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一些密碼元件之分析與設計 

學生：李鎮宇 指導教授：陳登吉

林祝興

 

國立交通大學資訊工程與科學研究所博士班 

 

摘    要 

網路犯罪伴隨著網路的興起而成長，其核心價值──數位內容正

面臨嚴重的威脅。本論文改良網路安全主要元件：對稱式加密演算法、

單向雜湊函數以及安全協定的設計以及探討應用於隨意網路上金鑰

管理的方法。 

本論文替換了進階加密標準(AES)中回合函式的部分運算方法，

並改以位元當作運算單位，使得可以抵抗三回合的平方攻擊法，以及

線性攻擊法、差分攻擊法，得以證明在許多方面比 AES 優良。本研

究也基於安全雜湊演算法(SHA)的設計精神，定義了一般性的 SHA，

其接受任意長度訊息輸入，並產生所需要長度的訊息摘要。本研究提

出一個新的觀點，以評估 SHA-256-XOR 演算法的安全複雜度，即是

計數每個演算方程式中所牽涉的項數，以取代計算碰撞機率的方法。

引用基因演算法探究訊息排程中趨近最佳的參數組合，使相對於標準
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方法可以提升 1.5 到 4 倍的安全複雜度。最後，本論文改良了秘密分

享機制並應用於金鑰管理方法以減少通訊、計算量的花費。 

本論文的貢獻將會讓非模加安全雜湊運算的研發者感到興趣，而

這樣的運算方式會有利於使用較少邏輯閘的硬體實作。另外，本論文

所提出的方法論亦可以應用於所有引用秘密分享機制的設計方法以

減少訊息長度而不會降低安全程度。 
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Student：Chen-Yu Lee Advisors：Dr. Deng-Jyi Chen

Dr. Chu-Hsing Lin

 

Institute of Computer Science and Engineering 

National Chiao Tung University 
 

ABSTRACT 

Increasing cybercrime activities on the Internet introduces various threats to core 

values and digital content. This dissertation improves the design of symmetric cipher 

algorithms and one-way hash functions, and clarifies the functions of key 

management in mobile ad hoc networks. 

We replace some procedures in the round function of the advanced encryption 

standard (AES) and use bits as the operation unit to foil the 3-round square attack. 

Moreover, we apply linear cryptanalysis and differential cryptanalysis to the proposed 

cipher, which is superior to AES. Our study defines a generalized secure hash 

algorithm (SHA) algorithm based on SHA family rules. The algorithm accepts 

arbitrary length messages as inputs that generate message digests with the required 

length. We propose a new perspective of complexity for SHA-256-XOR functions by 

counting the terms involved in each equation, instead of analyzing the probability of 

finding collisions within SHA-256-XOR hash functions. We apply genetic algorithms 

to find the near-optimal message schedule parameter sets that enhance the complexity 

4 times for SHA-1 and 1.5 times for SHA-256-XOR, when compared to their original 
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SHA-1 and SHA-256-XOR functions. Finally, we modify the secret sharing scheme 

and apply it to autonomous key management (AKM) for reducing communication and 

computation costs. 

Our results are useful when designing security for modular-addition-free hash 

functions, simplifying hardware implementation and allowing a smaller gate count, 

and when designing symmetric ciphers. The proposed methodology applies to all 

cryptographic threshold-based schemes that truncate message size without 

compromising security. 
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1. Introduction 

According to The Cluster of European Research projects on the Internet of 

Things (CERP-IoT) in 2010 [1], “Over the next 10 to 15 years, the Internet of Things 

is likely to develop fast and shape a newer ‘information society’ and ‘knowledge 

economy’.” The common feature of the terms “knowledge economy” and “Internet of 

Things” is digital content. The former considers knowledge (digital content) to be the 

most important economic resource, basic production factor, and the main driver of 

development [2], and the latter allows connected sensors to promote interactions for 

ubiquitous access to digital content. 

However, digital content and Internet users remain prone to various security 

threats. It is necessary to establish a security framework covering various scenarios, 

e.g., supply chains and air travel, with interrelated factors including safety, privacy, 

and economy [3]. Without a secure framework, losses due to attacks will outweigh 

any benefits. Security frameworks require optimal cryptography mechanisms, key 

management systems, and security protocols. Possible mechanisms include symmetric 

algorithms, asymmetric algorithms, one-way hash functions, and random number 

generators. 

 

Symmetric algorithm 

 

On October 2, 2000, the National Institute of Standards and Technology (NIST) 

announced that Rijndael had been selected as the proposed Advanced Encryption 

Standard (AES) and began the process of making it the official standard. On 

November 26, 2001, NIST announced the AES as Federal Information Processing 

Standards Publication (FIPS PUB) 197. The National Security Agency (NSA) stated 
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all AES finalists, including Rijndael, were secure enough for US government 

non-classified data. In June 2003, the US government announced that AES should be 

used for classified information. 

AES suffers from many attacks such as linear cryptanalysis [4], differential 

analysis [5] [6] and square attack [7] [8]. Impossible differential attacks [5] use 

differential probability to eliminate the key material for finding the right key 

candidate for AES. The 4-round impossible differential cryptanalysis of AES were 

proposed in [9] [10] [11]. In 2000, E. Biham and N. Keller presented an impossible 

differential attack on 5-round AES-128 in [6]. Later in Cheon et al. improved the 

attack to 6-round AES-128 in [12]. In 2004 Phan [13], and Chen Jie et al. [14] gave 

attacks on 7-round AES-192 and AES-256 exploiting weaknesses in the key schedule. 

In 2007 Wentao Zhang et al [15] enhanced the attack on 8-round AES-192 and 

AES-256. In [16], E. Biham et al also successfully attacked 8-round AES-192 by 

related-key impossible differential attack. The square attack on AES was presented by 

an AES designer in [7] [8]. 

[17] describes the properties of cryptographically robust S-boxes as high 

nonlinearity, balanced output, immunity against linear cryptanalysis, robustness 

against differential cryptanalysis, avalanche effect and high algebraic degree of its 

output Boolean functions. The above cryptanalysis seems to focus on the design of the 

S-box to increase the complexity of the algebraic expression of the AES S-box to 

render it capable of resisting the known powerful differential cryptanalysis from 2005. 

In [18], A. Grocholewska-CzuryJo and J. Stoklosa found a deterministic algorithm to 

construct bent functions for random generation S-boxes. In 2007, D. Bhattacharya et 

al proposed a cellular automata-based structure S-box design which showed itself 

strongly resistant to linear cryptanalysis, differential cryptanalysis, algebraic attack 

and power attack in [19]. L. Cui and Y. Cao proposed an Affine-Power-Affine (APA) 
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S-box structure that increases the complexity of algebraic expression from 9 to 255 

[20]. 

Instead of improving the S-box design, the focus of previous research for 

defending against linear cryptanalysis and differential cryptanalysis, this research 

varies the cipher structure in AES to resist square attack while keeping basic security. 

Due to the byte-oriented structure of AES, the square attack can be applied effectively. 

This work replaces some functions in the round transformation of AES and takes the 

bit as the operation unit to avoid 3-round square attacks. Applying linear cryptanalysis 

and differential cryptanalysis to our proposed block cipher, the results show our 

proposed cipher can resist these attacks in five and four rounds, respectively. 

 

One-way hash functions 

 

Cryptographic hash functions play an important role in modern cryptography. 

They are widely used in a variety of applications such as password protection, secure 

protocols, digital signatures, and more. The hash function uses a string of arbitrary 

length as its input and creates a fixed-length sting as its output. A hash value is often 

called a data fingerprint or message digest. The following sections provide some 

definitions of collision-free hash functions. 

Secure Hash Algorithm (SHA) is a series of cryptographic hash functions 

published by the National Institute of Standards and Technology (NIST). NIST 

published SHA as FIPS PUB 180-4 [21] consisting of seven algorithms: SHA-1, 

SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224 and SHA-512/256. 

 

Recent studies have proposed extensions based on SHA. For example, 

RAR-SHA-256 [22] is composed of the SHA-256 compression function, and is faster 
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than SHA-256 when implemented in parallel. SHACAL and SHACAL-2 [23] [24] are 

block ciphers that are based on SHA-1 and SHA-256, respectively, and which were 

submitted to the New European Schemes for Signatures, Integrity, and Encryption 

project (NESSIE) in 2003. Yoshida and Biryukov replaced all arithmetic additions 

with XOR operations in SHA-256, naming it SHA-256-XOR, and found that 

SHA-2-XOR has a pseudo-collision resistance weakness up to 34 rounds [25]. 

A birthday attack [11] [26] is a type of cryptographic attack based on the 

birthday problem in probability theory. Given a function f, the attack attempts to find 

two different inputs x1, x2 such that f(x1) = f(x2). Such a pair (x1, x2) is called a 

collision input. The birthday attack on a message digest of size n produces a collision 

after trying 2/222.1 nn   input values. Under the birthday attack, the security of 

SHA-1, SHA-192, SHA-224, SHA-256, SHA-384, SHA-448, and SHA-512 are 

approximately 280, 296, 2112, 2128, 2192, 2224, and 2256, respectively, and are listed in 

Table 1. Many researchers have tried to develop a cryptanalytic method with a lower 

complexity than the birthday attack.  

 

Table 1 SHA algorithms 

Algorithm Message 

Size (bits) 

Block Size 

(bits) 

Word Size 

(bits) 

Message 

Digest Size 

(bits) 

Security 

SHA-1 < 264 512 32 160 280 

SHA-224 < 264 512 32 224 2112 

SHA-256 < 264 512 32 256 2128 

SHA-384 < 2128 1024 64 384 2192 

SHA-512 < 2128 1024 64 512 2256 
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SHA-512/224 < 2128 1024 64 224 2112 

SHA-512/256 < 2128 1024 64 256 2128 

The term security in this table means that a birthday attack on a message digest of size 

n produces a collision with a factor of approximately 2n/2. 

 

In 1998, Chabaud and Joux announced a method for finding the SHA-0 

collisions [27]. They reduced this complexity to 261 using a differential cryptanalysis 

technique, but they could not successfully apply it to SHA-1. This result implied that 

SHA-1 is more secure than SHA-0. In early 2005, Rijmen and Oswald applied the 

same method to find collisions in SHA-1 [28]. They examined message scheduling in 

SHA-0 and SHA-1, and proved that the complexity associated with finding collisions 

in a reduced version of SHA-1 (with 53 rounds instead of 80 rounds) was less than 280. 

Wang, Yin, and Yu found collisions with a complexity of 269 in the full 80-step SHA-1 

[29]. In 2010, Grechnikov announced the practical collision attack on the 73-step 

SHA-1 based on an automated approach [30]. NIST announced that SHA-1 will be 

used until 2010, at which time it will be replaced by SHA-2. 

Since 2004, several authors have reported on collisions for SHA-256. Gilbert and 

Handschuh reported a 9-round local collision with a complexity of 266 using 

differential path analysis [31]. Mendel et al. later reduced this complexity to 239 [32]. 

Nikolić and Biryukov realized 21-step collisions for SHA-256 using a nonlinear 

differential path analysis with a complexity of 219 [33]. In 2008, Sanadhya and Sarkar 

found a local collision with 24-step SHA-256 and SHA-512 with 228.5 and 232.5 calls, 

respectively [34], and this was the first time that a colliding message pair for 24-step 

SHA-512 was provided. In 2009, Indesteege et al. found collisions on the 24-step 

SHA-256 and SHA-512 with 228.5 calls and 253 calls, respectively, and a local 

collision on 31-step SHA-256 with 232 [35]. Also in 2009, Aoki et al. presented full 
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preimage attacks on up to 43-step SHA-256 and SHA-512 with the time complexities 

of 2254.9 and 2511.5 compression function operations for full preimages, respectively 

[36]. Since 2011, Mendel et al. have presented a collision on 27-step SHA-256 and a 

semi-free-start collision on 32-step SHA-256 with practical complexity [37]. 

Biryukov1 et al. presented a second-order differential collision for the SHA-256 

compression function on 47 out of 64 steps, which have practical complexity based on 

a rectangle/boomerang approach [38]. 

Almost all of the currently known cryptanalyses of SHA have attempted to find 

collisions on a differential path. However, the design of each component such as 

algorithms for message scheduling and hash loop body and the function parameters, 

affects the possibility that a path for collisions (using differential path cryptanalysis) 

will be found. A fairly large body of literature exists regarding methods of improving 

hash algorithms. However, there is a surprising lack of information regarding the 

design and selection of function parameters. This paper addresses this deficiency. 

The purpose of the research presented in this dissertation is to examine the 

relationship between the security of a hash function and its function parameters. In 

this regard, two issues that need to be resolved are (a) how to assess the security 

fitness of a given set of function parameters, and (b) how to find the optimal function 

parameter set. Specifically, this paper proposes a novel view of complexity (hence 

security fitness) of SHA-2-XOR functions proposed in [25], by counting the terms 

involved in each equation, instead of analyzing the probability of finding collisions 

within an SHA-256-XOR hash function. Our experiments have shown that the 

parameter set in each equation of a message schedule plays an important role in 

security fitness, but it is very hard to find the optimum parameter values. We apply 

genetic algorithms to find the optimal message schedule parameter sets that enhance 

the complexity 4 times for SHA-1 and 1.5 times for SHA-256-XOR, when compared 
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to original SHA-1 and SHA-256-XOR functions. The analysis results would be 

interesting for designers who are interested in the security of modular addition free 

hash functions, which are good for hardware implementation with lower gate counts. 

Moreover, the found message schedule parameter sets would be a good reference for 

further improvement of SHA functions. 

The dissertation also defined a generalized SHA algorithm based on SHA family 

rules. The algorithm contains the initial values, constant values, padding, parsing, as 

well as the main body, and accepts arbitrary length message as input to generate 

message digest with required length. Further, the study solved 

Length-of-the-Hash-Value (LHV) problem that occurs when SHA-r cannot be 

expressed as r = mn uniquely. 

 

Secure protocols 

 

Key management within a Mobile Ad hoc Network (MANET) is a security issue 

that cannot be ignored. Many researchers have dedicated themselves to this field since 

1999. Some schemes are suitable for a limited number of nodes and are inefficient, 

insecure, or unreliable when the nodes increase [39] [40] [41] [42] [43] [44] [45] [46] 

[47] [48] [49] [50]. Nodes may join the MANET and leave later normally. Thus, the 

key management scheme in MANET must be dynamic. The main challenge of 

MANET is that each node handles the joining or leaving of nodes with the limited 

resources, such as CPU computation, storage, and the power consumption [51]. The 

mobility of a MANET increases its unreliability and limits the bandwidth of wireless 

environment due to frequent topology changes. 

B. Zhu et al. proposed a key management scheme [52] using the secret sharing 

method [53] [54] [55] [56] to construct an Autonomous Key Management (AKM) 
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hierarchy structure with flexibility and adaptivity. This scheme needs no central party 

to control the key structure, and each node cooperates to create virtual nodes in 

building the key hierarchy. The method proposed in [57] dynamic group key 

management schemes with forward secrecy and backward secrecy based on elliptic 

curve cryptosystem (ECC) [58], forming a self-certified public key cryptosystem [59]. 

However, a message of 2048 bits would make computing or calculating AKM 

communication difficult. Thus, this study modifies the design of each operation in the 

AKM scheme. The modified AKM reduces the share size with the same security 

properties and the performance of communication and a computation cost reduction to 

1/t of the original AKM. 
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2. Definitions 

2.1 Terms and Acronyms 

-set A set of 256 states that differ in active bytes and are 

equal in passive bytes. 

AES Advanced Encryption Standard. 

AKM Autonomous Key Management. 

APA Affine-Power-Affine S-box structure. 

Bit A binary digital having a value of 0 or 1. 

Byte A group of eight bits. 

CRL Certificate Revoking List. 

ECC Elliptic Curve Cryptography. 

GTC The AKM sets a Global Trust Coefficient as a lower 

bound of all the RTC. 

LHV Length-of-the-Hash-Value problem. 

MANET Mobile Ad Hoc Networks. 

NESSIE New European Schemes for Signatures, Integrity, and 

Encryption project. 

NIST National Institute of Standards and Technology. 

ORS Overall Region Size is the number of the nodes that 

know the secret of region. 

RTC Regional Trust Coefficient is the ratio of the threshold to 

ORS. 

SHA Secure Hash Algorithm. 

Word A group of either 32 bits (4 bytes) or 64 bits (8 bytes), 

depending on the secure hash algorithm. 

2.2 Algorithm parameters, symbols and terms 

l -set at a byte of left 64 bits. 

r -set at a byte of right 64 bits. 

(t, n)-threshold A secret key K can be recovered by t out of total n 

shares. 

{t, A, B, C, D} The parameter set of Wt equation in message scheduling. 

bi,j The element with ith row and jth column of a matrix. 
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D The dealer of secret sharing scheme. 

F(t) The number of different terms involve in Wt equation. 

g Random number generator. 

H(M) The hash function H() with input M. 

IV Initial value of a hash function. 

K Secret key for symmetric cipher in a cryptosystem. 

Kt
{mn} The constant value to be used for the iteration t of the 

SHA-mn hash function. 

l Length of the message, M, in bits, l = |M|. 

M Message with arbitrary length as the input of a hash 

function. 

m The number of words in a message digest. 

M(i) Message block i. 

MD Message digest which is the output of a hash function 

with fixed length. 

Mj
(i) The jth word of the ith message block, where M0

(i) is the 

left-most word of message block i. 

Mj
n The message block Mj with n-bitwise left rotation. 

n The number of bits in a word. 

Nr The total number of encryption rounds. 

Pi The ith
 participant of secret sharing scheme. 

PKi The public key of node i for asymmetric cipher in 

cryptosystem. 

r The value of m  n, r = mn. 

S(i,j),k The share of region S(i,j). 

SHA(x) Generalized SHA family 

SHA-r SHA with r bits digest output. 

Si A region with a three with node i as root. 

Si,j The share is distributed from node i to node j. 

SKi The secret key of node i for asymmetric cipher in 

cryptosystem. 

Wj
n The message word Wj with n-bitwise left rotation. 

Wt The tth word of the message schedule. 
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2.3 Symbols and operations 

 Set INTERSENTION operation. 

 Bitwise AND operation 

 Bitwise OR operation 

 Bitwise XOR operation 

 Bitwise complement operation 

ROTL{i}(x) Rotate left operation by i bits. 

SHR{i}(x) Shift right operation by i bits. 
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3. Related Works 

3.1 Related Works on AES 

AES algorithm is specified with a fixed block size of 128 bits (Nb = 4), a key 

size of 128, 192, or 256 bits (Nk = 4, 6, 8), and referred as AES-128, AES-192, 

AES-256. It is capable of using any key and block size for all multiples of 32 bits. 

The key is expanded using Rijndael’s key schedule. Most AES computations are done 

in a special finite field. AES operates on a 4×4 array of bytes called the state. The 

number of rounds (Nr) to be performed during the execution of the algorithm is 

dependent on the key size.  

Table 2 Key-Block-Round Combinations 

 Key Length 

(Nk words) 

Block Size 

(Nb words) 

Number of Rounds

(Nr) 

AES-128 4 4 10 

AES-192 6 4 12 

AES-256 8 4 14 

 

For encryption, each round of AES (except for the last round, which omits the 

MixColumns() stage) consists of four stages. 

The four stages of AES are explained as follows: 

 SubBytes(): a non-linear substitution step where each byte is replaced with 

another according to a lookup table.  

 ShiftRows(): a transposition step where each row of the state is shifted 

cyclically by a certain number of offsets.  

 MixColumns(): a mixing operation that operates on the columns of the state 

and combines the four bytes in each column using a linear transformation.  



 

‐	13	‐	

 AddRoundKey(): each byte of the state is combined with the round key; 

each round key is derived from the cipher key using a key schedule 

algorithm. 

 

Algorithm 1 AESCipher (byte in [4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)]) 

1: byte state[4, Nb] 

2: state = in 

3: AddRoundKey(state, w[0, Nb-1]) 

4: FOR round = 1 to (Nr-1) 

5:   SubBytes(state) 

6:   ShiftRows(state) 

7:   MixColumns(state) 

8:   AddRoundKey(state, w[round * Nb, (round+1) * Nb-1]) 

9: End FOR 

10:SubBytes(state) 

11: ShiftRows(state) 

12: AddRoundKey(state, w[Nr * Nb, (Nr + 1) * Nb - 1]) 

13:out = state 

 

3.1.1 Function SubBytes 

The SubBytes() is an invertible non-linear byte substitution operating on the state 

using a substitution table (S-box) which is constructed by composing two 

transformations: 

 Take the multiplicative inverse in the finite field GF(28) and the element 

{00} is mapped to itself. 

 Apply the following affine transformation over GF(2): 

iiiiiii cbbbbbb   8mod)7(8mod)6(8mod)5(8mod)4('  Eq 1 

for 0  i < 8, where bi is the ith bit of the byte, and ci is the ith bit of a byte c with 
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the value {63} or {01100011}. In matrix form, the affine transformation element 

of the S-box can be expressed as: 
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 Eq 2 

The S-box used in the SubBytes() transformation is presented in hexadecimal for 

each byte Sx,y form in Figure 1. 
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 Y 

X 

 0 1 2 3 4 5 6 7 8 9 a b c d e f 

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76

1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0

2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15

3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75

4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84

5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf

6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8

7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2

8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73

9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db

a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79

b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08

c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a

d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e

e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df

Figure 1 S-box of AES 
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3.1.2 Function ShiftRows 

In the ShiftRows(), the bytes in the last three rows of the state are left-rotated 

over different numbers of bytes. ShiftRows() is formed as: 

NbcrSS NbNbrLRotatecrcr   0 and 40for  ' mod)),((,,  Eq 3 

where the rotation left LRotate(0, 4) = 0, LRotate(1, 4) = 1, LRotate(2, 4) = 2, 

LRotate(3, 4) = 3. 

 

S  S 

S0,0 S0,1 S0,2 S0,3 

S1,0 S1,1 S1,2 S1,3 

S2,0 S2,1 S2,2 S2,3 

S3,0 S3,1 S3,2 S3,3 
 

0 LRotate

  
1 LRotate

  
2 LRotate

  
3 LRotate

  

S0,0 S0,1 S0,2 S0,3 

S1,1 S1,2 S1,3 S1,0 

S2,2 S2,3 S2,0 S2,1 

S3,3 S3,0 S3,1 S3,2 
 

Figure 2 ShiftRows() in AES 

3.1.3 Function MixColumns 

The MixColumns() operates on the state column-by-column. The columns are 

considered as polynomials over GF(28) and multiplied modulo x4 + 1 with a fixed 

polynomial a(x): 

}02{}01{}01{}03{)( 23  xxxxa  Eq 4 

MixColumns() can be formed as a matrix multiplication s(x) = a(x)  s(x): 
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 Eq 5 
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3.1.4 Function AddRoundKey 

A round Key is added to the state by a simple bitwise XOR operation in the 

AddRoundKey(). Each round key consists of Nb words which are each added into the 

columns of the state, such that 

NbcwSSSSSSSS cNbroundcccccccc   0for  ][],,,[]',',','[ *,3,2,1,0,3,2,1,0  Eq 6 

where [wi] are the key schedule words and 0  round  Nr. 

3.1.5 Function Key Expansion 

The key expansion generates a total of Nb (Nr + 1) words and consists of a linear 

array of 4-byte words, denoted [wi], 0  i < Nb(Nr + 1). 

 

Algorithm 2 KeyExpansion(byte key[4 * Nk]), word w[Nb * (Nr + 1)], Nk) 

1: word temp 

2: i = 0 

3: WHILE (i < Nk) 

4:   w[i] = word (key[4 * i], key[4 * i + 1], key[4 * i + 2], key[4 * i + 3] 

5:   i = i + 1 

6: END WHILE 

7: i = Nk 

8: WHILE (i < Nb * (Nr + 1 )) 

9:   temp = w[i - 1] 

10:  IF (i mod Nk = 0) 

11:    temp = SubWord(RotWord(temp)) xor Rcon[i / Nk] 

12:  ELSE-IF (Nk > 6 and i mod Nk = 4) 

13:    temp = SubWord(temp) 

14:  END IF 

15:  w[i] = w[i - Nk] xor temp 

16:  i = i + 1 

17:END WHILE 
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SubWord() applies the S-box to each of the four-byte input word to produce an 

output word. The function RotWord() takes a word [a0,a1,a2,a3] as input to perform a 

rotation left as the word [a1,a2,a3,a0]. Rcon[i] is a round constant word array which 

contains the values [xi-1, {00}, {00}, {00}], where x is denoted as {02} in the field 

GF(28). 

3.1.6 Inverse Cipher 

The AES can be inverted by the implementation of InvShiftRows(), 

InvSubBytes(), InvMixColumns(), and AddRoundKey() on the state in reverse order. 

 

Algorithm 3 InvAESCipher (byte in[4 * Nb]), byte out[4 * Nb], word w[Nb * (Nr 

+ 1)]) 

1: byte state[4, Nb] 

2: state = in 

3: AddRoundKey(state, w[Nr * Nb, (Nr + 1) * Nb - 1]) 

4: FOR round = Nr – 1 downto 1 

5:   InverShiftRows(state) 

6:   InverSubByte(state) 

7:   AddRoundKey(state, w[round * Nb, (round + 1) * Nb - 1]) 

8:   InverMixColumns(state) 

9: END FOR 

10:  InverShiftRows(state) 

11:  InverSubByte(state) 

12:  AddRoundKey(state, w[round * Nb, (round + 1) * Nb - 1]) 

13:  out = state 
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3.1.7 Function InvShiftRows 

InvShiftRows() is the inverse of the ShiftRows() transformation. 

NbcrSS crNBNbrRRotatecr  0 and 40for  ' ,)mod),((,  Eq 7 

where the rotation left RRotate(0, 4) = 0, RRotate(1, 4) = 1, RRotate(2, 4) = 2, 

RRotate(3, 4) = 3. 

 

S  S 

S0,0 S0,1 S0,2 S0,3 

S1,0 S1,1 S1,2 S1,3 

S2,0 S2,1 S2,2 S2,3 

S3,0 S3,1 S3,2 S3,3 
 

 

S0,0 S0,1 S0,2 S0,3 

S1,3 S1,0 S1,1 S1,2 

S2,2 S2,3 S2,0 S2,1 

S3,1 S3,2 S3,3 S3,0 

Figure 3 InvShiftRows() in AES 

3.1.8 Function InvShiftRows 

InvSubBytes() is the inverse of the SubBytes(). The inverse S-box used in the 

InvSubBytes() is: 
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 Y 

X 

 0 1 2 3 4 5 6 7 8 9 a b c d e f 

0 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb

1 7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb

2 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e

3 08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25

4 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92

5 6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84

6 90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06

7 d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b

8 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73

9 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e

a 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b

b fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4

c 1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f

d 60 51 7f a9 19 b5 4a 0d 2d e5 7a af 93 c9 9c ef

e a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61

Figure 4 Inverse S-box of AES. 

3.1.9 Function InvMixColumns 

InvMixColumns() is the inverse of the MixColumns() transformation. 

InvMixColumns() can be formed as a matrix multiplication s S(x) = a-1(x)  s(x), 

where  

}0{}09{}0{}0{)( 231 exxdxbxa   Eq 8 



 

‐	21	‐	

Such that 
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 Eq 9 

3.2 Related Works on SHA Family 

Cryptographic hash functions play an important role in modern cryptography. 

They are widely used in a variety of applications such as password protection, secure 

protocols, and digital signatures. The hash function uses a string of arbitrary length as 

its input, and creates a fixed-length string as its output. A hash value is often called a 

data fingerprint or message digest. 

Definition 1 [60]: (Collision-free hash function) A collision-free hash function H uses 

a message M of arbitrary length as its input, and produces a fixed-length message 

digest when it satisfies the following conditions: 

 The description of H(M) is publicly known and it is easy to implement. 

 Pre-image resistant: Given message digest y, it is difficult to find a message 

M such that H(M) = y. 

 Second pre-image resistant: Given M and its image H(M), it is difficult to 

find another M such that H(M) = H(M). 

 (Strong) Collision Resistance: It is difficult to find two distinct messages M 

and M such that H(M) = H(M). 

The Secure Hash Algorithm (SHA) is a series of cryptographic hash functions 

published by the US National Institute of Standards and Technology (NIST). NIST 

proposed the SHA-0 as a Federal Information Processing Standard Publication (FIPS 

PUB) 180 in 1993 [61]. In 1995, NIST announced a revised version, the SHA-1, in 

FIPS PUB 180-1 [62] as a standard to replace the SHA-0. Since 2002, the NIST 
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published SHA-2 as FIPS PUB 180-2 [63], which consisted of four algorithms: 

SHA-1, SHA-256, SHA-384, and SHA-512 and then added SHA-224, SHA-512/224 

and SHA-512/256 into FIPS PUB 180-3 [64] in 2008 and into 180-4 [21] in 2012. 

Table 1 lists the characteristics of the seven SHA algorithms. 

3.2.1 Overview of SHA-1, SHA-224 and SHA-256 Algorithms 

SHA-1, SHA-224 and SHA-256 [21] take a message M with a length of l bits, 

where 0  l < 264, as the input, and outputs 160-bit, 224-bit, and 256-bit hash values. 

The hash function parses the padded message into 512-bit blocks and each block 

passes an 80-round and 64-round compression functions. 

SHA-1 processing involves the following 4 steps: 

Step 1: Padding message: pad the input message making it a multiple of 512 bits. 

Step 2: Parsing the padded message: parse the padded message into N 512-bit 

blocks, M(1), M(2), …, M(N). Each block M(i) is divided into sixteen 32-bit words, M0
(i), 

M1
(i), …, M15

(i). 

Step 3: Computing hash values for each message block M(i). 

 The message schedule, {Wt}: 

 
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




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 7916,

150,

161483
1 tWWWWROTL

tM
W

tttt

i
t

t
 Eq. 10 

where ROTL{i}(x) indicates left rotation operation by i bits. 

 Message expansions are performed for 80 rounds. Algorithm 4 defines these 

steps in detail.  

 Table 3 summarizes the Boolean function ft that appeared in the SHA-1 

step function. 

Step 4: Resulting message digest of the message, M, is 
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0 |||||||| NNNNN HHHHH  Eq 11 

 

Algorithm 4 SHA-1 step function 

1: )1(
0
 iHa , )1(

1
 iHb , )1(

2
 iHc , )1(

3
 iHd , )1(

4
 iHe  

2: FOR t = 1 to 80 

3:   et = dt−1 

4:   dt = ct−1 

5:   ct = ROTL30(bt−1) 

6:   bt = at−1 

7:   at = ROTL5(at−1) + ft(bt−1, ct−1, dt−1) + et−1 + Kt + Wt−1 

8: End FOR 

9: )1(
0

)(
0

 ii HaH , )1(
1

)(
1

 ii HbH , )1(
2

)(
2

 ii HcH , )1(
3

)(
3

 ii HdH ,
)1(

4
)(

4
 ii HeH  

 

Table 3 Boolean function and constants used in SHA-1 

Round t Boolean function ft(x, y, z) Kt 

01  t  20 (x  y)  (x  z) 5a827999 

21  t  40 x  y  z 6ed9eba1 

41  t  60 (x  y)  (x  z)  (y  z) 8f1bbcdc 

61  t  80 x  y  z ca62c1d6 

 

Table 4 The initial hash value, H(0) in SHA-1 

)0(
0H  67452301 

)0(
1H  efcdab89 

)0(
2H  98badcfe 

)0(
3H  10325476 

)0(
4H  c3d2e1f0 
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SHA-224 and SHA-256 take a message M with a length of l bits, where 0  l < 

264, as the input, and output 224-bit and 256-bit hash value. The hash function parses 

the padded message into 512-bit blocks and each block passes a 64-round 

compression functions. 

The SHA-224 and SHA-256 contain steps that are similar to SHA-1, except that 

it sets different initial values and constants, and uses different functions. The 

following is a description of the message block processing step. 

Step 3: Message scheduling for each message block M(i). 

 The message schedule, {Wt}: 
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 Eq. 12 
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 Eq. 13 

where SHR{i}(x) indicates right shift operation by i bits. 

Message expansions are performed for 64 rounds. Algorithm 5 defines these steps in 

detail.  

 Table 5 summarizes the Boolean function ft used in each round. 

Step 4: Resulting final message digests 

 The 224-bit message digest of the message, M, is 
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 The 256-bit message digest of the message, M, is 
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Algorithm 5 SHA-224 and SHA-256 step function 

1: )1(
0
 iHa , )1(

1
 iHb , )1(

2
 iHc , )1(

3
 iHd , )1(

4
 iHe , )1(

5
 iHf , )1(

6
 iHg ,

)1(
7
 iHh  

1:  FOR t = 1 to 64 

2:    T1 = ht−1+ f1(et−1) + f3(et−1,ft−1,gt−1) + Kt + Wt−1 

3:    T2 = f2(at−1) + f4(at−1,bt−1,ct−1) 

4:    ht = gt−1 

5:    gt = ft−1 

6:    ft = et−1 

7:    et = dt + T1 

8:    dt = ct−1 

9:    dt = ct−1 

10:   ct = bt−1 

11:   bt = at−1 

12:   at = T1+ T2 

13: End FOR 

15: )1(
0

)(
0

 ii HaH , )1(
1

)(
1

 ii HbH , )1(
2

)(
2

 ii HcH , )1(
3

)(
3

 ii HdH ,
)1(

4
)(

4
 ii HeH , )1(

5
)(

5
 ii HfH , )1(

6
)(

6
 ii HgH , )1(

7
)(

7
 ii HhH  

 

Table 5 Boolean function used in SHA-224 and SHA-256 

Boolean function ft 

f1(x) = ROTL(2)(x)  ROTL(13)(x)  ROTL(22)(x) 

f2(x) = ROTL(6)(x)  ROTL(11)(x)  ROTL(25)(x) 

f3(x) = (x  y)  (x  z) 

f4(x) = (x  y)  (x  z)  (y  z) 
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Table 6 Constants in SHA-224 and SHA-256 (From left to right, up to down) 

428a2f98 71374491 b5c0fbcf e9b5dba5 3956c25b 59f111f1 923f82a4 ab1c5ed5

d807aa98 12835b01 243185be 550c7dc3 72be5d74 80deb1fe 9bdc06a7 c19bf174

e49b69c1 efbe4786 0fc19dc6 240ca1cc 2de92c6f 4a7484aa 5cb0a9dc 76f988da

983e5152 a831c66d b00327c8 bf597fc7 c6e00bf3 d5a79147 06ca6351 14292967

27b70a85 2e1b2138 4d2c6dfc 53380d13 650a7354 766a0abb 81c2c92e 92722c85

a2bfe8a1 a81a664b c24b8b70 c76c51a3 d192e819 d6990624 f40e3585 106aa070

19a4c116 1e376c08 2748774c 34b0bcb5 391c0cb3 4ed8aa4a 5b9cca4f 682e6ff3 

748f82ee 78a5636f 84c87814 8cc70208 90befffa a4506ceb bef9a3f7 c67178f2

 

Table 7 The initial hash value, H(0) in SHA-224 and SHA-256 

)0(H  SHA-224 SHA-256 

)0(
0H  c1059ed8 6a09e667 

)0(
1H  367cd507 bb67ae85 

)0(
2H  3070dd17 3c6ef372 

)0(
3H  f70e5939 a54ff53a 

)0(
4H  ffc00b31 510e527f 

)0(
5H  68581511 9b05688c 

)0(
6H  64f98fa7 1f83d9ab 

)0(
7H  befa4fa4 5be0cd19 

3.2.2 Overview of SHA-384 and SHA-512 Algorithms 

SHA-384 and SHA-512 take a message M with a length of l bits, where 0  l < 

2512, as the input, and outputs 384-bit, and 512-bit hash values. The hash function 
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parses the padded message into 1024-bit blocks and each block passes an 80-round 

and 80-round compression functions. 

SHA-384 and SHA-512 processing involve the following 4 steps: 

Step 1: Padding message: pad the input message making it a multiple of 1024 

bits. 

Step 2: Parsing the padded message: parse the padded message into N 1024-bit 

blocks, M(1), M(2), …, M(N). Each block M(i) is divided into sixteen 64-bit words, M0
(i), 

M1
(i), …, M15

(i). 

Step 3: Computing hash values for each message block M(i). 

 The message schedule, {Wt}: 

 

    








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 6316,

150,

1615
}512{
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}512{
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tttt
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t

t 
 Eq 16 

       
       xSHRxROTLxROTLx

xSHRxROTLxROTLx
66119}512{

1

781}512{
0







 Eq 17 

 Message expansions are performed for 80 rounds. 

 defines these steps in detail. Table 8 summarizes the Boolean function 

ft used in each round. 

Step 4: Resulting final message digests 

 The 384-bit message digest of the message, M, is 

)(
5

)(
4

)(
3

)(
2

)(
1

)(
0 |||||||||| NNNNNN HHHHHH  Eq 18 

 The 512-bit message digest of the message, M, is 

)(
7

)(
6

)(
5

)(
4

)(
3

)(
2

)(
1

)(
0 |||||||||||||| NNNNNNNN HHHHHHHH  Eq 19 

 



 

‐	28	‐	

Algorithm 6 SHA-385 and SHA-512 step function 

1: )1(
0
 iHa , )1(

1
 iHb , )1(

2
 iHc , )1(

3
 iHd , )1(

4
 iHe , )1(

5
 iHf , )1(

6
 iHg ,

)1(
7
 iHh  

1:  FOR t = 1 to 80 

2:    T1 = ht−1+ f1(et−1) + f3(et−1,ft−1,gt−1) + Kt + Wt−1 

3:    T2 = f2(at−1) + f4(at−1,bt−1,ct−1) 

4:    ht = gt−1 

5:    gt = ft−1 

6:    ft = et−1 

7:    et = dt + T1 

8:    dt = ct−1 

9:    dt = ct−1 

10:   ct = bt−1 

11:   bt = at−1 

12:   at = T1+ T2 

13: End FOR 

15: )1(
0

)(
0

 ii HaH , )1(
1

)(
1

 ii HbH , )1(
2

)(
2

 ii HcH , )1(
3

)(
3

 ii HdH ,
)1(

4
)(

4
 ii HeH , )1(

5
)(

5
 ii HfH , )1(

6
)(

6
 ii HgH , )1(

7
)(

7
 ii HhH  

 

Table 8 Boolean function used in SHA-384 and SHA-512 

Boolean function ft 

f1(x) = ROTL(28)(x)  ROTL(34)(x)  ROTL(39)(x) 

f2(x) = ROTL(14)(x)  ROTL(18)(x)  ROTL(41)(x) 

f3(x) = (x  y)  (x  z) 

f4(x) = (x  y)  (x  z)  (y  z) 
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Table 9 Constants in SHA-385 and SHA-512 (From left to right, up to down) 

428a2f98d728ae22 7137449123ef65cd b5c0fbcfec4d3b2f e9b5dba58189dbbc

3956c25bf348b538 59f111f1b605d019 923f82a4af194f9b ab1c5ed5da6d8118

d807aa98a3030242 12835b0145706fbe 243185be4ee4b28c 550c7dc3d5ffb4e2 

72be5d74f27b896f 80deb1fe3b1696b1 9bdc06a725c71235 c19bf174cf692694 

e49b69c19ef14ad2 efbe4786384f25e3 0fc19dc68b8cd5b5 240ca1cc77ac9c65 

2de92c6f592b0275 4a7484aa6ea6e483 5cb0a9dcbd41fbd4 76f988da831153b5

983e5152ee66dfab a831c66d2db43210 b00327c898fb213f bf597fc7beef0ee4 

c6e00bf33da88fc2 d5a79147930aa725 06ca6351e003826f 142929670a0e6e70

27b70a8546d22ffc 2e1b21385c26c926 4d2c6dfc5ac42aed 53380d139d95b3df

650a73548baf63de 766a0abb3c77b2a8 81c2c92e47edaee6 92722c851482353b

a2bfe8a14cf10364 a81a664bbc423001 c24b8b70d0f89791 c76c51a30654be30

d192e819d6ef5218 d69906245565a910 f40e35855771202a 106aa07032bbd1b8

19a4c116b8d2d0c8 1e376c085141ab53 2748774cdf8eeb99 34b0bcb5e19b48a8

391c0cb3c5c95a63 4ed8aa4ae3418acb 5b9cca4f7763e373 682e6ff3d6b2b8a3 

748f82ee5defb2fc 78a5636f43172f60 84c87814a1f0ab72 8cc702081a6439ec

90befffa23631e28 a4506cebde82bde9 bef9a3f7b2c67915 c67178f2e372532b

ca273eceea26619c d186b8c721c0c207 eada7dd6cde0eb1e f57d4f7fee6ed178 

06f067aa72176fba 0a637dc5a2c898a6 113f9804bef90dae 1b710b35131c471b

28db77f523047d84 32caab7b40c72493 3c9ebe0a15c9bebc 431d67c49c100d4c

4cc5d4becb3e42b6 597f299cfc657e2a 5fcb6fab3ad6faec 6c44198c4a475817
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Table 10 The initial hash value, H(0) in SHA-384 and SHA-512 

)0(H  SHA-385 SHA-512 

)0(
0H  cbbb9d5dc1059ed8 6a09e667f3bcc908 

)0(
1H  629a292a367cd507 bb67ae8584caa73b 

)0(
2H  9159015a3070dd17 3c6ef372fe94f82b 

)0(
3H  152fecd8f70e5939 a54ff53a5f1d36f1 

)0(
4H  67332667ffc00b31 510e527fade682d1 

)0(
5H  8eb44a8768581511 9b05688c2b3e6c1f 

)0(
6H  db0c2e0d64f98fa7 1f83d9abfb41bd6b 

)0(
7H  47b5481dbefa4fa4 5be0cd19137e2179 

 

3.3 Genetic Algorithm 

The genetic algorithm is the most popular type of evolutionary algorithm that use 

techniques inspired by evolutionary biology. As stated by John H. Holland in 1975, 

“The genetic algorithm has a wide scope of applications, including economics, 

engineering, machine learning, genome biology, game theory, neural networks, and 

etc. [65]. A genetic algorithm provides a highly efficient method for ensuring 

convergence to near-optimal or optimal solutions. 

 

Figure 5 shows the steps of the genetic algorithm, which are described as 

follows: 

(1) Initialization of population. 
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(2) Choice of a fitness function and evaluation of the fitness value of each 

individual in the population. 

(3) Selection of better ranked part to be reproduced. 

(4) Breeding new generation’s population by crossover and mutation. 

(5) Replacement of the worst ranked part of the population with the new 

generation’s population. 

(6) Repeating this generational process until the termination condition has 

been reached. 

 

 

Figure 5 Flowchart of genetic algorithm 

The Genetic Algorithm Utility Library (GAUL) developed by AI Foundry [66] is 

a flexible programming library designed to aid in the development of applications that 

use genetic or evolutionary algorithms. It provides data structures and functions for 

handling and manipulating the data required for serial and parallel evolutionary 

algorithms. 

GAUL is an open-source programming library, which was released under the 

GNU General Public License. It is designed to assist in the development of code that 
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requires evolutionary algorithms. 

 

3.4 Secret Sharing Scheme 

Let t, n be positive integers, t ≤ n. Shamir proposed a (t, n)-threshold scheme in 

1979 [53]. His scheme is a method of sharing a key K among a set of n participants in 

such a way that any t participants can compute the value of key K, but no group of (t – 

1) participants can do so. 

3.4.1 The Shamir (t, n)-Threshold Scheme in ℤp 

D (the dealer) chooses n distinct, nonzero elements of ℤp, denoted xi, 1 ≤ i ≤ n, 

where p > n is a large prime. D gives the values xi to participate Pi, and each value xi 

is public. 

3.4.2 Share Distribution 

1. Suppose D wants to share a key K ∈ ℤp. D secretly chooses (independently 

and randomly) (t – 1) elements of ℤp, a1, . . . , at−1. 

2. For 1 ≤ i ≤ n, D computes yi = a(xi), where 







1

1

mod)(
t

j

j
j pxaKxa  Eq. 20 

Thus 







1

1

mod)(
t

j

j
ijii pxaKxay  Eq. 21 

3. For 1 ≤ i ≤ n, D gives the share yi to Pi. 
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3.4.3 Proactive Security 

It is difficult to compromise the secret key K under (t, n)-threshold scheme 

unless the adversary collects at least t shares. In practice, since each share exists in a 

machine, the risk of the secret key being compromised depends on the security of 

machine. For security concerns, it is necessary to update each share for a period of 

time. A proactive threshold scheme allows users to refresh shares without disclosing 

the secret key. 

1. Let 







1

1

mod)(
t

j

j
ijii pxaKxay  Eq. 21 

be the original share of key K for Pi. 

2. The dealer D then computes 







1

1

mod')'('
t

j

j
ijii pxaxay  Eq. 22 

3. For 1 ≤ i ≤ n, D gives the share y’i to Pi. 

4. For 1 ≤ i ≤ n, Pi computes (yi + y’i) as a new share. 

3.5 Autonomous Key Management (AKM) 

Autonomous key management (AKM) for a mobile ad hoc network (MANET) 

with a large number of nodes is based on a hierarchical structure to provide flexibility 

and adaptivity. Every leaf node in the logical tree structure is a real ad hoc device, and 

the other nodes are virtual nodes. The root node holds the global secret key, and AKM 

distributes key shares to its children recursively from the root down to the leaves 

using Shamir’s secret sharing scheme. 

Every node except the AKM root node must store its own public key pair and its 
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parent node secret share. The secret share each virtual branch node holds is as the 

secret key, and the public key can be generated using any asymmetric cryptographic 

scheme, such as RSA. Additionally, every real node has its PKI key pair before 

joining AKM. 

A tree with node A as its root is called region A. AKM includes seven 

node-based/region-based operations from node joining, region partitioning, to node 

leaving. AKM runs dynamically with continuous node joining/leaves. Figure 6 is an 

example of AKM. 

 

Figure 6 An example of AKM 

  

Global 
secret 
key

Secret1 Secret2

Secret1,1 Secret1,2 Secret1,3 Secret2,1 Secret2,2 Secret2,3 Secret2,4

[3, 2] [4, 3]

[2, 2]

: Virtual Node : Real Node
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4. Our Proposed Schemes 

This dissertation proposed many schemes for content protection especially on 

symmetric encryptions algorithm, one-way hash functions, and secure protocols on 

MANET. The front two parts improve the core cryptography components used in the 

rear part, which protects content from adversaries’ attacks on transmission. 

4.1 A Transpositional Advanced Encryption Standard (AES) Resists 3-round 

Square Attack [67] 

This work replaces some functions in the round transformation of AES and takes 

the bit as the operation unit to avoid 3-round square attacks. Applying linear 

cryptanalysis and differential cryptanalysis to our proposed block cipher, the results 

show our proposed cipher can resist these attacks in five and four rounds, 

respectively. 

The rest of this section is organized as follows: Section 3.1.1 describes some 

mathematic preliminaries and the design of the AES. Section 3.1.2 specifies the 

design of the proposed cipher. Section 3.1.3 discusses cryptanalysis results. Finally, 

section 3.1.4 summarizes the paper. To make the article more easily readable, a 

terminology table is listed below for the reader to consult. 

4.1.1 Cipher Structure 

As shown in Figure 7, the proposed cipher AES_Plus is an iterated block cipher 

that consists of an initial round key addition modulo 2; Nr-1 rounds that have the 

same transformations; where Nr is the total number of rounds, and a final round. 

There are (Nr-1) rounds and one final round that are distinct transformations and 
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take the previous state and the round key as inputs. We denote the total round keys as 

an array round key with Nr elements whose size is equal to the size of the state. 

RoundKey[0] is used by the initial round key addition which will be described in next 

section. RoundKey[i] is used for the ith round where 1  i  Nr. RoundKey[Nr] is used 

for the final round. For encryption, each round of the proposed cipher consists of four 

procedures: 

SubByte() — a non-linear substitution where each byte is replaced by another byte 

according to a lookup table. 

TransByte() — takes half the state as an 8×8 square matrix where each component is 

one bit, then interchanges the row and the column with the same indices such 

that bi,j becomes bj,i. 

SubBlkXor() —sub-block exclusive-or (XOR) transformation of Feistel structure that 

is used to perform bitwise exclusive-or operation on some other sub-block. 

AddRoundKey() — each byte of the state is combined with the round key; each round 

key is derived from the cipher key using a key schedule algorithm. 

In Algorithm AES_Plus, KeyExpansion() expands the cipher key to the total 

number of round keys denoted as ExpandedKey. This procedure can be excluded from 

the algorithm. AddRoundKey() denotes the initial key addition. The most important 

parts of AES_Plus are Round_Plus and FinalRound_Plus, which are the parts mainly 

improved in this research. These parts are described in the next section. 
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Figure 7 The structure overview of the proposed cipher where ♁ denotes the 

round key addition. 

Algorithm 7 AES_Plus (State, Ciphertext) 

// AES_Plus provides the encryption for the proposed //cipher. 

1: KeyExpansion(CipherKey, ExpandedKey) 

2: AddRoundKey(State, RoundKey[0]) 

3:  For(i = 0; i < Nr; i++) 

4:    Round_Plus(State, RoundKey[i]) 

5:  FinalRound_Plus(State, RoundKey[Nr]) 

6:  End For 

 

4.1.2 Our Proposed AES_Plus 

The proposed algorithm AES_Plus improves AES in the area of round 

transformation. This section describes each of the AES_Plus procedures and other 

properties of AES_Plus. 

  
……… 

Round 1 Round Nr-1 
FinalRound 

Plaintext 

RoundKey 
[0..Nr] 

Key schedule

Cipher Key

The Proposed Cipher 

Ciphertext 
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4.1.2.1 The Round Transformation 

There are four distinct procedures in the round transformation, Round_Plus: 

ByteSub(), TransByte(), SubBlkXor(), and AddRoundKey(). Round_Plus and 

FinalRound_Plus are illustrated in Figure 8 and Figure 9. The S-box is used to 

substitute the input byte. In the final phase, the ith round key is added to the ith state 

where 1  i < Nr in AddRoundKey(). The final round, FinalRound_Plus has the same 

transformations, but SubBlkXor() is replaced by the Swap procedure. Algorithm 8 and 

Algorithm 9 shows that Round_Plus and FinalRound_Plus are composed of five 

procedures: ByteSub(), TransByte(), SubBlkXor(), AddRoundKey() and Swap(). These 

procedures will be described later. 

Algorithm 8 Round_Plus (State, RoundKey[i]) 

1: ByteSub(State) 

2: TransByte(State) 

3: SubBlkXor(State) 

4: AddRoundKey(State, RoundKey[i]) 

 

Algorithm 9 FinalRound_Plus (State, ExpandedRoundKey[Nr]) 

1: ByteSub(State) 

2: TransByte(State) 

3: Swap(State) 

4: AddRoundKey(State, ExpandedRoundKey[Nr]) 
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Figure 8 Round_Plus of AES_Plus 

 

Figure 9 FinalRound_Plus of AES_Plus 
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4.1.2.1.1 ByteSub Procedure 

This ByteSub() is the same as SubBytes() non-linear substitution procedure in 

AES [68] using the same S-box table. The procedure executes rapidly through table 

look-up implementation and provides strong enough secure complexity. 

4.1.2.1.2 TransByte Procedure 

The first eight bytes of the state can be taken as an 8×8 square matrix where each 

element is one bit. After a matrix transformation the new 8×8 matrix is now composed 

of 64 bits. Figure 10 illustrates the matrix transposition, where bi,j is the ith row and jth 

column of the matrix. After TransByte(), bi,j interchanges its position with bj,i. The 

first byte, {b0,0 b0,1 b0,2 b0,3 b0,4 b0,5 b0,6 b0,7}, is replaced by {b0,0 b1,0 b2,0 b3,0 b4,0 b5,0 

b6,0 b7,0}. The inverse of the TransByte() operation is itself. 

 

Figure 10 TransByte 

4.1.2.1.3 Sub-Block XOR Procedure 

The SubBlkXor() is a Feistel structure. It is fast for both encryption and 

decryption and is very easy to analyze. In this operation, it performs bitwise XOR in 

each round to distribute the effects on bits as much as possible. Figure 11 illustrates 

this procedure. 
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b0,0 

b0,5 

b0,1 

b0,2 

b0,6 

b0,7 

b0,4 

: 

b1,0 

: 

b1,1 
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Figure 11 Sub-Block XOR 

The first eight bytes (B0 to B7) are assigned from B8 to B15. For B8 to B15, B8 to 

B11 are used to perform bitwise XOR operations with B12 to B15. By repeating itself, 

the result is that 32 bits are expanded as two sets of 32 bits (64 bits). Finally, the 64 

bits perform XOR again with B0 to B7 to be B8 to B15. The inverse of this operation is 

as follows (we denote Bi as byte after SubBlkXor()): 
















158 if ,BBB

70if , B
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8 mod4

8

i

i

iii

i
i  Eq 23 

4.1.2.1.4 Round Key Addition 

AddRoundKey() performs the bitwise XOR operation with the round key the 

same as in AES. Each round key size is the same as the state size and is derived from 

the cipher key by the key scheduling algorithm. The inverse is the AddRoundKey() 

itself. 

4.1.2.1.5 Swap 

FinalRound_Plus is a special round in AES_Plus. It replaces SubBlkXor() with 

Swap(). It swaps the left and right 64-bit sub-blocks. 
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4.1.2.2 Number of Rounds 

The number of rounds (Nr) depends on the result of cryptanalysis. We will show 

that six-round AES_Plus is strong enough to resist linear and differential attacks. Here, 

we choose Nr = 10 for the proposed cipher. 

4.1.2.3 Deciphering 

As shown in Figure 12, the decryption algorithm is the inverse of the encryption 

algorithm and uses the same key. Here, ByteSub-1() stands for the inverse of the 

ByteSub() as in AES. 

 

Figure 12 Encryption and decryption of AES_Plus 
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4.2 Generalized Secure Hash Algorithm: SHA-X [69] 

This section describes the processing of generalizing the Secure Hash Algorithm 

according to the SHA family algorithm. The process of generalization includes 

padding, parsing, setting the initial hash values, constants, Boolean expressions and 

functions, and message schedule; initializing the eight working variables and for-loop 

operation; and computing the ith intermediate hash values. In the following section, 

we describe the processes of generalizing in detail. 

4.2.1 Generalized Secure Hash Algorithm 

4.2.1.1 The Length of One Word and the Number of Output Words 

First, we define the length of one word as n such that n = 32 in SHA-224 and 

SHA-256, and n = 64 in SHA-384 and SHA-512. 

Second, we should define the number of output words m. For example, the 

output length of SHA-256 is 256 bits, 8 words equally (m = 8, 256 bits = 8 word  32 

bits/word). Similarly, m = 6 in SHA-384 (384 bits = 6 words  64 bits/word). On the 

basis of the SHA family, we define the value of m (6  m  8), and the length of one 

word/block n is multiple of 32. With the m and n, we can generalize the SHA family 

to SHA-mn.  

In SHA-mn, where m = {6, 7, 8}, and n = {32, 64}, we find two additional 

formats, called SHA-192 (m = 6 and n =32) and SHA-448 (m = 7 and n =64). If SHA 

family includes SHA-192 and SHA-448, we call it Complete SHA family. The 

Complete SHA family is defined below. 

Definition 2 Complete SHA family is defined: 
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Complete-SHA = {SHA-192, SHA-224, SHA-256, SHA-384, SHA-448, SHA-512}

 Eq 24 

Table 11 Values of m and n for SHA family 

Property SHA- nm 

Algorithms SHA-192 SHA-224 SHA-256 SHA-384 SHA-448 SHA-512

Word Size (n) 32 64 

# of Output 

Words (m) 
6 7 8 6 7 8 

Message Digest 

Size 
192 224 256 384 448 512 

Block Size 512 1024 

Security1 296 2112 2128 2192 2224 2256 

 

4.2.1.2 Padding the Message M 

The section generalizes the padding step in SHA-mn. Assuming that M is l bits (0 

 l < 22n), the padding process should satisfy the following two rules: 

 If we have l  14n-1 (mod 16n), we should pad “1||0*||(l)2” up to the length 

of n
n

l
16

16




 . Notice that “1||0*” denotes that “1” is followed by zero “0” 

bit or more than one bits and the (l)2 denotes the length of message in 

binary. 

 If we have l >14n-1 (mod 16n), we should pad “1||0*||(l)2” up to the length 

of n
n

l
161

16












 . Notice that “1||0*” denotes that “1” is followed by zero 

“0” bit or more than one bits and the (l)2 denotes the length of message in 

binary. 

                                                 
1 The security complexity is under birthday attack. 
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Algorithm 10 Padding 

1: If l  14n - 1 (mod 16n) 

2: Then M’= M || 1 || 0* || ( 1 )2 such that |M’| = n
n

16
16

1




  

3: Else M’= M || 1 || 0* ||( 1 )2 such that |M’| = n
n

161
16

1












  

4: End IF 

 

4.2.1.3 Parsing the Padded Message into Message Blocks 

Based on the properties of SHA family, SHA-mn parses the padded message into 

N 16 n bits blocks denoted by M(1)…M(N). For each 16  n-bit M(i), the M will be 

divided into sixteen n-bit sub-blocks denoted by M0
(i)…M15

(i). 

Algorithm 11 Parsing 

1: parsing M’ into M(1)…M(N) 

2: For i  1 to N Do 

3:   M(i) = M0
(i) || M1

(i) || … || M15
(i), | M(i) | = 16n 

4: End For 

4.2.1.4 Setting the Initial Hash Values 

The initial hash values consist of eight n-bit words denoted by H0
(0)…H7

(0). The 

following are the rules of setting initial hash value in each SHA family members. 

 In SHA-256(or in SHA-512), each initial hash value is 32(or 64) bits which 

are the first 32(or 64) bits of the fractional parts of the square roots of the 1st 

eight prime numbers. The first eight prime numbers are 2, 3, 5, 7, 11, 13, 17 

and 19. 

 In SHA-224, each initial hash value is 32 bits which are the 33th ~ 64th bits 

of the fractional parts of the square roots of the 9th through 16th prime 
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numbers. The 9th through 16th prime numbers are 23, 29, 31, 37, 41, 43, 47 

and 53. 

 In SHA-384, each initial hash value is 64 bits which are the first 64 bits of 

the fractional parts of the square roots of the 9th through 16th prime 

numbers. The 9th through 16th prime numbers are 23, 29, 31, 37, 41, 43, 47 

and 53. 

Based on SHA family, the paper defines initial hash value for the additional 

SHA-192 and SHA-448. 

 In SHA-192(or in SHA-448), each initial hash value is 32(or 64) bits, which 

are the first 32(or 64) bits of the fractional parts of the square roots of the 

17th through 24th prime numbers. The 17th through 24th prime numbers are 

59, 61, 67, 71, 73, 79, 83 and 89. 

  


64 8, 512;-SHA

32 8, ;  256-SHA

                    

9  7 1 2 e 7 3 1   9 1 d c 0 e b 5 

b 6 d b 1 4 b f    ab 9 d 3 8 f 1 

f  1 c 6 e 3 b 2   8c 8 6 5 0 b 9 

 1 d 2 8 6 e d a   f 7 2 5 e 0 1 5 

1 f 6 3 d 1 f 5   3a 5 f f 4 5 a 

b 2 8 f 4 9 e f   2 7 3 f e 6 c 3 

b 3 7 a a c 4 8   5 e8 a 7 6 b b 

8 0 9 c c b 3 f   7 6 6 e 9 0 a 6 

 H(8)

H(7)

H(6)

H(5)

H(4)

H(3)

H(2)

 H(1)

































nm

nm

 

  


646, -384;SHA

327, 224;-SHA

                                            

fa4 4 a f e b    81d 4 5 b 7 4  

 fa7 8 9 f 4 6   d 0 e 2 c 0 b d  

1  1 5 1 8 5 8 6   87 a 4 4 b e 8  

 1 3 b 0 0 c f f   67 6 2 3 3 7 6  

9 3 9 5 e 0 7 f   8 cd e f 2  5 1  

 17 d d 0 7 0 3   a 5 1 0 9 5  1 9  

  07 5 d c 7 6 3   a 2 9 2 a 9 2 6  

8 d e 9 5 0 1 c   d d5 9 b b b c  

 H(16)

H(15)

H(14)

H(13)

H(12)

H(11)

H(10)

 H(09)

































nm

nm

Figure 13 Initial values of standard SHA family 
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  


647, 448;-SHA

326, 192;-SHA

                      

e 0 f a 0 a 3 4     1 3 3 6 9 1 f 6  

 8 f 9 e 3 1 e c     2 0 0 6 5 4 c 1  

f 3 c 0 8 3 c  d    6 9 5 b 0 6 3 e  

 6 3 9 b 1 5 a 0     457 d 3 4 b 8  

 d e 1 e 2 8 d f     a c 6 2 8 1 d 6  

 a c 3 6 5 4 a 6     77d 4 3 7 f 2  

  5 1 e 1 a 1 d 9     3 d 5 8 c 6 f c  

b 9 9 d 6 b 7 e     6 5 1 9 f 5 e a  

 H(24)

H(23)

H(22)

H(21)

H(20)

H(19)

H(18)

 H(17)

































nm

nm

 

Figure 14 Initial values of SHA-192 and SHA-448 

We generalize the properties of setting initial hash value for SHA-mn: 

 For some x, if m = 8 and n = 64x-32 or 64x, we map to 1st to 8th prime 

numbers. And the 64x - 32 bits are obtained by truncating the last 32 bits of 

the 64x bits. 

 For some x, if m = 7 and n =64x - 32 or m = 6 and n = 64x, we map to 9th to 

16th prime numbers. The 64x -32 bits are obtained by truncating the first 32 

bits of the 64x bits. 

 For some x, if m = 6 and n =64x - 32 or m = 7 and n = 64x, we map to 17th ~ 

24th prime numbers. The 64x - 32 bits are obtained by truncating the last 32 

bits of the 64x bits. 
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  

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Figure 15 Initial values of SHA-mn 

4.2.1.5 Setting the Constants 

In SHA family, SHA-224 and SHA-256 obtain 64 constants by computing the 

first 32 bits of the fractional parts of the cube roots of the first 64 prime numbers 

denoted by K0
{256}…K63

{256}. Similarly, SHA-384 and SHA-512 obtain 80 constants 

by computing the first 64 bits of the fractional parts of the cube roots of the first 80 

prime numbers denoted by K0
{512}…K79

{512}. 

We can compute the constants by computing the first n bits of the fractional parts 

of the cube roots of the first f13(n) prime numbers. 



 

‐	49	‐	

  48
2

1
13  nnf  Eq 25 

4.2.1.6 Boolean Expressions and Functions 

In SHA-mn, the paper renames Ch() and Maj() functions to g1 and g2 and merges 

some  and  functions described in SHA family. Note that ROTRk(x) means to rotate 

right k bits, and SHRk(x) means to rotate right k bits. 

 )()()()()( 22132}256{

0

}224{

0
xROTRxROTRxROTRxx   and 

)()()()()( 393428}512{

0

}384{

0
xROTRxROTRxROTRxx  are merged to 

)()()( )()()(
3

321 xROTRxROTRxROTRg nfnfnf  , where  

24
16

13
)(1  nnf , 8

32

21
)(2  nnf , and 5

32

17
)(3  nnf . 

 )()()()()( 25116}256{

1

}224{

1
xROTRxROTRxROTRxx   and 

)()()()()( 411814}512{

1

}384{

1
xROTRxROTRxROTRxx   are merged to 

)()()( )()()(
4

654 xROTRxROTRxROTRg nfnfnf  , where 

2
4

1
)(4  nnf , 4

32

7
)(5  nnf , and 9

2

1
)(6  nnf . 

 )()()()()( 3187}256{
0

}224{
0 xSHRxROTRxROTRxx   and 

)()()()()( 781}512{
0

}384{
0 xSHRxROTRxROTRxx   are merged to 

)()()( )()()(
5

987 xSHRxROTRxROTRg nfnfnf  , where 

 nnnf mod13
16

3
)(7  ,  nnnf mod28

16

5
)(8  , and 1

8

1
)(9  nnf . 

 )()()()()( 101917}256{
1

}224{
1 xSHRxROTRxROTRxx   and 

)()()()()( 66119}512{
1

}384{
1 xSHRxROTRxROTRxx   are merged to 

)()()( )()()(
6

121119 xSHRxROTRxROTRg nfnfnf  , where 

 nnnf mod15
16

1
)(10  ,  nnnf mod23

16

21
)(11  , and  nnnf mod14

8

1
)(12  . 
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4.2.1.7 Message Schedule 

In SHA-224 and SHA-256, the padded message is parsed into N 512-bit blocks, 

M(1)…M(N), for each 512-bit block, M(i), which is divided into 16 32-bit blocks, 

M0
(i)…M15

(i). In SHA-384 and SHA-512, for each 1024-bits block, M(i), which is 

divided into 16 64-bit blocks, M0
(i)…M15

(i). The message schedule {Wt} is 

implemented as following. 

 













 630)()(

150

7162
}256{

115
}256{

0

)(

tWWWW

tM
W

tttt

i
t

t 
 and 














 790)()(

150

7162
}512{

115
}512{

0

)(

tWWWW

tM
W

tttt

i
t

t 
 are merged to 














 1)(0)()(

150

1371626155

)(

nftWWWgWg

tM
W

tttt

i
t

t
 

, where 48
2

1
)(13  nnf  and the addition(+) is performed modulo 2n. 

4.2.1.8 Initialize the Eight Working Variables 

The step initials the eight working variables (a ~ h), with the (i-1)th hash value. 

For each message block, M(i) , i = 1,2,3…N, is processed in order, the eight working 

variables a ~ h are given as 

 a = H0
(i-1), b = H1

(i-1), c = H2
(i-1), d = H3

(i-1), e = H4
(i-1), f = H5

(i-1), g = H6
(i-1), h 

= H7
(i-1) , and are generalized as aj = Hj(i - 1) (0 j  7). 

4.2.1.9 For-Loop Operation 

The paper generalizes the for-loop operation of SHA-mn, which is the core part 

of SHA family algorithms. For each message block M(i), i = 1, 2, …, N, should be 

executed f13(n) rounds. Notice that addition (+) is performed modulo 2n. 
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Algorithm 12 For-loop Operations 

1: For t = 0 to f13(n)-1 

2:   T1 = a7 + g4(a4) + g1(a4, a5, a6) + Kt
(mn) +Wt; 

3:   T2 = g3(a0) + g2(a0, a1, a2); 

4:   a7 = a6; a6 = a5; a5 = a4; a4 = a3 + T1; 

5:   a3 = a2; a2 = a1; a1 = a0; a0 = T1 + T2; 

6: End For 

4.2.1.10 Compute the ith Intermediate Hash Value H(i) 

For each 16  n-bit block M(i), i = 1,2…N, the intermediate message digests in 

the SHA family standard execute the following operations: 

 H0
(i) = a + H0

(i-1); H1
(i) = b+ H1

(i-1); H2
(i) = c+ H2

(i-1); H3
(i) = d+ H3

(i-1); 

H4
(i) = e + H4

(i-1); H5
(i) = f + H5

(i-1); H6
(i) = g + H6

(i-1); H7
(i) = h+ H7

(i-1); 

The paper generalizes the equations as follows: 

 Hj
(i) = aj + Hj

(i-1), 0 ≤ j ≤7. 

4.2.1.11 The Message Digest 

After repeating steps N times (i.e., After processing M(N)), the m  n bits 

message digest of the message is: 

 H0
(N) || H1

(N) || … || Hm-1
(N). 

4.2.2 SHA(x) Family 

The paper reduces the parameter n = {32, 64} as n = 32  (2 - i), i  {0, 1} and 

replaces the generalized SHA as SHA(x) defined in Definition 3, which is the family 

of SHAs of x. The section discusses SHA(1) and SHA(2) first and the LHV 

(Length-of-the-Hash-Value) problem of SHA(x). 

Definition 3 SHA(x) 
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SHA(x) = {SHA-m[32×(2x-i)] | i  {0, 1} and m  {6, 7, 8}} Eq 26 

4.2.2.1 SHA(1) and SHA(2) 

According to Definition 3, SHA(1) = {SHA-192 , SHA-224, SHA-256, 

SHA-384, SHA-448, SHA-512}. That is, “Complete SHA family”, which is discussed 

in Section 5. And SHA(2) ={SHA-576 , SHA-672, SHA-768, SHA-896, SHA-1024} 

for x = 2. The number of SHA(2) elements is 5, because m  n = 768 when n = 96, m 

= 8 and n = 128, n = 6. Therefore, we only use SHA-768 to denote the two cases. The 

elements of SHA(2) are listed in Table 12. 

Table 12 SHA(2) 

SHA(2) SHA-576 SHA-672 SHA-768 SHA-768 SHA-896 SHA-1024

m 6 7 8 6 7 8 

n (bits) 96 96 96 128 128 128 

mn(bits) 576 672 768 768 896 1024 

4.2.2.2 Length-of-the-Hash-Value Problem 

From the cases of SHA-768 and SHA-1536, which is m  n = 1536 when n = 

256, m = 6 and n = 192, n = 8, it exists LHV problem that some SHA-r cannot be 

expressed as r = mn uniquely. The LHV problems are classified into 6-7-8-LHV 

problem, 6-7-LHV problem, 6-8-LHV problem and 7-8-LHV problem. The section 

defines the LHV problem in Definition 4. Theorem 1 shows that if r is in LHV-set, 

SHA-r has LHV problem. Otherwise, SHA-r has no LHV problem. 

Definition 4 LHV (Length-of-the-Hash-Value) problem 

(1) Let SHA-r have a LHV problem if r satisfies {r = m × n = m × n | ∃ 

distinct n, n ∈ {32(2x - i) | x  N, i = {0, 1}}, ∀ m, m  {6, 7, 8}}. 
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(2) Let SHA-r have 6-7-8-LHV problem if r satisfies {r = 6 × n = 7×n = 8×n | 

∃ distinct n, n, n  {32(2x - i)| x  N, i = {0, 1}}}. 

(3) Let SHA-r have 6-7-LHV problem if r satisfies {r = 6 × n = 7 × n ≠ 

8×n | ∃ distinct n, n, n  {32(2x - i)| x  N, i = {0, 1}}}. 

(4) Let SHA-r have 6-8-LHV problem if r satisfies {r = 6 × n = 8 × n ≠ 

7×n | ∃ distinct n, n, n  {32(2x - i)| x  N, i = {0, 1}}}. 

(5) Let SHA-r have 7-8-LHV problem if r satisfies {r = 7 × n = 8 × n ≠ 

6×n | ∃ distinct n, n, n  {32(2x - i)| x  N, i = {0, 1}}}. 

Theorem 1 LHV Sets 

(1) Let 6-7-8-LHV-set = {5376k| k  N}. If r is in 6-7-8-LHV-set, SHA-r has a 

6-7-8-LHV problem. Otherwise, SHA-r has no 6-7-8-LHV problem. 

(2) Let 6-7-LHV-set = {1344k| k  N}-{5376k| k  N}. If r is in 6-7-LHV-set, 

SHA-r has a 6-7-LHV problem. Otherwise, SHA-r has no 6-7-LHV problem. 

(3) Let 6-8-LHV-set = {768k| k  N}-{5376k| k  N}. If r is in 6-8-LHV-set, 

SHA-r has a 6-8-LHV problem. Otherwise, SHA-r has no 6-8-LHV problem. 

(4) Let 7-8-LHV-set = {5376k| k  N}-{5376k| k  N}. If r is in 7-8-LHV-set, 

SHA-r has a 7-8-LHV problem. Otherwise, SHA-r has no 7-8-LHV problem. 

Proof: 

Proof for (1) 6-7-8-LHV-set:  

We show that if r is in 6-7-8-LHV-set, SHA-r has a 6-7-8-LHV problem by 

induction subject to k. 

(i) For k =1, 5376k = 5376, 5376 = 6  896 = 7  768 = 8  672, SHA-5376 

has a 6-7-8-LHV problem. 

(ii) Assume k = x, 5376x = 6  896x = 7  768x = 8  672x, SHA-5376x has a 

6-7-8-LHV problem. 
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(iii) Then, when k = x + 1, 5376(x+1) = 6  [896(x+1)] = 7  [768(x+1)] = 8 　 

[672(x+1)], SHA-1792(x+1) has a 7-8-LHV problem. 

The proofs for 6-7-LHV-set, 6-8-LHV-set, and 7-8-LHV-set are similar to the 

proof for 6-7-8-LHV-set. 

Q.E.D. 

As defined, SHA(x) = {SHA-6  (64x-32), SHA-6  64x, SHA-7  (64x-32), 

SHA-7  64x, SHA-8 (64x-32), SHA-8  64x}, where x  N and 6-7-8-LHV-set = 

{5376k| k  N}, 6-7-8-LHV problem exists between SHA(x) and SHA(x) if x, x ∈ N 

such that SHA-r  SHA(x)  SHA(x). For example, if we take (x, x) = (12, 14), 

SHA(12) = {SHA-4416, SHA-4608, SHA-5152, SHA-5376, SHA-5888, SHA-6144} 

and SHA(14) = {SHA-5184, SHA-5376, SHA-6048, SHA-6272, SHA-6912, 

SHA-7168}, it is found that SHA-5376  SHA(12)  SHA(14), thus SHA-5376 has 

6-7-8-LHV problem. Similarly, SHA-1344  SHA(3)  SHA(4) and SHA-1344 has 

6-7-LHV problem. All the situations of the LHV problem within SHA(x) are 

categorized in Lemma 1. 

Lemma 1 LHV Sets in SHA(x) 

(1) If (x, x)  {(12i, 14i), (24i-12, 21i-10), (24i, 21i), (28i-14, 21i-10), (28i, 

21i)| i  N}, there is 6-7-8-LHV problem between SHA(x) and SHA(x). 

(2) If (x, x)  {(6i-3, 7i-3)| i  N}  {(12i-6, 14i-7)| i  N}, there is a 6-7-LHV 

problem between SHA(x) and SHA(x). 

(3) If (x, x)  {(3i+2, 4i+2)| i  N - {7k - 3| k  N}}  {(3i, 4i)| i  N - {7k| k 

 N}}, there is a 6-8-LHV problem between SHA(x) and SHA(x). 

(4) If (x, x)  {(7i+4, 8i+4)| i  N - {3k-2| k  N}}  {(7i, 8i)| i  N - {3k| k  

N}}, there is a 7-8-LHV problem between SHA(x) and SHA(x). 

Proof: 



 

‐	55	‐	

The proof for (1):  

According Definition 3, SHA(x) = {SHA-(384x - 192), SHA-384x, SHA-(448x - 

224), SHA-(512x - 256), SHA-512x}, if there exists 6-7-8-LHV problem within 

SHA(x), at least two elements of SHA(x) are multiple of 5376. We discuss the 

following six cases: 

 When (384x-192) is multiple of 5376, 384x-192 = 5376k  x = (28k+1)/2. x 

and k must be integral, but  k  N, x is not integral. Thus, we ignore this 

case. 

 When (384x) is multiple of 5376, 384x = 5376k  x  {14i | i  N}. 

 When (448x-224) is multiple of 5376, 448x - 224 = 5376k  x = (24k+1). x 

and k must be integral,  k  N, x is not integral. Thus, we ignore this case. 

 When (448x) is multiple of 5376, 448x = 5376k  x  {12i | i  N}. 

 When (512x-256) is multiple of 5376, 512x – 256 = 5376k, x  {21i-10 | i  

N}. 

 When (512x) is multiple of 5376, 512x = 5376k  x  {21i | i  N}. 

So, there exists 6-7-8-LHV problem between SHA(x) and SHA(x) if (x, x)  

{(12i, 14i), (24i-12, 21i-10), (24i, 21i), (28i-14, 21i-10), (28i, 21i)| i  N}. 

The proofs for (2) to (4) are similar to (1). 

Q.E.D. 

4.2.2.3 SHA’(x) without LHV problem 

The previous section defines LHV problem and proves all the situations of the 

LHV problem within SHA(x). Consider the length of one word in the form of 32  

2k-1 for k  N, if we take m = 6, n = 32  23 = 256, r = m  n =1536. However, n = 

1536/8 = 192{32  2k-1 | k  N}. That is, ∄ n  {32  2k-1 | k  N} such that 1536 = 

6  256 = 8  n. We solve 6-8-LHV problem. Lemma 2 will prove that SHA-m  (32 
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 2k-1) has no LHV problem and redefine SHA(x) in Definition 3. Therefore, we have 

SHA(x) = {SHA-192  2x-1, SHA-224  2x-1, SHA-256  2x-1 | x  N}. 

Lemma 2 Let X ={6, 7, 8}, Y = {32  2k-1 | k ∈ N}, SHA-m  n has no LHV problem 

for all distinct m, m  X and all distinct n, n  Y. 

Proof: 

Without loss of generality, we let n = 32  2a-1 = 2a+4 and n = 32  2b-1 = 2b+4, for 

all a, b  N, a > b, a  b. 

Suppose mn = mn for distinct m, m  X, we have m  2a+4 = m  2b+4  m/m 

= 2a-b  2. It exists contradiction because a and b do not exist. Therefore, ∃ x, x ∈ 

{(192  2k-1), (224  2k-1), (256  2k-1) | k ∈ N}, there is no LHV problem between 

SHA(x) and SHA(x). 

Q.E.D. 

Definition 5 SHA(x) without LHV problem: 

SHA(x) = {SHA-m[32×(2x-1)] | x  N and m  {6, 7, 8}} Eq 27 
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4.3 Finding Near-Optimum Message Scheduling Settings for SHA-256 Variants 

Using Genetic Algorithms [70] 

4.3.1 SHA Message Scheduling Evaluation Criterion 

This section proposes an evaluation criterion of SHA message scheduling. The 

number of terms involved in the message schedule is treated as an evaluation criterion 

of SHA message scheduling. This study uses SHA-0 and SHA-1 as examples to show 

that SHA-1 is more secure than SHA-0 by comparing their message scheduling 

equations. 

4.3.1.1 Local Collision 

A local collision appearing on all the SHA families is a collision within 

intermediate steps of the hash function [29]. The starting point for hash function 

collision attacks is a local collision. Local collisions are found using linear 

approximations of Boolean functions that are used in various rounds in message 

scheduling (and other conditions as defined in [29]). The first observation is that 

SHA-0 has a 6-step local collision that can start at any step i. The differential path is a 

sequence of grouped local collisions with possible overlaps [71]. Wang [29] tried to 

find a set of starting steps for each local collision to construct such a path. The 

disturbance vector is applied to satisfy the recursion defined by the message 

expansion. Once a local collision is found, an attempt is made to consider the message 

expansion and other non-linear designs to find a collision for the full hash function. 

For SHA-0, 3 vectors are found successfully for three conditions in [29]. However, it 

is more complicated to find a good disturbance vector due to the large search space on 

SHA-1, and the probability of n interleaved local collision complexities increases 
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exponentially with n for SHA-256 [32]. 

Mendel provides an approach for collision searches as follows [32]: 

(1) Identify local collisions in each round of transformation. 

(2) Search for disturbance vectors that need to satisfy some additional 

properties. 

(3) Build the difference vector by interleaving the local collisions. 

(4) The complexity of the collision search is related to the characteristic within 

these interleaved local collisions. 

(5) Adjusting message bits for the chosen characteristic reduces the 

computational cost for the collision search. 

The issue that arises is how to reduce the number of local collisions in an 

expansion process. Our study applies a genetic approach to find the optimal parameter 

set of the SHA family message expansion function based on the evaluation criterion 

with the lowest number of local collisions. 

4.3.1.2 Local Collision in SHA-0 and SHA-1 

In [27], it is pointed out that SHA-1 is safer than SHA-0 because of a single 

bit-wise rotation in SHA-1 that affects the local collisions existing in SHA-0. Table 13 

shows the SHA-0 and SHA-1 equations. 

Table 13 SHA-0, SHA-1, and SHA-256-XOR equations 

Algorithm Equation 

SHA-0  
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‐	59	‐	

The following are examples that compare the terms involved in W27 in both 

SHA-0 and SHA-1, and that in W20 in SHA-256-XOR where Mj
n (or Wj

n) indicates 

that the message block Mj (or intermediate message word Wj) undergoes an n-bitwise 

left rotation. Each message word Wt is obtained by recursively computing other words 

with lower indices and being replaced by message blocks until t  15. 

Figure 2 represents the number of terms involved in full SHA-0, SHA-1, and 

SHA-256-XOR. 

[SHA-0] 

W27 = W24  W19  W13  W11 

 = (W21  W16  W10  W8)  W19  W13  W11 

 = … 

 = M15  M4  M2  M7  M8  M3 

  6 terms are involved. 

[SHA-1] 

W27 = W24
1  W19

1  W13
1  W11

1 

 = (W21
2  W16

2  W10
2  W8

2)  W19
1  W13

1  W11
1 

 = … 

 = M15
4  M10

4  M4
4  M2

4  M13
3  M7

3  M5
3  M10

2  

M8
2  M11

2  M5
2  M3

2  M13
1  M11

1 

  14 terms are involved. 

[SHA-256-XOR] 

W20 = 0(W18) W13 1(W15) W4 

 = W18
7  W17

18  W13  W5
17  W5

19  W4 

 = (W14
14  W14

25  W9
7  W1

24  W1
26  W6

7  W14
4  W9

18 

 W1
3  W5

5  W0
18  W11  W3

17  W3
19  W2)

7  

(W14
14  W14

25  W9
7  W1

24  W1
26  W6

7  W14
4  W9

18 

 W1
3  W5

5  W0
18  W11  W3

17  W3
19  W2)

18  W5
17 

 W3
19  W4 

 = M14
21  M14

32  M9
14  M1

31  M1
1  M0

14  M11
7  M3

24 

 M3
26  M2

7  M14
11  M14

22  M9
4  M1

21  M0
0  

M11
18  M3

3  M3
5  M2

18  M5
17  M5

19  M4 

  22 terms are involved. 
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can be generalized as 

 

    











 6316,

150,
}256{

1
}256{

0 tWWWW

tM
W

DtCtBtAt

i
t

t 
 Eq 30 

and 

       
       xSHRxROTLxROTLx

xSHRxROTLxROTLx
101917}256{

1

3187}256{
0







 Eq. 13 

Consider two operations, ROTL and SHR. A bitwise rotation operation, ROTL, is 

a circular shift operation that is a permutation of the entries in a tuple where the last 

element becomes the first element and all of the other elements are shifted. The shift 

operation, SHRn(x), which sets 0 as the first element, does not influence the 

experimental results because SHRn(x) and ROTRn(x) produce different results. Based 

on this assumption, the generalized form is modified to 

     
     xROTLxROTLx

xROTLxROTLx
1917}256{

1

187}256{
0





  Eq 31 

In the previous section, the optimal values are calculated using the brute force 

approach in otpSHA-1. To find the optimum parameters using the brute force 

approach for SHA-256-XOR, we would need to test 264 possible combinations of {A, 

B, C, D} for each round t (16  t  63), and to perform up to 48  294 operations in the 

whole experiment. We applied genetic algorithm operators of recombination and 

perturbation to reduce the number of infeasible solutions needed to find the near 

optimal variable set {A, B, C, D}. 

The design of the GA involves some main components: genetic representation, 

population initialization, fitness function, selection scheme, crossover, and mutation. 

Each component is described as follows, and the parameters used with GAUL are 

listed in Table 14: 
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 Genetic representation: The genes represent the input variables, A, B, C, D, t, 

of the generalized SHA-256-XOR, and each chromosome represents a 

possible solution. In the simulation, the length of each chromosome is 5. 

 Population initialization: Each chromosome presents a potential solution for 

the problem in genetic algorithms. The initial population is randomly 

generated and the size is set to 500. 

 Fitness Function: The fitness function counts the number of terms in the 

equation for Wt. After the process of selection, crossover, and mutation, the 

optimal chromosome indicates the maximum number of terms involved in 

the equations. 

F(t) = # of different terms involved in Wt equation
 

Eq 32
 

 Selection Scheme: Selection is a genetic operator that chooses a 

chromosome from the current generation＇s population for inclusion in the 

next generation’s population. We adopt the binary tournament selection 

based on the fitness value in the simulation. 

 Crossover and Mutation: Crossover enables genetic algorithms to extract 

the best genes from different individuals, and to produce potentially 

superior children. The mutation operation randomly modifies the gene to 

prevent the falling of all solutions into a local optimum, and extends the 

search space. In the simulation, we adopt the one-point crossover with a 

ratio 0.9, and a single-point mutation with a ratio 0.1. 
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Table 14 Genetic algorithm parameters 

Parameter Value 

Library GAUL 
Population size 500 
Number of 
chromosomes 

1 

Length of each 
chromosome 

5 

Evolutionary mode GA_SCHEME_DARWIN 
Elitism mode GA_ELITISM_PARENTS_SURVIVE 
Crossover ratio 0.9 
Mutation ratio 0.1 
Fitness function # of terms involved in Wt equation 
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4.4 Modified Autonomous Key Management [74] 

This section modifies the secret sharing of Autonomous Key Management 

(AKM). AKM runs dynamically in seven node-based/region-based operations. The 

seven operations are update, join, leave, merge, partition, expansion, and contraction. 

These operations are designed based on the following rules: 

(1) All leaves in the hierarchy of AKM are real nodes. Each real node i has its 

own secret key SKi, and pgPK iSK
i mod , where g is a random generator. 

(2) The non-leaf nodes are virtual nodes, and their secret keys are generated 

directly/indirectly from real nodes through some region-based operations. 

(3) A tree with node A as root is called RegionA. For example, region A has 

virtual nodes B1, B2, and real nodes C1,1, C1,2, C1,3, C2,1, C2,2, C2,3, and C2,4. 

The number of the nodes that know the secret of region is Overall Region 

Size (ORS). 

(4) The Regional Trust Coefficient (RTC) is the ratio of the threshold to ORS, 

and indicates how secure the region is. The AKM sets a Global Trust 

Coefficient (GTC) as a lower bound of all the RTC. Figure 6 shows an 

example, in which the ORS is 4 and RTC is 0.75 of the region B2. The GTC 

of region A would be 0.2. 
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Figure 6 An example of AKM 

4.4.1 Function Update 

Function update prevents any intruders from compromising the secret, and the 

AKM updates keys periodically. First, the region with (n, t)-threshold must select t 

nodes and each node is indicated as node i ∈ 1, . . . , t. 

Each node i generates update share Si,j(1 ≤ j ≤ n) of key 0. The node i selects 

random numbers xj(1 ≤ j ≤ n) and rd(0 ≤ d ≤ i − 1) to compute coefficients ad = 

(rd|0)(0 ≤ d ≤ t − 1).      pxaxaS
t

r

r
jrjdji mod

1

0
, 





 , for 1 ≤ j ≤ n. Node i then 

distributes Si,j to node j ∈ 1, …, n. When node j receives the update shares distributed 

from other t nodes in the region, it computes a new share  

 pSSS
t

i
jijj mod'

1
,


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Eq 33
 

The previous section describes how AKM can manage its secret sharing 

hierarchical structure using seven region-based functions. These operations cover all 

possible region changes from node joining to leaving. The key update frequency in 

Global 
secret 
key

Secret1 Secret2

Secret1,1 Secret1,2 Secret1,3 Secret2,1 Secret2,2 Secret2,3 Secret2,4

[3, 2] [4, 3]

[2, 2]

: Virtual Node : Real Node
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MANET is adjustable depending on the application environment. If the frequency is 

high, the MANET would be secure enough against adversaries, but would result in 

lower performance and heavy power consumption. On the contrary, if the frequency is 

low, the communication between nodes in MANET suffers from key inconsistency 

after many nodes join and leave continuously. 

4.4.2 Function Join 

Function Join is used when a node i wants to join a (t, n)-threshold region. The 

node sends a request to node j ∈ 1, …, t in the region. Upon receiving the request, 

node j checks its certificate revoking list (CRL) first. If node j accepts the request, it 

computes a partial share Sj of node i: 

   qilSS jjjj mod' 
 

Eq 34
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Eq 35
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Eq 36

 

that Sj,r is a number which pairs of nodes (j, r) ∈ 1 ≤ j ≤ t, 1 ≤ r ≤ t, and 
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Eq 37
 

After receiving all partial shares, node i generates its secret share Si: 
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Eq 38
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4.4.3 Function Leave 

Function Leave is used when a node leaves a region. Any node j removes the 

certificate of node i from its key management records when receiving Leave request 

from node i or detecting the node leaves. The share key of node j does not change 

until the AKM updates key periodically. 

4.4.4 Function Merge 

Function Merge is used when the number of nodes in a region is below the 

threshold. The region is simply divided into many parts and they join to the other 

sibling regions respectively. As in Algorithm 13, AKM performs Function Merge on 

region Si and merges its nodes Si,1 to Si,r into regions Sj and Sk as Sj,(n + 1), …, Sj,(n + p) 

and Sk,(n + 1), …, Sk,(n + q). 

Algorithm 13 Merge 

// Require: The merged region Si which contains nodes Si,1,…, Si,r, and the 
destination t regions SD0

 , SD1
 , …, SDt - 1

. 

//Ensure: Region SD0
 , SD1

 , …, SDt - 1
. 

1: Separate Si into t parts: [  t
rii SS

,1, ,... ], [    t
rit

ri
SS

2,1,
,...


], …,[    t

rtit
rti

SS
)1(,1)2(,

,...


], 

[   ri
t

rti
SS ,1)1(,

,...


] 

2: For u = 0 to t – 2 Do 

3:   For v = 1 to 




t

r
 Do 

4:   Join   vt
rui

S
,

 into SDu 

5:   End For 

6: End For 

7: For v = 1 to r-t 





t

r

 
Do 

8:   Join    vt
rti

S
1,

 into SDt-1 

9: End For 
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Figure 18 Function Merge – merges Si into Sj and Sk 

4.4.5 Function Partition 

Function Partition is used when the RTC of a region is under the GTC. For 

example, Figure 19 shows that AKM partitions region Si with 2n nodes into Si and 

S(m+1) with the same size n under threshold k. To assign the secret share to the nodes in 

S(m+1), it first randomly selects t regions from S1 to Sm and randomly chooses t nodes 

{Sj,1, …, Sj,t} from each Sj region. Second, it creates a new node S(m+1), and joins into 

AKM. 

Note that 
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by Lagrange interpolation. Note that 
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Thus 
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We also can get 
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To generate each share S(m+1), j (1  j  n) of region S(m+1), S(m+1), v’, where 
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Figure 19 Function Partition – partition of Si into Sj and Sm+1 
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4.4.6 Function Expansion 

Function Expansion is used when the RTC of a region is under the GTC. AKM 

must perform expansion operation to extend the hierarchy when the RTCs are under 

or equal to GTC in all the AKM regions. The function ensures that all the RTCs of 

regions are not lower than GTC when nodes increase continuously. Figure 20 shows 

that AKM extends region Si from one level to two levels with the same threshold. It 

selects t nodes in region Si, and executes function join to create a new node Si,(n+1). It 

then moves Si,1, …, Si,m to be Si,(n + 1)’s children, Si,(n + 1),1, …, Si,(n + 1),m with shares Si,(n 

+ 1),j , 1 ≤ j ≤ m, that 
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r
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, where ar = rr | sr (1 ≤ r ≤ t), Si,(n + 1) = stst−1 … s1, and all rrs are the same used in 

region Si. Region Si,(n + 1) continues (n, t)-threshold as in region Si. 

 

Figure 20 Function Expansion 

4.4.7 Function Contraction 

Function Contraction is the opposite of function Expansion. This function is used 
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when the number of nodes is less than the threshold in the region. The function 

merges the nodes contained in the contracted region into the other regions whose 

RTCs are less than GTC and decreases the level of AKM. As in Algorithm 14, AKM 

performs Function Contraction on region Si,(m + 1) and merges its nodes Si,(m + 1),1 to Si,(m 

+ 1),r into regions Si and Sj as Si,(m + 1), …, Si,(m + p) and Sj,(n + 1), …, Sj,(n + q). 

 

Algorithm 14 Contraction 

// Require: Region Si which contains nodes Si,1, …, Si,r. 
//Ensure: Region SD0

 , SD1
 , …, SDt - 1

. 

1: Merge Si into {SD0
 , SD1

 , …, SDt - 1
} 

2: IF Si  {SD0
 , SD1

 , …, SDt - 1
} 

3:   Delete Si 

4: End IF 

 

The seven-region-based operations on MANET of modified AKM handle key 

management. The scheme needs a trusted authority (TA) to start up, neither any 

central authorities to compute and distribute shares. 
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5. Discussion and Analyses 

5.1 Cryptanalysis of Transpositional AES 

In this section, we give the experiment results of linear cryptanalysis, differential 

cryptanalysis, and square attack analysis, comparing the proposed cipher to AES. The 

differences between the proposed cipher and the original AES are summarized in 

Table 15. 

Table 15 Differences between AES_Plus and AES 

 AES_Plus AES 
Structure Type Feistel structure Square structure 

Plaintext/Ciphertext 
Length 

128 bits 128 

Cipher Key Length 
128 ~ 256 bits  

(multiple of bytes) 
128 ~ 256 bits  

(multiple of words) 

Number of Rounds 10 
10 ~ 14  

(depends on block length 
and key length) 

Round Transformations 
(Operation Unit) 

TransByte (64-bit), 
SubBlkXor (64-bit) 

ShiftRow (byte), 
MixColumn (word) 

5.1.1 Linear Cryptanalysis 

Linear cryptanalysis was proposed by Matsui [68] for Data Encryption Standard 

(DES)-like ciphers, but it is also effective for most iterated ciphers. This attack finds 

an equation that consists of XOR operations with plaintext and cipher text bits. If this 

equation exists and approximates to zero or one with a higher probability, then the 

attack can be successful. 

A linear trail is a simulated trail that is a concatenation of some linear and 

non-linear components (e.g. S-box) through the cipher involved in the equation. The 

approximation of the equation is derived from the approximations of components in 

the linear trail. The bias of the equation is computed by the biases of the components 
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in the linear trail. We take each bit in the linear trail as a random variable, and the 

variable also has its own bias. If the bias of the variable is not equal to zero, then there 

is a linear trail reaching the bit with a probability of the bias plus one-half. When a 

linear trail extends by piling-up lemma, the bias decreases continually round by round; 

more linear trails are combined, or approximations of components are joined.  

At the end of the extension we obtain the biases of the ciphertext bits and the 

equation can be derived by tracing the linear trail back to the plaintext bits. The 

largest bias of the equation means that fewer pairs are needed to mount the attack. We 

describe how the bias varies under each procedure and how to compute the largest 

bias as follows: 

 Byte Substitution Procedure 

In ByteSub(), the S-box combines input linear trails and those extended 

according to linear equations from its inputs. For each output bit, there are 256 

equations according to the linear combination of eight input bits and the output bit. 

For example, E = x0  x1  x7  y0 where x0 and x7 denote eight input bits and y0 

denotes the highest output bit of the S-box. Because y0 = E  x0  x1  x7, the bias of 

y0 can be computed by the biases of E, x0, x1, and x7 by piling-up lemma: ܤ௬బ ൌ 2ଷ ൈ

ாܤ ൈ ௫బܤ ൈ ௫భܤ ൈ ௫ళܤ , where ܤ௬బ ாܤ , ௫బܤ , , ௫భܤ	 , and ௫ళܤ	 , denote the biases of 

variables y0, E, x0, x1, and x7. 

 Transformation Byte Procedure 

Because the TransByte() procedure performs only bit transposition, the biases of 

state bits do not change, but the proceeding direction of linear trails changes. 

 Sub-Block XOR Procedure 

Because the new left-half 64-bit data of the state are assigned from the previous 

right 64 bits in the SubBlkXor() procedure (Bi = Bi + 8, 0  i  7), the biases of these 

bits are the same as those of previous corresponding last right 64 bits. However, for 
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the new right 64 bits of the state, each bit results from the XOR operation of three bits 

of three words. For example, the new bit b8,1 is computed by previous bits b8,1, b12,1 

and b0,1 , where bi,j denotes the jth bit of byte bi, i = 0…15 and j = 0…7. For example, 

b8,1 = b8,1  b12,1  b0,1. 

The bias of b8,1 is computed from the biases of b8,1, b12,1, and b0,1 by the 

piling-up lemma: ݏܽ݅ܤୠᇲఴ,భ ൌ 2ଶ ൈ ୠఴ,భݏܽ݅ܤ ൈ ୠభమ,భݏܽ݅ܤ ൈ ୠబ,భݏܽ݅ܤ . Different linear 

trails will be combined into one trail with a smaller bias by the XOR operation. 

 Round Key Addition 

The quantity of bias does not change after AddRoundKey(). Because the key bit 

is fixed at zero or one, the bias of the key bit is 1/2. Therefore, only sign of the bias 

may change depending on the key value: ݏܽ݅ܤ௢௨௧ ൌ 2 ൈ ௜௡ݏܽ݅ܤ ൈ ቀേ ଵ

ଶ
ቁ ൌ േݏܽ݅ܤ௜௡. 

The largest bias of state bits at the end of nth round can be computed with 

upper-bound biases at the end of the preceding two rounds. Differences between 

evaluation and real values are caused by the approximations of the S-boxes. The 

evaluation uses only the upper-bound bias of the linear equation of S-box 2-4, but in 

the real case the computed bias is not necessarily the largest. 

Our experiment computed the largest bias of all state bits at the end of each 

round as shown in Table 16. Since the proposed cipher is in Feistel structure, the bias 

increasing rate does not grow as steep as AES in square structure. There are no 

4-round biases with a correlation above 2-208. It is impossible to collect these needed 

pairs. Therefore, the proposed cipher is secure enough against linear attacks with 

more than five rounds. 
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Table 16 Largest bias of state bits at the end of each round (up to the tenth round) 

Round # AES_Plus AES 
1 2-4 2-13 
2 2-13 2-61 
3 2-34 ~2-253 
4 2-85 ~2-1023 
5 ~2-208 ~2-4100 
6 ~2-505 ~2-16408 
7 ~2-1222 ~2-65638 
8 ~2-2953 ~2-262561

9 ~2-7132 ~2-1050253 
10 ~2-17221 ~2-4201023 

5.1.2 Differential Cryptanalysis 

The differential cryptanalysis was first proposed by Biham and Shamir [75] for 

Data Encryption Standard (DES). It is also applicable for other iterated ciphers [6]. 

Differential cryptanalysis is used to derive a differential trail with high enough 

probability. A differential trail is derived from input differential bits to the cipher and 

the differential bits propagate through the cipher round by round. The probability of a 

differential trail is computed by multiplying propagation ratios of differentials for 

active S-boxes involved in the trail. 

A differential trail is composed of difference patterns: (x0
*, x1

*, …xr
*). The 

probability of this trail is the probability that an initial difference pattern x0
* 

propagates to difference patterns x0
*, x1

*, …, xr
* after 1, 2, …, r rounds, respectively. 

We describe how to compute the highest probabilities of differential trails for each 

procedure. 

 Byte Substitution Procedure 

The differential of ByteSub() depends on the propagation ratio of the input and 

output pair (called the input and output differential for the S-box). For a given input 
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Table 17 Highest probabilities of differential trails for two ciphers up to some rounds 

Round # The Proposed Cipher AES 
1 2-7 2-7 
2 2-7 2-14 
3 2-54 2-72 
4 ~2-894 ~2-300 
5 ~2-10746 ~2-1248 
6 ~2-143418 ~2-5010 
7 ~2-1835142 ~2-20064 
8 ~2-23859942 ~2-80280 
9 ~2-308328672 ~2-321144 
10 ~2-3993665760 ~2-1284600 

5.1.3 Square Attack 

The square attack is a dedicated attack for the cipher square [7] that exploits the 

byte-oriented structure of the cipher. AES inherits the same property from the square 

cipher; thus a four-round AES is threatened by the square attack [8]. Because our 

proposed cipher uses the TransByte() operation, which breaks the property exploited 

in a square attack, the attack cannot be successfully carried out. We define a -set as a 

set of 256 states that differ in active bytes and are equal in passive bytes: 












others, 

active is )( if, 
:,

,,

,,

jiji

jiji

yx

i,jyx
yx  Eq 49 

The -set property causes all bytes to be balanced: 

.0, 


ji
a

a  Eq 50 

In our proposed cipher, the AddRoundKey() and ByteSub() procedures do not 

influence the -set with the position of active bytes indicated as Kj where K  A,.., D 

and j = {l, r} means the -set at a byte of left 64 bits (l) or right 64 bits (r) and its 

substitution through the S-box in each round (ex: A  B  C  D). As shown in 
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Figure 23, it separates the active byte from one block into eight blocks in the first 

round. The TransByte() procedure breaks the -set property but remains balanced in 

the first round. We discuss the security after the SubBlkXor() procedure. Mi
j where j = 

{l, r} indicates the active bytes mixed i times, resulting in the state being unbalanced. 

Regarding the influence of l, SubBlkXor() moves the influence of l to the two right 

columns in the first round and makes them unbalanced in the second round as 

illustrated in Figure 24. After the third round, none of the states are balanced. Thus, it 

is difficult to recover any input using a square attack after the third round as shown in 

Figure 25. 

Similar to l, the right 64 bits (r) are not balanced after SubBlkXor() in the first 

and second rounds. Thus, it resists the square attack after the second round as shown 

in Figure 26, Figure 27 and Figure 28. Our cipher improves on the AES, which 

requires four rounds. 
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Figure 23 The influence of active byte l in 1st round 
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Figure 24 The influence of active byte l in 2nd round 
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Round 3 --- l 
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Figure 25 The influence of active byte l in 3rd round 

Round 1 --- r 
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Figure 26 The influence of active byte r in 1st round 

Round 2 --- r 
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Figure 27 The influence of active byte r in 2nd round 
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Figure 28 The influence of active byte r in 3rd round 
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5.2 Experiment results of SHA-256-XOR 

Table 18 lists 10 generations of the simulation results for {A, B, C, D}. The 

simulation requires heavy computational times for each t. We have not generated 

optimum parameters for additional rounds because of the computational requirements. 

However, we believe that we have demonstrated the basis of our contribution, which 

is a possible approach for the selection of optimal message scheduling parameters and 

the analysis of the security fitness. 

The values for the 5 variables converge after 42 generations. It appears that the 

approximate optimal values are {A, B, C, D} = {4, 1, 1, 16}. Thus, the best equation 

for Wt of SHA-256-XOR, named optSHA-256-XOR, should be 

 

    











 6316,

150,

161
}256{

114
}256{

0 tWWWW

tM
W

tttt

i
t

t 
 Eq 51 

Figure 29 compares SHA-256-XOR with optSHA-256-XOR by showing clearly 

that otpSHA-256-XOR is indeed more secure than SHA-256. 

Table 18 The last 10 generations of the simulation 

Generation A B C D Fitness 

41 8 1 1 16 238
42 4 1 1 16 259
43 4 1 1 16 265
44 4 1 1 16 265
45 4 1 1 16 265
46 4 1 1 16 270
47 4 1 1 16 270
48 4 1 1 16 270
49 4 1 1 16 270
50 4 1 1 16 270
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5.3 Performance analysis of Modified Autonomous Key Management 

This section discusses the performance improvement of the proposed method in 

terms of communication cost and computation cost. The modified AKM inherits the 

AKM structure, and transmissions between each node are (update) shares. Thus, the 

single message discussion must be transmitted with significant information. 

The length of secret key k, protected by the secret sharing scheme, must be long 

enough for some security issues (i.e., 2 048 bits or more). In Shamir’s secret sharing 

scheme, k is constant in the a(x) equation. The length of all the shares 

  kxaxa
t

j

j
ji 





1

1

, 1 ≤ i ≤ n, is bounded by |k|. For example, if |k| = 2048 bits long, 

the length of each share is at least 2048 bits. However, the modified secret sharing 

scheme reduces share length to 
t

1
 without security loss. The secret key is divided in 

each coefficient aj = rk | kj, and k = k1k2 … kt with the length |a(xi)| as 
t

1
 of |k| on 

appropriate prime number p. Therefore, the modified MANET communication cost 

can be reduced to 
t

1
. 

Table 19 Message length comparison 

 Message (share) length size 

AKM |yi| = |k| |p| 

Modified AKM |yi| =
t

k
  |k|  |p| 

 

Computation cost on the MANET environment is a very important issue. Certain 

mobile ad-hoc devices have restricted power, and cannot support jobs requiring heavy 

computation cost. The proposed improvement also influences computation cost. 

Finding that the critical mathematical operation is module multiplication (/division) in 

all operations is easy, depending on operand length. Almost all operands in modified 
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AKM reduce, resulting from each modified AKM share as 
t

1
 faster than AKM. 

Furthermore, the computation cost of all operations can be reduced to 
t

1
. 

Table 20 Operand length comparison 

 operand length size 

AKM |yi| = |k| |p| 

Modified 

AKM 
|yi| =

t

k
  |k|  |p| 
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6. Conclusions 

While IT has evolved from people-to-machine (Web 1.0) through 

people-to-people (Web 2.0) to machine-to-machine (Web 3.0), working styles have 

gradually changed from writing on paper to Cloud storage. Digital content 

development is critical to these changes. However, information security and privacy 

issues should also be addressed. Therefore, we proposed improvements to symmetric 

ciphers, one-way hash functions, and secure protocols. 

The advanced encryption standard (AES) is applied as an encryption standard to 

replace data encryption standard (DES) and triple-DES in fields including 

e-commerce, embedded systems, and ubiquitous computing. Originally, AES 

performed matrix operations using the MixColumns() procedure, resulting in more 

complicated computations and increasingly complex software and hardware designs. 

The proposed AES variant replaces the matrix with an XOR operation providing 

stronger security. 

The proposed cipher’s advantages are 

 The security of round transformation in the proposed cipher is made 

stronger than AES by strengthening the resistance of the square attack from 

4 to 3 rounds. 

 Most operations in the proposed cipher, including the TransByte() procedure, 

can be used for both encryption and decryption. 

In future, we will focus on speeding up the cipher, especially on TransByte() and 

SubBlkXor(). 

Since 1993, the secure hash function family is an important standard in 

cryptography. We propose a novel view of complexity (and hence security fitness) by 

counting the number of terms involved in each equation, instead of analyzing the 
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probability of finding collisions within hash functions. We identified the near optimal 

versions, optSHA-1 and optSHA-256-XOR, using brute force and genetic approaches 

of SHA-1 and SHA-256-XOR, respectively; the latter had more computational 

efficiency. This analysis is useful for designers interested in the security of 

modular-addition-free hash functions suitable for hardware implementation with 

lower gate counts. The obtained message schedule parameter sets will be a good 

reference for further improvements of secure hash algorithm (SHA) functions. 

The proposed generalized SHA (SHA-mn) uses arbitrary length messages as 

inputs for generating message digests with required lengths. We modified each 

SHA-mn step as a generalized version containing padding and parsing; setting the 

initial hash values, constants, Boolean expressions, functions, and message schedule; 

initializing the eight working variables and for-loop operation; and computing the ith 

intermediate hash values. Furthermore, we solved the LHV problem, which does not 

exist in the original SHA family standard. 

For security purposes, SHA-mn was generalized based on SHA family design 

rules. While the design was improved, there is disagreement regarding the method 

used to calculate the complexity according to the birthday paradox, as the collision of 

full SHA-1 was reported in 2005. Many studies focus on developing efficient ways 

for finding SHA-256/512 collisions. We therefore believe that the approximate 

complexity of SHA-mn under the birthday attack is 2mn/2. 

The security of mobile ad hoc networks influences their applications. To achieve 

adequate security, autonomous key management (AKM) for numerous nodes is 

important. We propose modified AKM to reduce communications and computation 

costs to 
t

1
 of the original values without compromising security. Results show that 

modified AKM is more practical because it can handle large numbers of dynamic 
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nodes in a MANET, while maintaining adequate security requirements. The proposed 

methodology is applicable to all schemes based on cryptographic threshold schemes 

for truncating message size without endangering security. 

Further research will attempt to simplify the computation complexity of AKM 

operations for the workability of ad hoc devices. Furthermore, we will apply the 

proposed concept to vehicular ad hoc networks (VANETs) because their environments 

are more dynamic and the topology changes faster, resulting in narrower bandwidth. 
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