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縮編式自動編曲之研究 

學生：邱士銓 指導教授：黃俊龍 博士 

共同指導教授：沈錳坤 博士 

國立交通大學 資訊科學與工程研究所 

摘要  

樂譜縮編(Score Reduction)是一個透過縮編樂譜來達成為單一樂器編曲的過程。在本篇

論文中，我們提出了一個使用樂譜縮編方法的編曲架構，此架構可以自動化為一樣樂器

進行編曲。根據樂譜縮編的方法，我們要盡可能地包含原曲的每一個部份，並同時滿足

目標樂器可彈奏性的限制，使得編曲出來的音樂聽起來和原曲相同。在本架構的第一個

步驟中，我們分析原始曲目的音樂編曲元素(Arrangement Element)。接著，將音樂中的

每個樂句辨識出來，並且根據音樂編曲元素分析的結果與樂句的特性，來分配每個樂句

的重要程度。最後，我們將音樂編曲轉換成一個最佳化的問題並設計一個演算法來解決

這個問題。藉由挑選適當的樂句並且同時考量目標樂器的可彈奏性，來完成編曲。在實

驗中，我們使用這個編曲架構來實作一個鋼琴編曲的系統。許多的實驗被設計來評估我

們系統所產生出來的音樂。為了避免主觀的影響，我們採用了一個類似圖林測試(Turing 

Test)的方法來評估這個系統的好壞。實驗的結果證明我們的系統有能力編寫出具品質且

可彈奏的曲子。 

此外，為了捕捉到原始音樂的特色，我們介紹了一種新的樣式－多音重覆樣式，並提出

兩個演算法－A-PRPD (Apriori-based Polyphonic Repeating Pattern Discovery) and 

D-PRPD (Depth-first-search based Polyphonic Repeating Pattern Discovery)，從原始音樂中

探勘多音重覆樣式。再者，我們設計了位元方法(bit approach)用於我們所提出的兩個演
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算法上加速運算。實驗結果顯示，我們提出的演算法是有效率與效果的，並且 D-PRPD

演算法加上位元方法在大多數的情況下是最有效率的演算法。此探勘出的重覆樣式可以

被使用在此音樂編曲架構中的功能性分配的步驟中，使得具有原始音樂特色的樂句較容

易被挑選到。 
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Automatic Music Arrangement by Score Reduction 

Student: Shih-Chuan Chiu Advisor: Dr. Jiun-Long Huang 

Co-Advisor: Dr. Man-Kwan Shan 

Department of Computer Science 

National Chiao Tung University 

Abstract 

Score reduction is a process that arranges music for a target instrument by reducing original 

music. In this dissertation we present a music arrangement framework that uses score 

reduction to automatically arrange music for a target instrument. According to the approach of 

score reduction, the goal is to include as many important parts of the original music as 

possible within the constraint of the target instrument so that the arranged version is similar to 

the original. In our proposed framework, the original music is first analyzed to determine the 

type of arrangement element of each section. Then, the phrases are identified and each is 

assigned a utility according to its type of arrangement element. For a set of utility-assigned 

phrases, we finally transform the music arrangement into an optimization problem and 

propose a phrase selection algorithm to solve it. The music is arranged by selecting 

appropriate phrases satisfying the playability constraints of a target instrument. Using the 

proposed framework, we implement a music arrangement system for the piano in our 

experiments. Several experiments were conducted to evaluate our system. To avoid subjective 

opinions, one approach of the experiments similar to Turing-test is used to evaluate the 

quality of the music arranged by our system. The experimental results show that our system is 

able to create viable music for the piano.  

To capture the characteristics of the music for enhancing the proposed music arrangement 
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framework, we introduce a new type of repeating patterns, polyphonic repeating pattern and 

propose algorithms, A-PRPD (Apriori-based Polyphonic Repeating Pattern Discovery) and 

D-PRPD (Depth-first-search based Polyphonic Repeating Pattern Discovery), to discover 

them from music data. Furthermore, a bit-string approach is developed for improving the 

efficiency of both proposed algorithms. Experimental results show that the proposed 

algorithms are both effective and efficient for mining polyphonic repeating patterns from 

synthetic music data and real data, and D-PRPD with bit-string approach is the most efficient 

approach in most cases. The discovered polyphonic repeating patterns can be used to enhance 

in the phrase identification and utility assignment phase of our proposed framework such that 

the phrases with music characteristics will be easy to be selected.  
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CHAPTER 1 INTRODUCTION  

“Over the Rainbow,” a classical ballad has remained popular since 1939. As of now, there are 

more than 100 versions of this song, interpreted by numerous artists using different 

organizations of instruments in various styles. For example, Jason Castro sang it in reggae 

style, accompanied by a ukulele; jazz artists, Tommy Emmanuel used his guitar; and Robert 

Kyle played a monophonic tenor sax. When a song is to be performed by an instrument or an 

ensemble, a process called music arrangement or transcription is necessary to adapt the song 

for the target instrument(s) [15]. Music arrangement gives existing melodies more variety.  

In the music industry, there are many applications of music arrangement. For example, 

although the average mobile phone now doubles as music player, the function of the 

customized ring tone still appeals to people. Music arrangement transforms the original music 

object into various styles. There is another issue regarding mobile phones: the problem of 

transcoding from MIDI to SP-MIDI (specific polyphonic MIDI) [37]. Due to hardware 

limitations, most mobile phones support only SP-MIDI. The polyphony has to be reduced and 

its impact on the music, minimized. Music arrangement that reduces multipart instruments 

can achieve the same goal. However, the process of extracting the essential part from the 

original music is always time-consuming for the arranger. Besides, not every music arranger 

is familiar with the properties of the particular instrument. Thus, we believe that automatic 

music arrangement is needed to address the problems stated above.  

Generally, there are two major approaches to arranging music. One is rewriting a piece of 

existing music with additional material. Instead of adding new material, the other one is score 

reduction that arrangers reduces the original work from a larger score to a smaller score. That 

is, the arranger does not create new counterpoints, harmonies, bass lines, and voices, but only 

focuses on eliminating the less important parts of the original score for application to the 
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target instrument and keeps the arranged version similar to the original. Piano reduction is a 

word which specifically refers to a two-line staff of a basic component reduced from multipart 

music for a piano. Many famous piano reductions include the Bach transcriptions of Concerto 

from various composers (bwv 972-987), Wagner/Liszt Tannhäuser, the Sullivan transcriptions 

of Concerto Violoncello and orchestra, and Sheherazade Op. 35 of Nikolai Andreyevich 

Rimsky-Korsakov [45]. In this dissertation, we concentrate on score reduction for two reasons. 

First, score reduction allows a musician to perform a musical piece using the instrument with 

which he/she is familiar. Second, less prior studies on the literature focus on how to 

automatically create an instrument-playable arrangement.  

When arranging a piece of music for a target instrument, it is necessary to take the 

characteristics of original music and the inherent restrictions of the target instrument, such as 

pitch range and polyphonic limitation. Simply speaking, the goal is to include as many parts 

of the original music as possible within the constraint of the target instrument so that the 

arranged version is similar to the original. In addition, the role of an instrument varies in the 

different organizations of an ensemble. For example, in a big band, the guitar may play 

accompaniment; however, for a solo, it may perform melody and accompaniment 

simultaneously. The arrangement for the different roles of an instrument needs to be 

considered. To achieve this, we apply the concept of arrangement elements to take into 

account the different roles of an instrument. The type of arrangement element of a piece of 

music presents the function performed by an instrument in the piece of music. According to 

the book [42], there are five types of arrangement elements: lead, foundation, rhythm, pad and 

fill. Interested reader can be referred to the book [42] for more discussions about the 

arrangement elements. To summarize, there are three factors need to be considered: 1. the role 

of the target instrument; 2. the characteristics of the original music; and 3. the playability.  
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Figure 1-1. The flowchart of the proposed music arrangement framework  

In this dissertation, we propose a framework that arranges a piece of music by reducing the 

multipart score for a given instrument as our first research topic. The main characteristic of 

the framework is that the various roles of the target instrument in an ensemble can be 

specified by users. Given an original score (multipart) and the role of the target instrument 

(proportion of the five types of arrangement elements), the proposed framework will generate 

a playable arrangement for the target instrument according to the role user specified. The 

framework consists of four phases (see Figure 1-1). First, the music object is first divided into 

several segments in track segmentation phase. Next, in the arrangement element 

determination phase, a classifier is used to determine the type of arrangement element for 

each instrument. The classifier is trained offline by expert-annotated tracks. In the phrase 

identification and utility assignment phase, the phrases in a segmented track are identified, 

and the utility is assigned for each identified phrase according to the type of arrangement 

element of the segmented track. In the playability verification phase, a playability verification 

function is used to determine whether the given piece of music can be played by the target 

instrument. Finally, in the phrase selection phase, the phrases are selected according to their 

utility and playability. The new arranged music is formed by these selected phrases. Based on 
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the proposed framework, we implement a music arrangement system for the piano. Several 

experiments are conducted to evaluate the system.  

To capture the characteristics of the music, a new type of repeating patterns, polyphonic 

repeating pattern, is investigated as our second research topic. We propose two algorithms, 

A-PRPD (Apriori-based Polyphonic Repeating Pattern Discovery) and D-PRPD 

(Depth-first-search based Polyphonic Repeating Pattern Discovery) to discover them from 

music data. Furthermore, a bit-string approach is developed for improving the efficiency of 

both proposed algorithms. Experimental results show that the proposed algorithms are both 

effective and efficient for mining polyphonic repeating patterns from synthetic music data and 

real data, and D-PRPD with bit-string approach is the most efficient approach in most cases. 

The discovered polyphonic repeating patterns can be used to enhance in the phrase 

identification and utility assignment phase of our proposed framework. For example, while 

the identified phrases are similar to the discovered repeating patterns, the utility of the 

identified phrases can be increased.  

The remainder of this dissertation is organized as follows. Chapter 2 gives a preliminary of 

this dissertation including the related work of automatic music arrangement and polyphonic 

repeating pattern mining. Chapter 3 gives an introduction of each component of the proposed 

music arrangement framework. The other research work of polyphonic repeating pattern 

mining is discussed in Chapter 4. The experimental results are given in Chapter 5 while 

Chapter 6 concludes this dissertation.  
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CHAPTER 2 PRELIMINARY 

2.1 Introduction of Arrangement Elements 

In The Mixing Engineer’s Handbook, Owsinski proposed a taxonomy— the so-called 

arrangement elements－for the function of a piece of music performed by an instrument [42]. 

Analyzing the arrangement elements will help musicians understand the structure of the 

arrangement so that they can do further processes on the music, such as arranging, mixing, etc. 

According to the book [42], there are five types of arrangement elements: lead, foundation, 

rhythm, pad, and fill.  

Lead the melody and its counterpoint. The melody is the clearest part of music that people 

usually remember and hum. The lead is usually demonstrated by a lead vocal or solo 

instrument.  

Foundation the main rhythm in music. It is always a regular pattern played by a drum 

(especially bass drum and snare) or bass instrument.  

Rhythm broken bits counted to the foundation played by any instrument. It is more 

complicated in beat and used to increase music fluency.  

Pad consists of a long sustaining note or chord. Hence, it is usually played by a string 

instrument, organ, or synthesizer. Generally, the pad can also denote those sounds which 

create ambiance.  

Fill usually appears in the spaces between the lead lines to fill up the silence between 

successive phrases of lead. It is similar to conversation: If the lead is a call, the fill would be a 

response.  

These five elements can be viewed as the ingredients of an arrangement. The role of an 
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instrument can be referred to as an arrangement element or a mixture of them. In this 

dissertation, “role” and “arrangement element” are used interchangeably.  

A passage played by an instrument can be considered to have the property of one or more 

arrangement elements. Roughly speaking, in an arrangement, the instrument is played for 

presenting the role of melody or accompaniment, or both of them for a solo. If it presents a 

melody, the proportion of the lead is especially higher than the others. If it presents 

accompaniment, the situation is reversed. For a solo with melody and accompaniment, the 

distribution is more uniform. In depth, beyond two rough roles, the subtle role can also be 

described on the distribution over these five elements. For example, when many instruments 

play accompaniment in music, some focusing on pad and some on rhythm, these subtle roles 

of the different distributions can be showed. By understanding the arrangement elements of 

music passages, it will be useful to arrange for the various roles of an instrument in music. 

2.2 Related Work of Automatic Music Arrangement  

Many works related to music arrangement focus on how to transform original music by 

changing meta-information (tempo, timbre, etc.) or content (insert note, change pitch, 

re-assemble music segments, etc.) [39]. Nagashima and Kawashima employed chaotic neural 

networks to create variations on melodies [41]. The examples of the variations of an original 

music object are sent to train chaotic neural networks. The networks model the characteristics 

of the variations and make a new variation of the original music. Berndt presented the 

strategies to synchronize and adopt the game music with player interaction behaviors [5]. The 

approach to arrange music in the context of the interaction of applications is to vary the 

rhythmic, harmonic, and melodic elements of the basic theme. Chung proposed a real-time 

music-arranging system that reacts to the affective cues from a listener [12]. The system 

re-assembles a set of music segments according to the inferred affective state of a listener. 
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Based on a probabilistic state transition model, the target affective state can also be induced.  

As to the reduction technique of score reduction for an instrument, piano reduction is one of 

the important terms particularly referred to a two-line staff of piano reduced from multipart 

music. Finale, a commercial software for music notation (http://www.finalemusic.com), 

provides a plug-in tool: piano reduction that combines a previously-prepared score into a 

two-line staff separated by a user-defined pitch value. However, due to the direct combination 

of notes in the score without selection, the part of produced score may be difficult or even 

impossible to play. Finale‟s tool just provides a platform on which arrangers can do further 

piano reduction. Since the research on guitar fingering became mature [50], Daniel et al. 

presented an approach for guitar arrangement [16]. The main concept is to choose a set of 

important notes by a search algorithm, with the constraint on the playability of the guitar. 

However, this approach is dedicated to a solo guitar and cannot arrange for various roles in 

music. In addition, we argue that if the chosen notes came from different instruments, it may 

result in the loss of musical meaning, such as the completeness of a piece of melody.  

2.3 Related Work of Polyphonic Repeating Pattern Mining 

The repeating pattern mining problem has been investigated in the last decade. The first 

method to solve this problem is to utilize a suffix tree to find repeating patterns in a DNA 

sequences [46]. Suffix tree is a well-known data structure originally developed for string 

matching. Repeating patterns can be extracted from a suffix tree, which is constructed by 

sharing common prefix of a string. Since there may exist a large number of repeating patterns 

in a sequence, the concept of non-trivial repeating pattern was introduced [33]. Hsu et al. 

proposed two approaches to efficiently find the repeating patterns in a music object [18][18]. 

In the first approach, a data structure called correlative matrix is constructed to keep the 

intermediate information for substring matching. The lengths and frequencies of all repeating 
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patterns can be derived according to the information in this matrix. The other approach, called 

string-join, utilized the anti-monotony property to avoid generating large amount of candidate. 

Here the anti-monotonic property is that if a string is frequent, then all its substrings are 

frequent. According to this property, shorter frequent patterns are joined into longer ones and 

the non-qualified candidates are pruned out. Since a suffix tree was able to construct in linear 

time [38], Lo et al. employed this improvement to find repeating patterns [34], [36]. 

Since some minor variances in the instances of a repeating pattern are tolerable in some areas 

such as music, many approaches are investigated to find approximate repeating patterns. Two 

previous mentioned approaches, string-join and correlative matrix, are modified [35] to find 

approximate repeating patterns. The distance between a pattern and its occurrence is defined 

by edit distance. A novel approach treating pattern discovery as instance search problem is 

proposed [32]. This method segments a string into a set of small pieces and maps these pieces 

into a multi-dimension space based to search in the multi-dimension space to count the 

number of occurrences. Two techniques are incorporated to improve the process. In addition, 

in bio-informatics, some approximate algorithms are designed to take advantage of the special 

properties in DNA strings, such the few kinds of items [46] and short non-tandem patterns [1]. 

Many different types of repeating patterns are proposed to accommodate to varied patterns in 

music [25][11]. In music field, Lartillot proposes a series of work on discovering musical 

patterns [27][28][29]. The main idea of these methods is that each pattern is induced by 

analyzing the music sequence in chronological order. This process is similar to the simulation 

of listening strategy of human. All possible combinations of successive events are stored and 

checked. Therefore, very high computation and storage costs are required to deal with a 

longer sequence. The approaches mentioned above model music data as a melody line (a 

string) and find the repeating patterns on the string. That is, they are designed to find 

monophonic patterns from monophonic music. 
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Some work focuses on finding monophonic patterns from polyphonic music. They define the 

special type of repeating pattern in polyphonic music, such as vertical patterns and perceptible 

repetitions. Conklin analyzes the vertical patterns, which is common harmonic progress, from 

one or more music objects by encoding it or them into a set of strings [13][14]. The 

experimental result shows that most of vertical patterns represent specific voice leading 

formulae within cadences
1
. Meudic discovers the perceptible repetitions from audio [40]. The 

process first segments a music object. Then, the similarity between each pair of segmentations 

is computed according to perception they defined. Finally, the perceptible repetitions are 

discovered from the similarity matrix. A geometrical pattern proposed by Meredith et al is 

represented in polyphonic form [39]. Many significant patterns occurring more than two times 

can be found. However, certain meaningful patterns, such as motif, usually appear several 

times in music, and it takes time to use the result of pair-wise repeats to count the number of 

occurrences of a pattern. 

                                                

1 A cadence is a piece of music ends a section of music or a complete piece of music.  
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CHAPTER 3 AUTOMATIC MUSIC ARRANGEMENT 

FRAMEWORK  

In this chapter, we introduce our proposed framework. Given an original score (multipart) and 

the role of the target instrument (proportion of the five types of arrangement elements), the 

proposed framework will generate a playable arrangement for the target instrument according 

to the role user specified. The framework consists of four phases (see Figure 1-1). Figure 3-1 

presents an example of the change in musical content during the framework‟s arrangement 

process. Because the arrangement elements of some instruments may change in different 

sections, the music object is first divided into several segments called segmented tracks in 

track segmentation phase. Next, in the arrangement element determination phase, a classifier 

is used to determine the type of arrangement element of each segmented track. The classifier 

is trained offline by expert-annotated segmented tracks. In the phrase identification and utility 

assignment phase, the phrases in a segmented track are identified, and the utility is assigned 

for each identified phrase according to the type of arrangement element of the segmented 

track. In the playability verification phase, a playability verification function is used to 

determine whether the given piece of music can be played by the target instrument. Finally, in 

the phrase selection phase, the phrases are selected according to their utility and playability. 

The new arranged music is formed by these selected phrases.  

The details of each phase of the proposed music arrangement framework are introduced in the 

following subsections. A list of notations used in this paper is shown in Table 3-1 for better 

readability.  
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Figure 3-1. An example process of the proposed music arrangement framework  

Table 3-1. List of used notations  

 

Notation Description 

NSBMi,t Non-silent beats in measure i at track t 

NumTrack Number of track 

BeatPerMeasure Beats per measure 

ae Arrangement element 

st Segmented track 

phr Phrase 

room Number of overlapping phrase allowed 

MOP Maximum number of overlapping phrase allowed 

P_List Overlapping phrase list 

C_List Called phrases in list 

SP Set of selected phrase 
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In different sections, a track performed by an instrument may belong to different types of 

arrangement elements. For example, a violin demonstrating pad arrangement element changes 

to lead in the violin solo section. Hence, the track is segmented into segmented tracks. A 

segmented track is defined as a period of an instrument‟s performance in which no 

arrangement element changes. Here we do not analyze musical sections; instead, we want to 

ensure that no arrangement element changes in a segmented track. Since the multipart music 

usually possesses a more complete arrangement structure, we apply this benefit in solving the 

problem. In other words, a time point, where many instruments stop and others start, has a 

high possibility of becoming a cut point to separate two adjacent segmented tracks. According 

to this heuristic, we define the similarity function between consecutive measures as follows.  





























sureBeatPerMeaNumTrack
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where NSBMi,t is the number of non-silence beats in measure i at track t, NumTrack is the 

number of tracks, and BeatPerMeasure is beats per measure.  

 

Figure 3-2. An example of track segmentation  

The similarity function compares the track in measure i to the track in measure (i+1), then 

aggregates diversities of all tracks with normalization. Being subtracted by 1, the difference is 

transformed into similarity. We define a threshold value τ to determine cut points. If Simi,i+1 is 
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less than τ, then this is a cut point between measures i and i+1. When τ is set to 0.5, Simi,i+1 < 

τ, it means that there must be at least a half number of instruments switched.  

Figure 3-2 gives an example that shows the similarity for each pair of successive measures in 

this music. For the similarity between measure 4 and 5, Sim4,5 is calculated as follows. In the 

example music, time signature is 4/4 with 3 tracks; that is, each measure has 4 beats 

(BeatPerMeasure=4, NumTrack=3). As the score of the track 1 shown, sound fulfills four 

beats in measure 4 (NSBM4,1=4), and it is no sound in measure 5 (NSBM5,1=0). Similarly, the 

others (NSBM4,2, NSBM5,2, NSBM4,3, NSBM5,3) can be derived. Thus, Sim4,5=1－((|4－0|＋|4

－3.5|＋|3－3|)/(4×3))=0.625. If τ is set to 0.667, there is a cut point between measure 4 

and 5.  

3.2 Arrangement Element Determination Phase 

Here we try to determine the type of the arrangement element of each segmented track. 

According to the descriptions of the arrangement elements in Chapter 2, some arrangement 

elements share similar properties. It is hard to determine the type of the arrangement element 

by heuristic rules. Hence we treat the problem of arrangement element determination as a 

classification problem. In other words, each segmented track is classified into five classes (i.e., 

foundation, rhythm, pad, lead, and fill).  

One of the important steps of classification is to decide which features are used to represent 

the segmented track. These features of a segmented track are capable of discriminating its 

class from the others. Most of previous studies on music classification focus on music style; 

to the best of our knowledge, there is no study in the literature about the automatic 

classification of arrangement elements.  
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Table 3-2. Features for the classifier  

 

Parameter Type Description 

AvgPitch G Average pitch in the segmented track 

AvgDuration G Average duration in the segmented track 

DevPitch G Pitch deviation in the segmented track 

IsPercussionChannel G Is Percussion Channel (usually channel 10) 

PolyphonicRate G Proportion of note occurring in the same time 

SilentRate G Proportion of silent in the segmented track 

AvgPitchRank L Rank of average pitch in parallel segmented track 

AvgDurationRank L Rank of average duration in parallel segmented track 

IsHighestPitchPart L 
Is the segmented track with the highest average pitch 

in parallel segmented tracks 

IsLowestPitchPart L 
Is the segmented track with the lowest average pitch 

in parallel segmented tracks 

G: global feature, L: local feature 
 

According to the descriptions of the arrangement elements in the book [42], we summarize 

their characteristics and choose the features accordingly. The properties of an instrument exert 

a heavy influence on the arrangement element; for example, pizzicato instruments (such as 

harp, ukulele, etc) cannot be pad. The arrangement element of a segmented track highly 

depends on the others in this music, especially parallel ones. Thus, we choose both global 

feature (common features) and local features (related to the other segmented track). The 

detailed features that we extracted and their descriptions are listed in Table 3-2.  

The classifier is trained using manual tagged data for each segmented track, i.e., a segmented 

track is marked as one of five types of arrangement elements according to its features. During 

the determination process, each segmented track in the given music is fed into the classifier to 

determine the type of arrangement element. The probability distribution over five types of 

arrangement element is obtained in our framework for the later phase.  

In implementing of the arrangement element determination, we chose the support vector 

machine (SVM) [6] as our classifier. The SVM is a supervised learning approach. Input data 

is viewed as two sets of vectors in an n-dimensional space. In the space, the SVM constructs a 

separating hyperplane which maximizes the margin between the two data sets. A good 
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separation is achieved while the hyperplane has the largest distance to the neighboring data 

points of both classes. After the hyperplane is decided (training phase), the SVM model is 

able to answer or predict the class of a new example.  

The sequential minimal optimization algorithm is employed for training a support vector 

classifier using the polynomial kernel. There are five classes in the arrangement element 

determination problem. The multi-class result can be solved by using pairwise classification; 

that is, the result is from 
mC2  binary classifiers. Besides, the probability that a segmented 

track belongs to each class is vital information for our system. To obtain proper probabilities, 

logistic regression models are used to fit to the outputs of the support vector machine. In the 

multi-class case, Hastie and Tibshirani‟s pairwise coupling method [17] is employed with the 

predicted probabilities. It will input test data (a segmented track) to the classifier, then the 

probability distribution will be obtained as important information for utility assignment.  

3.3 Phrase Identification and Utility Assignment Phase 

3.3.1 Phrase Identification  

In this subsection, we attempt to identify the phrases from a segmented track. As mentioned in 

[49], the definition of “phrase” is ambiguous. The phrase we try to find is a monophonic 

melodic group of notes with similar properties, usually separated by a breathe point or a large 

pitch interval. Many approaches have been proposed, which have performed well in finding 

this type of phrases. Because the phrases are found from a monophonic piece of music, we 

first have to identify the monophonic piece lines from a segmented track. Thus, the process of 

phrase identification consists of two steps: (1) finding monophonic lines; and (2) identifying 

phrases from monophonic lines.  
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In the first step, we adopt the approach proposed by Lui [37] because, to the best of our 

knowledge, no other studies on this topic have investigated so far. One of the most important 

issues of finding the monophonic line in polyphonic music is to preserve the best voice 

leading, which keeps the most natural melodic continuity between notes. The notes are 

grouped as follows: First, the chord progress of each measure is determined. For each 

consecutive pair of chords, let Cfewer be the chord with fewer notes and Cmore be the chord with 

more notes. Resolve each tendency tone, and then each note of Cfewer is grouped with its 

neighbor of the nearest pitch in Cmore. For different chords, the notes are grouped based on the 

following:  

 For common chords, such as I and V, use voice-leading matrixes to resolve tendency 

notes.  

 For the other chords, group each note of the preceding chord with its nearest neighbor in 

the succeeding chord.  

The voice-leading matrix is two-dimensional (12×12). The indices are relative to the tonic and 

the entry indicates the voice leading priority from pitch row to pitch column. Interested 

readers can refer to [37] for the detailed descriptions.  

In the first step, the monophonic lines are extracted. In the second step, the phrases are 

identified in each monophonic line. We investigated many works on this issue, and chose, the 

local boundary detection model (LBDM) [8] due to its easy implementation and good 

performance. The approach identifies phrases by segmenting a monophonic line according to 

larger pitch intervals or breaths of long notes. This model consists of a change rule, which 

assigns boundary strengths in proportion to the degree of change between consecutive 

intervals, and a proximity rule, which scales the boundary strength according to the size of the 

intervals involved. The LBDM performs over three independent parametric melodic profiles 
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Profilek = [x1, x2, …, xn] where k ϵ{ pitch, ioi, rest }, i ϵ{1, 2, …, n} and ioi stands for 

inter-onset interval. The boundary strength at interval xi is defined by  

strengthi = xi × (ri-1,i + ri,i+1)                           (2) 

where ri-1,i is the degree of change between two successive intervals and can be calculated by  
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For each parameter k, the boundary strength profile strengthi is calculated and normalized into 

the range [0, 1]. A weighted sum of strengths is computed, using weights derived by 

trial-and-error in the previous study [8] (0.25 for pitch and rest, and 0.5 for ioi). Finally, the 

boundaries are detected where the combined strength profile exceeds a predefined threshold.  

 

Figure 3-3. An example of phrase identification  

Figure 3-3 illustrates an example of performing phrase identification. The given segmented 

track is polyphonic in left-hand side. In the step 1, the monophonic lines will be identified. In 

the beginning, A5 overlaps with B4, and two temporary monophonic lines, tml1 (A5) and 

tml2 (B4), are formed. It keeps grouping the notes, F5 and D5, for tml1 successively. Now 

tml1 contains A5, F5 and D5. When tml1 (A5, F5, D5) goes to B5, two notes, B5 and B4, can 
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be chosen. According to chord progress and pitch difference, B5 is grouped into tm1 and B4 is 

grouped into tml2. By the same process, monophonic line 1 and 2, ml1 and ml2, are formed. 

Then, ml1 and ml2 are fed into LBDM. When processing ml1, the cut point between the 5th 

and 6th note of ml1 is found because the combined strength profile exceed the threshold. 

Finally, three phrases are identified in the example.   

3.3.2 Utility Assignment 

Each of phrases identified is of different importance for the arrangement. We define the 

importance of a phrase, called utility, based on two factors. In the first factor, we consider the 

types of arrangement elements of the phrase for the target instrument that users considered. As 

mentioned in Section 3.2, the five types of arrangement elements in a segmented track have 

been determined and the classifier outputs the probabilities. Considering the input of our 

framework, the types of arrangement elements that users want to arrange for the target 

instrument have been specified in advance. The probabilities of the user-defined types of 

arrangement elements are taken as the first part of utility. Hence, the probabilities that the 

phrase inherited from the segmented track to which it belongs are summed up. To normalize 

the value, it is divided by the number of the considered types. The first factor, denoted as 

F1(phrst,i), can be formulated as  

 
ae

aeae

ae

ist staePphrF )|()( ,1

                     (4) 

where phrst,i is the i-th phrase in segmented track st; ae ϵ{Foundation, Rhythm, Pad, Lead, 

Fill}; P(ae|st) is the probability that the segment track st belongs to arrangement element ae; 

φae is the user preference on arrangement element ae and φae ϵ (0, 1]. For example, if we 

consider the arrangement elements, lead and fill, are important, we can set φlead and φfill to 1 

and set the others close to 0. Note that for all phrases in the same segmented track, their F1 



 

19 

 

values are equal.  

In the second factor, the richness of a phrase is considered because we think it will make 

newly arranged music richer. The entropy is used to measure the richness of a phrase; that is, 

the phrase is richer when the pitches of the phrase are represented by more bits. The second 

factor, F2(phrst,i), is defined with the formula  

))(log()(
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                   (5) 

where m is the number of distinct pitch values in the phrase phrst,i and pvi is the proportion of 

a pitch value in a phrase.  

Note that an upper bound for entropy is defined and the entropy can be normalized into 0 ~ 1. 

Here, the upper bound of the entropy is set to 64 heuristically, since a phrase usually falls 

within two measures and there are 16 distinct pitches at most for the notes with the 1/8 

minimal length of a note in 4/4 music.  

We combine the values of these two factors as the utility of a phrase with predefined weights. 

Since the phrases needed to be selected on score and some constraints exist among phrases 

over the time domain, the range of value leads into a situation wherein most of selected 

phrases are shorter. To assign the utility fairly over the time domain, the length of the phrase 

is also considered. Therefore, the utility of a phrase U(phrst,i) is defined as  

)()()( ,2211, istist phrLFFphrU                      (6) 

where α1, α2 ϵ [0, 1]; α1+α2=1; and L (phrst,i) is the length of phrase phrst,i.  
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3.4 Phrase Selection Phase 

3.4.1 Phrase Selection Problem 

After preparing the phrases with utilities, in the last phase of our framework, the phrases are 

selected under some conditions. Such selection is called the phrase selection problem and the 

formal definition of the phrase selection problem is as follows. For an arbitrary phrase p, its 

start position, end position, and utility over each arrangement element are denoted by p.start, 

p.end, and p.utility, respectively. MOP is an integer that denotes the maximal number of 

overlapping phrases, allowed by an instrument, simultaneously. Then, the phrase selection 

problem can be defined as below.  

Definition 3-1 (Phrase selection problem) Given a set of phrases, denoted as PSet={p1, 

p2,…, pn} and an integer MOP, the phrase selection problem is to find a set SPPSet such 

that:  

1. the summation of the utilities of phrases in SP is maximal and  

2. SP satisfies the constraints of MOP and playability.  

The phrase selection problem is similar to the k-track assignment problem, which has been 

proved to be NP-hard, in the traditional job scheduling area [7]. The k-track assignment 

problem is a scheduling problem, in which a collection of jobs with start and end times is to 

be processed by k machines. Two different jobs can be processed by the same machine only 

when the jobs do not overlap. If the constraint of playability is omitted, the phrase selection 

problem will degenerate to the k-track assignment problem where k is equal to MOP. That is, 

the k-track assignment problem is a special case of the phrase selection problem. In addition 

to considering the constraint of the number of overlapping phrases (i.e., MOP), the phrase 

selection problem also needs to consider the playability of the selected phrases on the target 
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instrument. Thus, we believe that the phrase selection problem is more complex than the 

k-track assignment problem.  

A naïve approach to solving the phrase selection problem is to integrate playability 

verification in to the algorithm [7] for the k-track assignment problem. Unfortunately, it is 

difficult to perform such integration since the algorithm proposed by Brucker and Nordmann 

[7] is optimized for the k-track assignment problem. Let‟s consider another problem, the exon 

chaining problem [21], which is a special case of the k-track assignment problem with k=1. 

Due to the simplicity of the algorithm proposed by Jones and Pevzner [21], we can extend 

such algorithm to consider playability verification and the scenarios with k＞1 simultaneously. 

For better readability, the descriptions and the design principle of playability verification are 

given in Section 3.4.2, while the proposed phrase selection algorithm is described in Section 

0. 

3.4.2 Playability Verification 

In our proposed framework, we use the playability function to verify whether a piece of music 

can be performed by the instrument. The input of the playability function of an instrument is a 

piece of music and the output is a Boolean value indicating whether the music is playable by 

the instrument or not. Specifically speaking, the input is a set of phrases where the overlaps 

among the phrases may exist. The output value of a playability function can be determined by 

rules or sophisticate logic. We suggest some necessary considerations in designing a 

playability function as follows.  

Playability Function Design Principle 

To design the playability function of an instrument, two types of limitations have to be 

considered: instrumental and physical limitations. In instrumental limitation, we list some 
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constraints below.  

Pitch range Pitch range is an important limitation for most instruments. For example, the 

pitch range of the piano is from the A three octaves below middle C to the C four octaves 

above middle C (if middle C is C4, it is A0~C8) [52]. The pitch range of a C flute is B3~C7.  

Duration constraint Some instruments cannot sound sustain note, such as vibraphone.  

Physical limitations are caused by hands or bodies of the people who play the instrument. We 

also list some constraints as follows.  

Algorithm Piano-Right-Hand-Playability 

Input: a piece of music (or a set of phrases P_List) 

Output: True/False 

1: ons(notei)={note|note , note overlaps with notei}; 

2: nos_set={ons(notei) | overlapping note sets in P_List}; 

3: foreach note n in P_List{ 

4:  if pitch of note is not within the pitch range of piano 

5:   return false; 

6: } 

7: foreach ons(notei) in ons_set{ 

8:  if(Finger-Assignable(ons(notei))==false) 

9:   return false; 

10: } 

11: return true;  

Figure 3-4. Piano-Right-Hand-Playability function  

Number of polyphony Number of polyphony of an instrument is the maximal number of 

notes that the instrument can sound simultaneously. For example, people play the piano by 

right hands, so that at most, five notes can be played at the same time.  

Physical pitch range constraint These constraints are caused by hand. The notes in the 

selected phrases are restricted by the expansion of the fingers.  

Overlapping note constraint Some combinations of overlapping notes cannot be played. For 

example, B, C and C# cannot be played simultaneously by hand on the guitar.  

Based on the design principle, we design a playability function for a right hand playing piano. 
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The playability function will also be used for the implementation of our piano arrangement 

system in the experiments.  

 

Figure 3-5. Finger-Assignable flowchart  

Design of the Piano Playability Function 

Here we design a playability function, Piano-Right-Hand-Playability, that considers 

instrumental and physical limitations for a right hand playing piano, as an example to 

illustrate the design of the playability functions. Research on automatic piano fingering has 

been investigated [23][24][54]; however, the work cannot be used to determine whether a 

piece of music can be played by piano. We refer to the book [52] to design this function. 

According to the phrase we defined, we assume that a single phrase is playable unless at least 

one note in the phrase is out of the pitch range of the instrument. The playability function for 

right hand is designed in Figure 3-4. The function is fed by a set of phrase, denoted by P_List, 
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and will output true or false to indicate whether these phrases can be played by the target 

instrument. First, the set of all overlapping note sets in P_List, denoted by ons_set, are 

extracted (lines 1-2). Note that the overlapping note set, ons(notei), is a set of notes 

overlapping with notei and ons(notei) includes at least one element, notei. Two main rules are 

designed to examine the phrases and the phrases passing both rules are playable. The first rule 

(lines 3-6) checks each pitch of note to determine whether it is under the pitch range of piano. 

In the second rule (lines 7-10), we examine each overlapping note set in the phrase set to 

check whether it assignable for fingers of right hand by Finger-Assignment function.  

In Figure 3-5, we give the flowchart of Finger-Assignable function. The number of notes in 

nos is examined first. If it is larger than five, then it is impossible to play by right hand and 

Finger-Assignment function will return false. If not, we will consider two cases: the case that 

the number of nos is two and the case that the number of nos is between 3~5. These cases are 

considered separately because the expansion of thumb-index finger is different from the other 

adjacent fingers. If the number of ons is two, we only have to ensure that the distance between 

the highest and the lowest notes does not exceed the distance between thumb and little finger, 

denoted by Through_Hand. Otherwise, while the number of nos is larger than two, the gap 

between thumb and index, denoted by Thumb_Index_Gap, can be larger than the gaps among 

the other fingers. We assume the legal gap distances among the other fingers are the same and 

all of them are denoted by a value, Other_Gap. That is, the distance between the lowest pitch 

and the second lowest pitch can be larger than the distance among others. According to the 

size of general fingers of an adult, we set these parameters heuristically: Through_Hand=14 

semitones, Thumb_Index_Gap=5 semitones and Other_Gap=3 semitones. These parameters 

can be specified by users according to the size of their hands. Finally, the set of overlapping 

phrases is playable since all ons are assignable for fingers.   
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Algorithm: Phrase selection algorithm 

Input: a set of phrases PSet and maximum overlapping phrase MOP 

Output: selected phrase set SP 

1: sort the start and end positions of all phrases; 

2: initialize conditional phrase list CP_List=null; 

3: extract 3 attributes for each index; // phrase, utility and startI  

4: SP=Opt(0, 0, 2n－1, MOP| CP_List).sel;  

5: return SP;  

 

Algorithm Opt 

Input: base value bv, start index si, end index ei, allowed overlapping phrases room, 

conditional phrase list CP_List 

Output: selected phrase sel and utility of the selection ut 

1: Opt(bv, si, si, room| CP_List).ut=bv;  

2: Opt(bv, si, si, room| CP_List).sel=null; 

3: for each index i from si+1 to ei  

4:  if ((g(i).phrase≠null AND isPlayable(CP_List∪{g(i).phrase} AND room＞0) 

AND //condition 1 (it is playable) 

5:   compute w by equation 7  

6:   (w＞Opt(bv, si, i−1, room| CP_List).ut) //condition 2 (it is worth to be selected)  

7:   Opt(bv, si, i, room| CP_List).ut = w; //update optimal utility and optimal selection 

by new result 

8:   update Opt(bv, si, i, room| CP_List).sel;  

9:  else  

10:   inherit optimal selection and utility from previous result (Opt(bv, si, i−1, room| 

CP_List)); 

11: return Opt(bv, si, ei, room| CP_List).sel, Opt(bv, si, ei, room| CP_List).ut; 
 

Figure 3-6. Phrase selection algorithm  

3.4.3 Phrase Selection Algorithm 

The idea of the proposed phrase selection algorithm is to consider each phrase incrementally 

to determine whether it can be selected or not. To select a phrase, two conditions should be 

satisfied: 1. the phrase is playable with the previous selected phrases; 2. the phrase is worth to 

be selected. While checking whether a phrase is worth to be selected, we examine the 

influence of selecting the phrase on the previous selection. The whole problem can be divided 

into several small sub-problems.  
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Algorithm Overview  

The details of the proposed phrase selection algorithm are shown in Figure 3-6. In the 

initialization step (lines 1-3), the placement of all phrases is transformed by sorting their start 

and end positions. The transformation will not change the order of the start and end positions 

of phrases, and will still keep the overlap relationships between each pair of phrases
2
. There 

are 2n indices for all start and end indices of n phrases. After that, for each index i, the 

following three attributes are extracted: g(i).phrase, g(i).utility, and g(i).startI. If index i 

corresponds to the end index of a phrase, g(i).phrase is the corresponding phrase, g(i).utility is 

the utility of g(i).phrase and g(i).startI is the start index of g(i).phrase. Otherwise, g(i).phrase, 

g(i).utility, and g(i).startI are null. A conditional phrase list, CP_List, is prepared to store a set 

of conditional phrases. Then, the main function, Opt(0,0,2n－1,MOP|{}), is called to compute 

the optimal selection Opt(0,0,2n－1,MOP|{}).sel and the optimal utility Opt(0,0,2n－

1,MOP|{}).ut (the summation of the utilities of the selected phrases), where MOP indicates 

the maximal number of the overlapping  phrases allowed by the target instrument. Finally, 

the proposed algorithm returns SP as the optimal selection. We define Opt as follows.  

Definition 3-2 Opt(bv, si, ei, room| CP_List) is a function to compute the optimal selection of 

the phrases before index ei under the constraints that 1. the maximal number of overlapping 

phrases from index si to index ei is room and 2. the phrases in CP_List have been selected. 

The initial base value bv is the utility of the optimal selection of the phrases seen at si. A 

phrase is said to be seen at index j if the end position of the phrase is smaller than or equal to j. 

That is, g(i).phrase is said to be seen at index j if i    j.  

                                                

2 Interested readers can refer to [21] for the details of the transformation.  
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Function Opt  

The most important part of the phrase selection algorithm is function Opt. To facilitate the 

following discussion, the utility of the selected phrases is defined as the summation of the 

utilities of these selected phrases. The objective of the function is to obtain the optimal 

selection and the utility of the optimal selection. The whole problem can be divided into 

several sub-problems, recursively. The process of function Opt is to sequentially check each 

phrase according to its end position in ascending order and determine whether the checked 

phrase is selected or not.  

 

Figure 3-7. An illustration of CP_List={}  

A phrase is selected only when the following two conditions are satisfied. The first condition 

is the playable condition (line 4) that CP_List  {g(i).phrase} should be playable and there is 

enough space for selecting g(i).phrase. Note that g(i).phrase cannot be null. The expression of 

the first condition is (g(i).phrase≠null and (isPlayable(CP_List  {g(i).phrase})=true and 

room   0). The other condition is the worth condition (line 6) that the optimal utility of 

selecting g(i).phrase is worthier than not selecting g(i).phrase. That is, w > Opt(bv, si, i－1, 

room| CP_List), where the calculation of w will be described later. If the above two conditions 

are satisfied, g(i).phrase is selected. The optimal selection Opt(bv, si, i, room| CP_List).sel is 

updated according to the optimal selection during computing w, and the optimal utility Opt(bv, 

si, i, room| CP_List).ut is set to w. Otherwise, the optimal selection and the utility of the 

optimal selection are inherited from the previous results, Opt(bv, si, i－1, room| CP_List).sel 

and Opt(bv, si, i－1, room| CP_List).ut, respectively.  

g(i).phrase

i

Opt(ru,g(i).startI,i,MOP－1|{g(i).phrase}).utru=Opt(0,0,g(i).startI,i,MOP|{}).ut
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Figure 3-8. An illustration of CP_List≠{}  

CP_List is empty  

We now consider that g(i).phrase is selected for computing w. Note that selecting a new 

phrase may influence the optimal selection. That is, some phrases in the optimal selection 

may be removed due to the selection of the new phrase. Let‟s begin from the simple case that 

CP_List is empty. As shown in Figure 3-7, the influence region of selecting g(i).phrase is the 

region that g(i).phrase locates, i.e., from index g(i).startI to i. In addition, the maximal 

number of overlapping phrases allowed in the influence region of selecting g(i).phrase would 

be decreased by one. The recursive function, Opt(ru, g(i).startI, i, MOP－1| {g(i).phrase}), is 

called to compute the optimal selection of the influence region of selecting g(i).phrase when 

g(i).phrase is selected, where ru is the optimal utility before g(i).startI (i.e., ru=Opt(0, 0, 

g(i).startI, MOP|{}).ut). Thus, the utility of the optimal selection when g(i).phrase is selected 

is w = Opt(ru, g(i).startI, i, MOP－1| {g(i).phrase}).ut + g(i).utility. When the utility of the 

j1

g(i).phrase

jphrase_n

j2…

…

sorted CP_List ∪{g(i).phrase} according to index of start position

decreasing room caused by the phrases in CP_List

sub-region 1
(room=MOP)

Opt(Opt(0, 0, j1.startI,MOP).ut, j1.startI, j2.startI,MOP－1).ut

…

room=MOP－phrase_n
sub-region 2
(room=MOP－1)

j1

j2

jphrase_n
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optimal selection when g(i).phrase is selected is worthier than the utility without selecting 

g(i).phrase (that is, w ＞ Opt(bv, si, i－1, room| CP_List).ut (line 6)), the optimal selection is 

updated and the utility of the optimal selection is set to w. Otherwise, the optimal selection 

and the utility of the optimal selection are inherited from the previous results.  

CP_List is not Empty  

We now describe how to compute w when CP_List is not empty. When a phrase is selected 

with empty CP_List, Opt is invoked in the inference region of g(i).phrase. As shown in Figure 

3-8, when CP_List is not empty, many sub-regions with different values of room have to be 

processed by function Opt. The formula of w should be designed to deal with this situation. 

Note that, for each phrase g(j).phrase in CP_List, g(j).startI is smaller than i. Let phrase_n be 

the number of phrases in CP_List  {g(i).phrase}. Without loss of generality, the phrases in 

CP_List  {g(i).phrase} are sorted by their start positions in ascending order and relabeled as 

{j1, j2, …, jphrase_n}, where j1.startI ≤ j2.startI ≤ …≤ jphrase_n.startI ≤ i, and jk.startI is the start 

index of phrase jk. In the first sub-region from index 0 to j1.startI, the maximal number of 

overlapping phrases allowed is MOP. The utility of the optimal selection of the first 

sub-region, which is denoted as ru0, is Opt(0,0,j1.startI,MOP|{}).ut. For the second sub-region 

from index j1.startI to j2.startI, the utility of the optimal selection of the first sub-region ru0 is 

taken as the base value and the maximal number of overlapping phrases allowed is MOP－1. 

Thus, Opt(ru0, j1.startI, j2.startI, MOP－1| {j1}) is called. For the third sub-region from 

j2.startI to j3.startI under MOP－2, we take the optimal utility of the previous sub-region as 

the base value and calculate the optimal utility in this sub-region by invoking function Opt in 

a similar manner. The above process repeats until the last sub-region from jphrase_n.startI to i 

under MOP－phrase_n has been processed by function Opt. The above recurrence relation is 

shown as follows.  



 

30 

 

 

Initial condition:  

𝑂𝑝𝑡(𝑏𝑣, 𝑠𝑖, 𝑠𝑖, 𝑟𝑜𝑜𝑚|𝐶𝑃_𝐿𝑖𝑠𝑡). 𝑢𝑡 = 𝑏𝑣;  

Recurrence relation:  

𝑂𝑝𝑡(𝑏𝑣, 𝑠𝑖, 𝑖, 𝑟𝑜𝑜𝑚|𝐶𝑃_𝐿𝑖𝑠𝑡). 𝑢𝑡

=

 
 
 
 
 

 
 
 
 

𝑤 = 𝑂𝑝𝑡 𝑂𝑝𝑡(…𝑂𝑝𝑡(𝑂𝑝𝑡(𝑂𝑝𝑡(0,0, 𝑗1 . 𝑠𝑡𝑎𝑟𝑡𝐼, 𝑀𝑂𝑃|{} . 𝑢𝑡, 𝑗1. 𝑠𝑡𝑎𝑟𝑡𝐼, 𝑗2 . 𝑠𝑡𝑎𝑟𝑡𝐼, 𝑀𝑂𝑃 − 1  𝑗1  . 𝑢𝑡,

𝑗2 . 𝑠𝑡𝑎𝑟𝑡𝐼, 𝑗3 . 𝑠𝑡𝑎𝑟𝑡𝐼, 𝑀𝑂𝑃 − 2  𝑗1, 𝑗2  . 𝑢𝑡, … ). 𝑢𝑡,

𝑗𝑝ℎ𝑟𝑎𝑠𝑒 _𝑛 . 𝑠𝑡𝑎𝑟𝑡𝐼, 𝑖 − 1, 𝑀𝑂𝑃 − 𝑝ℎ𝑟𝑎𝑠𝑒_𝑛| 𝑗1 , 𝑗2 , … , 𝑗𝑝ℎ𝑟𝑎𝑠𝑒_𝑛  ). 𝑢𝑡

+𝑔 𝑖 . 𝑢𝑡𝑖𝑙𝑖𝑡𝑦

, if  𝑔 𝑖 . 𝑝ℎ𝑟𝑎𝑠𝑒 ≠  𝑛𝑢𝑙𝑙  and (𝐶𝑃_𝐿𝑖𝑠𝑡   𝑔 𝑖 . 𝑝ℎ𝑟𝑎𝑠𝑒  is playable) and (𝑟𝑜𝑜𝑚 > 0) (playable), and
𝑤 > 𝑂𝑝𝑡(𝑏𝑣, 𝑠𝑖, 𝑖 − 1, 𝑟𝑜𝑜𝑚|𝐶𝑃_𝐿𝑖𝑠𝑡). 𝑢𝑡 (worth)

𝑂𝑝𝑡(𝑏𝑣, 𝑠𝑖, 𝑖 − 1, 𝑟𝑜𝑜𝑚|𝐶𝑃_𝐿𝑖𝑠𝑡). 𝑢𝑡, otherwise

  

      (7) 

According to the above recurrence relation, we can notice that the functions with the same 

parameter (for example, Opt(0, 0, i, MOP| {}), where 1   i   2n－1) are used repetitively. 

For saving the computation time, the result of the function with different parameters will be 

stored for reuse. 

3.4.4 Correctness 

The proposed phrase selection algorithm is designed to solve the phrase selection problem in 

a recursive manner by function Opt. We next show the correctness of the proposed phrase 

selection algorithm by proving the optimality guarantee of function Opt. 

Lemma 1 Function Opt can always obtain the optimal selection.  

We prove the correctness of function Opt by induction on the value of room.  

Induction basis:  

Considering room=1 and no playability function, the phrase selection problem is reduced to 

the exon-chaining or activity-selection problem. That is, no overlapping phrase is allowed and 

the playability function always returns true. Our algorithm is extended from the exon-chaining 

algorithm that the optimality has been proven in [21]. While the playability function is taken 

into consideration, there is no case that g(i).phrase is not playable with the phrases in CP_List. 

It is because that the CP_List is always empty when room=1 (that is, no overlapping phrase 
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exists). In addition, function Opt will not select g(i).phrase if g(i).phrase itself is not playable. 

Therefore, function Opt is able to obtain the optimal selection when room=1.  

Induction hypothesis: The function Opt is able to obtain the optimal selection while room ＜ 

MOP.  

Suppose room=MOP. In function Opt, the main for loop examines whether the new-seen 

phrase, g(i).phrase, should be selected or not. If g(i).phrase is not playable with the phrases in 

CP_List, function Opt will not select g(i).phrase. When g(i).phrase is playable with 

recursive-called phrase list CP_List, function Opt will recursively invoke itself on all 

sub-regions with smaller values of room. Since the value of room of each invocation of 

function Opt on each sub-region is smaller than MOP, by induction hypothesis, each 

invocation of function Opt on each sub-region is able to obtain the optimal selection. 

According to Equation 7, we can conclude that function Opt is able to obtain the optimal 

selection when room=MOP. As a result, we can prove the correctness of Lemma 1 by 

induction. 

 

Figure 3-9. An illustration of the computation at the worst case  

3.4.5 Time Complexity Analysis 

The proposed phrase selection algorithm acts in a branch-and-bound manner. Each phrase is 

chronologically examined whether it is selected. If a phrase is selected, the optimal selection 

…

the phrases affected by g(i).phrase

g(i).phrase

…
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affected by this phrase is computed. Fortunately, this process will not expand all possible 

changes, since the expansion process is bound at the point which the previous computation 

has been stored (i.e., Opt(0,0,i,MOP|{}), where 1 i 2n－1). In the best case, there is no 

overlapping phrase and function Opt examines each phrase at most once. Thus, the time 

complexity of the proposed phrase selection algorithm is O(Ψ×n), where n is the number of 

phrases and Ψ is the time complexity of playability function. In the worst case, all phrases are 

parallel as shown in Figure 3-9. That is, each phrase overlaps with all other phrases. In the 

outermost invocation of function Opt, each phrase is checked whether it worth to be selected. 

For the computation of the i
th
-seen phrase, function Opt recursively calls itself to examine the 

situation that g(i).phrase is selected. When no seen phrase is overlapping with the first-seen 

phrase, the inner Opt examines all possible selections and the number of possible selections is 

  
  1.  Similarly, when two phrases are seen overlapping with g(i).phrase, the number of all 

possible selections is   
  +   

  (the possible selections containing no phrase overlapping 

with g(i).phrase plus the possible selections containing one phrase overlapping with 

g(i).phrase).  

Hence, the number of all possible selections when g(i).phrase is selected is   
    +   

    

+ … +     
    =    

      
   , where m is the maximal number of overlapping phrases allowed. 

Note that the number of all possible selections is bound by m－1 because, at most, m－1 

phrases can be selected when g(i).phrase is selected. Thus, the total number of possible 

selections for the outermost Opt is   
  + (   

  +   
  ) + (   

  +   
  +   

  ) + … + (   
    

+   
    + … +     

    ) = Φ. And      
     

    
         

      
   

   
      

   
      

    +    
      

    + … +    
      

    = (n－1) × (   
    +   

    + … +     
   ) 

  𝑛－          
          

      …      
      𝑛－     𝑚      

      −    𝑚  

𝑛    𝑚𝑛  . Because the playability function is performed when each phrase is selected, 

the time complexity of the phrase selection algorithm at the worst case is O(Ψmn
m
).  
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Figure 3-10. An example of the phrase selection algorithm: (a) the identified phrases in the 

given score; (b) the identified phrases represented by intervals; (c) a snapshot at index 6; (d) a 

snapshot at index 12; (e) a snapshot at index 13  

p0 p1 p2

p6

p3 p4 p5

p0: 4 p1: 2 p2: 8

p6: 6

p5: 1p3: 2 p4: 1

(a)

(b)

phrase utility
p0 4
p1 2
p2 8
p3 2
p4 1
p5 1
p6 6

p0: 4 p1: 2 p2: 8

p6: 6

p5: 1p3: 2 p4: 1

0 0 0 4 4 6 6
0 0 0 0 2

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Opt(0,0,i,2|{}).ut

i=3, CP_List∪{p0}={p3,p0}:not 
playable

i=5,Opt(Opt(Opt(0,0,1,2|{}).ut,1,4,1|{p3}).ut,4,4,0|{
p3,p1}).ut+2 > 0: worth

p0: 4 p1: 2 p2: 8

p6: 6

p5: 1p3: 2 p4: 1

0 0 0 4 4 6 6 6 6 7 7 8 12
0 4 4 6 6 6 6 6 6 6

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13

i=5, p1:worthi=3, p0:worth i=6, p3:not worth i=9,CP_List∪{p4}={p6,
p4}: not playable

i=10,CP_List∪{p5}={p
6,p5}: not playable 

MOP=2

MOP=2

(c)

(d)

Opt(Opt(0,0,1,2).ut,1,5,1|{p3}).ut+2 ≤ 6: not worthi=6, check p3,

Opt(0,1,i,1|{p3}).ut

Opt(0,0,i,2|{}).ut

Opt(0,2,i,1|{p6}).ut

Opt(Opt(0,2,2|{}).ut,2,11,1|{p6}).ut+6 > 8: worthi=12, check p6,

Opt(0,0,6,2|{}).sel={p0,p1}

Opt(0,0,12,2|{}).sel={p0,p1,p6}

Opt(0,0,11,2|{}).sel={p0,p1,p4,p5}

p0: 4 p1: 2 p2: 8

p6: 6

p5: 1p3: 2 p4: 1

0 0 0 4 4 6 6 6 6 7 7 8 12 20
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i=9,CP_List∪{p4}={p2,
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i=11,CP_List∪{p5}={p2,
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i=12,Opt(Opt(Opt(0,0,2,2|{}).ut,2,7,1|{p6
}).ut,7,11,0|{p2,p6}).ut+6 > 6: worth

room=0room=1
MOP=2

(e)

room=2

Opt(Opt(0,0,7,2|{}).ut ,7,12,1|{p2}).ut+8 > 12: worthi=13, check p2,

Opt(0,0,i,2|{}).ut

Opt(6,7,i,1|{p2}).ut

Opt(0,0,13,2|{}).sel={p0,p1,p6,p2}
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Fortunately, m is a small number in practice. That is, the maximal number of overlapping 

phrases allowed by most instruments is a small constant. For example, the maximal number of 

overlapping phrases for a violin is 4; for most wind instruments, one; for a piano, 10; and for 

a guitar, six. While m is a small constant, the time complexity of the proposed phrase selection 

algorithm is polynomial time. Therefore, in practice, the execution time of the proposed 

phrase selection algorithm is acceptable. Interested readers can also see Table 3-9 for the 

execution time of the proposed algorithm on several real cases.  

3.4.6 A Running Example of Phrase Selection Algorithm 

Figure 3-10 shows an example of the process of the proposed phrase selection algorithm with 

simple playability function (the distance between the highest and lowest pitch of note cannot 

exceed 14 semitones) and MOP=2. Figure 3-10 (a) shows the identified phrases in the score; 

and Figure 3-10 (b) shows the phrases with utilities represented by weighted intervals. Figure 

3-10 (c) depicts the result of the transformation. Since there are seven phrases, 14 indices are 

created. We use Opt(0,0,13,2|{}).ut and Opt(0,0,13,2|{}).sel to indicate to the optimal utility 

and the optimal selection, respectively. After that, three attributes of each index are extracted. 

For example, index 6 corresponds to the end position of phrase p3, and thus we have 

g(6).phrase=p3, g(6).utility=2 and g(6).startI=1. On the other hand, index 4 does not 

correspond to the index of the end position of any phrase, g(4).phrase, g(4).utility, and 

g(4).startI are null. The conditional phrase list, CP_List, is maintained and initialized to empty. 

Then, the main function Opt(0,0,13,2|{}) is called. The result is obtained with initial base 

value 0 from index 0 to 13 under the situation of at most two overlapping phrases allowed. As 

shown in Figure 3-10 (e), after Opt(0,0,13,2|{}) is finished, Opt(0,0,13,2|{}).ut = 20 and 

Opt(0,0,13,2|{}).sel = {p0, p1, p2, p6} are returned as the result of the proposed algorithm.  

Here we use the example in Figure 3-10 to describe how function Opt works to compute the 
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optimal selection and the utility of the optimal selection. First of all, the outermost recursive 

function Opt(0,0,13,2|{}) is called to select phrases from index 0 to 13 under room=2 (at most 

two overlapping phrases are allowed). Function Opt goes from index 0 to index 13. The value 

of g(0).phrase is null since there is no phrase seen at index 0. While function Opt goes to 

index 3, it is the end position of phrase p0. Due to the reason that phrase p0 is playable and it 

is allowed (room ＞ 0) to select p0, p0 is selected and the function Opt(0,0,3,1|{p0}) is 

called to check if there is any influence of selecting p0. No other phrases can be seen from 

index 0 to 3, and thus, p0 can be selected (Opt(0,0,3,2|{}).sel={p0}) at this moment.  

While determining whether phrase p3 (i.e., g(6).phrase) is worth to be selected, p3 is selected 

first and Opt(0,1,5,1|{p3}) is called. In solving Opt(0,1,5,1|{p3}), it meets p1 and p2 because 

g(3).phrase and g(5).phrase are not null. However, p0 (i.e., g(3).phrase) and the phrase in the 

CP_List (i.e., p3), are not playable due to the reason that the overlapping part of phrase p0 and 

p3 (C4 and E5) exceeds the Through_hand threshold. In contrast, g(5).phrase is playable with 

the phrase in CP_List. In addition, g(5).phrase is worth to be selected when p3 is selected. 

However, the utility of the optimal selection when p3 is selected is not worthier than the 

utility when p3 is not selected (i.e., Opt(0,1,5,1|{p3}).ut+ g(6).utility=4 ＜

Opt(0,0,5,2|{}).ut=6). Thus, Opt(0,0,6,2|{}).ut is set to 6. As shown in Figure 3-10 (c), the 

optimal selection Opt(0,0,6,2|{}).sel is {p0,p1}. When function Opt goes to index 12, the 

utility of the optimal selection when p6 is selected (i.e., 

Opt(Opt(0,0,2,2|{}).ut,2,11,1|{p6}).ut+6=12) is worthier than the utility when p6 is not 

selected (i.e., Opt(0,0,11,2|{}).ut=8). Thus, Opt(0,0,12,2|{}).ut is 12 and Opt(0,0,12,2|{}).sel 

is {p0,p1,p6}.  

Consider the example that phrase p2 is checked in Figure 3-10 (e). Function 

Opt(6,7,12,1|{p2}) is called to examine the influence of the optimal selection under the 

condition that p2 is selected. During the process in Opt(6,7,12,1|{p2}), p4, p5 and p6 will be 
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examined sequentially. Phrase p4 and p5 are not playable with the phrase in CP_List (i.e., p2), 

while p6 is playable with the phrase in CP_List and room＞0 (the value of room is 1). Now 

function Opt examines whether p6 is worth to be selected by considering p6 with CP_List. At 

this moment, CP_List∪g(12).phrase contains two phrases (p2 and p6). Then, p2 and p6 are 

sorted and relabeled according to their start positions. Thus, j1=p6 and j2=p2. There are three 

sub-regions: the sub-region from 0 to j1.startI=2 with room=MOP=2, the sub-region from 

j1.startI=2 to j2.startI=7 with room=1, and the sub-region from j2.startI=7 to i－1=11 with 

room=0. The utility of the first sub-region (from 0 to 2 with room=2) Opt(0,0,2,2|{}).ut=0 is 

computed first. The optimal utility of the first sub-region is taken as the base value of function 

Opt(0,2,7,1|{p6}) for computing the optimal utility of the second sub-region (from 2 to 7 with 

room=1). After obtaining Opt(0,2,7,1|{p6}).ut=6, it is taken as the base value for the third 

sub-region. Similarly, we compute the utility of the third sub-region (with base value 6 from 7 

to 11 with room=0) by calling Opt(6,7,11,0|{p6,p0}). Since phrase p6 is worth to be selected 

under the condition that phrase p2 is selected (w ＞ 6), p2 is selected. Back to the outermost 

Opt, phrase p2 is also worth to be selected. Thus, the final optimal selection is {p0, p1, p6, p2} 

and the utility of the optimal selection is 20.  

Table 3-3. Parameters for SVM  

 Parameter Value 

The exponent for the polyphomial kernel 1 

Gamma for the RBF kernel 0.01 

Sets the size of the kernel cache (a prime number) 250007 

Sets the tolerance parameter 1.0e-3 

Sets the epsilon for round-off error 1.0e-12 

The complexity constant C 1 
 

3.5 Experiments of Proposed Music Arrangement Framework  

According to the proposed automatic music arrangement framework, we design an automatic 
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music arrangement system for piano in our experiments. Our music arrangement system was 

implemented in Java, along with two open source packages, jMusic [47] and Weka [53]. The 

library, jMusic, provides an environment for manipulating MIDI data; Weka provides 

machine learning tools for our training and test process. We choose MIDI-format music as a 

source of symbolic data. All the music data we collected are available on the web page 

(http://mpc.cs.nctu.edu.tw/~stevechiu/mas/mas_work/).  

3.5.1 Effectiveness of Arrangement Element Determination 

In implementing of the arrangement element determination, we chose the support vector 

machine (SVM) [6] as our classifier. As mentioned in Section 3.2, the modified SVM is a 

five-class classifier and is able to obtain the probabilities over five classes.  

We collected the segmented tracks by first performing track segmentation on each music 

object in our database. Two musically trained experts were then asked to annotate the type of 

arrangement element for some of the segmented tracks. Both of them have received at least 

15-year music training and participate in music productions and recordings. Besides, one 

graduated from department of music and majored in composition and arranging. The other has 

five-year experience in computer music. A total of 240 segmented tracks were annotated: 78 

for foundation, 56 for rhythm, 15 for pad, 67 for lead, and 24 for fill. The segmented tracks 

and their annotated result were also shown on the web page 

(http://mpc.cs.nctu.edu.tw/~stevechiu/mas/mas_work/showdatabase.php). We trained our 

classifier with the unbalanced sizes of the class because the proportion of the types of 

arrangement elements in a music object is also unbalanced. The parameters of SVM are set by 

trial and error (The values of these parameters are listed in Table 3-3). The confusion matrix 

of classification result is shown in Table 3-4. The f-measures for foundation, rhythm, pad, 

lead, and fill are 0.907, 0.826, 0.72, 0.813, and 0.4 respectively.  



 

38 

 

Table 3-4. Confusion matrix for five arrangement elements with tenfold cross-validation  

      

 fo rh pa le fi 

fo=Foundation 73 3 0 2 0 

rh=Rhythm 7 45 0 3 1 

pa=Pad 0 3 9 2 1 

le=Lead 3 1 0 61 2 

fi=Fill 0 1 1 15 7 

 

Classifier As Arrangement 

Element 

 

Table 3-5. Parameters for our piano arrangement system  

Parameter Description Value 

TS.τ  A threshold for track segmentation 0.5 

PI.LBDM.threshold A threshold for LBDM 0.6 

UA.AE.threshold.filter 

(right/left hand) 

A threshold to filter the phrases whose 

utility is too low 
0.1/0.1 

UA.AE.consider[fo, 

rh,pa,le,fi](r/l hand) 

Which arrangement elements are 

considered 

[0,0,0,1,1]/ 

[1,1,1,0,0] 

UA.α1, UA.α2  Proportion in utility assignment 0.7, 0.3 

PS.MOP (r/l hand) 
Maximal overlapping phrase allowed in 

phrase selection 
5/5 

Pla.Through_Hand (r/l hand) 
In playability, semitone allowed between 

thumb and little finger 
14/14 

Pla.Thumb_Index_Gap (r/l 

hand) 

In playability, semitone allowed between 

thumb and point 
4/4 

Pla.Other_Gap (r/l hand) 
In playability, semitone allowed between 

the other adjacent fingers  
3/3 

TS: Track Segmentation, PI: Phrase Identification, UA: Utility Assignment, PS: Phrase 

Selection, Pla: Playability, AE: Arrangement Element  

The class, fill, cannot be determined very well. The properties of fill are very similar to lead, 

as they have common characteristics such as pitch, duration, etc. No relevant feature can be 

used to discriminate them. This is reason fill is sometimes misclassified as lead. According to 

definition, a fill appears between successive phrases of lead. The length of the phrase of lead 

is longer in most types of music; hence, most parts of fill are rest note. We think the major 

feature that can be used to distinguish fill from lead is the ratio of silence. However, in most 

of cases, the musician combines fill with the other arrangement element (usually rhythm) 

instead of adding a specific instrument performing fill. As such fill cannot be determined well. 

We will keep looking for relevant features with which to improve the performance of 
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arrangement element determination in future work.  

Table 3-6. Music for experiments  

S/H: System or human arranges; first 16 music are used in experiment 1; S1,…,S7 are 

used in experiment 3 (scoring solos); A1,…,A7 are used in experiment 3 (scoring 

accompaniment); P1,…,P5 are used in experiment 3 (scoring playability) 

Music Title Composer S/H 

Bluesette (S1,A1) Toots Thielemans S 

Jordu (S2,A2,P1) Duke Jordan S 

Green Grow the Lilacs (S3,A3,P2) N/A S 

Symphony No.5 in C minor, Op.67 Mov.4 Allgro (S4,A4) Beethoven S 

On Springfield Mountain N/A S 

Lakes of Pontchartrain N/A S 

Red River Rock 
Johnny & the 

hurricanes 
S 

Some Folks Do Stephen C. Foster S 

A Virgin Unspotted Christmas Hymn H 

'O Sole Mio 
N/A (Neapolitan 

song) 
H 

Playmate / Two Little Maids H. W. Petrie H 

The Champion 
Kristopher M 

Thornton 
H 

Lazy Mary, Will You Get Up? N/A H 

Unfortunate Miss Bailey N/A H 

10 Little Indians N/A H 

You're in the Army Now N/A H 

Some Folks Do (S5,A5) Stephen C. Foster S 

Symphony No.25 in G minor, K.183 (S6,A6) Mozart S 

 

3.5.2 Turing Test-like Experiment for the Arranged Results 

It is difficult to evaluate the effectiveness of our music arranging system because the 

evaluation of effectiveness in works of art often comes down to subjective opinion. In 2001, 

M. Pearce proposed a method to evaluate the computer music composition system [44]. We 

adopted this method in designing our experiments.  
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The proposed system can be considered successful if the subjects cannot distinguish between 

the system-arranged and the human-arranged music. There were 30 subjects in total. 

Twenty-two subjects were composed of graduate and undergraduate students, including four 

subjects with at least three-year musical training affiliated with the Department of Computer 

Science at National Chiao Tung University. Eight subjects were music teachers at several 

private music schools. The prepared dataset consisted of eight human-arranged and eight 

system-arranged music objects. The system-arranged music was generated by our system using 

the parameter setting listed in Table 3-4. Confusion matrix for five arrangement elements with 

tenfold cross-validation  

      

 fo rh pa le fi 

fo=Foundation 73 3 0 2 0 

rh=Rhythm 7 45 0 3 1 

pa=Pad 0 3 9 2 1 

le=Lead 3 1 0 61 2 

fi=Fill 0 1 1 15 7 

 

Classifier As Arrangement 

Element 

 

. The same setting was also adopted in the succeeding experiments. The experiment used the 

first 16 music objects in Table 3-6. The music objects were sorted randomly and displayed to 

the subjects on the web page (http://www.cs.nctu.edu.tw/~scchiu/mas/survey.html). The 

subjects were asked to listen to each piece and determine whether it was system- or 

human-arranged. The proportion of correctly identified music was calculated from the 

obtained result, with “Mean” being the average of the accuracy. The significance test was 

performed with the one-sample t-test against hypothesized value 0.5 (the expected value if 

subjects discriminated randomly). Simply speaking, if the mean value is close to 0.5, we can 

say that it is difficult to distinguish between the system- and human- arranged music.  
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Table 3-7. The results of discrimination test  

 Mean SD DF t P-value 

All subjects 0.45 0.1453 29 -1.885 0.0695 

All subjects except musically 

trained subjects 
0.444 0.15 17 -1.61 0.1258 

Musically trained subjects 0.4688 0.1423 11 -0.76 0.4635 

 

SD: the standard deviation; DF: the degree of freedom; t: t statistic. 

 

The results are shown in Table 3-7. The mean values of the three groups are close to 0.5 with 

around 0.15 standard deviations.  According to t-test, we can accept the hypothesized value 

0.5 using the 0.05 level of significance; that is, it is difficult to distinguish between the 

system- and human-arranged music. Considering p-value, the result of all subjects is more 

significant than the other two separated groups because the number of all subjects is higher. 

The discrimination rate of the musically trained subjects (0.4688) is a little bit higher than the 

discrimination rate of all the subjects excluding the musically trained subjects (0.444). Such 

results conform to the intuition that the musically trained subjects could discriminate with 

higher precision. Since the discrimination rate of musically trained subjects is still close to 0.5, 

we believe that it is not easy to distinguish between the system- and human-arranged music 

even by the musically trained subjects.  
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Table 3-8. The results of scoring  

 

 

 A1 A2 A3 A4 A5 A6 A7 

Mean 0.986 0.143 0.643 0.429 0.643 0.786 0.429 

SD 0.994 1.027 1.008 0.938 0.745 0.699 0.756 

 P1 P2 P3 P4 P5 

Mean 1.182 1.273 1.364 1 0.818 

SD 0.874 0.786 0.924 1.247 1.401 

 

 S1 S2 S3 S4 S5 S6 S7 

Mean 0.643 1 1.143 0.571 0.929 0.5 0.214 

SD 0.842 0.877 0.77 0.938 0.73 0.941 0.802 

A: The result of scoring system-arranged piano reduction 

B: The result of scoring system-arranged accompaniment piano part 

C: The result of scoring playability of system-arranged music 

 

3.5.3 Scoring the Arranged Results 

To evaluate the ability of role arrangement, five music objects were chosen, each of which 

was arranged into a solo and accompaniment piano arrangement. The five objects were 

selected from the system-arranged music list in Table 3-6, and were asterisked and assigned 

numbers following the music title. The original and arranged versions were put on the web 

page so that the subjects could listen to them alternately and comparably. The subjects were 

asked the question “Do you think the arrangement was successful?” The question was 

followed by three tips: (1) Are the original and the arrangement similar?, (2) Is the 

arrangement elegant?, (3) Is the arrangement like piano music?” The average score of the 22 

responses was 0.714. Of the experimental music set, S7 shows the highest score. The melody 

and counterpoint are correctly selected for piano, demonstrating characteristics of Baroque 

music. In contrast, S6 had the lowest score. We think some phrases were assigned 

inappropriate utility, so that the other important phrases could not be selected. Furthermore, 

some of the selected phrases with trill technique performed by violin were not suitable for the 

piano. This problem may be solved by considering piano performance properties in utility 
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assignment.  

For accompaniment, a similar question was asked, “How satisfied are you with the 

accompaniment of duo?” The answer contains five choices: very good (+2), good (+1), 

average (0), bad (-1), and very bad (-2). Only 12 subjects answered the question because some 

of them could not tell which accompaniment was of good quality without musical background. 

The mean of grade was 0.58 and standard deviation, 0.881. We think that most of the music in 

our dataset was suitable for being an accompaniment of duo. A7, which also shows the lowest 

grade among seven music objects, was the only one not suited for duo. We think too many 

phrases of lead were selected as accompaniment. The failure of arrangement element 

determination leads to inappropriate utility assignment, and in turn, the incorrect selection of 

phrases.  

For playability, we displayed the sheet music of the MIDI-format arranged music by general 

music software with slight parameter setting for presentation. Both the arranged music and its 

sheet music were put on the web page questionnaire so that the subjects could listen and view 

simultaneously, then, assign their decisions. The instruction was “Please view the sheet music 

and determine if it can be played on the piano.” The five answer of choices were: 1. It is 

playable (+2); 2. It is playable but hard (+1); 3. Neutral (0); 4. It may not be playable (-1); 5. 

Absolutely, it is not playable (-2). Note that this question was optional because not all 

participants could read sheet music. For eight responses, the mean was 1.127 and standard 

deviation, 1.046. This experiment shows that the arranged results are playable.  

3.5.4 Case Studies 

We chose two arranged results and demonstrated the sheet music of both the original and the 

arranged music. Due to the limitation of space, we only take two excerpts from them to 

discuss.  
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Figure 3-11. (a) Original music: excerpt from Duke Jordan “Jordu” (b) System output: 

piano-arranged music for a solo piano  

The arranged result is jazz music, “Jordu,” by Duke Jordan. The excerpts (measure 9-16) of 

the original and the arranged sheet music were shown in Figure 3-11a and Figure 3-11b, 

respectively. The ensemble comprised of four instruments: electric piano (melody and chord), 

vibraphone (solo), electric grand piano (chord), bass, and drum. Some instruments, such as 

drum, were recorded in more than one track. The system performed phrase selection for the 

right hand then the left hand. The system demonstrated the ability to select the correct melody 

for the right hand because the arrangement element determination contributed to segmented 

tracks, which assigned the proper utility to phrases. According to the parameter setting in 

phrase selection, the system maximally allowed five phrases to overlap with each other. We 

originally anticipated that some phrases near the melody could be selected to maximize total 

utility. However, such did not happen because the melody and the other overlapped phrases in 

the chord part could not be played simultaneously. The phrases in the chord part were 

especially long because there was no high strength to be cut by LBDM. It needed the notes 

from the other phrases that could be played with the long phrase. Thus, it was difficult to find 

New piano-arranging music (for solo piano)

Original music: Jordu (Duke Jordan)
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a non-melody phrase with melody for the right hand part. Only when the phrase was short and 

it is playable with the melody, it was easier to be selected. An example can be seen in measure 

16. An overlapping phrase with one E4 note in the chord part was selected with the melody.  

In the left hand part, we found that phrase selection chose the bass part instead of the chord 

part because the utility of the phrase in the bass track was much larger than that of the chord 

track. The other non-bass phrases were selected for the left hand for the same reason. We 

think this result is acceptable for a piano reduction.  

 

Figure 3-12. (a) Original music: an excerpt from a Irish folk song “Green Grow the Lilacs” (b) 

System output: piano-arranged music for solo piano  

The other arranged result is an Irish folk song entitled “Green Grow the Lilacs.” Figure 3-12a 

and Figure 3-12Figure 3-12b show excerpts from measure 1 to 8 of the original and the 

arranged versions, respectively. The original song contained five instruments: three acoustic 

guitars (one for melody and two for chord), bass, and violin.  As can be seen, the arranged 

result was not just a monophonic phrase because the other phrases were playable with the 

main part. The phrases of melody were included correctly for the right hand part; and the 

arrangement for the left hand part also contained as many phrases as possible in bass and 

harmonic voice. We think this song was arranged successfully for a piano reduction. It was 

Original music: Green Grow the Lilacs (Irish Folk Song)

New piano-arranging music (for solo piano)
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also playable.  

3.5.5 Efficiency of the Piano Arrangement System 

To evaluate the response time of the system we developed, we conducted an experiment on an 

IBM desktop computer with a 2.4 Ghz Intel(R) Pentium(R) quad-core processor with four 

gigabytes of main memory running on a Linux 2.6 operating system. We show the 

information in process for four excerpts of the music in Table 3-9. As can be seen, it was the 

overlapping phrase rate OPR, not the length of music and the number of identified phrases, 

which influenced the execution time. OPR is the average number of overlaps between phrases. 

When OPR is high, the time complexity of phrase selection let the execution time grow 

polynomially.  

Table 3-9. Efficiency of music arranging system  

Music length #st #phr OPR Round in PS Execution time 

Blueseet *1 0:41 7 41 7.86 734 6.06 s 

Jordu *2 3:25 8 237 7.0 1343 57.702s 

Lilacs *3 1:29 6 310 11.64 9552 42.817s 

Sym. No.5 *4 1:05 17 112 32.28 38918 156.663s 

 

st: segmented track; phr: phrase; PS: phrase selection, OPR: Overlapping Phrase 

Rate.  
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CHAPTER 4 POLYPHONIC REPEATING PATTERN 

MINING 

4.1 Introduction 

Many famous musicians ever made some descriptions or definitions for their understanding of 

music. For example, Edgard Varese said that music is “organized sound” and an 

American-born violinist, Yehudi Menuhin, mentioned that “music is art of time.” Organizing 

sounds over time is a design of repetition. In music theory, one of important techniques of 

music composition is to construct repetitive relationship among small pieces in time sequence 

for enhancing impression of a listener. Many researchers in musicology and music 

psychology fields claim that repetition is a universal characteristic in music structure 

modeling [48]. The segment appears repeatedly in music is so-called repeating pattern. As an 

example shown in Figure 4-1, the segment in the second block of the second line is a copy of 

the segment in the first block. The repeating pattern may present several meanings in music, 

such as motif and theme. A motif is a short musical idea which is a meaningfully recurring 

fragment or succession of notes. Composers usually employ the notion of motif to vary and 

develop whole music. In contrast to a motif, a theme is a complete phrase which is an 

impressive melody repeated in variation of form. In addition, depending on the composer and 

the type of music, it may be different for a theme in the variation extent and the repetitive 

frequency. Thus, the repeating pattern is an important characteristic in music.  

Repeating patterns finding is useful not only for music analysis, but also for content-based 

music information retrieval due to both efficiency and semantic-richness requirement. That is, 

the repeating pattern can be used for music index, since the size of the repeating pattern is less 

than the size of a music object and the repeating pattern is relevant as a feature for the 

discrimination of music [31]. In other words, the set of repeating patterns in a music object 
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provides a model which is benefit for composing music according to a certain music style [9].  

 

A piece of music in melody part from Mozart, Rondeau K. V. 15hh 
  

Figure 4-1. An example of a repeating pattern  

The applications of discovering the patterns occurring repeatedly first appeared in natural 

language field [26]. In biological field, researchers convert a DNA sequence and find the 

sub-string which repeats frequently in the converted string [4][46]. In multimedia area, Hsu et 

al. proposed in [18][18] the problem of repeating pattern mining to discover the repeating 

music segments. The studies of the repeating pattern mining problem firstly focused on 

finding exact repeating patterns in music database. However, music segments with minor 

difference should be regard as the instances of the same repeating pattern. Therefore, the 

concept of the approximate repeating pattern [18][32] and the fault-tolerant repeating pattern 

[25] are proposed to deal with the problem resulting from the variances among the instances 

of the same repeating pattern. For repeating pattern mining in music, they focus on main 

melody, an impressive monophonic line for listening, which can be represented by a string 

and propose the algorithm to find repeating patterns on a string.  

The prior studies mentioned above assume that there is only one event (note) at a time. It is 

reasonable for a DNA sequence and music containing a clearly main melody. However, for 

many types of music, such as Baroque period music, etc., it may contain two or more 

melodies and the main melody is not clear to be found. Thereby modeling music as a string is 

inefficient and some significant repeating patterns may not be found. Some work addresses to 

this problem and develops the algorithm for mining monophonic patterns from polyphonic 

music. For discovering meaningfully musical patterns, they define the special type of 
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repeating patterns in polyphonic music, such as vertical patterns, perceptible repetitions and 

geometrical patterns. Conklin developed a representation of music and provides an algorithm 

to analyze the vertical patterns, which is benefit for representing common harmonic 

progresses, from one or more music objects by encoding a music object into a set of strings 

[13][14]. Meudic et al proposed an approach to identify the perceptible repetitions which is 

the similar segments located in music [40]. A geometrical pattern proposed by Meredith et al 

is represented in polyphonic form to find the pattern repeats in geometrical view [39].  

 

(a) First two bars from Bach Invention No. 1 (BWV 772)  

 

(b) A piece from Mendelssohn, song without words, Venetian Boat-Song No. 1  

Figure 4-2. Two examples of polyphonic repeating patterns  

To summarize, these approaches can be categorized into two scenarios: 1. discovering 

monophonic patterns from monophonic music; 2. discovering monophonic patterns from 

polyphonic music. However, there is a problem in traditional repeating pattern mining 

approaches. With polyphonic music from Baroque era, for instance, there may be two or more 

voices that play melodic line simultaneously, and the same piece often appears in different 

voices. As an example of piano music in Figure 4-2.a, in this case, one melody occurs in the 
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treble clef overlapped by another melody in the bass clef. Specially, the repeating pattern in 

the box appears interchangeably between two staves. Main melody extraction cannot be used 

in this case. Besides, it would be suitable to describe an impressive piece of music in 

polyphonic form, rather than in monophonic form. In Figure 4-2.b, an example of a repeating 

pattern in polyphonic form is shown in the successively rectangular box.  

In this study, we propose the approaches to discover polyphonic repeating patterns in 

polyphonic music data modeled as a set-sequence data. To discover patterns from the 

set-sequence data, we give a formal definition on polyphonic repeating pattern discovery 

problem, which is also a generalized problem of traditional repeating pattern discovery. To 

mine polyphonic repeating patterns, we first propose a level-wise mining algorithm, named 

A-PRPD (standing for Apriori-based Polyphonic Repeating Pattern Discovery), based on 

anti-monotonic property
3
. The approach A-PRPD finds patterns by joining shorter frequent 

patterns. Since it takes too much time for A-PRPD to check every pair of frequent patterns 

whether it can be used to generate candidates or not, we propose an algorithm D-PRPD 

(standing for Depth-first-search based Polyphonic Repeating Pattern Discovery) to avoid this 

problem. In D-PRPD, each candidate is generated by two types of extension directly instead 

of pair wise check for candidate generation in A-PRPD.  

Another issue is frequency counting for both two algorithms because they have to count 

frequency by sequence scan for every candidate pattern. Such phenomenon makes two 

algorithms spend much time in sequence scan, thereby making them not suitable for long 

sequence. In view of this, we develop the bit-string approach to reduce sequence for 

frequency counting. The positions of the occurrences of a polyphonic repeating pattern are 

recorded by a bit-string, called the bit-string index. Then, we design the bit-string operation to 

                                                

3 If a pattern is frequent, then all its sub-patterns are frequent.  
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derive the bit-string of the longer polyphonic repeating pattern and also its frequency by basic 

hardware operations, specifically, SHIFT and AND operations. By utilizing the bit-string 

approach in two algorithms, the number of sequence scan is reduced, thus speeding up the 

process of mining polyphonic repeating patterns. To measure the performance of A-PRPD, 

D-PRPD and their improvements, several experiments are conducted on both real dataset and 

synthetic dataset. The experimental results show that the bit-string approach improves both 

two algorithms and D-PRPD with the bit-string approach is able to discover polyphonic 

repeating patterns efficiently than others, showing the better scalability of D-PRPD with the 

bit-string approach over others. 

4.2 Preliminary of Polyphonic Repeating Pattern 

4.2.1 Problem of Polyphonic Repeating Pattern Mining  

In this section, we formulate the polyphonic repeating patterns discovery problem. Both of a 

music object and a pattern are represented as a set-sequence. A set-sequence is a 

representation which collects sets of the musical notes appearing at the same time in 

chorological order.  

Definition 4-1 Let I={i1,i2,…,in} be a set of elements, a set-sequence sd=<s1,s2,…,sm> is an 

ordered list of set, where si  I and si , i{1, 2 ,…, m}. The size, m, of a set-sequence is 

the number of set in sd. The length of a set-sequence is defined as 
m

isl
1

, where |si| 

denotes the cardinality of the set si. In other words, the length of a set-sequence is the total 

number of elements in a set-sequence.  

Example 4-1 Consider a set-sequence sd=<{A, E}, {C, D, F}, {D}>, there are three sets in sd, 

so the size of sd is 3. Since the first set has 2 elements, the second has 3 and the third has 1; 

the length of sd is 2+3+1=6.  
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Definition 4-2 (k-position instance) Given two set-sequences, sp=<p1, p2,…, pi> and sd=<q1, 

q2,…, qj>, where size(sp) ≤ size(sd), if there exists a k such that p1  qk, p2  qk+1, …, pi  

qk+i−1, where k+i−1 ≤ j, we call that sp has a k-position instance in sd. To discriminate these 

two set-sequences, sp is called a set-sequence pattern and sd is called a set-sequence data.  

We can define the polyphonic repeating pattern by using the above definition.  

Definition 4-3 Given a set-sequence pattern sp and a set-sequence data sd, we use freq(sp,sd) 

to denote the frequency of a set-sequence; that is, the number of different k-position instances 

in sd with respect to sp. If freq(sp,sd) ≥ t, where t is a user-defined threshold, the set-sequence 

sp is a polyphonic repeating pattern or frequent pattern in short.  

Table 4-1. All polyphonic repeating patterns discovered from the set-sequence data 

<{A,E}, {C,D,F}, {D}, {B}, {A,B}, {A,B,C,F}, {C,D}>. (PRP: Polyphonic Repeating 

Pattern)  

PRP freq PRP freq 

<{A}> 3 <{C, C}> 2 

<{B}> 3 <{C}, {D}> 2 

<{C}> 3 <{F}, {D}> 2 

<{D}> 3 <{A}, {C, D}> 2 

<{A, B}> 2 <{A}, {C, F}> 2 

<{A}, {C}> 3 <{A}, {F}, {D}> 2 

<{A}, {F}> 2 <{C, F}, {D}> 2 

<{B}, {B}> 2 <{A}, {C, F}, {D}> 2 

<{C, F}> 2   

  

Example 4-2 Consider an example set-sequence sd = <{A, E}, {C, D, F}, {D}, {B}, {A, B}, 

{A, B, C, F}, {C, D}> and let threshold t be 2. All polyphonic repeating patterns of sd are 

shown in Table 4-1. There are 15 polyphonic repeating patterns in this set-sequence data. If 

we set t to 3, the discovered polyphonic repeating patterns are <{A}>, <{B}>, <{C}>, 

<{D}> and <{A}, {C}>.  

Finally, we define the polyphonic repeating pattern discovery problem as follows.  
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Problem Statement Given a set-sequence data sd and a user-specified threshold t, the task is 

to find all polyphonic repeating patterns in sd.  

The set-sequence representation is an extension of a string which is used to represent a music 

object in traditional repeating patterns mining. When a music object is represented in a 

set-sequence, we can capture harmonic and counterpoint information which the string 

representation cannot do. Note that compare to sequential pattern mining problem [3], the 

problem of mining polyphonic repeating patterns treats a set-sequence data as a database and 

defines a different pattern in a set-sequence. When applying sequential pattern mining 

algorithm to find the polyphonic repeating patterns, the music object has to be divided into a 

set of set-sequence. However, to divide a music object is unreasonable because polyphonic 

repeating patterns may appear anywhere. Hence, sequential pattern mining algorithm can not 

apply to this issue. 

4.2.2 Music Representation 

In this chapter, a music object is represented by a sequence of sets, i.e., set-sequence. 

Preprocessing of music data is composed of two steps. First, the quantization process is 

performed. This process is to adjust the onset time and note duration of each note to 

reasonable rhythmic unit. An example is given and shown in Figure 4-3. This process is 

necessary. Because the time resolution of note in symbolic music data is usually high for 

flexibility of expression, some notes may not appear in rhythmic position precisely. Second, 

the notes occurring in the same time are grouped and the sets are ordered in time sequence. 

After preprocessing, a set-sequence of notes is generated.  
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Figure 4-3. An example of quantization process  

To discover musical patterns, we consider two attributes of a note. Two of them are pitch and 

duration. We use sd(pitch, duration) to denote a set-sequence data represented in 2-tuple. In pitch, 

two types of value are used, exact pitch value (EPV) and pitch interval (PI). For EPV, a note 

is recorded by its exact pitch value. For PI, all intervals between successive two sets are 

recorded. For attribute duration, exact duration value (EDV) is employed; that is, the number 

of beats of a note sustains. We give an example of variant representations in Figure 4-4. We 

represent exact pitch value following MIDI format, i.e., the MIDI number of center C is 60, 

etc. On the other hand, the extract duration value of the note is 0.5 when the note is an eighth 

note. The elements in first set under (EPV, EDV) representation are (31, 0.5), (43, 0.5) and 

(74, 0.5). For (PI, -) representation, the elements in first set are the interval between the first 

set and the second set, i.e., (49, -), (37, -) and (-4, -). For simplification, we use an alphabetic 

symbol to denote identical 2-tuple elements (pitch, duration) while describing the problem 

and the proposed algorithms.  
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Note name … G0 … G1 … C3 C#3 D3 … C4 C#3 … 

MIDI number … 31 … 43 … 60 61 62 … 72 73 … 

 

(EPV, EDV) < {(31,0.5), (43,0.5), (74,0.5)}, {(70,0.5)}, {(66,0.5), (72,0.5)}, {(74,1)}, {(70,0.5)}, {(79,0.5)} > 

(PI,-) < {(39,-), (27,-), (-4,-)}, {(-4,-), (2,-)}, {(8,-), (2,0)}, {(-4,0)}, {(9,-)} > 

 
 

Figure 4-4. An example of variant representations  

A common repeating pattern can be found by considering exact pitch value and duration. By 

employing these representations in this study, some kinds of motif development defined by 

music theorem [49] can be found by discovering polyphonic repeating pattern in a music 

object represented in some combinations of these features. For instance, one of the most 

important motif developments, Sequence, can be found by considering pitch interval and 

duration. One point needed to mention is that there are two kinds of transposition, real 

transposition and tonal transposition. The main difference of these two transpositions is made 

by naturally occurring half steps (abbreviated by NOHS) in musical scale. For example, in C 

major scale the pitch interval between C-D and E-F are different in tonal transposition, but 

they are viewed as the same distance in real transposition. Real transposition is not affected 

by NOHS, it keeps the intervallic structure exactly. On the other hand, the quality of the 

interval structure in tonal transposition is also flexible to fit NOHS in musical scale. Therefore, 

we consider both two types of representations in pitch interval.  
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Algorithm A-PRPD(sd,t) 

Input: sd, t 

Output: polyphonic repeating pattern set 

1: L1={sp1 |all frequent length-1 patterns}; 

2: for (k=2; 1kL ; k++) 

3:  Ck=pattern-extend(Lk-1); 

4:  foreach length-k candidate pattern 
kCc  do 

5:   freq-count(c, sd); 

6:  Lk={
kCc | tsdcfreq ),( } 

7: output all frequent patterns;  
 

freq-count(sp,sd) 

Input: a set-sequence pattern sp, a set-sequence data sd  

Output: frequency 

1: freq=0; 

2: for(i=1; i (sd.size−sp.size+1); i++) do 

3:  if sp has an i-position instance in sd do 

4:   freq++; 

5: return freq;  
 

pattern-extend((k－1)-RPRSet) 

Input: a set of length-(k－1) patterns  

Output: a set of length-k candidate patterns  

1: for all pair (sp1, sp2) in (k－1)-RPRSet do 

2:  sp1‟= sp1 with no first element; 

3:  sp2‟= sp2 with no last element; 

4:  if sp1‟ is equal to sp2‟ then 

5:   if the cardinality of the last set of sp2 is 1 then  

6:    c_sp =append the last set of sp2 to sp1; 

7:   else then 

8:    c_sp =add the last element of sp2 to sp1‟s last set  

9:  if c_sp.length=k then 

10:   add c_sp to Ck  

11: return Ck;  
 

Figure 4-5. A-PRPD algorithm  

The set-sequence representation is a type of a piano-roll or a string-based representation for 

music. This representation is suitable for homophonic music
4
 [30]. As to polyphonic music, it 

can be represented sufficiently by combining the notes with two attributes, pitch and duration, 

occurring at a short period of time into a set. Comparing to the geometric representation [39], 

                                                

4 Comparing to polyphonic music, in monophonic music, all parts move in parallel rhythm and pitch.  
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the set-sequence representation is more rigid showing less flexibility in discovered patterns. 

But, without missing some significant patterns, the set-sequence representation can focus on 

the patterns occurring repeatedly over time domain to avoid plenty of irrelevant patterns 

occurring in geometric view.  

4.3 Mining Polyphonic Repeating Patterns  

Two approaches, A-PRPD and D-PRPD, are proposed for mining polyphonic repeating 

patterns from a set-sequence data.  

4.3.1 Apriori-based Polyphonic Repeating Pattern Discovery (A-PRPD) 

Algorithm A-PRPD (Apriori-based Polyphonic Repeating Pattern Discovery) is a level-wise 

approach based on Apriori property [2] to discover polyphonic repeating patterns from music 

data. The patterns are generated step by step from short length pattern to long length one. The 

frequent patterns with short length are discovered first and used to generate longer patterns. 

For the description of the process, we denote the set of length-k polyphonic repeating pattern 

by Ck. The frequent patterns are collected from Ck is denoted by Lk. The main process makes 

multiple passes over data. The k-th pass generates length-k patterns. The first pass, find L1 by 

checking if the frequency of each possible length-1 pattern is larger or equal to the threshold t. 

The subsequent passes consist of two steps. In the k-th pass, the first step generates the set of 

length-k candidate patterns Ck from Lk-1 by employing pattern-extend method described later. 

Then, the second step checks frequency freq for each candidate pattern in Ck and finds the set 

of length-k frequent patterns Lk. The subsequent pass repeats until Lk is empty. The answer is 

the union of all frequent patterns in each pass. The detailed algorithm is shown in Figure 4-5. 

The pattern-extend is used to generate all possible patterns Ck from Lk-1. We borrow the 



 

58 

 

concept from anti-monotonic principle
5
. For example, if a length-4 set-sequence pattern <{A}, 

{A,D,E}> is frequent, then the length-3 set-sequence patterns, <{A}, {A,D}> and <{A,D,E}>, 

must be frequent. Thus, we check all pairs in Lk-1 to check if there are length-k patterns.  

Hence, pattern-extend procedure is designed as follows. Let sp1=<{e1,1, e1,2, …, e1,n1}, {e2,1, 

e2,2, …, e2,n2}, …, {ek-1,1, ek-1,1, …, ek-1,nk-1}> and sp2=<{f1,1, f1,2, …, f1,m1}, {f2,1, f2,1, …, 

f2,m2}, …, {fk-1,1, fk-1,1, …, fk-1,mk-1}>, then sp1‟= sp1 with no the first element, i.e., <{e1,2, 

e1,3, …, e1,n1}, {e2,1, e2,2, …, e2,n2}, …, {ek-1,1, ek-1,1, …, ek-1,nk-1}>; and sp2‟= sp2 with no last 

element, i.e., <{f1,1, f1,2, …, f1,m1}, {f2,1, f2,1, …, f2,m2}, …, {fk-1,1, fk-1,1, …, fk-1,mk-2}. For each 

pair of patterns (sp1, sp2) in Lk-1, it is checked if sp1‟ is equal to sp2‟. If established, it means 

that this pair can be used to generate a length-k candidate pattern, c_sp, by adding fk-1,mk-1 into 

the first set of spi , i.e., c_sp = <{e1,1, e1,2, …, e1,n1}, {e2,1, e2,2, …, e2,n2}, …, {ek-1,1, ek-1,1, …, 

ek-1,nk-1, fk-1,mk-1}>. Note that only when c_sp.length = k, c_sp is added into Ck, i.e.,     

{ek-1,1, ek-1,1, …, ek-1,nk-1}, fk-1,mk-1≠ e. 

We give an example of pattern-extend as follows. While checking the pair of patterns in L4, 

(sp1, sp2)=(<{A},{C,D},{E}>, <{C,D},{E,F}>), we compute  sp1‟ and sp2‟, respectively. 

Since sp1‟ is <{C,D}, {E}> by deleting the first element of sp1 and sp2‟ is <{C,D}, {E}> by 

deleting the last element of sp2; sp1‟ is equal to sp2‟. Therefore, the length-5 pattern <{A}, 

{C,D}, {E,F}> is generated from this pair of length-5 by adding the last element of sp2 to the 

last set of sp1 since the cardinality of the last set of sp2 is not 1. On the other hand, consider 

this pair (<{A,C,D}>, <{C,D}, {E}>) which can be used to generate a candidate after 

checking that these two conditions are established, the length-4 pattern <{A,C,D}, {E}> is 

generated from this pair by appending the last set of sp2 to the last of sp1 because of the 

                                                

5 If a frequent length-l set-sequence pattern, then all l−1 set-sequence patterns are frequent in this set-sequence 

pattern.  
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cardinality of the last set of sp2 is 1. By this approach of generating candidates, any possible 

solution would not be lost. 

 

Figure 4-6. An example of running A-PRPD algorithm  

An example of running A-PRPD is given in Figure 4-6.. A set-sequence data, <{A}, {C,E}, 

{A,D}, {B,C,E}, {A,E}, {A}>, is given and we assume threshold t is 2. L1 is obtained by 

scanning the given data sequence and checking frequency for each item. The pattern-extend is 

called to generate C2 by inputting L1. In the process of pattern-extend, each pair of the patterns 

in L1 will be checked, including itself, that is, (<{A}>, <{A}>), (<{A}>, <{C}>), (<{A}>, 

<{E}>), (<{C}>, <{A}>), (<{C}>, <{C}>) and all other pairs. There are 12 set-sequence 

patterns in C2. After checking each pattern in C2 whether it is larger or equal to 2, we will 

have L2. By repeating this process, step 2 to 6 in algorithm, L3 is derived, and then L4. Since 

the empty set is generated by applying the L4 to pattern-extend function, the process will be 

terminated. All set-sequence patterns in Li, where i={ 1, 2, 3, 4 }, are frequent polyphonic 

sd = <{A},{C,E},{A,D},{B,C,E},{A,E},{A}>, t=2

pattern freq
<{A}> 4
<{B}> 1

<{C}> 2

<{D}> 1
<{E}> 3

pattern freq
<{A}> 4
<{C}> 2
<{E}> 3

pattern freq
<{A},{A}> 1
<{A,C}> 0

<{A},{C}> 2

<{A,E}> 1
<{A},{E}> 2
<{C},{A}> 2
<{C},{C}> 0
<{C,E}> 2

<{C},{E}> 1
<{E},{A}> 2
<{E},{C}> 0
<{E},{E}> 1

pattern freq

<{A},{C}> 2

<{A},{E}> 2
<{C},{A}> 2
<{C,E}> 2

<{E},{A}> 3

pattern freq

<{A},{C},{A}> 2

<{A},{C,E}> 2
<{A},{E},{A}> 2
<{C},{A},{C}> 1
<{C},{A},{E}> 1
<{C,E},{A}> 2

<{E},{A},{C}> 1
<{E},{A},{E}> 1

pattern freq

<{A},{C},{A}> 2

<{A},{C,E}> 2
<{A},{E},{A}> 2
<{C,E},{A}> 2

Pattern freq
<{A},{C,E},{A}> 2

Pattern freq
<{A},{C,E},{A}> 2

C1: L1:

L3:C3:

L2:C2:

C4: L4:
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repeating patterns. 

Algorithm T-PRPD(sd,t) 

Input: sd, t 

Ouput: polyphonic repeating pattern set 

1: Generate root node r_node; 

2: L1={sp1 |all frequent length-1 patterns}; 

3: foreach pattern sp1 in L1 do 

4:  Generate child c_node linked by r_node and record sp; 

5: foreach child c_node in r_node do 

6:  DFS-tree(c_node, ds, L1); 

7: extract_pattern(r_node);  
 

Algorithm DFS-tree(p_node, ds, L1) 

1: foreach pattern 
11 Lsp   do 

2:  sp_set=set-extend(p_node, sp);  

3:  sp_seq=sequence-extend(p_node, sp); //append the sp to the p_node 

4:  if (sp_set.length=p_node.length+1) AND (freq(sp_set,ds)≧t) do 

5:   Generate a node c_nodeset linked by p_node and recording sp_set; 

6:   DFS-tree(c_nodeset); 

7:  if (freq(sp_seq,ds)≧t) do 

8:   Generate a node c_nodeseq linked by p_node and recording sp_seq; 

9:   DFS-tree(c_nodeseq); 

10: return null;  

Figure 4-7. D-PRPD algorithm  

4.3.2 DFS-based Polyphonic Repeating Pattern Discovery (D-PRPD) 

Since observing that A-PRPD takes too much time to generate candidates for discovering 

polyphonic repeating patterns, an efficient algorithm called D-PRPD (DFS-based Polyphonic 

Repeating Pattern Discovery), is proposed to overcome the issue of candidate generation. A 

lexicographic tree is used in D-PRPD to provide a path to search polyphonic repeating 

patterns from shorter length pattern to longer one in depth-first-search manner. The frequent 

lenth-1 patterns are used to extend the length of the discovered frequent pattern for finding 

longer patterns. When In the lexicographic tree of D-PRPD, the node contains three types of 

data: root node, set-sequence pattern and frequency. Moreover, the height of a node means the 

length of the pattern in this node.  
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Figure 4-8. An example of two operations for pattern extension in D-PRPD, set-extend and 

sequence-extend  

Algorithm description of D-PRPD is given in Figure 4-7. First, D-PRPD generates the root 

node with an empty set-sequence pattern and discovers all length-1 set-sequence. For each 

length-1 set-sequence, D-PRPD generates a node which stores the pattern and is linked by 

root node. After that, D-PRPD performs the DFS-tree to grow the node in the tree recursively. 

Note that DFS-tree method adapts depth-first-search approach to find set-sequence patterns, 

i.e., it will find pattern as longer length as possible until the frequency of the pattern is less 

than user-defined threshold t.  

 

Figure 4-9. An example of a long pattern found by running D-PRPD  

While a node generates its child node, D-PRPD extends the length of set-sequence by using 

set-extend and sequence-extend to avoid neglecting possible candidates. The set-extend 

operation is to extend the pattern by adding an item to the last set of a pattern. Another 

<{A},{B}>

<{A},{A,B}> <{A},{B},{A}>

set-extend(
<{A},{B}>, {A})

sequence-extend(
<{A},{B}>, {A})



<{A}> <{B}> <{C}> <{D}> <{E}>

<{A,B}> <{A},{B}>

set-sequence data: <{A,E},{B,D},{A,B,C},{B},{A},{B,C},{A,C}>
threshold: 2

<{A},{A,B}> <{A},{B},{A}>

<{A},{B},{A},{A}> <{A},{B},{A,B}> <{A},{B},{A},{B}> <{A},{B},{A,C}>

<{A},{A}>
sequence-extend

set-extend
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operation, sequence-extend is used to extend the pattern by appending a set formed by an item 

to the last of the pattern. An example of these two operations is shown in Figure 4-8. However, 

in some circumstances, when the set-extend operation is applied, the item we added has 

already in the last set of the pattern. In this case, the extended pattern will be ignored because 

the length of the pattern does not increase. For example, as set-extend operation is performed 

over this pair (<{A,B},{C,D}>,{C}), the result <{A,B}, {C,D}> is ignored.  

 

Figure 4-10. An example of all patterns found by D-PRPD  

While a pattern is not frequent, the pattern generated in the subtree of this node will not be 

frequent, according to anti-monotonic property. As a result, DFS-tree does not grow at this 

node to find the longer length pattern. Instead, this procedure finds the shorter length pattern, 

but in different prefix. Finally, all frequent patterns will be found in lexicographic order. We 

give an example in Figure 4-9. Assume there is a set-sequence data sd=<{A,E}, {B,D}, 

{A,B,C}, {B}, {A}, {B,C}, {A,C}> and threshold is 2. To discover all frequent set-sequence 

patterns in sd, we first find all length-1 patterns, running as breadth first search in the 

lexicographic tree, and the length-1 patterns <{A}>, <{B}> and <{C}> are found. The 

frequent patterns are framed in bold line and the infrequent ones are framed in a dotted line. 

Then, the node of the pattern <{A}> is grown by extended <{A}> with set-extend and 

sequence-extend operations. But, only <{A}, {A}> is formed. After checking this pattern is 



<{A}> <{B}> <{C}> <{D}> <{E}>

<{A},{B}>

set-sequence data: <{A,E},{B,D},{A,B,C},{B},{A},{B,C},{A,C}>
threshold: 2

<{A},{B},{A}>

<{A,C}>

<{A},{B},{A,C}>

<{B},{A}>

<{B},{A,C}> <{B},{A},{B}>

<{B},{A},{B},{A}>

<{A},{B},{C}>
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infrequent, the pattern is also eliminated. By repeating this process, we find pattern <{A}, 

{B}> is frequent. From this node, the pattern is extended. We find frequent pattern <{A}, {B}, 

{A}> and then <{A}, {B}, {A,C}> in the next level. The final result is given in Figure 4-10.  

4.4 Bit-String Approach 

Frequency counting is the main performance issue of our proposed algorithms. To improve 

the performance, a bit-string approach is developed for counting frequency efficiently. 

 
 sd=<{A,E}, {B,D}, {A,B,C}, {B}, {A}, {B,C}, {A,C}> 

<{A}> 1 0 1 0 1 0 1 

<{B}> 0 1 1 1 0 1 0 

<{C}> 0 0 1 0 0 1 1 

<{A,C}> 0 0 1 0 0 0 1 

<{A},{B},{A}> 1 0 1 0 1 0 0 
 

Figure 4-11. An example of bit-string index  

4.4.1 Bit-String Index 

A set-sequence pattern sp in a set-sequence data sd can be represented by a bit-string. The 

length of the bit-string bs(sp) is equal to the size of sd. The k-th value of bs(sp) is 1 when sp 

has a k-position instance in sd ; otherwise, k-th value is 0. Furthermore, the total number of bit 

“1” in the bit string is equal to the frequency of this pattern. We give the formal definition of 

the bit-string index as follows.  

Definition 4 (bit-string index) Given a set-sequence pattern sp=< p1, p2, …, pi > and a 

set-sequence data sd=< q1, q2, …, qj >, where size(sp)≦size(sd) and size(sd) is j. We say the 

bit-string of sp in sd is bs(sp)= b1 b2 … bj, where bk=1, if b has a k-position instance in sd; 

otherwise, bk=0.  
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An example of bit-string index is given in Figure 4-11. For a sequence pattern sp=< {A}, {B}, 

{A} >, it has k-position instances in sd at 1, 3 and 5; thus, bs(< {A}, {B}, {A}>)=1010100.  

4.4.2 Frequency Counting with Bit-String Operation 

While the bit strings are maintained, the frequency of the extended pattern can be counted 

efficiently by applying bit-string operation. We denote the bit string of the length-l pattern as 

bs(spl).  

Bit-String Approach used in A-PRPD 

In the proposed A-PRPD algorithm, pattern-extend function is used for finding longer 

polyphonic repeating patterns. That is, a length-l pattern c_sp is generated by two length-(l-1) 

pattern sp1l-1 and sp2l-1. As previous mentioned, we have already maintained their bit strings, 

bs(sp1l-1) and bs(sp2l-1). The pattern-extend function is performed when sp1‟l-1 (sp1l-1 deleting 

the first element) and sp2‟l-1 (sp2l-1 deleting the last element) are equal. Depended on the 

cardinality of first set of sp1l-1 (larger than 1 or equal to 1), the size of sp1‟l-1 and sp2‟l-1 are 

equal to sp1l-1.size or sp1l-1.size－1. When the cardinality of the first set of sp1l-1 is larger than 

1, then the first set of sp2l-1 is included by the first set of sp1l-1; otherwise, the first set of sp2l-1 

is included by the second set of sp1l-1. According to pattern-extend operation, c_spl is equal to 

the pattern which the last element of sp2l-1 is added to the last set of sp1l-1 or is appended to 

sp1l-1. We discuss these two cases for designing bit-string operation as follows.  

Case 1: Since the second set of sp2l-1 is comprised by the first set of sp1l-1, a property is in the 

extended pattern spl: the element i used to extend will occur at the size‟-th position. We know 

bs(sp2l-1) records all k-positions instances in sd. It also denotes that, for each k-position 

instances, there is an element i appearing after size‟ or size‟－1 position. Thus, bs(spl) can be 

derived by checking all k-position instances of sp1l-1 whether there is an element appearing 
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after size‟ or size‟－1 position. The examination can be accomplished by using two hardware 

operations, bitwise-and-operation (denoted by „&‟) and bitwise-shift-operation (denote by 

LEFT_SHIFT), as the formula: bs(sp1l-1) & LEFT_SHIFT1(bs(sp2l-1)).  

Case 2: Since the first set of sp2l-1 is included by the first set of sp1l-1, it not necessary to shift 

bs(sp2l-1) to align bs(sp1l-1). Thus, bs(spl) can be derived by bs(sp1l-1) & bs(sp2l-1). 

To summarize, the bit-string of length-l pattern, bs(spl) can be derived by the following 

formula.  

bs(spl) = bs(sp1l-1) & LEFT_SHIFTi(bs(sp2l-1))               (8) 

where i=0, if the cardinality of the first set of sp1l-1 is equal to 1; otherwise, i=0.  

For example, given sp13 = <{A}, {B}, {A}>, sp23 = <{B}, {A,C}>, and their bit-string 

representations are bs(sp13) = 1010100, bs(sp23) = 0100010. After checking, these two 

length-3 patterns can be used to generate a candidate sp4 = <{A}, {B}, {A,C}>. We need to 

check the frequency of sp4. The process of calculating the frequency of this sp4 by bit-string 

operation is described as follows. First, we obtain LEFT_SHIFT1(bs(sp23)) = 1000100. After 

that, we perform AND operation with bs(sp13) = 1010100 and LEFT_SHIFT1(bs(sp23)) = 

1000100. Hence, we obtain bs(<{A}, {B}, {A,C}>)=1000100. Consequently, the frequency 

of sp4 is 2 by counting „1‟ of the bit-string.  

Bit-String Approach in D-PRPD 

In D-PRPD, a candidate pattern is generated from the pattern in parent node and length-1 

pattern by set-extend or sequence-extend operation. For descriptions, we discuss 

sequence-extend operation first, then, set-extend operation.  

(a) sequence-extend operation 

The sequence-extend operation extends a length-(l-1) pattern by appending a size-1 pattern. 
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According to definition, we know spl-1=< s1,…, sm-1> and spl=< s1,…, sm-1, {i}>, where si is a 

set and 
1

1

1




ls
m

i

. The sequence-extend is to attached the size-1 set to the pattern; that is, 

spl has one more set {i} than spl-1, which appears at m-th position. If we know which 

k-position instances of spl-1 in sd appearing {i} after m position(s), then, k-position instances 

of spl is derived. As we known, bs(spl-1) and bs(sp1) record all position instances of spl-1 and 

sp1, respectively. The behavior “checking every k-position instances of bs(spl-1) whether has 

sp1 (i.e. {i}) after m position(s)” is equal to Equation (9).  

bs(sp’l) = bs(spl-1) & LEFT_SHIFTi(bs(sp1))                    (9) 

where i is the position of the last set of spl-1.  

For example, given spl-1=<{A}, {B}, {A}>, sp1=<{B}>, bs(spl-1)=1010100, 

bs(<{B}>)=0111010, and we apply set-extend(<{A}, {B}, {A}>, <{B}>) to derive bs(<{A}, 

{B}, {A}, {B}>). In this case, the position of the last set of sp is 3, so bs(<{B}>) has to left 

shift 3 positions, and we obtain LEFT_SHIFT2(bs(sp1))=1010000. Then, performing AND 

operation between bs(spl-1)=1010100 and LEFT_SHIFT2(bs(sp1))=1010000 will derive 

bs(<{A}, {B}, {A}, {B}>)=1010000. After aggregating „1‟ in the bit string, frequency of sp’l  

is 2.  

(b)  set-extend operation  

Since spl-1=< s1,…, sm-1> and sp1=< {i} >, by set-extend(spl-1, sp1) , we have spl=< s1,…, sm-1

∪ {i}>. In spl, the position of the last set which {i} is included is m-1 position after the first 

set. The set {i} is less one position than {i} in sequence-extend. Thus, with the same reason, 

we check every k-position instances of bs(spl-1) if sp1 (i.e. {i}) appears m position(s) later. In 

set-extend operation, compare to sequence-extend operation, sp1 is added to the last set of spl-1, 

consequently, sp1 needs to be shifted left less 1 position than the position of sp1 in 

set-sequence operation be shifted. 
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In set-extend operation, the formula is designed as Equation (10).   

bs(sp’l) = bs(spl-1) & LEFT_SHIFTi-1(bs(sp1))                  (10) 

where i is the position of the last set of spl-1.  

For example, given sp=<{A}, {B}, {A}>, sp1=<{C}>, and their bit string are 

bs(spl-1)=1000100, bs(<{C}>)=0010011. We apply set-extend(<{A}, {B}, {A}>, <{C}>) to 

derive bs(<{A}, {B}, {A,C}>). In this case, the position of the last set of sp is 3, so bs(<{C}>) 

has to left shift 3−1 positions, and we obtain LEFT_SHIFT2(bs(sp1))=1001100. Then, 

performing AND operation between bs(spl-1)=1000100 and LEFT_SHIFT2(bs(sp1))=1001100 

will derive bs(<{A}, {B}, {A,C}>)=1000100. After aggregating „1‟ in the bit string, the 

frequency of sp’ is 2.  

4.5 Experiments of Polyphonic Repeating Pattern Mining  

To show efficiency of our approaches, a series of experiments are conducted. We also show 

the effectiveness of our approaches.  

4.5.1 Efficiency 

We present experimental results on the performance of our two algorithms and these two ones 

improved by bit-string approaches. All the experiments were conducted on a IBM desktop 

computer with a 2.4 Ghz Intel(R) Pentium(R) quad-core processor with 4 gigabytes main 

memory running Microsoft Windows XP Professional sp2 (32-bit) operating system. The 

algorithms were implemented in C++ with Standard Template Library (STL). The source 

codes of these algorithms are available at URL 

(http://mpc.cs.nctu.edu.tw/~stevechiu/exp_data/prpd_algo.zip). Note that the runtime was 

measured with the output turned off. For our experimental evaluation we used both real and 



 

68 

 

synthetic set-sequence data.  

Table 4-2. Parameters of experiments  

 

Parameter Description 

t Minimal frequency threshold  

S Average size of a set-sequence data 

T Average cardinality of a set in a set-sequence data 

N Number of distinct elements in a set-sequence data 

 

The real music objects of MIDI format were collected from internet. There were 143 music 

objects in total. Interested readers can download these music objects at URL 

(http://mpc.cs.nctu.edu.tw/~stevechiu/exp_data/music143.zip). They were classical music 

objects composed by various composers in different periods, from Baroque to Romantic. 

After preprocessing, each music object was converted into a set-sequence data. The average 

size of a set-sequence data was 1451 and the average cardinality of a set was 1.89. In the 

experiments, these set-sequences were represented in exact pitch. According to MIDI standard, 

the alphabet size of EPV (exact pitch value representation) was 128. We counted distinct 

elements of every set-sequence from 1 to 128. The real data music objects were average 46 

distinct elements in a set-sequence data. As far as the synthetic dataset is concerned, the 

dataset is generated based on the method [18] with some modifications to generate 

set-sequence data and patterns. The set-sequence patterns and a set-sequence data are 

generated with uniform note distribution. Each generated set-sequence pattern is duplicated 

into several instances. These instances are inserted into the generated set-sequence data. Due 

to flexibility of synthetic dataset, we can control four factors which dominate the performance 

of the proposed algorithms in Table 4-2: minimal frequency threshold t, the average size of a 

set-sequence data |S|, the average cardinality of a set in a set-sequence data |T| and the number 

of distinct elements in a set-sequence data |N|.  
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(a) 

 

 

(b) 

Figure 4-12. Elapsed time versus frequency for the real dataset, |S|:1451, |T|:1.89 (a) real dataset 

(|N|:46 in (PI, -)), (b) real dataset (|N|:72 in (EPV, EDV))  

The first two experiments, as shown in Figure 4-12a and Figure 4-12b, illustrate the elapsed 

time of A-PRPD, D-PRPD, “A-PRPD+bit_string” and “D-PRPD+bit_string” with respect to 

the minimal frequency threshold t (percentage in total number) on real data in (PI, -) and (EPV, 

EDV) representations, respectively. Comparing Figure 4-12a and Figure 4-12b, we can notice 

that the elapsed time of all algorithms performing on real data in (PI, -) is higher than in (EPV, 

EDV). For most case, |N| in (EPV, EDV) representation is larger than in (PI, -) representation 

while one more attribute is considered. In the same condition, while |N| is lower, more 

polyphonic repeating patterns found leads to more candidates being checked and generated. 

By analyzing these two real datasets, the average maximal length of discovered repeating 

pattern is 15.8 and 4.7, in (EPI, -) and (EPV, EDV), respectively. Hence, the elapsed time 

mining in (PI, -) representation is longer than in (EPV, EDV). “D-PRPD + bit_string” clearly 

outperforms the others under two representations.  
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(a)  (b) 

Figure 4-13. Synthetic dataset: (a) elapsed time versus frequency |S|:1000, |T|:2, |N|:40, (b) 

elapsed time versus average size of a set-sequence data, t:4%, |S|:1000, |T|:2  

 

 

 

(a) 
 (b) 

Figure 4-14. Synthetic dataset: (a) elapsed time versus average cardinality of a set in sd, t:4%, 

|S|:1000, |N|:40, (b) elapsed time versus number of distinct of elements in sd, t:4%,|S|:1000, 

|T|:2  

Notice that D-PRPD, however, shows the longest elapsed time. The major diversity is caused 

by the large number of candidate generated by D-PRPD. While frequency counting operation 

costs time, the drawback imposes much elapsed time on D-PRPD. Although for most case 
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A-PRPD generates fewer candidates than D-PRPD generates, it takes too much time to check 

whether a candidate can be generated (see pattern-extend in A-PRPD). While string-bit 

approach is proposed for frequency counting in both algorithms, the algorithm taking much 

time for frequency counting will takes more advantages. Therefore, the bit-string approach 

improves much performance in D-PRPD than in A-PRPD.  

For synthetic dataset, Figure 4-13 illustrates the elapsed time versus t and |S| (average size of 

a set-sequence data sd). In Figure 4-13a, the elapsed time of four algorithms with respect to t 

for synthetic dataset is shown. The average number of found polyphonic repeating patterns at 

t=2%, t=4%, t=6%, t=8%, and t=10% is 597.89, 150.03, 76.83, 41.43, and 30.13, respectively. 

The result is similar to that of real dataset; that is, “D-PRPD + bit_string” is consistently the 

most efficient in these four experiments. For the varied |S|, our algorithms are linearly scalable, 

as Figure 4-13b shown. Especially, the algorithms with bit-string index perform in uniform 

behavior. Because the bit-string approach uses small storage to index the elements and count 

frequency by low-level binary operation, the elapsed time is almost not affected by the 

average size of sd. However, the algorithms without bit-string approaches need to check more 

positions for a candidate pattern as the average size of sd increases. In addition, Figure 4-14 

illustrates |T| (average cardinality of a set in sd) and |N| (number of distinct elements in sd). 

For the varied |T|, the elapsed time is not affected by this factor, as Figure 4-14a shown. In 

Figure 4-14b, one thing needs to be noticed is that the D-PRPD performs well than A-PRPD 

while |N| is less than about 19. This is because when |N| is smaller, the number of the possible 

frequent length-1 patterns is fewer. That is, in D-PRPD fewer candidates need to check their 

frequency. Overall, “D-PRPD + bit_string” outperforms than the others in most cases.  

4.5.2 Effectiveness 

To show the effectiveness, we give two examples from the results after performing our 
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polyphonic repeating pattern algorithms. For clear readability, we only demonstrate the 

pattern with higher frequency.  

 

Figure 4-15. A pattern appearing in different voices is discovered from C. Nichelmann‟s Gigue  

The first example from C. Nichelmann‟s “Gigue” is shown in Figure 4-15. A pattern is 

discovered in the music represented in sd(PI,EDV) and it‟s instances are in rectangle. While these 

instances of this pattern locate over different voices, our algorithms have an ability to find this 

pattern.  

The second example is an excerpt from Chopin‟s Op.18, as Figure 4-16 shown. The music is 

represented in (PI, EDV), where PI is real transposition. We show two significant polyphonic 

repeating patterns discovered by our algorithm: one is in colored rectangle and the other one 

is in colorless rectangle. The pattern in colored rectangle is one of the important motifs in this 

music. According to motif development, the varied motif is transformed by shifted its original 

pitch. Thus, while the music is viewed in pitch interval of real transportation perspective, this 

kind of patterns can be found. On the other words, only the colorless pattern can be found 

from the music represented in (EPV, EDV). The patterns discovered from sd(PI,EDV) is 

contained by the patterns discovered from sd(EPV,EDV). Note that the instances in colorless 

rectangle show an example that this period of repetition cannot be found by traditional 

repeating patterns mining algorithm because the circled note could lead to the fault of the 

main melody extraction approach [51]. The significant motif pattern can be found when the 

music is in polyphonic form and discovered by our proposed algorithms.  
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Figure 4-16. The patterns discovered from Chopin‟s “Grande Valse brillante” (Op. 18)  

As these two examples shown, we believe that most significant musical patterns can be found. 

Moreover, we can find not only traditional repeating patterns in monophonic form but also 

more significant repeating patterns in polyphonic form which cannot be found by previous 

approaches. We think that there are two future directions can be made to improve our 

approaches. First, our developed approaches match the instances of the pattern exactly 

thereby missing some instances which appears approximately. Compare to approximate 

repeating pattern, it will be a different challenge to define what is similar in polyphonic form. 

Second, different patterns are discovered in different representations by our proposed 

approaches. An interesting direction is to design a method to present only significant patterns 

by integrating all results of discovered patterns in different representations.  

 



 

74 

 

CHAPTER 5 CONCLUSIONS AND FUTURE WORK 

In this Chapter, summaries of our works are given. Some possible future works are also 

discussed.  

5.1 Conclusions 

5.1.1 Summary of Automatic Music Arrangement Framework  

In this dissertation, we propose a new framework that is able to arrange multipart scores for 

an instrument with consideration of its role in music. The arrangement element analysis 

shows an important factor for arrangement, and can contribute to main melody extraction. To 

test our framework, we implemented a system which arranges for a piano. The Turing-test 

experiment shows that it is difficult to distinguish between human- and system-arranged 

music. While our system is able to produce viable and adaptable arrangement for piano, it can 

also be applied to many other instruments with the modification of playability function.  

5.1.2 Summary of Polyphonic Repeating Pattern Mining 

In this chapter, we studied a problem of polyphonic repeating patterns in music. A music 

object is modeled as a set-sequence data. We formally defined the polyphonic repeating 

pattern discovery problem. Two algorithms, A-PRPD (Apriori-based Polyphonic Repeating 

Pattern Discovery) and D-PRPD (DFS-based Polyphonic Repeating Pattern Discovery), are 

proposed for mining polyphonic repeating patterns from music data. A-PRPD uses 

Apriori-based method to discover longer set-sequence patterns, and D-PRPD maintains a 

lexicographic tree which provides a path to search these patterns. Furthermore, we also 

proposed a bit-string approach to improve the efficiency of frequency counting for both 

algorithms. Our experimental results demonstrate that D-PRPD with bit-string approach 
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outperforms others in most case. An interesting direction for future work is to consider how to 

extend these techniques in general to discover other kinds of advanced patterns.  

5.2 Future Work 

With the capabilities of the proposed music arrangement framework, there are several 

interesting extensions on this framework, as listed below.  

Arranging for Various Instruments  

In our proposed automatic music arrangement framework, it is able to arrange multipart 

scores for an instrument. Since the piano arrangement system is implemented, we will try to 

arrange for the other instruments by designing the various playability functions. Some 

playability functions are not intuitive to design, such as guitar, piano, etc. How to design these 

playability functions is an interesting research topic.  

Arranging for an Ensemble 

While the proposed framework can arrange for various instruments, the next interesting 

research issue is how to arrange for an ensemble, i.e., a set of instruments. The main problem 

is as follows: Given a set of instruments, how to decide which one plays which type of 

arrangement element is an interesting issue.  After deciding the types of the arrangement 

element for each instrument, the system will be able to perform the phrase selection and finish 

the arrangement for an ensemble.  



 

76 

 

REFERENCES 

[1] E. F. Adebiyi, T. Jiang and M. Kaufmann, “An Efficient Algorithm for Finding Short 

Approximate Non-tandem Repeats,” Bioinformatics, Vol. 17, No. 1, pp. S5-S12, 2001. 

[2] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules,” In Proc. of 

International Conference on Very Large Data Bases, (VLDB'94), 1994.  

[3] R. Agrawal and R. Srikant, “Mining Sequential Patterns,” In Proc. of International 

Conference on Data Engineering, (ICDE'95), 1995.  

[4] G. Benson, “A Space Efficient Algorithm for Finding the Best Non-overlapping 

Alignment Score,” Theoretical Computer Science, Vol. 145, No. 1&2, pp. 357-369, 1995.  

[5] A. Berndt, K. Hartmann, N. Rober and M. Masuch, “Composition and Arrangement 

Techniques for Music in Interactive Immersive Environments,” In Proc. of Audio Mostly 

Conference, 2006.  

[6] B. Boser, I. Guyon and V. Vapnik, “A Training Algorithm for Optimal Margin Classifiers,” 

In Proc. of the Fifth Annual Computational Learning Theory, 1992.  

[7] P. Brucker and L. Nordmann, “The k-track assignment problem,” SIAM Journal of 

Computing, Vol. 52, pp. 97-122, 1994.  

[8] E. Cambouropoulos, “The Local Boundary Detection Model (LBDM) and its Application 

in the Study of Expressive Timing,” In Proc. of International Computer Music Conference, 

(ICMC'01), 2001.  

[9] S.-C. Chiu and M.-K. Shan, “Computer Music Composition Based on Discovered Music 

Patterns,” In Proc. of IEEE International Conference on Systems, Man and Cybernetics, 

(SMC'06), 2006.  

[10] S.-C. Chiu, M.-K. Shan, J.-L. Huang and H.-F. Li, “Mining Polyphonic Repeating Patterns 

from Music Data Using Bit-string Based Approaches,” In Proc. of International 

Conference on Multimedia and Expo, (ICME'09), 2009.  



 

77 

 

[11] S.-Y. Chiu, S.-C. Chiu and J.-L. Huang, “On Mining Repeating Pattern with Gap 

Constraint,” In Proc. of International Symposium on Advances of High Performance 

Computing and Networking, (AHPCN'09), 2009.  

[12] J. W. Chung, “The Affective Remixer: Personalized Music Arranging,” In Proc. of 

Computer-Human Interaction, (ACM SIGCHI'06), 2006.  

[13] D. Conklin and C. Anagnostopoulou, “Representation and Discovery of Multiple 

Viewpoint Patterns,” In Proc. of International Conference on Computer Music, 

(ICMC'01), 2001.  

[14] D. Conklin, “Representation and Discovery of Vertical Patterns in Music,” In Proc. of 

International Conference on Music and Artificial Intelligence, (ICMAI'02), 2002.  

[15] V. Corozine, Arranging Music for the Real World, Mel Bay, 2002.  

[16] R. Daniel and W. D. Potter, “GA-based Music Arranging for Guitar,” In Proc. of 

International Congress on Evolutionary Computation, (CEC'06), 2006.  

[17] T. Hastie and R. Tibshrani, “Classification by Pairwise Coupling,” The Annals of 

Statistics, Vol. 26, No. 2, 1998.  

[18] J.-L. Hsu, C.-C. Liu and A. L.-P. Chen, “Efficient Repeating Pattern Finding in Music 

Databases,” In Proc. of International Conference on Information and Knowledge 

Management, (CIKM'98), 1998.  

[19] J.-L. Hsu, C.-C. Liu and A. L.-P. Chen, “Discovering Nontrivial Repeating Pattern in 

Music Data,” IEEE Transactions on Multimedia, Vol. 3, No. 3, pp. 311-325, 2001.  

[20] J.-L. Hsu, A. L.-P. Chen and H.-C. Chen, “Finding Approximate Repeating Patterns from 

Sequence Data,” In Proc. of International Symposium on Music Information Retrieval, 

(ISMIR'04), 2004.  

[21] N. C. Jones and P. A. Pevzner, An Introduction to Bioinformatics Algorithms, The MIT 

Press, 2004.  



 

78 

 

[22] I. Karydis, A. Nanopoulos and Y. Manolopoulos, “Finding Maximum-length Repeating 

Patterns in Music Databases,” Multimedia Tools and Applications, Vol. 32, No. 1, pp. 

49-71, 2007.  

[23] A. A. Kasimi, E. Nechols and C. Raphael, “Automatic Fingering System (AFS),” In Proc. 

of International Conference on Music Information Retrieval, (ISMIR'05), 2005.  

[24] A. A. Kasimi, E. Nechols and C. Raphael, “A Simple Algorithm for Automatic Generation 

of Polyphonic Piano Fingerings,” In Proc. of International Conference on Music 

Information Retrieval, (ISMIR'07), 2007.  

[25] J.-L. Koh and Y.-T. Kung, “An Efficient Approach for Mining Top-K Fault-Tolerant 

Repeating Pattern,” In Proc. of 11th International Conference Database Systems for 

Advanced Applications, (DASFAA'06), 2006.  

[26] G. Landau, J. Schmidt, “An Algorithm for Approximate Tandem Repeats,” In Proc. of 4th 

Annual Symposium on Combinatorial Pattern Matching, 1993. 

[27] O. Lartillot, “Discovering Musical Patterns through Perceptive Heuristics,” In Proc. of 

Internal Symposium on Music Information Retrieval, (ISMIR'03), 2003.  

[28] O. Lartillot, “A Musical Pattern Discovery System Founded on a Modeling of Listening 

Strategies,” Computer Music Journal, Vol. 28, No. 3, pp. 53-67, 2004.  

[29] O. Lartillot, “Efficient Extraction of Closed Motivic Patterns in Multi-dimensional 

Symbolic Representations of Music,” In Proc. of International Symposium on Music 

Information Retrieval, (ISMIR'05), 2005.  

[30] K. Lemstrom and A. Pienimaki, “On Comparing Edit Distance and Geometric 

Frameworks in Content-based Retrieval of Symbolically Encoded Polyphonic Music,” 

Musicae Scientiae, Vol. 11, pp. 135-152, 2007.  

[31] C.-R. Lin, N.-H. Liu, Y.-H. Wu and A. L.-P. Chen, “Music Classification Using 

Significant Repeating Patterns,” In Proc. of International Conference on Database 

Systems for Advanced Applications, (DASFAA'04), 2004.  



 

79 

 

[32] N.-H. Liu, Y.-H. Wu and A. L.-P. Chen, “An Efficient Approach to Extracting 

Approximate Repeating Patterns in Music Databases,” In Proc. of the 10th International 

Conference on Database Systems for Advanced Applications, (DASFAA'05), 2005.  

[33] C.-C. Liu, J.-L. Hsu and A. L.-P. Chen, “Efficient Theme and non-Trivial Repeating 

Pattern Discovering in Music Database,” In Proc. of IEEE International Conference on 

Data Engineering, (ICDE'99), 1999.  

[34] Y.-L. Lo and W.-L. Li, “Linear Time for Discovering Non-trivial Repeating Patterns in 

Music Databases,” In Proc. of IEEE International Conference on Multimedia and Expo, 

(ICME'04), 2004.  

[35] Y.-L. Lo and C.-Y. Chen, “Fault Tolerant Non-trivial Repeating Pattern Discovering for 

Music Data,” In Proc. of IEEE/ACIS International Conference on Computer and 

Information Science, 2006.  

[36] Y.-L. Lo, W.-L. Lee and L.-H. Chang, “True Suffix Tree Approach for Discovering 

Non-trivial Repeating Patterns in a Music Object,” Multimedia Tools and Applications, 

Vol. 37, No. 2, pp. 169-187, 2008.  

[37] S. Lui, A. Horner and L. Ayers, “MIDI to SP-MIDI Transcoding Using Phrase Stealing,” 

IEEE Multimedia, Vol. 13, No. 2, pp. 52-59, 2006.  

[38] E. McCreight, “A Space-Economical Suffix Tree Construction Algorithm,” Journal of the 

ACM, Vol. 23, No. 2, pp. 262-272, 1976.  

[39] D. Meredith, K. Lemstrom and G. A. Wiggins, “Algorithms for Discovering Repeated 

Patterns in Multidimensional Representations of Polyphonic Music,” Journal of New 

Music Research, Vol. 31, No. 4, pp. 321-345, 2003.  

[40] B. Meudic, “Automatic Pattern Extraction from Polyphonic MIDI Files,” In Proc. of 

Computer Music Modeling and Retrieval Conference, (CMMR'03), 2003.  



 

80 

 

[41] T. Nagashima and J. Kawashima, “Experimental Study on Arranging Music by Chaotic 

Neural Network,” International Journal of Intelligent Systems, Vol. 12, No. 4, pp. 232-339, 

1997.  

[42] B. Owsinski, The Mixing Engineer's Handbook, Thomson Course Technology, 1999.  

[43] N. Patel and P. Mundur, “An N-gram based Approach for Finding the Repeating Pattern in 

Musical Data,” In Proc. of European Internet and Multimedia Systems and Applications, 

2005.  

[44] M. Pearce and G. Wiggins, “Towards A Framework for the Evaluation of Machine 

Compositions,” In Proc. of Symposium on Artificial Intelligence and Creativity in the Arts 

and Sciences, (AISB'01), 2001.  

[45] N. A. Rimsky-Korsakov, Sheherazade, Op. 35 (Piano Reduction), G. Schirmer, Inc.,  

[46] M. F. Sagot, “Spelling Approximate Repeated or Common Motifs Using a Suffix Tree,” 

Lecture Notes in Computer Science, Vol. 1380, pp. 111-127, 1998.  

[47] A. Sorensen and A. R. Brown, “Introducing jMusic,” In Proc. of the Australasian 

Computer Music Conference, (interFACES), 2000.  

[48] P. Spencer and P. M. Temko, A Practical Approach to the Study of Form in Music, 

Waveland Press, 1988.  

[49] L. Stein, Structure & Style: The Study and Analysis of Musical Forms, Summy-Birchard 

Music, 1979.  

[50] D. R. Tuohy and W. D. Potter, “An Evolved Neural Network/HC Hybrid for Tablature 

Creation in GA-based Guitar Arranging,” In Proc. of International Computer Music 

Conference, (ICMC'06), 2006.  

[51] A. L. Uitdenbogerd and J. Zobel, “Manipulation of Music for Melody Matching,” In Proc. 

of ACM International Conference on Multimedia, (MM'98), 1998.  

[52] G. White, Instrumental Arranging, McGraw-Hill, 1992.  



 

81 

 

[53] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and 

Techniques, CA: Morgan Kaufmann, 2005.  

[54] Y. Yonebayashi, H. Kameoka and S. Sagayama, “Automatic Decision of Piano Fingering 

Based on Hidden Markov Models,” In Proc. of International Joint Conference on 

Artificial Intelligence, (IJCAI'07), 2007.  

 



 

82 

 

PUBLICATION LIST 

Journal Papers 

1. Jiun-Long Huang, Shih-Chuan Chiu, and Man-Kwan Shan, “Towards an Automatic 

Music Arrangement Framework Using Score Reduction,” accepted by ACM 

Transactions on Multimedia Computing, Communications, and Applications 

(TOMCCAP), 2010.  

2. Shih-Chuan Chiu, Hua-Fu Li, Jiun-Long Huang, and Hsin-Han You, “ Incremental 

mining of closed inter-transaction itemsets over data stream sliding windows,” accepted 

by Journal of Information Science.  

3. Shih-Chuan Chiu, Jiun-Long Huang and Jen-He Huang, “On Processing Continuous 

Frequent K-N-Match Queries for Dynamic Data over Networked Data Sources,” 

accepted by Knowledge and Information Systems.  

4. Jiun-Long Huang, Shih-Chuan Chiu and Xin-Mao Huang, “GPE: A Grid-based 

Population Estimation Algorithm for Resource Inventory Applications over Sensor 

Networks,” Journal of Information Science and Engineering, Vol. 25, No. 1, 210-218, 

January 2009.  

Conference Papers 

1. Shih-Chuan Chiu, Man-Kwan Shan and Jiun-Long Huang, “Automatic System for the 

Arrangement of Piano Reductions,” AdMIRe: International Workshop on Advances in 

Music Information Research 2009 (in conjunction with IEEE International Symposium 

on Multimedia 2009), 459-464, December 14 - December 16, 2009, San Diego, USA. 



 

83 

 

2. Shih-Chuan Chiu, Man-Kwan Shan, Jiun-Long Huang and Hua-Fu Li, “Mining 

Polyphonic Repeating Patterns from Music Data Using Bit-String Based Approach,” 

IEEE International Conference on Multimedia & Expo (ICME 2009), 1170-1173, June 

28 - July 3, 2009, New York, USA.  

3. Shin-Yi Chiu, Shih-Chuan Chiu and Jiun-Long Huang, “On Mining Repeating Pattern 

with Gap Constraint,” International Symposium on Advances of High Performance 

Computing and Networking (AHPCN-09), 557-562, June 25 - June 27, 2009, Seoul, 

Korea.  

 



 

84 

 

VITA 

Shih-Chuan Chiu (邱士銓) was born on January 17, 1980 in Kaohsiung, Taiwan, Republic 

of China. He received the B.S. degree in Computer Science and Information Engineering 

from Tamkang University (TKU) and the M.S. degree in Computer Science from National 

Chengchi University (NCCU), in 2002 and 2004, respectively. He is currently working 

towards the Ph.D. degree in the Department of Computer Science at National Chiao Tung 

University (NCTU). His current research interests include data mining, computer music and 

mobile computing.  

 


