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tified as being

decreases the en_sim should be

set. | i et to 0.3 and

carefully

MATL_S

Impact of

As d d
e RUM

of min_var. For the synthetic dataset, Figure 3.14(a) sho

e clustering results. We conducted experiments to ex

di L - o

0.25. F ¢ > S va ceeds

than 0.75. r result in most of



decreas / ¢ 3.14(b) shows
the similar exp

min_var should be

set to be a sm;

be

alue of min_var,

which ¢ example, in

Figure ) ratio is

the hi
A
1 Fi 1 alts and are simila C
above. However, it is interesting to note that the precision ratios of CDR(

’ \;‘ not decrease when the value of min_var exceeds than

happ he beginning of every three time slots,.n

ds i
shows similar

0.75 to obtain the



precision ratio

S

g navigation ser:

d RUM P for min-

allocation sc

vices. This arti

ing user move [ ' ploit the frag-

mentec i0-ten nformation hidden in such trajectories, the proposed regression-

based

three .
ment

detail rec , an aggregatlon movement sequence is computed to repre

ent movement behaviors of mobile users in each time slot. The

ocality states that if the time interval between.c

to have moved nearb
algorith ) he numt egr nc rly by

clustering the close from
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CDR(Z,

precision ratic
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"RUMP with CDR(P

"RUMP with CDR(Z
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propo Sensi al design param

eters. Experi tly and effectivel

nent behaviors of
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derive user m

mobile users.
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easily determi

patte [ ral, trajector: are sequences of regions

that a user usually e = enges in trajec pattern mining is




Tz T2: Rl—b R,—»F
T3Z R2$R4
Tl T4I R24>R4

Transformed Trajectories

densit) ot regions. A
variety of defi ) bposed. In [18], the ‘

whole space i

ned as the number

of trajectories CrQ s grid s form a com-

pact re and >garded as a hot region. The number of grid bstantially
influenc tern gions and is d ult to determir he au-
thors 0 ﬁ 8 9 & eral line
e ou't i 1ese lin
egments is thus determined. Clearly, without proper determining hot re

patterns cannot truly reflect movement behaviors of users.

ho ons are determined, they can be viewed as af

cr D

At be 0
a g ] ks transform
& =
ou ing

regions

'Movement behavi g common movement
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trajectories into seq hot region sequences,

trajectoryspa . i = pverssequential

re

a given set of

. Note that hot region 2, contains some

ay

stays in eft part of area R; if the user follows the movement beh

jectories

features a and p e movement
behavior in terr
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Figu i b dataset.

in each group are able to truly

reflect ement

Fo

tamong

trajec

1 trajec-

tory ¢

as in many prior works, trajectories may exhibit certain spz

aporal shiftings, which indicate that the locations and occurrence €
0 wo trajectories are not usually the same even if aje

Ca he samc ement. For example, consider

in Figure 4.2(a . : ] ated with each

data point re

data points
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is represented as one ; . i nd 75, data points are
not exactly t ¢ in ter f ifsa user fol-

h

2 ti ts.compared. to
e temporal shifting. Howeve k
charac
time d
jectori ; ; ¢ sers. The e

duratio om the fa erated

traje in real
ity, data point: ' nple ental factors (i.e. ‘

weather condi g ) ha t on the position-
ing of user locatio tors, although
data p

usuall

data
n the

ani a move-
ment refers to tua S 10 (ra ] ocations sam-
pled by the positioning




Therefore, these t

Note sile ently, two

o. However

ent behaviors wil

er develops a new

1pares existing

s, such as Euclidean distance, dynamic time warping [35]

ions, even capturing the same movement behavior, trajectories may on

to be fi the de i at are

close in the spatia e referred as clues
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stering algorith

oposed to fully ex

lusters such that
h cluster, an

aggreg ] nding for o-Aware Trajectory Aggregation) is
proposec ' % [ ow 0
y 1 " " t C C

xperiments on both real and synthetic datasets are conducted. We ce

best of
et alone

Exte

oposed algorithms with existing similarity measurements and_clusteri

The ts show that CACT can discover trajector
10 O O

The rest e ; i : VO are discussed

in Section 4.2. Pre¢ na ctio] Our proposed framework
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CACT and the correspond ‘ mSection 4.4 to Section

4.6. Experime re s are sl Sec 4.8.concludes

s section, we will first p

Taject——————

related
|
I
Similarity M
|

ned berore, 10r C O l".HlH-.lll‘-ll‘

jectory d ] ' 4] and time series ‘

data, including : 62][ and wDF[13].
Since our ) ide i ) trajectories, we

will compare o 0 i DF. Table 4.1

summ

uate the

to ha

e spatial
bias. According : om different trajec-

tories, previous similari : i t weights for data points




Functions | Local Te ; Mapping | Empty
emeny Mapping

pOINts

t to 0.

1-n denotes tt T} 1 of T}, scheme n-
denotes that n ¢ | - I, and scheme 1-1
presents that : e oint of 7. For
examp DTW o mapping schemes n-1 and I-n. On the other hand, the
mappi

point.

a suit

hurrica a its en i this property

is not prope 1 ‘ ' ectories with simi-




lar movement dire t rotations are not allowed.

As for SpADe, SpA S Atte letection for time se-

ries. The . ° stingu
e ot. SpADe first finds local patterns a

s by a reg

sion mixtus ], <€ . ple to determine the

cluster membershij - i . at'the probability density



function of each cl be given. In [45], the

authors propo an ‘ g thm. to trajec-

ed L een tre i is work
ction that first computes the Euclidean dis ec

For the sec

cations,

€ authors

08 i ;
st decomposes a trajectory into a set of line segments, anc

ries instead of sub-trajectories. In addition sligl i
On 0 raie 1 2 N O ) > e Ormu

the si ty, a o these ories. We com-

pare our proposed cluste al i Vi s later. The above



trajectory clustering ssumption that trajectories

could fully represent 1d e proximated.

ern Mining

mining trajectory patterns has attracted a considerab

efforts. Generally speaki flow of mining tre

d hot regions and then derive ti

discuss

orated
f locatio

trajectc

develo

ents and

to

, distance, length)

cluster them ac

In [30], the a

nsisting of vector-

18] and [17],

based and pat e lel,
emporal annotated sequences in which sequences are as-

the ai exp

sociated

L moving ering problem. In the trajectory convey problem [31], a c¢

S fro e tra-

sufficie me

jectory convey ential relationships among

81



ome tume S10LS.

".

the sa d approaches. I

trajectories ha discover good clus-

ters at each tin goal is to derive

a sequence of spatia i ecutive time

e

;\ ter. Notice that moving clusters refer to the spatial group of objec

slots s
objects.

ters s

ver, our trajectory pattern mining is to discover freg

lustering problem only consider:
objects ' S tof 1 ters not al-

ways the same. H re frequent trajectory

patterns. Both the traject rk well with detailed



trajectories. The mg ajectories may not

have detailed vious.works do

G or

y he vario o

S.

S .

the leng 1ensional or three

dimensional da to mine sequentia

relationships

S].

definition of hot

region area but also
tempo

of ah

egior

region is a spatial-temporal prism structure r; that satisfies tv

T

ratnon 7,

projection o al XY-plane,

83



is a
point x in this
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Fo
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patial proj

]
or each data ‘

é
d the L; should be

a points

. Given

ions of 1 and ry are rectangles with their representative li




Definition. Supporti i orypattern T'P = riry...75,

as some
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rive hot regio
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Trajaectories > S1m11ar1W / Clue-Graph Traject9ry { Clusters Trajectog / Trajectory
Computatlo Clustering .| , ggregatlon/ Patterns

Clue-Aware
Trajectory
Clustering

(CATC)

ated. >Some cna

1 ” =
oni Y
if this u aves his home at 8:00am every day, data points of traje

e some temporal bias.

ifting: Due to movement speed
ft or ex-
to office every

day, his daily 0se occurrence time




1s shifted.

"'m““‘"‘"\:
dix °rs, and weathers. Hene DO

, to save energy o

rstusea spa-

tial decaying functi of bi j o as follows:
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ction for two points p; ¢ and p; .

0,if dist(pie, pjr) > €
1 — dist(pi,e.pj.k)
€

, otherwise

closer

and py; = ( )
the other hang
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latter case. LCSS an ases since these two
points in.eac

in e need. to

e re
data points et ence i thin a p ula e in-

terval. Using this A ; de ith Tocal temporal



bias.

In light of

jectories as fo




4.4.3 Propertie

From the defi
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data pc
point 0

for the's

olds, data poin
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traject
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trajec

1

asurements

ed to overcome

at some

data
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1 that case, the clue
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trajectories. From @ ations-between two trajec-

cient clues to

tories: the firs

each.oth f

OPpP /i)"
-~ does not have similar movement behavior with 7;.

L3

ips between two traj
al
e
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o) o d OWS tha

mapping data | e 4.8(b), most datz
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points of T3

T3 with the data po ed in more de-
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represents
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to represent clu
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t move-
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Definition. C G Se : = o and a

threshold )\, a clue p 1 e ore . E). In the clue-




graph G, a set of ve

and a set.of e 5 1

clue si
a direc

De
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this case, the

clue-graph, i.e

define e set

C
as see d

for possible mergi Tl
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v

e-set of all trajectories

A bawith their

]
d provide clue
ement behavior. ‘

each other in the

e scenario, we

>t = viewed
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ore sets is pre-




clique-cove T are executed in a
undirected grag A er s by using existing

clique-coveri g graph, from the

clue-g G is def




After the generati may merge other core sets

if two core sets ha : i i setsmay have

sly deeide

that V; ~ Vit

clue-cc e , Stra AL . ; 1 e two

core sets have ¢ E . "Clearly, if two




core sets have a clue e i i ) coressets should be put in

the same.clust

set C; € K, the

1S one e ) 0 (Y % ! 0 at the

clue-cohesion CCOH ( ; n. As such,




two clue-connected-cluste ¢ goal that two clue-

connected co S

ories between diff

ir

In light of t ‘ : function that takes ‘

both the clue- 3 nerging candidate

clusters. The b

cCC’O I, = OCOH(Km)+OCOH(Kn)+

Ge : g andida S ease the total

clue-cohesion whi Cr¢ 2 . efore, merging two




clusters can minimiz eparationrif this merging could
lead to a large f d an a s ] t of increased

cohesion ONS

O 0 some
core set in /<, s ben ic ATC iteratively se ‘

lects two cand [ a il the value of the
benefit functio an ze finished, can-
didate : vertices will become final clusters.
The rea

one f




4.5.2 Running Examp | g Discovery in algorithm

and Bene fit(

in K, are not

is deleted si

cluster K, =
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Time Complexity: Inline ich requires O(N?).
In line 2 to i ( i >-graph, which

as

mc lues to

other trajecto i e ¢ base trajectory, points from

other trajectories withi 32 are selected for deriving candidate line
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en
SuUT}—S-T;
Update CCOH and CSEP;
senefit <0,

IC if K,,, contains more than min_sup vertices;
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segments. If data poi om the base trajec-
tory (i.e.,darg ese d data poi Assume
that two e data.p ase {rs . Ny -

ence

4.10(a), grey p

x, and z, these

used to deterp repres nes.that cap stribution of data points

given. To focus our main i e escription for Douglas-
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1.CL={(ac,[2,8]),(cF[8.20])}
C2.CL={(mp,[3,10]),(ps,[10,19])

VY€ can Nave a (

of representative
lines is progre
Based on t uld decide which

date line seg-

data poi
not be consid 1 for de > gment. lerwise, data

points of candidate ative line segments



will be put together-and tk eW Te line:segments.

The proce 4.11(a), where

L

a).show
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of re
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time stamp, which,¢
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eachable from
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iments to evaluate our proposed algorithms on both ree
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of this bias

investigate nsed to control the ‘

ectory, a synthetic

distribution of
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n the C
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With a
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S1 sec
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a trajectory T; in CATS is the skyline point 7; with the maximum
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clues with T} a
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of the 1NN classifie hi i en similarity measurement, the
classification uld di i similarity mea-

11n

Moreover, the

VEra
increas ecause the mapping schen e DF requires 1o g the

nearest mapping [ ati 3 1 ect the values of
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will form some core nefit function is used

to evaluate merging ‘ c o0 ance of

AT

tance function and then app S
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trajectc

the pur
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of movement behayi . ¢ ; e/investigated. We com-

pare our.prop ining works Spatio-

O al allOws a4
curve to pass S ontinuous first and
second deriva ia se piecewise cubic
polynomials ¢

To
precisio
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set of fre Y,
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cann

Since reg

lot of road seg

119

.17:Figure 4.17(b) shows

ajectories such

c ows tha
e. Compared wit ‘
ent of this user ef-

ned by CACT.

tl ou over a

than that of SFP.




To conc Pclue > 50% ‘

for the other ar . ) ‘ ncreasing precision,

whereas using ation e sion considerably.

4.3 discusses
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4.7.5 Sensitivi

This se

n that wi

the decrease of P.;,., the normalized distance of EDR ine

raje

the shortest S 76 On the other

hand, EDR not o es penalty to gaps

121



@
o
c
S

I

2
S

nomalized

““““““
o,

70% 90%

E[S|

30% 50%

Figure 4.19: ith P, v, and 1 ‘

varied.

betweenstwo t enalty to these

two tr

ilent du-

. the SS is not suitable if traiectories cor
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the normalized distance : . execeeds 10 meters. This

experiment sk tt ese tl ost sensitive to the

vhich ca he scena

 CATC. This th

the number of ber of clusters is ¢

when A = 0.4
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such that a lar o two smaller
cluster h the
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erefore, the purity value does not decrease. Figure

small, a c
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jectory . The
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4.8 Conclusions
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among trajectg

cimental results show that the trajectory profile proposed is able to acc

tree (PST), is first
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transforming traje abilistic suffix tree to
PSE.is labeled

capture movi
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T} sho
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'
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5.2.2 Formulating

As mentioned : : patt of each

a series

es of other

tial patterns wit 1e
N _are determing N€ Second bran

cd

from bra in a PST. As ¢

nformation of PST

result, the sim

into considera 3 in Figure 5.2

as our ¢ pl C if similar to that

of T3

root

shoul

SUd A C ( C ( area B.

Therefore, t . ul S ed. Through
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T Node root

C c T SID | Count | C. Prob.
A 2 0.25
root root C 3 0.375
0.375
A B Node B
A SID | Count | C. Prob. A C - C. Prob.
A 1 1
C. Prob. AB
0.66 CD
1 0.33 Node AB

SID | Count

L .

statist on ir ine i ing im-

portance 0
alon eq
on s’i
mple, consider

user stays in area C is 0.33. On the other hand,

travels

a PST 75 in Figure 5.2, we could obtain that th

S ea A and then stay in area C is () ’ ’ .
C) \7 r ht than

C when we
By exploiting t t es S ic fo ion in conditional
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tables, a distance fu 1 toreapture structure sim-
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C f ) O fa P nne
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UGHCe List: Given a f > me seq C
liS (1S d d w ene > OVil’lg

sequences ai J no
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example, supg
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[C :0.3,BC : 0. i e firs erthe same (i.e., C), the

cost of this re i e 1, since the la-

bels of t
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The distance fune s by computing the

editing distance bet i ploiting dynamic pro-

g

> manner. Without loss of generality, given two PSTs «.\ e
try c[i, j| represents th .1 to g

o0 compute the minimal cost i i, 0] for @

d ¢ _ For each

and j ¢

table entn ee d ; ] ations

(e, i

only st

— OV X TN E RN

—_

or example, the distance between 77 and 75 can be determined by calc

3[1..2]). Note that our goal is to derive the minimal cost ¢

such that the value in ¢[2, 2] is the di

Among these three
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costs, only the minimal on: ‘ . i ecost for insertion is the

sum of (1) c[1; 1] = 0.05: : : [Aw: 0.55] >,

the dis e e m S th ber of

communities 18 mi ; i i nity should satisfy
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1.05 (i) 0.74 ()
1.05 (d) 1.74 (d)
0.05 (r) 1.74 (r

[(A:0.5)] 1

[(B:0.375),

Figure
values

o(T;

5. An execution

eled as a

0 be decomposec

into the mini

y Identification) is
then proposed

o obtain larger

the highest

ains the PST 7; and repeatedly select the PST 7; with
node degree in list L. Moreover, the PST 7j is included in group

dges with all PSTs in C; (from line 7 to line 12). Fi
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