

National Chiao Tung University

Department of Computer Science

Dissertation

一些密碼元件之分析與設計

Analysis and Design of Some Cryptographic Primitives

Student: Chen-Yu Lee

Advisor: Prof. Deng-Jyi Chen

 Prof. Chu-Hsing Lin

January, 2013

一些密碼元件之分析與設計

Analysis and Design of Some Cryptographic Primitives

研 究 生： 李鎮宇 Student： Chen-Yu Lee
指導教授： 陳登吉 Advisor： Deng-Jyi Chen
 林祝興 Chu-Hsing Lin

國 立 交 通 大 學
資 訊 工 程 學 系

博 士 論 文

A Dissertation
Submitted to Department of Computer Science
Institute of Computer Science and Engineering

National Chiao Tung University
in partial Fulfillment of the Requirements

for the Degree of
Doctor of Philosophy

in

January 2013

Hsinchu, Taiwan, Republic of China

中華民國一百零二年一月

‐	i	‐	

一些密碼元件之分析與設計

學生：李鎮宇 指導教授：陳登吉

林祝興

國立交通大學資訊工程與科學研究所博士班

摘 要

網路犯罪伴隨著網路的興起而成長，其核心價值──數位內容正

面臨嚴重的威脅。本論文改良網路安全主要元件：對稱式加密演算法、

單向雜湊函數以及安全協定的設計以及探討應用於隨意網路上金鑰

管理的方法。

本論文替換了進階加密標準(AES)中回合函式的部分運算方法，

並改以位元當作運算單位，使得可以抵抗三回合的平方攻擊法，以及

線性攻擊法、差分攻擊法，得以證明在許多方面比 AES 優良。本研

究也基於安全雜湊演算法(SHA)的設計精神，定義了一般性的 SHA，

其接受任意長度訊息輸入，並產生所需要長度的訊息摘要。本研究提

出一個新的觀點，以評估 SHA-256-XOR 演算法的安全複雜度，即是

計數每個演算方程式中所牽涉的項數，以取代計算碰撞機率的方法。

引用基因演算法探究訊息排程中趨近最佳的參數組合，使相對於標準

‐	ii	‐	

方法可以提升 1.5 到 4 倍的安全複雜度。最後，本論文改良了秘密分

享機制並應用於金鑰管理方法以減少通訊、計算量的花費。

本論文的貢獻將會讓非模加安全雜湊運算的研發者感到興趣，而

這樣的運算方式會有利於使用較少邏輯閘的硬體實作。另外，本論文

所提出的方法論亦可以應用於所有引用秘密分享機制的設計方法以

減少訊息長度而不會降低安全程度。

‐	iii	‐	

Analysis and Design of Some Cryptographic Primitives

Student：Chen-Yu Lee Advisors：Dr. Deng-Jyi Chen

Dr. Chu-Hsing Lin

Institute of Computer Science and Engineering

National Chiao Tung University

ABSTRACT

Increasing cybercrime activities on the Internet introduces various threats to core

values and digital content. This dissertation improves the design of symmetric cipher

algorithms and one-way hash functions, and clarifies the functions of key

management in mobile ad hoc networks.

We replace some procedures in the round function of the advanced encryption

standard (AES) and use bits as the operation unit to foil the 3-round square attack.

Moreover, we apply linear cryptanalysis and differential cryptanalysis to the proposed

cipher, which is superior to AES. Our study defines a generalized secure hash

algorithm (SHA) algorithm based on SHA family rules. The algorithm accepts

arbitrary length messages as inputs that generate message digests with the required

length. We propose a new perspective of complexity for SHA-256-XOR functions by

counting the terms involved in each equation, instead of analyzing the probability of

finding collisions within SHA-256-XOR hash functions. We apply genetic algorithms

to find the near-optimal message schedule parameter sets that enhance the complexity

4 times for SHA-1 and 1.5 times for SHA-256-XOR, when compared to their original

‐	iv	‐	

SHA-1 and SHA-256-XOR functions. Finally, we modify the secret sharing scheme

and apply it to autonomous key management (AKM) for reducing communication and

computation costs.

Our results are useful when designing security for modular-addition-free hash

functions, simplifying hardware implementation and allowing a smaller gate count,

and when designing symmetric ciphers. The proposed methodology applies to all

cryptographic threshold-based schemes that truncate message size without

compromising security.

‐	v	‐	

Dedication

To my parents, Heng-Hsing Lee and Li-Hua Mao, and my wife, Yi-Ting Chen,

for their unwavering support and encouragement over the years.

‐	vi	‐	

Acknowledgement

During the past 3700 days, I have received encouragement and support from

several people. Now, upon the completion of the dissertation for my doctoral study, I

would like to offer my gratitude. First, I must thank my supervisor, Dr. Yi-Shiung Yeh,

who dedicatedly guided me through my study, up to the time of his passing. His

inspiration triggered my passion for Cryptology. Even though he will not be able to

see the result of my study, I have embraced his foresight. In addition, I would like to

thank my other supervisor, Dr. Deng Jyi-Chen, who helped me after Dr. Yeh passed

away. He accepted me and offered me guidance wholeheartedly, leading me into the

domain of software development and medical information and enabling me to

broaden my perspective. Furthermore, I am most grateful to Dr. Chu-Hsing Lin for

offering guidance and care since the beginning of my master program. He has not

only led me through the study of information security and steganography but has also

taught me much about interpersonal interactions. Most of all, I tender my gratitude to

the committee of the doctoral dissertation, Professor Chien-Chao Tseng, Lein Harn,

Jinn-Ke Jan, Shih-Kun Huang and Chorng-Shiuh Koong, as they have shared precious

suggestions and opinions.

Finally, I would like to thank Dr. Min-Chih Kao, Dr. I-Te Yiter Chen, Dr.

Wei-Shen Lai, Dr. Chia-Yin Lee, Dr. Tzer-Long Chen, Mr. Ting-Yu Huang, Dr.

Ching-Wen Cheng, Dr. Lin-Chuan Wu, and my classmates for the encouragement and

discussions that helped me complete my dissertation.

‐	vii	‐	

Contents

摘 要... i

ABSTRACT ... iii

Dedication .. v

Acknowledgement .. vi

Contents ... vii

Table of Contents ... x

List of Figures ... xi

1. Introduction .. 1

2. Definitions.. 9

2.1 Terms and Acronyms ... 9

2.2 Algorithm parameters, symbols and terms ... 9

2.3 Symbols and operations ... 11

3. Related Works .. 12

3.1 Related Works on AES ... 12

3.1.1 Function SubBytes .. 13

3.1.2 Function ShiftRows .. 16

3.1.3 Function MixColumns .. 16

3.1.4 Function AddRoundKey ... 17

3.1.5 Function Key Expansion ... 17

3.1.6 Inverse Cipher ... 18

3.1.7 Function InvShiftRows ... 19

3.1.8 Function InvShiftRows ... 19

3.1.9 Function InvMixColumns ... 20

‐	viii	‐	

3.2 Related Works on SHA Family .. 21

3.2.1 Overview of SHA-1, SHA-224 and SHA-256 Algorithms 22

3.2.2 Overview of SHA-384 and SHA-512 Algorithms 26

3.3 Genetic Algorithm .. 30

3.4 Secret Sharing Scheme .. 32

3.4.1 The Shamir (t, n)-Threshold Scheme in ℤp 32

3.4.2 Share Distribution ... 32

3.4.3 Proactive Security ... 33

3.5 Autonomous Key Management (AKM) ... 33

4. Our Proposed Schemes .. 35

4.1 A Transpositional Advanced Encryption Standard (AES) Resists 3-round

Square Attack ... 35

4.1.1 Cipher Structure .. 35

4.1.2 Our Proposed AES_Plus ... 37

4.2 Generalized Secure Hash Algorithm: SHA-X .. 43

4.2.1 Generalized Secure Hash Algorithm ... 43

4.2.2 SHA(x) Family .. 51

4.3 Finding Near-Optimum Message Scheduling Settings for SHA-256

Variants Using Genetic Algorithms ... 57

4.3.1 SHA Message Scheduling Evaluation Criterion 57

4.3.2 Improving SHA-256-XOR Via Genetic Algorithms 61

4.4 Modified Autonomous Key Management .. 65

4.4.1 Function Update .. 66

4.4.2 Function Join ... 67

4.4.3 Function Leave .. 68

‐	ix	‐	

4.4.4 Function Merge ... 68

4.4.5 Function Partition.. 69

4.4.6 Function Expansion .. 71

4.4.7 Function Contraction .. 71

5. Discussion and Analyses .. 73

5.1 Cryptanalysis of Transpositional AES ... 73

5.1.1 Linear Cryptanalysis ... 73

5.1.2 Differential Cryptanalysis ... 76

5.1.3 Square Attack .. 79

5.2 Experiment results of SHA-256-XOR ... 82

5.3 Performance analysis of Modified Autonomous Key Management 84

6. Conclusions .. 86

References .. 89

‐	x	‐	

Table of Contents

Table 1 SHA algorithms ... 4

Table 2 Key-Block-Round Combinations .. 12

Table 3 Boolean function and constants used in SHA-1 .. 23

Table 4 The initial hash value, H(0) in SHA-1 .. 23

Table 5 Boolean function used in SHA-224 and SHA-256 25

Table 6 Constants in SHA-224 and SHA-256 (From left to right, up to down) 26

Table 7 The initial hash value, H(0) in SHA-224 and SHA-256 26

Table 8 Boolean function used in SHA-384 and SHA-512 28

Table 9 Constants in SHA-385 and SHA-512 (From left to right, up to down) 29

Table 10 The initial hash value, H(0) in SHA-384 and SHA-512 30

Table 11 Values of m and n for SHA family .. 44

Table 12 SHA(2) .. 52

Table 13 SHA-0, SHA-1, and SHA-256-XOR equations .. 58

Table 14 Genetic algorithm parameters ... 64

Table 15 Differences between AES_Plus and AES ... 73

Table 16 Largest bias of state bits at the end of each round (up to the tenth round) 76

Table 17 Highest probabilities of differential trails for two ciphers up to some

rounds ... 79

Table 18 The last 10 generations of the simulation ... 82

Table 19 Message length comparison .. 84

Table 20 Operand length comparison .. 85

‐	xi	‐	

List of Figures

Figure 1 S-box of AES ... 15

Figure 2 ShiftRows() in AES .. 16

Figure 3 InvShiftRows() in AES ... 19

Figure 4 Inverse S-box of AES. ... 20

Figure 5 Flowchart of genetic algorithm ... 31

Figure 6 An example of AKM ... 34

Figure 7 The structure overview of the proposed cipher where ♁ denotes the

round key addition. .. 37

Figure 8 Round_Plus of AES_Plus .. 39

Figure 9 FinalRound_Plus of AES_Plus .. 39

Figure 10 TransByte ... 40

Figure 11 Sub-Block XOR ... 41

Figure 12 Encryption and decryption of AES_Plus ... 42

Figure 13 Initial values of standard SHA family ... 46

Figure 14 Initial values of SHA-192 and SHA-448... 47

Figure 15 Initial values of SHA-mn ... 48

Figure 16 Comparison of the number of terms involved in each Wt in message

scheduling for SHA-0, SHA-1 and SHA-256 .. 60

Figure 17 Comparison of the number of terms involved in each Wt in message

scheduling for SHA-1 and SHA-1-OPT .. 61

Figure 18 Function Merge – merges Si into Sj and Sk .. 69

Figure 19 Function Partition – partition of Si into Sj and Sm+1 70

Figure 20 Function Expansion ... 71

Figure 21 Example of differential trails into the S-box ... 77

Figure 22 Example of joining of differential trails in XOR Operation 78

Figure 23 The influence of active byte l in 1st round ... 80

Figure 24 The influence of active byte l in 2nd round .. 80

Figure 25 The influence of active byte l in 3rd round .. 81

Figure 26 The influence of active byte r in 1st round .. 81

Figure 27 The influence of active byte r in 2nd round ... 81

Figure 28 The influence of active byte r in 3rd round .. 81

Figure 29 Comparison of the number of terms involved in each Wt in message

scheduling for SHA-256-XOR and optSHA-256-XOR 83

Figure 30 Comparison of the running time in Wt between genetic algorithm and

brute force .. 83

‐	1	‐	

1. Introduction

According to The Cluster of European Research projects on the Internet of

Things (CERP-IoT) in 2010 [1], “Over the next 10 to 15 years, the Internet of Things

is likely to develop fast and shape a newer ‘information society’ and ‘knowledge

economy’.” The common feature of the terms “knowledge economy” and “Internet of

Things” is digital content. The former considers knowledge (digital content) to be the

most important economic resource, basic production factor, and the main driver of

development [2], and the latter allows connected sensors to promote interactions for

ubiquitous access to digital content.

However, digital content and Internet users remain prone to various security

threats. It is necessary to establish a security framework covering various scenarios,

e.g., supply chains and air travel, with interrelated factors including safety, privacy,

and economy [3]. Without a secure framework, losses due to attacks will outweigh

any benefits. Security frameworks require optimal cryptography mechanisms, key

management systems, and security protocols. Possible mechanisms include symmetric

algorithms, asymmetric algorithms, one-way hash functions, and random number

generators.

Symmetric algorithm

On October 2, 2000, the National Institute of Standards and Technology (NIST)

announced that Rijndael had been selected as the proposed Advanced Encryption

Standard (AES) and began the process of making it the official standard. On

November 26, 2001, NIST announced the AES as Federal Information Processing

Standards Publication (FIPS PUB) 197. The National Security Agency (NSA) stated

‐	2	‐	

all AES finalists, including Rijndael, were secure enough for US government

non-classified data. In June 2003, the US government announced that AES should be

used for classified information.

AES suffers from many attacks such as linear cryptanalysis [4], differential

analysis [5] [6] and square attack [7] [8]. Impossible differential attacks [5] use

differential probability to eliminate the key material for finding the right key

candidate for AES. The 4-round impossible differential cryptanalysis of AES were

proposed in [9] [10] [11]. In 2000, E. Biham and N. Keller presented an impossible

differential attack on 5-round AES-128 in [6]. Later in Cheon et al. improved the

attack to 6-round AES-128 in [12]. In 2004 Phan [13], and Chen Jie et al. [14] gave

attacks on 7-round AES-192 and AES-256 exploiting weaknesses in the key schedule.

In 2007 Wentao Zhang et al [15] enhanced the attack on 8-round AES-192 and

AES-256. In [16], E. Biham et al also successfully attacked 8-round AES-192 by

related-key impossible differential attack. The square attack on AES was presented by

an AES designer in [7] [8].

[17] describes the properties of cryptographically robust S-boxes as high

nonlinearity, balanced output, immunity against linear cryptanalysis, robustness

against differential cryptanalysis, avalanche effect and high algebraic degree of its

output Boolean functions. The above cryptanalysis seems to focus on the design of the

S-box to increase the complexity of the algebraic expression of the AES S-box to

render it capable of resisting the known powerful differential cryptanalysis from 2005.

In [18], A. Grocholewska-CzuryJo and J. Stoklosa found a deterministic algorithm to

construct bent functions for random generation S-boxes. In 2007, D. Bhattacharya et

al proposed a cellular automata-based structure S-box design which showed itself

strongly resistant to linear cryptanalysis, differential cryptanalysis, algebraic attack

and power attack in [19]. L. Cui and Y. Cao proposed an Affine-Power-Affine (APA)

‐	3	‐	

S-box structure that increases the complexity of algebraic expression from 9 to 255

[20].

Instead of improving the S-box design, the focus of previous research for

defending against linear cryptanalysis and differential cryptanalysis, this research

varies the cipher structure in AES to resist square attack while keeping basic security.

Due to the byte-oriented structure of AES, the square attack can be applied effectively.

This work replaces some functions in the round transformation of AES and takes the

bit as the operation unit to avoid 3-round square attacks. Applying linear cryptanalysis

and differential cryptanalysis to our proposed block cipher, the results show our

proposed cipher can resist these attacks in five and four rounds, respectively.

One-way hash functions

Cryptographic hash functions play an important role in modern cryptography.

They are widely used in a variety of applications such as password protection, secure

protocols, digital signatures, and more. The hash function uses a string of arbitrary

length as its input and creates a fixed-length sting as its output. A hash value is often

called a data fingerprint or message digest. The following sections provide some

definitions of collision-free hash functions.

Secure Hash Algorithm (SHA) is a series of cryptographic hash functions

published by the National Institute of Standards and Technology (NIST). NIST

published SHA as FIPS PUB 180-4 [21] consisting of seven algorithms: SHA-1,

SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224 and SHA-512/256.

Recent studies have proposed extensions based on SHA. For example,

RAR-SHA-256 [22] is composed of the SHA-256 compression function, and is faster

‐	4	‐	

than SHA-256 when implemented in parallel. SHACAL and SHACAL-2 [23] [24] are

block ciphers that are based on SHA-1 and SHA-256, respectively, and which were

submitted to the New European Schemes for Signatures, Integrity, and Encryption

project (NESSIE) in 2003. Yoshida and Biryukov replaced all arithmetic additions

with XOR operations in SHA-256, naming it SHA-256-XOR, and found that

SHA-2-XOR has a pseudo-collision resistance weakness up to 34 rounds [25].

A birthday attack [11] [26] is a type of cryptographic attack based on the

birthday problem in probability theory. Given a function f, the attack attempts to find

two different inputs x1, x2 such that f(x1) = f(x2). Such a pair (x1, x2) is called a

collision input. The birthday attack on a message digest of size n produces a collision

after trying 2/222.1 nn  input values. Under the birthday attack, the security of

SHA-1, SHA-192, SHA-224, SHA-256, SHA-384, SHA-448, and SHA-512 are

approximately 280, 296, 2112, 2128, 2192, 2224, and 2256, respectively, and are listed in

Table 1. Many researchers have tried to develop a cryptanalytic method with a lower

complexity than the birthday attack.

Table 1 SHA algorithms

Algorithm Message

Size (bits)

Block Size

(bits)

Word Size

(bits)

Message

Digest Size

(bits)

Security

SHA-1 < 264 512 32 160 280

SHA-224 < 264 512 32 224 2112

SHA-256 < 264 512 32 256 2128

SHA-384 < 2128 1024 64 384 2192

SHA-512 < 2128 1024 64 512 2256

‐	5	‐	

SHA-512/224 < 2128 1024 64 224 2112

SHA-512/256 < 2128 1024 64 256 2128

The term security in this table means that a birthday attack on a message digest of size

n produces a collision with a factor of approximately 2n/2.

In 1998, Chabaud and Joux announced a method for finding the SHA-0

collisions [27]. They reduced this complexity to 261 using a differential cryptanalysis

technique, but they could not successfully apply it to SHA-1. This result implied that

SHA-1 is more secure than SHA-0. In early 2005, Rijmen and Oswald applied the

same method to find collisions in SHA-1 [28]. They examined message scheduling in

SHA-0 and SHA-1, and proved that the complexity associated with finding collisions

in a reduced version of SHA-1 (with 53 rounds instead of 80 rounds) was less than 280.

Wang, Yin, and Yu found collisions with a complexity of 269 in the full 80-step SHA-1

[29]. In 2010, Grechnikov announced the practical collision attack on the 73-step

SHA-1 based on an automated approach [30]. NIST announced that SHA-1 will be

used until 2010, at which time it will be replaced by SHA-2.

Since 2004, several authors have reported on collisions for SHA-256. Gilbert and

Handschuh reported a 9-round local collision with a complexity of 266 using

differential path analysis [31]. Mendel et al. later reduced this complexity to 239 [32].

Nikolić and Biryukov realized 21-step collisions for SHA-256 using a nonlinear

differential path analysis with a complexity of 219 [33]. In 2008, Sanadhya and Sarkar

found a local collision with 24-step SHA-256 and SHA-512 with 228.5 and 232.5 calls,

respectively [34], and this was the first time that a colliding message pair for 24-step

SHA-512 was provided. In 2009, Indesteege et al. found collisions on the 24-step

SHA-256 and SHA-512 with 228.5 calls and 253 calls, respectively, and a local

collision on 31-step SHA-256 with 232 [35]. Also in 2009, Aoki et al. presented full

‐	6	‐	

preimage attacks on up to 43-step SHA-256 and SHA-512 with the time complexities

of 2254.9 and 2511.5 compression function operations for full preimages, respectively

[36]. Since 2011, Mendel et al. have presented a collision on 27-step SHA-256 and a

semi-free-start collision on 32-step SHA-256 with practical complexity [37].

Biryukov1 et al. presented a second-order differential collision for the SHA-256

compression function on 47 out of 64 steps, which have practical complexity based on

a rectangle/boomerang approach [38].

Almost all of the currently known cryptanalyses of SHA have attempted to find

collisions on a differential path. However, the design of each component such as

algorithms for message scheduling and hash loop body and the function parameters,

affects the possibility that a path for collisions (using differential path cryptanalysis)

will be found. A fairly large body of literature exists regarding methods of improving

hash algorithms. However, there is a surprising lack of information regarding the

design and selection of function parameters. This paper addresses this deficiency.

The purpose of the research presented in this dissertation is to examine the

relationship between the security of a hash function and its function parameters. In

this regard, two issues that need to be resolved are (a) how to assess the security

fitness of a given set of function parameters, and (b) how to find the optimal function

parameter set. Specifically, this paper proposes a novel view of complexity (hence

security fitness) of SHA-2-XOR functions proposed in [25], by counting the terms

involved in each equation, instead of analyzing the probability of finding collisions

within an SHA-256-XOR hash function. Our experiments have shown that the

parameter set in each equation of a message schedule plays an important role in

security fitness, but it is very hard to find the optimum parameter values. We apply

genetic algorithms to find the optimal message schedule parameter sets that enhance

the complexity 4 times for SHA-1 and 1.5 times for SHA-256-XOR, when compared

‐	7	‐	

to original SHA-1 and SHA-256-XOR functions. The analysis results would be

interesting for designers who are interested in the security of modular addition free

hash functions, which are good for hardware implementation with lower gate counts.

Moreover, the found message schedule parameter sets would be a good reference for

further improvement of SHA functions.

The dissertation also defined a generalized SHA algorithm based on SHA family

rules. The algorithm contains the initial values, constant values, padding, parsing, as

well as the main body, and accepts arbitrary length message as input to generate

message digest with required length. Further, the study solved

Length-of-the-Hash-Value (LHV) problem that occurs when SHA-r cannot be

expressed as r = mn uniquely.

Secure protocols

Key management within a Mobile Ad hoc Network (MANET) is a security issue

that cannot be ignored. Many researchers have dedicated themselves to this field since

1999. Some schemes are suitable for a limited number of nodes and are inefficient,

insecure, or unreliable when the nodes increase [39] [40] [41] [42] [43] [44] [45] [46]

[47] [48] [49] [50]. Nodes may join the MANET and leave later normally. Thus, the

key management scheme in MANET must be dynamic. The main challenge of

MANET is that each node handles the joining or leaving of nodes with the limited

resources, such as CPU computation, storage, and the power consumption [51]. The

mobility of a MANET increases its unreliability and limits the bandwidth of wireless

environment due to frequent topology changes.

B. Zhu et al. proposed a key management scheme [52] using the secret sharing

method [53] [54] [55] [56] to construct an Autonomous Key Management (AKM)

‐	8	‐	

hierarchy structure with flexibility and adaptivity. This scheme needs no central party

to control the key structure, and each node cooperates to create virtual nodes in

building the key hierarchy. The method proposed in [57] dynamic group key

management schemes with forward secrecy and backward secrecy based on elliptic

curve cryptosystem (ECC) [58], forming a self-certified public key cryptosystem [59].

However, a message of 2048 bits would make computing or calculating AKM

communication difficult. Thus, this study modifies the design of each operation in the

AKM scheme. The modified AKM reduces the share size with the same security

properties and the performance of communication and a computation cost reduction to

1/t of the original AKM.

‐	9	‐	

2. Definitions

2.1 Terms and Acronyms

-set A set of 256 states that differ in active bytes and are

equal in passive bytes.

AES Advanced Encryption Standard.

AKM Autonomous Key Management.

APA Affine-Power-Affine S-box structure.

Bit A binary digital having a value of 0 or 1.

Byte A group of eight bits.

CRL Certificate Revoking List.

ECC Elliptic Curve Cryptography.

GTC The AKM sets a Global Trust Coefficient as a lower

bound of all the RTC.

LHV Length-of-the-Hash-Value problem.

MANET Mobile Ad Hoc Networks.

NESSIE New European Schemes for Signatures, Integrity, and

Encryption project.

NIST National Institute of Standards and Technology.

ORS Overall Region Size is the number of the nodes that

know the secret of region.

RTC Regional Trust Coefficient is the ratio of the threshold to

ORS.

SHA Secure Hash Algorithm.

Word A group of either 32 bits (4 bytes) or 64 bits (8 bytes),

depending on the secure hash algorithm.

2.2 Algorithm parameters, symbols and terms

l -set at a byte of left 64 bits.

r -set at a byte of right 64 bits.

(t, n)-threshold A secret key K can be recovered by t out of total n

shares.

{t, A, B, C, D} The parameter set of Wt equation in message scheduling.

bi,j The element with ith row and jth column of a matrix.

‐	10	‐	

D The dealer of secret sharing scheme.

F(t) The number of different terms involve in Wt equation.

g Random number generator.

H(M) The hash function H() with input M.

IV Initial value of a hash function.

K Secret key for symmetric cipher in a cryptosystem.

Kt
{mn} The constant value to be used for the iteration t of the

SHA-mn hash function.

l Length of the message, M, in bits, l = |M|.

M Message with arbitrary length as the input of a hash

function.

m The number of words in a message digest.

M(i) Message block i.

MD Message digest which is the output of a hash function

with fixed length.

Mj
(i) The jth word of the ith message block, where M0

(i) is the

left-most word of message block i.

Mj
n The message block Mj with n-bitwise left rotation.

n The number of bits in a word.

Nr The total number of encryption rounds.

Pi The ith
 participant of secret sharing scheme.

PKi The public key of node i for asymmetric cipher in

cryptosystem.

r The value of m  n, r = mn.

S(i,j),k The share of region S(i,j).

SHA(x) Generalized SHA family

SHA-r SHA with r bits digest output.

Si A region with a three with node i as root.

Si,j The share is distributed from node i to node j.

SKi The secret key of node i for asymmetric cipher in

cryptosystem.

Wj
n The message word Wj with n-bitwise left rotation.

Wt The tth word of the message schedule.

‐	11	‐	

2.3 Symbols and operations

 Set INTERSENTION operation.

 Bitwise AND operation

 Bitwise OR operation

 Bitwise XOR operation

 Bitwise complement operation

ROTL{i}(x) Rotate left operation by i bits.

SHR{i}(x) Shift right operation by i bits.

‐	12	‐	

3. Related Works

3.1 Related Works on AES

AES algorithm is specified with a fixed block size of 128 bits (Nb = 4), a key

size of 128, 192, or 256 bits (Nk = 4, 6, 8), and referred as AES-128, AES-192,

AES-256. It is capable of using any key and block size for all multiples of 32 bits.

The key is expanded using Rijndael’s key schedule. Most AES computations are done

in a special finite field. AES operates on a 4×4 array of bytes called the state. The

number of rounds (Nr) to be performed during the execution of the algorithm is

dependent on the key size.

Table 2 Key-Block-Round Combinations

 Key Length

(Nk words)

Block Size

(Nb words)

Number of Rounds

(Nr)

AES-128 4 4 10

AES-192 6 4 12

AES-256 8 4 14

For encryption, each round of AES (except for the last round, which omits the

MixColumns() stage) consists of four stages.

The four stages of AES are explained as follows:

 SubBytes(): a non-linear substitution step where each byte is replaced with

another according to a lookup table.

 ShiftRows(): a transposition step where each row of the state is shifted

cyclically by a certain number of offsets.

 MixColumns(): a mixing operation that operates on the columns of the state

and combines the four bytes in each column using a linear transformation.

‐	13	‐	

 AddRoundKey(): each byte of the state is combined with the round key;

each round key is derived from the cipher key using a key schedule

algorithm.

Algorithm 1 AESCipher (byte in [4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])

1: byte state[4, Nb]

2: state = in

3: AddRoundKey(state, w[0, Nb-1])

4: FOR round = 1 to (Nr-1)

5: SubBytes(state)

6: ShiftRows(state)

7: MixColumns(state)

8: AddRoundKey(state, w[round * Nb, (round+1) * Nb-1])

9: End FOR

10:SubBytes(state)

11: ShiftRows(state)

12: AddRoundKey(state, w[Nr * Nb, (Nr + 1) * Nb - 1])

13:out = state

3.1.1 Function SubBytes

The SubBytes() is an invertible non-linear byte substitution operating on the state

using a substitution table (S-box) which is constructed by composing two

transformations:

 Take the multiplicative inverse in the finite field GF(28) and the element

{00} is mapped to itself.

 Apply the following affine transformation over GF(2):

iiiiiii cbbbbbb   8mod)7(8mod)6(8mod)5(8mod)4(' Eq 1

for 0  i < 8, where bi is the ith bit of the byte, and ci is the ith bit of a byte c with

‐	14	‐	

the value {63} or {01100011}. In matrix form, the affine transformation element

of the S-box can be expressed as:





































































































































0

1

1

0

0

0

1

1

11111000

01111100

00111110

00011111

10001111

11000111

11100011

11110001

'

'

'

'

'

'

'

'

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

 Eq 2

The S-box used in the SubBytes() transformation is presented in hexadecimal for

each byte Sx,y form in Figure 1.

‐	15	‐	

 Y

X

 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76

1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0

2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15

3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75

4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84

5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf

6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8

7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2

8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73

9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db

a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79

b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08

c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a

d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e

e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df

Figure 1 S-box of AES

‐	16	‐	

3.1.2 Function ShiftRows

In the ShiftRows(), the bytes in the last three rows of the state are left-rotated

over different numbers of bytes. ShiftRows() is formed as:

NbcrSS NbNbrLRotatecrcr   0 and 40for ' mod)),((,, Eq 3

where the rotation left LRotate(0, 4) = 0, LRotate(1, 4) = 1, LRotate(2, 4) = 2,

LRotate(3, 4) = 3.

S S

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

0 LRotate


1 LRotate


2 LRotate


3 LRotate



S0,0 S0,1 S0,2 S0,3

S1,1 S1,2 S1,3 S1,0

S2,2 S2,3 S2,0 S2,1

S3,3 S3,0 S3,1 S3,2

Figure 2 ShiftRows() in AES

3.1.3 Function MixColumns

The MixColumns() operates on the state column-by-column. The columns are

considered as polynomials over GF(28) and multiplied modulo x4 + 1 with a fixed

polynomial a(x):

}02{}01{}01{}03{)(23  xxxxa Eq 4

MixColumns() can be formed as a matrix multiplication s(x) = a(x)  s(x):

Nbc

S

S

S

S

S

S

S

S

c

c

c

c

c

c

c

c



























































0for

02010103

03020101

01030201

01010302

'

'

'

'

,3

,2

,1

,0

,3

,2

,1

,0

 Eq 5

‐	17	‐	

3.1.4 Function AddRoundKey

A round Key is added to the state by a simple bitwise XOR operation in the

AddRoundKey(). Each round key consists of Nb words which are each added into the

columns of the state, such that

NbcwSSSSSSSS cNbroundcccccccc   0for][],,,[]',',','[*,3,2,1,0,3,2,1,0 Eq 6

where [wi] are the key schedule words and 0  round  Nr.

3.1.5 Function Key Expansion

The key expansion generates a total of Nb (Nr + 1) words and consists of a linear

array of 4-byte words, denoted [wi], 0  i < Nb(Nr + 1).

Algorithm 2 KeyExpansion(byte key[4 * Nk]), word w[Nb * (Nr + 1)], Nk)

1: word temp

2: i = 0

3: WHILE (i < Nk)

4: w[i] = word (key[4 * i], key[4 * i + 1], key[4 * i + 2], key[4 * i + 3]

5: i = i + 1

6: END WHILE

7: i = Nk

8: WHILE (i < Nb * (Nr + 1))

9: temp = w[i - 1]

10: IF (i mod Nk = 0)

11: temp = SubWord(RotWord(temp)) xor Rcon[i / Nk]

12: ELSE-IF (Nk > 6 and i mod Nk = 4)

13: temp = SubWord(temp)

14: END IF

15: w[i] = w[i - Nk] xor temp

16: i = i + 1

17:END WHILE

‐	18	‐	

SubWord() applies the S-box to each of the four-byte input word to produce an

output word. The function RotWord() takes a word [a0,a1,a2,a3] as input to perform a

rotation left as the word [a1,a2,a3,a0]. Rcon[i] is a round constant word array which

contains the values [xi-1, {00}, {00}, {00}], where x is denoted as {02} in the field

GF(28).

3.1.6 Inverse Cipher

The AES can be inverted by the implementation of InvShiftRows(),

InvSubBytes(), InvMixColumns(), and AddRoundKey() on the state in reverse order.

Algorithm 3 InvAESCipher (byte in[4 * Nb]), byte out[4 * Nb], word w[Nb * (Nr

+ 1)])

1: byte state[4, Nb]

2: state = in

3: AddRoundKey(state, w[Nr * Nb, (Nr + 1) * Nb - 1])

4: FOR round = Nr – 1 downto 1

5: InverShiftRows(state)

6: InverSubByte(state)

7: AddRoundKey(state, w[round * Nb, (round + 1) * Nb - 1])

8: InverMixColumns(state)

9: END FOR

10: InverShiftRows(state)

11: InverSubByte(state)

12: AddRoundKey(state, w[round * Nb, (round + 1) * Nb - 1])

13: out = state

‐	19	‐	

3.1.7 Function InvShiftRows

InvShiftRows() is the inverse of the ShiftRows() transformation.

NbcrSS crNBNbrRRotatecr  0 and 40for ' ,)mod),((, Eq 7

where the rotation left RRotate(0, 4) = 0, RRotate(1, 4) = 1, RRotate(2, 4) = 2,

RRotate(3, 4) = 3.

S S

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3



S0,0 S0,1 S0,2 S0,3

S1,3 S1,0 S1,1 S1,2

S2,2 S2,3 S2,0 S2,1

S3,1 S3,2 S3,3 S3,0

Figure 3 InvShiftRows() in AES

3.1.8 Function InvShiftRows

InvSubBytes() is the inverse of the SubBytes(). The inverse S-box used in the

InvSubBytes() is:

‐	20	‐	

 Y

X

 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb

1 7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb

2 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e

3 08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25

4 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92

5 6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84

6 90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06

7 d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b

8 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73

9 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e

a 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b

b fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4

c 1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f

d 60 51 7f a9 19 b5 4a 0d 2d e5 7a af 93 c9 9c ef

e a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61

Figure 4 Inverse S-box of AES.

3.1.9 Function InvMixColumns

InvMixColumns() is the inverse of the MixColumns() transformation.

InvMixColumns() can be formed as a matrix multiplication s S(x) = a-1(x)  s(x),

where

}0{}09{}0{}0{)(231 exxdxbxa  Eq 8

‐	21	‐	

Such that

Nbc

S

S

S

S

edb

bed

dbe

dbe

S

S

S

S

c

c

c

c

c

c

c

c



























































0for

00900

00090

00009

09000

'

'

'

'

,3

,2

,1

,0

,3

,2

,1

,0

 Eq 9

3.2 Related Works on SHA Family

Cryptographic hash functions play an important role in modern cryptography.

They are widely used in a variety of applications such as password protection, secure

protocols, and digital signatures. The hash function uses a string of arbitrary length as

its input, and creates a fixed-length string as its output. A hash value is often called a

data fingerprint or message digest.

Definition 1 [60]: (Collision-free hash function) A collision-free hash function H uses

a message M of arbitrary length as its input, and produces a fixed-length message

digest when it satisfies the following conditions:

 The description of H(M) is publicly known and it is easy to implement.

 Pre-image resistant: Given message digest y, it is difficult to find a message

M such that H(M) = y.

 Second pre-image resistant: Given M and its image H(M), it is difficult to

find another M such that H(M) = H(M).

 (Strong) Collision Resistance: It is difficult to find two distinct messages M

and M such that H(M) = H(M).

The Secure Hash Algorithm (SHA) is a series of cryptographic hash functions

published by the US National Institute of Standards and Technology (NIST). NIST

proposed the SHA-0 as a Federal Information Processing Standard Publication (FIPS

PUB) 180 in 1993 [61]. In 1995, NIST announced a revised version, the SHA-1, in

FIPS PUB 180-1 [62] as a standard to replace the SHA-0. Since 2002, the NIST

‐	22	‐	

published SHA-2 as FIPS PUB 180-2 [63], which consisted of four algorithms:

SHA-1, SHA-256, SHA-384, and SHA-512 and then added SHA-224, SHA-512/224

and SHA-512/256 into FIPS PUB 180-3 [64] in 2008 and into 180-4 [21] in 2012.

Table 1 lists the characteristics of the seven SHA algorithms.

3.2.1 Overview of SHA-1, SHA-224 and SHA-256 Algorithms

SHA-1, SHA-224 and SHA-256 [21] take a message M with a length of l bits,

where 0  l < 264, as the input, and outputs 160-bit, 224-bit, and 256-bit hash values.

The hash function parses the padded message into 512-bit blocks and each block

passes an 80-round and 64-round compression functions.

SHA-1 processing involves the following 4 steps:

Step 1: Padding message: pad the input message making it a multiple of 512 bits.

Step 2: Parsing the padded message: parse the padded message into N 512-bit

blocks, M(1), M(2), …, M(N). Each block M(i) is divided into sixteen 32-bit words, M0
(i),

M1
(i), …, M15

(i).

Step 3: Computing hash values for each message block M(i).

 The message schedule, {Wt}:

 

  











 7916,

150,

161483
1 tWWWWROTL

tM
W

tttt

i
t

t
 Eq. 10

where ROTL{i}(x) indicates left rotation operation by i bits.

 Message expansions are performed for 80 rounds. Algorithm 4 defines these

steps in detail.

 Table 3 summarizes the Boolean function ft that appeared in the SHA-1

step function.

Step 4: Resulting message digest of the message, M, is

‐	23	‐	

)(
4

)(
3

)(
2

)(
1

)(
0 |||||||| NNNNN HHHHH Eq 11

Algorithm 4 SHA-1 step function

1:)1(
0
 iHa ,)1(

1
 iHb ,)1(

2
 iHc ,)1(

3
 iHd ,)1(

4
 iHe

2: FOR t = 1 to 80

3: et = dt−1

4: dt = ct−1

5: ct = ROTL30(bt−1)

6: bt = at−1

7: at = ROTL5(at−1) + ft(bt−1, ct−1, dt−1) + et−1 + Kt + Wt−1

8: End FOR

9:)1(
0

)(
0

 ii HaH ,)1(
1

)(
1

 ii HbH ,)1(
2

)(
2

 ii HcH ,)1(
3

)(
3

 ii HdH ,
)1(

4
)(

4
 ii HeH

Table 3 Boolean function and constants used in SHA-1

Round t Boolean function ft(x, y, z) Kt

01  t  20 (x  y)  (x  z) 5a827999

21  t  40 x  y  z 6ed9eba1

41  t  60 (x  y)  (x  z)  (y  z) 8f1bbcdc

61  t  80 x  y  z ca62c1d6

Table 4 The initial hash value, H(0) in SHA-1

)0(
0H 67452301

)0(
1H efcdab89

)0(
2H 98badcfe

)0(
3H 10325476

)0(
4H c3d2e1f0

‐	24	‐	

SHA-224 and SHA-256 take a message M with a length of l bits, where 0  l <

264, as the input, and output 224-bit and 256-bit hash value. The hash function parses

the padded message into 512-bit blocks and each block passes a 64-round

compression functions.

The SHA-224 and SHA-256 contain steps that are similar to SHA-1, except that

it sets different initial values and constants, and uses different functions. The

following is a description of the message block processing step.

Step 3: Message scheduling for each message block M(i).

 The message schedule, {Wt}:

 

    











 6316,

150,

1615
}256{

172
}256{

0 tWWWW

tM
W

tttt

i
t

t 
 Eq. 12

       
       xSHRxROTLxROTLx

xSHRxROTLxROTLx
101917}256{

1

3187}256{
0







 Eq. 13

where SHR{i}(x) indicates right shift operation by i bits.

Message expansions are performed for 64 rounds. Algorithm 5 defines these steps in

detail.

 Table 5 summarizes the Boolean function ft used in each round.

Step 4: Resulting final message digests

 The 224-bit message digest of the message, M, is

)(
6

)(
5

)(
4

)(
3

)(
2

)(
1

)(
0 |||||||||||| NNNNNNN HHHHHHH Eq 14

 The 256-bit message digest of the message, M, is

)(
7

)(
6

)(
5

)(
4

)(
3

)(
2

)(
1

)(
0 |||||||||||||| NNNNNNNN HHHHHHHH Eq 15

‐	25	‐	

Algorithm 5 SHA-224 and SHA-256 step function

1:)1(
0
 iHa ,)1(

1
 iHb ,)1(

2
 iHc ,)1(

3
 iHd ,)1(

4
 iHe ,)1(

5
 iHf ,)1(

6
 iHg ,

)1(
7
 iHh

1: FOR t = 1 to 64

2: T1 = ht−1+ f1(et−1) + f3(et−1,ft−1,gt−1) + Kt + Wt−1

3: T2 = f2(at−1) + f4(at−1,bt−1,ct−1)

4: ht = gt−1

5: gt = ft−1

6: ft = et−1

7: et = dt + T1

8: dt = ct−1

9: dt = ct−1

10: ct = bt−1

11: bt = at−1

12: at = T1+ T2

13: End FOR

15:)1(
0

)(
0

 ii HaH ,)1(
1

)(
1

 ii HbH ,)1(
2

)(
2

 ii HcH ,)1(
3

)(
3

 ii HdH ,
)1(

4
)(

4
 ii HeH ,)1(

5
)(

5
 ii HfH ,)1(

6
)(

6
 ii HgH ,)1(

7
)(

7
 ii HhH

Table 5 Boolean function used in SHA-224 and SHA-256

Boolean function ft

f1(x) = ROTL(2)(x)  ROTL(13)(x)  ROTL(22)(x)

f2(x) = ROTL(6)(x)  ROTL(11)(x)  ROTL(25)(x)

f3(x) = (x  y)  (x  z)

f4(x) = (x  y)  (x  z)  (y  z)

‐	26	‐	

Table 6 Constants in SHA-224 and SHA-256 (From left to right, up to down)

428a2f98 71374491 b5c0fbcf e9b5dba5 3956c25b 59f111f1 923f82a4 ab1c5ed5

d807aa98 12835b01 243185be 550c7dc3 72be5d74 80deb1fe 9bdc06a7 c19bf174

e49b69c1 efbe4786 0fc19dc6 240ca1cc 2de92c6f 4a7484aa 5cb0a9dc 76f988da

983e5152 a831c66d b00327c8 bf597fc7 c6e00bf3 d5a79147 06ca6351 14292967

27b70a85 2e1b2138 4d2c6dfc 53380d13 650a7354 766a0abb 81c2c92e 92722c85

a2bfe8a1 a81a664b c24b8b70 c76c51a3 d192e819 d6990624 f40e3585 106aa070

19a4c116 1e376c08 2748774c 34b0bcb5 391c0cb3 4ed8aa4a 5b9cca4f 682e6ff3

748f82ee 78a5636f 84c87814 8cc70208 90befffa a4506ceb bef9a3f7 c67178f2

Table 7 The initial hash value, H(0) in SHA-224 and SHA-256

)0(H SHA-224 SHA-256

)0(
0H c1059ed8 6a09e667

)0(
1H 367cd507 bb67ae85

)0(
2H 3070dd17 3c6ef372

)0(
3H f70e5939 a54ff53a

)0(
4H ffc00b31 510e527f

)0(
5H 68581511 9b05688c

)0(
6H 64f98fa7 1f83d9ab

)0(
7H befa4fa4 5be0cd19

3.2.2 Overview of SHA-384 and SHA-512 Algorithms

SHA-384 and SHA-512 take a message M with a length of l bits, where 0  l <

2512, as the input, and outputs 384-bit, and 512-bit hash values. The hash function

‐	27	‐	

parses the padded message into 1024-bit blocks and each block passes an 80-round

and 80-round compression functions.

SHA-384 and SHA-512 processing involve the following 4 steps:

Step 1: Padding message: pad the input message making it a multiple of 1024

bits.

Step 2: Parsing the padded message: parse the padded message into N 1024-bit

blocks, M(1), M(2), …, M(N). Each block M(i) is divided into sixteen 64-bit words, M0
(i),

M1
(i), …, M15

(i).

Step 3: Computing hash values for each message block M(i).

 The message schedule, {Wt}:

 

    











 6316,

150,

1615
}512{

172
}512{

0 tWWWW

tM
W

tttt

i
t

t 
 Eq 16

       
       xSHRxROTLxROTLx

xSHRxROTLxROTLx
66119}512{

1

781}512{
0







 Eq 17

 Message expansions are performed for 80 rounds.

 defines these steps in detail. Table 8 summarizes the Boolean function

ft used in each round.

Step 4: Resulting final message digests

 The 384-bit message digest of the message, M, is

)(
5

)(
4

)(
3

)(
2

)(
1

)(
0 |||||||||| NNNNNN HHHHHH Eq 18

 The 512-bit message digest of the message, M, is

)(
7

)(
6

)(
5

)(
4

)(
3

)(
2

)(
1

)(
0 |||||||||||||| NNNNNNNN HHHHHHHH Eq 19

‐	28	‐	

Algorithm 6 SHA-385 and SHA-512 step function

1:)1(
0
 iHa ,)1(

1
 iHb ,)1(

2
 iHc ,)1(

3
 iHd ,)1(

4
 iHe ,)1(

5
 iHf ,)1(

6
 iHg ,

)1(
7
 iHh

1: FOR t = 1 to 80

2: T1 = ht−1+ f1(et−1) + f3(et−1,ft−1,gt−1) + Kt + Wt−1

3: T2 = f2(at−1) + f4(at−1,bt−1,ct−1)

4: ht = gt−1

5: gt = ft−1

6: ft = et−1

7: et = dt + T1

8: dt = ct−1

9: dt = ct−1

10: ct = bt−1

11: bt = at−1

12: at = T1+ T2

13: End FOR

15:)1(
0

)(
0

 ii HaH ,)1(
1

)(
1

 ii HbH ,)1(
2

)(
2

 ii HcH ,)1(
3

)(
3

 ii HdH ,
)1(

4
)(

4
 ii HeH ,)1(

5
)(

5
 ii HfH ,)1(

6
)(

6
 ii HgH ,)1(

7
)(

7
 ii HhH

Table 8 Boolean function used in SHA-384 and SHA-512

Boolean function ft

f1(x) = ROTL(28)(x)  ROTL(34)(x)  ROTL(39)(x)

f2(x) = ROTL(14)(x)  ROTL(18)(x)  ROTL(41)(x)

f3(x) = (x  y)  (x  z)

f4(x) = (x  y)  (x  z)  (y  z)

‐	29	‐	

Table 9 Constants in SHA-385 and SHA-512 (From left to right, up to down)

428a2f98d728ae22 7137449123ef65cd b5c0fbcfec4d3b2f e9b5dba58189dbbc

3956c25bf348b538 59f111f1b605d019 923f82a4af194f9b ab1c5ed5da6d8118

d807aa98a3030242 12835b0145706fbe 243185be4ee4b28c 550c7dc3d5ffb4e2

72be5d74f27b896f 80deb1fe3b1696b1 9bdc06a725c71235 c19bf174cf692694

e49b69c19ef14ad2 efbe4786384f25e3 0fc19dc68b8cd5b5 240ca1cc77ac9c65

2de92c6f592b0275 4a7484aa6ea6e483 5cb0a9dcbd41fbd4 76f988da831153b5

983e5152ee66dfab a831c66d2db43210 b00327c898fb213f bf597fc7beef0ee4

c6e00bf33da88fc2 d5a79147930aa725 06ca6351e003826f 142929670a0e6e70

27b70a8546d22ffc 2e1b21385c26c926 4d2c6dfc5ac42aed 53380d139d95b3df

650a73548baf63de 766a0abb3c77b2a8 81c2c92e47edaee6 92722c851482353b

a2bfe8a14cf10364 a81a664bbc423001 c24b8b70d0f89791 c76c51a30654be30

d192e819d6ef5218 d69906245565a910 f40e35855771202a 106aa07032bbd1b8

19a4c116b8d2d0c8 1e376c085141ab53 2748774cdf8eeb99 34b0bcb5e19b48a8

391c0cb3c5c95a63 4ed8aa4ae3418acb 5b9cca4f7763e373 682e6ff3d6b2b8a3

748f82ee5defb2fc 78a5636f43172f60 84c87814a1f0ab72 8cc702081a6439ec

90befffa23631e28 a4506cebde82bde9 bef9a3f7b2c67915 c67178f2e372532b

ca273eceea26619c d186b8c721c0c207 eada7dd6cde0eb1e f57d4f7fee6ed178

06f067aa72176fba 0a637dc5a2c898a6 113f9804bef90dae 1b710b35131c471b

28db77f523047d84 32caab7b40c72493 3c9ebe0a15c9bebc 431d67c49c100d4c

4cc5d4becb3e42b6 597f299cfc657e2a 5fcb6fab3ad6faec 6c44198c4a475817

‐	30	‐	

Table 10 The initial hash value, H(0) in SHA-384 and SHA-512

)0(H SHA-385 SHA-512

)0(
0H cbbb9d5dc1059ed8 6a09e667f3bcc908

)0(
1H 629a292a367cd507 bb67ae8584caa73b

)0(
2H 9159015a3070dd17 3c6ef372fe94f82b

)0(
3H 152fecd8f70e5939 a54ff53a5f1d36f1

)0(
4H 67332667ffc00b31 510e527fade682d1

)0(
5H 8eb44a8768581511 9b05688c2b3e6c1f

)0(
6H db0c2e0d64f98fa7 1f83d9abfb41bd6b

)0(
7H 47b5481dbefa4fa4 5be0cd19137e2179

3.3 Genetic Algorithm

The genetic algorithm is the most popular type of evolutionary algorithm that use

techniques inspired by evolutionary biology. As stated by John H. Holland in 1975,

“The genetic algorithm has a wide scope of applications, including economics,

engineering, machine learning, genome biology, game theory, neural networks, and

etc. [65]. A genetic algorithm provides a highly efficient method for ensuring

convergence to near-optimal or optimal solutions.

Figure 5 shows the steps of the genetic algorithm, which are described as

follows:

(1) Initialization of population.

‐	31	‐	

(2) Choice of a fitness function and evaluation of the fitness value of each

individual in the population.

(3) Selection of better ranked part to be reproduced.

(4) Breeding new generation’s population by crossover and mutation.

(5) Replacement of the worst ranked part of the population with the new

generation’s population.

(6) Repeating this generational process until the termination condition has

been reached.

Figure 5 Flowchart of genetic algorithm

The Genetic Algorithm Utility Library (GAUL) developed by AI Foundry [66] is

a flexible programming library designed to aid in the development of applications that

use genetic or evolutionary algorithms. It provides data structures and functions for

handling and manipulating the data required for serial and parallel evolutionary

algorithms.

GAUL is an open-source programming library, which was released under the

GNU General Public License. It is designed to assist in the development of code that

‐	32	‐	

requires evolutionary algorithms.

3.4 Secret Sharing Scheme

Let t, n be positive integers, t ≤ n. Shamir proposed a (t, n)-threshold scheme in

1979 [53]. His scheme is a method of sharing a key K among a set of n participants in

such a way that any t participants can compute the value of key K, but no group of (t –

1) participants can do so.

3.4.1 The Shamir (t, n)-Threshold Scheme in ℤp

D (the dealer) chooses n distinct, nonzero elements of ℤp, denoted xi, 1 ≤ i ≤ n,

where p > n is a large prime. D gives the values xi to participate Pi, and each value xi

is public.

3.4.2 Share Distribution

1. Suppose D wants to share a key K ∈ ℤp. D secretly chooses (independently

and randomly) (t – 1) elements of ℤp, a1, . . . , at−1.

2. For 1 ≤ i ≤ n, D computes yi = a(xi), where







1

1

mod)(
t

j

j
j pxaKxa Eq. 20

Thus







1

1

mod)(
t

j

j
ijii pxaKxay Eq. 21

3. For 1 ≤ i ≤ n, D gives the share yi to Pi.

‐	33	‐	

3.4.3 Proactive Security

It is difficult to compromise the secret key K under (t, n)-threshold scheme

unless the adversary collects at least t shares. In practice, since each share exists in a

machine, the risk of the secret key being compromised depends on the security of

machine. For security concerns, it is necessary to update each share for a period of

time. A proactive threshold scheme allows users to refresh shares without disclosing

the secret key.

1. Let







1

1

mod)(
t

j

j
ijii pxaKxay Eq. 21

be the original share of key K for Pi.

2. The dealer D then computes







1

1

mod')'('
t

j

j
ijii pxaxay Eq. 22

3. For 1 ≤ i ≤ n, D gives the share y’i to Pi.

4. For 1 ≤ i ≤ n, Pi computes (yi + y’i) as a new share.

3.5 Autonomous Key Management (AKM)

Autonomous key management (AKM) for a mobile ad hoc network (MANET)

with a large number of nodes is based on a hierarchical structure to provide flexibility

and adaptivity. Every leaf node in the logical tree structure is a real ad hoc device, and

the other nodes are virtual nodes. The root node holds the global secret key, and AKM

distributes key shares to its children recursively from the root down to the leaves

using Shamir’s secret sharing scheme.

Every node except the AKM root node must store its own public key pair and its

‐	34	‐	

parent node secret share. The secret share each virtual branch node holds is as the

secret key, and the public key can be generated using any asymmetric cryptographic

scheme, such as RSA. Additionally, every real node has its PKI key pair before

joining AKM.

A tree with node A as its root is called region A. AKM includes seven

node-based/region-based operations from node joining, region partitioning, to node

leaving. AKM runs dynamically with continuous node joining/leaves. Figure 6 is an

example of AKM.

Figure 6 An example of AKM

Global
secret
key

Secret1 Secret2

Secret1,1 Secret1,2 Secret1,3 Secret2,1 Secret2,2 Secret2,3 Secret2,4

[3, 2] [4, 3]

[2, 2]

: Virtual Node : Real Node

‐	35	‐	

4. Our Proposed Schemes

This dissertation proposed many schemes for content protection especially on

symmetric encryptions algorithm, one-way hash functions, and secure protocols on

MANET. The front two parts improve the core cryptography components used in the

rear part, which protects content from adversaries’ attacks on transmission.

4.1 A Transpositional Advanced Encryption Standard (AES) Resists 3-round

Square Attack [67]

This work replaces some functions in the round transformation of AES and takes

the bit as the operation unit to avoid 3-round square attacks. Applying linear

cryptanalysis and differential cryptanalysis to our proposed block cipher, the results

show our proposed cipher can resist these attacks in five and four rounds,

respectively.

The rest of this section is organized as follows: Section 3.1.1 describes some

mathematic preliminaries and the design of the AES. Section 3.1.2 specifies the

design of the proposed cipher. Section 3.1.3 discusses cryptanalysis results. Finally,

section 3.1.4 summarizes the paper. To make the article more easily readable, a

terminology table is listed below for the reader to consult.

4.1.1 Cipher Structure

As shown in Figure 7, the proposed cipher AES_Plus is an iterated block cipher

that consists of an initial round key addition modulo 2; Nr-1 rounds that have the

same transformations; where Nr is the total number of rounds, and a final round.

There are (Nr-1) rounds and one final round that are distinct transformations and

‐	36	‐	

take the previous state and the round key as inputs. We denote the total round keys as

an array round key with Nr elements whose size is equal to the size of the state.

RoundKey[0] is used by the initial round key addition which will be described in next

section. RoundKey[i] is used for the ith round where 1  i  Nr. RoundKey[Nr] is used

for the final round. For encryption, each round of the proposed cipher consists of four

procedures:

SubByte() — a non-linear substitution where each byte is replaced by another byte

according to a lookup table.

TransByte() — takes half the state as an 8×8 square matrix where each component is

one bit, then interchanges the row and the column with the same indices such

that bi,j becomes bj,i.

SubBlkXor() —sub-block exclusive-or (XOR) transformation of Feistel structure that

is used to perform bitwise exclusive-or operation on some other sub-block.

AddRoundKey() — each byte of the state is combined with the round key; each round

key is derived from the cipher key using a key schedule algorithm.

In Algorithm AES_Plus, KeyExpansion() expands the cipher key to the total

number of round keys denoted as ExpandedKey. This procedure can be excluded from

the algorithm. AddRoundKey() denotes the initial key addition. The most important

parts of AES_Plus are Round_Plus and FinalRound_Plus, which are the parts mainly

improved in this research. These parts are described in the next section.

‐	37	‐	

Figure 7 The structure overview of the proposed cipher where ♁ denotes the

round key addition.

Algorithm 7 AES_Plus (State, Ciphertext)

// AES_Plus provides the encryption for the proposed //cipher.

1: KeyExpansion(CipherKey, ExpandedKey)

2: AddRoundKey(State, RoundKey[0])

3: For(i = 0; i < Nr; i++)

4: Round_Plus(State, RoundKey[i])

5: FinalRound_Plus(State, RoundKey[Nr])

6: End For

4.1.2 Our Proposed AES_Plus

The proposed algorithm AES_Plus improves AES in the area of round

transformation. This section describes each of the AES_Plus procedures and other

properties of AES_Plus.

………

Round 1 Round Nr-1
FinalRound

Plaintext

RoundKey
[0..Nr]

Key schedule

Cipher Key

The Proposed Cipher

Ciphertext

‐	38	‐	

4.1.2.1 The Round Transformation

There are four distinct procedures in the round transformation, Round_Plus:

ByteSub(), TransByte(), SubBlkXor(), and AddRoundKey(). Round_Plus and

FinalRound_Plus are illustrated in Figure 8 and Figure 9. The S-box is used to

substitute the input byte. In the final phase, the ith round key is added to the ith state

where 1  i < Nr in AddRoundKey(). The final round, FinalRound_Plus has the same

transformations, but SubBlkXor() is replaced by the Swap procedure. Algorithm 8 and

Algorithm 9 shows that Round_Plus and FinalRound_Plus are composed of five

procedures: ByteSub(), TransByte(), SubBlkXor(), AddRoundKey() and Swap(). These

procedures will be described later.

Algorithm 8 Round_Plus (State, RoundKey[i])

1: ByteSub(State)

2: TransByte(State)

3: SubBlkXor(State)

4: AddRoundKey(State, RoundKey[i])

Algorithm 9 FinalRound_Plus (State, ExpandedRoundKey[Nr])

1: ByteSub(State)

2: TransByte(State)

3: Swap(State)

4: AddRoundKey(State, ExpandedRoundKey[Nr])

‐	39	‐	

Figure 8 Round_Plus of AES_Plus

Figure 9 FinalRound_Plus of AES_Plus

Ri Li

Input state

S-box … S-box S-boxS-box S-box S-box

TransByte TransByte

64 64

Li-1

64

64

32 32

64

RounndKey[i]

Output state

6464

88888 8

128 128

Ri-1

88888 8

RounndKey[i]

Input state

S-box … S-box S-boxS-box S-box S-box

TransByte TransByte

64 64

Output state

6464

888888

88888 8

128 128

‐	40	‐	

4.1.2.1.1 ByteSub Procedure

This ByteSub() is the same as SubBytes() non-linear substitution procedure in

AES [68] using the same S-box table. The procedure executes rapidly through table

look-up implementation and provides strong enough secure complexity.

4.1.2.1.2 TransByte Procedure

The first eight bytes of the state can be taken as an 8×8 square matrix where each

element is one bit. After a matrix transformation the new 8×8 matrix is now composed

of 64 bits. Figure 10 illustrates the matrix transposition, where bi,j is the ith row and jth

column of the matrix. After TransByte(), bi,j interchanges its position with bj,i. The

first byte, {b0,0 b0,1 b0,2 b0,3 b0,4 b0,5 b0,6 b0,7}, is replaced by {b0,0 b1,0 b2,0 b3,0 b4,0 b5,0

b6,0 b7,0}. The inverse of the TransByte() operation is itself.

Figure 10 TransByte

4.1.2.1.3 Sub-Block XOR Procedure

The SubBlkXor() is a Feistel structure. It is fast for both encryption and

decryption and is very easy to analyze. In this operation, it performs bitwise XOR in

each round to distribute the effects on bits as much as possible. Figure 11 illustrates

this procedure.

b0,0 b0,1 b0,2 b0,3 b0,4 b0,5 b0,6 b0,7

b1,0 b1,1 … … … … … b1,7

b7,0 b7,1 … … … … … b7,7

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

b0,3

b0,0

b0,5

b0,1

b0,2

b0,6

b0,7

b0,4

:

b1,0

:

b1,1



:

b1,7

:

:

b7,0

:

b1,1



:

b7,7

:

… … … … …

…

…

…

…

…

‐	41	‐	

Figure 11 Sub-Block XOR

The first eight bytes (B0 to B7) are assigned from B8 to B15. For B8 to B15, B8 to

B11 are used to perform bitwise XOR operations with B12 to B15. By repeating itself,

the result is that 32 bits are expanded as two sets of 32 bits (64 bits). Finally, the 64

bits perform XOR again with B0 to B7 to be B8 to B15. The inverse of this operation is

as follows (we denote Bi as byte after SubBlkXor()):
















158 if ,BBB

70if , B
B'

8 mod4

8

i

i

iii

i
i Eq 23

4.1.2.1.4 Round Key Addition

AddRoundKey() performs the bitwise XOR operation with the round key the

same as in AES. Each round key size is the same as the state size and is derived from

the cipher key by the key scheduling algorithm. The inverse is the AddRoundKey()

itself.

4.1.2.1.5 Swap

FinalRound_Plus is a special round in AES_Plus. It replaces SubBlkXor() with

Swap(). It swaps the left and right 64-bit sub-blocks.

‐	42	‐	

4.1.2.2 Number of Rounds

The number of rounds (Nr) depends on the result of cryptanalysis. We will show

that six-round AES_Plus is strong enough to resist linear and differential attacks. Here,

we choose Nr = 10 for the proposed cipher.

4.1.2.3 Deciphering

As shown in Figure 12, the decryption algorithm is the inverse of the encryption

algorithm and uses the same key. Here, ByteSub-1() stands for the inverse of the

ByteSub() as in AES.

Figure 12 Encryption and decryption of AES_Plus

[Encryption] [Decryption]

AddRoundKey(K0) AddRoundKey(KNr

)

ByteSub
TransByte
SubBlkXor
AddRoundKey(K1)

TransByte
ByteSub-1
AddRoundKey(KNr-1

)

SubBlkXor
……….. …………..
ByteSub
TransByte
SubBlkXor
AddRoundKey(KNr-1

)

TransByte
ByteSub-1
AddRoundKey(K1)
SubBlkXor

ByteSub
TransByte
Swap
AddRoundKey(KNr

)

TransByte
ByteSub-1
Swap
AddRoundKey(K0)

‐	43	‐	

4.2 Generalized Secure Hash Algorithm: SHA-X [69]

This section describes the processing of generalizing the Secure Hash Algorithm

according to the SHA family algorithm. The process of generalization includes

padding, parsing, setting the initial hash values, constants, Boolean expressions and

functions, and message schedule; initializing the eight working variables and for-loop

operation; and computing the ith intermediate hash values. In the following section,

we describe the processes of generalizing in detail.

4.2.1 Generalized Secure Hash Algorithm

4.2.1.1 The Length of One Word and the Number of Output Words

First, we define the length of one word as n such that n = 32 in SHA-224 and

SHA-256, and n = 64 in SHA-384 and SHA-512.

Second, we should define the number of output words m. For example, the

output length of SHA-256 is 256 bits, 8 words equally (m = 8, 256 bits = 8 word  32

bits/word). Similarly, m = 6 in SHA-384 (384 bits = 6 words  64 bits/word). On the

basis of the SHA family, we define the value of m (6  m  8), and the length of one

word/block n is multiple of 32. With the m and n, we can generalize the SHA family

to SHA-mn.

In SHA-mn, where m = {6, 7, 8}, and n = {32, 64}, we find two additional

formats, called SHA-192 (m = 6 and n =32) and SHA-448 (m = 7 and n =64). If SHA

family includes SHA-192 and SHA-448, we call it Complete SHA family. The

Complete SHA family is defined below.

Definition 2 Complete SHA family is defined:

‐	44	‐	

Complete-SHA = {SHA-192, SHA-224, SHA-256, SHA-384, SHA-448, SHA-512}

 Eq 24

Table 11 Values of m and n for SHA family

Property SHA- nm

Algorithms SHA-192 SHA-224 SHA-256 SHA-384 SHA-448 SHA-512

Word Size (n) 32 64

of Output

Words (m)
6 7 8 6 7 8

Message Digest

Size
192 224 256 384 448 512

Block Size 512 1024

Security1 296 2112 2128 2192 2224 2256

4.2.1.2 Padding the Message M

The section generalizes the padding step in SHA-mn. Assuming that M is l bits (0

 l < 22n), the padding process should satisfy the following two rules:

 If we have l  14n-1 (mod 16n), we should pad “1||0*||(l)2” up to the length

of n
n

l
16

16




 . Notice that “1||0*” denotes that “1” is followed by zero “0”

bit or more than one bits and the (l)2 denotes the length of message in

binary.

 If we have l >14n-1 (mod 16n), we should pad “1||0*||(l)2” up to the length

of n
n

l
161

16












 . Notice that “1||0*” denotes that “1” is followed by zero

“0” bit or more than one bits and the (l)2 denotes the length of message in

binary.

1 The security complexity is under birthday attack.

‐	45	‐	

Algorithm 10 Padding

1: If l  14n - 1 (mod 16n)

2: Then M’= M || 1 || 0* || (1)2 such that |M’| = n
n

16
16

1






3: Else M’= M || 1 || 0* ||(1)2 such that |M’| = n
n

161
16

1














4: End IF

4.2.1.3 Parsing the Padded Message into Message Blocks

Based on the properties of SHA family, SHA-mn parses the padded message into

N 16 n bits blocks denoted by M(1)…M(N). For each 16  n-bit M(i), the M will be

divided into sixteen n-bit sub-blocks denoted by M0
(i)…M15

(i).

Algorithm 11 Parsing

1: parsing M’ into M(1)…M(N)

2: For i  1 to N Do

3: M(i) = M0
(i) || M1

(i) || … || M15
(i), | M(i) | = 16n

4: End For

4.2.1.4 Setting the Initial Hash Values

The initial hash values consist of eight n-bit words denoted by H0
(0)…H7

(0). The

following are the rules of setting initial hash value in each SHA family members.

 In SHA-256(or in SHA-512), each initial hash value is 32(or 64) bits which

are the first 32(or 64) bits of the fractional parts of the square roots of the 1st

eight prime numbers. The first eight prime numbers are 2, 3, 5, 7, 11, 13, 17

and 19.

 In SHA-224, each initial hash value is 32 bits which are the 33th ~ 64th bits

of the fractional parts of the square roots of the 9th through 16th prime

‐	46	‐	

numbers. The 9th through 16th prime numbers are 23, 29, 31, 37, 41, 43, 47

and 53.

 In SHA-384, each initial hash value is 64 bits which are the first 64 bits of

the fractional parts of the square roots of the 9th through 16th prime

numbers. The 9th through 16th prime numbers are 23, 29, 31, 37, 41, 43, 47

and 53.

Based on SHA family, the paper defines initial hash value for the additional

SHA-192 and SHA-448.

 In SHA-192(or in SHA-448), each initial hash value is 32(or 64) bits, which

are the first 32(or 64) bits of the fractional parts of the square roots of the

17th through 24th prime numbers. The 17th through 24th prime numbers are

59, 61, 67, 71, 73, 79, 83 and 89.

  


64 8, 512;-SHA

32 8, ; 256-SHA

9 7 1 2 e 7 3 1 9 1 d c 0 e b 5

b 6 d b 1 4 b f ab 9 d 3 8 f 1

f 1 c 6 e 3 b 2 8c 8 6 5 0 b 9

 1 d 2 8 6 e d a f 7 2 5 e 0 1 5

1 f 6 3 d 1 f 5 3a 5 f f 4 5 a

b 2 8 f 4 9 e f 2 7 3 f e 6 c 3

b 3 7 a a c 4 8 5 e8 a 7 6 b b

8 0 9 c c b 3 f 7 6 6 e 9 0 a 6

 H(8)

H(7)

H(6)

H(5)

H(4)

H(3)

H(2)

 H(1)

































nm

nm

  


646, -384;SHA

327, 224;-SHA

fa4 4 a f e b 81d 4 5 b 7 4

 fa7 8 9 f 4 6 d 0 e 2 c 0 b d

1 1 5 1 8 5 8 6 87 a 4 4 b e 8

 1 3 b 0 0 c f f 67 6 2 3 3 7 6

9 3 9 5 e 0 7 f 8 cd e f 2 5 1

 17 d d 0 7 0 3 a 5 1 0 9 5 1 9

 07 5 d c 7 6 3 a 2 9 2 a 9 2 6

8 d e 9 5 0 1 c d d5 9 b b b c

 H(16)

H(15)

H(14)

H(13)

H(12)

H(11)

H(10)

 H(09)

































nm

nm

Figure 13 Initial values of standard SHA family

‐	47	‐	

  


647, 448;-SHA

326, 192;-SHA

e 0 f a 0 a 3 4 1 3 3 6 9 1 f 6

 8 f 9 e 3 1 e c 2 0 0 6 5 4 c 1

f 3 c 0 8 3 c d 6 9 5 b 0 6 3 e

 6 3 9 b 1 5 a 0 457 d 3 4 b 8

 d e 1 e 2 8 d f a c 6 2 8 1 d 6

 a c 3 6 5 4 a 6 77d 4 3 7 f 2

 5 1 e 1 a 1 d 9 3 d 5 8 c 6 f c

b 9 9 d 6 b 7 e 6 5 1 9 f 5 e a

 H(24)

H(23)

H(22)

H(21)

H(20)

H(19)

H(18)

 H(17)

































nm

nm

Figure 14 Initial values of SHA-192 and SHA-448

We generalize the properties of setting initial hash value for SHA-mn:

 For some x, if m = 8 and n = 64x-32 or 64x, we map to 1st to 8th prime

numbers. And the 64x - 32 bits are obtained by truncating the last 32 bits of

the 64x bits.

 For some x, if m = 7 and n =64x - 32 or m = 6 and n = 64x, we map to 9th to

16th prime numbers. The 64x -32 bits are obtained by truncating the first 32

bits of the 64x bits.

 For some x, if m = 6 and n =64x - 32 or m = 7 and n = 64x, we map to 17th ~

24th prime numbers. The 64x - 32 bits are obtained by truncating the last 32

bits of the 64x bits.

‐	48	‐	

  


















xnm

xnm

64 , 8

3264 , 8

 H(8)

 H(7)

 H(6)

 H(5)

 H(4)

 H(3)

 H(2)

 H(1)

































  


















xnm

xnm

64 , 6

3264 , 7

 H(16)

 H(15)

 H(14)

 H(13)

 H(12)

 H(11)

 H(10)

 H(09)

































  


















xnm

xnm

64 , 7

3264 , 6

 H(24)

 H(23)

 H(22)

 H(21)

 H(20)

 H(19)

 H(18)

 H(17)

































Figure 15 Initial values of SHA-mn

4.2.1.5 Setting the Constants

In SHA family, SHA-224 and SHA-256 obtain 64 constants by computing the

first 32 bits of the fractional parts of the cube roots of the first 64 prime numbers

denoted by K0
{256}…K63

{256}. Similarly, SHA-384 and SHA-512 obtain 80 constants

by computing the first 64 bits of the fractional parts of the cube roots of the first 80

prime numbers denoted by K0
{512}…K79

{512}.

We can compute the constants by computing the first n bits of the fractional parts

of the cube roots of the first f13(n) prime numbers.

‐	49	‐	

  48
2

1
13  nnf Eq 25

4.2.1.6 Boolean Expressions and Functions

In SHA-mn, the paper renames Ch() and Maj() functions to g1 and g2 and merges

some  and  functions described in SHA family. Note that ROTRk(x) means to rotate

right k bits, and SHRk(x) means to rotate right k bits.

)()()()()(22132}256{

0

}224{

0
xROTRxROTRxROTRxx  and

)()()()()(393428}512{

0

}384{

0
xROTRxROTRxROTRxx  are merged to

)()()()()()(
3

321 xROTRxROTRxROTRg nfnfnf  , where

24
16

13
)(1  nnf , 8

32

21
)(2  nnf , and 5

32

17
)(3  nnf .

)()()()()(25116}256{

1

}224{

1
xROTRxROTRxROTRxx  and

)()()()()(411814}512{

1

}384{

1
xROTRxROTRxROTRxx  are merged to

)()()()()()(
4

654 xROTRxROTRxROTRg nfnfnf  , where

2
4

1
)(4  nnf , 4

32

7
)(5  nnf , and 9

2

1
)(6  nnf .

)()()()()(3187}256{
0

}224{
0 xSHRxROTRxROTRxx  and

)()()()()(781}512{
0

}384{
0 xSHRxROTRxROTRxx  are merged to

)()()()()()(
5

987 xSHRxROTRxROTRg nfnfnf  , where

 nnnf mod13
16

3
)(7  ,  nnnf mod28

16

5
)(8  , and 1

8

1
)(9  nnf .

)()()()()(101917}256{
1

}224{
1 xSHRxROTRxROTRxx  and

)()()()()(66119}512{
1

}384{
1 xSHRxROTRxROTRxx  are merged to

)()()()()()(
6

121119 xSHRxROTRxROTRg nfnfnf  , where

 nnnf mod15
16

1
)(10  ,  nnnf mod23

16

21
)(11  , and  nnnf mod14

8

1
)(12  .

‐	50	‐	

4.2.1.7 Message Schedule

In SHA-224 and SHA-256, the padded message is parsed into N 512-bit blocks,

M(1)…M(N), for each 512-bit block, M(i), which is divided into 16 32-bit blocks,

M0
(i)…M15

(i). In SHA-384 and SHA-512, for each 1024-bits block, M(i), which is

divided into 16 64-bit blocks, M0
(i)…M15

(i). The message schedule {Wt} is

implemented as following.















 630)()(

150

7162
}256{

115
}256{

0

)(

tWWWW

tM
W

tttt

i
t

t 
 and














 790)()(

150

7162
}512{

115
}512{

0

)(

tWWWW

tM
W

tttt

i
t

t 
 are merged to














 1)(0)()(

150

1371626155

)(

nftWWWgWg

tM
W

tttt

i
t

t

, where 48
2

1
)(13  nnf and the addition(+) is performed modulo 2n.

4.2.1.8 Initialize the Eight Working Variables

The step initials the eight working variables (a ~ h), with the (i-1)th hash value.

For each message block, M(i) , i = 1,2,3…N, is processed in order, the eight working

variables a ~ h are given as

 a = H0
(i-1), b = H1

(i-1), c = H2
(i-1), d = H3

(i-1), e = H4
(i-1), f = H5

(i-1), g = H6
(i-1), h

= H7
(i-1) , and are generalized as aj = Hj(i - 1) (0 j  7).

4.2.1.9 For-Loop Operation

The paper generalizes the for-loop operation of SHA-mn, which is the core part

of SHA family algorithms. For each message block M(i), i = 1, 2, …, N, should be

executed f13(n) rounds. Notice that addition (+) is performed modulo 2n.

‐	51	‐	

Algorithm 12 For-loop Operations

1: For t = 0 to f13(n)-1

2: T1 = a7 + g4(a4) + g1(a4, a5, a6) + Kt
(mn) +Wt;

3: T2 = g3(a0) + g2(a0, a1, a2);

4: a7 = a6; a6 = a5; a5 = a4; a4 = a3 + T1;

5: a3 = a2; a2 = a1; a1 = a0; a0 = T1 + T2;

6: End For

4.2.1.10 Compute the ith Intermediate Hash Value H(i)

For each 16  n-bit block M(i), i = 1,2…N, the intermediate message digests in

the SHA family standard execute the following operations:

 H0
(i) = a + H0

(i-1); H1
(i) = b+ H1

(i-1); H2
(i) = c+ H2

(i-1); H3
(i) = d+ H3

(i-1);

H4
(i) = e + H4

(i-1); H5
(i) = f + H5

(i-1); H6
(i) = g + H6

(i-1); H7
(i) = h+ H7

(i-1);

The paper generalizes the equations as follows:

 Hj
(i) = aj + Hj

(i-1), 0 ≤ j ≤7.

4.2.1.11 The Message Digest

After repeating steps N times (i.e., After processing M(N)), the m  n bits

message digest of the message is:

 H0
(N) || H1

(N) || … || Hm-1
(N).

4.2.2 SHA(x) Family

The paper reduces the parameter n = {32, 64} as n = 32  (2 - i), i  {0, 1} and

replaces the generalized SHA as SHA(x) defined in Definition 3, which is the family

of SHAs of x. The section discusses SHA(1) and SHA(2) first and the LHV

(Length-of-the-Hash-Value) problem of SHA(x).

Definition 3 SHA(x)

‐	52	‐	

SHA(x) = {SHA-m[32×(2x-i)] | i  {0, 1} and m  {6, 7, 8}} Eq 26

4.2.2.1 SHA(1) and SHA(2)

According to Definition 3, SHA(1) = {SHA-192 , SHA-224, SHA-256,

SHA-384, SHA-448, SHA-512}. That is, “Complete SHA family”, which is discussed

in Section 5. And SHA(2) ={SHA-576 , SHA-672, SHA-768, SHA-896, SHA-1024}

for x = 2. The number of SHA(2) elements is 5, because m  n = 768 when n = 96, m

= 8 and n = 128, n = 6. Therefore, we only use SHA-768 to denote the two cases. The

elements of SHA(2) are listed in Table 12.

Table 12 SHA(2)

SHA(2) SHA-576 SHA-672 SHA-768 SHA-768 SHA-896 SHA-1024

m 6 7 8 6 7 8

n (bits) 96 96 96 128 128 128

mn(bits) 576 672 768 768 896 1024

4.2.2.2 Length-of-the-Hash-Value Problem

From the cases of SHA-768 and SHA-1536, which is m  n = 1536 when n =

256, m = 6 and n = 192, n = 8, it exists LHV problem that some SHA-r cannot be

expressed as r = mn uniquely. The LHV problems are classified into 6-7-8-LHV

problem, 6-7-LHV problem, 6-8-LHV problem and 7-8-LHV problem. The section

defines the LHV problem in Definition 4. Theorem 1 shows that if r is in LHV-set,

SHA-r has LHV problem. Otherwise, SHA-r has no LHV problem.

Definition 4 LHV (Length-of-the-Hash-Value) problem

(1) Let SHA-r have a LHV problem if r satisfies {r = m × n = m × n | ∃

distinct n, n ∈ {32(2x - i) | x  N, i = {0, 1}}, ∀ m, m  {6, 7, 8}}.

‐	53	‐	

(2) Let SHA-r have 6-7-8-LHV problem if r satisfies {r = 6 × n = 7×n = 8×n |

∃ distinct n, n, n  {32(2x - i)| x  N, i = {0, 1}}}.

(3) Let SHA-r have 6-7-LHV problem if r satisfies {r = 6 × n = 7 × n ≠

8×n | ∃ distinct n, n, n  {32(2x - i)| x  N, i = {0, 1}}}.

(4) Let SHA-r have 6-8-LHV problem if r satisfies {r = 6 × n = 8 × n ≠

7×n | ∃ distinct n, n, n  {32(2x - i)| x  N, i = {0, 1}}}.

(5) Let SHA-r have 7-8-LHV problem if r satisfies {r = 7 × n = 8 × n ≠

6×n | ∃ distinct n, n, n  {32(2x - i)| x  N, i = {0, 1}}}.

Theorem 1 LHV Sets

(1) Let 6-7-8-LHV-set = {5376k| k  N}. If r is in 6-7-8-LHV-set, SHA-r has a

6-7-8-LHV problem. Otherwise, SHA-r has no 6-7-8-LHV problem.

(2) Let 6-7-LHV-set = {1344k| k  N}-{5376k| k  N}. If r is in 6-7-LHV-set,

SHA-r has a 6-7-LHV problem. Otherwise, SHA-r has no 6-7-LHV problem.

(3) Let 6-8-LHV-set = {768k| k  N}-{5376k| k  N}. If r is in 6-8-LHV-set,

SHA-r has a 6-8-LHV problem. Otherwise, SHA-r has no 6-8-LHV problem.

(4) Let 7-8-LHV-set = {5376k| k  N}-{5376k| k  N}. If r is in 7-8-LHV-set,

SHA-r has a 7-8-LHV problem. Otherwise, SHA-r has no 7-8-LHV problem.

Proof:

Proof for (1) 6-7-8-LHV-set:

We show that if r is in 6-7-8-LHV-set, SHA-r has a 6-7-8-LHV problem by

induction subject to k.

(i) For k =1, 5376k = 5376, 5376 = 6  896 = 7  768 = 8  672, SHA-5376

has a 6-7-8-LHV problem.

(ii) Assume k = x, 5376x = 6  896x = 7  768x = 8  672x, SHA-5376x has a

6-7-8-LHV problem.

‐	54	‐	

(iii) Then, when k = x + 1, 5376(x+1) = 6  [896(x+1)] = 7  [768(x+1)] = 8 　

[672(x+1)], SHA-1792(x+1) has a 7-8-LHV problem.

The proofs for 6-7-LHV-set, 6-8-LHV-set, and 7-8-LHV-set are similar to the

proof for 6-7-8-LHV-set.

Q.E.D.

As defined, SHA(x) = {SHA-6  (64x-32), SHA-6  64x, SHA-7  (64x-32),

SHA-7  64x, SHA-8 (64x-32), SHA-8  64x}, where x  N and 6-7-8-LHV-set =

{5376k| k  N}, 6-7-8-LHV problem exists between SHA(x) and SHA(x) if x, x ∈ N

such that SHA-r  SHA(x)  SHA(x). For example, if we take (x, x) = (12, 14),

SHA(12) = {SHA-4416, SHA-4608, SHA-5152, SHA-5376, SHA-5888, SHA-6144}

and SHA(14) = {SHA-5184, SHA-5376, SHA-6048, SHA-6272, SHA-6912,

SHA-7168}, it is found that SHA-5376  SHA(12)  SHA(14), thus SHA-5376 has

6-7-8-LHV problem. Similarly, SHA-1344  SHA(3)  SHA(4) and SHA-1344 has

6-7-LHV problem. All the situations of the LHV problem within SHA(x) are

categorized in Lemma 1.

Lemma 1 LHV Sets in SHA(x)

(1) If (x, x)  {(12i, 14i), (24i-12, 21i-10), (24i, 21i), (28i-14, 21i-10), (28i,

21i)| i  N}, there is 6-7-8-LHV problem between SHA(x) and SHA(x).

(2) If (x, x)  {(6i-3, 7i-3)| i  N}  {(12i-6, 14i-7)| i  N}, there is a 6-7-LHV

problem between SHA(x) and SHA(x).

(3) If (x, x)  {(3i+2, 4i+2)| i  N - {7k - 3| k  N}}  {(3i, 4i)| i  N - {7k| k

 N}}, there is a 6-8-LHV problem between SHA(x) and SHA(x).

(4) If (x, x)  {(7i+4, 8i+4)| i  N - {3k-2| k  N}}  {(7i, 8i)| i  N - {3k| k 

N}}, there is a 7-8-LHV problem between SHA(x) and SHA(x).

Proof:

‐	55	‐	

The proof for (1):

According Definition 3, SHA(x) = {SHA-(384x - 192), SHA-384x, SHA-(448x -

224), SHA-(512x - 256), SHA-512x}, if there exists 6-7-8-LHV problem within

SHA(x), at least two elements of SHA(x) are multiple of 5376. We discuss the

following six cases:

 When (384x-192) is multiple of 5376, 384x-192 = 5376k  x = (28k+1)/2. x

and k must be integral, but  k  N, x is not integral. Thus, we ignore this

case.

 When (384x) is multiple of 5376, 384x = 5376k  x  {14i | i  N}.

 When (448x-224) is multiple of 5376, 448x - 224 = 5376k  x = (24k+1). x

and k must be integral,  k  N, x is not integral. Thus, we ignore this case.

 When (448x) is multiple of 5376, 448x = 5376k  x  {12i | i  N}.

 When (512x-256) is multiple of 5376, 512x – 256 = 5376k, x  {21i-10 | i 

N}.

 When (512x) is multiple of 5376, 512x = 5376k  x  {21i | i  N}.

So, there exists 6-7-8-LHV problem between SHA(x) and SHA(x) if (x, x) 

{(12i, 14i), (24i-12, 21i-10), (24i, 21i), (28i-14, 21i-10), (28i, 21i)| i  N}.

The proofs for (2) to (4) are similar to (1).

Q.E.D.

4.2.2.3 SHA’(x) without LHV problem

The previous section defines LHV problem and proves all the situations of the

LHV problem within SHA(x). Consider the length of one word in the form of 32 

2k-1 for k  N, if we take m = 6, n = 32  23 = 256, r = m  n =1536. However, n =

1536/8 = 192{32  2k-1 | k  N}. That is, ∄ n  {32  2k-1 | k  N} such that 1536 =

6  256 = 8  n. We solve 6-8-LHV problem. Lemma 2 will prove that SHA-m  (32

‐	56	‐	

 2k-1) has no LHV problem and redefine SHA(x) in Definition 3. Therefore, we have

SHA(x) = {SHA-192  2x-1, SHA-224  2x-1, SHA-256  2x-1 | x  N}.

Lemma 2 Let X ={6, 7, 8}, Y = {32  2k-1 | k ∈ N}, SHA-m  n has no LHV problem

for all distinct m, m  X and all distinct n, n  Y.

Proof:

Without loss of generality, we let n = 32  2a-1 = 2a+4 and n = 32  2b-1 = 2b+4, for

all a, b  N, a > b, a  b.

Suppose mn = mn for distinct m, m  X, we have m  2a+4 = m  2b+4  m/m

= 2a-b  2. It exists contradiction because a and b do not exist. Therefore, ∃ x, x ∈

{(192  2k-1), (224  2k-1), (256  2k-1) | k ∈ N}, there is no LHV problem between

SHA(x) and SHA(x).

Q.E.D.

Definition 5 SHA(x) without LHV problem:

SHA(x) = {SHA-m[32×(2x-1)] | x  N and m  {6, 7, 8}} Eq 27

‐	57	‐	

4.3 Finding Near-Optimum Message Scheduling Settings for SHA-256 Variants

Using Genetic Algorithms [70]

4.3.1 SHA Message Scheduling Evaluation Criterion

This section proposes an evaluation criterion of SHA message scheduling. The

number of terms involved in the message schedule is treated as an evaluation criterion

of SHA message scheduling. This study uses SHA-0 and SHA-1 as examples to show

that SHA-1 is more secure than SHA-0 by comparing their message scheduling

equations.

4.3.1.1 Local Collision

A local collision appearing on all the SHA families is a collision within

intermediate steps of the hash function [29]. The starting point for hash function

collision attacks is a local collision. Local collisions are found using linear

approximations of Boolean functions that are used in various rounds in message

scheduling (and other conditions as defined in [29]). The first observation is that

SHA-0 has a 6-step local collision that can start at any step i. The differential path is a

sequence of grouped local collisions with possible overlaps [71]. Wang [29] tried to

find a set of starting steps for each local collision to construct such a path. The

disturbance vector is applied to satisfy the recursion defined by the message

expansion. Once a local collision is found, an attempt is made to consider the message

expansion and other non-linear designs to find a collision for the full hash function.

For SHA-0, 3 vectors are found successfully for three conditions in [29]. However, it

is more complicated to find a good disturbance vector due to the large search space on

SHA-1, and the probability of n interleaved local collision complexities increases

‐	58	‐	

exponentially with n for SHA-256 [32].

Mendel provides an approach for collision searches as follows [32]:

(1) Identify local collisions in each round of transformation.

(2) Search for disturbance vectors that need to satisfy some additional

properties.

(3) Build the difference vector by interleaving the local collisions.

(4) The complexity of the collision search is related to the characteristic within

these interleaved local collisions.

(5) Adjusting message bits for the chosen characteristic reduces the

computational cost for the collision search.

The issue that arises is how to reduce the number of local collisions in an

expansion process. Our study applies a genetic approach to find the optimal parameter

set of the SHA family message expansion function based on the evaluation criterion

with the lowest number of local collisions.

4.3.1.2 Local Collision in SHA-0 and SHA-1

In [27], it is pointed out that SHA-1 is safer than SHA-0 because of a single

bit-wise rotation in SHA-1 that affects the local collisions existing in SHA-0. Table 13

shows the SHA-0 and SHA-1 equations.

Table 13 SHA-0, SHA-1, and SHA-256-XOR equations

Algorithm Equation

SHA-0  













 7916,

150,

161483 tWWWW

tM
W

tttt

i
t

t

SHA-1  

  











 7916,

150,

161483
1 tWWWWROTL

tM
W

tttt

i
t

t

SHA-256-XOR  

    











 6316,

150,

161
}256{

172
}256{

0 tWWWW

tM
W

tttt

i
t

t 

‐	59	‐	

The following are examples that compare the terms involved in W27 in both

SHA-0 and SHA-1, and that in W20 in SHA-256-XOR where Mj
n (or Wj

n) indicates

that the message block Mj (or intermediate message word Wj) undergoes an n-bitwise

left rotation. Each message word Wt is obtained by recursively computing other words

with lower indices and being replaced by message blocks until t  15.

Figure 2 represents the number of terms involved in full SHA-0, SHA-1, and

SHA-256-XOR.

[SHA-0]

W27 = W24  W19  W13  W11

 = (W21  W16  W10  W8)  W19  W13  W11

 = …

 = M15  M4  M2  M7  M8  M3

  6 terms are involved.

[SHA-1]

W27 = W24
1  W19

1  W13
1  W11

1

 = (W21
2  W16

2  W10
2  W8

2)  W19
1  W13

1  W11
1

 = …

 = M15
4  M10

4  M4
4  M2

4  M13
3  M7

3  M5
3  M10

2 

M8
2  M11

2  M5
2  M3

2  M13
1  M11

1

  14 terms are involved.

[SHA-256-XOR]

W20 = 0(W18) W13 1(W15) W4

 = W18
7  W17

18  W13  W5
17  W5

19  W4

 = (W14
14  W14

25  W9
7  W1

24  W1
26  W6

7  W14
4  W9

18

 W1
3  W5

5  W0
18  W11  W3

17  W3
19  W2)

7 

(W14
14  W14

25  W9
7  W1

24  W1
26  W6

7  W14
4  W9

18

 W1
3  W5

5  W0
18  W11  W3

17  W3
19  W2)

18  W5
17

 W3
19  W4

 = M14
21  M14

32  M9
14  M1

31  M1
1  M0

14  M11
7  M3

24

 M3
26  M2

7  M14
11  M14

22  M9
4  M1

21  M0
0 

M11
18  M3

3  M3
5  M2

18  M5
17  M5

19  M4

  22 terms are involved.

‐	62	‐	

can be generalized as

 

    











 6316,

150,
}256{

1
}256{

0 tWWWW

tM
W

DtCtBtAt

i
t

t 
 Eq 30

and

       
       xSHRxROTLxROTLx

xSHRxROTLxROTLx
101917}256{

1

3187}256{
0







 Eq. 13

Consider two operations, ROTL and SHR. A bitwise rotation operation, ROTL, is

a circular shift operation that is a permutation of the entries in a tuple where the last

element becomes the first element and all of the other elements are shifted. The shift

operation, SHRn(x), which sets 0 as the first element, does not influence the

experimental results because SHRn(x) and ROTRn(x) produce different results. Based

on this assumption, the generalized form is modified to

     
     xROTLxROTLx

xROTLxROTLx
1917}256{

1

187}256{
0





 Eq 31

In the previous section, the optimal values are calculated using the brute force

approach in otpSHA-1. To find the optimum parameters using the brute force

approach for SHA-256-XOR, we would need to test 264 possible combinations of {A,

B, C, D} for each round t (16  t  63), and to perform up to 48  294 operations in the

whole experiment. We applied genetic algorithm operators of recombination and

perturbation to reduce the number of infeasible solutions needed to find the near

optimal variable set {A, B, C, D}.

The design of the GA involves some main components: genetic representation,

population initialization, fitness function, selection scheme, crossover, and mutation.

Each component is described as follows, and the parameters used with GAUL are

listed in Table 14:

‐	63	‐	

 Genetic representation: The genes represent the input variables, A, B, C, D, t,

of the generalized SHA-256-XOR, and each chromosome represents a

possible solution. In the simulation, the length of each chromosome is 5.

 Population initialization: Each chromosome presents a potential solution for

the problem in genetic algorithms. The initial population is randomly

generated and the size is set to 500.

 Fitness Function: The fitness function counts the number of terms in the

equation for Wt. After the process of selection, crossover, and mutation, the

optimal chromosome indicates the maximum number of terms involved in

the equations.

F(t) = # of different terms involved in Wt equation

Eq 32

 Selection Scheme: Selection is a genetic operator that chooses a

chromosome from the current generation＇s population for inclusion in the

next generation’s population. We adopt the binary tournament selection

based on the fitness value in the simulation.

 Crossover and Mutation: Crossover enables genetic algorithms to extract

the best genes from different individuals, and to produce potentially

superior children. The mutation operation randomly modifies the gene to

prevent the falling of all solutions into a local optimum, and extends the

search space. In the simulation, we adopt the one-point crossover with a

ratio 0.9, and a single-point mutation with a ratio 0.1.

‐	64	‐	

Table 14 Genetic algorithm parameters

Parameter Value

Library GAUL
Population size 500
Number of
chromosomes

1

Length of each
chromosome

5

Evolutionary mode GA_SCHEME_DARWIN
Elitism mode GA_ELITISM_PARENTS_SURVIVE
Crossover ratio 0.9
Mutation ratio 0.1
Fitness function # of terms involved in Wt equation

‐	65	‐	

4.4 Modified Autonomous Key Management [74]

This section modifies the secret sharing of Autonomous Key Management

(AKM). AKM runs dynamically in seven node-based/region-based operations. The

seven operations are update, join, leave, merge, partition, expansion, and contraction.

These operations are designed based on the following rules:

(1) All leaves in the hierarchy of AKM are real nodes. Each real node i has its

own secret key SKi, and pgPK iSK
i mod , where g is a random generator.

(2) The non-leaf nodes are virtual nodes, and their secret keys are generated

directly/indirectly from real nodes through some region-based operations.

(3) A tree with node A as root is called RegionA. For example, region A has

virtual nodes B1, B2, and real nodes C1,1, C1,2, C1,3, C2,1, C2,2, C2,3, and C2,4.

The number of the nodes that know the secret of region is Overall Region

Size (ORS).

(4) The Regional Trust Coefficient (RTC) is the ratio of the threshold to ORS,

and indicates how secure the region is. The AKM sets a Global Trust

Coefficient (GTC) as a lower bound of all the RTC. Figure 6 shows an

example, in which the ORS is 4 and RTC is 0.75 of the region B2. The GTC

of region A would be 0.2.

‐	66	‐	

Figure 6 An example of AKM

4.4.1 Function Update

Function update prevents any intruders from compromising the secret, and the

AKM updates keys periodically. First, the region with (n, t)-threshold must select t

nodes and each node is indicated as node i ∈ 1, . . . , t.

Each node i generates update share Si,j(1 ≤ j ≤ n) of key 0. The node i selects

random numbers xj(1 ≤ j ≤ n) and rd(0 ≤ d ≤ i − 1) to compute coefficients ad =

(rd|0)(0 ≤ d ≤ t − 1).      pxaxaS
t

r

r
jrjdji mod

1

0
, 





 , for 1 ≤ j ≤ n. Node i then

distributes Si,j to node j ∈ 1, …, n. When node j receives the update shares distributed

from other t nodes in the region, it computes a new share

 pSSS
t

i
jijj mod'

1
,





Eq 33

The previous section describes how AKM can manage its secret sharing

hierarchical structure using seven region-based functions. These operations cover all

possible region changes from node joining to leaving. The key update frequency in

Global
secret
key

Secret1 Secret2

Secret1,1 Secret1,2 Secret1,3 Secret2,1 Secret2,2 Secret2,3 Secret2,4

[3, 2] [4, 3]

[2, 2]

: Virtual Node : Real Node

‐	67	‐	

MANET is adjustable depending on the application environment. If the frequency is

high, the MANET would be secure enough against adversaries, but would result in

lower performance and heavy power consumption. On the contrary, if the frequency is

low, the communication between nodes in MANET suffers from key inconsistency

after many nodes join and leave continuously.

4.4.2 Function Join

Function Join is used when a node i wants to join a (t, n)-threshold region. The

node sends a request to node j ∈ 1, …, t in the region. Upon receiving the request,

node j checks its certificate revoking list (CRL) first. If node j accepts the request, it

computes a partial share Sj of node i:

   qilSS jjjj mod' 

Eq 34

, where

   q
IDID

IDID
il

t

jrr rj

ri
j mod

,1


 




Eq 35

 



t

jrr
rjj Srj

,1
, 

Eq 36

that Sj,r is a number which pairs of nodes (j, r) ∈ 1 ≤ j ≤ t, 1 ≤ r ≤ t, and

 











otherwise,0

0,1

0,1

x

x

x

Eq 37

After receiving all partial shares, node i generates its secret share Si:

   qIDlSSS
t

j
j

t

j
ijj

t

j
ji mod'

111





Eq 38

‐	68	‐	

4.4.3 Function Leave

Function Leave is used when a node leaves a region. Any node j removes the

certificate of node i from its key management records when receiving Leave request

from node i or detecting the node leaves. The share key of node j does not change

until the AKM updates key periodically.

4.4.4 Function Merge

Function Merge is used when the number of nodes in a region is below the

threshold. The region is simply divided into many parts and they join to the other

sibling regions respectively. As in Algorithm 13, AKM performs Function Merge on

region Si and merges its nodes Si,1 to Si,r into regions Sj and Sk as Sj,(n + 1), …, Sj,(n + p)

and Sk,(n + 1), …, Sk,(n + q).

Algorithm 13 Merge

// Require: The merged region Si which contains nodes Si,1,…, Si,r, and the
destination t regions SD0

 , SD1
 , …, SDt - 1

.

//Ensure: Region SD0
 , SD1

 , …, SDt - 1
.

1: Separate Si into t parts: [ t
rii SS

,1, ,...], [   t
rit

ri
SS

2,1,
,...


], …,[   t

rtit
rti

SS
)1(,1)2(,

,...


],

[  ri
t

rti
SS ,1)1(,

,...


]

2: For u = 0 to t – 2 Do

3: For v = 1 to 




t

r
 Do

4: Join   vt
rui

S
,

 into SDu

5: End For

6: End For

7: For v = 1 to r-t 





t

r

Do

8: Join    vt
rti

S
1,

 into SDt-1

9: End For

‐	69	‐	

Figure 18 Function Merge – merges Si into Sj and Sk

4.4.5 Function Partition

Function Partition is used when the RTC of a region is under the GTC. For

example, Figure 19 shows that AKM partitions region Si with 2n nodes into Si and

S(m+1) with the same size n under threshold k. To assign the secret share to the nodes in

S(m+1), it first randomly selects t regions from S1 to Sm and randomly chooses t nodes

{Sj,1, …, Sj,t} from each Sj region. Second, it creates a new node S(m+1), and joins into

AKM.

Note that

   



t

j
Sjji qIDlSS

i
1

mod

Eq 39

, where

   q
IDID

IDID
IDl

t

jrr SS

SS

Sj

rj

ri

j
mod

,1


 




Eq 40

by Lagrange interpolation. Note that

   qlSS
t

v
vjvjj mod0

1
,,





Eq 41

, where

‐	70	‐	

   q
IDID

ID
l

t

jrr SS

S

jv

vjrj

rj mod0
,1 ,,

,
 



Eq 42

Thus

     qIDllSS
t

j

t

v
Sjvjvji i

mod0
1 1

,,
 

 Eq 43

We also can get

     qIDllSS
t

j

t

v
Sjvjvjm m

mod0
1 1

,,1 1
 

 


Eq 44

, where

   q
IDID

IDID
IDl

t

jrr SS

SS
Sj

vj

rm

m
mod

,1

1

1 
 


 



Eq 45

To generate each share S(m+1), j (1  j  n) of region S(m+1), S(m+1), v’, where

           qRlSS mvmvmvm mod0' 1,1,1,1  

Eq 46

      
im SjSmm IDlIDlR 

 111

Eq 47

Figure 19 Function Partition – partition of Si into Sj and Sm+1

‐	71	‐	

4.4.6 Function Expansion

Function Expansion is used when the RTC of a region is under the GTC. AKM

must perform expansion operation to extend the hierarchy when the RTCs are under

or equal to GTC in all the AKM regions. The function ensures that all the RTCs of

regions are not lower than GTC when nodes increase continuously. Figure 20 shows

that AKM extends region Si from one level to two levels with the same threshold. It

selects t nodes in region Si, and executes function join to create a new node Si,(n+1). It

then moves Si,1, …, Si,m to be Si,(n + 1)’s children, Si,(n + 1),1, …, Si,(n + 1),m with shares Si,(n

+ 1),j , 1 ≤ j ≤ m, that

      qxaIDaS
t

r

r
rjnijni mod

1
,1,,1, 


 

Eq 48

, where ar = rr | sr (1 ≤ r ≤ t), Si,(n + 1) = stst−1 … s1, and all rrs are the same used in

region Si. Region Si,(n + 1) continues (n, t)-threshold as in region Si.

Figure 20 Function Expansion

4.4.7 Function Contraction

Function Contraction is the opposite of function Expansion. This function is used

‐	72	‐	

when the number of nodes is less than the threshold in the region. The function

merges the nodes contained in the contracted region into the other regions whose

RTCs are less than GTC and decreases the level of AKM. As in Algorithm 14, AKM

performs Function Contraction on region Si,(m + 1) and merges its nodes Si,(m + 1),1 to Si,(m

+ 1),r into regions Si and Sj as Si,(m + 1), …, Si,(m + p) and Sj,(n + 1), …, Sj,(n + q).

Algorithm 14 Contraction

// Require: Region Si which contains nodes Si,1, …, Si,r.
//Ensure: Region SD0

 , SD1
 , …, SDt - 1

.

1: Merge Si into {SD0
 , SD1

 , …, SDt - 1
}

2: IF Si  {SD0
 , SD1

 , …, SDt - 1
}

3: Delete Si

4: End IF

The seven-region-based operations on MANET of modified AKM handle key

management. The scheme needs a trusted authority (TA) to start up, neither any

central authorities to compute and distribute shares.

‐	73	‐	

5. Discussion and Analyses

5.1 Cryptanalysis of Transpositional AES

In this section, we give the experiment results of linear cryptanalysis, differential

cryptanalysis, and square attack analysis, comparing the proposed cipher to AES. The

differences between the proposed cipher and the original AES are summarized in

Table 15.

Table 15 Differences between AES_Plus and AES

 AES_Plus AES
Structure Type Feistel structure Square structure

Plaintext/Ciphertext
Length

128 bits 128

Cipher Key Length
128 ~ 256 bits

(multiple of bytes)
128 ~ 256 bits

(multiple of words)

Number of Rounds 10
10 ~ 14

(depends on block length
and key length)

Round Transformations
(Operation Unit)

TransByte (64-bit),
SubBlkXor (64-bit)

ShiftRow (byte),
MixColumn (word)

5.1.1 Linear Cryptanalysis

Linear cryptanalysis was proposed by Matsui [68] for Data Encryption Standard

(DES)-like ciphers, but it is also effective for most iterated ciphers. This attack finds

an equation that consists of XOR operations with plaintext and cipher text bits. If this

equation exists and approximates to zero or one with a higher probability, then the

attack can be successful.

A linear trail is a simulated trail that is a concatenation of some linear and

non-linear components (e.g. S-box) through the cipher involved in the equation. The

approximation of the equation is derived from the approximations of components in

the linear trail. The bias of the equation is computed by the biases of the components

‐	74	‐	

in the linear trail. We take each bit in the linear trail as a random variable, and the

variable also has its own bias. If the bias of the variable is not equal to zero, then there

is a linear trail reaching the bit with a probability of the bias plus one-half. When a

linear trail extends by piling-up lemma, the bias decreases continually round by round;

more linear trails are combined, or approximations of components are joined.

At the end of the extension we obtain the biases of the ciphertext bits and the

equation can be derived by tracing the linear trail back to the plaintext bits. The

largest bias of the equation means that fewer pairs are needed to mount the attack. We

describe how the bias varies under each procedure and how to compute the largest

bias as follows:

 Byte Substitution Procedure

In ByteSub(), the S-box combines input linear trails and those extended

according to linear equations from its inputs. For each output bit, there are 256

equations according to the linear combination of eight input bits and the output bit.

For example, E = x0  x1  x7  y0 where x0 and x7 denote eight input bits and y0

denotes the highest output bit of the S-box. Because y0 = E  x0  x1  x7, the bias of

y0 can be computed by the biases of E, x0, x1, and x7 by piling-up lemma: ܤ௬బ ൌ 2ଷ ൈ

ாܤ ൈ ௫బܤ ൈ ௫భܤ ൈ ௫ళܤ , where ܤ௬బ ாܤ , ௫బܤ , , ௫భܤ	 , and ௫ళܤ	 , denote the biases of

variables y0, E, x0, x1, and x7.

 Transformation Byte Procedure

Because the TransByte() procedure performs only bit transposition, the biases of

state bits do not change, but the proceeding direction of linear trails changes.

 Sub-Block XOR Procedure

Because the new left-half 64-bit data of the state are assigned from the previous

right 64 bits in the SubBlkXor() procedure (Bi = Bi + 8, 0  i  7), the biases of these

bits are the same as those of previous corresponding last right 64 bits. However, for

‐	75	‐	

the new right 64 bits of the state, each bit results from the XOR operation of three bits

of three words. For example, the new bit b8,1 is computed by previous bits b8,1, b12,1

and b0,1 , where bi,j denotes the jth bit of byte bi, i = 0…15 and j = 0…7. For example,

b8,1 = b8,1  b12,1  b0,1.

The bias of b8,1 is computed from the biases of b8,1, b12,1, and b0,1 by the

piling-up lemma: ݏܽ݅ܤୠᇲఴ,భ ൌ 2ଶ ൈ ୠఴ,భݏܽ݅ܤ ൈ ୠభమ,భݏܽ݅ܤ ൈ ୠబ,భݏܽ݅ܤ . Different linear

trails will be combined into one trail with a smaller bias by the XOR operation.

 Round Key Addition

The quantity of bias does not change after AddRoundKey(). Because the key bit

is fixed at zero or one, the bias of the key bit is 1/2. Therefore, only sign of the bias

may change depending on the key value: ݏܽ݅ܤ௢௨௧ ൌ 2 ൈ ௜௡ݏܽ݅ܤ ൈ ቀേ ଵ

ଶ
ቁ ൌ േݏܽ݅ܤ௜௡.

The largest bias of state bits at the end of nth round can be computed with

upper-bound biases at the end of the preceding two rounds. Differences between

evaluation and real values are caused by the approximations of the S-boxes. The

evaluation uses only the upper-bound bias of the linear equation of S-box 2-4, but in

the real case the computed bias is not necessarily the largest.

Our experiment computed the largest bias of all state bits at the end of each

round as shown in Table 16. Since the proposed cipher is in Feistel structure, the bias

increasing rate does not grow as steep as AES in square structure. There are no

4-round biases with a correlation above 2-208. It is impossible to collect these needed

pairs. Therefore, the proposed cipher is secure enough against linear attacks with

more than five rounds.

‐	76	‐	

Table 16 Largest bias of state bits at the end of each round (up to the tenth round)

Round # AES_Plus AES
1 2-4 2-13
2 2-13 2-61
3 2-34 ~2-253
4 2-85 ~2-1023
5 ~2-208 ~2-4100
6 ~2-505 ~2-16408
7 ~2-1222 ~2-65638
8 ~2-2953 ~2-262561

9 ~2-7132 ~2-1050253
10 ~2-17221 ~2-4201023

5.1.2 Differential Cryptanalysis

The differential cryptanalysis was first proposed by Biham and Shamir [75] for

Data Encryption Standard (DES). It is also applicable for other iterated ciphers [6].

Differential cryptanalysis is used to derive a differential trail with high enough

probability. A differential trail is derived from input differential bits to the cipher and

the differential bits propagate through the cipher round by round. The probability of a

differential trail is computed by multiplying propagation ratios of differentials for

active S-boxes involved in the trail.

A differential trail is composed of difference patterns: (x0
*, x1

*, …xr
*). The

probability of this trail is the probability that an initial difference pattern x0
*

propagates to difference patterns x0
*, x1

*, …, xr
* after 1, 2, …, r rounds, respectively.

We describe how to compute the highest probabilities of differential trails for each

procedure.

 Byte Substitution Procedure

The differential of ByteSub() depends on the propagation ratio of the input and

output pair (called the input and output differential for the S-box). For a given input

‐	79	‐	

Table 17 Highest probabilities of differential trails for two ciphers up to some rounds

Round # The Proposed Cipher AES
1 2-7 2-7
2 2-7 2-14
3 2-54 2-72
4 ~2-894 ~2-300
5 ~2-10746 ~2-1248
6 ~2-143418 ~2-5010
7 ~2-1835142 ~2-20064
8 ~2-23859942 ~2-80280
9 ~2-308328672 ~2-321144
10 ~2-3993665760 ~2-1284600

5.1.3 Square Attack

The square attack is a dedicated attack for the cipher square [7] that exploits the

byte-oriented structure of the cipher. AES inherits the same property from the square

cipher; thus a four-round AES is threatened by the square attack [8]. Because our

proposed cipher uses the TransByte() operation, which breaks the property exploited

in a square attack, the attack cannot be successfully carried out. We define a -set as a

set of 256 states that differ in active bytes and are equal in passive bytes:












others,

active is)(if,
:,

,,

,,

jiji

jiji

yx

i,jyx
yx Eq 49

The -set property causes all bytes to be balanced:

.0, 


ji
a

a Eq 50

In our proposed cipher, the AddRoundKey() and ByteSub() procedures do not

influence the -set with the position of active bytes indicated as Kj where K  A,.., D

and j = {l, r} means the -set at a byte of left 64 bits (l) or right 64 bits (r) and its

substitution through the S-box in each round (ex: A  B  C  D). As shown in

‐	80	‐	

Figure 23, it separates the active byte from one block into eight blocks in the first

round. The TransByte() procedure breaks the -set property but remains balanced in

the first round. We discuss the security after the SubBlkXor() procedure. Mi
j where j =

{l, r} indicates the active bytes mixed i times, resulting in the state being unbalanced.

Regarding the influence of l, SubBlkXor() moves the influence of l to the two right

columns in the first round and makes them unbalanced in the second round as

illustrated in Figure 24. After the third round, none of the states are balanced. Thus, it

is difficult to recover any input using a square attack after the third round as shown in

Figure 25.

Similar to l, the right 64 bits (r) are not balanced after SubBlkXor() in the first

and second rounds. Thus, it resists the square attack after the second round as shown

in Figure 26, Figure 27 and Figure 28. Our cipher improves on the AES, which

requires four rounds.

Round 1 --- l
AddRoundKey ByteSub TransByte SubBlkExor
Al

Bl

Bl Bl
Bl Bl
Bl Bl
Bl Bl

 Bl Bl
 Bl Bl
 Bl Bl
 Bl Bl

Figure 23 The influence of active byte l in 1st round

Round 2 --- l
AddRoundKey ByteSub TransByte SubBlkExor
 Bl Bl

 Bl Bl

 Bl Bl

 Bl Bl

 Cl Cl

 Cl Cl

 Cl Cl

 Cl Cl

 Cl Cl

 Cl Cl

 Cl Cl

 Cl Cl

Cl Cl M1
l M1

l
Cl Cl M1

l M1
l

Cl Cl M1
l M1

l
Cl Cl M1

l M1
l

Figure 24 The influence of active byte l in 2nd round

‐	81	‐	

Round 3 --- l
AddRoundKey ByteSub TransByte SubBlkExor
Cl Cl M1

l M1
l

Cl Cl M1
l M1

l

Cl Cl M1
l M1

l

Cl Cl M1
l M1

l

Dl Dl M’1
l M’1

l

Dl Dl M’1
l M’1

l

Dl Dl M’1
l M’1

l

Dl Dl M’1
l M’1

l

Dl Dl M’1
l M’1

l

Dl Dl M’1
l M’1

l

Dl Dl M’1
l M’1

l

Dl Dl M’1
l M’1

l

M’1
l M’1

l M2
l M2

l
M’1

l M’1
l M2

l M2
l

M’1
l M’1

l M2
l M2

l
M’1

l M’1
l M2

l M2
l

Figure 25 The influence of active byte l in 3rd round

Round 1 --- r
AddRoundKey ByteSub TransByte SubBlkExor
 Ar

 Br

 Br Br

 Br Br

 Br Br

 Br Br

Br Br M1
r M1

r
Br Br M1

r M1
r

Br Br M1
r M1

r
Br Br M1

r M1
r

Figure 26 The influence of active byte r in 1st round

Round 2 --- r
AddRoundKey ByteSub TransByte SubBlkExor

Br Br M1
r M1

r

Br Br M1
r M1

r

Br Br M1
r M1

r

Br Br M1
r M1

r

Cr Cr M’1
r M’1

r

Cr Cr M’1
r M’1

r

Cr Cr M’1
r M’1

r

Cr Cr M’1
r M’1

r

Cr Cr M’1
r M’1

r

Cr Cr M’1
r M’1

r

Cr Cr M’1
r M’1

r

Cr Cr M’1
r M’1

r

M’1
r M’1

r M2
r M2

r
M’1

r M’1
r M2

r M2
r

M’1
r M’1

r M2
r M2

r
M’1

r M’1
r M2

r M2
r

Figure 27 The influence of active byte r in 2nd round

Round 3 --- r
AddRoundKey ByteSub TransByte SubBlkExor

M’1
r M’1

r M2
r M2

r
M’1

r M’1
r M2

r M2
r

M’1
r M’1

r M2
r M2

r
M’1

r M’1
r M2

r M2
r

M’’1
r M’’1

r M’2 M’2

M’’1
r M’’1

r M’2 M’2

M’’1
r M’’1

r M’2 M’2

M’’1
r M’’1

r M’2 M’2

M’’1
r M’’1

r M’2 M’2

M’’1
r M’’1

r M’2 M’2

M’’1
r M’’1

r M’2 M’2

M’’1
r M’’1

r M’2 M’2

M’2 M’2 M3
r M3

r
M’2 M’2 M3

r M3
r

M’2 M’2 M3
r M3

r
M’2 M’2 M3

r M3
r

Figure 28 The influence of active byte r in 3rd round

‐	82	‐	

5.2 Experiment results of SHA-256-XOR

Table 18 lists 10 generations of the simulation results for {A, B, C, D}. The

simulation requires heavy computational times for each t. We have not generated

optimum parameters for additional rounds because of the computational requirements.

However, we believe that we have demonstrated the basis of our contribution, which

is a possible approach for the selection of optimal message scheduling parameters and

the analysis of the security fitness.

The values for the 5 variables converge after 42 generations. It appears that the

approximate optimal values are {A, B, C, D} = {4, 1, 1, 16}. Thus, the best equation

for Wt of SHA-256-XOR, named optSHA-256-XOR, should be

 

    











 6316,

150,

161
}256{

114
}256{

0 tWWWW

tM
W

tttt

i
t

t 
 Eq 51

Figure 29 compares SHA-256-XOR with optSHA-256-XOR by showing clearly

that otpSHA-256-XOR is indeed more secure than SHA-256.

Table 18 The last 10 generations of the simulation

Generation A B C D Fitness

41 8 1 1 16 238
42 4 1 1 16 259
43 4 1 1 16 265
44 4 1 1 16 265
45 4 1 1 16 265
46 4 1 1 16 270
47 4 1 1 16 270
48 4 1 1 16 270
49 4 1 1 16 270
50 4 1 1 16 270

‐	84	‐	

5.3 Performance analysis of Modified Autonomous Key Management

This section discusses the performance improvement of the proposed method in

terms of communication cost and computation cost. The modified AKM inherits the

AKM structure, and transmissions between each node are (update) shares. Thus, the

single message discussion must be transmitted with significant information.

The length of secret key k, protected by the secret sharing scheme, must be long

enough for some security issues (i.e., 2 048 bits or more). In Shamir’s secret sharing

scheme, k is constant in the a(x) equation. The length of all the shares

  kxaxa
t

j

j
ji 





1

1

, 1 ≤ i ≤ n, is bounded by |k|. For example, if |k| = 2048 bits long,

the length of each share is at least 2048 bits. However, the modified secret sharing

scheme reduces share length to
t

1
 without security loss. The secret key is divided in

each coefficient aj = rk | kj, and k = k1k2 … kt with the length |a(xi)| as
t

1
 of |k| on

appropriate prime number p. Therefore, the modified MANET communication cost

can be reduced to
t

1
.

Table 19 Message length comparison

 Message (share) length size

AKM |yi| = |k| |p|

Modified AKM |yi| =
t

k
  |k|  |p|

Computation cost on the MANET environment is a very important issue. Certain

mobile ad-hoc devices have restricted power, and cannot support jobs requiring heavy

computation cost. The proposed improvement also influences computation cost.

Finding that the critical mathematical operation is module multiplication (/division) in

all operations is easy, depending on operand length. Almost all operands in modified

‐	85	‐	

AKM reduce, resulting from each modified AKM share as
t

1
 faster than AKM.

Furthermore, the computation cost of all operations can be reduced to
t

1
.

Table 20 Operand length comparison

 operand length size

AKM |yi| = |k| |p|

Modified

AKM
|yi| =

t

k
  |k|  |p|

‐	86	‐	

6. Conclusions

While IT has evolved from people-to-machine (Web 1.0) through

people-to-people (Web 2.0) to machine-to-machine (Web 3.0), working styles have

gradually changed from writing on paper to Cloud storage. Digital content

development is critical to these changes. However, information security and privacy

issues should also be addressed. Therefore, we proposed improvements to symmetric

ciphers, one-way hash functions, and secure protocols.

The advanced encryption standard (AES) is applied as an encryption standard to

replace data encryption standard (DES) and triple-DES in fields including

e-commerce, embedded systems, and ubiquitous computing. Originally, AES

performed matrix operations using the MixColumns() procedure, resulting in more

complicated computations and increasingly complex software and hardware designs.

The proposed AES variant replaces the matrix with an XOR operation providing

stronger security.

The proposed cipher’s advantages are

 The security of round transformation in the proposed cipher is made

stronger than AES by strengthening the resistance of the square attack from

4 to 3 rounds.

 Most operations in the proposed cipher, including the TransByte() procedure,

can be used for both encryption and decryption.

In future, we will focus on speeding up the cipher, especially on TransByte() and

SubBlkXor().

Since 1993, the secure hash function family is an important standard in

cryptography. We propose a novel view of complexity (and hence security fitness) by

counting the number of terms involved in each equation, instead of analyzing the

‐	87	‐	

probability of finding collisions within hash functions. We identified the near optimal

versions, optSHA-1 and optSHA-256-XOR, using brute force and genetic approaches

of SHA-1 and SHA-256-XOR, respectively; the latter had more computational

efficiency. This analysis is useful for designers interested in the security of

modular-addition-free hash functions suitable for hardware implementation with

lower gate counts. The obtained message schedule parameter sets will be a good

reference for further improvements of secure hash algorithm (SHA) functions.

The proposed generalized SHA (SHA-mn) uses arbitrary length messages as

inputs for generating message digests with required lengths. We modified each

SHA-mn step as a generalized version containing padding and parsing; setting the

initial hash values, constants, Boolean expressions, functions, and message schedule;

initializing the eight working variables and for-loop operation; and computing the ith

intermediate hash values. Furthermore, we solved the LHV problem, which does not

exist in the original SHA family standard.

For security purposes, SHA-mn was generalized based on SHA family design

rules. While the design was improved, there is disagreement regarding the method

used to calculate the complexity according to the birthday paradox, as the collision of

full SHA-1 was reported in 2005. Many studies focus on developing efficient ways

for finding SHA-256/512 collisions. We therefore believe that the approximate

complexity of SHA-mn under the birthday attack is 2mn/2.

The security of mobile ad hoc networks influences their applications. To achieve

adequate security, autonomous key management (AKM) for numerous nodes is

important. We propose modified AKM to reduce communications and computation

costs to
t

1
 of the original values without compromising security. Results show that

modified AKM is more practical because it can handle large numbers of dynamic

‐	88	‐	

nodes in a MANET, while maintaining adequate security requirements. The proposed

methodology is applicable to all schemes based on cryptographic threshold schemes

for truncating message size without endangering security.

Further research will attempt to simplify the computation complexity of AKM

operations for the workability of ad hoc devices. Furthermore, we will apply the

proposed concept to vehicular ad hoc networks (VANETs) because their environments

are more dynamic and the topology changes faster, resulting in narrower bandwidth.

‐	89	‐	

References

[1] H. Sundmaeker, P. Guillemin, P. Friess and S. Woelfflé, "Vision and Challenges

for Realising the Internet of Things," The Cluster of European Research projects

on the Internet of Things (CERP-IoT), 2010.

[2] M. Luo, "Research on the Knowledge Management Based on GIS," in National

Conference on Information Technology and Computer Science (CITCS), 2012.

[3] B. Daskala, "Flying 2.0 Enabling automated air travel by identifying and

addressing the challenges of IoT & RFID technology," European Network and

Information Security Agency (ENISA), 2010.

[4] J. Daemen and V. Rijmen, Advanced Encryption Standard (AES), Federal

Information Processing Standards Publications (FIPS PUBS) 197, NIST, 2001.

[5] E. Biham1, A. Biryukov and A. Shamir, "Cryptanalysis of Skipjack Reduced to

31 Rounds Using," in Proceedings of Eurocrypt, LNCS 1592, 1999.

[6] E. Biham and N. Keller, "Cryptanalysis of reduced variants of Rijndael," in

Proceedings of 3rd AES Conference, 2000.

[7] J. Daemen, L. Knudsen and V. Rijmen, "The block cipher Square," in

Proceedings of the 4th International Workshop on Fast Software Encryption

(FSE), LNCS 1267, 1997.

[8] J. Daemen and V. Rijmen, The Design of Rijndael, AES - The Advanced

Encryption Standard, Springer, 2002.

[9] Eli Biham, Orr Dunkelman and Nathan Keller, "Related-Key Boomerang and

Rectangle Attacks," in Proceedings of Eurocrypt, LNCS 3557, 2005.

[10] A. Biryukov, "The Boomerang Attack on 5 and 6-round AES," in Proceedings of

Advanced Encryption Standard 4, LNCS 3373, 2005.

[11] D. R. Stinson, Cryptography Theory and Practice, 3 ed., CRC Press, 2005.

[12] J. H. Cheon, M. Kim, K. Kim, J. Y. Lee and S. Kang, "Improved Impossible

Differential Cryptanalysis of Rijndael and Crypton," in Proceedings of The 4th

International Conference on Information Security and Cryptology (ICISC),

LNCS 2288, 2002.

[13] R. C. Phan, "Impossible Differential Cryptanalysis of 7-round Advanced

Encryption .Standard (AES)," Information Processing Letters, vol. 91, no. 1, pp.

33-38, 2004.

‐	90	‐	

[14] C. Jie, W. Yongzhuang and H. Yupu, "A New Method for Impossible Differential

Cryptanalysis of 7-round Advanced Encryption Standard," in Proceedings of

Communications, Circuits and Systems (ICCCAS), 2006.

[15] W. Zhang, W. Wu and D. Feng, "New Results on Impossible Differential

Cryptanalysis of Reduced AES," in Proceedings of 10th International

Conference on Information Security and Cryptology (ICISC), LNCS 4817, 2007.

[16] E. Biham, O. Dunkelman and N. Keller, "Related-Key Impossible Differential

Attacks on 8-Round AES-192," in Proceedings of RSA Conference, LNCS 3860,

2006.

[17] J. Liu, B. Wei, X. Cheng and X. Wang, "An AES S-box to Increase Complexity

and Cryptographic Analysis," in Proceedings of the 19th International

Conference on Advanced Information Networking and Applications (AINA),

2005.

[18] A. Grocholewska-CzuryJo' and J. Stoklosa, "Random Generation of S-Boxes for

Block Ciphers," in Biometrics, Computer Security Systems and Artificial

Intelligence Applications, Springer, 2006, pp. 121-135.

[19] D. Bhattacharya, N. Bansal and A. Banerjee, "A Near Optimal S-Box Design," in

Proceedings of the 3rd International Conference on Information Systems Security

(ICISS), LNCS 4812, 2007.

[20] L. Cui and Y. Cao, "A new s-box structure named Affine-power-affine,"

International Journal of Innovative Computing, Information and Control

(IJICIC), vol. 3, no. 3, pp. 751-759, 2007.

[21] National Institute of Standards and Technology, Secure hash standard, Federal

Information Processing Standards Publications (FIPS PUBS) 180-4, 2012.

[22] P. Pal and P. Sarkar, "PARSHA-256 – A New Parallelizable Hash Function and a

Multithreaded Implementation," in Proceedings of 10th International Workshop

on Fast Software Encryption 2003 (FSE), LNCS 2887, 2003.

[23] H. Handschuh and D. Naccache, "SHACAL," in Proceedings of 1st Open

NESSIE Workshop, 2001.

[24] J. Lu, J. Kim, N. Keller and O. Dunkelman, "Related-Key Rectangle Attack on

42-Round SHACAL-2," in Proceedings of 9th Information Security Conference

(ISC), LNCS 4176, 2006.

[25] H. Yoshida and A. Biryukov, "Analysis of a SHA-256 Variant," in Proceedings of

12th Annual Workshop on Selected Areas in Cryptography (SAC), LNCS 3897,

2005.

[26] B. Schneier, Applied Cryptography, 4 ed., John Wiley & Sons, 1996.

‐	91	‐	

[27] F. Chabaud and A. Joux, "Differential Collisions in SHA-0," in Proceedings of

Crypto, 1998.

[28] V. Rijmen and E. Oswald, "Update on SHA-1," in Proceedings of CT-RSA, LNCS

3376, 2005.

[29] X. Wang, H. Yu and Y. L. Yin, "Finding Collision in the Full SHA-1," in

Proceedings of Crypto, LNCS 3621, 2005.

[30] E. A. Grechnikov, "Collisions for 72-step and 73-step SHA-1: Improvements in

the Method of Characteristics," Cryptology ePrint Archive, Report 2010/413,

2010.

[31] H. Gilbert and H. Handschuh, "Security Analysis of SHA-256 and Sisters," in

Proceedings of 6th Information Security Conference (SAC), LNCS 3006, 2003.

[32] F. Mendel, N. Pramstaller, C. Rechberger and V. Rijmen, "Analysis of

Step-Reduced SHA-256," in Proceedings of 13th annual Fast Software

Encryption workshop (FSE), LNCS 4047, 2006.

[33] I. Nikolić and A. Biryukov, "Collisions for Step-Reduced SHA-256," in

Proceedings of 15th International Workshop on Fast Software Encryption (FSE),

LNCS 5086, 2008.

[34] S. K. Sanadhya and P. Sarkar, "New Collision Attacks against Up to 24-Step

SHA-2," in Proceedings of Indocrypt, LNCS 5365, 2008.

[35] S. Indesteege, F. Mendel, B. Preneel and C. Rechberger, "Collisions and Other

Non-random Properties for Step-Reduced SHA-256," in Proceedings of Selected

Areas in Cryptography (SAC), LNCS 5381, 2009.

[36] K. Aoki, J. Guo, K. Matusiewicz, Y. Sasaki and L. Wang, "Preimages for

Step-Reduced SHA-2," in Proceedings of Asiacrypt, 2009.

[37] F. Mendel, T. Nad and M. Schläffer, "Finding SHA-2 Characteristics: Searching

through a Minefield of Contradictions," in Proceedings of Asiacrypt, LNCS 7073,

2011.

[38] A. Biryukov, M. Lamberger, F. Mendel and I. Nikolić, "Second-Order

Differential Collisions for Reduced SHA-256," in Proceedings of ASIACRYPT,

LNCS 7073, 2011.

[39] A. Khalili, J. Katz and W. Arbaugh, "Toward Secure Key Distribution in Truly

Ad Hoc Networks," in Proceedings of the International Symposium on

Applications and the Internet, 2003.

[40] B. Lehane, L. Doyle and D. O'Mahony, "Shared RSA key generation in a mobile

ad hoc network," in Proceedings of the IEEE Military Communications

Conference (MILCOM), 2003.

‐	92	‐	

[41] H. Luo, J. Kong, P. Zerfos, S. Lu and L. Zhang, "Self-Securing Ad Hoc Wireless

Networks," in Proceedings of the 7th IEEE Symposium on Computers and

Communications (ISCC), 2002.

[42] H. Luo, J. Kong, P. Zerfos, S. Lu and L. Zhang, "URSA: Ubiquitous and Robust

Access Control for Mobile Ad Hoc Networks," IEEE/ACM Transactions on

Networking, vol. 12, no. 6, pp. 1049-1063, 2004.

[43] J. Kong, P. Zerfos, H. Luo, S. Lu and L. Zhang, "Providing Robust and

Ubiquitous Security Support for Mobile Ad Hoc Networks," in Proceedings of

the IEEE 9th International Conference on Network Protocols (ICNP), 2001.

[44] L. Zhou and Z. J. Haas, "Securing Ad Hoc Networks," IEEE Network on

Network Security, vol. 13, no. 6, pp. 24-30, 1999.

[45] S. Capkuny, L. Butty'an and J. P. Hubaux, "Self-Organized Public-Key

Management for Mobile Ad Hoc Networks," Technical Report 2002/34,

EPFL/IC, 2002.

[46] M. Omar, Y. Challal and A. Bouabdallah, "Reliable and Fully Distributed Trust

Model for Mobile Ad Hoc Networks," Computers & Security, vol. 28, pp.

199-214, 2009.

[47] Y. Park, Y. Park and S. Moon, "ID-based Private Key Update Protocol with

Anonymity for Mobile Ad-Hoc Networks," in Proceedings of 2010 International

Conference of Computational Science and its Applications, 2010.

[48] K. Hamouid and K. Adi, "Secure and Robust Threshold Key Management

(SRKM) Scheme for Ad Hoc Networks," Security and communication networks,

vol. 3, pp. 517-534, 2010.

[49] L. Li and R. S. Liu, "Securing Cluster-Based Ad Hoc Networks with Distributed

Authorities," IEEE Transactions on Wireless Communications, vol. 9, no. 10, pp.

3072-3081, 2010.

[50] D. Saravanan, D. Rajalakshmi and D. Maheswari, "DYCRASEN: A Dynamic

Cryptographic Asymmetric Key Management for Sensor Network using Hash

Function," International Journal of Computer Applications, vol. 18, no. 8, pp.

1-3, 2011.

[51] H. Yang, H. Luo, F. Ye, S. Lu and L. Zhang, "Security in Mobile Ad

HocNetworks Challenges and Solutions," IEEE Wireless Communications, vol.

11, no. 1, pp. 38-47, 2004.

[52] B. Zhu, F. Bao, R. H. Deng, M. S. Kankanhalli and G. Wang, "Efficient and

Robust Key Management for Large Mobile Ad Hoc Networks," Computer

networks, vol. 48, pp. 657-682, 2005.

‐	93	‐	

[53] A. Shamir, "How to Share a Secret," Communications of the ACM, vol. 22, no.

11, pp. 612-613, 1979.

[54] Y. Desmedt, "Threshold Cryptography," European Transactions on

Telecommunications, vol. 5, no. 4, pp. 449-457, 1944.

[55] Y. Desmedt and Y. Frankel, "Threshold Cryptosystems," in Proceedings of

Crypto, LNCS 0435, 1990.

[56] R. Gennaro, S. Jarecki, H. Krawczyk and T. Rabin, "Secure Distributed Key

Generation for Discrete-Log Based Cryptosystem," in Proceedings of Eurocrypt,

LNCS 1592, 1999.

[57] W. J. Tsaur and H. T. Pai, "Dynamic Key Management Schemes for Secure

Group Communication Based on Hierarchical Clustering in Mobile Ad Hoc

Networks," in Proceedings of International Workshops on Frontiers of High

Performance Computing and Networking (ISPA), LNCS 4743, 2007.

[58] K. Lauter, "The Advantages of Elliptic Curve Cryptography for Wireless

Security," IEEE Wireless Communications, vol. 11, no. 1, pp. 62-67, 2004.

[59] M. Girault, "Self-Certified Public Keys," in Proceedings of Eurocrypt, LNCS

547, 1991.

[60] S. Bakhtiari, R. Safavi-Naini and J. Pieprzyk, "Cryptographic Hash Functions: A

Survey," Technical Report 95-09, University of Wollongong, 1995.

[61] National Institute of Standards and Technology, Secure hash standard, Federal

Information Processing Standards Publications (FIPS PUBS) 180, 1993.

[62] National Institute of Standards and Technology, Secure hash standard, Federal

Information Processing Standards Publications (FIPS PUBS) 180-1, 1995.

[63] National Institute of Standards and Technology, Secure hash standard, Federal

Information Processing Standards Publications (FIPS PUBS) 180-2, NIST, 2002.

[64] National Institute of Standards and Technology, Secure hash standard, Federal

Information Processing Standards Publications (FIPS PUBS) 180-3, 2008.

[65] J. H. Holland, Adaptation in Natural and Artificial System, The University of

Michigan Press, 1975.

[66] S. Adcock, "Genetic Algorithm Utility Library," [Online]. Available:

http://gaul.sourceforge.net.

[67] Y. S. Yeh, C. Y. Lee, T. Y. Huang and C. H. Lin, "A Transpositional Advanced

Encryption Standard (AES) Resists 3-Round Square Attack," International

Journal of Innovative Computing, Information and Control, vol. 5, no. 5, pp.

1349-4198, 2009.

[68] M. Matsui, "Linear cryptanalysis method for DES cipher," in Proceedings of

‐	94	‐	

Eurocrypt, LNCS 765, 1994.

[69] C. Y. Lee, C. H. Lin, D. J. Chen and Y. S. Yeh, "Generalized Secure Hash

Algorithm: SHA-X," International Journal of Advancements in Computing

Technology(IJACT), vol. 4, no. 7, pp. 41-52, 2012.

[70] C. H. Lin, C. Y. Lee, K. M. Kavi, D. J. Chen and Y. S. Yeh, "An evaluation

criterion and an approach to improve the security fitness of SHA-256 via genetic

algorithm," Journal of Information Science and Engineering, (to appear).

[71] X. Wang, H. Yu and Y. L. Yin, "Efficient Collision Search Attacks on SHA-0," in

Proceedings of Crypto, LNCS 3621, 2005.

[72] K. Matusiewicz, J. Pieprzyk, N. Pramstaller, C. Rechberger and V. Rijmen,

"Analysis of Simplified Variants of SHA-256," in Proceedings of Western Europe

- an Workshop on Research in Cryptology (WEWoRC), 2005.

[73] Y. S. Yeh, T. Y. Huang, I T. Chen and S. C. Chou, "Analyze SHA-1 in Message

Schedule," Journal of Discrete Mathematical Sciences & Cryptography, vol. 10,

no. 1, pp. 1-7, 2007.

[74] C. H. Lin, C. Y. Lee and D. J. Chen, "Modified automous key management

scheme with reduced communication/computation costs in MANET," Computing

and Informatics, vol. 30, pp. 1167-1180, 2011.

[75] E. Biham and A. Shamir, Differential Cryptanalysis of the Data Encryption

Standard, Springer, 1993.

[76] C. H. Lin, C. Y. Lee, S. Y. Lu and S. P. Chien, "Unseen Visible Watermarking for

Gray Level Images Based on Gamma Correction," in Proceedings of

International Conference on Future-Generation Communication and Networking

(FGCN), CCIS 265, 2011.

[77] C. H. Lin, C. Y. Lee, T. C. Yang and S. P. Lai, "Visible Watermarking Based on

Multi-parameters Adjustable Gamma Correction," in Proceedings of

International Conference on Future-Generation Communication and Networking

(FGCN), CCIS 265, 2011.

