

國 立 交 通 大 學

資訊科學與工程研究所

博 士 論 文

縮編式自動編曲之研究

Automatic Music Arrangement by Score Reduction

研 究 生：邱士銓

指導教授：黃俊龍

共同指導教授：沈錳坤

中 華 民 國 一 百 年 五 月

縮編式自動編曲之研究

Automatic Music Arrangement by Score Reduction

研 究 生：邱士銓 Student：Shih-Chuan Chiu

指導教授：黃俊龍 Advisor：Jiun-Long Huang

共同指導教授：沈錳坤 Co-Advisor：Man-Kwan Shan

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

博 士 論 文

A Dissertation

Submitted to Department of Computer Science

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

May 2011

Hsinchu, Taiwan, Republic of China

中華民國一百年五月

i

縮編式自動編曲之研究

學生：邱士銓 指導教授：黃俊龍 博士

共同指導教授：沈錳坤 博士

國立交通大學 資訊科學與工程研究所

摘要

樂譜縮編(Score Reduction)是一個透過縮編樂譜來達成為單一樂器編曲的過程。在本篇

論文中，我們提出了一個使用樂譜縮編方法的編曲架構，此架構可以自動化為一樣樂器

進行編曲。根據樂譜縮編的方法，我們要盡可能地包含原曲的每一個部份，並同時滿足

目標樂器可彈奏性的限制，使得編曲出來的音樂聽起來和原曲相同。在本架構的第一個

步驟中，我們分析原始曲目的音樂編曲元素(Arrangement Element)。接著，將音樂中的

每個樂句辨識出來，並且根據音樂編曲元素分析的結果與樂句的特性，來分配每個樂句

的重要程度。最後，我們將音樂編曲轉換成一個最佳化的問題並設計一個演算法來解決

這個問題。藉由挑選適當的樂句並且同時考量目標樂器的可彈奏性，來完成編曲。在實

驗中，我們使用這個編曲架構來實作一個鋼琴編曲的系統。許多的實驗被設計來評估我

們系統所產生出來的音樂。為了避免主觀的影響，我們採用了一個類似圖林測試(Turing

Test)的方法來評估這個系統的好壞。實驗的結果證明我們的系統有能力編寫出具品質且

可彈奏的曲子。

此外，為了捕捉到原始音樂的特色，我們介紹了一種新的樣式－多音重覆樣式，並提出

兩個演算法－A-PRPD (Apriori-based Polyphonic Repeating Pattern Discovery) and

D-PRPD (Depth-first-search based Polyphonic Repeating Pattern Discovery)，從原始音樂中

探勘多音重覆樣式。再者，我們設計了位元方法(bit approach)用於我們所提出的兩個演

ii

算法上加速運算。實驗結果顯示，我們提出的演算法是有效率與效果的，並且 D-PRPD

演算法加上位元方法在大多數的情況下是最有效率的演算法。此探勘出的重覆樣式可以

被使用在此音樂編曲架構中的功能性分配的步驟中，使得具有原始音樂特色的樂句較容

易被挑選到。

iii

Automatic Music Arrangement by Score Reduction

Student: Shih-Chuan Chiu Advisor: Dr. Jiun-Long Huang

Co-Advisor: Dr. Man-Kwan Shan

Department of Computer Science

National Chiao Tung University

Abstract

Score reduction is a process that arranges music for a target instrument by reducing original

music. In this dissertation we present a music arrangement framework that uses score

reduction to automatically arrange music for a target instrument. According to the approach of

score reduction, the goal is to include as many important parts of the original music as

possible within the constraint of the target instrument so that the arranged version is similar to

the original. In our proposed framework, the original music is first analyzed to determine the

type of arrangement element of each section. Then, the phrases are identified and each is

assigned a utility according to its type of arrangement element. For a set of utility-assigned

phrases, we finally transform the music arrangement into an optimization problem and

propose a phrase selection algorithm to solve it. The music is arranged by selecting

appropriate phrases satisfying the playability constraints of a target instrument. Using the

proposed framework, we implement a music arrangement system for the piano in our

experiments. Several experiments were conducted to evaluate our system. To avoid subjective

opinions, one approach of the experiments similar to Turing-test is used to evaluate the

quality of the music arranged by our system. The experimental results show that our system is

able to create viable music for the piano.

To capture the characteristics of the music for enhancing the proposed music arrangement

iv

framework, we introduce a new type of repeating patterns, polyphonic repeating pattern and

propose algorithms, A-PRPD (Apriori-based Polyphonic Repeating Pattern Discovery) and

D-PRPD (Depth-first-search based Polyphonic Repeating Pattern Discovery), to discover

them from music data. Furthermore, a bit-string approach is developed for improving the

efficiency of both proposed algorithms. Experimental results show that the proposed

algorithms are both effective and efficient for mining polyphonic repeating patterns from

synthetic music data and real data, and D-PRPD with bit-string approach is the most efficient

approach in most cases. The discovered polyphonic repeating patterns can be used to enhance

in the phrase identification and utility assignment phase of our proposed framework such that

the phrases with music characteristics will be easy to be selected.

v

Acknowledgement

(誌謝)

本論文與博士學位得以順利完成，首先得感謝我的兩位指導教授－黃俊龍老師，以及沈

錳坤老師在研究過程中的悉心指導。在這些年的研究所生涯中，有黃老師一路的提攜與

指導，使得研究能力上得以打穩基礎，並且在研究方法、研究討論、論文修改與投稿上

給我極大的協助；另一方面，政大沈老師在研究上的執著與熱忱啟發我對學術研究的興

趣，並且教導我很多教學與論文報告上的技巧。跟著兩位老師學習讓我受益良多，在此

謹致上我最誠摯的感謝。此外，還要感謝校內的口試委員李素瑛老師與彭文志老師在計

劃書口試、校內口試與校外口試時提供許多寶貴的意見。

同時也感謝校外的口試委員台大電機陳銘憲教授、台大資管李瑞庭教授與清大資工張智

星教授對論文細心審閱，以及在口試過程中提供許多寶貴的建議，讓本篇論文的內容能

夠更加充實、完善。諸位口試委員都是我在學術研究道路上的最佳學習典範。

感謝交大行動與普及計算實驗室(MPC-Lab)與政大多媒體與資料探勘實驗室(DM-Lab)

的學弟妹，謝謝你們在這段時間給我的幫忙與鼓勵，祝福學弟妹們在事業或學業上都有

很好的成就。

最後感謝我的父母與妹妹給我的愛與關懷，讓我無後顧之憂。還有一直陪在我身邊的睦

美，讓我能夠用正面、樂觀的態度來面對這個世界，能夠順利地完成博士學位。

謹以此論文，獻給我摯愛的太太睦美。

邱士銓 謹誌予

交通大學資訊科學與工程研究所

中華民國一百年五月

vi

Table of Contents

Chapter 1 Introduction .. 1

Chapter 2 Preliminary ... 5

2.1 Introduction of Arrangement Elements ... 5

2.2 Related Work of Automatic Music Arrangement ... 6

2.3 Related Work of Polyphonic Repeating Pattern Mining .. 7

Chapter 3 Automatic Music Arrangement Framework... 10

3.1 Track Segmentation Phase .. 11

3.2 Arrangement Element Determination Phase .. 13

3.3 Phrase Identification and Utility Assignment Phase .. 15

3.3.1 Phrase Identification .. 15

3.3.2 Utility Assignment ... 18

3.4 Phrase Selection Phase ... 20

3.4.1 Phrase Selection Problem ... 20

3.4.2 Playability Verification... 21

3.4.3 Phrase Selection Algorithm .. 25

3.4.4 Correctness .. 30

3.4.5 Time Complexity Analysis ... 31

3.4.6 A Running Example of Phrase Selection Algorithm 34

vii

3.5 Experiments of Proposed Music Arrangement Framework 36

3.5.1 Effectiveness of Arrangement Element Determination 37

3.5.2 Turing Test-like Experiment for the Arranged Results 39

3.5.3 Scoring the Arranged Results ... 42

3.5.4 Case Studies... 43

3.5.5 Efficiency of the Piano Arrangement System ... 46

Chapter 4 Polyphonic Repeating Pattern Mining ... 47

4.1 Introduction .. 47

4.2 Preliminary of Polyphonic Repeating Pattern .. 51

4.2.1 Problem of Polyphonic Repeating Pattern Mining .. 51

4.2.2 Music Representation ... 53

4.3 Mining Polyphonic Repeating Patterns ... 57

4.3.1 Apriori-based Polyphonic Repeating Pattern Discovery (A-PRPD)............... 57

4.3.2 DFS-based Polyphonic Repeating Pattern Discovery (D-PRPD) 60

4.4 Bit-String Approach.. 63

4.4.1 Bit-String Index ... 63

4.4.2 Frequency Counting with Bit-String Operation .. 64

4.5 Experiments of Polyphonic Repeating Pattern Mining .. 67

4.5.1 Efficiency .. 67

viii

4.5.2 Effectiveness .. 71

Chapter 5 Conclusions And Future Work .. 74

5.1 Conclusions .. 74

5.1.1 Summary of Automatic Music Arrangement Framework 74

5.1.2 Summary of Polyphonic Repeating Pattern Mining 74

5.2 Future Work ... 75

References ... 76

Publication List .. 82

Journal Papers .. 82

Conference Papers .. 82

Vita .. 84

ix

List of Tables

Table 3-1. List of used notations ... 11

Table 3-2. Features for the classifier ... 14

Table 3-3. Parameters for SVM .. 36

Table 3-4. Confusion matrix for five arrangement elements with tenfold cross-validation 38

Table 3-5. Parameters for our piano arrangement system .. 38

Table 3-6. Music for experiments ... 39

Table 3-7. The results of discrimination test ... 41

Table 3-8. The results of scoring .. 42

Table 3-9. Efficiency of music arranging system .. 46

Table 4-1. All polyphonic repeating patterns discovered from the set-sequence data <{A,E},

{C,D,F}, {D}, {B}, {A,B}, {A,B,C,F}, {C,D}>. (PRP: Polyphonic Repeating Pattern) 52

Table 4-2. Parameters of experiments ... 68

x

List of Figures

Figure 1-1. The flowchart of the proposed music arrangement framework 3

Figure 3-1. An example process of the proposed music arrangement framework 11

Figure 3-2. An example of track segmentation.. 12

Figure 3-3. An example of phrase identification ... 17

Figure 3-4. Piano-Right-Hand-Playability function .. 22

Figure 3-5. Finger-Assignable flowchart .. 23

Figure 3-6. Phrase selection algorithm ... 25

Figure 3-7. An illustration of CP_List={}... 27

Figure 3-8. An illustration of CP_List≠{} ... 28

Figure 3-9. An illustration of the computation at the worst case .. 31

Figure 3-10. An example of the phrase selection algorithm: (a) the identified phrases in the

given score; (b) the identified phrases represented by intervals; (c) a snapshot at index 6; (d)

a snapshot at index 12; (e) a snapshot at index 13 ... 33

Figure 3-11. (a) Original music: excerpt from Duke Jordan “Jordu” (b) System output:

piano-arranged music for a solo piano .. 44

Figure 3-12. (a) Original music: an excerpt from a Irish folk song “Green Grow the Lilacs” (b)

System output: piano-arranged music for solo piano ... 45

Figure 4-1. An example of a repeating pattern .. 48

Figure 4-2. Two examples of polyphonic repeating patterns ... 49

xi

Figure 4-3. An example of quantization process ... 54

Figure 4-4. An example of variant representations .. 55

Figure 4-5. A-PRPD algorithm ... 56

Figure 4-6. An example of running A-PRPD algorithm .. 59

Figure 4-7. D-PRPD algorithm .. 60

Figure 4-8. An example of two operations for pattern extension in D-PRPD, set-extend and

sequence-extend ... 61

Figure 4-9. An example of a long pattern found by running D-PRPD 61

Figure 4-10. An example of all patterns found by D-PRPD .. 62

Figure 4-11. An example of bit-string index ... 63

Figure 4-12. Elapsed time versus frequency for the real dataset, |S|:1451, |T|:1.89 (a) real dataset

(|N|:46 in (PI, -)), (b) real dataset (|N|:72 in (EPV, EDV)).. 69

Figure 4-13. Synthetic dataset: (a) elapsed time versus frequency |S|:1000, |T|:2, |N|:40, (b)

elapsed time versus average size of a set-sequence data, t:4%, |S|:1000, |T|:2 70

Figure 4-14. Synthetic dataset: (a) elapsed time versus average cardinality of a set in sd, t:4%,

|S|:1000, |N|:40, (b) elapsed time versus number of distinct of elements in sd, t:4%,|S|:1000,

|T|:2 .. 70

Figure 4-15. A pattern appearing in different voices is discovered from C. Nichelmann‟s Gigue

 ... 72

Figure 4-16. The patterns discovered from Chopin‟s “Grande Valse brillante” (Op. 18) 73

1

CHAPTER 1 INTRODUCTION

“Over the Rainbow,” a classical ballad has remained popular since 1939. As of now, there are

more than 100 versions of this song, interpreted by numerous artists using different

organizations of instruments in various styles. For example, Jason Castro sang it in reggae

style, accompanied by a ukulele; jazz artists, Tommy Emmanuel used his guitar; and Robert

Kyle played a monophonic tenor sax. When a song is to be performed by an instrument or an

ensemble, a process called music arrangement or transcription is necessary to adapt the song

for the target instrument(s) [15]. Music arrangement gives existing melodies more variety.

In the music industry, there are many applications of music arrangement. For example,

although the average mobile phone now doubles as music player, the function of the

customized ring tone still appeals to people. Music arrangement transforms the original music

object into various styles. There is another issue regarding mobile phones: the problem of

transcoding from MIDI to SP-MIDI (specific polyphonic MIDI) [37]. Due to hardware

limitations, most mobile phones support only SP-MIDI. The polyphony has to be reduced and

its impact on the music, minimized. Music arrangement that reduces multipart instruments

can achieve the same goal. However, the process of extracting the essential part from the

original music is always time-consuming for the arranger. Besides, not every music arranger

is familiar with the properties of the particular instrument. Thus, we believe that automatic

music arrangement is needed to address the problems stated above.

Generally, there are two major approaches to arranging music. One is rewriting a piece of

existing music with additional material. Instead of adding new material, the other one is score

reduction that arrangers reduces the original work from a larger score to a smaller score. That

is, the arranger does not create new counterpoints, harmonies, bass lines, and voices, but only

focuses on eliminating the less important parts of the original score for application to the

2

target instrument and keeps the arranged version similar to the original. Piano reduction is a

word which specifically refers to a two-line staff of a basic component reduced from multipart

music for a piano. Many famous piano reductions include the Bach transcriptions of Concerto

from various composers (bwv 972-987), Wagner/Liszt Tannhäuser, the Sullivan transcriptions

of Concerto Violoncello and orchestra, and Sheherazade Op. 35 of Nikolai Andreyevich

Rimsky-Korsakov [45]. In this dissertation, we concentrate on score reduction for two reasons.

First, score reduction allows a musician to perform a musical piece using the instrument with

which he/she is familiar. Second, less prior studies on the literature focus on how to

automatically create an instrument-playable arrangement.

When arranging a piece of music for a target instrument, it is necessary to take the

characteristics of original music and the inherent restrictions of the target instrument, such as

pitch range and polyphonic limitation. Simply speaking, the goal is to include as many parts

of the original music as possible within the constraint of the target instrument so that the

arranged version is similar to the original. In addition, the role of an instrument varies in the

different organizations of an ensemble. For example, in a big band, the guitar may play

accompaniment; however, for a solo, it may perform melody and accompaniment

simultaneously. The arrangement for the different roles of an instrument needs to be

considered. To achieve this, we apply the concept of arrangement elements to take into

account the different roles of an instrument. The type of arrangement element of a piece of

music presents the function performed by an instrument in the piece of music. According to

the book [42], there are five types of arrangement elements: lead, foundation, rhythm, pad and

fill. Interested reader can be referred to the book [42] for more discussions about the

arrangement elements. To summarize, there are three factors need to be considered: 1. the role

of the target instrument; 2. the characteristics of the original music; and 3. the playability.

3

Track
Segmentation

Arrangement
Element

Determination

Phrase Identification &
Utility Assignment

Phrase
Selection

Original
music

New arranged
music

Music database

Training data

Offline Training

Track
Segmentation

filter

Expert
Annotation

Playability
Verification

Offline Pattern Mining

Polyphonic
Repeating

Pattern Mining

Pattern set

match

Research topic 1: framework of music arrangement system

Research topic 2

Figure 1-1. The flowchart of the proposed music arrangement framework

In this dissertation, we propose a framework that arranges a piece of music by reducing the

multipart score for a given instrument as our first research topic. The main characteristic of

the framework is that the various roles of the target instrument in an ensemble can be

specified by users. Given an original score (multipart) and the role of the target instrument

(proportion of the five types of arrangement elements), the proposed framework will generate

a playable arrangement for the target instrument according to the role user specified. The

framework consists of four phases (see Figure 1-1). First, the music object is first divided into

several segments in track segmentation phase. Next, in the arrangement element

determination phase, a classifier is used to determine the type of arrangement element for

each instrument. The classifier is trained offline by expert-annotated tracks. In the phrase

identification and utility assignment phase, the phrases in a segmented track are identified,

and the utility is assigned for each identified phrase according to the type of arrangement

element of the segmented track. In the playability verification phase, a playability verification

function is used to determine whether the given piece of music can be played by the target

instrument. Finally, in the phrase selection phase, the phrases are selected according to their

utility and playability. The new arranged music is formed by these selected phrases. Based on

4

the proposed framework, we implement a music arrangement system for the piano. Several

experiments are conducted to evaluate the system.

To capture the characteristics of the music, a new type of repeating patterns, polyphonic

repeating pattern, is investigated as our second research topic. We propose two algorithms,

A-PRPD (Apriori-based Polyphonic Repeating Pattern Discovery) and D-PRPD

(Depth-first-search based Polyphonic Repeating Pattern Discovery) to discover them from

music data. Furthermore, a bit-string approach is developed for improving the efficiency of

both proposed algorithms. Experimental results show that the proposed algorithms are both

effective and efficient for mining polyphonic repeating patterns from synthetic music data and

real data, and D-PRPD with bit-string approach is the most efficient approach in most cases.

The discovered polyphonic repeating patterns can be used to enhance in the phrase

identification and utility assignment phase of our proposed framework. For example, while

the identified phrases are similar to the discovered repeating patterns, the utility of the

identified phrases can be increased.

The remainder of this dissertation is organized as follows. Chapter 2 gives a preliminary of

this dissertation including the related work of automatic music arrangement and polyphonic

repeating pattern mining. Chapter 3 gives an introduction of each component of the proposed

music arrangement framework. The other research work of polyphonic repeating pattern

mining is discussed in Chapter 4. The experimental results are given in Chapter 5 while

Chapter 6 concludes this dissertation.

5

CHAPTER 2 PRELIMINARY

2.1 Introduction of Arrangement Elements

In The Mixing Engineer’s Handbook, Owsinski proposed a taxonomy— the so-called

arrangement elements－for the function of a piece of music performed by an instrument [42].

Analyzing the arrangement elements will help musicians understand the structure of the

arrangement so that they can do further processes on the music, such as arranging, mixing, etc.

According to the book [42], there are five types of arrangement elements: lead, foundation,

rhythm, pad, and fill.

Lead the melody and its counterpoint. The melody is the clearest part of music that people

usually remember and hum. The lead is usually demonstrated by a lead vocal or solo

instrument.

Foundation the main rhythm in music. It is always a regular pattern played by a drum

(especially bass drum and snare) or bass instrument.

Rhythm broken bits counted to the foundation played by any instrument. It is more

complicated in beat and used to increase music fluency.

Pad consists of a long sustaining note or chord. Hence, it is usually played by a string

instrument, organ, or synthesizer. Generally, the pad can also denote those sounds which

create ambiance.

Fill usually appears in the spaces between the lead lines to fill up the silence between

successive phrases of lead. It is similar to conversation: If the lead is a call, the fill would be a

response.

These five elements can be viewed as the ingredients of an arrangement. The role of an

6

instrument can be referred to as an arrangement element or a mixture of them. In this

dissertation, “role” and “arrangement element” are used interchangeably.

A passage played by an instrument can be considered to have the property of one or more

arrangement elements. Roughly speaking, in an arrangement, the instrument is played for

presenting the role of melody or accompaniment, or both of them for a solo. If it presents a

melody, the proportion of the lead is especially higher than the others. If it presents

accompaniment, the situation is reversed. For a solo with melody and accompaniment, the

distribution is more uniform. In depth, beyond two rough roles, the subtle role can also be

described on the distribution over these five elements. For example, when many instruments

play accompaniment in music, some focusing on pad and some on rhythm, these subtle roles

of the different distributions can be showed. By understanding the arrangement elements of

music passages, it will be useful to arrange for the various roles of an instrument in music.

2.2 Related Work of Automatic Music Arrangement

Many works related to music arrangement focus on how to transform original music by

changing meta-information (tempo, timbre, etc.) or content (insert note, change pitch,

re-assemble music segments, etc.) [39]. Nagashima and Kawashima employed chaotic neural

networks to create variations on melodies [41]. The examples of the variations of an original

music object are sent to train chaotic neural networks. The networks model the characteristics

of the variations and make a new variation of the original music. Berndt presented the

strategies to synchronize and adopt the game music with player interaction behaviors [5]. The

approach to arrange music in the context of the interaction of applications is to vary the

rhythmic, harmonic, and melodic elements of the basic theme. Chung proposed a real-time

music-arranging system that reacts to the affective cues from a listener [12]. The system

re-assembles a set of music segments according to the inferred affective state of a listener.

7

Based on a probabilistic state transition model, the target affective state can also be induced.

As to the reduction technique of score reduction for an instrument, piano reduction is one of

the important terms particularly referred to a two-line staff of piano reduced from multipart

music. Finale, a commercial software for music notation (http://www.finalemusic.com),

provides a plug-in tool: piano reduction that combines a previously-prepared score into a

two-line staff separated by a user-defined pitch value. However, due to the direct combination

of notes in the score without selection, the part of produced score may be difficult or even

impossible to play. Finale‟s tool just provides a platform on which arrangers can do further

piano reduction. Since the research on guitar fingering became mature [50], Daniel et al.

presented an approach for guitar arrangement [16]. The main concept is to choose a set of

important notes by a search algorithm, with the constraint on the playability of the guitar.

However, this approach is dedicated to a solo guitar and cannot arrange for various roles in

music. In addition, we argue that if the chosen notes came from different instruments, it may

result in the loss of musical meaning, such as the completeness of a piece of melody.

2.3 Related Work of Polyphonic Repeating Pattern Mining

The repeating pattern mining problem has been investigated in the last decade. The first

method to solve this problem is to utilize a suffix tree to find repeating patterns in a DNA

sequences [46]. Suffix tree is a well-known data structure originally developed for string

matching. Repeating patterns can be extracted from a suffix tree, which is constructed by

sharing common prefix of a string. Since there may exist a large number of repeating patterns

in a sequence, the concept of non-trivial repeating pattern was introduced [33]. Hsu et al.

proposed two approaches to efficiently find the repeating patterns in a music object [18][18].

In the first approach, a data structure called correlative matrix is constructed to keep the

intermediate information for substring matching. The lengths and frequencies of all repeating

8

patterns can be derived according to the information in this matrix. The other approach, called

string-join, utilized the anti-monotony property to avoid generating large amount of candidate.

Here the anti-monotonic property is that if a string is frequent, then all its substrings are

frequent. According to this property, shorter frequent patterns are joined into longer ones and

the non-qualified candidates are pruned out. Since a suffix tree was able to construct in linear

time [38], Lo et al. employed this improvement to find repeating patterns [34], [36].

Since some minor variances in the instances of a repeating pattern are tolerable in some areas

such as music, many approaches are investigated to find approximate repeating patterns. Two

previous mentioned approaches, string-join and correlative matrix, are modified [35] to find

approximate repeating patterns. The distance between a pattern and its occurrence is defined

by edit distance. A novel approach treating pattern discovery as instance search problem is

proposed [32]. This method segments a string into a set of small pieces and maps these pieces

into a multi-dimension space based to search in the multi-dimension space to count the

number of occurrences. Two techniques are incorporated to improve the process. In addition,

in bio-informatics, some approximate algorithms are designed to take advantage of the special

properties in DNA strings, such the few kinds of items [46] and short non-tandem patterns [1].

Many different types of repeating patterns are proposed to accommodate to varied patterns in

music [25][11]. In music field, Lartillot proposes a series of work on discovering musical

patterns [27][28][29]. The main idea of these methods is that each pattern is induced by

analyzing the music sequence in chronological order. This process is similar to the simulation

of listening strategy of human. All possible combinations of successive events are stored and

checked. Therefore, very high computation and storage costs are required to deal with a

longer sequence. The approaches mentioned above model music data as a melody line (a

string) and find the repeating patterns on the string. That is, they are designed to find

monophonic patterns from monophonic music.

9

Some work focuses on finding monophonic patterns from polyphonic music. They define the

special type of repeating pattern in polyphonic music, such as vertical patterns and perceptible

repetitions. Conklin analyzes the vertical patterns, which is common harmonic progress, from

one or more music objects by encoding it or them into a set of strings [13][14]. The

experimental result shows that most of vertical patterns represent specific voice leading

formulae within cadences
1
. Meudic discovers the perceptible repetitions from audio [40]. The

process first segments a music object. Then, the similarity between each pair of segmentations

is computed according to perception they defined. Finally, the perceptible repetitions are

discovered from the similarity matrix. A geometrical pattern proposed by Meredith et al is

represented in polyphonic form [39]. Many significant patterns occurring more than two times

can be found. However, certain meaningful patterns, such as motif, usually appear several

times in music, and it takes time to use the result of pair-wise repeats to count the number of

occurrences of a pattern.

1 A cadence is a piece of music ends a section of music or a complete piece of music.

10

CHAPTER 3 AUTOMATIC MUSIC ARRANGEMENT

FRAMEWORK

In this chapter, we introduce our proposed framework. Given an original score (multipart) and

the role of the target instrument (proportion of the five types of arrangement elements), the

proposed framework will generate a playable arrangement for the target instrument according

to the role user specified. The framework consists of four phases (see Figure 1-1). Figure 3-1

presents an example of the change in musical content during the framework‟s arrangement

process. Because the arrangement elements of some instruments may change in different

sections, the music object is first divided into several segments called segmented tracks in

track segmentation phase. Next, in the arrangement element determination phase, a classifier

is used to determine the type of arrangement element of each segmented track. The classifier

is trained offline by expert-annotated segmented tracks. In the phrase identification and utility

assignment phase, the phrases in a segmented track are identified, and the utility is assigned

for each identified phrase according to the type of arrangement element of the segmented

track. In the playability verification phase, a playability verification function is used to

determine whether the given piece of music can be played by the target instrument. Finally, in

the phrase selection phase, the phrases are selected according to their utility and playability.

The new arranged music is formed by these selected phrases.

The details of each phase of the proposed music arrangement framework are introduced in the

following subsections. A list of notations used in this paper is shown in Table 3-1 for better

readability.

11

Figure 3-1. An example process of the proposed music arrangement framework

Table 3-1. List of used notations

Notation Description

NSBMi,t Non-silent beats in measure i at track t

NumTrack Number of track

BeatPerMeasure Beats per measure

ae Arrangement element

st Segmented track

phr Phrase

room Number of overlapping phrase allowed

MOP Maximum number of overlapping phrase allowed

P_List Overlapping phrase list

C_List Called phrases in list

SP Set of selected phrase

3.1 Track Segmentation Phase

Original

music

New

arranged

music

Phrase

Identification

& Utility

Assignment

Scored

phrases

Utility
…

Lead
Pad

Foundation

Lead
Pad

Foundation Foundation

Lead
Arrangement

Element

Determination

Segmented

tracks

Classified

segmented

tracks

Track

Segmentation

Phrase

SelectionSelected

phrases Playability

12

In different sections, a track performed by an instrument may belong to different types of

arrangement elements. For example, a violin demonstrating pad arrangement element changes

to lead in the violin solo section. Hence, the track is segmented into segmented tracks. A

segmented track is defined as a period of an instrument‟s performance in which no

arrangement element changes. Here we do not analyze musical sections; instead, we want to

ensure that no arrangement element changes in a segmented track. Since the multipart music

usually possesses a more complete arrangement structure, we apply this benefit in solving the

problem. In other words, a time point, where many instruments stop and others start, has a

high possibility of becoming a cut point to separate two adjacent segmented tracks. According

to this heuristic, we define the similarity function between consecutive measures as follows.





























sureBeatPerMeaNumTrack

NSBMNSBM

Sim Trackt

titi

ii

,1,

1, 1

 (1)

where NSBMi,t is the number of non-silence beats in measure i at track t, NumTrack is the

number of tracks, and BeatPerMeasure is beats per measure.

Figure 3-2. An example of track segmentation

The similarity function compares the track in measure i to the track in measure (i+1), then

aggregates diversities of all tracks with normalization. Being subtracted by 1, the difference is

transformed into similarity. We define a threshold value τ to determine cut points. If Simi,i+1 is

1.0 1.0 1.0 0.625 1.0 0.958 0.958Simi,i+1

track 1

track 2

track 3

1 5

cut

13

less than τ, then this is a cut point between measures i and i+1. When τ is set to 0.5, Simi,i+1 <

τ, it means that there must be at least a half number of instruments switched.

Figure 3-2 gives an example that shows the similarity for each pair of successive measures in

this music. For the similarity between measure 4 and 5, Sim4,5 is calculated as follows. In the

example music, time signature is 4/4 with 3 tracks; that is, each measure has 4 beats

(BeatPerMeasure=4, NumTrack=3). As the score of the track 1 shown, sound fulfills four

beats in measure 4 (NSBM4,1=4), and it is no sound in measure 5 (NSBM5,1=0). Similarly, the

others (NSBM4,2, NSBM5,2, NSBM4,3, NSBM5,3) can be derived. Thus, Sim4,5=1－((|4－0|＋|4

－3.5|＋|3－3|)/(4×3))=0.625. If τ is set to 0.667, there is a cut point between measure 4

and 5.

3.2 Arrangement Element Determination Phase

Here we try to determine the type of the arrangement element of each segmented track.

According to the descriptions of the arrangement elements in Chapter 2, some arrangement

elements share similar properties. It is hard to determine the type of the arrangement element

by heuristic rules. Hence we treat the problem of arrangement element determination as a

classification problem. In other words, each segmented track is classified into five classes (i.e.,

foundation, rhythm, pad, lead, and fill).

One of the important steps of classification is to decide which features are used to represent

the segmented track. These features of a segmented track are capable of discriminating its

class from the others. Most of previous studies on music classification focus on music style;

to the best of our knowledge, there is no study in the literature about the automatic

classification of arrangement elements.

14

Table 3-2. Features for the classifier

Parameter Type Description

AvgPitch G Average pitch in the segmented track

AvgDuration G Average duration in the segmented track

DevPitch G Pitch deviation in the segmented track

IsPercussionChannel G Is Percussion Channel (usually channel 10)

PolyphonicRate G Proportion of note occurring in the same time

SilentRate G Proportion of silent in the segmented track

AvgPitchRank L Rank of average pitch in parallel segmented track

AvgDurationRank L Rank of average duration in parallel segmented track

IsHighestPitchPart L
Is the segmented track with the highest average pitch

in parallel segmented tracks

IsLowestPitchPart L
Is the segmented track with the lowest average pitch

in parallel segmented tracks

G: global feature, L: local feature

According to the descriptions of the arrangement elements in the book [42], we summarize

their characteristics and choose the features accordingly. The properties of an instrument exert

a heavy influence on the arrangement element; for example, pizzicato instruments (such as

harp, ukulele, etc) cannot be pad. The arrangement element of a segmented track highly

depends on the others in this music, especially parallel ones. Thus, we choose both global

feature (common features) and local features (related to the other segmented track). The

detailed features that we extracted and their descriptions are listed in Table 3-2.

The classifier is trained using manual tagged data for each segmented track, i.e., a segmented

track is marked as one of five types of arrangement elements according to its features. During

the determination process, each segmented track in the given music is fed into the classifier to

determine the type of arrangement element. The probability distribution over five types of

arrangement element is obtained in our framework for the later phase.

In implementing of the arrangement element determination, we chose the support vector

machine (SVM) [6] as our classifier. The SVM is a supervised learning approach. Input data

is viewed as two sets of vectors in an n-dimensional space. In the space, the SVM constructs a

separating hyperplane which maximizes the margin between the two data sets. A good

15

separation is achieved while the hyperplane has the largest distance to the neighboring data

points of both classes. After the hyperplane is decided (training phase), the SVM model is

able to answer or predict the class of a new example.

The sequential minimal optimization algorithm is employed for training a support vector

classifier using the polynomial kernel. There are five classes in the arrangement element

determination problem. The multi-class result can be solved by using pairwise classification;

that is, the result is from
mC2 binary classifiers. Besides, the probability that a segmented

track belongs to each class is vital information for our system. To obtain proper probabilities,

logistic regression models are used to fit to the outputs of the support vector machine. In the

multi-class case, Hastie and Tibshirani‟s pairwise coupling method [17] is employed with the

predicted probabilities. It will input test data (a segmented track) to the classifier, then the

probability distribution will be obtained as important information for utility assignment.

3.3 Phrase Identification and Utility Assignment Phase

3.3.1 Phrase Identification

In this subsection, we attempt to identify the phrases from a segmented track. As mentioned in

[49], the definition of “phrase” is ambiguous. The phrase we try to find is a monophonic

melodic group of notes with similar properties, usually separated by a breathe point or a large

pitch interval. Many approaches have been proposed, which have performed well in finding

this type of phrases. Because the phrases are found from a monophonic piece of music, we

first have to identify the monophonic piece lines from a segmented track. Thus, the process of

phrase identification consists of two steps: (1) finding monophonic lines; and (2) identifying

phrases from monophonic lines.

16

In the first step, we adopt the approach proposed by Lui [37] because, to the best of our

knowledge, no other studies on this topic have investigated so far. One of the most important

issues of finding the monophonic line in polyphonic music is to preserve the best voice

leading, which keeps the most natural melodic continuity between notes. The notes are

grouped as follows: First, the chord progress of each measure is determined. For each

consecutive pair of chords, let Cfewer be the chord with fewer notes and Cmore be the chord with

more notes. Resolve each tendency tone, and then each note of Cfewer is grouped with its

neighbor of the nearest pitch in Cmore. For different chords, the notes are grouped based on the

following:

 For common chords, such as I and V, use voice-leading matrixes to resolve tendency

notes.

 For the other chords, group each note of the preceding chord with its nearest neighbor in

the succeeding chord.

The voice-leading matrix is two-dimensional (12×12). The indices are relative to the tonic and

the entry indicates the voice leading priority from pitch row to pitch column. Interested

readers can refer to [37] for the detailed descriptions.

In the first step, the monophonic lines are extracted. In the second step, the phrases are

identified in each monophonic line. We investigated many works on this issue, and chose, the

local boundary detection model (LBDM) [8] due to its easy implementation and good

performance. The approach identifies phrases by segmenting a monophonic line according to

larger pitch intervals or breaths of long notes. This model consists of a change rule, which

assigns boundary strengths in proportion to the degree of change between consecutive

intervals, and a proximity rule, which scales the boundary strength according to the size of the

intervals involved. The LBDM performs over three independent parametric melodic profiles

17

Profilek = [x1, x2, …, xn] where k ϵ{ pitch, ioi, rest }, i ϵ{1, 2, …, n} and ioi stands for

inter-onset interval. The boundary strength at interval xi is defined by

strengthi = xi × (ri-1,i + ri,i+1) (2)

where ri-1,i is the degree of change between two successive intervals and can be calculated by

 00
||

11

1

1 








iiii

ii

ii xxxxif
xx

xx

00 1  ii xxif
1,iir

 (3)

For each parameter k, the boundary strength profile strengthi is calculated and normalized into

the range [0, 1]. A weighted sum of strengths is computed, using weights derived by

trial-and-error in the previous study [8] (0.25 for pitch and rest, and 0.5 for ioi). Finally, the

boundaries are detected where the combined strength profile exceeds a predefined threshold.

Figure 3-3. An example of phrase identification

Figure 3-3 illustrates an example of performing phrase identification. The given segmented

track is polyphonic in left-hand side. In the step 1, the monophonic lines will be identified. In

the beginning, A5 overlaps with B4, and two temporary monophonic lines, tml1 (A5) and

tml2 (B4), are formed. It keeps grouping the notes, F5 and D5, for tml1 successively. Now

tml1 contains A5, F5 and D5. When tml1 (A5, F5, D5) goes to B5, two notes, B5 and B4, can

.
Phrase
identification

Segmented track

Phrase 1
Phrase 2

Phrase 3
Step 1

Step 2

Monophonic line 1

Monophonic line 2

18

be chosen. According to chord progress and pitch difference, B5 is grouped into tm1 and B4 is

grouped into tml2. By the same process, monophonic line 1 and 2, ml1 and ml2, are formed.

Then, ml1 and ml2 are fed into LBDM. When processing ml1, the cut point between the 5th

and 6th note of ml1 is found because the combined strength profile exceed the threshold.

Finally, three phrases are identified in the example.

3.3.2 Utility Assignment

Each of phrases identified is of different importance for the arrangement. We define the

importance of a phrase, called utility, based on two factors. In the first factor, we consider the

types of arrangement elements of the phrase for the target instrument that users considered. As

mentioned in Section 3.2, the five types of arrangement elements in a segmented track have

been determined and the classifier outputs the probabilities. Considering the input of our

framework, the types of arrangement elements that users want to arrange for the target

instrument have been specified in advance. The probabilities of the user-defined types of

arrangement elements are taken as the first part of utility. Hence, the probabilities that the

phrase inherited from the segmented track to which it belongs are summed up. To normalize

the value, it is divided by the number of the considered types. The first factor, denoted as

F1(phrst,i), can be formulated as

 
ae

aeae

ae

ist staePphrF )|()(,1

 (4)

where phrst,i is the i-th phrase in segmented track st; ae ϵ{Foundation, Rhythm, Pad, Lead,

Fill}; P(ae|st) is the probability that the segment track st belongs to arrangement element ae;

φae is the user preference on arrangement element ae and φae ϵ (0, 1]. For example, if we

consider the arrangement elements, lead and fill, are important, we can set φlead and φfill to 1

and set the others close to 0. Note that for all phrases in the same segmented track, their F1

19

values are equal.

In the second factor, the richness of a phrase is considered because we think it will make

newly arranged music richer. The entropy is used to measure the richness of a phrase; that is,

the phrase is richer when the pitches of the phrase are represented by more bits. The second

factor, F2(phrst,i), is defined with the formula

))(log()(
1

2,2 



m

i

iiist pvpvnormalizephrF

 (5)

where m is the number of distinct pitch values in the phrase phrst,i and pvi is the proportion of

a pitch value in a phrase.

Note that an upper bound for entropy is defined and the entropy can be normalized into 0 ~ 1.

Here, the upper bound of the entropy is set to 64 heuristically, since a phrase usually falls

within two measures and there are 16 distinct pitches at most for the notes with the 1/8

minimal length of a note in 4/4 music.

We combine the values of these two factors as the utility of a phrase with predefined weights.

Since the phrases needed to be selected on score and some constraints exist among phrases

over the time domain, the range of value leads into a situation wherein most of selected

phrases are shorter. To assign the utility fairly over the time domain, the length of the phrase

is also considered. Therefore, the utility of a phrase U(phrst,i) is defined as

)()()(,2211, istist phrLFFphrU   (6)

where α1, α2 ϵ [0, 1]; α1+α2=1; and L (phrst,i) is the length of phrase phrst,i.

20

3.4 Phrase Selection Phase

3.4.1 Phrase Selection Problem

After preparing the phrases with utilities, in the last phase of our framework, the phrases are

selected under some conditions. Such selection is called the phrase selection problem and the

formal definition of the phrase selection problem is as follows. For an arbitrary phrase p, its

start position, end position, and utility over each arrangement element are denoted by p.start,

p.end, and p.utility, respectively. MOP is an integer that denotes the maximal number of

overlapping phrases, allowed by an instrument, simultaneously. Then, the phrase selection

problem can be defined as below.

Definition 3-1 (Phrase selection problem) Given a set of phrases, denoted as PSet={p1,

p2,…, pn} and an integer MOP, the phrase selection problem is to find a set SPPSet such

that:

1. the summation of the utilities of phrases in SP is maximal and

2. SP satisfies the constraints of MOP and playability.

The phrase selection problem is similar to the k-track assignment problem, which has been

proved to be NP-hard, in the traditional job scheduling area [7]. The k-track assignment

problem is a scheduling problem, in which a collection of jobs with start and end times is to

be processed by k machines. Two different jobs can be processed by the same machine only

when the jobs do not overlap. If the constraint of playability is omitted, the phrase selection

problem will degenerate to the k-track assignment problem where k is equal to MOP. That is,

the k-track assignment problem is a special case of the phrase selection problem. In addition

to considering the constraint of the number of overlapping phrases (i.e., MOP), the phrase

selection problem also needs to consider the playability of the selected phrases on the target

21

instrument. Thus, we believe that the phrase selection problem is more complex than the

k-track assignment problem.

A naïve approach to solving the phrase selection problem is to integrate playability

verification in to the algorithm [7] for the k-track assignment problem. Unfortunately, it is

difficult to perform such integration since the algorithm proposed by Brucker and Nordmann

[7] is optimized for the k-track assignment problem. Let‟s consider another problem, the exon

chaining problem [21], which is a special case of the k-track assignment problem with k=1.

Due to the simplicity of the algorithm proposed by Jones and Pevzner [21], we can extend

such algorithm to consider playability verification and the scenarios with k＞1 simultaneously.

For better readability, the descriptions and the design principle of playability verification are

given in Section 3.4.2, while the proposed phrase selection algorithm is described in Section

0.

3.4.2 Playability Verification

In our proposed framework, we use the playability function to verify whether a piece of music

can be performed by the instrument. The input of the playability function of an instrument is a

piece of music and the output is a Boolean value indicating whether the music is playable by

the instrument or not. Specifically speaking, the input is a set of phrases where the overlaps

among the phrases may exist. The output value of a playability function can be determined by

rules or sophisticate logic. We suggest some necessary considerations in designing a

playability function as follows.

Playability Function Design Principle

To design the playability function of an instrument, two types of limitations have to be

considered: instrumental and physical limitations. In instrumental limitation, we list some

22

constraints below.

Pitch range Pitch range is an important limitation for most instruments. For example, the

pitch range of the piano is from the A three octaves below middle C to the C four octaves

above middle C (if middle C is C4, it is A0~C8) [52]. The pitch range of a C flute is B3~C7.

Duration constraint Some instruments cannot sound sustain note, such as vibraphone.

Physical limitations are caused by hands or bodies of the people who play the instrument. We

also list some constraints as follows.

Algorithm Piano-Right-Hand-Playability

Input: a piece of music (or a set of phrases P_List)

Output: True/False

1: ons(notei)={note|note , note overlaps with notei};

2: nos_set={ons(notei) | overlapping note sets in P_List};

3: foreach note n in P_List{

4: if pitch of note is not within the pitch range of piano

5: return false;

6: }

7: foreach ons(notei) in ons_set{

8: if(Finger-Assignable(ons(notei))==false)

9: return false;

10: }

11: return true;

Figure 3-4. Piano-Right-Hand-Playability function

Number of polyphony Number of polyphony of an instrument is the maximal number of

notes that the instrument can sound simultaneously. For example, people play the piano by

right hands, so that at most, five notes can be played at the same time.

Physical pitch range constraint These constraints are caused by hand. The notes in the

selected phrases are restricted by the expansion of the fingers.

Overlapping note constraint Some combinations of overlapping notes cannot be played. For

example, B, C and C# cannot be played simultaneously by hand on the guitar.

Based on the design principle, we design a playability function for a right hand playing piano.

23

The playability function will also be used for the implementation of our piano arrangement

system in the experiments.

Figure 3-5. Finger-Assignable flowchart

Design of the Piano Playability Function

Here we design a playability function, Piano-Right-Hand-Playability, that considers

instrumental and physical limitations for a right hand playing piano, as an example to

illustrate the design of the playability functions. Research on automatic piano fingering has

been investigated [23][24][54]; however, the work cannot be used to determine whether a

piece of music can be played by piano. We refer to the book [52] to design this function.

According to the phrase we defined, we assume that a single phrase is playable unless at least

one note in the phrase is out of the pitch range of the instrument. The playability function for

right hand is designed in Figure 3-4. The function is fed by a set of phrase, denoted by P_List,

If #(ons) > 5

overlapping note set
ons

yes

If #(ons) < 3

false

no

yes

If (2nd lowest
pitch-lowest pitch
< Through_Hand)

If (2nd lowest pitch-lowest
pitch < Thumb_Index_Gap)

AND (other gaps < Other_Gap)
AND (highest pitch – lowest

pitch < Through_Hand)

no

true

yes no

false true

yes

false

no

24

and will output true or false to indicate whether these phrases can be played by the target

instrument. First, the set of all overlapping note sets in P_List, denoted by ons_set, are

extracted (lines 1-2). Note that the overlapping note set, ons(notei), is a set of notes

overlapping with notei and ons(notei) includes at least one element, notei. Two main rules are

designed to examine the phrases and the phrases passing both rules are playable. The first rule

(lines 3-6) checks each pitch of note to determine whether it is under the pitch range of piano.

In the second rule (lines 7-10), we examine each overlapping note set in the phrase set to

check whether it assignable for fingers of right hand by Finger-Assignment function.

In Figure 3-5, we give the flowchart of Finger-Assignable function. The number of notes in

nos is examined first. If it is larger than five, then it is impossible to play by right hand and

Finger-Assignment function will return false. If not, we will consider two cases: the case that

the number of nos is two and the case that the number of nos is between 3~5. These cases are

considered separately because the expansion of thumb-index finger is different from the other

adjacent fingers. If the number of ons is two, we only have to ensure that the distance between

the highest and the lowest notes does not exceed the distance between thumb and little finger,

denoted by Through_Hand. Otherwise, while the number of nos is larger than two, the gap

between thumb and index, denoted by Thumb_Index_Gap, can be larger than the gaps among

the other fingers. We assume the legal gap distances among the other fingers are the same and

all of them are denoted by a value, Other_Gap. That is, the distance between the lowest pitch

and the second lowest pitch can be larger than the distance among others. According to the

size of general fingers of an adult, we set these parameters heuristically: Through_Hand=14

semitones, Thumb_Index_Gap=5 semitones and Other_Gap=3 semitones. These parameters

can be specified by users according to the size of their hands. Finally, the set of overlapping

phrases is playable since all ons are assignable for fingers.

25

Algorithm: Phrase selection algorithm

Input: a set of phrases PSet and maximum overlapping phrase MOP

Output: selected phrase set SP

1: sort the start and end positions of all phrases;

2: initialize conditional phrase list CP_List=null;

3: extract 3 attributes for each index; // phrase, utility and startI

4: SP=Opt(0, 0, 2n－1, MOP| CP_List).sel;

5: return SP;

Algorithm Opt

Input: base value bv, start index si, end index ei, allowed overlapping phrases room,

conditional phrase list CP_List

Output: selected phrase sel and utility of the selection ut

1: Opt(bv, si, si, room| CP_List).ut=bv;

2: Opt(bv, si, si, room| CP_List).sel=null;

3: for each index i from si+1 to ei

4: if ((g(i).phrase≠null AND isPlayable(CP_List∪{g(i).phrase} AND room＞0)

AND //condition 1 (it is playable)

5: compute w by equation 7

6: (w＞Opt(bv, si, i−1, room| CP_List).ut) //condition 2 (it is worth to be selected)

7: Opt(bv, si, i, room| CP_List).ut = w; //update optimal utility and optimal selection

by new result

8: update Opt(bv, si, i, room| CP_List).sel;

9: else

10: inherit optimal selection and utility from previous result (Opt(bv, si, i−1, room|

CP_List));

11: return Opt(bv, si, ei, room| CP_List).sel, Opt(bv, si, ei, room| CP_List).ut;

Figure 3-6. Phrase selection algorithm

3.4.3 Phrase Selection Algorithm

The idea of the proposed phrase selection algorithm is to consider each phrase incrementally

to determine whether it can be selected or not. To select a phrase, two conditions should be

satisfied: 1. the phrase is playable with the previous selected phrases; 2. the phrase is worth to

be selected. While checking whether a phrase is worth to be selected, we examine the

influence of selecting the phrase on the previous selection. The whole problem can be divided

into several small sub-problems.

26

Algorithm Overview

The details of the proposed phrase selection algorithm are shown in Figure 3-6. In the

initialization step (lines 1-3), the placement of all phrases is transformed by sorting their start

and end positions. The transformation will not change the order of the start and end positions

of phrases, and will still keep the overlap relationships between each pair of phrases
2
. There

are 2n indices for all start and end indices of n phrases. After that, for each index i, the

following three attributes are extracted: g(i).phrase, g(i).utility, and g(i).startI. If index i

corresponds to the end index of a phrase, g(i).phrase is the corresponding phrase, g(i).utility is

the utility of g(i).phrase and g(i).startI is the start index of g(i).phrase. Otherwise, g(i).phrase,

g(i).utility, and g(i).startI are null. A conditional phrase list, CP_List, is prepared to store a set

of conditional phrases. Then, the main function, Opt(0,0,2n－1,MOP|{}), is called to compute

the optimal selection Opt(0,0,2n－1,MOP|{}).sel and the optimal utility Opt(0,0,2n－

1,MOP|{}).ut (the summation of the utilities of the selected phrases), where MOP indicates

the maximal number of the overlapping phrases allowed by the target instrument. Finally,

the proposed algorithm returns SP as the optimal selection. We define Opt as follows.

Definition 3-2 Opt(bv, si, ei, room| CP_List) is a function to compute the optimal selection of

the phrases before index ei under the constraints that 1. the maximal number of overlapping

phrases from index si to index ei is room and 2. the phrases in CP_List have been selected.

The initial base value bv is the utility of the optimal selection of the phrases seen at si. A

phrase is said to be seen at index j if the end position of the phrase is smaller than or equal to j.

That is, g(i).phrase is said to be seen at index j if i j.

2 Interested readers can refer to [21] for the details of the transformation.

27

Function Opt

The most important part of the phrase selection algorithm is function Opt. To facilitate the

following discussion, the utility of the selected phrases is defined as the summation of the

utilities of these selected phrases. The objective of the function is to obtain the optimal

selection and the utility of the optimal selection. The whole problem can be divided into

several sub-problems, recursively. The process of function Opt is to sequentially check each

phrase according to its end position in ascending order and determine whether the checked

phrase is selected or not.

Figure 3-7. An illustration of CP_List={}

A phrase is selected only when the following two conditions are satisfied. The first condition

is the playable condition (line 4) that CP_List {g(i).phrase} should be playable and there is

enough space for selecting g(i).phrase. Note that g(i).phrase cannot be null. The expression of

the first condition is (g(i).phrase≠null and (isPlayable(CP_List {g(i).phrase})=true and

room 0). The other condition is the worth condition (line 6) that the optimal utility of

selecting g(i).phrase is worthier than not selecting g(i).phrase. That is, w > Opt(bv, si, i－1,

room| CP_List), where the calculation of w will be described later. If the above two conditions

are satisfied, g(i).phrase is selected. The optimal selection Opt(bv, si, i, room| CP_List).sel is

updated according to the optimal selection during computing w, and the optimal utility Opt(bv,

si, i, room| CP_List).ut is set to w. Otherwise, the optimal selection and the utility of the

optimal selection are inherited from the previous results, Opt(bv, si, i－1, room| CP_List).sel

and Opt(bv, si, i－1, room| CP_List).ut, respectively.

g(i).phrase

i

Opt(ru,g(i).startI,i,MOP－1|{g(i).phrase}).utru=Opt(0,0,g(i).startI,i,MOP|{}).ut

28

Figure 3-8. An illustration of CP_List≠{}

CP_List is empty

We now consider that g(i).phrase is selected for computing w. Note that selecting a new

phrase may influence the optimal selection. That is, some phrases in the optimal selection

may be removed due to the selection of the new phrase. Let‟s begin from the simple case that

CP_List is empty. As shown in Figure 3-7, the influence region of selecting g(i).phrase is the

region that g(i).phrase locates, i.e., from index g(i).startI to i. In addition, the maximal

number of overlapping phrases allowed in the influence region of selecting g(i).phrase would

be decreased by one. The recursive function, Opt(ru, g(i).startI, i, MOP－1| {g(i).phrase}), is

called to compute the optimal selection of the influence region of selecting g(i).phrase when

g(i).phrase is selected, where ru is the optimal utility before g(i).startI (i.e., ru=Opt(0, 0,

g(i).startI, MOP|{}).ut). Thus, the utility of the optimal selection when g(i).phrase is selected

is w = Opt(ru, g(i).startI, i, MOP－1| {g(i).phrase}).ut + g(i).utility. When the utility of the

j1

g(i).phrase

jphrase_n

j2…

…

sorted CP_List ∪{g(i).phrase} according to index of start position

decreasing room caused by the phrases in CP_List

sub-region 1
(room=MOP)

Opt(Opt(0, 0, j1.startI,MOP).ut, j1.startI, j2.startI,MOP－1).ut

…

room=MOP－phrase_n
sub-region 2
(room=MOP－1)

j1

j2

jphrase_n

29

optimal selection when g(i).phrase is selected is worthier than the utility without selecting

g(i).phrase (that is, w ＞ Opt(bv, si, i－1, room| CP_List).ut (line 6)), the optimal selection is

updated and the utility of the optimal selection is set to w. Otherwise, the optimal selection

and the utility of the optimal selection are inherited from the previous results.

CP_List is not Empty

We now describe how to compute w when CP_List is not empty. When a phrase is selected

with empty CP_List, Opt is invoked in the inference region of g(i).phrase. As shown in Figure

3-8, when CP_List is not empty, many sub-regions with different values of room have to be

processed by function Opt. The formula of w should be designed to deal with this situation.

Note that, for each phrase g(j).phrase in CP_List, g(j).startI is smaller than i. Let phrase_n be

the number of phrases in CP_List {g(i).phrase}. Without loss of generality, the phrases in

CP_List {g(i).phrase} are sorted by their start positions in ascending order and relabeled as

{j1, j2, …, jphrase_n}, where j1.startI ≤ j2.startI ≤ …≤ jphrase_n.startI ≤ i, and jk.startI is the start

index of phrase jk. In the first sub-region from index 0 to j1.startI, the maximal number of

overlapping phrases allowed is MOP. The utility of the optimal selection of the first

sub-region, which is denoted as ru0, is Opt(0,0,j1.startI,MOP|{}).ut. For the second sub-region

from index j1.startI to j2.startI, the utility of the optimal selection of the first sub-region ru0 is

taken as the base value and the maximal number of overlapping phrases allowed is MOP－1.

Thus, Opt(ru0, j1.startI, j2.startI, MOP－1| {j1}) is called. For the third sub-region from

j2.startI to j3.startI under MOP－2, we take the optimal utility of the previous sub-region as

the base value and calculate the optimal utility in this sub-region by invoking function Opt in

a similar manner. The above process repeats until the last sub-region from jphrase_n.startI to i

under MOP－phrase_n has been processed by function Opt. The above recurrence relation is

shown as follows.

30

Initial condition:

𝑂𝑝𝑡(𝑏𝑣, 𝑠𝑖, 𝑠𝑖, 𝑟𝑜𝑜𝑚|𝐶𝑃_𝐿𝑖𝑠𝑡). 𝑢𝑡 = 𝑏𝑣;

Recurrence relation:

𝑂𝑝𝑡(𝑏𝑣, 𝑠𝑖, 𝑖, 𝑟𝑜𝑜𝑚|𝐶𝑃_𝐿𝑖𝑠𝑡). 𝑢𝑡

=

𝑤 = 𝑂𝑝𝑡 𝑂𝑝𝑡(…𝑂𝑝𝑡(𝑂𝑝𝑡(𝑂𝑝𝑡(0,0, 𝑗1 . 𝑠𝑡𝑎𝑟𝑡𝐼, 𝑀𝑂𝑃|{} . 𝑢𝑡, 𝑗1. 𝑠𝑡𝑎𝑟𝑡𝐼, 𝑗2 . 𝑠𝑡𝑎𝑟𝑡𝐼, 𝑀𝑂𝑃 − 1 𝑗1 . 𝑢𝑡,

𝑗2 . 𝑠𝑡𝑎𝑟𝑡𝐼, 𝑗3 . 𝑠𝑡𝑎𝑟𝑡𝐼, 𝑀𝑂𝑃 − 2 𝑗1, 𝑗2 . 𝑢𝑡, …). 𝑢𝑡,

𝑗𝑝ℎ𝑟𝑎𝑠𝑒 _𝑛 . 𝑠𝑡𝑎𝑟𝑡𝐼, 𝑖 − 1, 𝑀𝑂𝑃 − 𝑝ℎ𝑟𝑎𝑠𝑒_𝑛| 𝑗1 , 𝑗2 , … , 𝑗𝑝ℎ𝑟𝑎𝑠𝑒_𝑛). 𝑢𝑡

+𝑔 𝑖 . 𝑢𝑡𝑖𝑙𝑖𝑡𝑦

, if 𝑔 𝑖 . 𝑝ℎ𝑟𝑎𝑠𝑒 ≠ 𝑛𝑢𝑙𝑙 and (𝐶𝑃_𝐿𝑖𝑠𝑡 𝑔 𝑖 . 𝑝ℎ𝑟𝑎𝑠𝑒 is playable) and (𝑟𝑜𝑜𝑚 > 0) (playable), and
𝑤 > 𝑂𝑝𝑡(𝑏𝑣, 𝑠𝑖, 𝑖 − 1, 𝑟𝑜𝑜𝑚|𝐶𝑃_𝐿𝑖𝑠𝑡). 𝑢𝑡 (worth)

𝑂𝑝𝑡(𝑏𝑣, 𝑠𝑖, 𝑖 − 1, 𝑟𝑜𝑜𝑚|𝐶𝑃_𝐿𝑖𝑠𝑡). 𝑢𝑡, otherwise

 (7)

According to the above recurrence relation, we can notice that the functions with the same

parameter (for example, Opt(0, 0, i, MOP| {}), where 1 i 2n－1) are used repetitively.

For saving the computation time, the result of the function with different parameters will be

stored for reuse.

3.4.4 Correctness

The proposed phrase selection algorithm is designed to solve the phrase selection problem in

a recursive manner by function Opt. We next show the correctness of the proposed phrase

selection algorithm by proving the optimality guarantee of function Opt.

Lemma 1 Function Opt can always obtain the optimal selection.

We prove the correctness of function Opt by induction on the value of room.

Induction basis:

Considering room=1 and no playability function, the phrase selection problem is reduced to

the exon-chaining or activity-selection problem. That is, no overlapping phrase is allowed and

the playability function always returns true. Our algorithm is extended from the exon-chaining

algorithm that the optimality has been proven in [21]. While the playability function is taken

into consideration, there is no case that g(i).phrase is not playable with the phrases in CP_List.

It is because that the CP_List is always empty when room=1 (that is, no overlapping phrase

31

exists). In addition, function Opt will not select g(i).phrase if g(i).phrase itself is not playable.

Therefore, function Opt is able to obtain the optimal selection when room=1.

Induction hypothesis: The function Opt is able to obtain the optimal selection while room ＜

MOP.

Suppose room=MOP. In function Opt, the main for loop examines whether the new-seen

phrase, g(i).phrase, should be selected or not. If g(i).phrase is not playable with the phrases in

CP_List, function Opt will not select g(i).phrase. When g(i).phrase is playable with

recursive-called phrase list CP_List, function Opt will recursively invoke itself on all

sub-regions with smaller values of room. Since the value of room of each invocation of

function Opt on each sub-region is smaller than MOP, by induction hypothesis, each

invocation of function Opt on each sub-region is able to obtain the optimal selection.

According to Equation 7, we can conclude that function Opt is able to obtain the optimal

selection when room=MOP. As a result, we can prove the correctness of Lemma 1 by

induction.

Figure 3-9. An illustration of the computation at the worst case

3.4.5 Time Complexity Analysis

The proposed phrase selection algorithm acts in a branch-and-bound manner. Each phrase is

chronologically examined whether it is selected. If a phrase is selected, the optimal selection

…

the phrases affected by g(i).phrase

g(i).phrase

…

32

affected by this phrase is computed. Fortunately, this process will not expand all possible

changes, since the expansion process is bound at the point which the previous computation

has been stored (i.e., Opt(0,0,i,MOP|{}), where 1 i 2n－1). In the best case, there is no

overlapping phrase and function Opt examines each phrase at most once. Thus, the time

complexity of the proposed phrase selection algorithm is O(Ψ×n), where n is the number of

phrases and Ψ is the time complexity of playability function. In the worst case, all phrases are

parallel as shown in Figure 3-9. That is, each phrase overlaps with all other phrases. In the

outermost invocation of function Opt, each phrase is checked whether it worth to be selected.

For the computation of the i
th
-seen phrase, function Opt recursively calls itself to examine the

situation that g(i).phrase is selected. When no seen phrase is overlapping with the first-seen

phrase, the inner Opt examines all possible selections and the number of possible selections is

 1. Similarly, when two phrases are seen overlapping with g(i).phrase, the number of all

possible selections is
 +

 (the possible selections containing no phrase overlapping

with g(i).phrase plus the possible selections containing one phrase overlapping with

g(i).phrase).

Hence, the number of all possible selections when g(i).phrase is selected is
 +

+ … +
 =

 , where m is the maximal number of overlapping phrases allowed.

Note that the number of all possible selections is bound by m－1 because, at most, m－1

phrases can be selected when g(i).phrase is selected. Thus, the total number of possible

selections for the outermost Opt is
 + (

 +
) + (

 +
 +

) + … + (

+
 + … +

) = Φ. And

 +

 + … +

 = (n－1) × (
 +

 + … +
)

 𝑛－

 …
 𝑛－ 𝑚

 − 𝑚

𝑛 𝑚𝑛 . Because the playability function is performed when each phrase is selected,

the time complexity of the phrase selection algorithm at the worst case is O(Ψmn
m
).

33

Figure 3-10. An example of the phrase selection algorithm: (a) the identified phrases in the

given score; (b) the identified phrases represented by intervals; (c) a snapshot at index 6; (d) a

snapshot at index 12; (e) a snapshot at index 13

p0 p1 p2

p6

p3 p4 p5

p0: 4 p1: 2 p2: 8

p6: 6

p5: 1p3: 2 p4: 1

(a)

(b)

phrase utility
p0 4
p1 2
p2 8
p3 2
p4 1
p5 1
p6 6

p0: 4 p1: 2 p2: 8

p6: 6

p5: 1p3: 2 p4: 1

0 0 0 4 4 6 6
0 0 0 0 2

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Opt(0,0,i,2|{}).ut

i=3, CP_List∪{p0}={p3,p0}:not
playable

i=5,Opt(Opt(Opt(0,0,1,2|{}).ut,1,4,1|{p3}).ut,4,4,0|{
p3,p1}).ut+2 > 0: worth

p0: 4 p1: 2 p2: 8

p6: 6

p5: 1p3: 2 p4: 1

0 0 0 4 4 6 6 6 6 7 7 8 12
0 4 4 6 6 6 6 6 6 6

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13

i=5, p1:worthi=3, p0:worth i=6, p3:not worth i=9,CP_List∪{p4}={p6,
p4}: not playable

i=10,CP_List∪{p5}={p
6,p5}: not playable

MOP=2

MOP=2

(c)

(d)

Opt(Opt(0,0,1,2).ut,1,5,1|{p3}).ut+2 ≤ 6: not worthi=6, check p3,

Opt(0,1,i,1|{p3}).ut

Opt(0,0,i,2|{}).ut

Opt(0,2,i,1|{p6}).ut

Opt(Opt(0,2,2|{}).ut,2,11,1|{p6}).ut+6 > 8: worthi=12, check p6,

Opt(0,0,6,2|{}).sel={p0,p1}

Opt(0,0,12,2|{}).sel={p0,p1,p6}

Opt(0,0,11,2|{}).sel={p0,p1,p4,p5}

p0: 4 p1: 2 p2: 8

p6: 6

p5: 1p3: 2 p4: 1

0 0 0 4 4 6 6 6 6 7 7 8 12 20
6 6 6 6 6 12

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13

i=9,CP_List∪{p4}={p2,
p4}: not playable

i=11,CP_List∪{p5}={p2,
p5}: not playable

i=12,Opt(Opt(Opt(0,0,2,2|{}).ut,2,7,1|{p6
}).ut,7,11,0|{p2,p6}).ut+6 > 6: worth

room=0room=1
MOP=2

(e)

room=2

Opt(Opt(0,0,7,2|{}).ut ,7,12,1|{p2}).ut+8 > 12: worthi=13, check p2,

Opt(0,0,i,2|{}).ut

Opt(6,7,i,1|{p2}).ut

Opt(0,0,13,2|{}).sel={p0,p1,p6,p2}

34

Fortunately, m is a small number in practice. That is, the maximal number of overlapping

phrases allowed by most instruments is a small constant. For example, the maximal number of

overlapping phrases for a violin is 4; for most wind instruments, one; for a piano, 10; and for

a guitar, six. While m is a small constant, the time complexity of the proposed phrase selection

algorithm is polynomial time. Therefore, in practice, the execution time of the proposed

phrase selection algorithm is acceptable. Interested readers can also see Table 3-9 for the

execution time of the proposed algorithm on several real cases.

3.4.6 A Running Example of Phrase Selection Algorithm

Figure 3-10 shows an example of the process of the proposed phrase selection algorithm with

simple playability function (the distance between the highest and lowest pitch of note cannot

exceed 14 semitones) and MOP=2. Figure 3-10 (a) shows the identified phrases in the score;

and Figure 3-10 (b) shows the phrases with utilities represented by weighted intervals. Figure

3-10 (c) depicts the result of the transformation. Since there are seven phrases, 14 indices are

created. We use Opt(0,0,13,2|{}).ut and Opt(0,0,13,2|{}).sel to indicate to the optimal utility

and the optimal selection, respectively. After that, three attributes of each index are extracted.

For example, index 6 corresponds to the end position of phrase p3, and thus we have

g(6).phrase=p3, g(6).utility=2 and g(6).startI=1. On the other hand, index 4 does not

correspond to the index of the end position of any phrase, g(4).phrase, g(4).utility, and

g(4).startI are null. The conditional phrase list, CP_List, is maintained and initialized to empty.

Then, the main function Opt(0,0,13,2|{}) is called. The result is obtained with initial base

value 0 from index 0 to 13 under the situation of at most two overlapping phrases allowed. As

shown in Figure 3-10 (e), after Opt(0,0,13,2|{}) is finished, Opt(0,0,13,2|{}).ut = 20 and

Opt(0,0,13,2|{}).sel = {p0, p1, p2, p6} are returned as the result of the proposed algorithm.

Here we use the example in Figure 3-10 to describe how function Opt works to compute the

35

optimal selection and the utility of the optimal selection. First of all, the outermost recursive

function Opt(0,0,13,2|{}) is called to select phrases from index 0 to 13 under room=2 (at most

two overlapping phrases are allowed). Function Opt goes from index 0 to index 13. The value

of g(0).phrase is null since there is no phrase seen at index 0. While function Opt goes to

index 3, it is the end position of phrase p0. Due to the reason that phrase p0 is playable and it

is allowed (room ＞ 0) to select p0, p0 is selected and the function Opt(0,0,3,1|{p0}) is

called to check if there is any influence of selecting p0. No other phrases can be seen from

index 0 to 3, and thus, p0 can be selected (Opt(0,0,3,2|{}).sel={p0}) at this moment.

While determining whether phrase p3 (i.e., g(6).phrase) is worth to be selected, p3 is selected

first and Opt(0,1,5,1|{p3}) is called. In solving Opt(0,1,5,1|{p3}), it meets p1 and p2 because

g(3).phrase and g(5).phrase are not null. However, p0 (i.e., g(3).phrase) and the phrase in the

CP_List (i.e., p3), are not playable due to the reason that the overlapping part of phrase p0 and

p3 (C4 and E5) exceeds the Through_hand threshold. In contrast, g(5).phrase is playable with

the phrase in CP_List. In addition, g(5).phrase is worth to be selected when p3 is selected.

However, the utility of the optimal selection when p3 is selected is not worthier than the

utility when p3 is not selected (i.e., Opt(0,1,5,1|{p3}).ut+ g(6).utility=4 ＜

Opt(0,0,5,2|{}).ut=6). Thus, Opt(0,0,6,2|{}).ut is set to 6. As shown in Figure 3-10 (c), the

optimal selection Opt(0,0,6,2|{}).sel is {p0,p1}. When function Opt goes to index 12, the

utility of the optimal selection when p6 is selected (i.e.,

Opt(Opt(0,0,2,2|{}).ut,2,11,1|{p6}).ut+6=12) is worthier than the utility when p6 is not

selected (i.e., Opt(0,0,11,2|{}).ut=8). Thus, Opt(0,0,12,2|{}).ut is 12 and Opt(0,0,12,2|{}).sel

is {p0,p1,p6}.

Consider the example that phrase p2 is checked in Figure 3-10 (e). Function

Opt(6,7,12,1|{p2}) is called to examine the influence of the optimal selection under the

condition that p2 is selected. During the process in Opt(6,7,12,1|{p2}), p4, p5 and p6 will be

36

examined sequentially. Phrase p4 and p5 are not playable with the phrase in CP_List (i.e., p2),

while p6 is playable with the phrase in CP_List and room＞0 (the value of room is 1). Now

function Opt examines whether p6 is worth to be selected by considering p6 with CP_List. At

this moment, CP_List∪g(12).phrase contains two phrases (p2 and p6). Then, p2 and p6 are

sorted and relabeled according to their start positions. Thus, j1=p6 and j2=p2. There are three

sub-regions: the sub-region from 0 to j1.startI=2 with room=MOP=2, the sub-region from

j1.startI=2 to j2.startI=7 with room=1, and the sub-region from j2.startI=7 to i－1=11 with

room=0. The utility of the first sub-region (from 0 to 2 with room=2) Opt(0,0,2,2|{}).ut=0 is

computed first. The optimal utility of the first sub-region is taken as the base value of function

Opt(0,2,7,1|{p6}) for computing the optimal utility of the second sub-region (from 2 to 7 with

room=1). After obtaining Opt(0,2,7,1|{p6}).ut=6, it is taken as the base value for the third

sub-region. Similarly, we compute the utility of the third sub-region (with base value 6 from 7

to 11 with room=0) by calling Opt(6,7,11,0|{p6,p0}). Since phrase p6 is worth to be selected

under the condition that phrase p2 is selected (w ＞ 6), p2 is selected. Back to the outermost

Opt, phrase p2 is also worth to be selected. Thus, the final optimal selection is {p0, p1, p6, p2}

and the utility of the optimal selection is 20.

Table 3-3. Parameters for SVM

 Parameter Value

The exponent for the polyphomial kernel 1

Gamma for the RBF kernel 0.01

Sets the size of the kernel cache (a prime number) 250007

Sets the tolerance parameter 1.0e-3

Sets the epsilon for round-off error 1.0e-12

The complexity constant C 1

3.5 Experiments of Proposed Music Arrangement Framework

According to the proposed automatic music arrangement framework, we design an automatic

37

music arrangement system for piano in our experiments. Our music arrangement system was

implemented in Java, along with two open source packages, jMusic [47] and Weka [53]. The

library, jMusic, provides an environment for manipulating MIDI data; Weka provides

machine learning tools for our training and test process. We choose MIDI-format music as a

source of symbolic data. All the music data we collected are available on the web page

(http://mpc.cs.nctu.edu.tw/~stevechiu/mas/mas_work/).

3.5.1 Effectiveness of Arrangement Element Determination

In implementing of the arrangement element determination, we chose the support vector

machine (SVM) [6] as our classifier. As mentioned in Section 3.2, the modified SVM is a

five-class classifier and is able to obtain the probabilities over five classes.

We collected the segmented tracks by first performing track segmentation on each music

object in our database. Two musically trained experts were then asked to annotate the type of

arrangement element for some of the segmented tracks. Both of them have received at least

15-year music training and participate in music productions and recordings. Besides, one

graduated from department of music and majored in composition and arranging. The other has

five-year experience in computer music. A total of 240 segmented tracks were annotated: 78

for foundation, 56 for rhythm, 15 for pad, 67 for lead, and 24 for fill. The segmented tracks

and their annotated result were also shown on the web page

(http://mpc.cs.nctu.edu.tw/~stevechiu/mas/mas_work/showdatabase.php). We trained our

classifier with the unbalanced sizes of the class because the proportion of the types of

arrangement elements in a music object is also unbalanced. The parameters of SVM are set by

trial and error (The values of these parameters are listed in Table 3-3). The confusion matrix

of classification result is shown in Table 3-4. The f-measures for foundation, rhythm, pad,

lead, and fill are 0.907, 0.826, 0.72, 0.813, and 0.4 respectively.

38

Table 3-4. Confusion matrix for five arrangement elements with tenfold cross-validation

 fo rh pa le fi

fo=Foundation 73 3 0 2 0

rh=Rhythm 7 45 0 3 1

pa=Pad 0 3 9 2 1

le=Lead 3 1 0 61 2

fi=Fill 0 1 1 15 7

Classifier As Arrangement

Element

Table 3-5. Parameters for our piano arrangement system

Parameter Description Value

TS.τ A threshold for track segmentation 0.5

PI.LBDM.threshold A threshold for LBDM 0.6

UA.AE.threshold.filter

(right/left hand)

A threshold to filter the phrases whose

utility is too low
0.1/0.1

UA.AE.consider[fo,

rh,pa,le,fi](r/l hand)

Which arrangement elements are

considered

[0,0,0,1,1]/

[1,1,1,0,0]

UA.α1, UA.α2 Proportion in utility assignment 0.7, 0.3

PS.MOP (r/l hand)
Maximal overlapping phrase allowed in

phrase selection
5/5

Pla.Through_Hand (r/l hand)
In playability, semitone allowed between

thumb and little finger
14/14

Pla.Thumb_Index_Gap (r/l

hand)

In playability, semitone allowed between

thumb and point
4/4

Pla.Other_Gap (r/l hand)
In playability, semitone allowed between

the other adjacent fingers
3/3

TS: Track Segmentation, PI: Phrase Identification, UA: Utility Assignment, PS: Phrase

Selection, Pla: Playability, AE: Arrangement Element

The class, fill, cannot be determined very well. The properties of fill are very similar to lead,

as they have common characteristics such as pitch, duration, etc. No relevant feature can be

used to discriminate them. This is reason fill is sometimes misclassified as lead. According to

definition, a fill appears between successive phrases of lead. The length of the phrase of lead

is longer in most types of music; hence, most parts of fill are rest note. We think the major

feature that can be used to distinguish fill from lead is the ratio of silence. However, in most

of cases, the musician combines fill with the other arrangement element (usually rhythm)

instead of adding a specific instrument performing fill. As such fill cannot be determined well.

We will keep looking for relevant features with which to improve the performance of

39

arrangement element determination in future work.

Table 3-6. Music for experiments

S/H: System or human arranges; first 16 music are used in experiment 1; S1,…,S7 are

used in experiment 3 (scoring solos); A1,…,A7 are used in experiment 3 (scoring

accompaniment); P1,…,P5 are used in experiment 3 (scoring playability)

Music Title Composer S/H

Bluesette (S1,A1) Toots Thielemans S

Jordu (S2,A2,P1) Duke Jordan S

Green Grow the Lilacs (S3,A3,P2) N/A S

Symphony No.5 in C minor, Op.67 Mov.4 Allgro (S4,A4) Beethoven S

On Springfield Mountain N/A S

Lakes of Pontchartrain N/A S

Red River Rock
Johnny & the

hurricanes
S

Some Folks Do Stephen C. Foster S

A Virgin Unspotted Christmas Hymn H

'O Sole Mio
N/A (Neapolitan

song)
H

Playmate / Two Little Maids H. W. Petrie H

The Champion
Kristopher M

Thornton
H

Lazy Mary, Will You Get Up? N/A H

Unfortunate Miss Bailey N/A H

10 Little Indians N/A H

You're in the Army Now N/A H

Some Folks Do (S5,A5) Stephen C. Foster S

Symphony No.25 in G minor, K.183 (S6,A6) Mozart S

3.5.2 Turing Test-like Experiment for the Arranged Results

It is difficult to evaluate the effectiveness of our music arranging system because the

evaluation of effectiveness in works of art often comes down to subjective opinion. In 2001,

M. Pearce proposed a method to evaluate the computer music composition system [44]. We

adopted this method in designing our experiments.

40

The proposed system can be considered successful if the subjects cannot distinguish between

the system-arranged and the human-arranged music. There were 30 subjects in total.

Twenty-two subjects were composed of graduate and undergraduate students, including four

subjects with at least three-year musical training affiliated with the Department of Computer

Science at National Chiao Tung University. Eight subjects were music teachers at several

private music schools. The prepared dataset consisted of eight human-arranged and eight

system-arranged music objects. The system-arranged music was generated by our system using

the parameter setting listed in Table 3-4. Confusion matrix for five arrangement elements with

tenfold cross-validation

 fo rh pa le fi

fo=Foundation 73 3 0 2 0

rh=Rhythm 7 45 0 3 1

pa=Pad 0 3 9 2 1

le=Lead 3 1 0 61 2

fi=Fill 0 1 1 15 7

Classifier As Arrangement

Element

. The same setting was also adopted in the succeeding experiments. The experiment used the

first 16 music objects in Table 3-6. The music objects were sorted randomly and displayed to

the subjects on the web page (http://www.cs.nctu.edu.tw/~scchiu/mas/survey.html). The

subjects were asked to listen to each piece and determine whether it was system- or

human-arranged. The proportion of correctly identified music was calculated from the

obtained result, with “Mean” being the average of the accuracy. The significance test was

performed with the one-sample t-test against hypothesized value 0.5 (the expected value if

subjects discriminated randomly). Simply speaking, if the mean value is close to 0.5, we can

say that it is difficult to distinguish between the system- and human- arranged music.

41

Table 3-7. The results of discrimination test

 Mean SD DF t P-value

All subjects 0.45 0.1453 29 -1.885 0.0695

All subjects except musically

trained subjects
0.444 0.15 17 -1.61 0.1258

Musically trained subjects 0.4688 0.1423 11 -0.76 0.4635

SD: the standard deviation; DF: the degree of freedom; t: t statistic.

The results are shown in Table 3-7. The mean values of the three groups are close to 0.5 with

around 0.15 standard deviations. According to t-test, we can accept the hypothesized value

0.5 using the 0.05 level of significance; that is, it is difficult to distinguish between the

system- and human-arranged music. Considering p-value, the result of all subjects is more

significant than the other two separated groups because the number of all subjects is higher.

The discrimination rate of the musically trained subjects (0.4688) is a little bit higher than the

discrimination rate of all the subjects excluding the musically trained subjects (0.444). Such

results conform to the intuition that the musically trained subjects could discriminate with

higher precision. Since the discrimination rate of musically trained subjects is still close to 0.5,

we believe that it is not easy to distinguish between the system- and human-arranged music

even by the musically trained subjects.

42

Table 3-8. The results of scoring

 A1 A2 A3 A4 A5 A6 A7

Mean 0.986 0.143 0.643 0.429 0.643 0.786 0.429

SD 0.994 1.027 1.008 0.938 0.745 0.699 0.756

 P1 P2 P3 P4 P5

Mean 1.182 1.273 1.364 1 0.818

SD 0.874 0.786 0.924 1.247 1.401

 S1 S2 S3 S4 S5 S6 S7

Mean 0.643 1 1.143 0.571 0.929 0.5 0.214

SD 0.842 0.877 0.77 0.938 0.73 0.941 0.802

A: The result of scoring system-arranged piano reduction

B: The result of scoring system-arranged accompaniment piano part

C: The result of scoring playability of system-arranged music

3.5.3 Scoring the Arranged Results

To evaluate the ability of role arrangement, five music objects were chosen, each of which

was arranged into a solo and accompaniment piano arrangement. The five objects were

selected from the system-arranged music list in Table 3-6, and were asterisked and assigned

numbers following the music title. The original and arranged versions were put on the web

page so that the subjects could listen to them alternately and comparably. The subjects were

asked the question “Do you think the arrangement was successful?” The question was

followed by three tips: (1) Are the original and the arrangement similar?, (2) Is the

arrangement elegant?, (3) Is the arrangement like piano music?” The average score of the 22

responses was 0.714. Of the experimental music set, S7 shows the highest score. The melody

and counterpoint are correctly selected for piano, demonstrating characteristics of Baroque

music. In contrast, S6 had the lowest score. We think some phrases were assigned

inappropriate utility, so that the other important phrases could not be selected. Furthermore,

some of the selected phrases with trill technique performed by violin were not suitable for the

piano. This problem may be solved by considering piano performance properties in utility

43

assignment.

For accompaniment, a similar question was asked, “How satisfied are you with the

accompaniment of duo?” The answer contains five choices: very good (+2), good (+1),

average (0), bad (-1), and very bad (-2). Only 12 subjects answered the question because some

of them could not tell which accompaniment was of good quality without musical background.

The mean of grade was 0.58 and standard deviation, 0.881. We think that most of the music in

our dataset was suitable for being an accompaniment of duo. A7, which also shows the lowest

grade among seven music objects, was the only one not suited for duo. We think too many

phrases of lead were selected as accompaniment. The failure of arrangement element

determination leads to inappropriate utility assignment, and in turn, the incorrect selection of

phrases.

For playability, we displayed the sheet music of the MIDI-format arranged music by general

music software with slight parameter setting for presentation. Both the arranged music and its

sheet music were put on the web page questionnaire so that the subjects could listen and view

simultaneously, then, assign their decisions. The instruction was “Please view the sheet music

and determine if it can be played on the piano.” The five answer of choices were: 1. It is

playable (+2); 2. It is playable but hard (+1); 3. Neutral (0); 4. It may not be playable (-1); 5.

Absolutely, it is not playable (-2). Note that this question was optional because not all

participants could read sheet music. For eight responses, the mean was 1.127 and standard

deviation, 1.046. This experiment shows that the arranged results are playable.

3.5.4 Case Studies

We chose two arranged results and demonstrated the sheet music of both the original and the

arranged music. Due to the limitation of space, we only take two excerpts from them to

discuss.

44

Figure 3-11. (a) Original music: excerpt from Duke Jordan “Jordu” (b) System output:

piano-arranged music for a solo piano

The arranged result is jazz music, “Jordu,” by Duke Jordan. The excerpts (measure 9-16) of

the original and the arranged sheet music were shown in Figure 3-11a and Figure 3-11b,

respectively. The ensemble comprised of four instruments: electric piano (melody and chord),

vibraphone (solo), electric grand piano (chord), bass, and drum. Some instruments, such as

drum, were recorded in more than one track. The system performed phrase selection for the

right hand then the left hand. The system demonstrated the ability to select the correct melody

for the right hand because the arrangement element determination contributed to segmented

tracks, which assigned the proper utility to phrases. According to the parameter setting in

phrase selection, the system maximally allowed five phrases to overlap with each other. We

originally anticipated that some phrases near the melody could be selected to maximize total

utility. However, such did not happen because the melody and the other overlapped phrases in

the chord part could not be played simultaneously. The phrases in the chord part were

especially long because there was no high strength to be cut by LBDM. It needed the notes

from the other phrases that could be played with the long phrase. Thus, it was difficult to find

New piano-arranging music (for solo piano)

Original music: Jordu (Duke Jordan)

45

a non-melody phrase with melody for the right hand part. Only when the phrase was short and

it is playable with the melody, it was easier to be selected. An example can be seen in measure

16. An overlapping phrase with one E4 note in the chord part was selected with the melody.

In the left hand part, we found that phrase selection chose the bass part instead of the chord

part because the utility of the phrase in the bass track was much larger than that of the chord

track. The other non-bass phrases were selected for the left hand for the same reason. We

think this result is acceptable for a piano reduction.

Figure 3-12. (a) Original music: an excerpt from a Irish folk song “Green Grow the Lilacs” (b)

System output: piano-arranged music for solo piano

The other arranged result is an Irish folk song entitled “Green Grow the Lilacs.” Figure 3-12a

and Figure 3-12Figure 3-12b show excerpts from measure 1 to 8 of the original and the

arranged versions, respectively. The original song contained five instruments: three acoustic

guitars (one for melody and two for chord), bass, and violin. As can be seen, the arranged

result was not just a monophonic phrase because the other phrases were playable with the

main part. The phrases of melody were included correctly for the right hand part; and the

arrangement for the left hand part also contained as many phrases as possible in bass and

harmonic voice. We think this song was arranged successfully for a piano reduction. It was

Original music: Green Grow the Lilacs (Irish Folk Song)

New piano-arranging music (for solo piano)

46

also playable.

3.5.5 Efficiency of the Piano Arrangement System

To evaluate the response time of the system we developed, we conducted an experiment on an

IBM desktop computer with a 2.4 Ghz Intel(R) Pentium(R) quad-core processor with four

gigabytes of main memory running on a Linux 2.6 operating system. We show the

information in process for four excerpts of the music in Table 3-9. As can be seen, it was the

overlapping phrase rate OPR, not the length of music and the number of identified phrases,

which influenced the execution time. OPR is the average number of overlaps between phrases.

When OPR is high, the time complexity of phrase selection let the execution time grow

polynomially.

Table 3-9. Efficiency of music arranging system

Music length #st #phr OPR Round in PS Execution time

Blueseet *1 0:41 7 41 7.86 734 6.06 s

Jordu *2 3:25 8 237 7.0 1343 57.702s

Lilacs *3 1:29 6 310 11.64 9552 42.817s

Sym. No.5 *4 1:05 17 112 32.28 38918 156.663s

st: segmented track; phr: phrase; PS: phrase selection, OPR: Overlapping Phrase

Rate.

47

CHAPTER 4 POLYPHONIC REPEATING PATTERN

MINING

4.1 Introduction

Many famous musicians ever made some descriptions or definitions for their understanding of

music. For example, Edgard Varese said that music is “organized sound” and an

American-born violinist, Yehudi Menuhin, mentioned that “music is art of time.” Organizing

sounds over time is a design of repetition. In music theory, one of important techniques of

music composition is to construct repetitive relationship among small pieces in time sequence

for enhancing impression of a listener. Many researchers in musicology and music

psychology fields claim that repetition is a universal characteristic in music structure

modeling [48]. The segment appears repeatedly in music is so-called repeating pattern. As an

example shown in Figure 4-1, the segment in the second block of the second line is a copy of

the segment in the first block. The repeating pattern may present several meanings in music,

such as motif and theme. A motif is a short musical idea which is a meaningfully recurring

fragment or succession of notes. Composers usually employ the notion of motif to vary and

develop whole music. In contrast to a motif, a theme is a complete phrase which is an

impressive melody repeated in variation of form. In addition, depending on the composer and

the type of music, it may be different for a theme in the variation extent and the repetitive

frequency. Thus, the repeating pattern is an important characteristic in music.

Repeating patterns finding is useful not only for music analysis, but also for content-based

music information retrieval due to both efficiency and semantic-richness requirement. That is,

the repeating pattern can be used for music index, since the size of the repeating pattern is less

than the size of a music object and the repeating pattern is relevant as a feature for the

discrimination of music [31]. In other words, the set of repeating patterns in a music object

48

provides a model which is benefit for composing music according to a certain music style [9].

A piece of music in melody part from Mozart, Rondeau K. V. 15hh

Figure 4-1. An example of a repeating pattern

The applications of discovering the patterns occurring repeatedly first appeared in natural

language field [26]. In biological field, researchers convert a DNA sequence and find the

sub-string which repeats frequently in the converted string [4][46]. In multimedia area, Hsu et

al. proposed in [18][18] the problem of repeating pattern mining to discover the repeating

music segments. The studies of the repeating pattern mining problem firstly focused on

finding exact repeating patterns in music database. However, music segments with minor

difference should be regard as the instances of the same repeating pattern. Therefore, the

concept of the approximate repeating pattern [18][32] and the fault-tolerant repeating pattern

[25] are proposed to deal with the problem resulting from the variances among the instances

of the same repeating pattern. For repeating pattern mining in music, they focus on main

melody, an impressive monophonic line for listening, which can be represented by a string

and propose the algorithm to find repeating patterns on a string.

The prior studies mentioned above assume that there is only one event (note) at a time. It is

reasonable for a DNA sequence and music containing a clearly main melody. However, for

many types of music, such as Baroque period music, etc., it may contain two or more

melodies and the main melody is not clear to be found. Thereby modeling music as a string is

inefficient and some significant repeating patterns may not be found. Some work addresses to

this problem and develops the algorithm for mining monophonic patterns from polyphonic

music. For discovering meaningfully musical patterns, they define the special type of

49

repeating patterns in polyphonic music, such as vertical patterns, perceptible repetitions and

geometrical patterns. Conklin developed a representation of music and provides an algorithm

to analyze the vertical patterns, which is benefit for representing common harmonic

progresses, from one or more music objects by encoding a music object into a set of strings

[13][14]. Meudic et al proposed an approach to identify the perceptible repetitions which is

the similar segments located in music [40]. A geometrical pattern proposed by Meredith et al

is represented in polyphonic form to find the pattern repeats in geometrical view [39].

(a) First two bars from Bach Invention No. 1 (BWV 772)

(b) A piece from Mendelssohn, song without words, Venetian Boat-Song No. 1

Figure 4-2. Two examples of polyphonic repeating patterns

To summarize, these approaches can be categorized into two scenarios: 1. discovering

monophonic patterns from monophonic music; 2. discovering monophonic patterns from

polyphonic music. However, there is a problem in traditional repeating pattern mining

approaches. With polyphonic music from Baroque era, for instance, there may be two or more

voices that play melodic line simultaneously, and the same piece often appears in different

voices. As an example of piano music in Figure 4-2.a, in this case, one melody occurs in the

50

treble clef overlapped by another melody in the bass clef. Specially, the repeating pattern in

the box appears interchangeably between two staves. Main melody extraction cannot be used

in this case. Besides, it would be suitable to describe an impressive piece of music in

polyphonic form, rather than in monophonic form. In Figure 4-2.b, an example of a repeating

pattern in polyphonic form is shown in the successively rectangular box.

In this study, we propose the approaches to discover polyphonic repeating patterns in

polyphonic music data modeled as a set-sequence data. To discover patterns from the

set-sequence data, we give a formal definition on polyphonic repeating pattern discovery

problem, which is also a generalized problem of traditional repeating pattern discovery. To

mine polyphonic repeating patterns, we first propose a level-wise mining algorithm, named

A-PRPD (standing for Apriori-based Polyphonic Repeating Pattern Discovery), based on

anti-monotonic property
3
. The approach A-PRPD finds patterns by joining shorter frequent

patterns. Since it takes too much time for A-PRPD to check every pair of frequent patterns

whether it can be used to generate candidates or not, we propose an algorithm D-PRPD

(standing for Depth-first-search based Polyphonic Repeating Pattern Discovery) to avoid this

problem. In D-PRPD, each candidate is generated by two types of extension directly instead

of pair wise check for candidate generation in A-PRPD.

Another issue is frequency counting for both two algorithms because they have to count

frequency by sequence scan for every candidate pattern. Such phenomenon makes two

algorithms spend much time in sequence scan, thereby making them not suitable for long

sequence. In view of this, we develop the bit-string approach to reduce sequence for

frequency counting. The positions of the occurrences of a polyphonic repeating pattern are

recorded by a bit-string, called the bit-string index. Then, we design the bit-string operation to

3 If a pattern is frequent, then all its sub-patterns are frequent.

51

derive the bit-string of the longer polyphonic repeating pattern and also its frequency by basic

hardware operations, specifically, SHIFT and AND operations. By utilizing the bit-string

approach in two algorithms, the number of sequence scan is reduced, thus speeding up the

process of mining polyphonic repeating patterns. To measure the performance of A-PRPD,

D-PRPD and their improvements, several experiments are conducted on both real dataset and

synthetic dataset. The experimental results show that the bit-string approach improves both

two algorithms and D-PRPD with the bit-string approach is able to discover polyphonic

repeating patterns efficiently than others, showing the better scalability of D-PRPD with the

bit-string approach over others.

4.2 Preliminary of Polyphonic Repeating Pattern

4.2.1 Problem of Polyphonic Repeating Pattern Mining

In this section, we formulate the polyphonic repeating patterns discovery problem. Both of a

music object and a pattern are represented as a set-sequence. A set-sequence is a

representation which collects sets of the musical notes appearing at the same time in

chorological order.

Definition 4-1 Let I={i1,i2,…,in} be a set of elements, a set-sequence sd=<s1,s2,…,sm> is an

ordered list of set, where si  I and si , i{1, 2 ,…, m}. The size, m, of a set-sequence is

the number of set in sd. The length of a set-sequence is defined as 
m

isl
1

, where |si|

denotes the cardinality of the set si. In other words, the length of a set-sequence is the total

number of elements in a set-sequence.

Example 4-1 Consider a set-sequence sd=<{A, E}, {C, D, F}, {D}>, there are three sets in sd,

so the size of sd is 3. Since the first set has 2 elements, the second has 3 and the third has 1;

the length of sd is 2+3+1=6.

52

Definition 4-2 (k-position instance) Given two set-sequences, sp=<p1, p2,…, pi> and sd=<q1,

q2,…, qj>, where size(sp) ≤ size(sd), if there exists a k such that p1  qk, p2  qk+1, …, pi 

qk+i−1, where k+i−1 ≤ j, we call that sp has a k-position instance in sd. To discriminate these

two set-sequences, sp is called a set-sequence pattern and sd is called a set-sequence data.

We can define the polyphonic repeating pattern by using the above definition.

Definition 4-3 Given a set-sequence pattern sp and a set-sequence data sd, we use freq(sp,sd)

to denote the frequency of a set-sequence; that is, the number of different k-position instances

in sd with respect to sp. If freq(sp,sd) ≥ t, where t is a user-defined threshold, the set-sequence

sp is a polyphonic repeating pattern or frequent pattern in short.

Table 4-1. All polyphonic repeating patterns discovered from the set-sequence data

<{A,E}, {C,D,F}, {D}, {B}, {A,B}, {A,B,C,F}, {C,D}>. (PRP: Polyphonic Repeating

Pattern)

PRP freq PRP freq

<{A}> 3 <{C, C}> 2

<{B}> 3 <{C}, {D}> 2

<{C}> 3 <{F}, {D}> 2

<{D}> 3 <{A}, {C, D}> 2

<{A, B}> 2 <{A}, {C, F}> 2

<{A}, {C}> 3 <{A}, {F}, {D}> 2

<{A}, {F}> 2 <{C, F}, {D}> 2

<{B}, {B}> 2 <{A}, {C, F}, {D}> 2

<{C, F}> 2

Example 4-2 Consider an example set-sequence sd = <{A, E}, {C, D, F}, {D}, {B}, {A, B},

{A, B, C, F}, {C, D}> and let threshold t be 2. All polyphonic repeating patterns of sd are

shown in Table 4-1. There are 15 polyphonic repeating patterns in this set-sequence data. If

we set t to 3, the discovered polyphonic repeating patterns are <{A}>, <{B}>, <{C}>,

<{D}> and <{A}, {C}>.

Finally, we define the polyphonic repeating pattern discovery problem as follows.

53

Problem Statement Given a set-sequence data sd and a user-specified threshold t, the task is

to find all polyphonic repeating patterns in sd.

The set-sequence representation is an extension of a string which is used to represent a music

object in traditional repeating patterns mining. When a music object is represented in a

set-sequence, we can capture harmonic and counterpoint information which the string

representation cannot do. Note that compare to sequential pattern mining problem [3], the

problem of mining polyphonic repeating patterns treats a set-sequence data as a database and

defines a different pattern in a set-sequence. When applying sequential pattern mining

algorithm to find the polyphonic repeating patterns, the music object has to be divided into a

set of set-sequence. However, to divide a music object is unreasonable because polyphonic

repeating patterns may appear anywhere. Hence, sequential pattern mining algorithm can not

apply to this issue.

4.2.2 Music Representation

In this chapter, a music object is represented by a sequence of sets, i.e., set-sequence.

Preprocessing of music data is composed of two steps. First, the quantization process is

performed. This process is to adjust the onset time and note duration of each note to

reasonable rhythmic unit. An example is given and shown in Figure 4-3. This process is

necessary. Because the time resolution of note in symbolic music data is usually high for

flexibility of expression, some notes may not appear in rhythmic position precisely. Second,

the notes occurring in the same time are grouped and the sets are ordered in time sequence.

After preprocessing, a set-sequence of notes is generated.

54

Pitch

Time

Quantizationrhythmic unit

Pitch

Time

Figure 4-3. An example of quantization process

To discover musical patterns, we consider two attributes of a note. Two of them are pitch and

duration. We use sd(pitch, duration) to denote a set-sequence data represented in 2-tuple. In pitch,

two types of value are used, exact pitch value (EPV) and pitch interval (PI). For EPV, a note

is recorded by its exact pitch value. For PI, all intervals between successive two sets are

recorded. For attribute duration, exact duration value (EDV) is employed; that is, the number

of beats of a note sustains. We give an example of variant representations in Figure 4-4. We

represent exact pitch value following MIDI format, i.e., the MIDI number of center C is 60,

etc. On the other hand, the extract duration value of the note is 0.5 when the note is an eighth

note. The elements in first set under (EPV, EDV) representation are (31, 0.5), (43, 0.5) and

(74, 0.5). For (PI, -) representation, the elements in first set are the interval between the first

set and the second set, i.e., (49, -), (37, -) and (-4, -). For simplification, we use an alphabetic

symbol to denote identical 2-tuple elements (pitch, duration) while describing the problem

and the proposed algorithms.

55

Note name … G0 … G1 … C3 C#3 D3 … C4 C#3 …

MIDI number … 31 … 43 … 60 61 62 … 72 73 …

(EPV, EDV) < {(31,0.5), (43,0.5), (74,0.5)}, {(70,0.5)}, {(66,0.5), (72,0.5)}, {(74,1)}, {(70,0.5)}, {(79,0.5)} >

(PI,-) < {(39,-), (27,-), (-4,-)}, {(-4,-), (2,-)}, {(8,-), (2,0)}, {(-4,0)}, {(9,-)} >

Figure 4-4. An example of variant representations

A common repeating pattern can be found by considering exact pitch value and duration. By

employing these representations in this study, some kinds of motif development defined by

music theorem [49] can be found by discovering polyphonic repeating pattern in a music

object represented in some combinations of these features. For instance, one of the most

important motif developments, Sequence, can be found by considering pitch interval and

duration. One point needed to mention is that there are two kinds of transposition, real

transposition and tonal transposition. The main difference of these two transpositions is made

by naturally occurring half steps (abbreviated by NOHS) in musical scale. For example, in C

major scale the pitch interval between C-D and E-F are different in tonal transposition, but

they are viewed as the same distance in real transposition. Real transposition is not affected

by NOHS, it keeps the intervallic structure exactly. On the other hand, the quality of the

interval structure in tonal transposition is also flexible to fit NOHS in musical scale. Therefore,

we consider both two types of representations in pitch interval.

56

Algorithm A-PRPD(sd,t)

Input: sd, t

Output: polyphonic repeating pattern set

1: L1={sp1 |all frequent length-1 patterns};

2: for (k=2; 1kL ; k++)

3: Ck=pattern-extend(Lk-1);

4: foreach length-k candidate pattern
kCc do

5: freq-count(c, sd);

6: Lk={
kCc | tsdcfreq ),(}

7: output all frequent patterns;

freq-count(sp,sd)

Input: a set-sequence pattern sp, a set-sequence data sd

Output: frequency

1: freq=0;

2: for(i=1; i (sd.size−sp.size+1); i++) do

3: if sp has an i-position instance in sd do

4: freq++;

5: return freq;

pattern-extend((k－1)-RPRSet)

Input: a set of length-(k－1) patterns

Output: a set of length-k candidate patterns

1: for all pair (sp1, sp2) in (k－1)-RPRSet do

2: sp1‟= sp1 with no first element;

3: sp2‟= sp2 with no last element;

4: if sp1‟ is equal to sp2‟ then

5: if the cardinality of the last set of sp2 is 1 then

6: c_sp =append the last set of sp2 to sp1;

7: else then

8: c_sp =add the last element of sp2 to sp1‟s last set

9: if c_sp.length=k then

10: add c_sp to Ck

11: return Ck;

Figure 4-5. A-PRPD algorithm

The set-sequence representation is a type of a piano-roll or a string-based representation for

music. This representation is suitable for homophonic music
4
 [30]. As to polyphonic music, it

can be represented sufficiently by combining the notes with two attributes, pitch and duration,

occurring at a short period of time into a set. Comparing to the geometric representation [39],

4 Comparing to polyphonic music, in monophonic music, all parts move in parallel rhythm and pitch.

57

the set-sequence representation is more rigid showing less flexibility in discovered patterns.

But, without missing some significant patterns, the set-sequence representation can focus on

the patterns occurring repeatedly over time domain to avoid plenty of irrelevant patterns

occurring in geometric view.

4.3 Mining Polyphonic Repeating Patterns

Two approaches, A-PRPD and D-PRPD, are proposed for mining polyphonic repeating

patterns from a set-sequence data.

4.3.1 Apriori-based Polyphonic Repeating Pattern Discovery (A-PRPD)

Algorithm A-PRPD (Apriori-based Polyphonic Repeating Pattern Discovery) is a level-wise

approach based on Apriori property [2] to discover polyphonic repeating patterns from music

data. The patterns are generated step by step from short length pattern to long length one. The

frequent patterns with short length are discovered first and used to generate longer patterns.

For the description of the process, we denote the set of length-k polyphonic repeating pattern

by Ck. The frequent patterns are collected from Ck is denoted by Lk. The main process makes

multiple passes over data. The k-th pass generates length-k patterns. The first pass, find L1 by

checking if the frequency of each possible length-1 pattern is larger or equal to the threshold t.

The subsequent passes consist of two steps. In the k-th pass, the first step generates the set of

length-k candidate patterns Ck from Lk-1 by employing pattern-extend method described later.

Then, the second step checks frequency freq for each candidate pattern in Ck and finds the set

of length-k frequent patterns Lk. The subsequent pass repeats until Lk is empty. The answer is

the union of all frequent patterns in each pass. The detailed algorithm is shown in Figure 4-5.

The pattern-extend is used to generate all possible patterns Ck from Lk-1. We borrow the

58

concept from anti-monotonic principle
5
. For example, if a length-4 set-sequence pattern <{A},

{A,D,E}> is frequent, then the length-3 set-sequence patterns, <{A}, {A,D}> and <{A,D,E}>,

must be frequent. Thus, we check all pairs in Lk-1 to check if there are length-k patterns.

Hence, pattern-extend procedure is designed as follows. Let sp1=<{e1,1, e1,2, …, e1,n1}, {e2,1,

e2,2, …, e2,n2}, …, {ek-1,1, ek-1,1, …, ek-1,nk-1}> and sp2=<{f1,1, f1,2, …, f1,m1}, {f2,1, f2,1, …,

f2,m2}, …, {fk-1,1, fk-1,1, …, fk-1,mk-1}>, then sp1‟= sp1 with no the first element, i.e., <{e1,2,

e1,3, …, e1,n1}, {e2,1, e2,2, …, e2,n2}, …, {ek-1,1, ek-1,1, …, ek-1,nk-1}>; and sp2‟= sp2 with no last

element, i.e., <{f1,1, f1,2, …, f1,m1}, {f2,1, f2,1, …, f2,m2}, …, {fk-1,1, fk-1,1, …, fk-1,mk-2}. For each

pair of patterns (sp1, sp2) in Lk-1, it is checked if sp1‟ is equal to sp2‟. If established, it means

that this pair can be used to generate a length-k candidate pattern, c_sp, by adding fk-1,mk-1 into

the first set of spi , i.e., c_sp = <{e1,1, e1,2, …, e1,n1}, {e2,1, e2,2, …, e2,n2}, …, {ek-1,1, ek-1,1, …,

ek-1,nk-1, fk-1,mk-1}>. Note that only when c_sp.length = k, c_sp is added into Ck, i.e.,

{ek-1,1, ek-1,1, …, ek-1,nk-1}, fk-1,mk-1≠ e.

We give an example of pattern-extend as follows. While checking the pair of patterns in L4,

(sp1, sp2)=(<{A},{C,D},{E}>, <{C,D},{E,F}>), we compute sp1‟ and sp2‟, respectively.

Since sp1‟ is <{C,D}, {E}> by deleting the first element of sp1 and sp2‟ is <{C,D}, {E}> by

deleting the last element of sp2; sp1‟ is equal to sp2‟. Therefore, the length-5 pattern <{A},

{C,D}, {E,F}> is generated from this pair of length-5 by adding the last element of sp2 to the

last set of sp1 since the cardinality of the last set of sp2 is not 1. On the other hand, consider

this pair (<{A,C,D}>, <{C,D}, {E}>) which can be used to generate a candidate after

checking that these two conditions are established, the length-4 pattern <{A,C,D}, {E}> is

generated from this pair by appending the last set of sp2 to the last of sp1 because of the

5 If a frequent length-l set-sequence pattern, then all l−1 set-sequence patterns are frequent in this set-sequence

pattern.

59

cardinality of the last set of sp2 is 1. By this approach of generating candidates, any possible

solution would not be lost.

Figure 4-6. An example of running A-PRPD algorithm

An example of running A-PRPD is given in Figure 4-6.. A set-sequence data, <{A}, {C,E},

{A,D}, {B,C,E}, {A,E}, {A}>, is given and we assume threshold t is 2. L1 is obtained by

scanning the given data sequence and checking frequency for each item. The pattern-extend is

called to generate C2 by inputting L1. In the process of pattern-extend, each pair of the patterns

in L1 will be checked, including itself, that is, (<{A}>, <{A}>), (<{A}>, <{C}>), (<{A}>,

<{E}>), (<{C}>, <{A}>), (<{C}>, <{C}>) and all other pairs. There are 12 set-sequence

patterns in C2. After checking each pattern in C2 whether it is larger or equal to 2, we will

have L2. By repeating this process, step 2 to 6 in algorithm, L3 is derived, and then L4. Since

the empty set is generated by applying the L4 to pattern-extend function, the process will be

terminated. All set-sequence patterns in Li, where i={ 1, 2, 3, 4 }, are frequent polyphonic

sd = <{A},{C,E},{A,D},{B,C,E},{A,E},{A}>, t=2

pattern freq
<{A}> 4
<{B}> 1

<{C}> 2

<{D}> 1
<{E}> 3

pattern freq
<{A}> 4
<{C}> 2
<{E}> 3

pattern freq
<{A},{A}> 1
<{A,C}> 0

<{A},{C}> 2

<{A,E}> 1
<{A},{E}> 2
<{C},{A}> 2
<{C},{C}> 0
<{C,E}> 2

<{C},{E}> 1
<{E},{A}> 2
<{E},{C}> 0
<{E},{E}> 1

pattern freq

<{A},{C}> 2

<{A},{E}> 2
<{C},{A}> 2
<{C,E}> 2

<{E},{A}> 3

pattern freq

<{A},{C},{A}> 2

<{A},{C,E}> 2
<{A},{E},{A}> 2
<{C},{A},{C}> 1
<{C},{A},{E}> 1
<{C,E},{A}> 2

<{E},{A},{C}> 1
<{E},{A},{E}> 1

pattern freq

<{A},{C},{A}> 2

<{A},{C,E}> 2
<{A},{E},{A}> 2
<{C,E},{A}> 2

Pattern freq
<{A},{C,E},{A}> 2

Pattern freq
<{A},{C,E},{A}> 2

C1: L1:

L3:C3:

L2:C2:

C4: L4:

60

repeating patterns.

Algorithm T-PRPD(sd,t)

Input: sd, t

Ouput: polyphonic repeating pattern set

1: Generate root node r_node;

2: L1={sp1 |all frequent length-1 patterns};

3: foreach pattern sp1 in L1 do

4: Generate child c_node linked by r_node and record sp;

5: foreach child c_node in r_node do

6: DFS-tree(c_node, ds, L1);

7: extract_pattern(r_node);

Algorithm DFS-tree(p_node, ds, L1)

1: foreach pattern
11 Lsp  do

2: sp_set=set-extend(p_node, sp);

3: sp_seq=sequence-extend(p_node, sp); //append the sp to the p_node

4: if (sp_set.length=p_node.length+1) AND (freq(sp_set,ds)≧t) do

5: Generate a node c_nodeset linked by p_node and recording sp_set;

6: DFS-tree(c_nodeset);

7: if (freq(sp_seq,ds)≧t) do

8: Generate a node c_nodeseq linked by p_node and recording sp_seq;

9: DFS-tree(c_nodeseq);

10: return null;

Figure 4-7. D-PRPD algorithm

4.3.2 DFS-based Polyphonic Repeating Pattern Discovery (D-PRPD)

Since observing that A-PRPD takes too much time to generate candidates for discovering

polyphonic repeating patterns, an efficient algorithm called D-PRPD (DFS-based Polyphonic

Repeating Pattern Discovery), is proposed to overcome the issue of candidate generation. A

lexicographic tree is used in D-PRPD to provide a path to search polyphonic repeating

patterns from shorter length pattern to longer one in depth-first-search manner. The frequent

lenth-1 patterns are used to extend the length of the discovered frequent pattern for finding

longer patterns. When In the lexicographic tree of D-PRPD, the node contains three types of

data: root node, set-sequence pattern and frequency. Moreover, the height of a node means the

length of the pattern in this node.

61

Figure 4-8. An example of two operations for pattern extension in D-PRPD, set-extend and

sequence-extend

Algorithm description of D-PRPD is given in Figure 4-7. First, D-PRPD generates the root

node with an empty set-sequence pattern and discovers all length-1 set-sequence. For each

length-1 set-sequence, D-PRPD generates a node which stores the pattern and is linked by

root node. After that, D-PRPD performs the DFS-tree to grow the node in the tree recursively.

Note that DFS-tree method adapts depth-first-search approach to find set-sequence patterns,

i.e., it will find pattern as longer length as possible until the frequency of the pattern is less

than user-defined threshold t.

Figure 4-9. An example of a long pattern found by running D-PRPD

While a node generates its child node, D-PRPD extends the length of set-sequence by using

set-extend and sequence-extend to avoid neglecting possible candidates. The set-extend

operation is to extend the pattern by adding an item to the last set of a pattern. Another

<{A},{B}>

<{A},{A,B}> <{A},{B},{A}>

set-extend(
<{A},{B}>, {A})

sequence-extend(
<{A},{B}>, {A})



<{A}> <{B}> <{C}> <{D}> <{E}>

<{A,B}> <{A},{B}>

set-sequence data: <{A,E},{B,D},{A,B,C},{B},{A},{B,C},{A,C}>
threshold: 2

<{A},{A,B}> <{A},{B},{A}>

<{A},{B},{A},{A}> <{A},{B},{A,B}> <{A},{B},{A},{B}> <{A},{B},{A,C}>

<{A},{A}>
sequence-extend

set-extend

62

operation, sequence-extend is used to extend the pattern by appending a set formed by an item

to the last of the pattern. An example of these two operations is shown in Figure 4-8. However,

in some circumstances, when the set-extend operation is applied, the item we added has

already in the last set of the pattern. In this case, the extended pattern will be ignored because

the length of the pattern does not increase. For example, as set-extend operation is performed

over this pair (<{A,B},{C,D}>,{C}), the result <{A,B}, {C,D}> is ignored.

Figure 4-10. An example of all patterns found by D-PRPD

While a pattern is not frequent, the pattern generated in the subtree of this node will not be

frequent, according to anti-monotonic property. As a result, DFS-tree does not grow at this

node to find the longer length pattern. Instead, this procedure finds the shorter length pattern,

but in different prefix. Finally, all frequent patterns will be found in lexicographic order. We

give an example in Figure 4-9. Assume there is a set-sequence data sd=<{A,E}, {B,D},

{A,B,C}, {B}, {A}, {B,C}, {A,C}> and threshold is 2. To discover all frequent set-sequence

patterns in sd, we first find all length-1 patterns, running as breadth first search in the

lexicographic tree, and the length-1 patterns <{A}>, <{B}> and <{C}> are found. The

frequent patterns are framed in bold line and the infrequent ones are framed in a dotted line.

Then, the node of the pattern <{A}> is grown by extended <{A}> with set-extend and

sequence-extend operations. But, only <{A}, {A}> is formed. After checking this pattern is



<{A}> <{B}> <{C}> <{D}> <{E}>

<{A},{B}>

set-sequence data: <{A,E},{B,D},{A,B,C},{B},{A},{B,C},{A,C}>
threshold: 2

<{A},{B},{A}>

<{A,C}>

<{A},{B},{A,C}>

<{B},{A}>

<{B},{A,C}> <{B},{A},{B}>

<{B},{A},{B},{A}>

<{A},{B},{C}>

63

infrequent, the pattern is also eliminated. By repeating this process, we find pattern <{A},

{B}> is frequent. From this node, the pattern is extended. We find frequent pattern <{A}, {B},

{A}> and then <{A}, {B}, {A,C}> in the next level. The final result is given in Figure 4-10.

4.4 Bit-String Approach

Frequency counting is the main performance issue of our proposed algorithms. To improve

the performance, a bit-string approach is developed for counting frequency efficiently.

 sd=<{A,E}, {B,D}, {A,B,C}, {B}, {A}, {B,C}, {A,C}>

<{A}> 1 0 1 0 1 0 1

<{B}> 0 1 1 1 0 1 0

<{C}> 0 0 1 0 0 1 1

<{A,C}> 0 0 1 0 0 0 1

<{A},{B},{A}> 1 0 1 0 1 0 0

Figure 4-11. An example of bit-string index

4.4.1 Bit-String Index

A set-sequence pattern sp in a set-sequence data sd can be represented by a bit-string. The

length of the bit-string bs(sp) is equal to the size of sd. The k-th value of bs(sp) is 1 when sp

has a k-position instance in sd ; otherwise, k-th value is 0. Furthermore, the total number of bit

“1” in the bit string is equal to the frequency of this pattern. We give the formal definition of

the bit-string index as follows.

Definition 4 (bit-string index) Given a set-sequence pattern sp=< p1, p2, …, pi > and a

set-sequence data sd=< q1, q2, …, qj >, where size(sp)≦size(sd) and size(sd) is j. We say the

bit-string of sp in sd is bs(sp)= b1 b2 … bj, where bk=1, if b has a k-position instance in sd;

otherwise, bk=0.

64

An example of bit-string index is given in Figure 4-11. For a sequence pattern sp=< {A}, {B},

{A} >, it has k-position instances in sd at 1, 3 and 5; thus, bs(< {A}, {B}, {A}>)=1010100.

4.4.2 Frequency Counting with Bit-String Operation

While the bit strings are maintained, the frequency of the extended pattern can be counted

efficiently by applying bit-string operation. We denote the bit string of the length-l pattern as

bs(spl).

Bit-String Approach used in A-PRPD

In the proposed A-PRPD algorithm, pattern-extend function is used for finding longer

polyphonic repeating patterns. That is, a length-l pattern c_sp is generated by two length-(l-1)

pattern sp1l-1 and sp2l-1. As previous mentioned, we have already maintained their bit strings,

bs(sp1l-1) and bs(sp2l-1). The pattern-extend function is performed when sp1‟l-1 (sp1l-1 deleting

the first element) and sp2‟l-1 (sp2l-1 deleting the last element) are equal. Depended on the

cardinality of first set of sp1l-1 (larger than 1 or equal to 1), the size of sp1‟l-1 and sp2‟l-1 are

equal to sp1l-1.size or sp1l-1.size－1. When the cardinality of the first set of sp1l-1 is larger than

1, then the first set of sp2l-1 is included by the first set of sp1l-1; otherwise, the first set of sp2l-1

is included by the second set of sp1l-1. According to pattern-extend operation, c_spl is equal to

the pattern which the last element of sp2l-1 is added to the last set of sp1l-1 or is appended to

sp1l-1. We discuss these two cases for designing bit-string operation as follows.

Case 1: Since the second set of sp2l-1 is comprised by the first set of sp1l-1, a property is in the

extended pattern spl: the element i used to extend will occur at the size‟-th position. We know

bs(sp2l-1) records all k-positions instances in sd. It also denotes that, for each k-position

instances, there is an element i appearing after size‟ or size‟－1 position. Thus, bs(spl) can be

derived by checking all k-position instances of sp1l-1 whether there is an element appearing

65

after size‟ or size‟－1 position. The examination can be accomplished by using two hardware

operations, bitwise-and-operation (denoted by „&‟) and bitwise-shift-operation (denote by

LEFT_SHIFT), as the formula: bs(sp1l-1) & LEFT_SHIFT1(bs(sp2l-1)).

Case 2: Since the first set of sp2l-1 is included by the first set of sp1l-1, it not necessary to shift

bs(sp2l-1) to align bs(sp1l-1). Thus, bs(spl) can be derived by bs(sp1l-1) & bs(sp2l-1).

To summarize, the bit-string of length-l pattern, bs(spl) can be derived by the following

formula.

bs(spl) = bs(sp1l-1) & LEFT_SHIFTi(bs(sp2l-1)) (8)

where i=0, if the cardinality of the first set of sp1l-1 is equal to 1; otherwise, i=0.

For example, given sp13 = <{A}, {B}, {A}>, sp23 = <{B}, {A,C}>, and their bit-string

representations are bs(sp13) = 1010100, bs(sp23) = 0100010. After checking, these two

length-3 patterns can be used to generate a candidate sp4 = <{A}, {B}, {A,C}>. We need to

check the frequency of sp4. The process of calculating the frequency of this sp4 by bit-string

operation is described as follows. First, we obtain LEFT_SHIFT1(bs(sp23)) = 1000100. After

that, we perform AND operation with bs(sp13) = 1010100 and LEFT_SHIFT1(bs(sp23)) =

1000100. Hence, we obtain bs(<{A}, {B}, {A,C}>)=1000100. Consequently, the frequency

of sp4 is 2 by counting „1‟ of the bit-string.

Bit-String Approach in D-PRPD

In D-PRPD, a candidate pattern is generated from the pattern in parent node and length-1

pattern by set-extend or sequence-extend operation. For descriptions, we discuss

sequence-extend operation first, then, set-extend operation.

(a) sequence-extend operation

The sequence-extend operation extends a length-(l-1) pattern by appending a size-1 pattern.

66

According to definition, we know spl-1=< s1,…, sm-1> and spl=< s1,…, sm-1, {i}>, where si is a

set and
1

1

1




ls
m

i

. The sequence-extend is to attached the size-1 set to the pattern; that is,

spl has one more set {i} than spl-1, which appears at m-th position. If we know which

k-position instances of spl-1 in sd appearing {i} after m position(s), then, k-position instances

of spl is derived. As we known, bs(spl-1) and bs(sp1) record all position instances of spl-1 and

sp1, respectively. The behavior “checking every k-position instances of bs(spl-1) whether has

sp1 (i.e. {i}) after m position(s)” is equal to Equation (9).

bs(sp’l) = bs(spl-1) & LEFT_SHIFTi(bs(sp1)) (9)

where i is the position of the last set of spl-1.

For example, given spl-1=<{A}, {B}, {A}>, sp1=<{B}>, bs(spl-1)=1010100,

bs(<{B}>)=0111010, and we apply set-extend(<{A}, {B}, {A}>, <{B}>) to derive bs(<{A},

{B}, {A}, {B}>). In this case, the position of the last set of sp is 3, so bs(<{B}>) has to left

shift 3 positions, and we obtain LEFT_SHIFT2(bs(sp1))=1010000. Then, performing AND

operation between bs(spl-1)=1010100 and LEFT_SHIFT2(bs(sp1))=1010000 will derive

bs(<{A}, {B}, {A}, {B}>)=1010000. After aggregating „1‟ in the bit string, frequency of sp’l

is 2.

(b) set-extend operation

Since spl-1=< s1,…, sm-1> and sp1=< {i} >, by set-extend(spl-1, sp1) , we have spl=< s1,…, sm-1

∪ {i}>. In spl, the position of the last set which {i} is included is m-1 position after the first

set. The set {i} is less one position than {i} in sequence-extend. Thus, with the same reason,

we check every k-position instances of bs(spl-1) if sp1 (i.e. {i}) appears m position(s) later. In

set-extend operation, compare to sequence-extend operation, sp1 is added to the last set of spl-1,

consequently, sp1 needs to be shifted left less 1 position than the position of sp1 in

set-sequence operation be shifted.

67

In set-extend operation, the formula is designed as Equation (10).

bs(sp’l) = bs(spl-1) & LEFT_SHIFTi-1(bs(sp1)) (10)

where i is the position of the last set of spl-1.

For example, given sp=<{A}, {B}, {A}>, sp1=<{C}>, and their bit string are

bs(spl-1)=1000100, bs(<{C}>)=0010011. We apply set-extend(<{A}, {B}, {A}>, <{C}>) to

derive bs(<{A}, {B}, {A,C}>). In this case, the position of the last set of sp is 3, so bs(<{C}>)

has to left shift 3−1 positions, and we obtain LEFT_SHIFT2(bs(sp1))=1001100. Then,

performing AND operation between bs(spl-1)=1000100 and LEFT_SHIFT2(bs(sp1))=1001100

will derive bs(<{A}, {B}, {A,C}>)=1000100. After aggregating „1‟ in the bit string, the

frequency of sp’ is 2.

4.5 Experiments of Polyphonic Repeating Pattern Mining

To show efficiency of our approaches, a series of experiments are conducted. We also show

the effectiveness of our approaches.

4.5.1 Efficiency

We present experimental results on the performance of our two algorithms and these two ones

improved by bit-string approaches. All the experiments were conducted on a IBM desktop

computer with a 2.4 Ghz Intel(R) Pentium(R) quad-core processor with 4 gigabytes main

memory running Microsoft Windows XP Professional sp2 (32-bit) operating system. The

algorithms were implemented in C++ with Standard Template Library (STL). The source

codes of these algorithms are available at URL

(http://mpc.cs.nctu.edu.tw/~stevechiu/exp_data/prpd_algo.zip). Note that the runtime was

measured with the output turned off. For our experimental evaluation we used both real and

68

synthetic set-sequence data.

Table 4-2. Parameters of experiments

Parameter Description

t Minimal frequency threshold

S Average size of a set-sequence data

T Average cardinality of a set in a set-sequence data

N Number of distinct elements in a set-sequence data

The real music objects of MIDI format were collected from internet. There were 143 music

objects in total. Interested readers can download these music objects at URL

(http://mpc.cs.nctu.edu.tw/~stevechiu/exp_data/music143.zip). They were classical music

objects composed by various composers in different periods, from Baroque to Romantic.

After preprocessing, each music object was converted into a set-sequence data. The average

size of a set-sequence data was 1451 and the average cardinality of a set was 1.89. In the

experiments, these set-sequences were represented in exact pitch. According to MIDI standard,

the alphabet size of EPV (exact pitch value representation) was 128. We counted distinct

elements of every set-sequence from 1 to 128. The real data music objects were average 46

distinct elements in a set-sequence data. As far as the synthetic dataset is concerned, the

dataset is generated based on the method [18] with some modifications to generate

set-sequence data and patterns. The set-sequence patterns and a set-sequence data are

generated with uniform note distribution. Each generated set-sequence pattern is duplicated

into several instances. These instances are inserted into the generated set-sequence data. Due

to flexibility of synthetic dataset, we can control four factors which dominate the performance

of the proposed algorithms in Table 4-2: minimal frequency threshold t, the average size of a

set-sequence data |S|, the average cardinality of a set in a set-sequence data |T| and the number

of distinct elements in a set-sequence data |N|.

69

(a)

(b)

Figure 4-12. Elapsed time versus frequency for the real dataset, |S|:1451, |T|:1.89 (a) real dataset

(|N|:46 in (PI, -)), (b) real dataset (|N|:72 in (EPV, EDV))

The first two experiments, as shown in Figure 4-12a and Figure 4-12b, illustrate the elapsed

time of A-PRPD, D-PRPD, “A-PRPD+bit_string” and “D-PRPD+bit_string” with respect to

the minimal frequency threshold t (percentage in total number) on real data in (PI, -) and (EPV,

EDV) representations, respectively. Comparing Figure 4-12a and Figure 4-12b, we can notice

that the elapsed time of all algorithms performing on real data in (PI, -) is higher than in (EPV,

EDV). For most case, |N| in (EPV, EDV) representation is larger than in (PI, -) representation

while one more attribute is considered. In the same condition, while |N| is lower, more

polyphonic repeating patterns found leads to more candidates being checked and generated.

By analyzing these two real datasets, the average maximal length of discovered repeating

pattern is 15.8 and 4.7, in (EPI, -) and (EPV, EDV), respectively. Hence, the elapsed time

mining in (PI, -) representation is longer than in (EPV, EDV). “D-PRPD + bit_string” clearly

outperforms the others under two representations.

70

(a) (b)

Figure 4-13. Synthetic dataset: (a) elapsed time versus frequency |S|:1000, |T|:2, |N|:40, (b)

elapsed time versus average size of a set-sequence data, t:4%, |S|:1000, |T|:2

(a)
 (b)

Figure 4-14. Synthetic dataset: (a) elapsed time versus average cardinality of a set in sd, t:4%,

|S|:1000, |N|:40, (b) elapsed time versus number of distinct of elements in sd, t:4%,|S|:1000,

|T|:2

Notice that D-PRPD, however, shows the longest elapsed time. The major diversity is caused

by the large number of candidate generated by D-PRPD. While frequency counting operation

costs time, the drawback imposes much elapsed time on D-PRPD. Although for most case

71

A-PRPD generates fewer candidates than D-PRPD generates, it takes too much time to check

whether a candidate can be generated (see pattern-extend in A-PRPD). While string-bit

approach is proposed for frequency counting in both algorithms, the algorithm taking much

time for frequency counting will takes more advantages. Therefore, the bit-string approach

improves much performance in D-PRPD than in A-PRPD.

For synthetic dataset, Figure 4-13 illustrates the elapsed time versus t and |S| (average size of

a set-sequence data sd). In Figure 4-13a, the elapsed time of four algorithms with respect to t

for synthetic dataset is shown. The average number of found polyphonic repeating patterns at

t=2%, t=4%, t=6%, t=8%, and t=10% is 597.89, 150.03, 76.83, 41.43, and 30.13, respectively.

The result is similar to that of real dataset; that is, “D-PRPD + bit_string” is consistently the

most efficient in these four experiments. For the varied |S|, our algorithms are linearly scalable,

as Figure 4-13b shown. Especially, the algorithms with bit-string index perform in uniform

behavior. Because the bit-string approach uses small storage to index the elements and count

frequency by low-level binary operation, the elapsed time is almost not affected by the

average size of sd. However, the algorithms without bit-string approaches need to check more

positions for a candidate pattern as the average size of sd increases. In addition, Figure 4-14

illustrates |T| (average cardinality of a set in sd) and |N| (number of distinct elements in sd).

For the varied |T|, the elapsed time is not affected by this factor, as Figure 4-14a shown. In

Figure 4-14b, one thing needs to be noticed is that the D-PRPD performs well than A-PRPD

while |N| is less than about 19. This is because when |N| is smaller, the number of the possible

frequent length-1 patterns is fewer. That is, in D-PRPD fewer candidates need to check their

frequency. Overall, “D-PRPD + bit_string” outperforms than the others in most cases.

4.5.2 Effectiveness

To show the effectiveness, we give two examples from the results after performing our

72

polyphonic repeating pattern algorithms. For clear readability, we only demonstrate the

pattern with higher frequency.

Figure 4-15. A pattern appearing in different voices is discovered from C. Nichelmann‟s Gigue

The first example from C. Nichelmann‟s “Gigue” is shown in Figure 4-15. A pattern is

discovered in the music represented in sd(PI,EDV) and it‟s instances are in rectangle. While these

instances of this pattern locate over different voices, our algorithms have an ability to find this

pattern.

The second example is an excerpt from Chopin‟s Op.18, as Figure 4-16 shown. The music is

represented in (PI, EDV), where PI is real transposition. We show two significant polyphonic

repeating patterns discovered by our algorithm: one is in colored rectangle and the other one

is in colorless rectangle. The pattern in colored rectangle is one of the important motifs in this

music. According to motif development, the varied motif is transformed by shifted its original

pitch. Thus, while the music is viewed in pitch interval of real transportation perspective, this

kind of patterns can be found. On the other words, only the colorless pattern can be found

from the music represented in (EPV, EDV). The patterns discovered from sd(PI,EDV) is

contained by the patterns discovered from sd(EPV,EDV). Note that the instances in colorless

rectangle show an example that this period of repetition cannot be found by traditional

repeating patterns mining algorithm because the circled note could lead to the fault of the

main melody extraction approach [51]. The significant motif pattern can be found when the

music is in polyphonic form and discovered by our proposed algorithms.

73

Figure 4-16. The patterns discovered from Chopin‟s “Grande Valse brillante” (Op. 18)

As these two examples shown, we believe that most significant musical patterns can be found.

Moreover, we can find not only traditional repeating patterns in monophonic form but also

more significant repeating patterns in polyphonic form which cannot be found by previous

approaches. We think that there are two future directions can be made to improve our

approaches. First, our developed approaches match the instances of the pattern exactly

thereby missing some instances which appears approximately. Compare to approximate

repeating pattern, it will be a different challenge to define what is similar in polyphonic form.

Second, different patterns are discovered in different representations by our proposed

approaches. An interesting direction is to design a method to present only significant patterns

by integrating all results of discovered patterns in different representations.

74

CHAPTER 5 CONCLUSIONS AND FUTURE WORK

In this Chapter, summaries of our works are given. Some possible future works are also

discussed.

5.1 Conclusions

5.1.1 Summary of Automatic Music Arrangement Framework

In this dissertation, we propose a new framework that is able to arrange multipart scores for

an instrument with consideration of its role in music. The arrangement element analysis

shows an important factor for arrangement, and can contribute to main melody extraction. To

test our framework, we implemented a system which arranges for a piano. The Turing-test

experiment shows that it is difficult to distinguish between human- and system-arranged

music. While our system is able to produce viable and adaptable arrangement for piano, it can

also be applied to many other instruments with the modification of playability function.

5.1.2 Summary of Polyphonic Repeating Pattern Mining

In this chapter, we studied a problem of polyphonic repeating patterns in music. A music

object is modeled as a set-sequence data. We formally defined the polyphonic repeating

pattern discovery problem. Two algorithms, A-PRPD (Apriori-based Polyphonic Repeating

Pattern Discovery) and D-PRPD (DFS-based Polyphonic Repeating Pattern Discovery), are

proposed for mining polyphonic repeating patterns from music data. A-PRPD uses

Apriori-based method to discover longer set-sequence patterns, and D-PRPD maintains a

lexicographic tree which provides a path to search these patterns. Furthermore, we also

proposed a bit-string approach to improve the efficiency of frequency counting for both

algorithms. Our experimental results demonstrate that D-PRPD with bit-string approach

75

outperforms others in most case. An interesting direction for future work is to consider how to

extend these techniques in general to discover other kinds of advanced patterns.

5.2 Future Work

With the capabilities of the proposed music arrangement framework, there are several

interesting extensions on this framework, as listed below.

Arranging for Various Instruments

In our proposed automatic music arrangement framework, it is able to arrange multipart

scores for an instrument. Since the piano arrangement system is implemented, we will try to

arrange for the other instruments by designing the various playability functions. Some

playability functions are not intuitive to design, such as guitar, piano, etc. How to design these

playability functions is an interesting research topic.

Arranging for an Ensemble

While the proposed framework can arrange for various instruments, the next interesting

research issue is how to arrange for an ensemble, i.e., a set of instruments. The main problem

is as follows: Given a set of instruments, how to decide which one plays which type of

arrangement element is an interesting issue. After deciding the types of the arrangement

element for each instrument, the system will be able to perform the phrase selection and finish

the arrangement for an ensemble.

76

REFERENCES

[1] E. F. Adebiyi, T. Jiang and M. Kaufmann, “An Efficient Algorithm for Finding Short

Approximate Non-tandem Repeats,” Bioinformatics, Vol. 17, No. 1, pp. S5-S12, 2001.

[2] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules,” In Proc. of

International Conference on Very Large Data Bases, (VLDB'94), 1994.

[3] R. Agrawal and R. Srikant, “Mining Sequential Patterns,” In Proc. of International

Conference on Data Engineering, (ICDE'95), 1995.

[4] G. Benson, “A Space Efficient Algorithm for Finding the Best Non-overlapping

Alignment Score,” Theoretical Computer Science, Vol. 145, No. 1&2, pp. 357-369, 1995.

[5] A. Berndt, K. Hartmann, N. Rober and M. Masuch, “Composition and Arrangement

Techniques for Music in Interactive Immersive Environments,” In Proc. of Audio Mostly

Conference, 2006.

[6] B. Boser, I. Guyon and V. Vapnik, “A Training Algorithm for Optimal Margin Classifiers,”

In Proc. of the Fifth Annual Computational Learning Theory, 1992.

[7] P. Brucker and L. Nordmann, “The k-track assignment problem,” SIAM Journal of

Computing, Vol. 52, pp. 97-122, 1994.

[8] E. Cambouropoulos, “The Local Boundary Detection Model (LBDM) and its Application

in the Study of Expressive Timing,” In Proc. of International Computer Music Conference,

(ICMC'01), 2001.

[9] S.-C. Chiu and M.-K. Shan, “Computer Music Composition Based on Discovered Music

Patterns,” In Proc. of IEEE International Conference on Systems, Man and Cybernetics,

(SMC'06), 2006.

[10] S.-C. Chiu, M.-K. Shan, J.-L. Huang and H.-F. Li, “Mining Polyphonic Repeating Patterns

from Music Data Using Bit-string Based Approaches,” In Proc. of International

Conference on Multimedia and Expo, (ICME'09), 2009.

77

[11] S.-Y. Chiu, S.-C. Chiu and J.-L. Huang, “On Mining Repeating Pattern with Gap

Constraint,” In Proc. of International Symposium on Advances of High Performance

Computing and Networking, (AHPCN'09), 2009.

[12] J. W. Chung, “The Affective Remixer: Personalized Music Arranging,” In Proc. of

Computer-Human Interaction, (ACM SIGCHI'06), 2006.

[13] D. Conklin and C. Anagnostopoulou, “Representation and Discovery of Multiple

Viewpoint Patterns,” In Proc. of International Conference on Computer Music,

(ICMC'01), 2001.

[14] D. Conklin, “Representation and Discovery of Vertical Patterns in Music,” In Proc. of

International Conference on Music and Artificial Intelligence, (ICMAI'02), 2002.

[15] V. Corozine, Arranging Music for the Real World, Mel Bay, 2002.

[16] R. Daniel and W. D. Potter, “GA-based Music Arranging for Guitar,” In Proc. of

International Congress on Evolutionary Computation, (CEC'06), 2006.

[17] T. Hastie and R. Tibshrani, “Classification by Pairwise Coupling,” The Annals of

Statistics, Vol. 26, No. 2, 1998.

[18] J.-L. Hsu, C.-C. Liu and A. L.-P. Chen, “Efficient Repeating Pattern Finding in Music

Databases,” In Proc. of International Conference on Information and Knowledge

Management, (CIKM'98), 1998.

[19] J.-L. Hsu, C.-C. Liu and A. L.-P. Chen, “Discovering Nontrivial Repeating Pattern in

Music Data,” IEEE Transactions on Multimedia, Vol. 3, No. 3, pp. 311-325, 2001.

[20] J.-L. Hsu, A. L.-P. Chen and H.-C. Chen, “Finding Approximate Repeating Patterns from

Sequence Data,” In Proc. of International Symposium on Music Information Retrieval,

(ISMIR'04), 2004.

[21] N. C. Jones and P. A. Pevzner, An Introduction to Bioinformatics Algorithms, The MIT

Press, 2004.

78

[22] I. Karydis, A. Nanopoulos and Y. Manolopoulos, “Finding Maximum-length Repeating

Patterns in Music Databases,” Multimedia Tools and Applications, Vol. 32, No. 1, pp.

49-71, 2007.

[23] A. A. Kasimi, E. Nechols and C. Raphael, “Automatic Fingering System (AFS),” In Proc.

of International Conference on Music Information Retrieval, (ISMIR'05), 2005.

[24] A. A. Kasimi, E. Nechols and C. Raphael, “A Simple Algorithm for Automatic Generation

of Polyphonic Piano Fingerings,” In Proc. of International Conference on Music

Information Retrieval, (ISMIR'07), 2007.

[25] J.-L. Koh and Y.-T. Kung, “An Efficient Approach for Mining Top-K Fault-Tolerant

Repeating Pattern,” In Proc. of 11th International Conference Database Systems for

Advanced Applications, (DASFAA'06), 2006.

[26] G. Landau, J. Schmidt, “An Algorithm for Approximate Tandem Repeats,” In Proc. of 4th

Annual Symposium on Combinatorial Pattern Matching, 1993.

[27] O. Lartillot, “Discovering Musical Patterns through Perceptive Heuristics,” In Proc. of

Internal Symposium on Music Information Retrieval, (ISMIR'03), 2003.

[28] O. Lartillot, “A Musical Pattern Discovery System Founded on a Modeling of Listening

Strategies,” Computer Music Journal, Vol. 28, No. 3, pp. 53-67, 2004.

[29] O. Lartillot, “Efficient Extraction of Closed Motivic Patterns in Multi-dimensional

Symbolic Representations of Music,” In Proc. of International Symposium on Music

Information Retrieval, (ISMIR'05), 2005.

[30] K. Lemstrom and A. Pienimaki, “On Comparing Edit Distance and Geometric

Frameworks in Content-based Retrieval of Symbolically Encoded Polyphonic Music,”

Musicae Scientiae, Vol. 11, pp. 135-152, 2007.

[31] C.-R. Lin, N.-H. Liu, Y.-H. Wu and A. L.-P. Chen, “Music Classification Using

Significant Repeating Patterns,” In Proc. of International Conference on Database

Systems for Advanced Applications, (DASFAA'04), 2004.

79

[32] N.-H. Liu, Y.-H. Wu and A. L.-P. Chen, “An Efficient Approach to Extracting

Approximate Repeating Patterns in Music Databases,” In Proc. of the 10th International

Conference on Database Systems for Advanced Applications, (DASFAA'05), 2005.

[33] C.-C. Liu, J.-L. Hsu and A. L.-P. Chen, “Efficient Theme and non-Trivial Repeating

Pattern Discovering in Music Database,” In Proc. of IEEE International Conference on

Data Engineering, (ICDE'99), 1999.

[34] Y.-L. Lo and W.-L. Li, “Linear Time for Discovering Non-trivial Repeating Patterns in

Music Databases,” In Proc. of IEEE International Conference on Multimedia and Expo,

(ICME'04), 2004.

[35] Y.-L. Lo and C.-Y. Chen, “Fault Tolerant Non-trivial Repeating Pattern Discovering for

Music Data,” In Proc. of IEEE/ACIS International Conference on Computer and

Information Science, 2006.

[36] Y.-L. Lo, W.-L. Lee and L.-H. Chang, “True Suffix Tree Approach for Discovering

Non-trivial Repeating Patterns in a Music Object,” Multimedia Tools and Applications,

Vol. 37, No. 2, pp. 169-187, 2008.

[37] S. Lui, A. Horner and L. Ayers, “MIDI to SP-MIDI Transcoding Using Phrase Stealing,”

IEEE Multimedia, Vol. 13, No. 2, pp. 52-59, 2006.

[38] E. McCreight, “A Space-Economical Suffix Tree Construction Algorithm,” Journal of the

ACM, Vol. 23, No. 2, pp. 262-272, 1976.

[39] D. Meredith, K. Lemstrom and G. A. Wiggins, “Algorithms for Discovering Repeated

Patterns in Multidimensional Representations of Polyphonic Music,” Journal of New

Music Research, Vol. 31, No. 4, pp. 321-345, 2003.

[40] B. Meudic, “Automatic Pattern Extraction from Polyphonic MIDI Files,” In Proc. of

Computer Music Modeling and Retrieval Conference, (CMMR'03), 2003.

80

[41] T. Nagashima and J. Kawashima, “Experimental Study on Arranging Music by Chaotic

Neural Network,” International Journal of Intelligent Systems, Vol. 12, No. 4, pp. 232-339,

1997.

[42] B. Owsinski, The Mixing Engineer's Handbook, Thomson Course Technology, 1999.

[43] N. Patel and P. Mundur, “An N-gram based Approach for Finding the Repeating Pattern in

Musical Data,” In Proc. of European Internet and Multimedia Systems and Applications,

2005.

[44] M. Pearce and G. Wiggins, “Towards A Framework for the Evaluation of Machine

Compositions,” In Proc. of Symposium on Artificial Intelligence and Creativity in the Arts

and Sciences, (AISB'01), 2001.

[45] N. A. Rimsky-Korsakov, Sheherazade, Op. 35 (Piano Reduction), G. Schirmer, Inc.,

[46] M. F. Sagot, “Spelling Approximate Repeated or Common Motifs Using a Suffix Tree,”

Lecture Notes in Computer Science, Vol. 1380, pp. 111-127, 1998.

[47] A. Sorensen and A. R. Brown, “Introducing jMusic,” In Proc. of the Australasian

Computer Music Conference, (interFACES), 2000.

[48] P. Spencer and P. M. Temko, A Practical Approach to the Study of Form in Music,

Waveland Press, 1988.

[49] L. Stein, Structure & Style: The Study and Analysis of Musical Forms, Summy-Birchard

Music, 1979.

[50] D. R. Tuohy and W. D. Potter, “An Evolved Neural Network/HC Hybrid for Tablature

Creation in GA-based Guitar Arranging,” In Proc. of International Computer Music

Conference, (ICMC'06), 2006.

[51] A. L. Uitdenbogerd and J. Zobel, “Manipulation of Music for Melody Matching,” In Proc.

of ACM International Conference on Multimedia, (MM'98), 1998.

[52] G. White, Instrumental Arranging, McGraw-Hill, 1992.

81

[53] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and

Techniques, CA: Morgan Kaufmann, 2005.

[54] Y. Yonebayashi, H. Kameoka and S. Sagayama, “Automatic Decision of Piano Fingering

Based on Hidden Markov Models,” In Proc. of International Joint Conference on

Artificial Intelligence, (IJCAI'07), 2007.

82

PUBLICATION LIST

Journal Papers

1. Jiun-Long Huang, Shih-Chuan Chiu, and Man-Kwan Shan, “Towards an Automatic

Music Arrangement Framework Using Score Reduction,” accepted by ACM

Transactions on Multimedia Computing, Communications, and Applications

(TOMCCAP), 2010.

2. Shih-Chuan Chiu, Hua-Fu Li, Jiun-Long Huang, and Hsin-Han You, “ Incremental

mining of closed inter-transaction itemsets over data stream sliding windows,” accepted

by Journal of Information Science.

3. Shih-Chuan Chiu, Jiun-Long Huang and Jen-He Huang, “On Processing Continuous

Frequent K-N-Match Queries for Dynamic Data over Networked Data Sources,”

accepted by Knowledge and Information Systems.

4. Jiun-Long Huang, Shih-Chuan Chiu and Xin-Mao Huang, “GPE: A Grid-based

Population Estimation Algorithm for Resource Inventory Applications over Sensor

Networks,” Journal of Information Science and Engineering, Vol. 25, No. 1, 210-218,

January 2009.

Conference Papers

1. Shih-Chuan Chiu, Man-Kwan Shan and Jiun-Long Huang, “Automatic System for the

Arrangement of Piano Reductions,” AdMIRe: International Workshop on Advances in

Music Information Research 2009 (in conjunction with IEEE International Symposium

on Multimedia 2009), 459-464, December 14 - December 16, 2009, San Diego, USA.

83

2. Shih-Chuan Chiu, Man-Kwan Shan, Jiun-Long Huang and Hua-Fu Li, “Mining

Polyphonic Repeating Patterns from Music Data Using Bit-String Based Approach,”

IEEE International Conference on Multimedia & Expo (ICME 2009), 1170-1173, June

28 - July 3, 2009, New York, USA.

3. Shin-Yi Chiu, Shih-Chuan Chiu and Jiun-Long Huang, “On Mining Repeating Pattern

with Gap Constraint,” International Symposium on Advances of High Performance

Computing and Networking (AHPCN-09), 557-562, June 25 - June 27, 2009, Seoul,

Korea.

84

VITA

Shih-Chuan Chiu (邱士銓) was born on January 17, 1980 in Kaohsiung, Taiwan, Republic

of China. He received the B.S. degree in Computer Science and Information Engineering

from Tamkang University (TKU) and the M.S. degree in Computer Science from National

Chengchi University (NCCU), in 2002 and 2004, respectively. He is currently working

towards the Ph.D. degree in the Department of Computer Science at National Chiao Tung

University (NCTU). His current research interests include data mining, computer music and

mobile computing.

