with the simi-

lar movement behaviors may possibly have some social connections on location-

based services, implicit user communities can be discovered by grouping users

with similar trajectory patterns. Different than the existing social networks with

the explicit relations among users, such communities could reveal the implicit

connection relations according to their behaviors in the real world, thereby pro-

viding more insight of potential interaction among users in location-based social

networks. The brief introduction of each section in this chapter is given as follows:

1.1 Model-driven Traffic Data Acquisition in Vehic-

ular Sensor Networks

According to different positioning techniques, location data can be represented

into either symbolic or geometric representation. For example, a user’s location in

a cellular network is represented as a base station identification, which is symbolic

representation; a user’s location that obtained by GPS is in geometric representa-

2

tion. We first give an overview to describe the properties of two representations,

including granularity, strength and weakness, and so on. Then, we discuss the

problem of large-scale data collection in vehicular sensor networks where every

vehicles can obtain their locations by GPS and can communicate with each other

in an ad-hoc manner. Framework MDC is proposed to reduce the amount of data

transmission and the number of vehicles reporting their GPS data points. In MDC,

model functions are derived to represent the raw GPS data points such that only

some coefficients that describe its movements are reported. An in-network aggre-

gation mechanism determines a set of groups and for each group, only one vehicle

needs to report traffic data, thereby further reducing the number of simultaneous

connections.

1.2 A Regression-based Approach for Mining User

Movement Patterns from Random Sampling Data

Mobile computing systems usually express a user movement trajectory as a se-

quence of areas that capture the user movement trace. Given a set of user move-

ment trajectories, user movement patterns refer to the sequences of areas through

which a user frequently travels. In an attempt to obtain user movement patterns for

mobile applications, prior studies explore the problem of mining user movement

patterns from the movement logs of mobile users. These movement logs generate

a data record whenever a mobile user crosses base station coverage areas. How-

ever, this type of movement log does not exist in the system and thus generates

extra overheads. By exploiting an existing log, namely, call detail records, this ar-

ticle proposes a Regression-based approach for mining User Movement Patterns

(abbreviated as RUMP). This approach views call detail records as random sam-

ple trajectory data, and thus, user movement patterns are represented as movement

3

functions in this article. We propose algorithm LS (standing for Large Sequence)

to extract the call detail records that capture frequent user movement behaviors.

By exploring the spatio-temporal locality of continuous movements (i.e., a mobile

user is likely to be in nearby areas if the time interval between consecutive calls

is small), we develop algorithm TC (standing for Time Clustering) to cluster call

detail records. Then, by utilizing regression analysis, we develop algorithm MF

(standing for Movement Function) to derive movement functions. Experimental

studies involving both synthetic and real datasets show that RUMP is able to de-

rive user movement functions close to the frequent movement behaviors of mobile

users.

1.3 CACT: Clustering and Aggregating Clues for Tra-

jectories for Mining Trajectory Patterns

Many research works have been conducted to discover trajectory patterns from

a set of trajectory data. Their methods tend to firstly determine hot regions that

contain a sufficient number of trajectories, and then mine sequential relationships

among these hot regions to discover trajectory patterns. Note that trajectory pat-

terns capture the frequent movement behaviors of a user. Since a user may have

multiple movement behaviors, the hot regions determined do not necessarily re-

flect of the user’s movement behaviors. As such, in this chapter, we propose a

framework, namely, Clustering and Aggregating Clues of Trajectories (CACT)

for identifying movement behaviors of a user. Given a set of trajectories, we in-

tend to cluster trajectories into several groups, where each group represents one

movement behavior of a user. In reality, trajectories have the temporal and spatial

bias, and silent durations which indicates time durations that no data points are

available to describe movements of users. Thus, we employ the clue-aware trajec-

4

tory similarity to reflect some clues (referred to some data points that are close in

both the spatial and temporal domains) between two trajectories. In light of clue

similarities among trajectories, in this work we propose a clue-aware clustering

algorithm for clustering trajectories that infer similar movement behaviors. Tra-

jectories in the same group are then aggregated to determine hot regions and the

corresponding trajectory patterns are derived. Experimental results are conducted

on both synthetic and real datasets. Experimental results show that CACT can

be more effective in discovering trajectory patterns when compared with existing

previous works of mining trajectory patterns.

1.4 Exploiting Trajectory Profiles for Mining User

Communities

In the end of this dissertation, we propose a novel community structure where

each user community here refer to a group users with similar trajectory patterns.

Since two users with similar trajectory patterns implies they are frequently stayed

or moved in the same spatial regions, they are likely to interact with each other

by some location-based services when they are in nearby regions. To discover

such implicit relations, users with similar trajectory patterns should be grouped.

To facilitate compare patterns of users, their patters are first organized as tree

structures. Inspired by the concept of the edit distance of two sequences, the

distance of two trees can be used to represent how similar trajectory patterns of

two users are. Finally, user communities can be found by clustering users with

similar trees.

The rest of the paper is organized as follows. Trajectory data collection mech-

anisms are discussed in Chapter 2. Chapter 3 and Chapter 4 proposed algorithms

for mining trajectory patterns from CDRs and GPS points, respectively. Chapter

5

5 described the algorithm for mining implicit user communities. Finally, Chapter

6 concludes with this paper.

6

Chapter 2

Model-driven Traffic Data

Acquisition in Vehicular Sensor

Networks

2.1 Introduction

Traffic monitoring is the most important functionality in intelligent transportation

systems. Traffic status brings benefits to many applications, such as navigation,

route planning, and traffic signal control. To obtain traffic status, one existing

method is to deploy static sensors along with roads. Such sensors could be speed

detection devices or camera devices [11][36]. However, deploying sensors on all

roads is costly, which is not practical for large-scale traffic monitoring.

In recent years, the global position system (GPS) is widely used in techni-

cal products, such as navigation devices, GPS loggers, PDAs and mobile phones.

Many research and implementation efforts have involved in traffic data collec-

tion platforms, which are based on client-server architectures [42][27][50]. In

general, such a traffic data collection platform consists of servers and vehicles

where each vehicle equips with GPS modules and the wireless communication

interfaces, such as 3G or WiFi networks, and the sensed data (e.g., the speed and

the position) are sent to the server for traffic monitoring. Prior works focus on

7

how to estimate traffic status of road networks with GPS data points uploaded and

demonstrated the effectiveness of monitoring traffic status by GPS data points up-

loaded. Clearly, with these GPS data, one could estimate traffic status without any

aid of costly sensors for traffic monitoring systems.

To obtain more accurate traffic status from GPS data points, it is expected to

have more GPS data points uploaded by vehicles. Assume that each vehicle up-

loads its GPS data points at a fixed time period. For example, Mobile Millennium

Project sets each vehicle to report its position and the corresponding speed every

3 seconds [50]. One challenge issue is that if a significant number of vehicles

upload their GPS data points at the same time, the wireless network cannot offer

enough network resources for simultaneous network connections. An empirical

study of [53] shows that there is a trade-off between data calls and video/voice

calls. Hence, when many vehicles establish uplink to upload their GPS data points

in bursts, simultaneous network connections decrease the performance of wireless

networks, which affects the other services, such as voice and video calls. Note that

traffic data usually has the spatial-temporal locality feature, which means that the

traffic status on the nearby roads at the nearby time are very similar. Figure 2.1

shows the speed distribution from static sensors deployed on a highway, where

the Y-axis is the location of sensors, the X-axis is the time, and the color is the

speed reported by the sensor. It can be seen in Figure 2.1, the speed readings of

nearby sensors at nearby time are very similar, which shows the spatial-temporal

locality. Thus, it is not necessary for each vehicle to report/upload its GPS data

points at every time period. Consequently, by exploring the spatio-temporal local-

ity feature, we intend to reduce the amount of GPS data points uploaded and the

number of vehicles that need to report their sensing readings to the server.

This paper proposes a framework MDC (standing for Model-based Data Col-

lection) for data collection in traffic monitoring. Since traffic status of roads are

8

Value

06:00 07:00 08:00 09:00 10:00 11:00

Time

0

20

40

60

80

100

L
o
c
a
ti
o
n
(i
n
 k

m
)

 0

 20

 40

 60

 80

 100

 120

Figure 2.1: The speed distribution from highway sensors.

estimated from GPS data points from time to time, GPS data points are viewed

as one kind of sensing data. Most previous studies in sensor data management

allow collected data having a certain error with the raw data [10][12]. Same as

in prior studies, traffic data collected by MDC are error-bounded to the raw data.

The MDC framework is executed at the server and vehicle side collaboratively. In

the vehicle side, GPS data points sensed by each vehicle include two attributes:

the position and the speed. Given a series of GPS data points, model functions

can be derived to represent the raw GPS data points. Hence, each vehicle could

report some coefficients that describes its movements instead of reporting all posi-

tion information. Also, the server will receive coefficients of our proposed model

functions for a series of speed readings sensed by vehicles. The challenge issue

is how to derive model functions for GPS data points. Since vehicles move along

with road segments that are usually a set of line segments, algorithm LR (standing

for Liner Regression) is proposed to determine a set of line functions to repre-

sent movements of vehicles. By observing the spatial-temporal locality in traffic

data, algorithm KR (standing for Kernel Regression) is proposed to derive a set of

kernel functions to model a series of speed readings sensed. Moreover, with the

spatial-temporal locality feature in traffic data, an in-network aggregation mecha-

9

nism is proposed to determine a set of groups and for each group, only one vehicle

needs to report traffic data, thereby further reducing the number of simultaneous

connections. Through the above algorithms and in-network aggregation mecha-

nism, not only the amount of GPS data points uploaded but also the number of

vehicles reporting their models are reduced. For the server side, algorithm SM

(standing for Statistic Management) is proposed to dynamically adjust sampling

rates of vehicles. Extensive experiments are conducted and experimental results

shows the effectiveness and the efficiency of our proposed MDC framework.

The rest of this paper is organized as follows. Section 1.2 devises the proposed

framework MDC. Section 1.3 and Section 1.4 describes the methodologies in the

vehicle side and the server side, respectively. Section 1.5 presents experimental

results. Finally, Section 1.6 draws conclusions.

2.2 System Overview

This section presents the framework of MDC. Figure 2.2 shows that MDC con-

sists two components performed at both the vehicle side and the server side. The

following sections describe the detailed description of each component.

2.2.1 Vehicle Side

In MDC, each vehicle should sense both the speed and the position readings,

and report these readings to the server. The main issue in the vehicle side is

to reduce the amount of data transmission to the server. Hence, three modules,

modeling, aggregation, and communication, are designed to address this issue.

Generally speaking, each vehicle should record its own GPS data points (i.e.,

the speed and the position) with the corresponding time. Compression skills are

used in the modeling module to compress GPS data points. That is, some model

functions can be used to represent the whole readings of GPS data points. The

10

model functions, derived by algorithm LR (standing for Liner Regression) and

algorithm KR (standing for Kernel Regression), will be described later. According

to the model functions of GPS data points, one could recover the raw readings of

GPS data points with a tolerable error bound. With the spatial-temporal locality

in traffic data, nearby vehicles may detect the similar traffic status. Hence, these

vehicles have similar model functions and in the aggregation module, vehicles

communicates with each other and their model functions are aggregated. With the

model function derived, the communication module is to report some coefficients

or parameters to the server. After receiving the coefficients or parameters about

the model functions, the server is able to recover all the reading of GPS data

points.

2.2.2 Server Side

The main tasks of the server side are to receive the model functions of vehicles

and adjust the number of vehicles reporting their model functions. Given model

functions, the server could derive the original readings of vehicles, including the

speed and the position of vehicles. According to the recovered readings, the statis-

tic manager is built to maintain a statistical structure for traffic data collected.

By observing the statistical structure, the server could imply the traffic status of

monitoring regions. When the server needs more information due to the error

of readings or the change of model functions, the server will issue acquisition to

vehicles via the communication module in the vehicle side. The acquisition may

indicate the number of vehicles reported and the sampling rates for traffic data

collection. The detailed algorithm for traffic data acquisition will presented later.

In brief, when the traffic status of monitored regions does not change significantly

(e.g., the traffic jams), the server only needs a few vehicles in a traffic jams to re-

port their model functions. On the other hand, if the traffic jam is disappeared, the

11

Figure 2.2: The MDC framework.

server thus asks more vehicles to report their model functions to capture the traffic

changes. Therefore, from the feedback information of vehicles, the statistic man-

ager can be aware of the spatiotemporal locality hidden in traffic data collected.

Similarly, the statistic manager is able to dynamically adjust the sample rates of

vehicles to reflect traffic status while still guaranteeing that the readings of traffic

data are within the error bound required.

2.3 Model Functions and In-Network Aggregation

in Vehicle Sides

This section first presents the objective of model functions in the vehicle side.

According to the objective of model functions, algorithm LR, that utilizes linear

regression model, is proposed to model position readings of vehicles (i.e., move-

ments of vehicles). To model the speed readings of vehicles, algorithm KR based

on kernel regression model is proposed. Finally, an in-network aggregation mech-

anism is developed.

12

2.3.1 Objective of Model Functions

The GPS data points of vehicles can be represented as a sequence of points , de-

noted as S =< (`1, s1, t1), (`2, s2, t2), ..., (`n, sn, tn) >, where at time ti, `i =

(xi, yi) is the position of vehicles (i.e., the values in the longitude and latitude

format), and si is the speed readings sensed. With the GPS data points, in the

modeling module, we derive some model functions to represent the original raw

data such that only model information should be transmitted to the server, thereby

reducing the amount of data transmission. The difference between readings de-

rived from the model functions and original readings of vehicles are required to

be within a pre-defined error bound. Thus, the root mean square error (abbrevi-

ated as RMSE) between the readings derived by models and the original readings

are bounded within user-specified error bounds. Given the error thresholds ε`

and εs, the models f̂ and ĝ, which are derived by our proposed algorithm LR

and algorithm KR, should satisfy the following requirements: RMSE(S, f̂) =
√

1
n

∑n
i=1(`i − f̂(ti))2 ≤ ε` and RMSE(S, ĝ) =

√

1
n

∑n
i=1(si − ĝ(ti))2 ≤ εs.

2.3.2 Model Function for Movements of Vehicles

In light of the objective of model functions, this section presents algorithm LR to

model movements of vehicles. Since the movements of vehicles are on the road

networks that consist of road segments, movements of vehicles can be modeled as

a series of line segments that could fit road segments of road networks. Instead of

transmitting the detailed position information of vehicles, a series of line segments

can be used to approximate movements of vehicles. Thus, the amount of position

data reported by vehicles can be reduced.

13

Background of Linear Regression

Since the positions of a vehicle are relevant to time, we can represent the positions

with respect to time into a sequence of position points (x1, y1, t1), ...(xm, ym, tm),

where xi and yi is the longitude and latitude of the vehicle at time ti. Denote

(X(t), Y (t)) be the estimated coordinate of a vehicle at time t. We intend to derive

two vectors (ax, ay) and (bx, by) such that (X(t), Y (t)) = (ax, ay) × t + (bx, by)

when t is in the valid time interval [t1, tm].

Given a sequence of position points (x1, y1, t1), ...(xm, ym, tm), the following

matrices are defined:

H =











1 t1
1 t2
...

...

1 tm











, F =











x1 y1

x2 y2
...

...

xm ym











, A =

[

ax ay

bx by

]

According to linear algebra, we could have A = (HT H)−1HT F , where the

linear regression lines for these position points (X(t), Y (t)) = (ax, ay) × t +

(bx, by) are derived and the RMSE is minimized.

Since the new position points of vehicles keep generating and are recorded at

the vehicle side, one challenge issue is that whether we should use another new

line to represent the recent movements or not. Thus, we should justify whether

the line derived by recent movements is similar to the original line or not.

Suppose that the coefficient matrices of a linear regression line L are A =
[

ax ay

bx by

]

. The direction vector of L, denoted as −→vL, is represented as (ax, ay).

The similarity of two lines could be measured as cosine similarity. Assume that

we have direction vectors −→vL1 and −→vL2 . The similarity of two vectors is formulated

as sim(−→vL1 ,
−→vL2) =

−−→vL1
·−−→vL2

|−−→vL1
||−−→vL2

| . The larger value in the cosine similarity between

two vectors, the more similar in their lines.

14

Design of algorithm LR

Given an error threshold ε`, the derived model functions f̂ should make sure that

the value of RMSE(S, f̂) is smaller than ε`. To guarantee that the RMSE is

bounded, algorithm LR should detect the variation of movements such that a ve-

hicle can upload the regression line that can best represent the current movement.

To achieve this goal, a vehicle should maintain four linear regression lines: the

line derived at current time point (denoted as CL), the line uploaded to the cen-

tralized server last time (denoted as SL), the backward line (denoted as BL) and

the forward line (denoted as NCL). In the beginning, algorithm LR keeps collect-

ing position data points until the number of data points is larger than a threshold

Nmin. It is because that if there are a few position points collected, a new coming

point may affect the direction of CL significantly. Thus, a vehicle should collect

sufficient amount of data points such that the derived CL can capture the current

movement from these data points. Then, the CL will be first sent to the server

side and be stored in the both side as SL. Consequently, the server side can use

SL to derive the moving behavior of a vehicle. For example, given Nmin = 4,

there are four data points in Figure 2.3(a). The CL is first generated by these data

points. CL is also stored as SL and CL is uploaded to the server side.

With time passing by, a vehicle collects more and more position points. The

movements may become complicated and thus need be described by several linear

regression lines rather than one. For example, in Figure 2.3(e), it can be seen that

this vehicle makes a turn between d5 and d6, and the original SL in Figure 2.3(a)

cannot represent its moving behavior after d6. To detect such deviation, a break

point is used to divide the whole set of data points into two subsets. According

to such a break point, we can decide which position points can be used to derive

a new CL to represent its current moving behavior precisely. Thus, the server

15

can capture new behavior by deriving SL according to the new regression line

uploaded.

Algorithm LR incrementally maintains a potential break point b to verify whether

the moving direction changes or not. Specifically, suppose that the current posi-

tion points involving in CL are (d1, d2, ..., dk) where dk is a new incoming po-

sition point. According to a potential break point b, we can derive a backward

regression line BL for (d1, ..., b = dj) and a forward regression line NCL for

(dj, ..., dk) with their direction vectors −−→vBL and −−−→vNCL. Given a threshold β, if

sim(−−→vBL,−−→vBL) > β, the moving behavior described by position points before and

after b does not change tremendously so that b is set to be the new coming posi-

tion point dk. Otherwise, the position of b does not change since position points

before b and that after b may represent different moving behavior. Given the er-

ror bound for trajectories εT , if the RMSE((d1, ..., dk), SL) > εT , these position

points represent different moving behavior than SL does. In this case, a vehicle

should upload the forward regression line NCL to the server to set the CL and

SL to be NCL to guarantee the model satisfying the error bound. The detailed

algorithm is shown below:

Consider an illustrative example in Figure 2.3. The threshold β is shown in

terms of angle. Once the angle between two vectors are larger than the given

angle, the similarity between these two vectors are larger than β. In the beginning,

in Figure 2.3(a), the CL is uploaded to the server side and also stored as SL. From

d4 to d5, the potential break point b keeps going forward to be d4 and d5 since

sim(
−−→
VBL,

−−−→
VNCL) > β. With the new data points d6 coming, as shown in Figure

2.3(b), the break point b keep being d5 since sim(
−−→
VBL,

−−−→
VNCL) < β. However, the

line NCL is unnecessary to be uploaded to the server side. Figure 2.3(c) shows

that CL is still like SL. Until d8 is generated, Figure 2.3(e) shows that RMSE

between d6, d7, d8 and SL is large enough. Thus, as shown in Figure 2.3(d), the

16

Algorithm 1: Algorithm LR

INPUT : Error Bound: ε`; Spliting Threshold: β; Minimum Number of
Data Points: Nmin

OUTPUT: The uploaded line: SL
while there is a new incoming data point dk do1

if the number of points ≤ Nmin then2

SL ← (0, 0);3

Collect data points;4

b ← dk;5

else6

CL ← regression line by {d1, ..., dk};7

BL ← regression line by {d1, ..., b = dj};8

NCL ← regression line by {b = dj, ..., dk};9

if RMSE({d1, ..., dk}, SL) > ε` then10

SL ← CL ← NCL;11

{d1, ..., dk} ← {dj, ..., dk};12

b ← dk;13

Upload SL14

if sim(−−→vBL,−−−→vNCL) > β then15

b ← dk;16

forward regression line NCL is assigned to be the new current regression line CL

and uploaded to the server side as new SL.

2.3.3 Model Function for Speeds of Vehicles

When a query indicates the data acquisition at one query range specified, by

checking whether line segments of vehicles are within the query range or not,

we could quickly identify those vehicles that are within the query range. Then,

for those vehicles, we could ask for their models of speed readings. The amount

of speed readings reported could be reduced by our proposed model functions and

our in-network aggregation mechanism, which will be presented later. The dis-

tributions of speed readings may vary. For example, the speed readings collected

17

(a) (b) (c)

(d) (e)

Figure 2.3: An illustrative example for algorithm LR.

in urban areas are likely to be different from those readings in downtown areas.

Thus, without a priori knowledge on the distribution of speed readings, the ker-

nel regression function is able to select some data points from a set of given data

points to derive one curve that fits all data points given. In the following sections,

the kernel regression function is briefly presented and then we propose algorithm

KR to derive kernel regression functions for speed readings of vehicles.

Background of Kernel Regression

Given a set of data points, the idea of kernel regression is to select a set of data

points, and use these selected data points to estimate other data points. For

example, suppose that there are n data points {(s1, t1), ..., (sn, tn)}. From n
data points, we select k data points as a set of feature data points, denoted as

Γ = {(σ1, τ1), ..., (σk, τk)}, where σi denotes the speed reading at time τi. By

utilizing the feature data points, we could derive any speed readings in the set of

18

original data points. Consider that given a time t, the speed reading at time t is

derived as follows:

ŝt =

∑k
j=1 σj × Kα(t, τj)
∑k

j=1 Kα(t, τj)
(2.1)

, where Kα(t, τj) is the kernel with its kernel radius αj .

In kernel regression, the kernel Kα(t, τi) is viewed as the weight value for es-

timating the speed at time t. Clearly, if the time of the select data point is close to

the time t, the weight of this selected data point should be larger. The determina-

tion of weights for each feature point is the main theme of the kernel regression.

Generally speaking, for feature data point (σi, τj), the weight of this feature data

point is proportional the distance between τj and t. If the distance between τj

and t is larger than one threshold, called kernel radius α, the weight is set to zero.

Otherwise, the weight is set to the value of Kα(t, τj), where Kα(t, τj) is the ker-

nel function. When t is exactly the same to τj , the value of Kα(t, τj) should be

larger. Otherwise, the value of Kα(t, τj) will be decreased as the distance between

t and τj increases. There are many kernel functions available. Generally, Gaus-

sian kernel function can be selected where the Gaussian kernel is formulated as

Kα(t, τj) = e−
(t−τj)2

2α2 . According to research works in [21], the accuracy of kernel

regression is highly dependent on the selection of kernel radius. As a result, our

experimental results will demonstrate the impact of kernel radius.

Design of Algorithm KR

As pointed out early, traffic data usually has spatial-temporal locality. Hence,

speed readings are usually similar if their time are close. With this locality feature,

utilizing kernel regression to model a series of readings is able to significantly

reduce the amount of data. Clearly, a series of readings is transformed as a kernel

regression function. The challenge issue is how to determine the set of selected

data points for each kernel function while guaranteeing that RMSE is smaller than

19

Algorithm 2: Algorithm KR

INPUT : Error bound: εs; Minimal Number of Data Points: Nmin
OUTPUT: The radius: α; Feature Points: Γ
while there is a new incoming data point dk do1

if RMSE(C, Γ ∪ {dk}) < εI or |Γ| < Nmin then2

Γ ← Γ ∪ {dk};3

else4

rate ← ratemin;5

rmse ← εs;6

while rmse > εs AND n ≥ |Γ| do7

n ← rate × |Γ|;8

Γ ← Sample n data points;9

α ← kernel radius by ROT according to Γ;10

C ← kernel regression model with α, S;11

rmse ← RMSE(Γ,C);12

rate ← rate + rateinc;13

if rmse ≥ εs then14

Upload(α,Γ);15

else16

Γ ← dk;17

εs.

To build kernel regression functions, we should collect a sufficient number of

data points. One predefined parameter Nmin is used. When the number of read-

ings are larger than Nmin, the procedure of deriving kernel regression functions is

performed. Specifically, with a number of data points, we could randomly sample

some data points as a set of feature data points. The number of data points sam-

pled is controlled by sampling rate ratemin. With a larger sampling rate, more

data points are selected as feature data points. With the feature data points se-

lected, rule-of-thumb (ROT) method [51] is performed to determine the initial

kernel radius. Based on the ROT, the bandwidth α̂ for the kernel function Kα̂(·)
could be computed using the following equation: α̂i =

(

4
3

)−1/5 |S|−1/5SD , where

20

SD is the standard deviation of the feature points. According to these selected

feature points and the derived kernel radius, we can exploit kernel regression to

generate a curve fitted them. Once satisfying the error bound, a vehicle can up-

load the feature points Γ and the corresponding kernel radius to the server such

that the same curve can be derived by them in the server side. Otherwise, the sam-

pling rate is increased to select more data points for deriving kernel regression

functions. When a new data point is arrived, the new data point will be verified

whether the current kernel regression function is valid or not. If the current kernel

regression function cannot estimate the reading of the new data point, algorithm

KR will derive another new kernel regression function by accumulating enough

number of new data points.

Consider the data points {d1, d2, ..., d5} in Figure 2.4(a). Suppose that the

error bound εs is 2.5, ratemin is 40% and rateinc is 20%. Initially, we sample

5 × 40% = 2 points which are d1 and d4. Figure 2.4(a) shows the results by two

kernels centered at d1 and d4. Since the RMSE of this curve is 2.71 which is larger

than εs, then the sampling rate is increasing to 40% + 20% = 60% such that we

sample 5 × 60% = 3 points, d1, d2 and d4, to apply kernel regression. It can

be verified that the RMSE of the derived curve is 2.41 smaller than εs and these

three data points are selected as feature data points and the corresponding radius

is recorded.

2.3.4 In-network Aggregation Mechanism

Since vehicles nearby usually have similar readings in terms of their movements

and the speed readings, in this section, we further develop an in-network mecha-

nism to reduce the number of vehicles reported. With the above model functions,

each vehicle has its own model functions both in the movements and speed read-

ings. In our proposed mechanism, there are two phases: nearby grouping and

21

(a) (b)

Figure 2.4: The kernel regression model by (a) two and (b) three data points.

aggregator selection and aggregation. The details of each phase are described as

follows:

Phase 1: Nearby Grouping and Aggregator Selection

Since nearby vehicles are likely to have similar model functions in their speed

readings, these vehicles have higher probability to be in the same group. Among

these nearby vehicles, one should select an aggregator to perform aggregation of

model functions and report some model functions to the server. Due to the de-

ployment of wireless access points, an aggregator should be one vehicle with

higher connection probability of accessing wireless network. To consider the

occurring time of successful connections, each vehicle will maintain a variable

Pconnect = Ik × 1
2

+ Ik−1 × 1
22 + ... where Ik−i is 1 (or 0) if the i-th connection

before the current connection is (or not) successful. Pconnect provides a metric to

evaluate how often the recent successful connection happens. It can be seen that

Pconnect gives higher weight to the current successful connection and the weight

of the successful connection will exponential decay according to their occurring

time. That is, Pconnect will be larger if successful connections occur frequently,

and vice versa. For two vehicles in the same group, the vehicle with larger Pconnect

will be the aggregator.

22

Phase 2: Aggregation

In this phase, the aggregator will further obtain model functions of vehicles in

the same group to determine whether their model functions could be aggregated

or not. Thus, we need one evaluation for the aggregation of model functions. Let

two models be MA and MB with valid time interval [tAs , tAe] and [tBs , tBe]. Let T =

[tAs , tAe]
⋃

[tBs , tBe], the sampling RMSE between MA and MB is SR(MA,MB) =
√

1
|T |

∑

ti∈T |MA(ti) − MB(ti)|

Based on the sampling RMSE, MA and MB can be aggregated if SR(MA,MB)

is smaller than the error bound. Among all models which sampling RMSE are

mutually smaller than the error bound, the model with the fewest number of data

points will be selected and reported to the server. By this approach, the number of

vehicles which need to be reported their models can be reduced, thereby further

reducing the amount of data transmissions.

2.4 Statistic Manager in the Server Side

This section describes algorithm SM (standing for Statistic Manager) to dynam-

ically adjust the sample rates of vehicles. After receiving model functions of

vehicles, the server is aware of the position and the speed readings of vehicles.

The server could further adjust the sampling rate according to the traffic status

collected. For example, the traffic jam may last for a while and those vehicles in

the traffic jam could reduce the sampling rate since the traffic status does not sig-

nificantly change in the near feature. Thus, the statistic manager in the server side

maintains a histogram for speed readings of vehicles. Since the traffic data has

the spatial-temporal locality, the whole region can be divided into several grids

and for each grid, the histogram from speed readings of vehicles in that grid is

constructed. The histogram construction refers to construct the best histogram re-

23

stricted to a space bound that reflects the data distribution most accurately under

a given error measure, which can be achieved by [22].

Based on the histogram of grids, the sampling rates of vehicles can be dy-

namically adjusted. Assume that the sampling rate ζi is grid Gi. Intuitively, ζi is

set larger if the data distribution of a grid Gi does not change significantly. Two

approaches are proposed to detect the variation of histograms. The first approach

is to monitor the deviation of current and history histograms of this grid. There

are several proposed approaches to compare the similarity of two histograms. The

χ2-test (Chi-square test) is the most commonly used one since it is not affected

by the amount of total history data. Thus, once the current histogram can pass

the χ2-test from the history one, which means that the current data distribution

and the history one are the same, the sampling rate ζi can thus be reduced. Oth-

erwise, the sampling rate will be increased to guarantee the accuracy of collected

data. The second approach is to monitor the result of in-network aggregation. The

aggregator will report not only the model functions but also the number of vehi-

cles, which models are aggregated by the aggregator, in its nearby range. Suppose

that aggregator Aj has N(Aj) vehicles in its group. The value of N(Aj) reflects

the spatial-temporal locality among its group. The larger number of vehicles in

Aj’s nearby region, the higher the spatiotemporal locality. Therefore, the statis-

tical manager can verify the ratio of the number aggregated models and the total

number of vehicles to increase or decrease the value of ζi. Specifically, the ζi will

be increased when

∑
Aj∈Gi

N(Aj)

TNi
< ζi where TNi represents the total number of

vehicles in grid Gi, and vice versa.

24

 0

 0.5

 1

 1.5

 2

0.00001 0.0001 0.001 0.1

T
o

ta
l
C

o
s
t

R
a

ti
o

Grid Length

CarTel
MDC

MDC(X
2
)

(a)

 0

 1

 2

 3

 4

 5

100 500 1000 5000 10000

T
o

ta
l
C

o
s
t

R
a

ti
o

Network Bandwidth

CarTel
MDC

MDC(X
2
)

(b)

Figure 2.5: Cost ratio with (a) grid length and (b) bandwidth varied.

2.5 Performance Evaluation

This section presents extensive experimental results to show the performance of

the proposed framework MDC.

2.5.1 Methodology

In the following experiments, the well-known traffic simulator [4] is used for envi-

ronment simulation. To reflect reality, the map of San Francisco in the real world

are used. To simulate the intermittent connectivity, 20 access points are set into

the map. In the server side, the map will be divided into several grids according

to the parameter cell length. The server will build a histogram for each grid by

the data upload from vehicles within it. In the simulation, there are 250 vehi-

cles with three classes of speed of a vehicle, say slow, medium and fast. Each

data point generated by a vehicle is composed of four attributes, say longitude,

latitude, collected time stamp and the speed.

In the following experiments, RMSE and cost ratio are the performance mea-

surements. Specifically, RMSE is used to measure the error between the derived

models and the raw data points. To guarantee the quality of collected data by

MDC, the value of RMSE is required not to exceed the given error bounded. The

25

cost ratio represents the proportion between the amount of transmitted of models

and the effective data which are derived from models by the server. A lower cost

ratio represents that MDC can reduce the amount of data uploaded more effec-

tively.

For the comparison purpose, we implement a centralized data collection plat-

form CarTel [27]. In CarTel, sensor data will be assigned different priority weights

to determine the corresponding transmission orders. To determine the transmis-

sion order of data, a vehicle should send a summary report about the sensed data

to the server. Then, by this report, the server decides the transmission order and

sends it to this vehicle. In our experiments, the priority is decided by the road

identifications where the sensed readings are generated. That is, some roads will

be viewed more important than others. The experimental time is set as 2000 time

units. The default parameters are: β = 0.8, ε` = 0.25, εs = 6, wireless bandwidth

as 5000 bytes and cell length as 0.01.

2.5.2 Experiments of MDC and CarTel

In the experiments, we compare the cost ratios of MDC and CarTel with different

grid length and network bandwidth settings. In our experiments, we test the server

with and without χ2-test, which denote as MDC(χ2) and MDC, respectively.

Figure 2.5(a) shows that the cost ratio of CarTel is higher than MDC in all

cases, which indicates that MDC can effectively reduce the amount of data trans-

mitted. It is because the smaller grid length leads to more histograms needed to be

constructed. Therefore, CarTel spends more cost to decide the transmission cost to

obtain the raw data and build histograms for grids than MDC. On the other hand,

comparing with MDC, MDC(χ2) can further reduce the cost ratio. It is because

MDC(χ2) can adaptively adjust the sampling frequency such that transmission

cost is then reduced.

26

Figure 2.5(b) shows the cost ratio with the network bandwidth varied. The

network bandwidth affects the amount of data transmitted simultaneously. That

is, the larger bandwidth an AP owns, the more simultaneous connections an AP

can afford. In CarTel, a vehicle transmit its raw data to the server. Thus, it can be

seen that the cost ratio of CarTel is large when the bandwidth is small since data

re-transmission will occurs frequently. On the other hand, MDC can reduce more

cost ratio than CarTel does. Note that the cost ratio of our approach is almost 1

when the bandwidth is 100. It can show that even data re-transmission happens,

the amount of data transmitted by MDC can be controlled within a reasonable

range.

2.5.3 Sensitivity Analysis

In MDC, two error bounds, say ε` and εs, should be specified to guarantee the

quality of data collection. Moreover, in algorithm LR, an addition parameter β is

used to distinguish whether the current regression line and the upload one follow

the same moving behavior or not. In this section, we discuss the impact of these

thresholds to MDC with and without aggregation mechanism.

Impact of β

Figure 2.6 shows the impact of β in terms of cost ratio and RMSE. With β increas-

ing, the cost ratio increases and the RMSE decreases. There is a tradeoff between

cost ratio and RMSE. When the β is close to 1, the number of derived regression

lines increases. Thus, the cost ratio increases since many regression lines should

be uploaded. Since many regression lines are used, the moving behavior of a vehi-

cle can be precisely described such that the RMSE decreases. In this experiment,

choosing β = 0.6 can take a good balance between cost ratio and RMSE. On the

other hand, in Figure 2.6(b), when β = 0.6, in-network aggregation mechanism

27

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.4 0.6 0.8 1

C
o

s
t

R
a

ti
o

β

MDC Without Aggregation
MDC With Aggregation

(a)

 0.00025

 0.0005

 0.00075

 0.001

 0.00125

 0.0015

 0.00175

 0.002

 0 0.2 0.4 0.6 0.8 1

R
M

S
E

β

MDC Without Aggregaion
MDC With Aggregation

(b)

Figure 2.6: (a) Cost ratio and (b) RMSE with β varied.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
o

s
t

R
a

ti
o

εl

MDC Without Aggregation
MDC With Aggregation

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.2
 0.4

 0.6
 0.8

 1

R
M

S
E

εl

Without Aggregaion
With Aggregation

(b)

Figure 2.7: (a) Cost ratio and (b) RMSE with ε` varied.

can reduce the cost ratio at most 20% but the RMSE only increase slightly. It

shows that our aggregation approach can not efficiently reduce the cost ratio but

also preserve the accuracy of uploaded models.

Impact of ε` and εs

Figure 2.7 shows the results with ε` varied. Figure 2.7(a) shows two cost ratios of

MDC. The cost ratio converges to a fixed value in both MDC with and without ag-

gregation. It can be seen that the cost ratio of MDC with aggregation can achieve

almost 0.05, which shows that the linear regression model we selected is properly

28

 0

 0.5

 1

 1.5

 6 7 8 9 10

C
o

s
t

R
a

ti
o

εs

MDC Without Aggregation
MDC With Aggregation

(a)

 3

 4

 5

 6

 6 7 8 9 10

R
M

S
E

εs

MDC Without Aggregation
MDC With Aggregation

(b)

Figure 2.8: (a) Cost ratio and (b) RMSE with εs varied.

used to represent the trajectories of vehicles. Figure 2.7(b) shows that the RMSE

will first increase when 0 < ε` < 0.4 and keep constant when ε` > 0.4. Moreover,

RMSE of both MDC with and without aggregation can be bounded by ε`, which

shows the quality of collected data can be guaranteed. On the other hand, Figure

2.8 shows the results with εs varied. Similar to the results above, the cost ratio

of MDC with aggregation can achieve a better performance while the RMSE is

almost the same as that of MDC without aggregation.

Overall, we can conclude that MDC can not only reduce the data amount effi-

ciently but also guarantee the quality of data collection.

2.6 Conclusion

In traffic monitoring applications, a naive approach of data collection is that each

vehicle uploads the position and speed readings to the centralized server immedi-

ately when the data points are generated. However, this approach is not scalable

enough for a large-scale system since it needs a considerable amount of network

bandwidth and simultaneous connection. This paper proposed MDC to reduce the

amount of readings during data collection. MDC performs at both vehicle and

29

server sides collaboratively. In the vehicle side, Algorithm LR and Algorithm KR

can use linear and kernel regression model to reduce the size of transmitted data,

while the errors between the raw data the derived model are bounded. Moreover,

in-network aggregation is employed to further reduce the amount of data while

guaranteeing the quality of data. In the server side, both pull and push approaches

are exploited to collect data from vehicles. Experimental studies show that MDC

can collect traffic data efficiently and effectively.

30

Chapter 3

A Regression-based Approach for

Mining User Movement Patterns

from Random Sample Data

3.1 Introduction

Mobile services, such as navigation services, mobile search and location-aware

services, are becoming very popular. These wireless communication systems en-

able users to access various kinds of information from anywhere at any time. A

mobile computing system usually expresses a user movement trajectory as a se-

quence of areas in which the mobile user moves1. In this article, we aim at mining

user movement patterns for a mobile user. Thus, given a user’s set of movement

trajectories, user movement patterns refer to the sequences of areas that this user

frequently travels. User movement patterns can be used to improve system per-

formance, such as designing personal paging area [59], and developing data al-

location strategies [55][46][47], querying strategies [32], and navigation services

[34][19].

To discover user movement patterns in a mobile computing system, the meth-

1This article defines a unit of a area as the coverage area of one base station. For ease of

presentation, we simply use a base station identification to represent the corresponding coverage

area.

31

ods proposed in previous studies require movement logs to record the movements

of mobile users. For example, in [46][47], when a mobile user moves from the

coverage area of base station i to the coverage area of base station j, a hand-

off procedure is performed to smoothly switch communication channels between

base stations. Meanwhile, the movement log generates a movement pair (i, j).

However, the movement log is not an existing log of mobile systems and needs

some overheads to generate during handoff procedures. Hence, generating move-

ment logs for all mobile users leads to increased storage costs and decreases the

performance of mobile computing systems. Therefore, prior works are not prac-

tical for mobile computing systems due to the overhead of generating movement

logs. In fact, mobile computing systems generate call detail records (abbreviated

as CDR) when a mobile user makes or receives phone calls [41]. Table 5.2.4

shows an example of call detail records, where Uid represents the identification of

a user making or receiving calls, and Cellid represents the corresponding base sta-

tion that serves that user. Time information (i.e., date and time) is recorded in the

CDR2. Table 5.2.4 shows that the CDRs of a mobile user contain both spatial (i.e.,

base station identification) and temporal information (i.e., date and time). Since

CDRs reflect the movement behaviors of users, this article addresses the problem

of mining user movement patterns from an existing log of CDRs, thereby reducing

the overhead of generating a movement log.

Figure 1 shows some trajectories of one user, where the dashed line represents

one real trajectory of this user and the regions with mobile phones indicate that the

user is receiving or making phone calls. This user’s calling behavior is captured in

the log of CDRs, and Table 5.2.4 shows the CDR log. Figure 3.1 shows that CDRs

are data points that are randomly sampled from trajectories and the corresponding

2The real call detail records analyzed in this study were provided by Taiwan mobile service

providers, and we only extracted some useful attributes of call detail records to mine user move-

ment patterns.

32

Uid Date Time Cellid

1 Day 1 07:30 A

1 Day 1 09:32 D

1 Day 1 09:49 E

1 Day 1 13:50 H

1 Day 2 08:50 C

1 Day 2 09:50 E

1 Day 2 14:00 H

1 Day 3 07:15 A

1 Day 3 09:02 C

1 Day 3 09:30 D

1 Day 4 12:30 W

1 Day 4 12:52 X

1 Day 4 13:30 Y

Table 3.1: An example of call detail records

locations of these CDRs are scattered over the mobile computing environment. As

a result, mining user movement behaviors from CDRs is a challenging task. Given

these random sample data points, we aim to derive movement functions that are

close to real user trajectories. We refer these movement functions as movement

patterns due to that movement functions reflect the frequent movement behavior

of users. Figure 3.2 shows the movement function of a user for the example above.

This article proposes a novel approach, called RUMP (standing for Regression-

based approach for User Movement Patterns), to mine user movement patterns

from CDRs. Given a set of data points, the main objective of regression analysis

is to derive a regression function that minimizes the sum of distances between the

function derived and data points. In this approach, call detail records are viewed

as data points, while the regression functions derived are regarded as movement

functions. However, not all call detail records should be involved in mining user

movement patterns. Without carefully selecting CDRs, user movement patterns

cannot reflect the frequent movement behaviors of mobile users. On the other

33

(a) Day 1 (b) Day 2

(c) Day 3 (d) Day 4

Figure 3.1: An example of call detail records

hand, CDRs should be fully utilized for mining user movement patterns since

only limited information is available in the CDR logs. Thus, several issues remain

to be addressed to efficiently utilize CDRs for mining user movement patterns.

• Extracting frequent movement behaviors from CDRs

As mentioned before, user movement patterns refer to the frequent movement

behaviors of mobile users. However, the CDR logs not only contain frequent

user movement behaviors, but also include infrequent movement behaviors. For

example, a user usually goes to his office and is back to his home every weekday

(as Figure 3.1(a), (b) and (c) shows), and occasionally takes a trip (as Figure

3.1(d) shows). The frequent movement behavior is the trajectory from his home

to his office, whereas a trip is an infrequent movement behavior. Since regression

analysis is sensitive to these infrequent CDRs, they should be eliminated. In other

words, the call detail records that capture the frequent movement behaviors of

34

Figure 3.2: A movement function of a user

users should be extracted. To extract the frequent movement behaviors of mobile

users, we develop algorithm LS (standing for Large Sequence) to extract base

stations whose coverage areas are frequently visited by users.

• Determining the number of regression functions

Once CDRs that capture the frequent movement behaviors have been extracted,

it is necessary to determine how many regression functions are needed. If only

one regression function is derived, it may not be very close to the frequent user

movement behavior. Thus, given a set of call detail records of the frequent move-

ment behavior, clustering techniques can be used to divide call detail records into

several groups. The number of groups is viewed as the number of regression func-

tions. The movement trajectories of mobile users generally follow spatio-temporal

locality (i.e., if the time interval between two consecutive calls of a mobile user

is small, the mobile user is likely to have moved nearby). Therefore, the feature

of spatio-temporal locality in algorithm TC (standing for Time Clustering) can be

used to group the call detail records with a close occurrence time.

• Deriving movement functions

Location identification techniques typically use one of two location models:

the geometric model and the symbolic models [37]. The geometric model speci-

fies the location in n-dimensional coordinates (typically n=2 or 3). The symbolic

model, however, uses logical entities to describe location. This article represents

35

the location of mobile users in CDRs using the symbolic model (i.e., the base

station identification). To derive movement functions of a mobile user, the lo-

cation of call detail records in the symbolic model must be transformed into the

geometric model. Then, with the cluster results obtained, we develop algorithm

MF (standing for Movement Function) for each cluster. This algorithm utilizes

weighted regression analysis to derive the corresponding movement functions of

a user.

The RUMP approach consists of a series of algorithms that tackle the var-

ious issues described above. This study evaluates RUMP performance using

both synthetic and real datasets. Sensitivity analysis is conducted on several de-

sign parameters. Experimental results show that RUMP is able to efficiently and

effectively derive user movement patterns that capture the frequent movement be-

haviors of mobile users.

The rest of this article is organized as follows. Section 2.2 then devises al-

gorithms for mining user movement patterns. Section 2.3 presents performance

results. Finally, Section 2.4 draws conclusions.

3.2 A Regression-based Approach for Mining User

Movement Patterns

This section develops a regression-based approach (i.e., RUMP) consisting of

a sequence of algorithms to mine user movement patterns. First, Section 3.1

provides an overview of RUMP , and the following sections present details of

Algorithm LS, TC, and MF.

3.2.1 An Overview

Given a log of CDRs, the goal of this article is to derive movement functions

that closely reflect the frequent movement behaviors of mobile users. Due to that

36

CDRs are random samples, the timestamps of CDRs are not likely to be the same

even if a user follows the same movement behavior. Consequently, a basic time

slot is defined as a time interval. For example, if call detail records whose occur-

rence time is within the time interval of one time slot, these CDRs are associated

with the same time slot. Therefore, these CDRs are further put in a movement

record defined as follows:

Definition: Movement Record: A movement record is defined as a set of

pairs (BSi : Ni), where BSi is a base station and Ni is the number of occurrence

counts of BSi in call detail records whose occurring times are within the same

time slot.

Assume that one time unit has its time interval of 6:00am to 10:00am. From

Table 5.2.4, in Day 1, we could have one movement record that includes {A:1,

D:1, E:1} since the occurrence time of three call detail records (i.e., A, D, and

E) is within the time interval (i.e., 6:00am to 10:00am). With the definition of

movement records, a movement sequence is defined as follows:

Definition: Movement Sequence: A movement sequence MSi, denoted by

< MRi,1, MRi,2, MRi,3, ..., MRi,ε >, is an ordered sequence of ε movement

records, where MRi,j is the movement record at time slot j in MSi and ε is an

adjustable parameter.

The length of a time slot determines the granularity of user movement patterns

in terms of time. Same as in [29], the value of ε indicates that a movement pattern

may re-appear. Thus, the value of ε depends on the periodicity of a user. Table

3.2 are notations used in our article. The overall procedure for mining movement

patterns is outlined as follows:

37

Execution Steps in RUMP

Step 1. (Extracting the Aggregation Movement Sequence) In this step, call

detail records are converted into w movement sequences, where w is an adjustable

window size for the recent movement sequences being considered. Algorithm LS

discovers an aggregation movement sequence, in which each movement record

contains frequent areas that a user appears.

Step 2. (Clustering Movement Records) According to the aggregation move-

ment sequence derived, we further develop algorithm TC to cluster movement

records whose time slots are close.

Step 3. (Deriving Movement Functions) We then use regression techniques to

derive the corresponding movement functions for each group in Step 2.

CDRs only reflect the fragmented movement behaviors of mobile users. Thus,

the RUMP approach uses regression techniques to derive movement functions

which are close to the frequent movement behaviors of mobile users. Due to the

nature of regression techniques, without the proper determination of call detail

records, user movement functions derived cannot capture the frequent movement

behaviors of mobile users. On the other hand, call detail records should be fully

utilized to mine user movement patterns since only limited information is avail-

able in CDRs. In the following subsections, each algorithm is presented in detail.

3.2.2 Algorithm LS: Extracting the Aggregation Movement Se-

quence

In this article, a user movement trajectory is represented as a sequence of base

station identifications (hereafter, we use ”base station” for short). Hence, call

detail records are converted into movement sequences. With a set of movement

sequences, algorithm LS determines an Aggregation Movement Sequence (abbre-

viated as AMS) and uses it to represent the frequent movement behaviors of a

38

Definition Notation

Number of movement sequences w
Movement sequence i MSi

Movement record at time slot j in MSi MRi,j

A large movement sequence LMS
Large movement record at time slot i LMRi

An aggregation movement sequence AMS
Aggregated movement record at time slot i AMRi

A time projection sequence of AMS TPAMS

A clustered time projection sequence of AMS CTPAMS

Table 3.2: Notations used in our algorithms

user. Intuitively, AMS is a sequence of movement records that have frequent base

station and their corresponding counts at each time slot. At each time slot, a fre-

quent base station in this article refers to a base station which a user appears more

than min freq times among movement sequences. The min freq is given to

quantify frequent base stations. As pointed out early, counts for frequent base sta-

tions should also be determined. Thus, before deriving AMS, a large movement

sequence (abbreviated as LMS) is a sequence of frequent base stations and we use

LMS to compute the similarity between LMS and each movement sequence. In

light of similarity measurements obtained, we are able to identify those movement

sequences capturing the frequent moving behavior of users and aggregate them as

AMS.

Definition: Large Movement Record: Given a set of movement sequences

MS1, MS2

, ...,MSw and a threshold min freq, a large movement record at time slot t is

denoted as LMRt and LMRt contains a set of base stations whose occurrence

count in the set of movement records at time slot t (i.e., MR1,t,MR2,t, ..., MRw,t)

is larger or equal to min freq.

39

Given five movement sequences in Table 3.3, if min freq is set to 2, LMR4

is {D,F} since both D and F have their occurrence count equal to min freq.

Large movement records demonstrate the frequent movement behavior of a user

at a specific time slot. After obtaining large movement records at each time slot,

a large movement sequence LMS is thus a sequence of large movement records,

which is denoted as LMS= < LMR1, LMR2, ..., LMRε >. Consequently, LMS

indicates the frequent moving behavior of users.

Once a large movement sequence LMS is determined, we should further for-

mulate the similarity between movement sequences and LMS to identify whether

a movement sequence is the frequent movement behavior of a user or not. The

conventional similarity measurements, such as Cosine similarity [52] and ex-

tended Jaccard coefficient, cannot be applied for the similarity measurement be-

cause they can only deal with scalar vectors with no missing values. Movement

sequences and LMS are sequences of sets of base stations, not a sequence scalar

values. Moreover, empty sets are allowed in movement sequences and LMS. As

such, we formulate the similarity between a movement sequence (e.g., MSi) and

LMS as the closeness between movement records MRi,j and LMRj , denoted

by C(MRi,j, LMRj). C(MRi,j, LMRj) compares the set of base stations in

MRi,j with the frequent base stations in LMRj . C(MRi,j, LMRj) is formu-

lated as
|{x∈MRi,j∩LMRj}|
|{y∈MRi,j∪LMRj}| , and returns the normalized value in [0, 1]. The larger

the value of C(MRi,j, LMRj), the more closely MRi,j resembles LMRj . For

example, assume that LMRj = {a, b, c, d}, MRx,j = {b, e} and MRy,j =

{a, b, c, d, e}. It can be verified that the value of C(MRx,j, LMRj) is 1
5

and the

value of C(MRy,j, LMRj) is 4
5
. Therefore, MRy,j is more similar to LMRj .

Based on the similarity between movement records and large movement records,

the similarity measure of movement sequences MSi and LMS is formulated as

sim(MSi, LMS) =
∑ε

j=1 |MRi,j| ∗C(MRi,j, LMRj). Given a threshold value

40

min sim, for each movement sequence MSi, if sim(MSi, LMS) ≥ min sim, the

movement sequence MSi is identified as a similar movement sequence. Consider

the example in Table 3.3. It can be verified that sim(MS1, LMS) = 1 ∗ 1
2

+ 1 ∗
1
1
+0+1∗ 1

2
+1∗ 0

1
= 2. Further, sim(MS2, LMS) = 3, sim(MS3, LMS) = 2,

sim(MS4, LMS) = 3, and sim(MS5, LMS) = 1
2
. Assuming that min sim is

2, MS1, MS2, MS3 and MS4 are recognized as similar movement sequences.

After identifying similar movement sequences, these similar movement se-

quences are aggregated as one AMS in which frequent base stations and their

associated counts are determined. An aggregation movement sequence is defined

as follows:

Definition: Aggregation Movement Sequence: The aggregate movement

sequence is denoted as AMS =< AMR1, AMR2, ..., AMRε >, where AMRj

is an aggregated movement record that contains frequent base stations, which are

the same in large movement record LMRj and their occurring counts accumulated

from movement records at time slot j of similar movement sequences.

Consider the AMR1 of AMS in Table 3.3 as an example. from those similar

movement sequences, the occurrence count of A in AMR1 is calculated as the

sum of the count of A in MR1,1, that in MR3,1 and that in MR4,1 (i.e., 14+1+1 =

16). Following the same procedure, we could have AMS =< {A : 16, B :

1}, {A : 3}, φ, {D : 2, F : 3}, {H : 2} > shown in Table 3.3.

Time Complexity Analysis: Given w movement sequences with ε time slots, the

complexity of algorithm LS can be expressed as O(εω). The complexity involved

in calculating large movement records is O(εω), while that of extracting frequent

movement sequences is ε ∗ ω ∗ O(1) = O(εω). As a result, the overall time

complexity of algorithm LS is O(εω). Thus, algorithm LS is of polynomial time

complexity.

41

1 2 3 4 5
MS1 A:14 A:2 F:1 I:2

MS2 C:8 C:1, D:1, F:1 H:1, G:4

MS3 A:1 C:1 D:1 H:1

MS4 A:1, B:1 A:1 F:9

MS5 B:4 D:4 H:1 A:1, B:2

LMS {A, B} {A} {D, F} {H, I}
AMS {A:16, B:1} {A:3} φ {D:2, F:3} {H:2}

Table 3.3: An example of algorithm LS

Algorithm 3: Algorithm LS

Input: w movement sequences with length ε,two threshold:min freq and

min sim
Output: aggregation movement sequence AMS

1: begin

2: for j ← 1 to ε do

3: for i ← 1 to w do

4: begin

5: LMRj ←frequent 1-itemset of MRi,j; //by min freq
6: end

7: for i ← 1 to w do

8: begin

9: match ← 0;

10: for j ← 1 to ε do

11: begin

12: C(MRi,j, LMRj) ← |x ∈ MRi,j ∩ LMRj| / |y ∈ MRi,j ∪ LMRj|;
13: match ← match + |MRi,j| ∗ C(MRi,j, LMRj);
14: end

15: if match ≥ min sim then

16: accumulate the occurring counts of items in the aggregation

movement sequence;

17: end

42

3.2.3 Algorithm TC: Clustering Aggregation Movement Records

As pointed out early, the movement trajectories of mobile users generally follow

spatio-temporal locality (i.e., if the time interval between two consecutive calls

of a mobile user is small, the mobile user is likely to have moved nearby). Ac-

cordingly, aggregation movement records in AMS could be clustered into several

groups if their corresponding time slots are close. To facilitate the presentation of

this paper, only time information (i.e., time slots) is extracted from AMS. Thus,

time projection sequence of AMS is defined as follows:

Definition: Time Projection Sequence: A time projection sequence of AMS

is expressed as TPAMS =< α1, ..., αn >, where AMRαj
6= {} and α1 < ... < αn.

A time projection sequence is a sequence of time slots in which the corre-

sponding movement records are not empty. Algorithm TC then uses the time

projection sequence to cluster close time slots. The cluster result of algorithm TC

is represented as a clustered time projection sequence defined as follows:

Definition: Clustered Time Projection Sequence: A clustered time projec-

tion sequence of TPAMS , denoted by CTPAMS , is represented as < CL1, CL2, ..., CLk >,

where the i-th group CLi is the time slots of the clustered movement records, and

k is an integer such that 1 ≤ k ≤ ε.

Given AMS obtained in Step 1, TPAMS is then easily determined. By explor-

ing the feature of spatial-temporal locality, algorithm TC generates a clustered

time projection sequence of AMS (i.e., CTPAMS). Each cluster in CTPAMS

contains close time slots. Those movement records with their time slots being

clustered preserve the feature of spatio-temporal locality. Therefore, the objective

of clustering is to bound the variance of time slots in each group with a given

threshold (i.e., min var).

The variance of a group CLi is defined as V ar(CLi) = 1
m

m
∑

k=1

(ni,k− 1
m

m
∑

j=1

ni,j)
2

43

, where ni,j represents the j-th time slots of movement records in CLi and the total

number of movement records in CLi is m. Algorithm TC generates a clustered

time projection sequence CTPAMS such that V ar(CLi) ≤ min var for all clus-

ters CLi.

To achieve the objective of clustering, algorithm TC first starts coarsely clus-

tering TPAMS into several marked clusters using a value δ. The initial value of δ is

set to ε and δ then decreases by one for each round. Thus, in the beginning, there

is only one cluster. Dividing clusters with a variance larger than min var increases

the number of clusters. In algorithm TC, unmarked clusters refer to clusters that

do not need to be refined, whereas marked clusters refer to clusters that should be

further partitioned. For each cluster CLi, if V ar(CLi) is smaller than min var,

the cluster CLi is unmarked. Otherwise, δ decreases by 1 and algorithm TC re-

clusters the time slots in unmarked clusters with the updated value of δ. Algorithm

TC partitions TPAMS iteratively until no marked cluster remain or until δ = 1.

If there are no marked clusters, CTPAMS is generated. Otherwise, if there are

still marked clusters with their variance values larger than min var, algorithm TC

continues to finely partition these marked clusters so that the variance for every

marked cluster is constrained by the threshold value of min var.

When the value of δ is 1, the time slots of movement records in a marked

cluster generally follow a sequence of consecutive integers such that the variance

of marked clusters is still larger than min var. This situation results in loss of

spatio-temporal locality. For example, given movement records with a sequence

of consecutive time slots 1, 2, 3, 4, 5, 6, and 7, though the differences of consecu-

tive time slots are small, the location of a user at time slot 1 and that at time slot

7 are probably far from each other. To deal with this problem, this cluster must

be further partitioned into smaller clusters. The variance of each refined cluster

should be smaller than min var. Moreover, to guarantee that no time slots of each

44

refined clusters are as close as possible, the total variance of the refined clusters

should be minimized. To derive the optimal method for further partitioning, the

following lemma is derived:

Lemma: Given a cluster that has a sequence of consecutive integers 1, 2, 3, ..., n

and a positive integer k, the optimal method to minimize the sum of variance in

each cluster and divide this cluster into k clusters is to partition it into k sub-

clusters each with a size of dn
k
e.

Proof:

Suppose that < 1, 2, 3, ..., n > is divided into k sub-clusters: < 1, ..., t1 >, <

t1 + 1, ..., t2 >, ..., < tk−1 + 1, ..., n >. Let t0 = 0, tk = n, and V ari = V ar(<

ti−1 + 1, ..., ti >). Our goal is to find the cutting points (i.e., t1, t2, ..., and tk−1)

to minimize f =
k

∑

i=1

V ari.

The variance remains the same constant for a sequence of consecutive integers

with the same length. For example, consider two clusters with two sequences of

consecutive time slots: < 1, 2, 3, 4, 5 > and < 7, 8, 9, 10, 11 >. It can be verified

that V ar(< 1, 2, 3, 4, 5 >) = V ar(< 7, 8, 9, 10, 11 >). Since V ar(< 1, 2, ..., n >

) = 1
12

(n2 − 1), we have f =
k

∑

i=1

V ari = 1
12

k
∑

i=1

((ti − ti−1)
2 − 1).

To minimize f =
k

∑

i=1

V ari, the cutting points t1, t2, ..., tk−1 are derived by

letting the first derivatives be zero.


















∂f
∂t1

= 4t1 − 2t2 − 2t0 = 0
∂f
∂t2

= 4t2 − 2t3 − 2t1 = 0

...
∂f

∂tk−1
= 4tk−1 − 2tk − 2tk−2 = 0

Thus, we can have the following terms:














t1 = ti0+t2
2

t2 = t1+t3
2

...

tk−1 = tk−2+tk
2

Using substitution, we have

45















t1 = 1
2
t2

t2 = 2
3
t3

...
tk−1 = k−1

k
tk

Therefore, we can get:














t1 = 1
k
n

t2 = 2
k
n

...
tk−1 = k−1

k
n

From the derivation above, the optimal way to divide < 1, 2, 3, ..., n > into k

sub-clusters is to divide < 1, 2, 3, .., n > into k sub-clusters each with size of dn
k
e.

Q.E.D

This lemma provides a guideline for partitioning a marked cluster that has

a sequence of consecutive time slots into smaller clusters. Since the value of k

is not known in advance, the value of k is initially set 2, and then increases in

each iteration. In each iteration, a marked cluster is evenly divided into k sub-

clusters, each with size of dn
k
e, and the variance of each sub-cluster is tested. If

the variance of a sub-cluster is smaller than min var, the procedure terminates.

Otherwise, the value of k is increased by 1 and the marked cluster will be further

refined into smaller sub-clusters.

Consider the execution scenario in Table 3.4, where the time projection se-

quence is TPAMS =< 1, 2, 3, 4, 5, 9, 10, 14, 17, 18, 20 >. The initial cluster is

< 1, 2, 3, 4, 5, 9, 10, 14, 17, 18, 20 >. Given min var = 1.6, algorithm TC first

roughly partitions TPAMS into three clusters. Table 3.4 shows that two marked

clusters (i.e., < 1, 2, 3, 4, 5 > with V ar(< 1, 2, 3, 4, 5 >)=2 and < 14, 17, 18, 20 >

with V ar(< 14, 17, 18, 20 >)=4.69 are determined because the variance values

of these two clusters are larger than 1.6. Then, δ is reduced to 2, and these

two marked clusters are re-examined. In the following run, the previous cluster

< 14, 17, 18, 20 > is divided into two clusters, i.e., < 14 > and < 17, 18, 20 > in

this run. Since V ar(< 14 >) = 0 < 1.6 and V ar(< 17, 18, 20 >) = 1.56 < 1.6,

46

Run δ min var Clusters

0 20 1.6 < 1, 2, 3, 4, 5, 9, 10, 14, 17, 18, 20∗ >

...

1 3 1.6 < 1, 2, 3, 4, 5 >∗, < 9, 10 >,< 14, 17, 18, 20 >∗

2 2 1.6 < 1, 2, 3, 4, 5 >∗, < 9, 10 >,< 14 >,< 17, 18, 20 >

3 1 1.6 < 1, 2, 3, 4, 5 >∗, < 9, 10 >,< 14 >,< 17, 18, 20 >

4 0 1.6 < 1, 2, 3, 4, 5 >∗, < 9, 10 >,< 14 >,< 17, 18, 20 >

5 0 1.6 < 1, 2, 3 >,< 4, 5 >,< 9, 10 >, < 14 >,< 17, 18, 20 >

Table 3.4: An execution scenario of algorithm TC

these two clusters remain unmarked. Following the same procedure, algorithm

TC partitions marked clusters until δ equals 1. Run 4 in Table 3.4 shows that

< 1, 2, 3, 4, 5 > is still a marked cluster with V ar(< 1, 2, 3, 4, 5 >) = 2. There-

fore, algorithm TC finely partitions < 1, 2, 3, 4, 5 >. The value of k is initially

set at 1. Since V ar(< 1, 2, 3, 4, 5 >)=2.5 is larger than min var (i.e., 1.6), k

increases to 2. Then, < 1, 2, 3, 4, 5 > is divided into < 1, 2, 3 >< 4, 5 >. Of

these two clusters (i.e., < 1, 2, 3 > and < 4, 5 >), the < 1, 2, 3 > cluster has the

larger variance and thus < 1, 2, 3 > is compared with the value of min var. Since

the V ar(< 1, 2, 3 >) = 0.67 < 1.6, algorithm TC stops the clustering process.

Finally, a CTPAMS is generated as < 1, 2, 3 >,< 4, 5 >,< 9, 10 >,< 14 >, <

17, 18, 20 >.

Time Complexity Analysis: Algorithm TC is of polynomial time complexity.

Let TPAMS have n numbers. Algorithm TC needs O(n) to divide TPAMS into

clusters from line 5 to 15. From line 17 to line 25, assume that there are still s

clusters with m numbers to be refined. Since k is at most m, we have s ∗ O(m)

to run the clustering process. The worst case occurs when estimating the time

complexity of algorithm TC. In the worst case (i.e., m = n), the overall time

complexity of algorithm TC is at most O(n).

47

Algorithm 4: Algorithm TC

Input: Time projection sequence:TPAMS , thresholds: min var
Output: Clustered time projection sequence:CTPAMS

1: begin

2: δ ← ε;

3: CL1 ← TPAMS;

4: Mark CL1;

5: while there exist marked clusters and δ ≥ 2 do

6: begin

7: for each marked clusters CLi do

8: if V ar(CLi) ≤ min var then

9: begin

10: unmark CLi;

11: end

12: δ ← δ − 1;

13: for all marked clusters CLi do

14: group the numbers whose differences are within δ in CLi;

15: end

16:

17: if there are marked clusters then

18: begin

19: for each marked cluster CLi do

20: k = 2;

21: repeat

22: k ← k + 1;

23: divide CLi into k groups with equal sizes;

24: until the variance of each group≤ min var
25: end

26: end

48

3.2.4 Algorithm MF: Deriving Movement Functions

Given the aggregation movement sequence AMS devised by algorithm LS and

its clustered time projection sequence CTPAMS generated by algorithm TC, al-

gorithm MF is able to derive a sequence of movement functions able to estimate

the frequent movement behaviors of mobile users. For each cluster, we need to

derive confidence movement functions. Then, linkage movement functions are de-

termined to link confidence movement functions among clusters. Finally, a move-

ment function F (t) is derived and represented as < U0(t), E1(t), U1(t), E2(t),...,

Ek(t), Uk(t) >, where Ei(t) is the confidence movement function in cluster CLi

of CTPAMS and Ui(t) is the linkage movement function from Ei(t) to Ei+1(t).

Deriving Confidence Movement Functions

For each cluster CLi of CTPAMS , the confidence movement function of a mobile

user, expressed as Ei(t) = (x̂i(t), ŷi(t), T Ii), is derived. In this case, x̂i(t)

(respectively, ŷi(t)) is a movement function in x-coordinate axis (respectively, in

y-coordinate axis) and the confidence movement function is valid for the time

interval indicated in TIi.

Without loss of generality, let CLi be < t1, t2, ..., tn >, where tj denotes

one of the time slots in CLi for j = 1, 2, ..., n. AMRi contains frequent base

stations with their corresponding counts in the i-th time slot of AMS. To de-

rive movement functions, the location of base stations should be converted from

the symbolic model into the geometric model through a map table that indicates

the coordinates of base stations and is provided by telecompanies. Hence, given

AMS and CTPAMS, for each cluster of CTPAMS , the geometric coordinates

of frequent base stations can be derived along with their corresponding counts

and represented as (t1, x1, y1, w1), (t2, x2, y2, w2), ..., (tn, xn, yn, wn) where ti is

the corresponding time slot, xi (respectively, yi) is the x-coordinate (respectively,

49

y-coordinate) of the base station, and wi is the number of phone calls a mobile

user has made at this base station. Accordingly, for each cluster of CTPAMS , a

weighted regression analysis is able to derive the corresponding confidence move-

ment function.

Given a set of data points, the goal of regression analysis is to derive the best

estimated curve with the minimal sum of least square errors [26]. One aggrega-

tion movement sequence is generated in Step 1, which calculates the appearance

counts of base stations. Thus, based on the appearance counts of base stations,

we can derive curves closer to those base stations with larger appearance counts.

This is because the more calls a user makes at a base station, the more confidence

we have that this mobile user frequently appears in the coverage area of this base

station. Another advantage of utilizing weighted regression analysis is that in a

real scenario of mobile computing systems, the base station that serves to a user is

not always the nearest base station. This is because other base stations nearby will

cover the nearest base station when it becomes overloaded. However, the scenario

above does not always happen. The appearing counts of other base stations will be

fewer than that of the nearest base station. Therefore, weighted regression analy-

sis makes it possible to derive curves close to base stations with higher appearance

counts.

Given data points within a cluster, this article considers the derivation of the

x̂(t). An m-degree polynomial function x̂(t) = a0 + a1t + ... + amtm is de-

rived to approximate the movement behavior along x-coordinate axis. Given the

data points (t1, x1, y1, w1), (t2, x2, y2, w2) ,..., (tn, xn, yn, wn), the regression coef-

ficients {α0, α1, ...am} are then selected to minimize the residual sum of squares

εx =
∑n

i=1 wie
2
i , where ei = (xi−(a0 +a1ti +a2(ti)

2...+am(ti)
m)). The value of

m is application dependent, and must be smaller than the number of data points.

The value of m is proportional to the precision of the fitting curve. Since x̂(t)

50

ti ID xi yi wi

1 A 1 1 16

1 B 1 2 1

2 A 1 1 1

4 D 4 2 2

4 F 3 3 3

5 H 5 3 2

7 K 6 3 4

9 F 3 3 10

10 E 4 3 1

Table 3.5: Data points with their corresponding weights

is obtained by matrix operations, the matrix size is thus the dominant factor in

regression performance. However, the impact of weighted regression analysis on

execution time is not significant in this article since the maximal value of m is

usually small. When the value of m is small, the execution time of regression

analysis is acceptable. Therefore, according to the number of data points avail-

able, the value of m should be set as large as possible.

For ease of presentation, the following terms are defined:

H =





1 t1 (t1)
2 ... (t1)

m

...

1 tn (tn)2 ... (tn)m



 , a
∗ =





a0

...
am



 , b̃x =





x1

...
xn



 , e =





e1

...
en





T

,

W =





w1

...
wn



.

By solving the equation (
√

WH)T (
√

WH)a∗ = (
√

WH)T
√

Wb̃x, a∗ can

be derived such that the value of εx is minimized3. This leads to x̂(t) = a0 +

a1t + ... + amtm. ŷ(t) can be derived following the same procedure. As a re-

sult, for each cluster of CTPAMS , the confidence movement function Ei(t) =

(x̂(t), ŷ(t), [t1, tn]) of a mobile user can be devised.

For example, let AMS =< {A : 16, B : 1}, {A : 1}, φ, {D : 2, F :

3For the proof, see Appendix A.

51

3}, {H : 2} > and the coordinates of A, B, D, F and H be (1, 1), (1, 2), (4,

2), (3, 3) and (5,3), respectively. Given AMS and CTPAMS =< 1, 2, 4, 5 >,

it is possible to obtain data points with their weights, as Table 3.5 shows. By

setting m to 3, the 3-degree polynomial x̂(t) = a0 + a1t + a2t
2 + a3t

3 is de-

rived. The coefficients a0, a1, a2 and a3 are determined by a regression curve

that minimize the residual sum error. That is, a
∗ = (a0 a1 a2 a3)T must

be determined. Since there are six data points with their corresponding time

slots of 1, 1, 2, 4, 4 and 5, H =



















1 1 (1)2 (1)3

1 1 (1)2 (1)3

1 2 (2)2 (2)3

1 4 (4)2 (4)3

1 4 (4)2 (4)3

1 5 (5)2 (5)3



















is then calculated. The

weights of the data points are 16, 1, 1, 2, 3 and 2, respectively. Hence,
√

W

is a diagonal matrix with the diagonal entries of [
√

16,
√

1,
√

1,
√

2,
√

3,
√

2].

Table 3.5 shows that b̃x = (1 1 1 4 3 5)T . By solving the equation

(
√

WH)T (
√

WH)a∗ = (
√

WH)T
√

Wb̃x, we can get a∗ = (2.333 −2.133 0.867 −0.066)T .

Therefore, x̂(t) = 2.333 − 2.133t + 0.867t2 − 0.066t3 is devised to predict the

x coordinate-axis of the mobile user from t = 1 to t = 5. Similarly, b̃y =

(1 2 1 2 3 3)T is then determined from Table 3.5. By solving the

normal equation (
√

WH)T (
√

WH)a∗ = (
√

WH)T
√

Wb̃y, we can get a
∗ =

(2.529 −2.386 1.021 −0.105)T . We can obtain ŷ(t) = 2.529 − 2.386t +

1.021t2 − 0.105t3. Figure 3.3 shows that the confidence movement functions,

where the circle point indicates the location of a base station with its correspond-

ing weight and the solid line is the curve derived by algorithm MF. The confidence

movement function closely resembles actual movement behavior, demonstrating

the advantage of utilizing regression analysis to mine user movement patterns.

52

Algorithm 5: Algorithm MF

Input: AMS and clustered time projection sequence CTPAMS

Output: A list of movement functions

F (t) =< E1(t), U1(t), E2(t), ..., Ek(t), Uk(t) >
1: begin

2: F (t) =<>;

3: for i = 1 to k − 1 do

4: begin

5: doing regression on CLi to generate Ei(t);
6: doing regression on CLi+1 to generate Ei+1(t);
7: t1 =the last time slot in CLi;

8: t2 =the first time slot in CLi+1;

9: using inner interpolation to generate Ui(t) = (x̂i(t), ŷi(t), (t1, t2));
10: insert Ei(t), Ui(t) and Ei+1(t) in F (t);
11: end

12: if 1 /∈ CL1 then

13: generate U0(t) and Insert U0(t) into the head of F (t);
14: if ε /∈ CLk then

15: generate Uk(t) and Insert Uk(t) into the tail of F (t);
16: end

53

1 2 3 4 5

1

2

3

4

5
0

1

2

3

4

Time
X coordinate

Y

c
o
o
r
d
i
n
a
t
e

(1,1,1)
W=16

(1,1,2)
W=1

(2,1,1)
W=1

(4,4,2)
W=2 (4,3,3)

W=3

(5,5,3)
W=2

Figure 3.3: An illustrative example of deriving confident movement functions.

Deriving Linkage movement Functions

Given AMS and a cluster of CTPAMS =< CL1, CL2, ..., CLk >, algorithm

MF generates the whole confidence movement function, denoted as F (t). F (t)

is represented as < U0(t), E1(t), U1(t), E2(t), ..., Ek(t), Uk(t) >, where Ei(t)

is the confidence movement function in cluster CLi of CTPAMS and Ui(t) is

the linkage movement function from Ei(t) to Ei+1(t). Algorithm MF (from lines

5 to 6) shows that for each cluster of CTPAMS, the corresponding confidence

movement functions are derived using the regression method above. However,

the first time slot may not be included in CL1. If t0 is the first time slot of CL1

and t0 6= 1, the U0(t) = {E1(t0), [1, t0)} is generated for the boundary condition.

Otherwise, U0(t) will not be valid in F (t). The same is true for Uk(t). The linkage

movement function is calculated by interpolation (in line 9 of algorithm MF).

For example, assume that CTPAMS =< 1, 2, 4, 5 >,< 7, 9, 10 >, E1(t) =

(2.333 − 2.133t + 0.867t2 − 0.066t3, 2.529 − 2.386t + 1.021t2 − 0.105t3, [1, 5])

and E2(t) = (6 + 1.17t − 0.16t2, 3 + 0t + 0t2, [7, 10]). It can be verified that the

first time slot of cluster < 1, 2, 4, 5 > is 1. The last time slot of < 1, 2, 4, 5 > is

54

5 and the first time slot of cluster < 7, 9, 10 > is 7. Thus, a linkage movement

function should be generated by inner interpolation. From E1(t), at the 5th time

slot, we can have a data point (x = 5.09, y = 3). At the 7th time slot, a data point

(x = 6.35, y = 3) is generated by applying E2(7). By inner interpolation, we

could have U1(t) = (1.94 + 6.35−5.09
7−5

t, 3 + 3−3
7−5

t, (5,7)). Similarly, U2(t) can be

determined. After obtaining the confidence and linkage functions, the F (t) =<

E1(t), U1(t), E2(t), U2(t) > can be derived. Figure 3.4 shows the snapshot of

F (t). When using F (t) to predict the location of mobile users, we will only use

the confidence movement function whose time interval includes the given time t.

For F (t) =< E1(t), U1(t), E2(t), U2(t) >, when the time is 4, only E1(t) will be

used to predict the location since the given time 4 is within the time interval of

E1(t).

Time Complexity Analysis: Algorithm MF is of polynomial time complexity.

When the maximal size in row/column is n, the time complexity used to solve

the normal equation by Strassen’s algorithm is Θ(nlg 7) [23]. Moreover, the inter-

polation by Lagrange’s formula requires Θ(m2), where m represents the number

of points involved in the interpolation [23]. Since n is usually larger than m, the

value of Θ(nlg 7) dominates the complexity of algorithm MF.

3.2.5 Estimating A User’s Location Based on a Movement Func-

tion

For many applications, it is necessary to estimate a user’s location in the symbolic

model. In this case, F (t) represents the movement behavior of mobile users. Thus,

once movement functions F (t) have be obtained, the location of mobile users can

be predicted as (xt, yt), which denotes the coordinates of applying the movement

function at time t. Through the estimated coordinate (xt, yt), this coordinate can

be transformed into a symbol which contains (xt, yt). In our example, since each

55

2 4 6 8 10 12
1

2
3

4
5

6
0.5

1

1.5

2

2.5

3

3.5

Time
x coordinate

y

c
o
o
r
d
i
n
a
t
e

E1(t)

E2(t)

U1(t)

U2(t)

Figure 3.4: A snapshot of a complete movement function F (t)

base station is aware of its location and coverage area, it is easy to transform

the geometric location (xt, yt) into the identification of the base station in the

symbolic model.

3.3 Performance Evaluation

This section evaluates the effectiveness and efficiency of mining user movement

patterns from call detail records. Section 4.1 presents the models for user be-

haviors, including movement behavior and calling behavior. Section 4.1 also de-

scribes both the synthetic dataset and the real dataset. Section 4.2 presents ex-

perimental results. Finally, the RUMP sensitivity analysis is given in Section

4.3.

3.3.1 Modeling User Behaviors

User behaviors in a mobile computing environment include movement behaviors

and calling behaviors. This section first describes the synthetic dataset used in this

study, in which user movement behaviors are derived according to pre-defined pa-

56

rameters. To simulate a mobile computing environment, we use a 16 × 16 mesh

network, in which each node represents a base station. Thus, the simulation model

contains 256 base stations [46]. Moreover, our simulation considers 10,000 users.

As in [60], this simulation considers three movement trajectories. For each user,

we randomly select one movement trajectory as his/her own movement pattern.

Then, a user mostly follows his/her own movement pattern. However, users may

have some movements that do not follow their movement patterns. These move-

ments are viewed as biased movements. To prevent users from diverging too far

from their movement patterns due to biased movements, we borrowed the concept

in [44] that allows users to move back to their movement patterns. The number

of movements made by mobile users in one time slot is modeled as a uniform

distribution between mf − 2 and mf + 2. The larger the value of mf is, the

more frequently mobile users move. We used the design above to generate user

movements.

Figure 3.5: The frequent movement behavior in CarWeb dataset

However, for a real dataset, it is difficult to obtain real call detail records from

mobile service providers due to the privacy issue of customers. Moreover, the

RUMP approach requires the location information of base stations, which is

57

business-related information for mobile service providers. Thus, for real datasets,

we use real movement logs from a GPS-based testbed, CarWeb, and generate

simulated CDRs along with real movements. In the CarWeb platform, users can

obtain their locations from a GPS device every five seconds and upload their

locations to CarWeb servers. Figure 3.5 shows one frequent movement behav-

ior, where every red flag represents a user-uploaded location. By collecting user

movement behaviors for four months, we produce roughly 200 movement trajec-

tories for each user. In the CarWeb dataset, the ground truth is known, which

is useful to validate our mining results 4. In the CarWeb dataset, a user has fre-

quent and infrequent movements. To simulate the coverage area of a base station,

we divided the whole space into grids and viewed each grid as the coverage area

of one base station. Figure 3.5 shows the grids in the CarWeb datasets, where the

frequent movement behaviors of this user occurred within or around 16 girds. Fur-

thermore, since the traveling times of movement sequences in the CarWeb dataset

are not exactly the same, the traveling time for each trajectory is thus normalized

to 24 hours. In both datasets, the time slot is set to 2 hours and the value of ε is

12.

Once user movements have been determined, calling behaviors can be mod-

eled for each user’s movements. According to [40], calling behavior can be mod-

eled as a Poisson distribution. Moreover, a Zeta distribution is used to model burst

calling behavior in this article. In a Poisson distribution, the probability that a user

has x calls in a time slot is determined by P (x) = e−λλx

x!
, where x is the number

of calls and λ is the expected number of calls in a time slot. Three time slots

are grouped and then each time slot is divided into three subsections, producing

a total of 9 subsections in each group. For each user, the probability of having

4Due to customer privacy issues, it is impossible to get the ground truth of user movement

behaviors even if mobile service providers were to release call detail records

58

phone calls in the x-th subsection of a group is Z(x) = x−λ
∑

∞

n=1
1

nλ

, where x indi-

cates the subsection order in a group (i.e., the x-th subsection in a group) and λ is

the value of the exponent feature for a Zeta distribution. In the beginning of sub-

sections in a group, a user will have more phone calls, but the number of phone

calls decays exponentially in the remaining subsections of a group. The speed of

decay is determined by the parameter λ; the larger this parameter is, the faster the

decay is. For brevity, CDR(ρ, λ) indicates that the calling behavior is modeled

as ρ distribution with parameter λ, where the value of ρ is set to P (respectively,

Z) if a Poisson (respectively, Zeta) distribution is used. For example, CDR(P, 2)

represents the calling behavior of a user under a Poisson distribution with λ = 2.

For comparison purposes, we also implemented the method of mining move-

ment patterns in [46], denoted by UMP . To validate the quality of movement

patterns mined by UMP and RUMP , we could utilize movement patterns to

predict next movements of users. The accuracy of prediction indicates the quality

of movement patterns mined. Hence, the hop count (referred to as hn) represents

the number of base stations between the prediction location and the actual location

of the mobile user. Intuitively, the smaller the value of the hop count, the closer the

current location and the derived location. Thus, the expected value of hop counts

per call E(hn/call) is defined as total hop counts
number of calls

, where the total hop counts is

the sum of hop counts per call and number of calls is the total number of calls

per user. To evaluate the quality of user movement patterns mined by UMP and

RUMP , the precision ratio is derived and defined as 1 − E(hn/call)−1
2n

, where the

size of network is n × n and E(hn/call) is the expected value of hop counts per

call. The precision ratio represents the percentage of the average hop counts from

the derived cell to the current cell a mobile user with respect to the network size.

Table 3.6 summarizes the definitions of some primary simulation parameters. In

this table, the default values are optimal values based on following experiments

59

Notation Definition Default Value

w Number of movement sequences 50
mf Movement frequency 3
min freq Threshold used in algorithm LS 0.3
min sim Threshold used in algorithm LS 0.5
min var Threshold used in algorithm TC 0.75

Table 3.6: The parameters used in experiments

in our experimental environment. Each experimental result was obtained by an

average of twenty experiments.

3.3.2 Experiments of UMP and RUMP

We first evaluated UMP and RUMP in terms of the data amount, the precision

ratio, and the execution time. The data amount is the number of records stored

in a movement log and a CDR log. Figure 3.6(a) shows that the data amount of

UMP increases with the value of mf . This is because with a larger mf , a user

tends to move frequently, producing a greater amount of data of the movement

log. On the contrary, the data amount in RUMP remains almost constant. Fig-

ure 3.6(b) shows that the precision ratio of RUMP is smaller than that of UMP .

However, with CDR(P, 4), the precision ratio of RUMP is not far below UMP .

Note, however, that though UMP performs better than RUMP in terms of the

precision ratio, it also incurs a larger amount of data in a movement log. To in-

vestigate the precision ratio gained by having the additional amount of log data,

this study defines data utilization as the ratio between the precision ratio and the

amount of log data. Figure 3.7 shows the data utilization of UMP and RUMP .

With a higher mf , the data utilization of UMP drastically decreases. This is

because the amount of data in the movement log increases dramatically as users

move frequently. If the value of mf is smaller, the data utilization of RUMP

60

with a Zeta distribution is larger than that of RUMP with a Poisson distribution.

On the other hand, when the value of mf increases, the data utilization of RUMP

with a Poisson distribution is larger than that of RUMP with a Zeta distribution.

It is primarily because when mf is large, it is better to have more uniform calling

behaviors to allow the call detail records fully reflect user movement behaviors.

These experimental results shows that RUMP has a higher data utilization than

UMP. By exploring CDRs, RUMP is more cost-effective in mining user move-

ment patterns.

 400

 600

 800

 1000

 1200

 1400

 3 5 7 9

d
a
ta

 a
m

o
u
n
t

mf

"UMP"
"RUMP with CDR(P,2)"
"RUMP with CDR(P,4)"
"RUMP with CDR(Z,2)"
"RUMP with CDR(Z,4)"

(a) Data Amount

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 3 5 7 9

p
re

c
is

io
n
 r

a
ti
o

mf

"RUMP with CDR(P,2)"
"RUMP with CDR(P,4)"
"RUMP with CDR(Z,2)"
"RUMP with CDR(Z,4)"

"UMP"

(b) Precision Ratio

Figure 3.6: Performance comparisons of UMP and RUMP on the synthetic

dataset

Figure 3.8(a) shows the data amount of UMP and RUMP with various

calling behaviors under the CarWeb dataset. Figure 3.8(a) shows that the data

amount of RUMP is much smaller than that of UMP . Furthermore, Figure

3.8(b) shows that the precision ratios of UMP and RUMP , indicating that the

difference between UMP and RUMP is not large. This suggests that RUMP is

able to achieve acceptable precision ratios when using a smaller amount of data.

However, through performing better than RUMP in terms of the precision ra-

tio, UMP incurs more amount of data in the movement log. In Figure 3.9, the

61

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

 0.0011

 0.0012

 0.0013

 0.0014

 3 5 7 9

d
a

ta
 u

ti
liz

a
ti
o

n

mf

"RUMP with CDR(P,2)"
"RUMP with CDR(P,4)"
"RUMP with CDR(Z,2)"
"RUMP with CDR(Z,4)"

"UMP"

Figure 3.7: Data utilization of UMP and RUMP on the synthetic dataset

data utilization of UMP is much smaller than that of RUMP , showing that with

a smaller amount of log data, RUMP can still achieve an acceptable precision

ratio.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

U
M

P
R
U
M

P
/C

D
R
(P

,2)

R
U
M

P
/C

D
R
(P

,4)

R
U
M

P
/C

D
R
(Z,2)

R
U
M

P
/C

D
R
(Z,4)

d
a
ta

 a
m

o
u
n
t

(a) Data Amount

 0.5

 0.6

 0.7

 0.8

 0.9

 1

U
M

P
R
U
M

P
/C

D
R
(P

,2)

R
U
M

P
/C

D
R
(P

,4)

R
U
M

P
/C

D
R
(Z,2)

R
U
M

P
/C

D
R
(Z,4)

p
re

c
is

io
n
 r

a
ti
o

(b) Precision Ratio

Figure 3.8: Performance comparisons of UMP and RUMP on the CarWeb

dataset

Figure 3.10 shows the execution time of UMP and RUMP under the syn-

thetic dataset. Figure 3.10(a) shows that the RUMP execution time is smaller

than that of UMP in both the synthetic dataset and the CarWeb dataset. With a

larger number of movement sequences, the UMP execution time significantly in-

62

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0.002

U
M

P
R
U
M

P
/C

D
R
(P

,2)

R
U
M

P
/C

D
R
(P

,4)

R
U
M

P
/C

D
R
(Z,2)

R
U
M

P
/C

D
R
(Z,4)

d
a

ta
 u

ti
liz

a
ti
o

n

Figure 3.9: Data utilization of UMP and RUMP on the CarWeb dataset

creases. With a higher mf , the execution time of RUMP becomes much slower

than that of UMP . Further, RUMP has better scalability than UMP . In addi-

tion, Figure 3.10(b) shows the execution time of UMP and RUMP on the Car-

Web dataset. Similar to the results in the synthetic dataset, the RUMP execution

time is much smaller than that of UMP . As the number of movement sequences

increases, UMP takes longer to discover user movement patterns. On the other

hand, the RUMP performance is determined by the data amount generated by

calling. Since the data amount generated by calling is usually fewer than that by

movements, RUMP incurs a smaller execution time.

3.3.3 Sensitivity Analysis of RUMP

This section further investigates the parameters used in RUMP . First, the impact

of w is presented. Then, we examine the impact of thresholds on the mining

results.

Impact of w

Figure 3.11 shows the experiments of varying w values for RUMP under both the

synthetic dataset and the CarWeb dataset. This figure indicates that the RUMP

63

 0

 200

 400

 600

 800

 1000

 10 30 50 70

e
x
e

c
u

ti
o

n
 t
im

e

number of moving sequences

"UMP, mf=5"
"UMP, mf=3"

"RUMP with CDR(P,2), mf=3"
"RUMP with CDR(P,4), mf=3"
"RUMP with CDR(Z,2), mf=3"
"RUMP with CDR(Z,4), mf=3"

(a) Synthetic Dataset

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 15 45 75 105

e
x
e

c
u

ti
o

n
 t
im

e

number of moving sequences

"UMP"
"RUMP with CDR(P,2)"
"RUMP with CDR(P,4)"
"RUMP with CDR(Z,2)"
"RUMP with CDR(Z,4)"

(b) CarWeb Dataset

Figure 3.10: Execution time for various numbers of movement sequences

precision ratio increases as the value of w increases in both datasets. This is be-

cause as the value of w increases, the number of movement sequences considered

in RUMP increases as the value of w increases. In this case, RUMP can use

more calls to discover user movement patterns. The RUMP precision ratio with a

Poisson distribution is larger than that of RUMP with a Zeta distribution. This is

because the calling behavior in a Poisson distribution is much more evenly across

user movements. Thus, RUMP is able to fully capture user movement behaviors

when the calling behavior follows a Poisson distribution. In a Poisson distribu-

tion, with a larger value of λ, the precision ratio of RUMP is larger. For a larger

value of λ, the amount of call detail records tends to increase, thereby reflecting

the complete movement behaviors of users. For users with a larger number of

calls and non-burst calling behavior, the value of w can be set smaller to quickly

obtain movement patterns. In contrast, for users with a smaller number of calls or

burst calling behavior, the value of w should be set larger to improve the precision

ratio of the movement patterns mined by RUMP .

64

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50

p
re

c
is

io
n

 r
a

ti
o

w

"RUMP with CDR(P,2)"
"RUMP with CDR(P,4)"
"RUMP with CDR(Z,2)"
"RUMP with CDR(Z,4)"

(a) Synthetic Dataset

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 15 30 45 60 75

p
re

c
is

io
n

 r
a

ti
o

w

"RUMP with CDR(P,2)"
"RUMP with CDR(P,4)"
"RUMP with CDR(Z,2)"
"RUMP with CDR(Z,4)"

(b) CarWeb Dataset

Figure 3.11: Precision ratio of RUMP with varying w

Impact of Thresholds in Algorithm LS

This section examines the impact of min freq and min sim on the RUMP

performance. Algorithm LS uses min freq and min sim thresholds to extract

CDRs representing frequent movement behaviors. Figure 3.12 and Figure 3.13

show RUMP experiments with varying values of min freq and min sim. Fig-

ure 3.12(a) shows the result of using RUMP on the synthetic dataset. This fig-

ure indicates that the RUMP precision ratio tends to increase when the value

of min freq increases from 0.1 to 0.3. This figure also shows that the RUMP

precision ratio decreases when min freq exceeds than 0.3. This is because in-

creasing min freq filters out areas through which users do not frequently move

are filtered out. However, a larger min freq is too strict for identifying what areas

are frequent and decreases the precision ratio. Figure 3.12(b) shows that the same

phenomenon for the CarWeb dataset. Selecting the value of min freq should be

determined empirically. For example, in this experiment, we set min freq at 0.3.

Figure 3.13 shows the RUMP precision ratio with various values of min sim.

In both datasets, the RUMP precision ratio tends to increase when min sim in-

65

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4

p
re

c
is

io
n

 r
a

ti
o

min_freq

"CDR(P,2)"
"CDR(P,4)"
"CDR(Z,2)"
"CDR(Z,4)"

(a) Synthetic Dataset

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.1 0.2 0.3 0.4

p
re

c
is

io
n

 r
a

ti
o

min_freq

"CDR(P,2)"
"CDR(P,4)"
"CDR(Z,2)"
"CDR(Z,4)"

(b) CarWeb Dataset

Figure 3.12: Precision ratio of RUMP with min freq varied

creases from 0.1 to 0.5. However, when the value of min sim exceeds than 0.5,

the RUMP precision ratio decreases. The min sim threshold is set to identify

whether or not a movement sequence is similar to the frequent movement behav-

ior. With a larger value of min sim, only a few movement sequences are iden-

tified as being similar to frequent user movement behaviors. This, in this turn,

decreases the RUMP precision ratio. Therefore, the value of min sim should be

carefully set. Experimental results shows that min freq should be set to 0.3 and

min sim should be set to be 0.5 to achieve the best precision ratio performance.

Impact of Thresholds in Algorithm TC

As described above, the value of min var for algorithm TC affects the accuracy

of the RUMP time clustering results. We conducted experiments to examine

the impact of min var. For the synthetic dataset, Figure 3.14(a) shows that the

precision ratio of RUMP with the values of threshold min var varied. This fig-

ure indicates the RUMP precision ratio significantly increases when min var is

0.25. However, the precision ratio of RUMP decreases when min var exceeds

than 0.75. This is because excessively large values of min var result in most of

66

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.3 0.5 0.7

p
re

c
is

io
n

 r
a

ti
o

min_sim

"CDR(P,2)"
"CDR(P,4)"
"CDR(Z,2)"
"CDR(Z,4)"

(a) Synthetic Dataset

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.1 0.3 0.5 0.7

p
re

c
is

io
n

 r
a

ti
o

min_sim

"CDR(P,2)"
"CDR(P,4)"
"CDR(Z,2)"
"CDR(Z,4)"

(b) CarWeb Dataset

Figure 3.13: Precision ratio of RUMP with min sim varied

the call detail records being grouped in the same cluster. Hence, the number of

movement functions is not enough to capture user movement behaviors. Further-

more, with a larger mf , the RUMP precision ratio is smaller and significantly

decreases when min var is larger. For the CarWeb dataset, Figure 3.14(b) shows

the similar experimental results. These results indicate that min var should be

set to be a smaller value for users who move frequently. The value of min var,

which can be determined empirically, should not set too larger. For example, in

Figure 3.14(a), min var should set to 0.75 because the RUMP precision ratio is

the highest.

Figure 3.15 depicts the RUMP precision ratio with various calling behaviors.

In Figure 3.15(a), the results of CDR(P,2) and CDR(P,4) are similar to the results

above. However, it is interesting to note that the precision ratios of CDR(Z,2) and

CDR(Z,4) do not decrease when the value of min var exceeds than 0.75. Since

burst calls happen in the beginning of every three time slots, most of the call detail

records in these three time slots can be grouped into one cluster. Figure 3.15(b)

shows the similar results in the CarWeb dataset. Thus, we can set min var as

0.75 to obtain the highest RUMP precision ratio.

67

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.1 0.25 0.75 1 1.5 2

p
re

c
is

io
n

 r
a

ti
o

min_var

"mf=1"
"mf=3"
"mf=5"

(a) Synthetic Dataset

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.25 0.75 1 1.5 2

p
re

c
is

io
n

 r
a

ti
o

min_var

(b) CarWeb Dataset

Figure 3.14: Precision ratio with min var varied

3.4 Conclusions

User movement patterns can provide a lot of benefits in many mobile design

schemes and applications, including designing a paging area, developing data

allocation schemes, conducting querying strategies, or offering navigation ser-

vices. This article proposes a regression-based approach called RUMP for min-

ing user movement patterns from call detail records. To fully exploit the frag-

mented spatio-temporal information hidden in such trajectories, the proposed regression-

based solution discovers user movement patterns. The RUMP approach uses

three algorithms. First, algorithm LS extracts CDRs that reflect the frequent move-

ment behaviors of mobile users. By capturing similar movement sequences from

call detail records, an aggregation movement sequence is computed to represent

the frequent movement behaviors of mobile users in each time slot. The feature of

spatio-temporal locality states that if the time interval between consecutive calls

is small, the mobile user is likely to have moved nearby. By exploring this feature,

algorithm TC is able to determine the number of regression functions properly by

clustering those movement records whose time of occurrence are very close from

68

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.1 0.25 0.75 1 1.5 2

p
re

c
is

io
n

 r
a

ti
o

min_var

"RUMP with CDR(P,2)"
"RUMP with CDR(P,4)"
"RUMP with CDR(Z,2)"
"RUMP with CDR(Z,4)"

(a) Synthetic Dataset

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.25 0.75 1 1.5 2

p
re

c
is

io
n

 r
a

ti
o

min_var

"RUMP with CDR(P,2)"
"RUMP with CDR(P,4)"
"RUMP with CDR(Z,2)"
"RUMP with CDR(Z,4)"

(b) CarWeb Dataset

Figure 3.15: Precision ratio of RUMP with min sim varied

an aggregation movement sequence. For each cluster of the aggregation move-

ment sequence, algorithm MF generates the movement functions representing user

movement patterns of mobile users. This article evaluates the performance of the

proposed algorithms and conducts sensitivity analysis on several design param-

eters. Experimental results indicate that RUMP can efficiently and effectively

derive user movement patterns that capture the frequent movement behaviors of

mobile users.

69

Chapter 4

CACT: Clustering and Aggregating

Clues of Trajectories for Mining

Trajectory Patterns

4.1 Introduction

With the pervasiveness of mobile devices nowadays, the location of users can be

easily determined using GPS devices and positioning techniques. Using smart

phones, people can access location-based services and share their locations with

friends via social web sites, such as Google’s latitude service and Foursquare

[1][2][3]. As a result, an increasing amount of user trajectory data has become

available. Given a set of users’ trajectories, mining trajectory patterns has many

potential applications, such as urban planning and hot spot detection. In partic-

ular, given individual user trajectories, one could discover individual trajectory

patterns, which are particular useful for the design of personalized navigation

services or for location-based recommending services. In this paper, we aim to

discover individual trajectory patterns.

A considerable amount of research efforts has elaborated on mining trajectory

patterns [5][18][44][30]. In general, trajectory patterns are sequences of regions

that a user usually appears. One of the challenges in trajectory pattern mining is

70

T1

R1 T2

R3

R4

R2

T4

T3

(a)

T1: R1 R2 R3

T2: R1 R2 R3

T3: R2 R4

T4: R2 R4

min_sup = 2

Transformed Trajectories Trajectory Patterns

P1: R1 R2 R3

P2: R2 R4

(b)

Figure 4.1: An example of trajectory pattern mining.

how to define a hot region, a basic unit of trajectory patterns. Hot regions refer to

the range where a user frequently appears. Prior research has explored the den-

sity concept, which identifies hot regions as those that contain a sufficient number

of data points [44][30]. These hot regions are the basic units in trajectory pat-

terns. Given a set of trajectories, prior works in [44][30] have directly employed

density-based clustering algorithms (e.g., DBSCAN) to identify hot regions. A

variety of definitions for density measurements have been proposed. In [18], the

whole space is divided into grids. The density in a grid is defined as the number

of trajectories that cross this grid. Grids that have higher densities form a com-

pact region and are regarded as a hot region. The number of grids substantially

influences the determination of hot regions and is difficult to determine. The au-

thors in [5] transform trajectory data into a series of line segments. If several line

segments from different trajectories are close, a hot region that contains these line

segments is thus determined. Clearly, without proper determining hot regions,

trajectory patterns cannot truly reflect movement behaviors of users.

Once hot regions are determined, they can be viewed as a feature for describ-

ing user movement behaviors. Trajectories that pass through some common hot

regions usually indicate the same movement behavior 1. Prior works transform

1Movement behaviors could be defined as a set of moving paths sharing common movement

71

trajectories into sequences of hot regions. Given a set of hot region sequences,

trajectory pattern mining algorithms have been proposed to discover sequential

relationships among hot regions. Explicitly, trajectory patterns could be viewed

as frequent movement behaviors of a user. In reality, a user may have multiple

movement behaviors hidden in his trajectories. Without clustering trajectories,

hot regions determined by prior works could not accurately capture user move-

ment behaviors. Assume that one user has two movement behaviors, as shown in

Figure 4.1(a), where T1 and T2 represent one movement behavior, whereas T3 and

T4 refer another movement behavior. Identical to [44][30], DBSCAN are used to

extract hot regions from these four trajectories. As can be seen in Figure 4.1(a),

five hot regions are derived. According to these hot regions, four trajectories are

represented as sequences of hot regions. Assume that the frequent threshold for

mining trajectory patterns is 2 (i.e., a sequence of hot regions is identified as a

trajectory pattern if this sequence of hot regions appears in at least 2 times among

a given set of hot region sequences). Then, we could derive two trajectory patterns

(i.e., R1 → R2 → R3 and R2 → R4). Clearly, trajectory pattern R1 → R2 → R3

(respectively, R2 → R4) demonstrates a movement behavior captured by trajec-

tories T1 and T2 (respectively, T3 and T4). Note that hot region R2 contains some

location points of four trajectories that capture different kinds of movement be-

haviors. In this case, R2 cannot precisely identify movement areas when a user

stays at R2. R2 implies the area in which the user is likely to stay. In fact, this user

never stays in the left part of area R2 if the user follows the movement behavior

captured by T1 and T2. Consequently, in this paper, we argue that to derive trajec-

tory patterns, trajectories should be first judiciously clustered into several groups,

where each group is likely to represent one movement behavior. Then, trajectories

features such as velocity, acceleration, and so on [15]. In this paper, we study the movement

behavior in terms of hot regions.

72

I

II

III

IV

V

VI

(a) T1

I

II

III

IV

V

VI

(b) T2

I

II

III

(c) T3

1

T1

T2

time

T3

2 3 4 5 6 7 8

I II III IV V VI

II

I II III IV V VI

I III

(d) Time Representation

Figure 4.2: An example of trajectories from CarWeb dataset.

in each group are used to derive hot regions and these hot regions are able to truly

reflect movement areas where a user usually appears.

For trajectory clustering, one should formulate a similarity measurement among

trajectories according to trajectory characteristics. Generally speaking, a trajec-

tory consists of data points with locations and the corresponding occurrence time.

As has been reported in many prior works, trajectories may exhibit certain spatial

and temporal shiftings, which indicate that the locations and occurrence time of

data points in two trajectories are not usually the same even if two trajectories

capture the same movement. For example, consider two trajectories T1 and T2

in Figure 4.2(a) and Figure 4.2(b), where the roman number associated with each

data point represents the generation order of data points and the time of data points

73

is represented as one time slot. For each data point of T1 and T2, data points are

not exactly the same in terms of spatial and temporal domain even if a user fol-

lows the same movement behavior. Since positioning devices usually have spatial

bias, the spatial information of data points with the same order is not always the

same, which shows the spatial shifting. Moreover, as can be seen in Figure 4.2(d),

T2 is delayed for approximately 2 time slots compared to T1, which demonstrates

the temporal shifting. However, prior works have rarely considered an important

characteristic of trajectory data: silent duration. The silent duration represents a

time duration when there is no data point available. Due to silent durations, tra-

jectories could not record detailed movements of users. The existence of silent

durations comes from the fact that trajectories are generated by positioning de-

vices. Since a user’s movement is continuous in both the time and spatial domain,

obtaining trajectory data could be viewed as sampling from his movement 2. Thus,

trajectories only capture user movements in a discrete manner. Moreover, in real-

ity, data points may not successfully be sampled since environmental factors (i.e.,

weather conditions or high building) have a considerable impact on the position-

ing of user locations. Due to the disturbance of environmental factors, although

data points of trajectories are collected by every fixed time interval, trajectory data

usually still has some missing data points. For some real applications, trajectory

data are collected by smart phones via WiFi or 3G networks. If smart phones are

in the heavy loads, data points of trajectories cannot be successfully transmitted.

Thus, for the reasons above, trajectory data points are not ideally collected such

that silent durations exist in trajectory data. Figure 4.2(c) shows an example of

silent duration, where T3 captures the same movement behavior recorded by T1.

From Figure 4.2(d), data points of T3 at time slots t = 2, 4, 5 are not collected.

2In the rest of this paper, the terms movement and trajectory have different meanings: a move-

ment refers to the actual path how a user moves; a trajectory means a sequence of locations sam-

pled by the positioning device from a movement.

74

Therefore, these two time durations are silent durations.

Note silent durations are affected by sampling methods as well. Currently, two

types of sampling methods are provided: one is to sample user movements every

fixed time interval (referring to as sampling-by-time) and the other is to sample

user consecutive movements at every fixed geographical interval (referring to as

sampling-by-distance). Using various sampling strategies, silent durations may

distribute in the different way. Figure 4.3 shows two trajectories generated by the

sampling-by-distance and the sampling-by-time strategies, respectively. In Figure

4.3(a), although the data points in T4 are evenly distributed in the spatial space,

silent durations exist in T4. Similarly, Figure 4.3(b) shows that T5 derived by

sampling-by-time still has silent durations. Regardless of which sampling meth-

ods are used, silent durations exist in trajectories. A considerable amount of re-

search efforts has been elaborated on the formulation of similarity measurements

to deal with spatial/temporal bias, noise and spatial/temporal shifting. However,

with silent durations, trajectories that capture the same movement behaviors will

have different number of data points. Consequently, this paper develops a new

kind of similarity measurement. This paper also discusses and compares existing

similarity measurements, such as Euclidean distance, dynamic time warping [35]

and edit-distance-based approaches [8], and our proposed one are presented latter.

In this paper, we propose a framework CACT (standing for Clustering and Ag-

gregating Clues of Trajectories) for discovering trajectory patterns. Due to silent

durations, even capturing the same movement behavior, trajectories may only re-

flect fragmented movement information about this behavior. However, these frag-

mented trajectories may provide some clues to indicate whether they represent the

same movement behavior or not. An intuition is that two trajectories are likely

to be from the same movement behavior if they have a lot of data points that are

close in the spatial and temporal domains. These data points are referred as clues

75

(a) T4 (b) T5

Figure 4.3: Two sampling methods for collecting trajectories.

between these two trajectories. With the observation of clues, a similarity mea-

surement CATS (standing for Clue-Aware Trajectory Similarity) is proposed in

that clues are identified and considered. In light of CATS, a clustering algorithm

CATC (standing for Clue-Aware Trajectory Clustering) is proposed to fully ex-

ploit clues between trajectories to group trajectories into several clusters such that

each cluster represents one movement behavior of a user. For each cluster, an

aggregation algorithm CATA (standing forClue-Aware Trajectory Aggregation) is

proposed to aggregate trajectories as a sequence of hot regions. To the best of

our knowledge, this is the first work to deal with clues of trajectories, let alone

proposing a series of clue-aware algorithms for trajectory pattern mining. Exten-

sive experiments on both real and synthetic datasets are conducted. We compare

our proposed algorithms with existing similarity measurements and clustering al-

gorithms. The results show that CACT can discover trajectory patterns effectively

even trajectories do not contain the complete movements of a user.

The rest of the paper is organized as follows. Related works are discussed

in Section 4.2. Preliminaries are given in Section 4.3. Our proposed framework

76

CACT and the corresponding algorithms are presented from Section 4.4 to Section

4.6. Experimental results are shown in Section 4.7. Finally, Section 4.8 concludes

with this paper.

4.2 Related Works

In this section, we will first present some existing similarity measurements for

trajectory data. Then, a survey for trajectory clustering is discussed. Finally,

related works about trajectory pattern mining are described.

4.2.1 Similarity Measurements

As mentioned before, for clustering trajectory data, one important task is to formu-

late a similarity measurement between two trajectory data. A considerable amount

of research efforts have been elaborated on similarity measurements on both tra-

jectory data such as LCSS [57], ERP [7], EDR [8], and RTSD [54] and time series

data, including dynamic time wrapping [62][35], SpADe [9], and wDF[13].

Since our goal is to identify similar movement behaviors from trajectories, we

will compare our proposed similarity with LCSS, DTW, EDR and wDF. Table 4.1

summaries these existing similarity measurements and their capabilities. To eval-

uate their capabilities, there are five criteria. The first criterion is the capability

to handle the local temporal shifting. The second one is how to deal with time

sensitive which represents the ability to distinguish whether two trajectories are

from different time periods or not. For example, two trajectories with the same

shape should be distinguishable if one trajectory occurs in the morning and the

other trajectory happens in the evening. Since data points have spatial bias, the

third criterion, space quantization, is how to assign weights to overcome spatial

bias. According to the distance between two data points from different trajec-

tories, previous similarity measurements assign different weights for data points

77

Functions Local Temporal Time Space Mapping Empty

Shifting Sensitive Quantization Scheme Mapping

DTW
√

none 1-n/n-1

LCSS
√ √

discrete 1-1
√

EDR
√

discrete 1-1
√

wDF
√ √

none 1-1

Table 4.1: Comparison of similarity measurements.

and the weights will be aggregated as a score for two trajectories. There are two

kinds of space quantization: one is the discrete scheme and the other is the con-

tinuous scheme. For the discrete scheme, if the distance between two data points

is larger than a spatial threshold, the weight for these two data points is set to 0.

Otherwise, the weight is set to 1. For the continuous scheme, data points whose

distance is smaller than the spatial threshold will further assign different weights.

Given two trajectories (e.g., Ti and Tj), a mapping scheme represents how to map

one data point of trajectory Ti to data points of trajectory Tj . Mapping scheme

1-n denotes that a data point of Ti is able to map n data points of Tj , scheme n-1

denotes that n data points of Ti could map to one data point of Tj , and scheme 1-1

presents that one data point of Ti can only map to only one data point of Tj . For

example, DTW has two mapping schemes n-1 and 1-n. On the other hand, the

mapping scheme of LCSS is 1-1 because a point is only mapped to the other one

point. Empty Mapping represents that if a data point of one trajectory cannot find

a suitable data point for mapping, one could skip the mapping for this data point.

Note that RTSD and SpADe are not suitable for trajectory pattern mining in

this paper. Explicitly, RTSD considers two trajectories to be similar if several

translations and rotations are performed to two trajectories. Thus, a hurricane that

has its movement from South to South-East is recognized to be similar to another

hurricane that has its movement from West to South-West. However, this property

is not proper for trajectory pattern mining in this paper since trajectories with simi-

78

lar movement directions are clustered, which shows that rotations are not allowed.

As for SpADe, SpADe focuses on the shape-based pattern detection for time se-

ries. The main goal of SpADe is to use ”shape” to distinguish whether two time

series are similar or not. SpADe first finds local patterns and then calculates the

distance of two time series by calculating the shortest path between these matched

local patterns. To recognize whether two trajectories have the same shape, SpADe

tolerates certain amplitude-scaling and amplitude-shifting. However, this may be

not desired in mining trajectory patterns: two trajectories with the same shape

could not represent the same movement behavior if they are not close enough in

both the spatial and temporal domains. Moreover, due to silent durations, local

patterns may not always be recognized since there is no information available in

silent durations. Thus, we only consider LCSS, DTW, EDR and wDF for per-

formance comparisons. Since no exiting similarity measurement is developed for

handling silent durations of trajectories, our proposed similarity measurement is

thus different from others.

4.2.2 Trajectory Clustering

The related work of trajectory clustering could be categorized into two kinds: one

is to cluster the entire trajectories and the other is to cluster sub-trajectories.

For the first kind of trajectory clustering, a model-based approach for trajec-

tory clustering is proposed [16]. The authors in [16] assume that each trajectory is

smooth such that each data point could be estimated by a probability density func-

tion. Given density probability functions that a trajectory belongs to clusters, the

probability of each observed trajectory could be modeled as a a mixture density

function. Therefore, this algorithm first represents a set of trajectories by a regres-

sion mixture model, and then uses maximum-likelihood principle to determine the

cluster memberships. However, the major limitation is that the probability density

79

function of each cluster and the number of clusters should be given. In [45], the

authors proposed an adaptation of a density-based clustering algorithm to trajec-

tory data based on a simple notion of distance between trajectories. This work

proposed a distance function that first computes the Euclidean distance between

locations at each time slot and then averages the sum of Euclidean distance values

at all time slots. Based on this function, a particular density-based clustering algo-

rithm, OPTICS is used to cluster trajectories. Moreover, an empirical comparison

with several traditional k-means and hierarchical algorithms showed that OPTICS

is the most suitable clustering algorithm for clustering trajectories. The advantage

from the previous one is that the number of cluster does not need to be known

in advance. However, data points at every time slot are required to be available

(or be well-approximated) for the computation of the proposed distance function.

Thus, this approach may not work very well when there are silent durations in

trajectories.

For the second kind of trajectory clustering, the state-of-art approach is Tra-

Clus [38]. The primary goal of this work is to discover common sub-trajectories

from a set of trajectories. Different from the first class, the key observation of this

work is that clustering trajectories as a whole could miss common sub-trajectories.

Discovering common sub-trajectories could be very useful in many applications,

especially if we have regions of special interest for analysis. Therefore, the authors

in [38] proposed a partition-and-group framework for clustering sub-trajectories.

This framework first decomposes a trajectory into a set of line segments, and then

groups similar line segments together into a cluster. In our work, we need to clus-

ter the whole trajectories instead of sub-trajectories. In addition, we slightly utilize

TraClus to find common sub-trajectories among trajectories and then formulate

the similarity of trajectories using these common sub-trajectories. We will com-

pare our proposed clustering algorithm with a revised TraClus later. The above

80

trajectory clustering algorithms work well under the assumption that trajectories

could fully represent the movements of objects or could be well-approximated.

4.2.3 Trajectory Pattern Mining

The problem of mining trajectory patterns has attracted a considerable amount of

research efforts. Generally speaking, the flow of mining trajectory patterns is to

find hot regions and then derive the sequential relationship among hot regions. On

discussing the form of trajectory patterns, the authors in [44][24][56] have elab-

orated on mining spatio-temporal association rules of hot regions from a set of

trajectories. In [5], the authors claimed the fuzziness of locations in patterns and

developed algorithms to discover spatio-temporal sequential patterns. Further-

more, the authors in [33] proposed a clustering-based approach to discover mov-

ing regions within time intervals. The authors in [38][39] proposed a framework

to cluster sub-trajectories which first partition trajectories into small segments and

cluster them according to their geometric properties (i.e, angle, distance, length).

In [30], the authors developed a hybrid prediction model, consisting of vector-

based and pattern-based model, to predict movements of users. In [18] and [17],

the authors exploited temporal annotated sequences in which sequences are as-

sociated with time information (i.e., transition times between two movements).

We mention in passing that some works deal with a trajectory convoy problem

and a moving clustering problem. In the trajectory convey problem [31], a convoy

represents a group of objects that travel together for more than some minimum

time duration. For example, in Figure 4.4(a), given the minimum time duration

as 3, these five objects belong to one convoy because they travel together for

sufficient time duration. Clearly, our trajectory patterns are different from the tra-

jectory convey in that a trajectory pattern indicates sequential relationships among

81

ε
x

y

t

1

2

3

O5 O4 O3 O2 O1

(a) Convoy

ε

x

y

t

1

2

3

O4 O3 O2 O1

C1

C2

C3

C4

(b) Moving Clusters

Figure 4.4: Examples for trajectory convoy and moving clusters.

hot regions, whereas a convoy indicates a set of objects that have spatial relation-

ships at some time slots. Clearly, the outputs of these two problems are signifi-

cantly different. Moreover, the distance between objects in a cluster at a time slot

may be larger. For example, the distance between O1 and O5 is large, reflecting

the same problem of hot regions determination by density-based approaches. If

trajectories have silent durations, the trajectory covey will not discover good clus-

ters at each time slot. As for the moving clustering problem, the goal is to derive

a sequence of spatial clusters to a sequence of spatial clusters at consecutive time

slots such that the intersection of spatial clusters contains a sufficient number of

objects. In other words, the number of objects in the intersection of spatial clus-

ters should be larger than a threshold [33]. For example, in Figure 4.4(b), if the

threshold for the portion of common objects is 1/2, C1 and C2 become a mov-

ing cluster. Notice that moving clusters refer to the spatial group of objects over

time. However, our trajectory pattern mining is to discover frequent movement

behavior. The moving clustering problem only considers the number of common

objects among spatial clusters and objects in the set of moving clusters are not al-

ways the same. Hence, moving clusters cannot directly reflect frequent trajectory

patterns. Both the trajectory convoy and moving clusters work well with detailed

82

trajectories. The most challenge point in our paper is that trajectories may not

have detailed movements and thus have some silent durations. previous works do

not cluster trajectories before the determination of hot regions. Furthermore, for

trajectory clustering, the issues to deal trajectories which can only reflect partial

movement behaviors are not addressed. By fully exploiting trajectory clues, our

proposed approach is able not only identify the various movement behaviors but

also accurately discover trajectory patterns. These features distinguish our works

from others.

4.3 Problem of Trajectory Pattern Mining

A trajectory Ti of a user is defined as a time-order sequence of data points and

Ti is typically expressed by Ti =< pi,1, pi,2, ..., pi,n >, where pi,j = (`i,j, ti,j)

represents the location of the user (i.e., `i,j) at the time ti,j , ti,j < ti,j+1 and n is

the length of trajectory Ti. The location `i,j is usually a two-dimensional or three-

dimensional data point. Given a set of trajectories, we intend to mine sequential

relationships among hot regions. In this paper, we extend the definition of hot

regions in [5]. Explicitly, the hot region contains not only the spatial area but also

temporal time interval to indicate where and when a user appears. The definition

of a hot region, a basic unit of trajectory patterns, is defined as follows:

Definition. Hot Region: Given a spatial threshold ε and a temporal threshold

τ , a hot region is a spatial-temporal prism structure ri that satisfies two crite-

ria: (1). In the temporal domain, hot region ri has its time interval, denoted as

[ri.S, ri.E], where ri.S is the start (respectively, end) time of ri. The time du-

ration ri.E − ri.S + 1 should be larger than τ . (2). In the spatial domain, the

projection of ri to the spatial domain, represented as two dimensional XY-plane,

83

ε

x

y

t

1

2

3

4

r1

r2

r1

r2

Figure 4.5: A trajectory pattern.

is a rectangle, in which there is a representative line
−→
Li such that for each data

point x in this rectangle, the distance between data point x and the
−→
Li should be

smaller than ε.

For example, three trajectories are shown in Figure 4.5, where data points

of trajectories are marked as black points at the corresponding time slots. Given

τ = 2 and ε, two hot regions r1 and r2, represented as two spatial-temporal prisms,

are generated. These two hot regions r1 and r2 have their time duration as 2 and

the spatial projections of r1 and r2 are rectangles with their representative lines.

With the definition of hot regions above, a trajectory pattern TP is represented

as an ordered sequence of hot regions TP=r1r2...rk, where k is the length of TP .

Each trajectory pattern TP is derived from a set of supporting trajectories. The

definition of supporting trajectories for trajectory pattern TP is as follows:

84

Definition. Supporting Trajectory: Given a trajectory pattern TP = r1r2...rk,

for each hot region ri of TP , a supporting trajectory with respect to TP has some

data points, e.g., p, that the occurrence time of p is within ri.S and ri.E, and

d(p,
−→
Li) < ε, where d(·) is the geographic distance function.

In this paper, given a set of trajectories and three thresholds, min sup, ε, τ and

λ, the problem is to discover trajectory patterns which have more than min sup

supporting trajectories and those supporting trajectories should have their clue

similarity values larger or equal to λ. Clearly, a trajectory pattern refers a frequent

movement behavior since each trajectory pattern has at least min sup supporting

trajectories.

As pointed out early, a user may have multiple movement behaviors. As such,

we claim that before determination of hot regions, we should perform trajectory

clustering to derive a set of clusters that represent different movement behaviors.

Each cluster represents one trajectory pattern and then, for each cluster, we de-

rive hot regions of each trajectory pattern. Our proposed framework CACT con-

sists a series of algorithms, including clue-aware trajectory similarity (CATS),

clue-aware trajectory clustering (CATC) and clue-aware trajectory aggregation

(CATA). The overview of our proposed framework CACT is shown in Figure 4.6.

In the following sections, we will detail each algorithm in our framework CACT.

4.4 Clue-Aware Trajectory Similarity

In this section, we first discuss the unique characteristics of trajectories and then,

our design of similarity measurement is presented. Finally, some interesting prop-

erties of clue-based similarity measurements are described.

85

Trajaectories
Similarity

Computation
Trajectory

Clustering

Trajectory

Aggregation

Trajectory

Patterns
Clue-Graph Clusters

Clue-Aware

Trajectory

Similarity

(CATS)

Clue-Aware

Trajectory

Clustering

(CATC)

Clue-Aware

Trajectory

Aggregation

(CATC)

Figure 4.6: Overview of our proposed framework CACT.

4.4.1 Characteristics of Trajectories

For trajectory clustering, a similarity measurement between two trajectories should

be formulated. Some characteristics of trajectories are listed as follows:

• Spatial and temporal bias: In practice, trajectories are obtained by posi-

tioning devices. Generally speaking, data points of trajectories have both

the spatial and temporal bias. For example, the position accuracy of GPS

(Global-Position System) has spatial bias. For the temporal bias, the occur-

rence time of data points that capture exactly the same movement behavior

is not always the same. Consider a worker goes to his office from his home

at 8:00am every day. Data points of trajectories that record his movement

behavior will not have the same occurrence time. One reason is that the

positioning device needs some time to determine his location. Thus, even

if this user leaves his home at 8:00am every day, data points of trajectories

have some temporal bias.

• Local temporal shifting: Due to movement speeds of users or time delay

of user movements, trajectories may have local temporal shifting. For ex-

ample, although a user follows the same movement path to his office every

day, his daily trajectories may have sub-trajectories whose occurrence time

86

is shifted.

• Noise: Positioning devices can be easily affected by environment factors,

such as buildings, shelters, and weathers. Hence, data points of trajectories

usually have some noises.

• Silent duration: The length of a trajectory is mainly decided by the time

the sampling rate. For the same movement path, even we set the same sam-

pling rate for the positioning device, trajectories collected may have differ-

ent lengths. This results from environmental factors (e.g., the weather), and

the constraint of position devices (i.e., the capability of positioning devices

in computing and networking). In this paper, a silent duration refers a time

duration when there are no any data points available about user movements.

For example, if we set the data points are collected every 5 seconds, at some

time slots, some data points are lost due to the constraint of positioning de-

vices or other environmental factors. On the other hand, to save energy of

positioning devices powered by batteries, we may set a lower sampling rate.

Consequently, a trajectory has a rough user movement behavior.

4.4.2 Design of Clue-Aware Trajectory Similarity

Given two trajectories, the design of the Clue-Aware Trajectory Similarity (abbre-

viated as CATS) is to capture as many similar data points between two trajectories

as possible while still guaranteeing the given thresholds in the spatial and tem-

poral domains. CATS is able to overcome the effects raised by characteristics of

trajectories since CATA has a spatial decaying function, clue scores of data points

and a new mapping scheme. The properties of CATS will be discussed later.

Since trajectories usually contain spatial bias and shifting, we first use a spa-

tial decaying function to measure the degree of bias and shifting as follows:

87

Definition. Spatial Decaying Function: Given a spatial threshold ε, and two

data points pi,` = (li,`, ti,`) and pj,k = (lj,k, tj,k) from two trajectories (i.e., Ti and

Tj), a spatial decaying function for two points pi,` and pj,k is defined as

fε(pi,`, pj,k) =

{

0, if dist(pi,`, pj,k) > ε

1 − dist(pi,`,pj,k)

ε
, otherwise

where dist(·) is Euclidean distance between two data points.

The value of spatial decaying function is ranged from 0 to 1. Obviously, the

closer the two data points, the larger the value is. Once the locations of two

data points are exactly the same, the value is 1. On the other hand, once the

distance between two points is far from ε, the value is 0. For example, Figure

4.7 shows two trajectories T1 and T2, where the underlying grey lines are actual

movements and the circles represent the data points of T1 and T2. Consider ε = 4

and Euclidean distance as the distance function. Given two points p1,2 = (2, 2, 3)

and p2,1 = (3, 3, 3), it can be derived that f4(p1,1, p2,4) = 1 −
√

2
4

= 0.65. On

the other hand, given p1,4 = (7, 4, 9) and p2,1 = (3, 3, 3), we can derive that

f4(p1,4, p2,1) = 0 since dist(p1,4, p2,1) > ε = 4.

In the spatial decaying function, a parameter ε is given to tolerate the spatial

bias and shifting of data points 3. According to the Euclidean distance between

two points, the spatial decaying function performs a continuous space quantization

(i.e., from 0 to 1). The continuous space quantization could reflect the close degree

of two data points compared to the discrete space quantization adopted by LCSS

and EDR. For example, if the ε is set as 10 meters, consider two cases that two

points with their distance 1 meter and two points with their distance 9 meters. In

the clue-similarity measurement, the former case contains a stronger clue than the

3Users could set the parameter ε according to application requirements or trajectory patterns

mined.

88

latter case. LCSS and EDR could not distinguish these two cases since these two

points in each case have their distance smaller than 10 meters.

According to the spatial and temporal information of data points, we need to

give a score for data points with respect to a trajectory. Note that a clue score of a

data point is used to evaluate the clue degree of data points by mapping this data

point to the data points of trajectories. Given a data point pi,` ∈ Ti and a trajectory

Tj , a clue score of data point pi,` with respect to trajectory Tj is to identify the best

mapping point of Tj to pi,` that is close to the given data point in the spatial and

temporal domains.

Definition. Clue Score of Data Points: Given a point pi,`, a trajectory Tj , a

spatial threshold ε, and a temporal threshold τ , the clue score of this data point

pi,` to trajectory Tj is defined as scoreε,τ (pi,`, Tj) = max{fε(pi,`, pj,k)|pj,k ∈
Tj and tj,k ∈ [ti,` − τ, ti,` + τ]}.

Assume that ε = 4, τ = 4. An example of trajectories is shown in Figure

4.7(a), where the underlying grey line is the real movement. Consider a data

point p1,5 of T1 as an example. The clue score of data point p1,5 with respect to

trajectory T2 is to find the best mapping data points of T2 within a time interval

14 − 4 to 14 + 4. It can be verified in Figure 4.7(a) that four data points p2,3, p2,4,

p2,5 and p2,6 of T2 are possible mapping data points for p1,5 since their time are

within 14 − 4 to 14 + 4. Since f4(p1,5, p2,5) = 1 −
√

5
4

= 0.44 is the largest value

among that of other points, the clue score of p1,5 with respect to trajectory T2 is

thus scoreε=4,τ=4(p1,5, T2) = 0.44.

From the definition of clue scores, a temporal parameter τ is used to retrieve

data points of trajectories whose occurrence times are within a particular time in-

terval. Using this parameter, our proposed CATS can deal with local temporal

89

0 2 4 6 8 10 12 14 16 18

0

2

4

0

2

4

T1

T2

1

3

8
9

14
16

23

25

28

3

6 10

12

13

18

20

21

28

29

(a)

0 2 4 6 8 10 12 14 16 18

0

2

4

0

2

4

T1

T2

1

3

8
9

14
16

23

25

28

3

6 10

12

13

18

20

21

28

29

(b)

Figure 4.7: An illustrative example for clue-aware similarity of T1 and T2.

shifting. Since the time of data points to be mapped are constrained by the tem-

poral parameter, the clue score is sensitive to time. The clue score of data points

with respect to a trajectory is ranged from 0 to 1. Clearly, the clue score of data

points considers both the spatial and temporal information, while stilling allowing

some tolerable spatial and temporal thresholds to overcome spatial and temporal

bias.

In light of the clue score, we could define the clue similarity between two tra-

jectories as follows:

Definition. Clue-Aware Trajectory Similarity: Given a spatial threshold ε

and a temporal threshold τ , the clue-aware trajectory similarity from Ti to Tj is

defined as CATSε,τ (Ti, Tj) = 1
|Ti| ×

∑

pi,`∈Ti

scoreε,τ (pi,`, Tj).

For example, let ε = 4 and τ = 4. The arrows in Figure 4.8(a) show the

mapping relationships from each data point of T3 to data points of T4. Con-

sequently, the clue-based similarity measurement from T3 to T4 is derived as

CATS4,4(T3, T4) = 1
8
× (score(p3,1, T4) + score(p3,2, T4) + score(p3,3, T4)) =

1
8
× (1 + 1 + 0.25) = 0.28.

90

4.4.3 Properties of Clue-based Similarity Measurements

From the definition of clue scores, both ε and τ thresholds are used to overcome

spatial and temporal biases. Moreover, these two thresholds could deal with the

local shifting scenario in both the spatial and temporal domains. Since noise data

will have larger distance value, our spatial decay function can easily filter out

noise data. For the mapping scheme, our clue-based similarity measurement al-

lows many data points to map the same data point of other trajectories. Consider

the clue-based similarity from Ti to Tj as an example. It is possible that some

data points of trajectory Ti map to the same data point of Tj if the mapped data

point of Tj fulfills both the spatial and temporal thresholds ε and τ . This mapping

scheme is referred as n-to-1 mapping (abbreviated as n-1). Since data points of

Ti have higher clue scores to Tj , these data points of Ti in fact provide a more

detailed movement information for Tj . Thus, these data points are very helpful

for the silent duration of Tj . Furthermore, due to the spatial and temporal thresh-

olds, data points of Ti may not map any data points of Tj . In that case, the clue

score is set to 0. Hence, CATS will reflect those sub-trajectories that have higher

clue scores. Suppose that two trajectories have different lengths and these two

trajectories have some clues. Our CATS will still derive a higher clue score for

these two trajectories, showing that CATS is able to overcome silent durations of

trajectories.

Note that CATS has an asymmetry property. For example, in Figure 4.8,

CATS4,4(T3, T4) = 0.28 is not equal to CATS4,4(T4, T3) = 0.76. From the

aforementioned example, it can be seen that T3 provides only a limited number of

clues for the movement behaviors. On the other hand, with a large CATS values,

trajectory T4 can provide more detailed movement information for T3. Hence, this

asymmetry property of CATS is helpful for identifying relationships between two

91

trajectories. From our observations, there are two relations between two trajec-

tories: the first one is that both of two trajectories can provide sufficient clues to

each other. The second case is that from perspective of Ti, trajectory Ti is likely

to provide some detailed sub-trajectories to trajectory Tj , but from the perspec-

tive of Tj , Tj does not have similar movement behavior with Ti. The asymmetric

property reflects two kinds of relationships between two trajectories. The first re-

lationship usually happens when silent durations of two trajectories are distributed

in the similar way and two trajectories have only some spatial and temporal shift-

ing. For the first case, these two trajectories can be recognized as one movement

behavior. Figure 4.7 shows an illustrative example, where both T1 and T2 have

the same amount of clues to each other. Thus, two trajectories are very likely to

follow the same movement behavior. For the second relationships, one trajectory

may contain the other trajectory. For example, in Figure 4.8, the actual movement

of T3 and T4 are the same (i.e., the underlying grey lines). Figure 4.8(a) shows that

mapping data points of T4 have clues to T3. However, in Figure 4.8(b), most data

points of T3 have no clues to T4. In this case, we can see that by compensating

T3 with the data points of T4, the movement behavior can be revealed in more de-

tail. Consequently, with the asymmetry property, we further propose a clue-aware

clustering algorithm to cluster trajectories into several groups, where each group

represents one frequent movement behavior.

4.5 Clue-Aware Trajectory Clustering Algorithm

In this section, we propose algorithm CATC (standing for Clue-Aware Trajectory

Clustering), to cluster trajectories into several clusters and each cluster represents

one frequent movement behavior.

92

0 2 4 6 8 10 12 14 16 18

0

2

4

0

2

4

T3

T4

3

6 10

11
13

18

22

24

1
2

3

4

5

23

(a)

0 2 4 6 8 10 12 14 16 18

0

2

4

0

2

4

T3

T4

3

6 10

11
13

18

22

24

1
2

3

4

5

23

(b)

Figure 4.8: An example to show the asymmetric property of CATS.

4.5.1 Design of Clue-Aware Trajectory Clustering Algorithm

The overview of our proposed clue-aware trajectory clustering algorithm is out-

lined as follows:

Procedure of CATC

Step 1. Clue-Graphs generation phase: In this phase, a graph structure is used

to represent clue-similarity measurements among trajectories.

Step 2. Core set identification phase: A core set refers to a set of trajectories that

have strong clue similarities with each other. In this phase, given a clue-graph, we

discover a set of core sets.

Step 3. Cluster discovery phase: In this phase, we merge core sets as a cluster

and extract clusters that have a sufficient number of trajectories as frequent move-

ment behaviors.

Given a set of trajectories, we first determine the values of clue-aware trajec-

tory similarities among them. Then, we utilize a graph structure to represent their

clue-aware trajectory similarities. The definition of a clue-graph is given below:

Definition. Clue-Graph: Given a set of trajectories T = {T1, T2, ..., Tn} and a

threshold λ, a clue-graph is a weighted directed graph G = (V, E). In the clue-

93

graph G, a set of vertices V = {v1, v2, ..., vn} represents the set of all trajectories

and a set of edges is defined as E = {(vi, vj)|CATSε,τ (vi, vj) ≥ λ} with their

weight as CATSε,τ (vi, vj).

Figure 4.9 shows a clue-graph with λ = 0.4. A clue-graph is used to repre-

sent the clue relations between trajectories. There will be no edge between two

vertices if the corresponding trajectories do not have significant clues (i.e., their

clue similarity value is smaller than λ). In the clue-graph, we could further define

a directly clue-reachable relationship among trajectories as follows:

Definition. Directly clue-reachable: A vertex vi is directly clue-reachable to

a vertex vj , denoted as vi Ã vj , if (vi, vj) ∈ E.

As pointed out early, our proposed similarity CATS has an asymmetry prop-

erty. It is possible that one trajectory has significant clues to the other one but the

reverse does not hold. On the other hand, if two trajectories could provide clues

to each other, these two trajectories likely infer the same movement behavior. In

this case, these two trajectories are directly clue-reachable to each other in the

clue-graph, i.e., they are one-hop neighbors. To represent the above scenario, we

define a core set as follows:

Definition. Core set: Given a clue-graph G = (V,E), a core set is a directed

complete subgraph of G, where any two nodes vi and vj in a core set are directly

clue-reachable to each other.

Each node in the core set has highly clues indicating that these nodes in this

core set capture the same movement behavior. Clearly, these core sets are viewed

as seeds and these seeds could further expand nearby seeds in the clue-graph

for possible merging. The detailed merging procedure among core sets is pre-

94

C1

0.7

0
.7

0
.8

0
.9

0
.8

0.9

v1 v2

0.8

0.9

v6 v7

0.9

0.9

v10

v8

v9

0.7

0
.7

0
.7

0
.8

0
.8

0.9

T1

T2

T3

T4

T5

v5

v3 v4

0
.5

0
.6

T6

T7

0
.8

0
.4

0
.4

0
.7

T8

T9

T10

C2

C3

C4

Figure 4.9: An illustrative example for CATC.

sented later. To identify core sets in the clue graph, we borrow existing works of

clique-covering algorithms. Most clique-covering algorithms are executed in an

undirected graph [20]. To facilitate the generation of core sets by using existing

clique-covering algorithms, a strong clue-graph, denoted as SC-graph, from the

clue-graph G is defined as follows:

Definition. Strong Clue-graph: Given a clue-graph G = (V,E), a Strong

Clue-Graph, denoted as SC-G, is a undirected graph and represents as SC-G=

(V,E
′

), where (vi, vj) ∈ E
′

if both (vi, vj) ∈ E and (vj, vi) ∈ E.

By performing an existing clique-covering algorithm in SC-G, a set of core

sets is derived. Then, nodes in the same core set are labeled in the clue-graph as

well. A minimum clique cover for the clue-graph in Figure 4.9 are {C1, C2, C3, C4},

where vertices in the same shade region belong to a clique.

95

After the generation of core sets, these core sets may merge other core sets

if two core sets have some reachable relationships. Since a core set may have

reachable relationships with more than one core set, one should judiciously decide

which core sets are selected for merging. To infer whether two core sets capture

the same movement behavior or not, the number and the weights of edges between

two core sets should be considered. Intuitively, if both the number of edges among

vertexes of two core sets and edge weights are larger, these two core sets are likely

to reflect the same movement behavior. Furthermore, two core sets may still have

clue reachable relationships via other core sets between these two core sets. To

define the clue reachable relationship among two core sets (referring to as clue-

connected), we should define a clue-reachable relationship between two vertex as

follows:

Definition. Clue-reachable: A vertex u is clue-reachable to a vertex v, de-

noting as u Ã
∗ v, if there exists a chain of vertices v = v1, v2, ..., vn = u such

that vi Ã vi+1 for all i = 1, 2, ..., n − 1.

With the definition of clue-reachable, we could define the clue-connected re-

lationship between two core sets as follows:

Definition. Clue-connected: Given two core sets Cu and Cv, Cu can clue-connect

to Cv, denoted as Cu ⇒ Cv, if there exists a core set Cw such that x Ã
∗ y for all

x ∈ Cu and for some y ∈ Cw, and y
′

Ã
∗ z for all y

′ ∈ Cw and for some z ∈ Cv.

For example, in Figure 4.9, C1 can clue-connect to C2. The reason is that given

Cv = C1, Cw = C1, and Cu = C2, we have all vertices in C1 are clue-reachable

to some vertices in C1 since C1 is a core set, and v1 Ã
∗ v3 and v2 Ã

∗ v3. Two

clue-connected core sets demonstrate the same movement behavior if these two

core sets have connected core sets between these two core sets. Clearly, if two

96

core sets have a clue-connected relationship, these two core sets should be put in

the same cluster.

Considering the aforementioned definitions, the cluster results of algorithm

CATC should be a set of clusters consisting of core sets and the number of ver-

tices in each cluster should be larger than min sup. To facilitate our presentation,

a candidate cluster is used to represent our merging results of core sets. Initially,

each core set is viewed as one candidate cluster. We will iteratively merge can-

didate clusters until no further merge operation is needed. One criterion stopping

this merge operation is to measure the quality of cluster results. To evaluate the

quality of cluster results, we have the following definitions: clue-cohesion and

clue-separation.

Definition. Clue-Cohesion: Given a candidate cluster K, the clue-cohesion

of K, denoted CCOH(K), is defined as the minimum weight that for every core

set Ci ∈ K, there exists a core set Cj ∈ K such that Ci ⇒ Cj .

Definition. Clue-Separation: Given two candidate clusters Km and Kn, the

clue-separation from Km to Kn, denoted CSEP (Km, Kn), is defined as the total

weights of all edges from Km to Kn.

For example, consider C2 and C4 in Figure 4.9. If we want to make C4 ⇒ C2,

two extra edges (e.g., (v8, v3) and (v10, v5)) with total weight 2 × λ = 0.8 should

be added since there already exists an edge (v9, v4) from C4 to C2. Thus, if a

cluster K contains C2 and C4, the clue-cohesion of this cluster can be derived

as CCOH(K) = 0.8. The clue-separation CSEP (C4, C2) = 0.4 since there

is one edge (v9, v4) from C4 to C2 with total weight λ = 0.4. Note that the

clue-cohesion CCOH(Km, Kn) is zero if Km can clue-connect to Kn. As such,

97

two clue-connected clusters are easily merged, which fits our goal that two clue-

connected core sets should be put into the same cluster.

According to the quality measurements of clusters, we intend to have a set of

clusters such that the cluster result should have smaller clue-cohesions and clue-

separations among clusters. In the other words, trajectories within the same cluster

have as many clues as possible and trajectories between different clusters have as

few clues as possible. Therefore, the desired cluster results could be defined as

follows:

Definition. Clusters: Given a clue-graph G = (V,E), derive a set of clusters

K = {K1, K2, ..., Km} such that (1) Ki contains a set of core sets, (2) minimize
∑

Km∈K
CCOH(Km) +

∑

Km,Kn∈K
CSEP (Km, Kn), and (3) |Ki| ≥ min sup for all

Ki ∈ K.

In light of the requirements of clusters, we design a benefit function that takes

both the clue-cohesion and clue-separation into accounts in merging candidate

clusters. The benefit function is formulated as follows:

Definition. Benefit Function: Given two candidate clusters Km and Kn,

the benefit function is defined as Benefit(Km, Kn) = DesCSEP (Km, Kn) −
IncCCOH(Km, Kn). DesCSEP (Km, Kn) = (CSEP (Km, Kn)+CSEP (Kn, Km))/2

and IncCCOH(Km, Kn) = CCOH(Km)+CCOH(Kn)+
∑

Ci∈Km

min
Cj∈Kn

{I(Ci, Cj)×
λ}, where I(Ci, Cj) denotes the number of vertices that have no edge from core

set Ci to Cj .

Generally speaking, merging two candidate clusters will increase the total

clue-cohesion while decreasing the total clue-separation. Therefore, merging two

98

clusters can minimize the sum of cohesion and separation if this merging could

lead to a larger amount of decreased separation than a smaller amount of increased

cohesion. Consequently, the benefit function is to evaluate whether merging two

candidate clusters is able to reduce the value of the objective function (i.e., the sum

of the total clue-cohesion and the total clue-separation). Assume that we intend

to merge two candidate cluster Km and Kn. The first term of the benefit func-

tion (i.e., DesCSEP) represents how many clue-separation could be reduced by

merging Km and Kn. The average of the clue-cohesions between two candidate

clusters aims to prevent the scenario that only one cluster has a lot of edges to the

other one but there’s no edges in reverse. The second term of the benefit function

(i.e., IncCCOH) is to evaluate the amount of increase in clue-cohesion by merging

Km and Kn. For two candidate clusters Km and Kn, they need CCOH(Km) and

CCOH(Kn) to make their core sets clue-connected. The last term of IncCCOH

refers to the minimum weight that every core sets in Km can clue-connect to some

core set in Kn. Exploiting this benefit function, algorithm CATC iteratively se-

lects two candidate clusters with the maximum benefit value until the value of the

benefit function is smaller than zero. Once the merging operation is finished, can-

didate clusters that have more than min sup vertices will become final clusters.

The reason for having at least min sup vertices is that each cluster represents

one frequent movement behavior. Note that the computation of the benefit func-

tion could be implemented by dynamic programming strategy efficiently: since

candidate clusters are expanded in a bottom-up fashion, the clue-cohesions and

clue-separations of any two candidate clusters are computed at previous rounds.

Therefore, we could explore a dynamic programming strategy in algorithm CATC.

99

4.5.2 Running Example for Clustering Discovery in algorithm

CATC

The execution scenario of CATC could be best understood in Figure 4.9. In this

figure, T1 to T7 capture the first movement behavior and T8 to T10 record the

second movement behavior. Note that there are edges from v4 to v9, and from

v7 to v9. The reason is that they have some nearby points as shown in the dashed

square such that there are some clues between them. In the beginning, CATC finds

four core sets C = {C1, C2, C3, C4} and the vertices in the same shaded area are

in the same clique. Each clique is a candidate cluster in K, i.e., K = {K1 =

C1, K2 = C2, ..., K4 = C4}. To evaluate whether two candidate clusters can be

merged, we first compute benefit values for each pair of candidate clusters. For

example, it could be computed that Benefit(K1, K2) = (0.5+0.6)/2+0 = 0.55

(since all vertices in K1 are clue-reachable to v3), Benefit(K3, K2) = (0.7 +

0.8)/2 − 0.4 = 0.35 (since v6 in K3 is not clue-reachable to any vertex in K2),

and Benefit(K4, K2) = (0.4 + 0.4)/2 − 2 × 0.4 = −0.4 (since v8 and v10

in K4 are not clue-reachable to any vertex in K2). Since the Benefit(K1, K2)

is the maximum, two candidate clusters K1 and K2 are merged into one larger

candidate cluster K
′

1 = {K1, K2}. Next, CATC continues to compute the benefit

values between all pairs of candidate clusters. Specifically, if we intend to merge

K3 to K
′

1, we could first derive DesCSEP (K3, K
′

1) = (0.7 + 0.8)/2 = 0.75.

Then, C3 ∈ K3 needs the cost 1 × 0.4 = 0.4 to clue-connect to C2 ∈ K
′

1. Thus,

IncCCOH(K3, K
′

1) = CCOH(K3) + CCOH(K
′

1) + 0.4 = 0 + 0 + 0.4 = 0.4.

Since Benefit(K3, K
′

1) is the maximum, CATC merges K3 and K
′

1 into a new

candidate cluster K
′

1 = {C1, C2, C3}. Finally, since all the benefit values are

negative, CATC terminates. Assume that the threshold min sup is 4, then K4

is deleted since the number of trajectories in K4 is smaller than 4. Finally, one

cluster K
′

1 = {C1, C2, C3} is found.

100

Time Complexity: In line 1, CATC constructs a clue-graph which requires O(N2).

In line 2 to line 3, a clique covering algorithm is performed in a clue-graph, which

takes O(N2) [20]. In line 5 to line 8, initializing table CCOH, CSEP, and I costs

O(N2). The outer loop from line 9 to line 27 depends on the benefit values. The

worst case is that every single vertex is a clique such that this loop executes at most

N − 1 times. From line 11 to line 24, there are a nested loop. From line 14 to line

18, all pairs of core sets are enumerated such that there are totally C(`, 2) com-

binations. From line 24 to line 26, updating CCOH table needs O(1)-time, and

updating the CSEP table requires O(`)-time. Therefore, the outer loop from line 7

to line 27 totally takes at most C(N−1, 2)+C(N−2, 2)+...+C(2, 2) = O(N3).

To sum up, time complexity of CATC is at most O(N3).

4.6 Clue-Aware Trajectory Aggregation Algorithm

Given a set of clusters, for each cluster, we intend to derive hot regions and a

sequence of hot regions is thus represented as one frequent movement behavior.

As pointed out early, each hot region has its representative line segment. In this

section, we propose a Clue-Aware Trajectory Aggregation algorithm (abbreviated

as CATA) to derive a set of representative line segments. In algorithm CATA, we

first determine a candidate line segment within one core set and then candidate

line segments from different core sets will be aggregated as representative line

segments.

4.6.1 Determine Candidate Line Segments within a Core Set

In a core set, a trajectory with the maximal sum of edge weights is selected as

a base trajectory. Intuitively, the base trajectory selected contains more clues to

other trajectories within a core set. Based on the base trajectory, data points from

other trajectories within the same core set are selected for deriving candidate line

101

Algorithm 6: CATC: Clue-Aware Trajectory Clustering Algorithm

Input : Trajectories: T = {T1, T2, ..., TN}; Thresholds: λ,min sup
Output : Set of clusters: K
Construct a clue-graph G = (V,E) by T and λ; ; // Step 11

Construct a Strong clue-graph SC-G = (V,E
′

) from G; ; // Step 22

C = {C1, C2, ..., C`} ← a clique cover of SC-G;3

K ← C;4

foreach (Km,Kn) ∈ K ×K do5

CCOH[Km] ← 0;6

CSEP [Km,Kn] ← total weights from Km to Kn;7

Compute I(Km,Kn);8

// Step 3

repeat9

Benefit ← ∞;10

foreach (Km,Kn) ∈ K ×K do11

r ← −1;12

Des ← (CSEP [Km,Kn] + CSEP [Kn,Km])/2;13

Inc ← 0;14

foreach Ci ∈ Km do15

q ← ∞;16

foreach Cj ∈ Kn do17

q ← min(q, I(Ci, Cj));18

Inc ← Inc + q;19

Inc ← CCOH[Km] + CCOH[Kn] + q;20

Benefit ← Des − Inc;21

if Benefit > r then22

(S, T) ← (Km,Kn);23

Benefit ← r;24

if Benefit > 0 then25

K ← K ∪ {S ∪ T} − S − T ;26

Update CCOH and CSEP ;27

until Benefit < 0 ;28

Keep Km ∈ K if Km contains more than min sup vertices;29

102

segments. If data points from other trajectories are far away from the base trajec-

tory (i.e., larger than ε), these data points are viewed as noise data points. Assume

that two consecutive data point q and r are from the base trajectory and the occur-

rence time of r is larger than that of q. Support that a data point p is close to a

line qr, a directed line by connecting two consecutive data points q and r of a base

trajectory, this data point p is useful to derive candidate line segments. In other

words, if dist(p, qr) < ε, a data point p is fulfilled the spatial constraint and its oc-

currence time will be further investigated. If the occurrence time of p is between

[tq − τ, tr + τ], where the occurrence time of q and r is denoted as tq and tr, the

occurrence time of data point p is revised as tp = tq + (tr − tq)× dist(q,p)
dist(q,p)+dist(p,r)

.

On the contrary, if the occurrence time of data point p is not within [tq − τ, tr + τ],

data points p will not be considered. Consider an example in Figure 4.10(a), where

the dotted line is a base trajectory and data points of other trajectories are marked

as grey points associated with their occurrence time. As can be seen in Figure

4.10(a), grey point y is eliminated because dist(y, cd) > ε. For grey points w,

x, and z, these data points are close to the base trajectory. We should further in-

vestigate their occurrence time. Suppose that τ = 2 and the distance between a

and w equals to that between b and w. Since the time of w is 7 which is between

[2 − 2, 6 + 2], the time of w is revised as 2 + (6 − 2) × dist(a,w)
dist(a,w)+dist(w,b)

= 4. On

the other hand, the time of x is 11 which is not within the interval [6 − 2, 8 + 2].

Thus, data point x is discarded. Given two trajectories in Figure 4.10(a), the set

of data points is shown in Figure 4.10(b).

Once we have obtained a set of data points from trajectories within a core

set, following the approach adopted in [5], we utilize the Douglas-Peucker algo-

rithm [25] to determine candidate line segments. Douglas-Peucker algorithm is

used to determine representative lines that capture the distribution of data points

given. To focus our main theme of this paper, the detailed description for Douglas-

103

a/2

b/6
c/8

d/13

e/14

f/20

w/7

x/11

z/19

(a)

a/2

b/6
c/8

d/13

e/14

f/20

w/4

z/18

C1.CL={(ac,[2,8]),(cf,[8,20])}

(b)

Figure 4.10: An example of generating candidate line segments in a core set.

Peucker algorithm can be viewed in [25]. Note that Douglas-Peucker just derives

simplified lines from a set of spatial points. To consider the temporal informa-

tion of data points, the spatiotemporal data reduction mechanism that is modi-

fied from Douglas-Peucker could be applied [6]. To facilitate the presentation

of our paper, a core set Ci has its set of candidate line segments, denoted as

Ci.CL = {(li,1, T Ii,1), (li,2, T Ii,2), ..., (li,k, T Ii,k)}, where li,k is the kth line seg-

ment with its time interval TIi,k. Given the data points in Figure 4.10(b), the

candidate line segments determined are shown in Figure 4.10(b).

4.6.2 Generate Representative Line Segments within a Cluster

Since a cluster may have more than one core set, in this section, given candidate

line segments derived by each core set within a cluster, a set of representative line

segments with their time intervals will be generated. In a cluster, a core set Ci that

connects to as many core sets as possible is selected. Then, the set of candidate

line segment of the selected core set are viewed as the default set of representative

line segments. By examining candidate line segments of other core sets within a

cluster, we could further tune the set of representative line segments. The exami-

nation order is decided by the benefit function. As suggested, the benefit function

104

a/2

b/6
c/8

d/13

e/14

f/20

w/4

z/18

y/12

m/3
n/7

p/10

q/12

r/15

s/19

C1.CL={(ac,[2,8]),(cf,[8,20])}

C2.CL={(mp,[3,10]),(ps,[10,19])}

(a)

a/2

b/6
c/8

d/13

e/14

f/20

w/4

z/18

y/12

n/7

p/10

q/12

r/15

s/19

CL={(ac,[2,8]), (cy,[8,12]),(yd,[12,13]),(df,[13,20])}

(b)

Figure 4.11: An example of tuning representative line segments from other candi-

date line segments.

is used to estimate the benefit by merging two clusters. Each core set is viewed as

a cluster. We can have a ordered list of core sets according to the benefit function

of two core sets. With a larger value of benefits for two core sets, we can more

confidently infer that these two core sets are likely to represent the same move-

ment behavior. Based on the ordered list of core sets, the set of representative

lines is progressively tuned.

Based on the time interval of candidate line segments, we could decide which

representative line segments should be adjusted. By selecting candidate line seg-

ments of other core sets, time intervals of candidate line segments are used to

retrieve those representative line segments that have some overlapping time inter-

vals. Given a time interval of a candidate line segment, if there is no corresponding

representative line segment, this candidate line segment is put in the set of repre-

sentative line segments. On the other hand, if a time interval of a candidate line

segment has some overlapped with the time intervals of representative line seg-

ments, the data points along with candidate line segments will be examined. If the

data point is far away from the representative line segments, this data point will

not be considered for deriving new representative line segment. Otherwise, data

points of candidate line segments and data points of representative line segments

105

will be put together and then derive new representative line segments.

The procedure can be best understood by the example in Figure 4.11(a), where

there are two core sets C1 and C2 with their sets of candidate line segments C1.CL

and C2.CL. Assume that C1 has a set of candidate line segments from Figure

4.10(b) and the set of candidate line segments of C1 is set to the default set of

representative line segments. Figure 4.11(a) shows candidate line segments from

core set C2 with their time interval as TI2,1 = [3, 10] and TI2,2 = [15, 19]. Then,

given a time interval TI2,1 = [3, 10], we could one representative line segment

whose time interval (i.e., TI1,1 = [2, 8]) has some overlapped with TI2,1 = [3, 10].

Thus, data points along with candidate line segments are checked whether these

data points are close to the representative line segment or not. In our example,

point m is far from the representative line segment and thus is excluded. For the

time interval TI2,2 = [15, 19], a representative line segment with time interval

TI1,2 = [13, 20] is also retrieved. Similarly, data points of candidate line seg-

ments are verified whether they are far from the representative line segment or

not. Finally, data points from candidate line segments and representative line seg-

ments are used to derive a new set of representative lines with their time intervals.

In this example, we have a set of representative line segments as cy, yd and df

with their time intervals [10, 12],[12, 13], and [14, 20], respectively. Once the set

of representative line segments is determined, hot regions are easily decided by

putting these representative line segments as central lines with bias range given.

The time interval of each hot region is set to the time interval of the corresponding

representative line segment.

Time Complexity: To facilitate analysis, the length of trajectories are supposed

to be |T |. The loop from line 3 to line 10 executes |Ki| times. In this loop, line

4 needs a linear scan to find Tr, which costs O(|X|) time. The inner loop from

line 5 to line 7 needs a linear scan for each trajectory for adjusting location and

106

time stamp, which costs O(|X||T |)-time. Therefore, from line 3 to line 10, it

costs O(|Ki||T |). Note that the size of Ω is |Ki| since line 9 adds a trajectory for

each round. Therefore, from line 11 to line 15, it needs O(|Ki| × |T |log|T |)-time

since the Douglas-Peucker algorithm needs O(|T |log|T |). Therefore, the total

time complexity should be
∑

i

O(|Ki||T | + |Ki||T |log|T |) = O(|K||T |log|T |).

Algorithm 7: Clue-Aware Trajectory Aggregation algorithm

Input : A set of clusters: K
Output : Trajectory pattern: R
for each cluster Ki ∈ K do1

Ω ← φ;2

for each core set X ∈ Ki do3

Tr ← the trajectory similar to most trajectories in X;4

for each other trajectory T in X do5

Eliminate points of T with intolerable location and time stamp to Tr;6

Add remaining points of T into Tr;7

end8

Add Tr into Ω;9

end10

while |Ω| > 1 do11

A ← representative line segments which core set is most clue-reachable from12

others;

B ← representative line segments which have maximal values in benefit function;13

L ← Aggregate A and B;14

end15

Make hot regions for trajectory patterns;16

end17

4.7 Performance Evaluation

We conduct experiments to evaluate our proposed algorithms on both real and

synthetic datasets. In Section 4.7.1, our experimental settings are presented. Per-

formance comparisons of our clue-aware similarity measurement and clue-aware

clustering algorithm with previous works are then described. Moreover, trajectory

patterns mined by our CACT and other works are visualized. Finally, sensitivity

analysis on CACT is investigated in Section 4.7.5.

107

4.7.1 Experimental Environment

To facilitate our validation on mined trajectory patterns, both real and synthetic

datasets are used. In the real dataset (that is, the CarWeb dataset), trajectories are

selected from the CarWeb platform [43]. In the CarWeb dataset, we are aware of

ground truth about movement behaviors such that verifying the quality of mined

trajectory pattern is simple. We select trajectories that capture four types of fre-

quent movement behaviors shown in Figure 4.12. Note that both Type 2 and Type

4 have similar movement paths but their time are different. Trajectories of Type

2 present a movement behavior happening on an early morning, whereas trajecto-

ries of Type 4 depict another movement behavior in the late afternoon. Table 4.2

shows statistic information about our selected trajectories, including the number

of trajectories, the length of trajectories, the time duration of trajectories. Al-

though some previously proposed datasets are available, such as hurricane and

animal datasets used in [38], evaluating the quality of mining results is difficult

because we do not have any domain knowledge on these datasets. For example,

the Australian Sign Language dataset [8][57] which is related to hand-writing tra-

jectory dataset is not generated by the positioning devices (for instance, GPS), and

is not suitable for our experiments. Consequently, CarWeb dataset is to validate

our mining results.

To examine the impact of trajectory characteristics on our proposed algo-

rithms, we further generate a synthetic dataset, where trajectories are generated

from a given set of seed trajectories. The number of data points in these source

trajectories (referred to as the length of trajectories) is from 3000 to 6000, which

is much longer than the length of real trajectories in CarWeb dataset. For each

seed trajectory, we simulate synthetic trajectories with spatial and temporal bias.

Specifically, for data point p from a seed trajectory, a data point will have a prob-

108

(a) Type 1 (b) Type 2 (c) Type 3 (d) Type 4

Figure 4.12: Trajectories in CarWeb dataset.

ability of being a bias data point. The probability value is set to Pbias. If the

data point generated is a bias data point, the location of this bias data point will

far away the location of data point p at most r meters and its occurrence time is

shifted at most t minutes from the occurrence time of p. Thus, we could derive

a synthetic trajectory with spatial and temporal bias from a seed trajectory. To

investigate the effect of silent durations, two parameters are used to control the

distribution of silent durations. Specifically, given a seed trajectory, a synthetic

trajectory is generated every SI seconds, where SI is the sampling interval. For

example, in the CarWeb dataset, all trajectories are generated every 5 seconds.

With a large sampling interval, the connective data points may far away, leading

a larger silent duration. Another parameter Pclue is the probability of reporting

location points. Note that although data points of a trajectory will be generated

every SI seconds, each data point reports its location data with Pclue probability.

Consequently, if SI is smaller, a smaller Pclue still leads to more silent durations

in a trajectory. The default values of parameters are λ = 0.3, τ = 300 seconds,

ε = 100 meters, min sup = 0.1, r = 300 meters, t = 300 seconds. The value of

ε is decided by averaging the length of silent durations of all trajectories.

109

Type 1 Type 2 Type 3 Type 4

Number of trajectories 14 12 5 12

Average length 634 128 341 142

Standard deviation in lengths 130.14 28.39 185.95 30.21

Average time duration 62 12 49 14

Standard deviation in time durations 9.27 1.98 42.26 2.1

Table 4.2: Statistic information about the selected trajectories in CarWeb dataset.

4.7.2 Performance Comparison of Similarity Measurements

In this section, we examine the performance comparison among different similar-

ity measurements. Our competitors are LCSS, DTW, wDF, and EDR. In all ap-

proaches, if setting spatial and temporal thresholds are needed, the spatial thresh-

old is set as 100 meters and temporal threshold threshold is set as 300 seconds.

To compare the effectiveness of different distance functions, we borrow the eval-

uation method in [14] to utilize the one nearest neighbor (1NN) classifier. In the

CarWeb dataset, each trajectory is labeled by its movement behavior (i.e., one of

four movement types). Given a specific similarity measurement, the 1NN classi-

fier is to predict the label of a trajectory as its nearest neighbor measured by the

given similarity measurement from the training datasets. Since CATS is asym-

metric relationship, the nearest neighbor in CATS is designed. Assume that we

want to find the nearest neighbor neighbor of a trajectory Ti. All other trajectories

would be mapped in a 2D plane. Explicitly, a trajectory Tj could be represented as

a point (CATS(Ti, Tj), CATS(Tj, Ti)) in this 2D plane. Then, the nearest neigh-

bor of a trajectory Ti in CATS is the skyline point Tj with the maximum value of

(CATS(vi, vj) + CATS(vj, vi))
4.

The classification error rate is defined as the ratio between the number of in-

correct prediction and the total number of trajectories. Because the performance

4The reason is that among the skyline points, we choose the trajectories that have the strongest

clues with Ti as the closest neighbor of Ti.

110

of the 1NN classifier is highly sensitive to the given similarity measurement, the

classification error rate could directly reflect the effectiveness of similarity mea-

surements. Based on the 1NN classifier, we adopt the cross-validation approach in

[14] in which training data is randomly divided into k subsets. Then, one subset is

selected for testing and the other of k−1 subsets are used as training sets. Finally,

the average error rate of the 1NN classifier over the k cross validation is reported.

Figure 4.13 shows experimental results of different similarity measurements.

Figure 4.13(a) depicts the experimental results with three types of trajectories (i.e.,

Type 1, Type 2 and Type 3). This figure shows that CATS and EDR have lower

average error rates. Specifically, wDF and LCSS fail to predict the correct labels

because most trajectories pass many nearby locations. DTW does not perform

effectively due to the large standard deviations of Type 1 and Type 3 trajectories.

Because EDR accounts for not only common sub-trajectories but also gaps be-

tween trajectories, EDR can clearly distinguish trajectories with different types.

Moreover, the average error rates of EDR are sightly smaller than CATS. If Type 4

trajectories are included, CATS can outperform EDR. Note that Type 2 and Type

4 trajectories have similar movements with different occurring time. Due to time

sensitivity, CATS can easily distinguish Type 2 and Type 4 trajectories compared

with EDR. This experiment also shows the advantage of CATA in which move-

ment behaviors with different time are distinguished.

Next, the effects of silent durations are investigated. First, we study the sce-

nario involving the silent durations being evenly distributed in trajectories. Figure

4.14(a) shows the results when the SI is set to 10, 20, and 30 seconds. In all

cases, CATS and LCSS outperform other approaches. Except for wDF and DTW,

the average error rates of the other approaches remain almost constant when SI

increases. Because the mapping scheme of DTW and wDF requires locating the

nearest mapping points, silent durations may significantly affect the values of

111

 0

 0.2

 0.4

 0.6

 0.8

 1

2 3 4 5

a
v
e

ra
g

e
 e

rr
o

r
ra

te

k

DTW
LCSS
EDR

CATS
wDF

(a) 3 types

 0

 0.2

 0.4

 0.6

 0.8

 1

2 3 4 5

a
v
e

ra
g

e
 e

rr
o

r
ra

te

k

DTW
LCSS
EDR

CATS
wDF

(b) All types

Figure 4.13: Average error rates with k varied.

DTW and wDF. Now, we investigate the impact of Pclue to the randomness of

silent durations. Figure 4.14(b) shows that when Pclue is 70%, the average error

rates of DTW and wDF increase slightly and those of CATS, LCSS and EDR de-

crease slightly. However, when Pclue decreases to 50%, the average error rates

of all similarity measurements significantly decrease. The reason could be that

there are many nearby locations of all types of trajectories, especially those places

around the starting points. These locations may let all similarity measurements

to make inaccurate predictions. When Pclue decreases, these nearby locations be-

comes silent durations more easily. Consequently, the number of these locations

is reduced. Therefore, this phenomenon benefits similarity measurements in dis-

tinguishing different types of trajectories.

4.7.3 Performance Comparison of Clustering Algorithms

Performance comparisons of clustering algorithms are examined. We compare

our proposed clustering algorithm CATC with traditional clustering algorithms

(i.e., DBSCAN and Hierarchical clustering) and existing trajectory clustering al-

gorithms. Entropy and purity are used to measure the quality of clustering results,

where entropy is a function of the distribution of classes in the resulting clusters,

112

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30

a
v
e

ra
g

e
 e

rr
o

r
ra

te

SI

DTW
LCSS
EDR

CATS
wDF

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

50% 70% 100%

a
v
e

ra
g

e
 e

rr
o

r
ra

te

Pclue

DTW
LCSS
EDR

CATS
wDF

(b)

Figure 4.14: Average error rates with varying the distribution of silent periods.

and purity is a function of the relative size of the largest class in the resulting clus-

ters. Given a particular cluster, Sr, of size nr, the entropy of this cluster is defined

as E(Sr) = − 1
log(q)

∑q
i=1

ni
r

nr
log ni

r

nr
, where q is the number of classes in the dataset,

and ni
r is the number of trajectories of the ith class that are assigned to the rth clus-

ter. The entropy of the entire clustering solution is then defined as
∑k

r=1
nr

n
E(Sr).

In general, the smaller the entropy value, the more favorable the clustering solu-

tion is. Similarly, the purity of a cluster is defined as P (Sr) = 1
nr

max
i

(ni
r). Thus,

the overall purity of the clustering solution is formulated as
∑k

r=1
nr

n
P (Sr). The

larger the value of purity, the more favorable the clustering solution is.

To compare our proposed algorithm with traditional clustering algorithm (i.e.,

DBSCAN and hierarchical clustering), the same similarity measurement is used

for fair comparison. Thus, the similarity measurement for DBSCAN and hier-

archical clustering is CATS. Note that the distance function used in DBSCAN

and hierarchical clustering is required to be symmetric. Due to the asymmetry of

CATS, the distance function for two trajectories (e.g., Ti and Tj) is slightly revised

as the average sum of two directed edges: d(Ti, Tj) = 1−CATSε,τ (Ti,Tj)+CATSε,τ (Tj ,Ti)

2
.

The parameters for DBSCAN are eps = 500-meters and minpts = 3. Figure

4.15(a) shows the entropy and purity of DBSCAN, hierarchical clustering, and

113

 0

 0.2

 0.4

 0.6

 0.8

 1

purity entropy

Hierarchical
DBSCAN

CATC

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

purity entropy

eps=0.05
eps=0.1
eps=0.2
eps=0.3
eps=0.4
eps=0.5

CATC

(b) eps

 0

 0.2

 0.4

 0.6

 0.8

 1

purity entropy

minpts=2
minpts=3
minpts=4
minpts=5
minpts=6

CATC

(c) minpts

Figure 4.15: Combination of CATS and different clustering algorithms.

our proposed algorithm CATC. It can be seen in Figure 4.15(a) that CATC (our

proposed clustering algorithm) have the highest purity and the lowest entropy,

showing the advantage of CATC for clustering trajectories with silent durations.

The reason for the bad performance of DBSCAN and hierarchical clustering is

that these two traditional clustering algorithm tend to form large clusters having

both Type 1 and Type 2 trajectories since these two types of trajectories have many

close neighboring regions. To further investigate the impact of parameter settings

(i.e., eps and minpts) for DBSCAN, experiments of varying these two parame-

ters are conducted. Figure 4.15(b) and Figure 4.15(c) show that DBSCAN with

all settings of parameters could not have a notable improvement in both purity

and entropy. The above experiments show that our proposed clustering algorithm

114

will form some core sets and based on these core sets, a benefit function is used

to evaluate merging operations. The design features lead to good performance of

CATC compared to traditional clustering algorithms.

Next, we compare our clustering algorithm CATC with existing trajectory

clustering algorithms. For purpose of comparison, two trajectory clustering al-

gorithms are implemented: PISA [45], and TraClus [38]. PISA uses its proposed

distance function and then applies OPTICS (an self-tuning DBSCAN) to cluster

trajectories. TraClus involves discovering clusters of sub-trajectories, that is, sub-

trajectories with similar movement behaviors are clustered, which does not reflect

the purpose of our work. Thus, the TrajClus algorithm is re-designed: Supposing

that the the set of all sub-trajectory clusters is expressed by {sc1, sc2, ..., scn}, this

set could be viewed as trajectory features. Thus, each trajectory Ti could be repre-

sented as a vector −→vi =< x1, ..., xn >, where xj = 1 if Ti passes scj . Given a set

of vectors, exploiting the cosine similarity to measure how similar two vectors are

is quiet common. Then, DBSCAN is used to cluster trajectories. All clustering

algorithms are compared by the most favorable results.

Figure 4.16(a) shows that CATC outperforms the other approaches. In PISA,

trajectories are viewed as piece-wise lines and the distance function is to com-

pare the average of the sum of Euclidean distance in each time slot. This distance

function may not be appropriate for computing the distance value between tra-

jectories with silent durations. On the other hand, TraClus could derive several

common sub-trajectory clusters since trajectories of all types have several com-

mon areas. By representing trajectories into vectors of sub-trajectory clusters, the

cosine similarity values of same-typed trajectories and different-typed trajectories

could be similar. Thus, trajectories with different types may not easily be dis-

tinguished. From Figure 4.16(b) and Figure 4.16(c) show the entropy and purity

values of all approaches. From these two figures, it could be seen that CATC still

115

 0

 0.2

 0.4

 0.6

 0.8

 1

purity entropy

TraClus
PISA

CATC

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

50% 70% 100%

e
n

tr
o

p
y

Pclue

TraClus PISA CATC

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

50% 70% 100%

p
u

ri
ty

Pclue

TraClus PISA CATC

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30

e
n

tr
o

p
y

SI

TraClus PISA CATC

(d)

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30

p
u

ri
ty

SI

TraClus PISA CATC

(e)

Figure 4.16: Comparison of trajectory clustering algorithms.

outperform the other approaches when the distributions of silent durations vary.

While silent durations are evenly distributed, Figure 4.16(d) and Figure 4.16(e)

shows that the entropy and purity values of all approaches change slightly only.

Conversely, when the silent duration are randomly separated, Figure 4.16(d) and

Figure 4.16(e) shows that the entropy of each approach decreases when Pclue de-

creases. Since there are several overlapping regions passed by different-typed,

decreasing Pclue may disrupt some distance functions to distinguish the closeness

of trajectories.

4.7.4 The Impact of Silent Durations for Trajectory Pattern

Mining

In this experiment, we study the impact of silent durations for trajectory pattern

mining. Since previous works do not have the ability to identify different kinds

116

of movement behavior, only one type trajectories will be investigated. We com-

pare our proposed CACT with existing trajectory pattern mining works Spatio-

temporal Frequent Pattern mining (SFP) [5], and Trajectory Pattern Mining (TPM)

[18]. Note that SFP and our CACT have similar hot regions consisting representa-

tive line segments and TPM is the state-of-the-art algorithm for trajectory pattern

mining.

Because our trajectory datasets contain silent durations, to compare mining

results of SFP, TPM, and CACT fairly, linear interpolation and cubic spline in-

terpolation are conducted to estimate missing points for SFP and TPM. Linear

and cubic splines pass through these points with piecewise linear and cubic poly-

nomials, respectively. For interpolation, low-order polynomials are usually used

because they can reduce not only the computational costs but also the numerical

instabilities that arise with higher degree curves. As reported in [58], cubic poly-

nomials are most commonly used because no lower-degree polynomial allows a

curve to pass through two specified endpoints, guaranteeing continuous first and

second derivatives across all polynomial segments. Thus, these piecewise cubic

polynomials can be connected smoothly.

To evaluate mining results of trajectory patterns, two performance metrics,

precision, and recall are used. Since both SFP and CACT are able to derive a

sequence of hot regions, a smaller region is more precise to indicate movement

behavior. To quantify the precision of mining results, a number of road segments

covered by hot regions is utilized. Note that trajectories are obtained during the

movements of users along particular road segments. Thus, trajectories can be

represented as sequences of road segments. Utilizing frequent itemset mining, a

set of frequent road segments, denoted as F can then be found. Consequently,

the precision is defined. Let C be the road segments covered by the derived re-

gions and F be the frequent road segments derived by frequent itemset mining.

117

(a) Ground Truth (b) SFP-L (c) SFP-C

(d) TPM-L (e) TPM-C (f) CACT

Figure 4.17: Comparison of TPM, SPF, and CACT.

The precision is formulated as L(C ∩ F)/(L(C ∩ F) + L(C ∩ F̄)), where L(·)
represents the total length of the roads. A higher precision value means that the

derived region tends to cover more frequent road segments. By contrast, the recall

involves evaluating the number of frequent road segments within the derived hot

regions. As such, the recall is formulated as L(C ∩ F)/(L(C ∩ F) + L(C̄ ∩ F)).

A higher recall value means that more frequent road segments can be covered by

the derived regions.

First, we compare trajectory patterns derived by SFP, TPM, and CACT in a

visualized manner. Figure 4.17(a) shows the movement behavior (i.e., Type 1

movement behavior). By setting Pclue = 50%, Type 1 trajectories may have more

silent durations. Then, given the trajectories with silent durations, trajectory pat-

118

terns derived by all approaches are shown in Figure 4.17. Figure 4.17(b) shows

trajectory patterns derived by SFP-L. Silent durations fragment trajectories such

that trajectory patterns of SFP-L have larger hot regions. Even though the cu-

bic spline interpolation attempts to form trajectories more smoothly, trajectory

patterns mined by SFP-C are of higher quality than those of SFP-L. From Fig-

ure 4.17(b) and Figure 4.17(c), some regions are not found, as compared to the

baseline in Figure 4.17(a). Conversely, Figure 4.17(d) and Figure 4.17(e) show

trajectory patterns of TPM by given trajectories with linear and cubic spline in-

terpolations. TPM uses a set of neighboring grids as hot regions. To ”smooth”

the hot regions, linear regression is also used further to connect two nearby hot

regions. Due to this mechanism, Figure 4.17(d) shows that TPM may generate

many large hot regions when trajectories are linearly-interpolated. Some hot re-

gions cover some areas in which a user will never appear. On the other hand, when

trajectories are smoothed by cubic spline interpolation, Figure 4.17(e) shows that

there are more hot regions located in the roads in the previous one. Compared with

the baseline, this trajectory pattern cannot describe the movement of this user ef-

fectively. Finally, Figure 4.17(f) shows the trajectory patterns mined by CACT.

Compared with the baseline in Figure 4.17(a), CACT could derive trajectory pat-

terns that are almost the same as the baseline. Some less frequent hot regions

cannot be discovered when trajectories have certain silent durations.

Next, we evaluate the precision and recall of these approaches. Figure 4.18(a)

shows that CACT leads to the highest precision among all approaches. The pre-

cision of CACT is larger than 70% in all cases. Because hot regions of SFP are

rectangular, SFP can achieve higher precision than TMP. Figure 4.18(b) shows

the recall values of all approaches. CACT outperforms other approaches as well.

Since hot regions of TMP are much larger than that of SFP, they could cover a

lot of road segments. Thus, the recall of TMP could be higher than that of SFP.

119

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5 0.6 0.7 0.8 0.9 1

P
re

c
is

io
n

Pclue

CACT
SFP-L
SFP-C
TMP-L
TMP-C

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5 0.6 0.7 0.8 0.9 1

R
e
c
a
ll

Pclue

CACT
SFP-L
SFP-C
TMP-L
TMP-C

(b)

Figure 4.18: Precision and recall of SFP-L, SFP-C, TMP-L, TMP-C and CACT

with Pclue varied.

CACT SFP-L SFP-C TPM-L TPM-C

CarWeb 7.24 2.12 2.23 1.42 1.57

Short Synthetic Dataset 27.4 5.31 5.51 4.76 4.82

Long Synthetic Dataset 32.3 5.84 6.23 5.22 5.23

Table 4.3: Execution Time (in seconds).

To conclude, CACT could handle silent duration very well when Pclue > 50%.

for the other approaches, Pclue is the most critical factor for increasing precision,

whereas using interpolation on trajectories cannot increase precision considerably.

CACT may need longer execution time than SFP and TPM. Table 4.3 discusses

the execution time of all approaches. Three datasets are used in this experiment,

including CarWeb dataset, short synthetic dataset (average length of each trajec-

tory is 1000) with 100 trajectories and long synthetic dataset (average length of

each trajectory is 4000) with 100 trajectories. The execution time of CACT needs

at least three times than the other approaches. The main reason is that CACT

first clusters trajectories and then generates trajectory patterns, whereas the other

approaches do not cluster trajectories first. However, this tradeoff could make a

significant improvement in precision and recall of trajectory patterns.

120

4.7.5 Sensitivity Analysis for CACT

This section discusses the sensitivity analysis of both algorithm parameters (ε, τ ,

min sup, λ) and environment parameters (SI , PClue). Following the previous

settings, the default values of parameters are λ = 0.3, τ = 300 seconds, ε = 100

meters, min sup = 0.1, r = 300 meters, t = 300 seconds, Pbias = 80%, and

Pclue = 50%.

Impact of Thresholds on Similarity Measurements

In this section, we investigate the impact of environment variables to the simi-

larity measurements. Here, environmental variables include Pclue, r, and t. To

compare how many value of a distance function is incurred by the environmental

variable, the normalized distance is used as a metric which is defined as follows:

given a distance function d, the normalized distance for the distance value d(x)

is
d(x)

MAX−min
, where the minimum value of d is min and the maximum value of

d is MAX . This measure is used to test sensitivity of the distance function with

respect to some environment variables. In the following experiments, a trajectory

is randomly selected from our real dataset and a synthetic trajectory is generated

by applying the environmental variables. Then, the normalized distance between

these two trajectories are computed. Finally, all results presented is the average of

the normalized distances for 20 times.

Figure 4.19(a) discusses the normalized distance with Pclue varied. It could

be seen that with the decrease of Pclue, the normalized distance of EDR increases

the most significantly, that of CATS increases less significantly, and that of LCSS

does not change. The reason is that LCSS only considers how many parts of

two trajectories are matched. Moreover, LCSS is normalized by the length of

the shortest trajectory such that the normalized distance keeps zero. On the other

hand, EDR not only considers the matched parts but also gives penalty to gaps

121

 0

 0.2

 0.4

 0.6

 0.8

 1

10% 30% 50% 70% 90%

n
o

m
a

liz
e

d
 d

is
ta

n
c
e

Pclue

LCSS
EDR

CATS

(a) Pclue

 0

 0.2

 0.4

 0.6

 0.8

 1

40 70 100 130 160

n
o

m
a

liz
e

d
 d

is
ta

n
c
e

r

LCSS
EDR

CATS

(b) r

 0

 0.2

 0.4

 0.6

 0.8

 1

100 200 300 400 500 600

n
o

m
a

liz
e

d
 d

is
ta

n
c
e

t

LCSS
EDR

CATS

(c) t

Figure 4.19: Normalized distance of LCSS, EDR, and CATS with Pclue, r, and t
varied.

between two trajectories. When Pclue decreases, EDR gives more penalty to these

two trajectories. Note that LCSS is not suitable if trajectories contain silent du-

rations since it is not sensitive to Pclue. On the other hand, EDR emphasizes

giving gap penalty rather than reflects the amount of the common matched parts.

To reflect the amount of clues, CATS uses a continuous quantization to capture

the common matched parts and is normalized by the length of the trajectory it-

self. Thus, CATS is sensitive to Pclue but CATS does not emphasizes the gaps too

much. Figure 4.19(b) shows the impact of spatial shifting r. Note that r = 10

meters is decided by the average error of GPS. When r increases, three distance

functions keep growing significantly in the beginning but slowly in the end. The

reason is that points can only be matched within the range of ε = 10 meters. Thus,

122

the normalized distances almost keep constant when r exceeds 10 meters. This

experiment shows that these three distance functions are almost sensitive to the

spatial bias r. Figure 4.19(c) shows the impact of time bias t. EDR keeps con-

stant because it does not take time into account. LCSS and CATS keeps growing

with t increasing because a point is hard to find the matched point. To conclude,

CATS strikes a compromise on LCSS and EDR, which can fit the scenario that

trajectories exhibit certain silent durations.

The Impact of Threshold on Clustering Algorithms

In this section, we discuss the impact of the threshold λ used in our clustering

algorithm CATC. This threshold is used to identify whether two trajectories have

enough strong clues. Figure 4.20 shows purity and entropy with λ varied. Figure

4.20(a) shows that the purity of CATC is not sensitive to the change of λ. We ob-

served that the number of clusters becomes larger when λ increases. For example,

the number of clusters is 4 when λ = 0.2, whereas the number of clusters is 6

when λ = 0.4. The reason is that when λ increase, a clue-graph becomes sparser

such that a larger cluster with the same label may be separated into two smaller

clusters with the same label. Therefore, the purity value does not decrease. Figure

4.20(a) shows the entropy of CATC slightly decrease when λ increase. When λ is

small, a clue-graph becomes sparser. Trajectories of Type 1 and Type 2 are easily

clustered into the same cluster since they pass some nearby regions. In this exper-

iment, λ = 0.2 could achieve the best balance. Thus, this value is as our default

setting. Generally speaking, the value of λ is highly dependent on the distribution

of data. Choosing a larger λ may lead to higher purity. The number of trajectories

in a cluster may decrease, which may have not enough trajectories to derive tra-

jectory patterns. On the other hand, a smaller λ may lead to higher entropy. The

number of trajectories in a cluster may not belong to the same movement behavior,

123

 0.6

 0.7

 0.8

 0.9

 1

0.05 0.1 0.2 0.4 0.6

p
u

ri
ty

λ

ε=50
ε=75

ε=100

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0.05 0.1 0.2 0.4 0.6

e
n

tr
o

p
y

λ

ε=50
ε=75

ε=100

(b)

Figure 4.20: Purity and Entropy of CACT with λ varied.

which may derive improper hot regions.

The Impact of Thresholds on Trajectory Pattern Mining

In CACT, the spatial-bias threshold ε is a user-specified threshold in the spatial

decaying function. The temporal-bias threshold τ should be given in CACT as

tolerating the time bias. Now, we conduct experiments to investigate the impact

of two thresholds on CACT.

Figure 4.21 shows the precision and recall with ε varied. Let the unit of r be

one meter. The precision and recall of r = 300 are almost constant in all cases

of ε. On the other hand, the precision and recall of r = 200 and r = 100 keep

growing when ε increases. In general, the precision and recall keep growing until

the ε is larger than r. When the ε is larger than the spatial bias r, the size of

derived regions is allowed to contain the range of the spatial bias generated in the

synthetic trajectories. In other words, a larger ε can tolerate trajectories with a

larger spatial bias. Clearly, the precision and recall can be effectively improved.

On the other hand, the threshold of τ is used to tolerate the existence of a

certain temporal bias between trajectories. Figure 4.22 shows the precision and

recall with τ varied. Let the unit of t be one second. Similarly, it can be seen that

124

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 50 100 150 200 250 300 350

P
re

c
is

io
n

ε

r=100
r=200
r=300

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 50 100 150 200 250 300 350

P
re

c
is

io
n

ε

r=300
r=200
r=100

(b)

Figure 4.21: Precision and recall of CACT with ε varied.

Figure 4.22: Precision and recall of CACT with τ varied.

the precision and recall keeps growing when the t is smaller than τ . Moreover,

the precision and recall are less sensitive when temporal bias t varied than spatial

bias r varied. It is because that various setting of τ easily affects the number of

clusters. Note that the trajectories in the synthetic dataset follow four kinds of

movement behaviors. We observe that the number of clusters becomes 6 if t ≤ τ ,

where two clusters with two movement behaviors are divided into four smaller

clusters with two movement behaviors. It will not affect the precision and recall

because each two smaller clusters are conducted by trajectories that have the same

movement behavior.

125

10
1

10
2

10
3

10
4

100 500 1000 2000 5000

ru
n

 t
im

e
 (

lo
g

-s
c
a

le
)

number of trajectories

CATA
CATC
CATS

(a)

10
1

10
2

10
3

10
4

10
5

100 500 1000 2000 5000

ru
n

 t
im

e
 (

lo
g

-s
c
a

le
)

number of trajectories

CATA
CATC
CATS

(b)

Figure 4.23: Execution time under (a) short and (b) long trajectories.

Execution Time

The execution time with the number of trajectories varied are discussed here. Two

kinds of synthetic trajectories are used where each trajectory has about 2000 points

in short trajectories, and has 6000 points in long trajectories. The execution time

includes three parts: 1. computing similarities between trajectories (CATS), 2.

clustering trajectories (CATC), and 3. generating trajectory patterns (CATA). Fig-

ure 4.23 shows the experimental results which the execution time is represented

by log-scale. Overall, the execution time increases with the increasing of the

number of trajectories. However, the proportion of the clustering phase and the

aggregation phase are not the same in different kinds of trajectories. In the short

trajectories, as shown in Figure 4.23(a), the clustering phase takes more execution

time than the aggregation phase. On the contrary, Figure 4.23(b) shows that it

spends most execution time to derive hot regions when long trajectories are con-

sidered. Longer trajectories needs more time for aggregating the information and

executing Douglas-Peucker line simplifier.

126

4.8 Conclusions

In this paper, we proposed algorithm CACT to discover trajectory patterns. Since

users may have multiple movement behaviors, we claimed that trajectories should

be clustered before the determination of hot regions for trajectory pattern min-

ing. However, trajectories usually have both the spatial and temporal bias. Fur-

thermore, in this paper, we further claimed that trajectories usually have silent

durations. During silent durations, no detailed movements will be presented. Pre-

viously developed methods for clustering trajectories cannot be directly applied.

Note that trajectories that represent the same movement behavior usually have

some clues. Clues of trajectories reflect some common spatial regions appeared in

trajectories. Thus, we formulate a clue-aware trajectory similarity. Based on this

similarity between two trajectories, in CACT, we developed a clue-aware clus-

tering approach in which trajectories are clustered according to clues hidden in

trajectories. Once the groups of trajectories are determined, CACT will aggregate

trajectories in the same group to identify hot regions of trajectory patterns. Our

evaluation of CACT, using both real and synthetic datasets in our experiments.

Our proposed algorithms are compared with three kinds of research works (i.e.,

similarity measurements, clustering and trajectory pattern mining). Experimental

results show that CACT is able to effectively discover trajectory patterns even if

trajectories only capture fragments of movement behaviors. For the further works,

the efficiency of CACT could be enhanced for large-scale trajectory datasets. In

addition, for the clue-aware trajectory aggregation, more efficiency algorithms

should be designed.

127

Chapter 5

Exploiting Trajectory Profiles for

Mining User Communities

5.1 Introduction

Web-based social networks have attracted more and more research efforts in re-

cent years. In particular, community mining is one of the major directions in

social network analysis where a community can be simply defined as a group of

objects sharing some common properties. Nowadays, with the rapid development

of positioning techniques (e.g., GPS), one can easily collect his/her trajectories.

Many GPS community sites are then established and users are easily share their

trajectories [1][3]. Furthermore, with a large amount of trajectories shared, users

expect to have one trajectory search or recommendation to rank these trajectories

interested. For example, one would like to find some friends who have the same

traveling interests, or one may want to know some interesting traveling paths dif-

ferent from his habits. As such, mining communities among users is helpful for

trajectory recommendation or search.

In this paper, we target at the problem of mining user communities from users’

trajectories, where a community refers to a set of users who have similar moving

behaviors. Prior works have elaborated on mining trajectory patterns that cap-

128

ture moving behaviors[29][18][5]. Note that trajectory patterns usually have a

huge number of patterns and these patterns are not easily to formulate distance

measurements of users. In other words, trajectory patterns mined are not well-

organized for mining communities, let alone deriving the distance measurement

of trajectory patterns. Therefore, to find the community in a location-based social

network, one important issue is to build a trajectory profile for a user, where a

trajectory profile is referred to as a data structure which can organize trajectory

patterns for a user.

To address the issues above, in this paper, we adopt a probabilistic suffix tree

(abbreviated as PST) to represent a trajectory profile of a user [48][61][49]. A

PST is shown to be able to accurately capture user moving behavior and repre-

sents the trajectory patterns of a user into a tree structure. In light of the proposed

trajectory profiles, the distance measurement is formulated for discovering com-

munities. Explicitly, our design of mining communities consists of three steps: 1.)

constructing trajectory profiles of users, 2.) formulating distance measurements

among trajectory profiles and 3.) clustering similar trajectory profiles of users into

groups. Since new users may be added, to efficiently identify which community

to include these new users, for each community, we further select one representa-

tive PST. By comparing similarities with representative PSTs, a new user is able

to quickly find which community that he/her should join. To evaluate the perfor-

mance of the proposed approaches, we conduct comprehensive experiments and

experimental results show that the trajectory profile proposed is able to accurately

reflect user moving behaviors of users and is very helpful to mine communities of

users. From our experiments, communities mined are indeed referred those users

who have similar moving behaviors.

The contributions of this paper are summarized as follows:

1. A trajectory profile, represented as a probability suffix tree (PST), is first

129

proposed. Trajectory profiles proposed can not only capture moving behaviors but

also are utilized for discovering communities.

2. A distance measurement between two PSTs is derived. By exploring the

concept of editing distances, the distance measurement can truly reflect how close-

ness between two PSTs.

3. According to the distance among PSTs, one clustering algorithm is devel-

oped to identify communities in which similar users are put together.

4. To efficiently identify which community for a new user, a representative

PST of a community is determined.

The rest of the paper is organized as follows. In Section 4.2, our approach for

mining community in a location-based social network is presented. Experimental

results are shown in Section 4.3. Section 4.4 concludes with this paper.

5.2 The Framework of Mining Communities

In this section, we develop a framework to discover user communities. The design

of our framework consists of three steps:

Step 1. Constructing Profiles: In this step, frequent regions of trajectories

are derived. Based on these frequent regions, we propose a probability suffix tree

(abbreviated as PST) as trajectory profiles for users.

Step 2. Formulating Distance of Profiles: In this step, we derive the distance

measurement of users in terms of their profiles (i.e., their PSTs).

Step 3. Identifying Community: According to distance values derived in

Step 2, we develop a clustering algorithm to identify communities of users, where

users have similar trajectory profiles are in the same community.

After generating communities of users, for each community, we judiciously

select one representative PST tree. As pointed our early, for a new user, we only

130

Figure 5.1: Frequent regions by the density-based approach.

need to compare his/her trajectory profiles with representative PSTs. The selection

of representation PSTs for each group is finally presented in Section 3.4.

5.2.1 Constructing Profiles

In this phase, by given trajectories of users, we would like to construct their pro-

files (i.e., PSTs). By given all trajectories of users, as the same as ordinary tra-

jectory pattern mining approaches, the frequent regions of trajectories are first de-

rived. Then, by representing each trajectory into a sequence of frequent regions, a

PST is then constructed for each user.

Many previous works for determining frequent regions in trajectory patterns

adopts the density-based approach [29][18]. In the density-based approach, a re-

gion is viewed as a frequent region if the number of trajectories passing by is

larger than a pre-defined threshold. Furthermore, if nearby regions are also fre-

quent regions, these regions could merge into one larger region. For example,

given three trajectories in Figure 5.1, four frequent regions A, B, C, and D are

derived by the density-based approach in [30].

After deriving the frequent regions from trajectories of all users, trajectories

can be transformed into a sequence of frequent region ids. For example, T1 in

Figure 5.1 can be represented as < A, B, D >. Such transformation can guarantee

that the noise does not affect the procedure of trajectory pattern mining. Once

131

transforming trajectories of each user, we can adopt a probabilistic suffix tree to

capture moving behavior of each user. Specifically, each edge of a PST is labeled

by a frequent region id that indicate one movement from one frequent region to

the other one of a user. Each tree node is labeled by a string that shows a path

from the node to the root. In other words, a tree node is labeled as rk...r2r1 can

be reached from the traversal path from root →r1 → r2 → ... → rk. In a PST,

each tree node maintains a conditional table to record the appearing counts and

the conditional probabilities of next frequent regions that follow the label of the

tree node. For example, in Figure 5.2, the conditional table of tree node ”AB” in

T1 shows that the conditional probability of next frequent region ”A” after ”AB”

is 1. Clearly, tree nodes’ labels show the frequently moving regions of a user and

the corresponding conditional tables are used for predicting the next movements.

The construction of a PST is briefly described as follows. At the beginning,

the PST has only one root node with the counts of each moving record appearing

in the buffer so far. If the count of moving record ri is larger than the predefined

threshold (i.e., minimal support denoted as MinSup), one tree node labeled as ri

will be created as the child node of the root. Similarly, tree node ri will maintain

the occurrence count of ri and the probability distribution table is also associated

with the node to record the conditional probability of the next movement with

the prefix segment ri. Assume that the movement held by the buffer are r1...r`−1.

When a new movement, r` arrives into the buffer, those statistical information

(i.e., counts and the conditional probabilities) should be updated accordingly. In-

terested readers are referred to [49] for the detailed procedure of constructing a

PST.

132

5.2.2 Formulating Distance of Profiles

As mentioned above, a PST is a profile which represent trajectory patterns of each

user. In this phase, to determine distance of users in terms of their profile, we

formulate a distance function to measure the distance of any two users in terms of

their profiles.

To measure the distance between two PSTs, both the structure and the statisti-

cal information of a PST should be considered. Since the label of a node in a PST

is the suffix of the label of its child nodes, a branch in a PST represents a series

of frequent sequential patterns (represented as sequences of sensor ids). In other

words, by extracting a branch in a PST, frequent sequential patterns with the same

destination are determined. For example, the second branch in T1 in Figure 5.2

is root → B → AB, which represents that the frequent sequential patterns with

the destination as B are B and AB. Such frequent sequential patterns extracted

from branches of a PST are referred to as structure information in a PST. As a

result, the similarity of two PSTs should take the structure information of PSTs

into consideration. For example, consider three PSTs T1, T2 and T3 in Figure 5.2

as our example. It can be verified that the structure of T1 is more similar to that

of T3 because T1 and T3 have the more common branches (i.e., root → A and

root → B → AB) than T2 does. Except the structure information of PSTs, we

should further consider the statistical information of PSTs. Note that two users

may have similar moving behaviors in terms of sequential patterns. However,

their behaviors are different if the probabilities of these sequence patterns is con-

sidered. For example, in Figure 5.2, these two PSTs have the same branches but

their probabilities are different. The left PST indicates that one user frequently

stays A, whereas the right PST shows that one user frequently appears in area B.

Therefore, the probabilities of nodes in a PST should also be considered. Through

133

Figure 5.2: An example profile of PSTs.

statistical information in PSTs, each node can determine its corresponding im-

portance in terms of the probability that indicates how frequent one user travels

along this frequent sequential pattern. Thus, when designing a distance function

among PSTs, we should give higher weight to a node with higher probability.

For example, consider a PST T2 in Figure 5.2, we could obtain that the proba-

bility that the user stays in area C is 0.33. On the other hand, the probability

that the user stays in area A and then stay in area C is 0.55 × 0.66 ≈ 0.36 (i.e.,

P (AC) = P (A) × P (C|A)). Thus, node AC will be given a higher weight than

C when we design a distance function.

By exploiting PST tree structures and statistical information in conditional

134

tables, a distance function δMSL is formulated. In order to capture structure sim-

ilarity of PSTs, we transform a PST into a moving sequence list, in which each

element is a moving sequence from the root node to a leaf node and elements are

ordered from the left to the right of PSTs. A moving sequence of a PST is defined

as follows:

Definition. Moving Sequence: Given a PST Ti, the j-th moving sequence is

defined as Lj
i = [TL1

i,j:p(TL1
i,j), TL2

i,j:p(TL2
i,j), ..., TL`

i,j:p(TL`
i,j)], where TLk

i,j

denotes the k-th tree node traversing from the root in the j-th branch of the root

node and p(TLk
i,j) is the corresponding probability.

For example, consider the second branch of a PST T1 in Figure 5.2. Since the

second branch of the root is B → AB, we can obtain L2
1 = [B : 0.375, AB : 0.33].

To measure the importance of a moving sequence, the weight of each moving se-

quence is defined as follows:

Definition. Weight of a Moving Sequence: The weight of a moving sequence

Lj
i is formulated as w(Lj

i) =
∑n

k=1 p(TLk
i,j), where n is the number of elements

in Lj
i .

For example, the weight of a moving sequence [A : 0.5] is 0.5 and the weight

of moving sequence [B : 0.375, AB : 0.33] is 0.705 (i.e., 0.375 + 0.33). Conse-

quently, a moving sequence list is defined as follows:

Definition. Moving Sequence List: Given a PST Ti, the moving sequence

list is defined as Li =< L1
i , L2

i ,..., Ln
i >, where n denotes the number of moving

sequences and Lj
i is the j-th moving sequence.

135

For example, the moving sequence list in T1 is < [A : 0.5], [B : 0.375, AB :

0.33] >. Consequently, a moving sequence list derived from a PST is able to

represent both the structure and the statistical information of a PST. As such, we

propose a distance function δMSL. Given two PSTs Ti and Tj with their moving se-

quence lists Li and Lj , the distance between two PSTs δMSL(Ti, Tj) is determined

by the editing distance between Li and Lj . The editing distance between Li and

Lj is determined as the minimal cost of transforming Li into Lj via three editing

operations (i.e., insertion, deletion and replacement). To facilitate the presenta-

tion, let TL`
i,m and TL`

j,n be a pair, Lj
i [1..n] be Lj

i with n elements, and Li[1..m]

be Li with m moving sequences. Three operations and the corresponding costs

are described as follows:

Insertion: We transform Li[1..m] to Lj[1..n] by (1) transforming Li[1..m] to

Lj[1..n−1] and then (2) inserting one moving sequence Ln
j into Lj[1..n−1]. The

corresponding cost is the sum of the cost of transforming Li[1..m] to Lj[1..n− 1]

and w(Ln
j).

Deletion: We transform Li[1..m] to Lj[1..n] by (1) transforming Li[1..m− 1]

to Lj[1..n] and (2) deleting one moving sequence Lm
i . The corresponding cost is

the sum of the cost of transforming Li[1..m − 1] to Lj[1..n] and w(Lm
i).

Replacement: We transform Li[1..m] to Lj[1..n] by (1) transforming Li[1..m−
1] to Lj[1..n − 1] and (2) replacing a moving sequence Lm

i to a moving sequence

Ln
j . Specifically, to replace one moving sequence Lm

i as Ln
j , we compare nodes

in two moving sequences pair by pair. If the labels of nodes in moving sequences

are the same, the cost is estimated as the difference of their probability. Then,

we keep comparing the next pair until the pairs of two moving sequences are not

the same. The probabilities of remaining pairs are summed up as the cost. For

example, suppose that two moving sequences [C : 0.1, AC : 0.2, BAC : 0.3] and

136

[C : 0.3, BC : 0.5]. Since the labels of the first pair are the same (i.e., C), the

cost of this replacement is |0.1 − 0.3| = 0.2. On the other hand, since the la-

bels of the second pairs are not the same (i.e., AC and BC), the cost for replacing

[AC : 0.2, BAC : 0.3] to [BC : 0.5] is 0.2 + 0.3 + 0.5 = 1 (i.e., AC:0.2, BAC:0.3

and BC:0.5). Therefore, the total cost for this replacement is 0.2 + 1 = 1.2. Con-

sequently, the cost is the sum of probabilities of all elements. The corresponding

cost is the sum of the cost of transforming Li[1..m − 1] to Lj[1..n − 1] and the

cost for replacing Lm
i to Ln

j .

According to the above three operations, we can define the editing distance

between two moving sequences lists. Assume that R(·) denotes the cost of re-

placement operation.

Definition. Editing Distance: Given two moving sequence lists Li and Lj ,

the editing distance is defined as follows:

ed(Li[1..m], Lj [1..n]) =

min







ed(Li[1..m], Lj [1..n − 1]) + w(Ln
j)

ed(Li[1..m − 1], Lj [1..n]) + w(Lm
i)

ed(Li[1..m − 1], Lj [1..n − 1]) + R(Lm
i , Ln

j)

where R(Lm
i , Ln

j) =
{

R(Lm
i [2..k], Ln

j [2..`])+|p(TL1
i,m) − p(TL1

j,n)|, if TL1
i,m = TL1

j,n
∑k

c=1 p(TLc
i,m) +

∑`
c=1 p(TLc

j,n), otherwise

The boundary conditions are as follows:

ed(Li[0], Lj [1..n]) =
∑n

c=1 w(Lc
j),

and ed(Li[1..m], Lj [0]) =
∑m

c=1 w(Lc
i).

Thus, based on the editing distance function, given two PSTs Ti and Tj with

their moving sequence list Li and Lj , the distance function δMSL(Ti, Tj) is defined

as ed(Li, Lj).

137

The distance function δMSL derives the distance of two PSTs by computing the

editing distance between their moving sequence lists. By exploiting dynamic pro-

gramming, Algorithm DP (Distance of PSTs) is proposed to compute the editing

distance between two moving sequence lists from the above recurrence relation in

a bottom-up manner. Without loss of generality, given two PSTs T1 and T2, the

table entry c[i, j] represents the minimal cost of transforming L1[1..i] to L2[1..j].

To compute the minimal cost in a bottom-up manner, the c[0, j] and c[i, 0] for all i

and j are determined first and then compute the table entries row by row. For each

table entry, three costs should be calculated according to three editing operations

(i.e., insertion, deletion and replacement). Among three costs, each table entry

only stores the minimal cost.

Algorithm 8: : Algorithm DP

Input: Li[1..m], and Lj [1..n]: two moving sequence lists

Output: c[m,n], the distance of two moving sequence lists

1: for i = 0 to m do

2: c[i, 0] ←
∑m

c=1
w(Lc

i);
3: for j = 0 to n do

4: c[0, j] ←
∑n

c=1
w(Lc

j);
5: for i = 1 to m do

6: for j = 1 to n do

7: x = c[i, j − 1] + w(Ln
j);

8: y = c[i − 1, j] + w(Lm
i);

9: z = c[i − 1, j − 1] + R(Lm
i , Ln

j);
10: c[i, j] ← min(x, y, z);
11: end for

12: end for

For example, the distance between T1 and T3 can be determined by calculating

d(L1[1..2], L3[1..2]). Note that our goal is to derive the minimal cost to transform

L1[1..2] into L3[1..2] such that the value in c[2, 2] is the distance δMSL(Ti, Tj).

Table 5.3 shows the execution scenario for Algorithm DP. By taking c[1, 2] as our

example, we compare the costs of transforming < [A : 0.5] > to < [A : 0.55], [C :

0.33, AC : 0.36] > by insertion, deletion and replacement. Among these three

138

costs, only the minimal one is kept in c[1, 2]. Explicitly, the cost for insertion is the

sum of (1) c[1, 1] = 0.05: the cost transforming < [A : 0.5] > to < [A : 0.55] >,

and (2) the weight of L2
2: 0.69 (i.e., 0.33 + 0.36). Thus, the total cost is 0.74.

Then, the cost for deletion is the sum of (1) c[0, 2] = 1.24: the cost transforming

an empty moving sequence < [] > to < [A : 0.55], [C : 0.33, AC : 0.36] >, and

(2) the weight of L1
1: 0.5 (i.e., 0.33 + 0.36). Thus, the total cost is 1.74. Finally,

the cost for replacement is the sum of (1) c[0, 1] = 0.55: the cost transforming an

empty moving sequence < [] > to < [A : 0.55] >, and (2) the cost of replacement

of [A : 0.5] and [C : 0.33, AC : 0.36]: 1.19 (i.e., 0.5 + 0.33 + 0.36). Thus, the

total cost is 1.74. By taking the minimal cost between 0.74, 1.74 and 1.74, we can

obtain the value of c[1, 2] is 0.74. Following the same process, we can derive that

c[2.2] is 1.445. Therefore, δMSL(T1, T3) = 1.445.

Consider three PSTs T1, T3 and T4 in Figure 5.2 as our example. We derive that

δMSL(T1, T3) is 1.445 and δMSL(T1, T4) is 0.602. By comparing tree structures of

these three PSTs, it can be verified that T1 is more similar to T4 than T3 since both

T1 and T4 have sequences A and A → B where users frequently travel. However,

T1 and T3 have only sequence A. Thus, T1 is more similar to T4, which is validated

by δMSL(T1, T4) < δMSL(T1, T3).

5.2.3 Identifying Community

Once deriving the distance between profiles, the following task is to identify com-

munities of users. The community identification problem can be formulated as

follows:

Definition. Community Identification Problem: Let the distance function

for PSTs be δMSL(·). Given a set of users {U1, ..., Un} with their profiles {T1, ..., Tn},

the distance threshold δ, divide users into communities such that the number of

communities is minimal and each Ui, Uj in the same community should satisfy

139

Figure 5.3: An execution scenario for the distance of T1 and T3. Only underlined

values will be stored in this table.

δ(Ti, Tj) ≤ δ.

To solve this problem, a graph can be first constructed where each vertex rep-

resents a user and there is an edge between two vertices if the distance of two PSTs

are smaller than δ. Obviously, the community identification problem can be mod-

eled as a minimal clique problem, where a graph is required to be decomposed

into the minimal number of cliques. Algorithm CI (Community Identification) is

then proposed. At first, vertices with lager degrees are selected to obtain larger

cliques. Thus, from line 2 to line 3, we start to select vertex Ti with the highest

degree in graph G. In line 4, those vertices adjacent to vertex Ti are put into list L.

Then, the PSTs in list L form a graph together and recompute their node degrees

(line 5). This step only calculates the degrees of vertices in list L. We construct

a group Ci that contains the PST Ti and repeatedly select the PST Tj with the

highest node degree in list L. Moreover, the PST Tj is included in group Ci if the

PST Tj has edges with all PSTs in Ci (from line 7 to line 12). Finally, PSTs in

group Ci are removed from graph G (line 14). Following the above operations,

we could discover all cliques until all vertices are visited (i.e., G is empty).

140

Algorithm 9: : Algorithm CI

Input: Users {U1, ..., Un} with their profiles {T1, ..., Tn}, and thresholds: δ
Output: C, communities of users

1: Construct a graph G by {T1, ..., Tn} and δ;

2: while G is not empty do

3: Ti ← the highest degree node in G;

4: L ← PSTs adjacent to Ti;

5: compute the node degree of the users in list L;

6: construct a community Ci which contains Ti;

7: while L is not empty do

8: Tj ← the highest degree node in L and remove Tj from L;

9: if Tj is adjacent to all the users in Ci then

10: put Tj into group Ci;

11: end if

12: end while

13: insert group Ci into set C;

14: remove the PSTs in group Ci from graph G;

15: end while

PST N(Ti) Distance δMST (Ti, Tj) ES(Ti)

T1 100 δMST (T1, T2) = 3.3 7.1

δMST (T1, T3) = 3.8
T2 95 δMST (T2, T1) = 3.3 6.4

δMST (T2, T3) = 3.1
T3 90 δMST (T3, T1) = 3.8 6.9

δMST (T3, T2) = 3.1

Table 5.1: Tree size and error sum of three PSTs

5.2.4 Selecting Representative PSTs

After identifying communities, one representative PST, denoted as r-PST, is se-

lected for each community. Then, we can use r-PST to represent the profile for all

profiles in a community.

To select an r-PST, there are two factors to be considered: one is the size of

an r-PST and the other is the distance between the selected r-PST and other PSTs.

A r-PST with the smaller size can not reduce the overhead of storing profiles for

141

PST ρ = 0.9 ρ = 0.5 ρ = 0.1
T1 0.350 0.349 0.348

T2 0.331 0.323 0.315

T3 0.318 0.327 0.335

Table 5.2: Example of selecting an r-PST.

a server but also provide better efficiency for query processing. For example, one

can obtain the profile with different traveling behavior from him by accessing the

profiles with larger distance values from the profile of his community. Thus, in

this scenario, the smaller r-PSTs can speed up the computation for the distance

values. Moreover, with a smaller distance between the r-PST and other PSTs in

a group is, the more predication accuracy this r-PST could achieve. That is, this

r-PST can best represent all other PSTs in the same community. Thus, a PST,

which has a smaller tree size and is more similar to other PSTs in the same group,

should be selected as r-PST.

For simplicity, the size of PST Ti is represented as the number of tree nodes,

denoted as N(Ti), and the error sum, denoted as ES, is used to quantify the

distance between the r-PST and other PSTs in a group. Suppose that there are

k PSTs in a group. The error sum of PST Ti is defined as the sum of the dis-

tance between Ti and other k − 1 PSTs. In other words, ES(Ti) is formulated

as ES(Ti)
∑k

j=1 δ(Ti, Tj), where δ(Ti, Ti) = 0. In order to take a balance be-

tween the tree size and the error sum, we can select the r-PST which can minimize

αi = {ρ × N(Ti)
k∑

j=1
N(Tj)

+ (1 − ρ) × ES(Ti)
k∑

j=1
ES(Tj)

} , where k is the number of PSTs in a

community and 0 ≤ ρ ≤ 1

Obviously, a parameter ρ can be used to give different weights to tree size

and error sum. For example, consider a community with three users (i.e., U1, U2

and U3) and their PSTs (i.e., T1, T2 and T3). The tree size and the error sum of

142

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

h
it
 r

a
te

MinSup

GSP with δ = 0.02
PST with δ = 2

(a)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

b
y
te

s

MinSup

GSP with δ = 0.02
PST with δ = 2

(b)

Figure 5.4: Comparison of GSP and our approach.

each PST is listed in Table 1. ρ is set to 0.9 and we can compute that α1 =

0.9 × 100
285

+ (1 − 0.9) × 7.1
20.4

. By the similar fashion, we can obtain the results

in Table 5.2 when ρ varied. It can be seen that T2 is selected as the r-PST if we

respect tree size and the error sum equally and set the parameter ρ to 0.5. In the

case of ρ = 0.9, T3 is selected as the r-PST because its tree size is the smallest

among three PSTs. On the contrary, in the case of ρ = 0.1, T2 is selected as the

r-PST because of the least error sum among three PSTs.

5.2.5 Performance Comparison

In this section, we compare the hit rate and storage cost of GSP and our pro-

posed approach PST. For fair comparison, we choose the best parameters for both

approaches, where δ is set to be 2 and 0.02 for our approach PST and GSP, re-

spectively.

Figure 5.4 shows the results with varied MinSup. The parameter MinSup

is used to distinguish the frequentness when deriving the sequential patterns and

probabilistic suffix trees. In Figure 5.4(a), it can be seen that the hit rate of PST

are higher than GSP in all cases. Interestingly, the hit rate of PST keeps constant

when MinSup is smaller than 0.1, while the hit rate of GSP has a peak when

143

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

h
it
 r

a
te

MinSup

δ = 1
δ = 1.5
δ = 2

(a)

 0

 5000

 10000

 15000

 20000

 25000

 30000

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

b
y
te

s

MinSup

δ = 1
δ = 1.5
δ = 2

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

e
n

tr
o

p
y
 /

 p
u

ri
ty

MinSup

entropy with δ = 1
entropy with δ = 1.5

entropy with δ = 2
purity with δ = 1

purity with δ = 1.5
purity with δ = 2

(c)

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

n
u

m
b

e
r

o
f

c
lu

s
te

rs

MinSup

δ = 1
δ = 1.5
δ = 2

(d)

Figure 5.5: Sensitivity analysis when MinSup varied.

MinSup = 0.1 and keeps decreasing when MinSup increases. It is because that

each source trajectory is used to generate 10 trajectories for a pilot such that the

ground truth of MinSup is almost 0.1. In Figure 5.4(b), it can be seen that the

number of bytes of GSP are always larger than that of PST, especially in the case

of MinSup smaller than 0.15. From the experimental results, setting MinSup =

0.1 can bring the best performance of PST. Overall, from two experimental results

above, PST outperforms GSP in terms of both storage and hit rate.

5.2.6 Sensitivity Analysis

In this section, we examine the impact of the threshold MinSup of our approach.

The sensitivity analysis of our approach should be discussed from four aspects.

144

Consider the cases when MinSup is smaller than 0.15. Figure 5.5(a) shows that

the hit rate is not sensitive to δ. Interestingly, Figure 5.4(b) shows that a smaller δ

may lead to much larger storage. The threshold δ is used to identify community.

Figure 5.5(d) shows that the number of clusters when δ = 1 are more than other

cases. However, from Figure 5.5(c), we know that entropy and purity are 0 and

1, respectively. It means that the users which have the similar profiles are divided

into smaller clusters, thereby the hit rate being almost constant. On the other

hand, consider the cases of MinSup > 0.3. Figure 5.5(a) shows that the hit

rate decreases much significantly when MinSup = 0.3. Interestingly, Figure

5.5(d) shows that the number of clusters for δ = 2 are correct (recall that the

source trajectories are selected from three people), but Figure 5.5(c) shows that

the quality of clustering decrease where the entropy and the purity increase and

decrease, respectively. Thus, it leads to the significant decreasing of hit rate.

5.3 Conclusion

Nowadays, with the rapid development of positioning techniques, one can easily

collect his trajectories by GPS. The interaction between people in these sites can

be viewed as the location-based social networks where people can track and share

location related information with each other. Mining community in such a novel

social network can provide many interesting applications. For example, users can

make friends with who have the same traveling interests, which can be achieved

by finding people in the same community with him. On the other hand, the site

can also recommend a user some interesting traveling pathes from the different

communities. Consequently, in this paper, we target at the problem of mining

community in a location-based social network. To achieve this goal, three main

tasks should be done: 1. finding trajectory patterns for each user, 2. identifying

145

the closeness of users by their patterns, and 3. clustering users with the similar

trajectory patterns. However, prior works do not propose data structures to well-

organize trajectory patterns, let alone clustering users by these trajectory patterns.

Based on the observation, in this paper, we adopt a probabilistic suffix tree (ab-

breviated as PST) which can not only provide high accuracy for prediction the

location of a user but also can build the profile of trajectory patterns on-the-fly.

Specifically, a PST is used to generate trajectory patterns for each user. Since a

PST can capture the moving behavior for a user precisely, we then derive the dis-

tance function for two PSTs to identify the community of users. For each commu-

nity, we further select one representative PST to represent the profile of trajectory

patterns in the same cluster. The representative PST can not only reduce the stor-

age cost of maintaining many PSTs but also bring more benefit for applications,

such as recommendation. Experimental results shows that our approach can not

only effectively identify the community in a social network but also reduce the

overhead for storing trajectory patterns efficiently.

146

Chapter 6

Conclusion

In this dissertation, we develop a series of research works for trajectory pattern

mining and explore patterns mined for location-based social services. In our study,

we present how to collect users’ trajectories first. Then, two kinds of mining algo-

rithms are proposed. Finally, we develop a framework for mining location-based

social community structures. In the first work, we focused on the problem of data

collection of trajectory data in a vehicular sensor network where every vehicles

are equipped GPS and can communicate with each other in an ad-hoc manner. We

proposed a framework MDC to reduce the amount of data transmission and the

number of vehicles reporting their GPS data points. In MDC, model functions

are derived to represent the raw GPS data points such that only some coefficients

that describe its movements are reported. An in-network aggregation mechanism

determines a set of groups and for each group, only one vehicle needs to report

traffic data, thereby further reducing the number of simultaneous connections. In

the second work, we proposed a regression-based approach to mine user move-

ment patterns from call detail records in a mobile computing system. Call detail

records are viewed as random sample trajectory data, and user movement patterns

are represented as movement functions. At first, the call detail records that capture

frequent user movement behaviors are extracted. By exploring the spatiotempo-

147

ral locality of movements, call detail records describing the similar behaviors are

clustered. The movement functions can be represented by regression lines to best

fit the location and time of call detail records. In the third work, we proposed

an algorithm for discovering trajectory patterns by exploiting trajectory clues. In

reality, there are many factors, such as sampling method, sampling frequency and

device constraints, will affect the capability of original trajectory data capturing

the actual movements. Even if trajectories can only reflect partial movements of a

user, they reveal some trajectory clues about the moving behaviors hidden in tra-

jectories. We first propose a clue-similarity to measure how much clue between

two trajectories. Based on the clue-similarity, a graph-based clustering algorithm

is proposed to group trajectories with similar moving behaviors into the same clus-

ter. At last, for each group, the spatial and temporal information are aggregated

into trajectory patterns. In the fourth work, we targeted at the problem of min-

ing user communities in a location-based social network, where users in the same

community have the similar movement behaviors. At the first, trajectory patterns

of each user are organized into a probabilistic suffix tree, which is viewed as a

trajectory profile of each user. Inspired by the concept of the edit distance of two

sequences, the distance function of two trees is proposed. Finally, in light of the

distance of trees, user communities in a location-based social network are found

by clustering users with similar trajectory patterns.

148

Bibliography

[1] EveryTrail - GPS Travel Community. http://www.everytrail.com/.

[2] MapMyRun Website. http://www.mapmyrun.com.

[3] Run GPS Community Server. http://www.gps-sport.net/.

[4] T. Brinkho. Network-based Generator of Moving Objects.
Technical Report of the Institut fur Angewandte Photogram-
metrie und Geoinformatik (IAPG), [available] http://www.fh-
oow.de/institute/iapg/personen/brinkhoff/generator/.

[5] H. Cao, N. Mamoulis, and D. W. Cheung. Mining Frequent Spatiotemporal
Sequential Patterns. In Proc. of ICDM, 2005.

[6] H. Cao, O. Wolfson, and G. Trajcevski. Spatio-temporal Data Reduction
with Deterministic Error Bounds. VLDB Journal, 15(3):211–228, 2006.

[7] L. Chen and R. T. Ng. On The Marriage of Lp-norms and Edit Distance. In
Proc. of VLDB, 2004.

[8] L. Chen, M. T. Özsu, and V. Oria. Robust and Fast Similarity Search for
Moving Object Trajectories. In Proc. of SIGMOD, 2005.

[9] Y. Chen, M. A. Nascimento, B. C. Ooi, and A. K. H. Tung. SpADe: On
Shape-based Pattern Detection in Streaming Time Series. In Proc. of ICDE,
pages 786–795, 2007.

[10] D. Chu, A. Deshpande, J. M. Hellerstein, and W. Hong. Approximate Data
Collection in Sensor Networks Using Probabilistic Models. In Proc. of
ICDE, pages 48–59, 2006.

[11] D. J. Dailey, F. W. Cathey, and S. Pumrin. An Algorithm to Estimate Mean
Traffic Speed Using Uncalibrated Cameras. IEEE Transactions on Intelli-
gent Transportation Systems, 1(2):98–107, June 2000.

[12] A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein, and W. Hong.
Model-Driven Data Acquisition in Sensor Networks. In Proc. of VLDB,
pages 588–599, 2004.

149

[13] H. Ding, G. Trajcevski, and P. Scheuermann. Efficient Similarity Join of
Large Sets of Moving Object Trajectories. In Proc. of TIME, pages 79–87,
2008.

[14] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. J. Keogh. Query-
ing And Mining of Time Series Data: Experimental Comparison of Repre-
sentations and Distance Measures. Proc. of VLDB, 1(2):1542–1552, 2008.

[15] S. Dodge, R. Weibel, and E. Forootan. Revealing the Physics of Move-
ment: Comparing The Similarity of Movement Characteristics of Different
Types of Moving Objects. Computers, Environment and Urban Systems,
33(6):419–434, 2009.

[16] S. Gaffney and P. Smyth. Trajectory Clustering with Mixtures of Regression
Models. In Proc. of KDD, pages 63–72, 1999.

[17] F. Giannotti, M. Nanni, and D. Pedreschi. Efficient Mining of Temporally
Annotated Sequences. In Proc. of SDM, 2006.

[18] F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi. Trajectory Pattern Min-
ing. In Proc. of KDD, 2007.

[19] H. Gonzalez, J. Han, X. Li, M. Myslinska, and J. P. Sondag. Adaptive Fastest
Path Computation on a Road Network: A Traffic Mining Approach. In Proc.
of VLDB, 2007.

[20] J. Gramm, J. Guo, F. Huffner, and R. Niedermeier. Data Reduction, Exact,
and Heuristic Algorithms for Clique Cover. In Proc. of SIAM Workshop on
Algorithm Engineering and Experiments, 2006.

[21] C. Guestrin, P. Bodı́k, R. Thibaux, M. A. Paskin, and S. Madden. Distributed
Regression: An Efficient Framework for Modeling Sensor Network Data. In
Proc. of IPSN, pages 1–10, 2004.

[22] S. Guha, N. Koudas, and K. Shim. Approximation and Streaming Al-
gorithms for Histogram Construction Problems. ACM Transaction on
Database System, 31(1):396–438, 2006.

[23] T. H, Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms, Second Edition. The MIT Press and McGraw-Hill Book Com-
pany, 2001.

[24] H.-T. S. H. Jeung and X. Zhou. Mining Trajectory Patterns Using Hidden
Markov Models. In Proc. of DaWaK, 2007.

[25] J. Hershberger and J. Snoeyink. Speeding Up the Douglas-Peucker Line-
Simplification Algorithm. In Proc. of International Symposium on Spatial
Data Handling, 1992.

[26] R. V. Hogg and E. A. Tanis. Probability and Statistical Inference. Prentice-
Hall International Inc., 1997.

150

[27] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. Miu, E. Shih,
H. Balakrishnan, and S. Madden. CarTel: A Distributed Mobile Sensor
Computing System. In Proc. of SenSys, pages 125–138, 2006.

[28] C.-C. Hung and W.-C. Peng. Clustering Object Moving Patterns for
Prediction-Based Object Tracking Sensor Networks. In Proc. of CIKM,
2009.

[29] H. Jeung, Q. Liu, H.-T. Shen, and X. Zhou. A Hybrid Prediction Model for
Moving Objects. In Proc. of ICDE, 2008.

[30] H. Jeung, Q. Liu, H. T. Shen, and X. Zhou. A Hybrid Prediction Model for
Moving Objects. In Proc. of ICDE, 2008.

[31] H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T. Shen. Discovery of
Convoys in Trajectory Databases. Proc. of VLDB, 1(1):1068–1080, 2008.

[32] M.-H. Jin, J.-T. Horng, M.-F. Tsai, and E. H.-K. Wu. Location Query Based
on Moving Behaviors. Information Systems, 32(3), 2007.

[33] P. Kalnis, N. Mamoulis, and S. Bakiras. On Discovering Moving Clusters in
Spatiotemporal Data. In Proc. of SSTD, 2005.

[34] E. Kanoulas, Y. Du, T. Xia, and D. Zhang. Finding Fastest Paths on a Road
Network with Speed Patterns. In Proc. of ICDE, 2006.

[35] E. J. Keogh. Exact Indexing of Dynamic Time Warping. In Proc. of VLDB,
2002.

[36] K. M. Kockelman and J. Ma. Freeway Speeds and Speed Variations Preced-
ing Crashes, Within and Across Lanes. The Transportation Research Forum,
46(1):42–61, Spring 2007.

[37] D.-L. Lee, J. Xu, B. Zheng, and W.-C. Lee. Data Management in Location-
dependent Information Services: Challenges and Issues. IEEE Pervasive
Computing, 1(3), 2002.

[38] J. G. Lee, J. Han, and K. Y. Whang. Trajectory Clustering: A Partition-And-
Group Framework. In Proc. of SIGMOD, pages 593–604, 2007.

[39] Z. Li, J.-G. Lee, X. Li, and J. Han. Incremental Clustering for Trajectories.
In Proc. of DASFAA, pages 32–46, 2010.

[40] Y.-B. Lin. Modeling Techniques for Large-scale PCS Networks. IEEE Com-
munications Magazine, 35(2), 1997.

[41] Y.-B. Lin and A.-C. Pang. Wireless and Mobile All-IP Core Networks. John
Wiley, 2005.

[42] C.-H. Lo, W.-C. Peng, C.-W. Chen, T.-Y. Lin, and C.-S. Lin. CarWeb: A
Traffic Data Collection Platform. In Proc. of MDM, 2008.

[43] C.-H. Lo, W.-C. Peng, C.-W. Chen, T.-Y. Lin, and C.-S. Lin. CarWeb: A
Traffic Data Collection Platform. In Proc. of MDM, 2008.

151

[44] N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou, Y. Tao, and D. W.
Cheung. Mining, Indexing, and Querying Historical Spatiotemporal Data.
In Proc. of SIGKDD, 2004.

[45] M. Nanni and D. Pedreschi. Time-Focused Clustering of Trajectories of
Moving Objects. Journal of Intelligent Information Systems, 27(3):267–289,
2006.

[46] W.-C. Peng and M.-S. Chen. Developing Data Allocation Schemes by In-
cremental Mining of User Moving Patterns in a Mobile Computing System.
IEEE Transactions on Knowledge and Data Engineering, 15(6), 2003.

[47] W.-C. Peng and M.-S. Chen. Shared Data Allocation in a Mobile Computing
System: Exploring Local and Global Optimization. IEEE Transactions on
Parallel and Distributed Systems, 16(4), 2005.

[48] W.-C. Peng, Y.-Z. Ko, and W.-C. Lee. On Mining Moving Patterns for Object
Tracking Sensor Networks. In Proc. of MDM, 2006.

[49] D. Ron, Y. Singer, and N. Tishby. The Power of Amnesia: Learning Proba-
bilistic Automata with Variable Memory Length. Machine Learning, 25(2-
3):117–149, 1996.

[50] Saurabh Amin et al. Mobile Century - Using GPS Mobile Phones as Traf-
fic Sensors: A Field Experiment. The 15th World Congress on Intelligent
Transportation Systems, 2008.

[51] S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki, and
D. Gunopulos. Online Outlier Detection in Sensor Data Using Non-
Parametric Models. In Proc. of VLDB, pages 187–198, 2006.

[52] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Addi-
son Wesley, 1995.

[53] W. L. Tan, F. Lam, and W. C. Lau. An empirical study on the capacity
and performance of 3g networks. IEEE Transaction on Mobile Computing,
7(6):737–750, 2008.

[54] G. Trajcevski, H. Ding, P. Scheuermann, R. Tamassia, and D. Vaccaro.
Dynamics-aware Similarity of Moving Objects Trajectories. In Proc. of GIS,
2007.

[55] S.-M. Tseng and C.-F. Tsui. An Efficient Method for Mining Associated
Service Patterns in Mobile Web Environments. In Proc. of SAC, 2003.

[56] F. Verhein and S. Chawla. Mining Spatio-temporal Association Rules,
Sources, Sinks, Stationary Regions and Thoroughfares in Object Mobility
Databases. In Proc. of DASFAA, 2006.

[57] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and E. J. Keogh. Indexing
Multidimensional Time-Series. VLDB Journal, 15(1):1–20, 2006.

152

[58] G. Wolberg and I. Alfy. Monotonic Cubic Spline Interpolation. In Proc. of
the International Conference on Computer Graphics, pages 188–, Washing-
ton, DC, USA, 1999. IEEE Computer Society.

[59] H.-K. Wu, M.-H. Jin, and J.-T. Horng. Paging Area Design Based on Mo-
biles Moving Behaviors. In Proc. of INFOCOM, 2001.

[60] Y. Xu and W.-C. Lee. DTTC: Delay-Tolerant Trajectory Compression for
Object Tracking Sensor Networks. In Proc. of SUTC, 2006.

[61] J. Yang and W. Wang. Agile: A General Approach To Detect Transitions In
Evovling Data Streams. In Proc. of ICDM, 2004.

[62] B.-K. Yi, H. V. Jagadish, and C. Faloutsos. Efficient Retrieval of Similar
Time Sequences Under Time Warping. In Proc. of ICDE, 1998.

153

