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Abstract

Score reduction is a process that arranges music for a target instrument by reducing original
music. In this dissertation we present a music arrangement framework that uses score
reduction to automatically arrange music for a target instrument. According to the approach of
score reduction, the goal is to Include as many important parts of the original music as
possible within the constraint.of the target instrument so that the arranged version is similar to
the original. In our proposed framework, the original music is first analyzed to determine the
type of arrangement element of each section.-Then, the phrases are identified and each is
assigned a utility according to its type of arrangement element. For a set of utility-assigned
phrases, we finally transform the music arrangement into an optimization problem and
propose a phrase selection algorithm to solve it. The music is arranged by selecting
appropriate phrases satisfying the playability constraints of a target instrument. Using the
proposed framework, we implement a music arrangement system for the piano in our
experiments. Several experiments were conducted to evaluate our system. To avoid subjective
opinions, one approach of the experiments similar to Turing-test is used to evaluate the
quality of the music arranged by our system. The experimental results show that our system is

able to create viable music for the piano.

To capture the characteristics of the music for enhancing the proposed music arrangement



framework, we introduce a new type of repeating patterns, polyphonic repeating pattern and
propose algorithms, A-PRPD (Apriori-based Polyphonic Repeating Pattern Discovery) and
D-PRPD (Depth-first-search based Polyphonic Repeating Pattern Discovery), to discover
them from music data. Furthermore, a bit-string approach is developed for improving the
efficiency of both proposed algorithms. Experimental results show that the proposed
algorithms are both effective and efficient for mining polyphonic repeating patterns from
synthetic music data and real data, and D-PRPD with bit-string approach is the most efficient
approach in most cases. The discovered polyphonic repeating patterns can be used to enhance
in the phrase identification and utility assignment phase of our proposed framework such that

the phrases with music characteristics will be easy to be selected.
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CHAPTER 1 INTRODUCTION

“Over the Rainbow,” a classical ballad has remained popular since 1939. As of now, there are
more than 100 versions of this song, interpreted by numerous artists using different
organizations of instruments in various styles. For example, Jason Castro sang it in reggae
style, accompanied by a ukulele; jazz artists, Tommy Emmanuel used his guitar; and Robert
Kyle played a monophonic tenor sax. When a song is to be performed by an instrument or an
ensemble, a process called music arrangement or transcription is necessary to adapt the song

for the target instrument(s) [15]. Music arrangement gives existing melodies more variety.

In the music industry, there are many applications of music arrangement. For example,
although the average mobile phone now doubles as music player, the function of the
customized ring tone still appeals to people. Music arrangement transforms the original music
object into various styles. There is another issue regarding mobile phones: the problem of
transcoding from MIDI to SP-MIDI" (specific-polyphonic MIDI) [37]. Due to hardware
limitations, most mobile phones support only SP-MIDI. The polyphony has to be reduced and
its impact on the music, minimized. Music arrangement that reduces multipart instruments
can achieve the same goal. However, the process of extracting the essential part from the
original music is always time-consuming for the arranger. Besides, not every music arranger
is familiar with the properties of the particular instrument. Thus, we believe that automatic

music arrangement is needed to address the problems stated above.

Generally, there are two major approaches to arranging music. One is rewriting a piece of
existing music with additional material. Instead of adding new material, the other one is score
reduction that arrangers reduces the original work from a larger score to a smaller score. That
is, the arranger does not create new counterpoints, harmonies, bass lines, and voices, but only

focuses on eliminating the less important parts of the original score for application to the



target instrument and keeps the arranged version similar to the original. Piano reduction is a
word which specifically refers to a two-line staff of a basic component reduced from multipart
music for a piano. Many famous piano reductions include the Bach transcriptions of Concerto
from various composers (bwv 972-987), Wagner/Liszt Tannh&user, the Sullivan transcriptions
of Concerto Violoncello and orchestra, and Sheherazade Op. 35 of Nikolai Andreyevich
Rimsky-Korsakov [45]. In this dissertation, we concentrate on score reduction for two reasons.
First, score reduction allows a musician to perform a musical piece using the instrument with
which he/she is familiar. Second, less prior studies on the literature focus on how to

automatically create an instrument-playable arrangement.

When arranging a piece of music for a target instrument, it is necessary to take the
characteristics of original music and the-inherent restrictions of the target instrument, such as
pitch range and polyphonic limitation.-Simply. speaking,-the goal is to include as many parts
of the original music as possible within the constraint of the target instrument so that the
arranged version is similar to the original. In addition, the role of an instrument varies in the
different organizations of an ensemble.. For_example, in a big band, the guitar may play
accompaniment; however, for a solo, it may perform melody and accompaniment
simultaneously. The arrangement for the different roles of an instrument needs to be
considered. To achieve this, we apply the concept of arrangement elements to take into
account the different roles of an instrument. The type of arrangement element of a piece of
music presents the function performed by an instrument in the piece of music. According to
the book [42], there are five types of arrangement elements: lead, foundation, rhythm, pad and
fill. Interested reader can be referred to the book [42] for more discussions about the
arrangement elements. To summarize, there are three factors need to be considered: 1. the role

of the target instrument; 2. the characteristics of the original music; and 3. the playability.
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Figure 1-1. The flowchart of the proposed music arrangement framework

In this dissertation, we propose a framework that arranges a piece of music by reducing the
multipart score for a given instrument as our first research topic. The main characteristic of
the framework is that the various roles of -the target-instrument in an ensemble can be
specified by users. Given an.original score (multipart) and the role of the target instrument
(proportion of the five types of-arrangement elements), the proposed framework will generate
a playable arrangement for the target-instrument according to the role user specified. The
framework consists of four phases (see Figure 1-1). First, the music object is first divided into
several segments in track segmentation phase. Next, in the arrangement element
determination phase, a classifier is used to determine the type of arrangement element for
each instrument. The classifier is trained offline by expert-annotated tracks. In the phrase
identification and utility assignment phase, the phrases in a segmented track are identified,
and the utility is assigned for each identified phrase according to the type of arrangement
element of the segmented track. In the playability verification phase, a playability verification
function is used to determine whether the given piece of music can be played by the target
instrument. Finally, in the phrase selection phase, the phrases are selected according to their

utility and playability. The new arranged music is formed by these selected phrases. Based on



the proposed framework, we implement a music arrangement system for the piano. Several

experiments are conducted to evaluate the system.

To capture the characteristics of the music, a new type of repeating patterns, polyphonic
repeating pattern, is investigated as our second research topic. We propose two algorithms,
A-PRPD  (Apriori-based Polyphonic Repeating Pattern Discovery) and D-PRPD
(Depth-first-search based Polyphonic Repeating Pattern Discovery) to discover them from
music data. Furthermore, a bit-string approach is developed for improving the efficiency of
both proposed algorithms. Experimental results show that the proposed algorithms are both
effective and efficient for mining polyphonic repeating patterns from synthetic music data and
real data, and D-PRPD with bit-string approach is the most efficient approach in most cases.
The discovered polyphonic repeating patterns can be used to enhance in the phrase
identification and utility assignment phase- of our proposed framework. For example, while
the identified phrases are similar to the discovered repeating patterns, the utility of the

identified phrases can be increased.

The remainder of this dissertation is organized as follows. Chapter 2 gives a preliminary of
this dissertation including the related work of automatic music arrangement and polyphonic
repeating pattern mining. Chapter 3 gives an introduction of each component of the proposed
music arrangement framework. The other research work of polyphonic repeating pattern
mining is discussed in Chapter 4. The experimental results are given in Chapter 5 while

Chapter 6 concludes this dissertation.



CHAPTER 2 PRELIMINARY

2.1 Introduction of Arrangement Elements

In The Mixing Engineer s Handbook, Owsinski proposed a taxonomy — the so-called
arrangement elements— for the function of a piece of music performed by an instrument [42].
Analyzing the arrangement elements will help musicians understand the structure of the
arrangement so that they can do further processes on the music, such as arranging, mixing, etc.
According to the book [42], there are five types of arrangement elements: lead, foundation,

rhythm, pad, and fill.

Lead the melody and its counterpoint. The melody is the clearest part of music that people
usually remember and hum. The lead is usually demonstrated by a lead vocal or solo

instrument.

Foundation the main rhythm.in music. It is always a regular pattern played by a drum

(especially bass drum and snare) or bass instrument:

Rhythm broken bits counted to the foundation played by any instrument. It is more

complicated in beat and used to increase music fluency.

Pad consists of a long sustaining note or chord. Hence, it is usually played by a string
instrument, organ, or synthesizer. Generally, the pad can also denote those sounds which

create ambiance.

Fill usually appears in the spaces between the lead lines to fill up the silence between
successive phrases of lead. It is similar to conversation: If the lead is a call, the fill would be a

response.

These five elements can be viewed as the ingredients of an arrangement. The role of an



instrument can be referred to as an arrangement element or a mixture of them. In this

dissertation, “role” and “arrangement element” are used interchangeably.

A passage played by an instrument can be considered to have the property of one or more
arrangement elements. Roughly speaking, in an arrangement, the instrument is played for
presenting the role of melody or accompaniment, or both of them for a solo. If it presents a
melody, the proportion of the lead is especially higher than the others. If it presents
accompaniment, the situation is reversed. For a solo with melody and accompaniment, the
distribution is more uniform. In depth, beyond two rough roles, the subtle role can also be
described on the distribution over these five elements. For example, when many instruments
play accompaniment in music, some focusing on pad and some on rhythm, these subtle roles
of the different distributions can be showed. By understanding the arrangement elements of

music passages, it will be useful to arrange for.the various roles of an instrument in music.

2.2 Related Work of Automatic Music Arrangement

Many works related to music arrangement focus on how to transform original music by
changing meta-information (tempo, timbre, etc.) or content (insert note, change pitch,
re-assemble music segments, etc.) [39]. Nagashima and Kawashima employed chaotic neural
networks to create variations on melodies [41]. The examples of the variations of an original
music object are sent to train chaotic neural networks. The networks model the characteristics
of the variations and make a new variation of the original music. Berndt presented the
strategies to synchronize and adopt the game music with player interaction behaviors [5]. The
approach to arrange music in the context of the interaction of applications is to vary the
rhythmic, harmonic, and melodic elements of the basic theme. Chung proposed a real-time
music-arranging system that reacts to the affective cues from a listener [12]. The system

re-assembles a set of music segments according to the inferred affective state of a listener.



Based on a probabilistic state transition model, the target affective state can also be induced.

As to the reduction technique of score reduction for an instrument, piano reduction is one of
the important terms particularly referred to a two-line staff of piano reduced from multipart
music. Finale, a commercial software for music notation (http://www.finalemusic.com),
provides a plug-in tool: piano reduction that combines a previously-prepared score into a
two-line staff separated by a user-defined pitch value. However, due to the direct combination
of notes in the score without selection, the part of produced score may be difficult or even
impossible to play. Finale’s tool just provides a platform on which arrangers can do further
piano reduction. Since the research on guitar fingering became mature [50], Daniel et al.
presented an approach for guitar arrangement [16]. The main concept is to choose a set of
important notes by a search algorithm, with-the constraint on the playability of the guitar.
However, this approach is dedicated to-a solo guitar and cannot arrange for various roles in
music. In addition, we argue that if the chosen notes came from different instruments, it may

result in the loss of musical meaning, such as the completeness of a piece of melody.

2.3 Related Work of Polyphonic 'Repeating Pattern Mining

The repeating pattern mining problem has been investigated in the last decade. The first
method to solve this problem is to utilize a suffix tree to find repeating patterns in a DNA
sequences [46]. Suffix tree is a well-known data structure originally developed for string
matching. Repeating patterns can be extracted from a suffix tree, which is constructed by
sharing common prefix of a string. Since there may exist a large number of repeating patterns
in a sequence, the concept of non-trivial repeating pattern was introduced [33]. Hsu et al.
proposed two approaches to efficiently find the repeating patterns in a music object [18][18].
In the first approach, a data structure called correlative matrix is constructed to keep the

intermediate information for substring matching. The lengths and frequencies of all repeating



patterns can be derived according to the information in this matrix. The other approach, called
string-join, utilized the anti-monotony property to avoid generating large amount of candidate.
Here the anti-monotonic property is that if a string is frequent, then all its substrings are
frequent. According to this property, shorter frequent patterns are joined into longer ones and
the non-qualified candidates are pruned out. Since a suffix tree was able to construct in linear

time [38], Lo et al. employed this improvement to find repeating patterns [34], [36].

Since some minor variances in the instances of a repeating pattern are tolerable in some areas
such as music, many approaches are investigated to find approximate repeating patterns. Two
previous mentioned approaches, string-join and correlative matrix, are modified [35] to find
approximate repeating patterns. The distance between a pattern and its occurrence is defined
by edit distance. A novel approach treating pattern discovery as instance search problem is
proposed [32]. This method segments-a string-into a set of small pieces and maps these pieces
into a multi-dimension space based to search in the multi-dimension space to count the
number of occurrences. Two techniques are incorporated. to improve the process. In addition,
in bio-informatics, some approximate algorithms-are designed to take advantage of the special
properties in DNA strings, such the few kinds of items [46] and short non-tandem patterns [1].
Many different types of repeating patterns are proposed to accommodate to varied patterns in
music [25][11]. In music field, Lartillot proposes a series of work on discovering musical
patterns [27][28][29]. The main idea of these methods is that each pattern is induced by
analyzing the music sequence in chronological order. This process is similar to the simulation
of listening strategy of human. All possible combinations of successive events are stored and
checked. Therefore, very high computation and storage costs are required to deal with a
longer sequence. The approaches mentioned above model music data as a melody line (a
string) and find the repeating patterns on the string. That is, they are designed to find

monophonic patterns from monophonic music.



Some work focuses on finding monophonic patterns from polyphonic music. They define the
special type of repeating pattern in polyphonic music, such as vertical patterns and perceptible
repetitions. Conklin analyzes the vertical patterns, which is common harmonic progress, from
one or more music objects by encoding it or them into a set of strings [13][14]. The
experimental result shows that most of vertical patterns represent specific voice leading
formulae within cadences®. Meudic discovers the perceptible repetitions from audio [40]. The
process first segments a music object. Then, the similarity between each pair of segmentations
is computed according to perception they defined. Finally, the perceptible repetitions are
discovered from the similarity matrix. A geometrical pattern proposed by Meredith et al is
represented in polyphonic form [39]. Many significant patterns occurring more than two times
can be found. However, certain meaningful patterns, such as motif, usually appear several
times in music, and it takes time to use the result of pair-wise repeats to count the number of

occurrences of a pattern.

! A cadence is a piece of music ends a section of music or a complete piece of music.



CHAPTER 3 AUTOMATIC MUSIC ARRANGEMENT
FRAMEWORK

In this chapter, we introduce our proposed framework. Given an original score (multipart) and
the role of the target instrument (proportion of the five types of arrangement elements), the
proposed framework will generate a playable arrangement for the target instrument according
to the role user specified. The framework consists of four phases (see Figure 1-1). Figure 3-1
presents an example of the change in musical content during the framework’s arrangement
process. Because the arrangement elements of some instruments may change in different
sections, the music object is first divided into several segments called segmented tracks in
track segmentation phase. Next, inthe arrangement element determination phase, a classifier
is used to determine the type of arrangement element of each segmented track. The classifier
is trained offline by expert-annotated segmented tracks. In-the phrase identification and utility
assignment phase, the phrases-in.a segmented track are-identified, and the utility is assigned
for each identified phrase according to-the type of arrangement element of the segmented
track. In the playability verification phase, a playability verification function is used to
determine whether the given piece of music can be played by the target instrument. Finally, in
the phrase selection phase, the phrases are selected according to their utility and playability.

The new arranged music is formed by these selected phrases.

The details of each phase of the proposed music arrangement framework are introduced in the
following subsections. A list of notations used in this paper is shown in Table 3-1 for better

readability.
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Figure 3-1. An example process of the proposed music arrangement framework

Table 3-1. List of used notations

Notation Description
NSBM; ¢ Non-silent beats in measure i at track t
NumTrack Number of track
BeatPerMeasure | Beats per measure
ae Arrangement element
st Segmented track
phr Phrase
room Number of overlapping phrase allowed
MOP Maximum number of overlapping phrase allowed
P_List Overlapping phrase list
C List Called phrases in list
SP Set of selected phrase

3.1 Track Segmentation Phase
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In different sections, a track performed by an instrument may belong to different types of
arrangement elements. For example, a violin demonstrating pad arrangement element changes
to lead in the violin solo section. Hence, the track is segmented into segmented tracks. A
segmented track is defined as a period of an instrument’s performance in which no
arrangement element changes. Here we do not analyze musical sections; instead, we want to
ensure that no arrangement element changes in a segmented track. Since the multipart music
usually possesses a more complete arrangement structure, we apply this benefit in solving the
problem. In other words, a time point, where many instruments stop and others start, has a
high possibility of becoming a cut point to separate two adjacent segmented tracks. According

to this heuristic, we define the similarity function between consecutive measures as follows.

> INSBM =NSBM,,,

teTrack

NumTrack x BeatPerMeasure

Simi,i+1 =13

1)

where NSBMi;; is the number of non-silence -heats in'measure i at track t, NumTrack is the

number of tracks, and BeatPerMeasure-is beats per measure.

cut

Fj:eu 11 I ;
track 1 %1, G = === g

‘ ‘ -
track 2 {#—tg o o s e e

p5es b e b e P

4

track 3EEES S e e e S e e e o %
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Sim; g 1.0 1.0 10 (65 ) 10 0958  0.958

Figure 3-2. An example of track segmentation

The similarity function compares the track in measure i to the track in measure (i+1), then
aggregates diversities of all tracks with normalization. Being subtracted by 1, the difference is

transformed into similarity. We define a threshold value t to determine cut points. If Simj . is
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less than t, then this is a cut point between measures i and i+1. When t is set to 0.5, Sim;jj+; <

T, it means that there must be at least a half number of instruments switched.

Figure 3-2 gives an example that shows the similarity for each pair of successive measures in
this music. For the similarity between measure 4 and 5, Simy s is calculated as follows. In the
example music, time signature is 4/4 with 3 tracks; that is, each measure has 4 beats
(BeatPerMeasure=4, NumTrack=3). As the score of the track 1 shown, sound fulfills four
beats in measure 4 (NSBM,41=4), and it is no sound in measure 5 (NSBMs1=0). Similarly, the

others (NSBMy 2, NSBMs 2, NSBMy 3, NSBMs 3) can be derived. Thus, Simss=1—((|4—0|+|4
—3.5|+|3—3|)/(4%3))=0.625. If 7 is set to 0.667, there is a cut point between measure 4

and 5.

3.2 Arrangement Element Determination Phase

Here we try to determine the type of the arrangement element of each segmented track.
According to the descriptions of‘the.arrangement. elements in Chapter 2, some arrangement
elements share similar properties. It is hard to determine the type of the arrangement element
by heuristic rules. Hence we treat the problem of arrangement element determination as a
classification problem. In other words, each segmented track is classified into five classes (i.e.,

foundation, rhythm, pad, lead, and fill).

One of the important steps of classification is to decide which features are used to represent
the segmented track. These features of a segmented track are capable of discriminating its
class from the others. Most of previous studies on music classification focus on music style;
to the best of our knowledge, there is no study in the literature about the automatic

classification of arrangement elements.
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Table 3-2. Features for the classifier

Parameter Type | Description

AvgPitch G Average pitch in the segmented track

AvgDuration G Average duration in the segmented track

DevPitch G Pitch deviation in the segmented track

IsPercussionChannel |G Is Percussion Channel (usually channel 10)

PolyphonicRate G Proportion of note occurring in the same time

SilentRate G Proportion of silent in the segmented track

AvgPitchRank L Rank of average pitch in parallel segmented track

AvgDurationRank |L Rank of average duration in parallel segmented track

IsHighestPitchPart  |L _Is the segmented track with the highest average pitch
in parallel segmented tracks

IsLowestPitchPart | L _Is the segmented track with the lowest average pitch
in parallel segmented tracks

G: global feature, L: local feature

According to the descriptions of the arrangement elements in the book [42], we summarize
their characteristics and choose the features accordingly. The properties of an instrument exert
a heavy influence on the arrangement element; for example, pizzicato instruments (such as
harp, ukulele, etc) cannot be pad. The arrangement element of a segmented track highly
depends on the others in this.music, especially parallel.ones. Thus, we choose both global
feature (common features) and local features (related to the other segmented track). The

detailed features that we extracted and their descriptions are listed in Table 3-2.

The classifier is trained using manual tagged data for each segmented track, i.e., a segmented
track is marked as one of five types of arrangement elements according to its features. During
the determination process, each segmented track in the given music is fed into the classifier to
determine the type of arrangement element. The probability distribution over five types of

arrangement element is obtained in our framework for the later phase.

In implementing of the arrangement element determination, we chose the support vector
machine (SVM) [6] as our classifier. The SVM is a supervised learning approach. Input data
is viewed as two sets of vectors in an n-dimensional space. In the space, the SVM constructs a

separating hyperplane which maximizes the margin between the two data sets. A good
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separation is achieved while the hyperplane has the largest distance to the neighboring data
points of both classes. After the hyperplane is decided (training phase), the SVM model is

able to answer or predict the class of a new example.

The sequential minimal optimization algorithm is employed for training a support vector
classifier using the polynomial kernel. There are five classes in the arrangement element

determination problem. The multi-class result can be solved by using pairwise classification;

that is, the result is from sz binary classifiers. Besides, the probability that a segmented
track belongs to each class is vital information for our system. To obtain proper probabilities,
logistic regression models are used to fit to the outputs of the support vector machine. In the
multi-class case, Hastie and Tibshirani’s pairwise coupling method [17] is employed with the
predicted probabilities. It will input-test data (a segmented track) to the classifier, then the

probability distribution will be-obtained as important information for utility assignment.

3.3 Phrase Identification and Utility Assignment Phase

3.3.1 Phrase Identification

In this subsection, we attempt to identify the phrases from a segmented track. As mentioned in
[49], the definition of “phrase” is ambiguous. The phrase we try to find is a monophonic
melodic group of notes with similar properties, usually separated by a breathe point or a large
pitch interval. Many approaches have been proposed, which have performed well in finding
this type of phrases. Because the phrases are found from a monophonic piece of music, we
first have to identify the monophonic piece lines from a segmented track. Thus, the process of
phrase identification consists of two steps: (1) finding monophonic lines; and (2) identifying

phrases from monophonic lines.
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In the first step, we adopt the approach proposed by Lui [37] because, to the best of our
knowledge, no other studies on this topic have investigated so far. One of the most important
issues of finding the monophonic line in polyphonic music is to preserve the best voice
leading, which keeps the most natural melodic continuity between notes. The notes are
grouped as follows: First, the chord progress of each measure is determined. For each
consecutive pair of chords, let Crwer be the chord with fewer notes and Crore be the chord with
more notes. Resolve each tendency tone, and then each note of Crewer IS grouped with its
neighbor of the nearest pitch in Cnore. For different chords, the notes are grouped based on the

following:

m  For common chords, such as | and V, use voice-leading matrixes to resolve tendency

notes.

m  For the other chords, group each note of the preceding chord with its nearest neighbor in

the succeeding chord.

The voice-leading matrix is two-dimensional (12x12). The indices are relative to the tonic and
the entry indicates the voice leading priority from pitch row to pitch column. Interested

readers can refer to [37] for the detailed descriptions.

In the first step, the monophonic lines are extracted. In the second step, the phrases are
identified in each monophonic line. We investigated many works on this issue, and chose, the
local boundary detection model (LBDM) [8] due to its easy implementation and good
performance. The approach identifies phrases by segmenting a monophonic line according to
larger pitch intervals or breaths of long notes. This model consists of a change rule, which
assigns boundary strengths in proportion to the degree of change between consecutive
intervals, and a proximity rule, which scales the boundary strength according to the size of the

intervals involved. The LBDM performs over three independent parametric melodic profiles

16



Profilex = [x1, X2, ..., Xa] Where k €{ pitch, ioi, rest }, i €{1, 2, ..., n} and ioi stands for

inter-onset interval. The boundary strength at interval x; is defined by
strength; = X; X (Fi.1,i + lij+1) (2)

where i1 is the degree of change between two successive intervals and can be calculated by

X — X .
D= X | if X + X, #0AX +X,, 20
o= X+ Xy
i+l T
0 if X, =%,, =0

3)

For each parameter k, the boundary strength profile strength; is calculated and normalized into
the range [0, 1]. A weighted sum of strengths is computed, using weights derived by
trial-and-error in the previous study [8] (0.25 for pitch and rest, and 0.5 for ioi). Finally, the

boundaries are detected where the combined strength profile exceeds a predefined threshold.
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Figure 3-3. An example of phrase identification

Figure 3-3 illustrates an example of performing phrase identification. The given segmented
track is polyphonic in left-hand side. In the step 1, the monophonic lines will be identified. In
the beginning, A5 overlaps with B4, and two temporary monophonic lines, tmll (A5) and
tml2 (B4), are formed. It keeps grouping the notes, F5 and D5, for tmll successively. Now

tml1 contains A5, F5 and D5. When tml1 (A5, F5, D5) goes to B5, two notes, BS and B4, can
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be chosen. According to chord progress and pitch difference, B5 is grouped into tm1 and B4 is
grouped into tml2. By the same process, monophonic line 1 and 2, ml1 and ml2, are formed.
Then, ml1 and ml2 are fed into LBDM. When processing mil, the cut point between the 5th
and 6th note of mll is found because the combined strength profile exceed the threshold.

Finally, three phrases are identified in the example.

3.3.2 Utility Assignment

Each of phrases identified is of different importance for the arrangement. We define the
importance of a phrase, called utility, based on two factors. In the first factor, we consider the
types of arrangement elements of the phrase for the target instrument that users considered. As
mentioned in Section 3.2, the five types of arrangement elements in a segmented track have
been determined and the classifier outputs the probabilities. Considering the input of our
framework, the types of arrangement elements that users want to arrange for the target
instrument have been specified in advance. The probabilities of the user-defined types of
arrangement elements are taken as the-first _part of utility. Hence, the probabilities that the
phrase inherited from the segmented track to which it belongs are summed up. To normalize
the value, it is divided by the number of the considered types. The first factor, denoted as

F1(phrs;), can be formulated as

Fl( phrst,i) = z P(ae | St) X ¢ae Z(pae
(4)

where phrg; is the i-th phrase in segmented track st; ae e{Foundation, Rhythm, Pad, Lead,
Fill}; P(ae|st) is the probability that the segment track st belongs to arrangement element ae;
@ae 1S the user preference on arrangement element ae and ¢ € (0, 1]. For example, if we
consider the arrangement elements, lead and fill, are important, we can set @jeas and gy to 1

and set the others close to 0. Note that for all phrases in the same segmented track, their F;
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values are equal.

In the second factor, the richness of a phrase is considered because we think it will make
newly arranged music richer. The entropy is used to measure the richness of a phrase; that is,
the phrase is richer when the pitches of the phrase are represented by more bits. The second

factor, Fa(phrs;), is defined with the formula

F.(phr, ) = normalize(=3" pv, 0g,(pv)
©)

where m is the number of distinct pitch values in the phrase phrg; and pv; is the proportion of

a pitch value in a phrase.

Note that an upper bound for entropy is-defined-and the entropy can be normalized into 0 ~ 1.
Here, the upper bound of the-entropy is set to 64 heuristically, since a phrase usually falls
within two measures and there are 16 distinct pitches at most for the notes with the 1/8

minimal length of a note in 4/4-music.

We combine the values of these two ‘factors as the utility of a phrase with predefined weights.
Since the phrases needed to be selected on score and some constraints exist among phrases
over the time domain, the range of value leads into a situation wherein most of selected
phrases are shorter. To assign the utility fairly over the time domain, the length of the phrase

is also considered. Therefore, the utility of a phrase U(phrs;) is defined as
U( phrst,i) = (R +a,F,)x L( phrst,i) (6)

where ay, az € [0, 1]; astap=1; and L (phrg;) is the length of phrase phrs.
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3.4 Phrase Selection Phase

3.4.1 Phrase Selection Problem

After preparing the phrases with utilities, in the last phase of our framework, the phrases are
selected under some conditions. Such selection is called the phrase selection problem and the
formal definition of the phrase selection problem is as follows. For an arbitrary phrase p, its
start position, end position, and utility over each arrangement element are denoted by p.start,
p.end, and p.utility, respectively. MOP is an integer that denotes the maximal number of
overlapping phrases, allowed by an instrument, simultaneously. Then, the phrase selection

problem can be defined as below.

Definition 3-1 (Phrase selection.problem) Given a set of phrases, denoted as PSet={p;,
P2,..., Pn} and an integer MOP, the phrase-selection problem is to find a set SP<PSet such

that:

1. the summation of the utilities of phrases in SP is maximal and

2. SP satisfies the constraints of MOP and playability.

The phrase selection problem is similar to the k-track assignment problem, which has been
proved to be NP-hard, in the traditional job scheduling area [7]. The k-track assignment
problem is a scheduling problem, in which a collection of jobs with start and end times is to
be processed by k machines. Two different jobs can be processed by the same machine only
when the jobs do not overlap. If the constraint of playability is omitted, the phrase selection
problem will degenerate to the k-track assignment problem where k is equal to MOP. That is,
the k-track assignment problem is a special case of the phrase selection problem. In addition
to considering the constraint of the number of overlapping phrases (i.e., MOP), the phrase

selection problem also needs to consider the playability of the selected phrases on the target
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instrument. Thus, we believe that the phrase selection problem is more complex than the

k-track assignment problem.

A nawe approach to solving the phrase selection problem is to integrate playability
verification in to the algorithm [7] for the k-track assignment problem. Unfortunately, it is
difficult to perform such integration since the algorithm proposed by Brucker and Nordmann
[7] is optimized for the k-track assignment problem. Let’s consider another problem, the exon
chaining problem [21], which is a special case of the k-track assignment problem with k=1.
Due to the simplicity of the algorithm proposed by Jones and Pevzner [21], we can extend
such algorithm to consider playability verification and the scenarios with k> 1 simultaneously.
For better readability, the descriptions and the design principle of playability verification are
given in Section 3.4.2, while the proposed phrase selection algorithm is described in Section

0.

3.4.2 Playability Verification

In our proposed framework, we use the playability function to verify whether a piece of music
can be performed by the instrument. The input of the playability function of an instrument is a
piece of music and the output is a Boolean value indicating whether the music is playable by
the instrument or not. Specifically speaking, the input is a set of phrases where the overlaps
among the phrases may exist. The output value of a playability function can be determined by
rules or sophisticate logic. We suggest some necessary considerations in designing a

playability function as follows.
Playability Function Design Principle

To design the playability function of an instrument, two types of limitations have to be

considered: instrumental and physical limitations. In instrumental limitation, we list some
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constraints below.

Pitch range Pitch range is an important limitation for most instruments. For example, the
pitch range of the piano is from the A three octaves below middle C to the C four octaves

above middle C (if middle C is C4, it is AO~C8) [52]. The pitch range of a C flute is B3~C7.

Duration constraint Some instruments cannot sound sustain note, such as vibraphone.

Physical limitations are caused by hands or bodies of the people who play the instrument. We

also list some constraints as follows.

Algorithm Piano-Right-Hand-Playability
Input: a piece of music (or a set of phrases P_List)
Output: True/False

1: ons(note;))={note| v note , note overlaps with note;};

2: nos_set={ons(note;) | overlapping note sets in.P_List};
3: foreach note nin P_List{

4 if pitch of note is not within the pitch range of piano
5: return false;

6: }

7. foreach ons(note;) in ons_set{

8 if(Finger-Assignable(ons(note;))==false)

9 return false;

10: }

11: return true;

Figure 3-4. Piano-Right-Hand-Playability function

Number of polyphony Number of polyphony of an instrument is the maximal number of
notes that the instrument can sound simultaneously. For example, people play the piano by

right hands, so that at most, five notes can be played at the same time.

Physical pitch range constraint These constraints are caused by hand. The notes in the

selected phrases are restricted by the expansion of the fingers.

Overlapping note constraint Some combinations of overlapping notes cannot be played. For

example, B, C and C# cannot be played simultaneously by hand on the guitar.

Based on the design principle, we design a playability function for a right hand playing piano.
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The playability function will also be used for the implementation of our piano arrangement

system in the experiments.

-
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AND (highest pitch lowest
pitch <Through_Hand

true false true false

Figure 3-5. Finger-Assignable flowchart

Design of the Piano Playability Function

Here we design a playability function, Piano-Right-Hand-Playability, that considers
instrumental and physical limitations for a right hand playing piano, as an example to
illustrate the design of the playability functions. Research on automatic piano fingering has
been investigated [23][24][54]; however, the work cannot be used to determine whether a
piece of music can be played by piano. We refer to the book [52] to design this function.
According to the phrase we defined, we assume that a single phrase is playable unless at least
one note in the phrase is out of the pitch range of the instrument. The playability function for

right hand is designed in Figure 3-4. The function is fed by a set of phrase, denoted by P_List,
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and will output true or false to indicate whether these phrases can be played by the target
instrument. First, the set of all overlapping note sets in P_List, denoted by ons_set, are
extracted (lines 1-2). Note that the overlapping note set, ons(note;), is a set of notes
overlapping with note; and ons(note;) includes at least one element, note;. Two main rules are
designed to examine the phrases and the phrases passing both rules are playable. The first rule
(lines 3-6) checks each pitch of note to determine whether it is under the pitch range of piano.
In the second rule (lines 7-10), we examine each overlapping note set in the phrase set to

check whether it assignable for fingers of right hand by Finger-Assignment function.

In Figure 3-5, we give the flowchart of Finger-Assignable function. The number of notes in
nos is examined first. If it is larger than five, then it is impossible to play by right hand and
Finger-Assignment function will return-false. I not, we will consider two cases: the case that
the number of nos is two and the case that the number of nos is between 3~5. These cases are
considered separately because the expansion of thumb-index finger is different from the other
adjacent fingers. If the number.of ons istwo, we only have to ensure that the distance between
the highest and the lowest notes does not exceed-the distance between thumb and little finger,
denoted by Through_Hand. Otherwise, while the number of nos is larger than two, the gap
between thumb and index, denoted by Thumb_Index_Gap, can be larger than the gaps among
the other fingers. We assume the legal gap distances among the other fingers are the same and
all of them are denoted by a value, Other_Gap. That is, the distance between the lowest pitch
and the second lowest pitch can be larger than the distance among others. According to the
size of general fingers of an adult, we set these parameters heuristically: Through Hand=14
semitones, Thumb_Index_Gap=5 semitones and Other_Gap=3 semitones. These parameters
can be specified by users according to the size of their hands. Finally, the set of overlapping

phrases is playable since all ons are assignable for fingers.
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Algorithm: Phrase selection algorithm
Input: a set of phrases PSet and maximum overlapping phrase MOP
Output: selected phrase set SP

AR

sort the start and end positions of all phrases;

initialize conditional phrase list CP_List=null;

extract 3 attributes for each index; // phrase, utility and startl
SP=0pt(0, 0, 2n—1, MOP| CP_List).sel;

return SP;

Algorithm Opt
Input: base value bv, start index si, end index ei, allowed overlapping phrases room,

conditional phrase list CP_List

Output: selected phrase sel and utility of the selection ut

1:

2:
3:
4.

o

Opt(bv, si, si, room| CP_List).ut=bv;
Opt(bv, si, si, room| CP_List).sel=null;
for each index i from si+1 to ei
if ((g(i).phrase #null AND isPlayable(CP_ListU {g(i).phrase} AND room >0)
AND //condition 1 (it is playable)
compute w by equation 7
(w>Opt(bv, si, i—1, room| CP_List).ut).//condition 2 (it is worth to be selected)
Opt(bv, si, i, room| CP_List).ut =-w;-//update optimal utility and optimal selection
by new result
update Opt(bv, si, i;room| CP_List).sel;
else
inherit optimal selection and utility from previous result (Opt(bv, si, i—1, room|
CP_List));
return Opt(bv, si, ei, room| CP_List).sel;-Opt(bv, si, ei, room| CP_List).ut;

Figure 3-6. Phrase selection algorithm

3.4.3 Phrase Selection Algorithm

The idea of the proposed phrase selection algorithm is to consider each phrase incrementally
to determine whether it can be selected or not. To select a phrase, two conditions should be
satisfied: 1. the phrase is playable with the previous selected phrases; 2. the phrase is worth to
be selected. While checking whether a phrase is worth to be selected, we examine the

influence of selecting the phrase on the previous selection. The whole problem can be divided

into several small sub-problems.
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Algorithm Overview

The details of the proposed phrase selection algorithm are shown in Figure 3-6. In the
initialization step (lines 1-3), the placement of all phrases is transformed by sorting their start
and end positions. The transformation will not change the order of the start and end positions
of phrases, and will still keep the overlap relationships between each pair of phrases?. There
are 2n indices for all start and end indices of n phrases. After that, for each index i, the
following three attributes are extracted: g(i).phrase, g(i).utility, and g(i).startl. If index i
corresponds to the end index of a phrase, g(i).phrase is the corresponding phrase, g(i).utility is
the utility of g(i).phrase and g(i).startl is the start index of g(i).phrase. Otherwise, g(i).phrase,
g(i).utility, and g(i).startl are null. A conditional phrase list, CP_List, is prepared to store a set
of conditional phrases. Then, the main function, Opt(0,0,2n—1,MOP|{}), is called to compute
the optimal selection Opt(0,0,2n —1,MOP|{}).sel and the optimal utility Opt(0,0,2n —
1,MOP|{}).ut (the summation-of the utilities of the selected phrases), where MOP indicates
the maximal number of the overlapping phrases allowed by the target instrument. Finally,

the proposed algorithm returns SPas the.optimal-selection. We define Opt as follows.

Definition 3-2 Opt(bv, si, ei, room| CP_List) is a function to compute the optimal selection of
the phrases before index ei under the constraints that 1. the maximal number of overlapping
phrases from index si to index ei is room and 2. the phrases in CP_List have been selected.
The initial base value bv is the utility of the optimal selection of the phrases seen at si. A
phrase is said to be seen at index j if the end position of the phrase is smaller than or equal to j.

That is, g(i).phrase is said to be seen at index j ifi < j.

2 Interested readers can refer to [21] for the details of the transformation.
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Function Opt

The most important part of the phrase selection algorithm is function Opt. To facilitate the
following discussion, the utility of the selected phrases is defined as the summation of the
utilities of these selected phrases. The objective of the function is to obtain the optimal
selection and the utility of the optimal selection. The whole problem can be divided into
several sub-problems, recursively. The process of function Opt is to sequentially check each
phrase according to its end position in ascending order and determine whether the checked

phrase is selected or not.

R R e

ru=0pt(0,0,g(i).startl,i, MOP|{}).ut Opt(ru,g(i).startl,iMOP —1|{g(i).phrase}).ut

Figure 3-7. An illustration of CP_List={}

A phrase is selected only when the following two-conditions are satisfied. The first condition
is the playable condition (line 4) that CP_List_u{g(i).phrase} should be playable and there is
enough space for selecting g(i).phrase. Note that g(i).phrase cannot be null. The expression of
the first condition is (g(i).phrase=#null and (isPlayable(CP_List u{g(i).phrase})=true and
room > 0). The other condition is the worth condition (line 6) that the optimal utility of
selecting g(i).phrase is worthier than not selecting g(i).phrase. That is, w > Opt(bv, si, i—1,
room| CP_List), where the calculation of w will be described later. If the above two conditions
are satisfied, g(i).phrase is selected. The optimal selection Opt(bv, si, i, room| CP_List).sel is
updated according to the optimal selection during computing w, and the optimal utility Opt(bv,
si, i, room| CP_List).ut is set to w. Otherwise, the optimal selection and the utility of the
optimal selection are inherited from the previous results, Opt(bv, si, i—1, room| CP_List).sel

and Opt(bv, si, i—1, room| CP_List).ut, respectively.
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Figure 3-8. An illustration of CP_List+ {}

CP_List is empty

We now consider that g(i).phrase is selected for computing w. Note that selecting a new
phrase may influence the optimal selection. That is, some phrases in the optimal selection
may be removed due to the selection of the new phrase. Let’s begin from the simple case that
CP_List is empty. As shown in Figure 3-7, the influence region of selecting g(i).phrase is the
region that g(i).phrase locates, i.e., from index g(i).startl to i. In addition, the maximal
number of overlapping phrases allowed in the influence region of selecting g(i).phrase would
be decreased by one. The recursive function, Opt(ru, g(i).startl, i, MOP—1| {g(i).phrase}), is
called to compute the optimal selection of the influence region of selecting g(i).phrase when
g(i).phrase is selected, where ru is the optimal utility before g(i).startl (i.e., ru=Opt(0, O,
g(i).startl, MOP|{}).ut). Thus, the utility of the optimal selection when g(i).phrase is selected

is w = Opt(ru, g(i).startl, i, MOP—1| {g(i).phrase}).ut + g(i).utility. When the utility of the
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optimal selection when g(i).phrase is selected is worthier than the utility without selecting
g(i).phrase (that is, w > Opt(bv, si, i—1, room| CP_List).ut (line 6)), the optimal selection is
updated and the utility of the optimal selection is set to w. Otherwise, the optimal selection

and the utility of the optimal selection are inherited from the previous results.

CP_List is not Empty

We now describe how to compute w when CP_List is not empty. When a phrase is selected
with empty CP_List, Opt is invoked in the inference region of g(i).phrase. As shown in Figure
3-8, when CP_List is not empty, many sub-regions with different values of room have to be
processed by function Opt. The formula of w should be designed to deal with this situation.
Note that, for each phrase g(j).phrase in CP_List, g(j).startl is smaller than i. Let phrase_n be
the number of phrases in CP_List U{g(i).phrase}. Without loss of generality, the phrases in
CP_List u{g(i).phrase} are sorted by their start positions in ascending order and relabeled as
{1, J2, ---s Johrase n}, Where jy.startl < Ja.startl < ...< jpnrase n.Startl < i, and jx.startl is the start
index of phrase jx. In the first'sub-region from index O to jj.startl, the maximal number of
overlapping phrases allowed is MOP. The-utility of the optimal selection of the first
sub-region, which is denoted as ruo, is Opt(0,0,j;.startl, MOP|{}).ut. For the second sub-region
from index jy.startl to jo.startl, the utility of the optimal selection of the first sub-region rug is
taken as the base value and the maximal number of overlapping phrases allowed is MOP —1.
Thus, Opt(ruo, ji.startl, jo.startl, MOP—1| {ji1}) is called. For the third sub-region from
jo.startl to js.startl under MOP —2, we take the optimal utility of the previous sub-region as
the base value and calculate the optimal utility in this sub-region by invoking function Opt in
a similar manner. The above process repeats until the last sub-region from jphrase_n.Startl to i
under MOP —phrase_n has been processed by function Opt. The above recurrence relation is

shown as follows.

29



Initial condition:
Opt(bv, si, si,room|CP_List).ut = bv;
Recurrence relation:
Opt(bv, si,i,room|CP_List).ut
w = Opt(Opt(...Opt(Opt(0pt(0,0, j;. startl, MOP|{}).ut, j,. startl, j,.startl, MOP — 1|{j; }). ut,
Jo.startl, js.startl, MOP — 2|{j,, j.}).ut, ...).ut,
Jphrase n-Startl,i — 1, MOP — phrase_n|{j1,j2, ,jphmsein}). ut
_ +g(i). utility
,if (g(@). phrase # null) and (CP_List U {g(i). phrase} is playable) and (room > 0) (playable), and
w > Opt(bv,si,i — 1,room|CP_List).ut (worth)

Opt(bv,si,i — 1,room|CP_List).ut, otherwise (7)

According to the above recurrence relation, we can notice that the functions with the same
parameter (for example, Opt(0, 0, i, MOP| {}), where 1 < i<2n—1) are used repetitively.
For saving the computation time, the result of the function with different parameters will be

stored for reuse.

3.4.4 Correctness

The proposed phrase selection algorithm is designed to solve the phrase selection problem in
a recursive manner by function Opt. We next show the correctness of the proposed phrase

selection algorithm by proving the optimality guarantee of function Opt.

Lemma 1 Function Opt can always obtain the optimal selection.

We prove the correctness of function Opt by induction on the value of room.

Induction basis:

Considering room=1 and no playability function, the phrase selection problem is reduced to
the exon-chaining or activity-selection problem. That is, no overlapping phrase is allowed and
the playability function always returns true. Our algorithm is extended from the exon-chaining
algorithm that the optimality has been proven in [21]. While the playability function is taken
into consideration, there is no case that g(i).phrase is not playable with the phrases in CP_L.ist.

It is because that the CP_List is always empty when room=1 (that is, no overlapping phrase
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exists). In addition, function Opt will not select g(i).phrase if g(i).phrase itself is not playable.

Therefore, function Opt is able to obtain the optimal selection when room=1.

Induction hypothesis: The function Opt is able to obtain the optimal selection while room <

MOP.

Suppose room=MOP. In function Opt, the main for loop examines whether the new-seen
phrase, g(i).phrase, should be selected or not. If g(i).phrase is not playable with the phrases in
CP_List, function Opt will not select g(i).phrase. When g(i).phrase is playable with
recursive-called phrase list CP_List, function Opt will recursively invoke itself on all
sub-regions with smaller values of room. Since the value of room of each invocation of
function Opt on each sub-region is smaller than MOP, by induction hypothesis, each
invocation of function Opt on«each sub-region-isable to obtain the optimal selection.
According to Equation 7, we“can conclude that function Opt is able to obtain the optimal
selection when room=MOP.~As a result, we can prove the correctness of Lemma 1 by

induction.

Figure 3-9. An illustration of the computation at the worst case

3.4.5 Time Complexity Analysis

The proposed phrase selection algorithm acts in a branch-and-bound manner. Each phrase is

chronologically examined whether it is selected. If a phrase is selected, the optimal selection
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affected by this phrase is computed. Fortunately, this process will not expand all possible
changes, since the expansion process is bound at the point which the previous computation
has been stored (i.e., Opt(0,0,i, MOP|{}), where 1<i<2n—1). In the best case, there is no
overlapping phrase and function Opt examines each phrase at most once. Thus, the time
complexity of the proposed phrase selection algorithm is O(¥xn), where n is the number of
phrases and W is the time complexity of playability function. In the worst case, all phrases are
parallel as shown in Figure 3-9. That is, each phrase overlaps with all other phrases. In the
outermost invocation of function Opt, each phrase is checked whether it worth to be selected.
For the computation of the i"-seen phrase, function Opt recursively calls itself to examine the
situation that g(i).phrase is selected. When no seen phrase is overlapping with the first-seen
phrase, the inner Opt examines all possible selections and the number of possible selections is
CY =1. Similarly, when two phrases are seen-overlapping with g(i).phrase, the number of all
possible selections is C3 + Ci (the possible selections containing no phrase overlapping

with g(i).phrase plus the possible "selections containing one phrase overlapping with

g(i).phrase).

Hence, the number of all possible selections when g(i).phrase is selected is C5~* + Ci™?
+...+ CHl o= 27]71:—01 C}"l, where m is the maximal number of overlapping phrases allowed.
Note that the number of all possible selections is bound by m—1 because, at most, m—1
phrases can be selected when g(i).phrase is selected. Thus, the total number of possible
selections for the outermost Optis CJ + ( C§ + CT )+ ( C: +C2 +CZ )+ ... +(Cy?
+ CFh o+ L+ Gy ) = @0 And @ =3TUCP +XTCH e+ XTI O <
RGO+ YT 4+ L+ XGICT = (n—1) x (G + CFTT o+ L+ CRTh)
<(n—1)x (CKL +CL 4+ .. +C D) =Mn—1) xm xCL<(n—1) xmx

n™ = 0(mn™). Because the playability function is performed when each phrase is selected,

the time complexity of the phrase selection algorithm at the worst case is O(¥mn™).
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Figure 3-10. An example of the phrase selection algorithm: (a) the identified phrases in the
given score; (b) the identified phrases represented by intervals; (c) a snapshot at index 6; (d) a

snapshot at index 12; (e) a snapshot at index 13
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Fortunately, m is a small number in practice. That is, the maximal number of overlapping
phrases allowed by most instruments is a small constant. For example, the maximal number of
overlapping phrases for a violin is 4; for most wind instruments, one; for a piano, 10; and for
a guitar, six. While m is a small constant, the time complexity of the proposed phrase selection
algorithm is polynomial time. Therefore, in practice, the execution time of the proposed
phrase selection algorithm is acceptable. Interested readers can also see Table 3-9 for the

execution time of the proposed algorithm on several real cases.

3.4.6 A Running Example of Phrase Selection Algorithm

Figure 3-10 shows an example of the process of the proposed phrase selection algorithm with
simple playability function (the distance between the highest and lowest pitch of note cannot
exceed 14 semitones) and MOP=2. Figure 3-10 (a).shows the identified phrases in the score;
and Figure 3-10 (b) shows the phrases with utilities represented by weighted intervals. Figure
3-10 (c) depicts the result of the transformation. Since there are seven phrases, 14 indices are
created. We use Opt(0,0,13,2|{}).ut and-Opt(0,0,13,2|{}).sel to indicate to the optimal utility
and the optimal selection, respectively. After that, three attributes of each index are extracted.
For example, index 6 corresponds to the end position of phrase p3, and thus we have
g(6).phrase=p3, g(6).utility=2 and g(6).startl=1. On the other hand, index 4 does not
correspond to the index of the end position of any phrase, g(4).phrase, g(4).utility, and
g(4).startl are null. The conditional phrase list, CP_List, is maintained and initialized to empty.
Then, the main function Opt(0,0,13,2|{}) is called. The result is obtained with initial base
value 0 from index 0 to 13 under the situation of at most two overlapping phrases allowed. As
shown in Figure 3-10 (e), after Opt(0,0,13,2|{}) is finished, Opt(0,0,13,2|{}).ut = 20 and

Opt(0,0,13,2|{}).sel = {p0, p1, p2, p6} are returned as the result of the proposed algorithm.

Here we use the example in Figure 3-10 to describe how function Opt works to compute the
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optimal selection and the utility of the optimal selection. First of all, the outermost recursive
function Opt(0,0,13,2|{}) is called to select phrases from index O to 13 under room=2 (at most
two overlapping phrases are allowed). Function Opt goes from index O to index 13. The value
of g(0).phrase is null since there is no phrase seen at index 0. While function Opt goes to
index 3, it is the end position of phrase p0. Due to the reason that phrase pO is playable and it
is allowed (room > 0) to select p0, pO is selected and the function Opt(0,0,3,1|{p0}) is
called to check if there is any influence of selecting p0. No other phrases can be seen from

index 0 to 3, and thus, pO can be selected (Opt(0,0,3,2|{}).sel={p0}) at this moment.

While determining whether phrase p3 (i.e., g(6).phrase) is worth to be selected, p3 is selected
first and Opt(0,1,5,1|{p3}) is called. In solving Opt(0,1,5,1|{p3}), it meets p1 and p2 because
g(3).phrase and g(5).phrase are not.null.-However, p0 (i.e., g(3).phrase) and the phrase in the
CP_List (i.e., p3), are not playable due to the reason that the overlapping part of phrase p0 and
p3 (C4 and E5) exceeds the Through hand threshold. In contrast, g(5).phrase is playable with
the phrase in CP_List. In addition, g(5).phrase is worth.to be selected when p3 is selected.
However, the utility of the optimal selection when p3 is selected is not worthier than the
utility when p3 is not selected (i.e., Opt(0,1,51{p3}).ut+ g(6).utility=4 <
Opt(0,0,5,2|{}).ut=6). Thus, Opt(0,0,6,2|{}).ut is set to 6. As shown in Figure 3-10 (c), the
optimal selection Opt(0,0,6,2|{}).sel is {p0,p1}. When function Opt goes to index 12, the
utility of the optimal selection when p6 is selected (i.e.,
Opt(Opt(0,0,2,2/{}).ut,2,11,1|{p6}).ut+6=12) is worthier than the utility when p6 is not
selected (i.e., Opt(0,0,11,2|{}).ut=8). Thus, Opt(0,0,12,2|{}).ut is 12 and Opt(0,0,12,2|{}).sel

is {p0,p1,p63}.

Consider the example that phrase p2 is checked in Figure 3-10 (e). Function
Opt(6,7,12,1|{p2}) is called to examine the influence of the optimal selection under the

condition that p2 is selected. During the process in Opt(6,7,12,1|{p2}), p4, p5 and p6 will be
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examined sequentially. Phrase p4 and p5 are not playable with the phrase in CP_List (i.e., p2),
while p6 is playable with the phrase in CP_List and room>0 (the value of room is 1). Now
function Opt examines whether p6 is worth to be selected by considering p6 with CP_List. At
this moment, CP_ListUg(12).phrase contains two phrases (p2 and p6). Then, p2 and p6 are
sorted and relabeled according to their start positions. Thus, j1=p6 and j,=p2. There are three
sub-regions: the sub-region from 0 to j;.startl=2 with room=MOP=2, the sub-region from
ji.startl=2 to j,.startl=7 with room=1, and the sub-region from j,.startl=7 to i—1=11 with
room=0. The utility of the first sub-region (from 0 to 2 with room=2) Opt(0,0,2,2|{}).ut=0 is
computed first. The optimal utility of the first sub-region is taken as the base value of function
Opt(0,2,7,1|{p6}) for computing the optimal utility of the second sub-region (from 2 to 7 with
room=1). After obtaining Opt(0,2,7,1|{p6}).ut=6; it is taken as the base value for the third
sub-region. Similarly, we compute the utility of the third. sub-region (with base value 6 from 7
to 11 with room=0) by calling Opt(6,7,11,0|{p6,p0}). Since phrase p6 is worth to be selected
under the condition that phrase p2 is:selected (w > 6), p2 is selected. Back to the outermost
Opt, phrase p2 is also worth to be selected. Thus, the final optimal selection is {p0, p1, p6, p2}

and the utility of the optimal selection is 20.

Table 3-3. Parameters for SVM

Parameter Value
The exponent for the polyphomial kernel 1
Gamma for the RBF kernel 0.01
Sets the size of the kernel cache (a prime number) | 250007
Sets the tolerance parameter 1.0e-3
Sets the epsilon for round-off error 1.0e-12
The complexity constant C 1

3.5 Experiments of Proposed Music Arrangement Framework

According to the proposed automatic music arrangement framework, we design an automatic
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music arrangement system for piano in our experiments. Our music arrangement system was
implemented in Java, along with two open source packages, jMusic [47] and Weka [53]. The
library, jMusic, provides an environment for manipulating MIDI data; Weka provides
machine learning tools for our training and test process. We choose MIDI-format music as a
source of symbolic data. All the music data we collected are available on the web page

(http://mpc.cs.nctu.edu.tw/~stevechiu/mas/mas_work/).

3.5.1 Effectiveness of Arrangement Element Determination

In implementing of the arrangement element determination, we chose the support vector
machine (SVM) [6] as our classifier. As mentioned in Section 3.2, the modified SVM is a

five-class classifier and is able to obtain-the probabilities over five classes.

We collected the segmented tracks by first performing track segmentation on each music
object in our database. Two musically trained experts were then asked to annotate the type of
arrangement element for some‘of the segmented tracks. Both of them have received at least
15-year music training and participate in-music productions and recordings. Besides, one
graduated from department of music and majored in composition and arranging. The other has
five-year experience in computer music. A total of 240 segmented tracks were annotated: 78
for foundation, 56 for rhythm, 15 for pad, 67 for lead, and 24 for fill. The segmented tracks
and  their annotated result were also shown on the web page
(http://mpc.cs.nctu.edu.tw/~stevechiu/mas/mas_work/showdatabase.php). We trained our
classifier with the unbalanced sizes of the class because the proportion of the types of
arrangement elements in a music object is also unbalanced. The parameters of SVM are set by
trial and error (The values of these parameters are listed in Table 3-3). The confusion matrix
of classification result is shown in Table 3-4. The f-measures for foundation, rhythm, pad,

lead, and fill are 0.907, 0.826, 0.72, 0.813, and 0.4 respectively.
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Table 3-4. Confusion matrix for five arrangement elements with tenfold cross-validation

Arrangement Classifier As
Element fo | rh | pa | le fi
fo=Foundation | 73 | 3 0 2 0
rh=Rhythm 7 145 0 3 1
pa=Pad 0 3 9 2 1
le=Lead 3 1 0 | 61 | 2
fi=Fill 0 1 1 115 | 7

Table 3-5. Parameters for our piano arrangement system

Parameter Description Value
TS.1 Athreshold for track segmentation 0.5
PI.LBDM.threshold Athreshold for LBDM 0.6
UA.AE.threshold.filter Athreshold to filter the phrases whose 0.1/0.1
(right/left hand) utility is too low T
UA.AE.consider[fo, Which arrangement elements are [0,0,0,1,1)/
rh,pa,le,fi](r/l hand) considered [1,1,1,0,0]
UA.ou, UA.ap Proportion in-utility assignment 0.7,0.3
PS.MOP (r/l hand) Maximal overlapping phrase allowed in 5/5

phrase selection

Pla. Through_Hand (r/I hand) :Eupr:]ag’ggg'ﬁt’ﬂzem:g’e?e allowed between 1, /1 4

Pla.Thumb_Index_Gap (r/I In playability, semitone allowed between

. 4/4
hand) thumb and point
Pla.Other_Gap (r/l hand) In playability, semitone allowed between 3/3

the other-adjacent fingers

TS: Track Segmentation, PI: Phrase Identification, UA: Utility Assignment, PS: Phrase
Selection, Pla: Playability, AE: Arrangement Element

The class, fill, cannot be determined very well. The properties of fill are very similar to lead,
as they have common characteristics such as pitch, duration, etc. No relevant feature can be
used to discriminate them. This is reason fill is sometimes misclassified as lead. According to
definition, a fill appears between successive phrases of lead. The length of the phrase of lead
is longer in most types of music; hence, most parts of fill are rest note. We think the major
feature that can be used to distinguish fill from lead is the ratio of silence. However, in most
of cases, the musician combines fill with the other arrangement element (usually rhythm)
instead of adding a specific instrument performing fill. As such fill cannot be determined well.

We will keep looking for relevant features with which to improve the performance of
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arrangement element determination in future work.

Table 3-6. Music for experiments

Music Title Composer S/H
Bluesette (S1,A1) Toots Thielemans S
Jordu (S2,A2,P1) Duke Jordan S
Green Grow the Lilacs (S3,A3,P2) N/A S
Symphony No.5 in C minor, Op.67 Mov.4 Allgro (S4,A4) | Beethoven S
On Springfield Mountain N/A S
Lakes of Pontchartrain N/A S
Red River Rock dohnny & the)g
hurricanes
Some Folks Do Stephen C. Foster S
AVirgin Unspotted Christmas Hymn H
'O Sole Mio N/A (Neapolitan H
song)
Playmate / Two Little Maids H. W. Petrie H
. Kristopher M
The Champion Thornton H
Lazy Mary, Will You Get Up? N/A H
Unfortunate Miss Bailey N/A H
10 Little Indians N/A H
You're in the Army Now N/A H
Some Folks Do (S5,A5) Stephen C. Foster S
Symphony No.25 in G minor, K.183(S6,A6) Mozart S

S/H: System or human arranges; first 16 music are used in experiment 1; S1,...,S7 are
used in experiment 3 (scoring solos); Al,...,A7 are used in experiment 3 (scoring
accompaniment); P1,...,P5 are used in experiment 3 (scoring playability)

3.5.2 Turing Test-like Experiment for the Arranged Results

It is difficult to evaluate the effectiveness of our music arranging system because the
evaluation of effectiveness in works of art often comes down to subjective opinion. In 2001,

M. Pearce proposed a method to evaluate the computer music composition system [44]. We

adopted this method in designing our experiments.
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The proposed system can be considered successful if the subjects cannot distinguish between
the system-arranged and the human-arranged music. There were 30 subjects in total.
Twenty-two subjects were composed of graduate and undergraduate students, including four
subjects with at least three-year musical training affiliated with the Department of Computer
Science at National Chiao Tung University. Eight subjects were music teachers at several
private music schools. The prepared dataset consisted of eight human-arranged and eight
system-arranged music objects. The system-arranged music was generated by our system using
the parameter setting listed in Table 3-4. Confusion matrix for five arrangement elements with

tenfold cross-validation

Arrangement Classifier As
Element fo | rh | pa | le fi
fo=Foundation | 73| '3 0 2 0
rh=Rhythm 7 | 4510 3 1
pa=Pad 0 3 9 2 1
le=Lead 3 1 0] 61| 2
fi=Fill 0 1 1115 | 7

. The same setting was also adopted.in the succeeding. experiments. The experiment used the
first 16 music objects in Table 3-6. The music objects were sorted randomly and displayed to
the subjects on the web page (http://www.cs.nctu.edu.tw/~scchiu/mas/survey.html). The
subjects were asked to listen to each piece and determine whether it was system- or
human-arranged. The proportion of correctly identified music was calculated from the
obtained result, with “Mean” being the average of the accuracy. The significance test was
performed with the one-sample t-test against hypothesized value 0.5 (the expected value if
subjects discriminated randomly). Simply speaking, if the mean value is close to 0.5, we can

say that it is difficult to distinguish between the system- and human- arranged music.

40



Table 3-7. The results of discrimination test

Mean | SD |DF| t P-value
All subjects 0.45 |0.1453| 29 |-1.885| 0.0695

AIIsubJec_tsexcep.t musically 0444 | 015 |17 -161 | 0.1258
trained subjects

Musically trained subjects |0.4688|0.1423| 11 | -0.76 | 0.4635
SD: the standard deviation; DF: the degree of freedom; t: t statistic.

The results are shown in Table 3-7. The mean values of the three groups are close to 0.5 with
around 0.15 standard deviations. According to t-test, we can accept the hypothesized value
0.5 using the 0.05 level of significance; that is, it is difficult to distinguish between the
system- and human-arranged music. Considering p-value, the result of all subjects is more
significant than the other two separated groups because the number of all subjects is higher.
The discrimination rate of the musically-trained-subjects (0.4688) is a little bit higher than the
discrimination rate of all the subjects excluding the musically trained subjects (0.444). Such
results conform to the intuition that the musically trained subjects could discriminate with
higher precision. Since the discrimination rate of musically trained subjects is still close to 0.5,
we believe that it is not easy to distinguish between the system- and human-arranged music

even by the musically trained subjects.
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Table 3-8. The results of scoring

A: The result of scoring system-arranged piano reduction

S1 | S2 | S3 | S4 | S5 | S6 | S7
Mean|0.643| 1 |1.143]0.571]{0.929| 0.5 |0.214
SD 10.842|0.877| 0.77 [0.938]| 0.73 10.941/0.802

B: The result of scoring system-arranged accompaniment piano part
Al | A2 | A | AA | A5 | A6 | A7
Mean |0.986/0.143|0.643|0.429|0.643|0.786|0.429
SD |0.994/1.027|1.008|0.938|0.745|0.699|0.756

C: The result of scoring playability of system-arranged music
P1 | P2 | P3 | P4 | P5

Mean|1.182|1.273/1.364| 1 |0.818
SD |0.874|0.786]0.924|1.247|1.401

3.5.3 Scoring the Arranged Results

To evaluate the ability of role arrangement, five music objects were chosen, each of which
was arranged into a solo and accompaniment piano arrangement. The five objects were
selected from the system-arranged music list in Table 3-6, and were asterisked and assigned
numbers following the music title. The original and arranged versions were put on the web
page so that the subjects could listen to them alternately and comparably. The subjects were
asked the question “Do you think the arrangement was successful?” The question was
followed by three tips: (1) Are the original and the arrangement similar?, (2) Is the
arrangement elegant?, (3) Is the arrangement like piano music?” The average score of the 22
responses was 0.714. Of the experimental music set, S7 shows the highest score. The melody
and counterpoint are correctly selected for piano, demonstrating characteristics of Baroque
music. In contrast, S6 had the lowest score. We think some phrases were assigned
inappropriate utility, so that the other important phrases could not be selected. Furthermore,
some of the selected phrases with trill technique performed by violin were not suitable for the

piano. This problem may be solved by considering piano performance properties in utility
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assignment.

For accompaniment, a similar question was asked, “How satisfied are you with the
accompaniment of duo?” The answer contains five choices: very good (+2), good (+1),
average (0), bad (-1), and very bad (-2). Only 12 subjects answered the question because some
of them could not tell which accompaniment was of good quality without musical background.
The mean of grade was 0.58 and standard deviation, 0.881. We think that most of the music in
our dataset was suitable for being an accompaniment of duo. A7, which also shows the lowest
grade among seven music objects, was the only one not suited for duo. We think too many
phrases of lead were selected as accompaniment. The failure of arrangement element
determination leads to inappropriate utility assignment, and in turn, the incorrect selection of

phrases.

For playability, we displayed the sheet music of the MIDI-format arranged music by general
music software with slight parameter setting for presentation. Both the arranged music and its
sheet music were put on the web page questionnaire so that the subjects could listen and view
simultaneously, then, assign their decisions. The instruction was “Please view the sheet music
and determine if it can be played on the piano.” The five answer of choices were: 1. It is
playable (+2); 2. It is playable but hard (+1); 3. Neutral (0); 4. It may not be playable (-1); 5.
Absolutely, it is not playable (-2). Note that this question was optional because not all
participants could read sheet music. For eight responses, the mean was 1.127 and standard

deviation, 1.046. This experiment shows that the arranged results are playable.

3.5.4 Case Studies

We chose two arranged results and demonstrated the sheet music of both the original and the
arranged music. Due to the limitation of space, we only take two excerpts from them to

discuss.
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Original music: Jordu (Duke Jordan)
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Figure 3-11. (a) Original music: excerpt from Duke Jordan “Jordu” (b) System output:

piano-arranged music-for.a solo piano

The arranged result is jazz music, “Jordu,”” by Duke Jordan. The excerpts (measure 9-16) of
the original and the arranged sheet music were shown-in Figure 3-11a and Figure 3-11b,
respectively. The ensemble comprised of four-instruments: electric piano (melody and chord),
vibraphone (solo), electric grand piano (chord), bass, and drum. Some instruments, such as
drum, were recorded in more than one track. The system performed phrase selection for the
right hand then the left hand. The system demonstrated the ability to select the correct melody
for the right hand because the arrangement element determination contributed to segmented
tracks, which assigned the proper utility to phrases. According to the parameter setting in
phrase selection, the system maximally allowed five phrases to overlap with each other. We
originally anticipated that some phrases near the melody could be selected to maximize total
utility. However, such did not happen because the melody and the other overlapped phrases in
the chord part could not be played simultaneously. The phrases in the chord part were
especially long because there was no high strength to be cut by LBDM. It needed the notes

from the other phrases that could be played with the long phrase. Thus, it was difficult to find
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a non-melody phrase with melody for the right hand part. Only when the phrase was short and
it is playable with the melody, it was easier to be selected. An example can be seen in measure

16. An overlapping phrase with one E4 note in the chord part was selected with the melody.

In the left hand part, we found that phrase selection chose the bass part instead of the chord
part because the utility of the phrase in the bass track was much larger than that of the chord
track. The other non-bass phrases were selected for the left hand for the same reason. We

think this result is acceptable for a piano reduction.

Original music: Green Grow the Lilacs (Irish Folk Sonq)
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Figure 3-12. (a) Original music: an excerpt from a Irish folk song “Green Grow the Lilacs” (b)

System output: piano-arranged music for solo piano

The other arranged result is an Irish folk song entitled “Green Grow the Lilacs.” Figure 3-12a
and Figure 3-12Figure 3-12b show excerpts from measure 1 to 8 of the original and the
arranged versions, respectively. The original song contained five instruments: three acoustic
guitars (one for melody and two for chord), bass, and violin. As can be seen, the arranged
result was not just a monophonic phrase because the other phrases were playable with the
main part. The phrases of melody were included correctly for the right hand part; and the
arrangement for the left hand part also contained as many phrases as possible in bass and

harmonic voice. We think this song was arranged successfully for a piano reduction. It was

45



also playable.

3.5.5 Efficiency of the Piano Arrangement System

To evaluate the response time of the system we developed, we conducted an experiment on an
IBM desktop computer with a 2.4 Ghz Intel(R) Pentium(R) quad-core processor with four
gigabytes of main memory running on a Linux 2.6 operating system. We show the
information in process for four excerpts of the music in Table 3-9. As can be seen, it was the
overlapping phrase rate OPR, not the length of music and the number of identified phrases,
which influenced the execution time. OPR is the average number of overlaps between phrases.

When OPR is high, the time complexity of phrase selection let the execution time grow

polynomially.
Table 3-9. Efficiency of music arranging system
Music length | #st | #phr | OPR | "‘Round in PS | Execution time
Blueseet *1 0:41 | 7 "} 4L | 7.86 734 6.06 s
Jordu *2 3:25 7 87237170 1343 57.702s
Lilacs *3 1:29 | 6 |-310 | 11.64 9552 42.817s
Sym.No.5*4 | 1:05 |17 |"112 | 32.28 38918 156.663s

st: segmented track; phr: phrase; PS: phrase selection, OPR: Overlapping Phrase

Rate.
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CHAPTER 4 POLYPHONIC REPEATING PATTERN
MINING

4.1 Introduction

Many famous musicians ever made some descriptions or definitions for their understanding of
music. For example, Edgard Varese said that music is “organized sound” and an
American-born violinist, Yehudi Menuhin, mentioned that “music is art of time.” Organizing
sounds over time is a design of repetition. In music theory, one of important techniques of
music composition is to construct repetitive relationship among small pieces in time sequence
for enhancing impression of a listener.. Many researchers in musicology and music
psychology fields claim that repetition is a universal characteristic in music structure
modeling [48]. The segment appears repeatedly in music is so-called repeating pattern. As an
example shown in Figure 4-1; the segment in the second block of the second line is a copy of
the segment in the first block. The. repeating pattern-may present several meanings in music,
such as motif and theme. A motif is a short-musical idea which is a meaningfully recurring
fragment or succession of notes. Composers usually employ the notion of motif to vary and
develop whole music. In contrast to a motif, a theme is a complete phrase which is an
impressive melody repeated in variation of form. In addition, depending on the composer and
the type of music, it may be different for a theme in the variation extent and the repetitive

frequency. Thus, the repeating pattern is an important characteristic in music.

Repeating patterns finding is useful not only for music analysis, but also for content-based
music information retrieval due to both efficiency and semantic-richness requirement. That is,
the repeating pattern can be used for music index, since the size of the repeating pattern is less
than the size of a music object and the repeating pattern is relevant as a feature for the

discrimination of music [31]. In other words, the set of repeating patterns in a music object
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provides a model which is benefit for composing music according to a certain music style [9].
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A piece of music in melody part from Mozart, Rondeau K. V. 15hh

Figure 4-1. An example of a repeating pattern

The applications of discovering the patterns occurring repeatedly first appeared in natural
language field [26]. In biological field, researchers convert a DNA sequence and find the
sub-string which repeats frequently in the converted string [4][46]. In multimedia area, Hsu et
al. proposed in [18][18] the problem of repeating pattern mining to discover the repeating
music segments. The studies of the repeating pattern mining problem firstly focused on
finding exact repeating patterns in music database. However, music segments with minor
difference should be regard as the instances of the same repeating pattern. Therefore, the
concept of the approximate repeating pattern [18][32] and the fault-tolerant repeating pattern
[25] are proposed to deal with the prablem resulting from the variances among the instances
of the same repeating pattern. For repeating pattern mining in music, they focus on main
melody, an impressive monophonic line for listening, which can be represented by a string

and propose the algorithm to find repeating patterns on a string.

The prior studies mentioned above assume that there is only one event (note) at a time. It is
reasonable for a DNA sequence and music containing a clearly main melody. However, for
many types of music, such as Baroque period music, etc., it may contain two or more
melodies and the main melody is not clear to be found. Thereby modeling music as a string is
inefficient and some significant repeating patterns may not be found. Some work addresses to
this problem and develops the algorithm for mining monophonic patterns from polyphonic

music. For discovering meaningfully musical patterns, they define the special type of
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repeating patterns in polyphonic music, such as vertical patterns, perceptible repetitions and
geometrical patterns. Conklin developed a representation of music and provides an algorithm
to analyze the vertical patterns, which is benefit for representing common harmonic
progresses, from one or more music objects by encoding a music object into a set of strings
[13][14]. Meudic et al proposed an approach to identify the perceptible repetitions which is
the similar segments located in music [40]. A geometrical pattern proposed by Meredith et al

is represented in polyphonic form to find the pattern repeats in geometrical view [39].
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(b) A piece from Mendelssohn, song without words, Venetian Boat-Song No. 1

Figure 4-2. Two examples of polyphonic repeating patterns

To summarize, these approaches can be categorized into two scenarios: 1. discovering
monophonic patterns from monophonic music; 2. discovering monophonic patterns from
polyphonic music. However, there is a problem in traditional repeating pattern mining
approaches. With polyphonic music from Baroque era, for instance, there may be two or more
voices that play melodic line simultaneously, and the same piece often appears in different

voices. As an example of piano music in Figure 4-2.a, in this case, one melody occurs in the
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treble clef overlapped by another melody in the bass clef. Specially, the repeating pattern in
the box appears interchangeably between two staves. Main melody extraction cannot be used
in this case. Besides, it would be suitable to describe an impressive piece of music in
polyphonic form, rather than in monophonic form. In Figure 4-2.b, an example of a repeating

pattern in polyphonic form is shown in the successively rectangular box.

In this study, we propose the approaches to discover polyphonic repeating patterns in
polyphonic music data modeled as a set-sequence data. To discover patterns from the
set-sequence data, we give a formal definition on polyphonic repeating pattern discovery
problem, which is also a generalized problem of traditional repeating pattern discovery. To
mine polyphonic repeating patterns, we first propose a level-wise mining algorithm, named
A-PRPD (standing for Apriori-based Polyphonic Repeating Pattern Discovery), based on
anti-monotonic property®. The-approach A-PRPD finds patterns by joining shorter frequent
patterns. Since it takes too much time for A-PRPD to check every pair of frequent patterns
whether it can be used to generate candidates or not,-we propose an algorithm D-PRPD
(standing for Depth-first-search based Polyphonic Repeating Pattern Discovery) to avoid this
problem. In D-PRPD, each candidate is generated by two types of extension directly instead

of pair wise check for candidate generation in A-PRPD.

Another issue is frequency counting for both two algorithms because they have to count
frequency by sequence scan for every candidate pattern. Such phenomenon makes two
algorithms spend much time in sequence scan, thereby making them not suitable for long
sequence. In view of this, we develop the bit-string approach to reduce sequence for
frequency counting. The positions of the occurrences of a polyphonic repeating pattern are

recorded by a bit-string, called the bit-string index. Then, we design the bit-string operation to

® If a pattern is frequent, then all its sub-patterns are frequent.
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derive the bit-string of the longer polyphonic repeating pattern and also its frequency by basic
hardware operations, specifically, SHIFT and AND operations. By utilizing the bit-string
approach in two algorithms, the number of sequence scan is reduced, thus speeding up the
process of mining polyphonic repeating patterns. To measure the performance of A-PRPD,
D-PRPD and their improvements, several experiments are conducted on both real dataset and
synthetic dataset. The experimental results show that the bit-string approach improves both
two algorithms and D-PRPD with the bit-string approach is able to discover polyphonic
repeating patterns efficiently than others, showing the better scalability of D-PRPD with the

bit-string approach over others.

4.2 Preliminary of Polyphonic. Repeating Pattern

4.2.1 Problem of Polyphonic Repeating Pattern Mining

In this section, we formulate the polyphonic repeating patterns discovery problem. Both of a
music object and a pattern “are ‘represented as.a.set-sequence. A set-sequence is a
representation which collects sets ‘of the musical notes appearing at the same time in

chorological order.

Definition 4-1 Let 1={iy,i,,...,In} be a set of elements, a set-sequence sd=<s,,Sy,...,5m> IS an

ordered list of set, where s; c | and s; ¢, i€{1, 2,..., m}. The size, m, of a set-sequence is

the number of set in sd. The length of a set-sequence is defined as I:Z|si|, where |sj|
1

denotes the cardinality of the set s;. In other words, the length of a set-sequence is the total

number of elements in a set-sequence.

Example 4-1 Consider a set-sequence sd=<{A, E}, {C, D, F}, {D}>, there are three sets in sd,
so the size of sd is 3. Since the first set has 2 elements, the second has 3 and the third has 1;

the length of sd is 2+3+1=6.
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Definition 4-2 (k-position instance) Given two set-sequences, sp=<pi, Pz,..., pi> and sd=<q;,
d2,-.., 07, where size(sp) < size(sd), if there exists a k such that p1 < 0k, P2 < Qi+1, ..., PiC
Ok+i-1, Where k+i—1 < j, we call that sp has a k-position instance in sd. To discriminate these

two set-sequences, sp is called a set-sequence pattern and sd is called a set-sequence data.
We can define the polyphonic repeating pattern by using the above definition.

Definition 4-3 Given a set-sequence pattern sp and a set-sequence data sd, we use freq(sp,sd)
to denote the frequency of a set-sequence; that is, the number of different k-position instances
in sd with respect to sp. If freq(sp,sd) >t, where t is a user-defined threshold, the set-sequence

sp is a polyphonic repeating pattern or frequent pattern in short.

Table 4-1. All polyphonic repeating patterns discovered from the set-sequence data

<{A,E}, {C,D,F}, {D}, {B}, {A,B}, {A,B,C,F}, {C,D}>. (PRP: Polyphonic Repeating

Pattern)

PRP freq | PRP freq
<{A}> 3 <{C,C}> 2
<{B}> 3 <{c}, {D}> 2
<{C}> 3 <{F}, {D}> 2
<{D}> 3 <{A}, {C, D}> 2
<{A,B}> |2 <{A}, {C, F}> 2
<{A},{C}> |3 <{A}, {F}, {D}> 2
<{A}, {F}>| 2 <{C, F}, {D}> 2
<{B},{B}>| 2 <{A},{C,F},{D}> | 2
<{C, F}> 2

Example 4-2 Consider an example set-sequence sd = <{A, E}, {C, D, F}, {D}, {B}, {A, B},
{A, B, C, F}, {C, D}> and let threshold t be 2. All polyphonic repeating patterns of sd are
shown in  Table 4-1. There are 15 polyphonic repeating patterns in this set-sequence data. If
we set t to 3, the discovered polyphonic repeating patterns are <{A}>, <{B}>, <{C}>,

<{D}> and <{A}, {C}>.

Finally, we define the polyphonic repeating pattern discovery problem as follows.
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Problem Statement Given a set-sequence data sd and a user-specified threshold t, the task is

to find all polyphonic repeating patterns in sd.

The set-sequence representation is an extension of a string which is used to represent a music
object in traditional repeating patterns mining. When a music object is represented in a
set-sequence, we can capture harmonic and counterpoint information which the string
representation cannot do. Note that compare to sequential pattern mining problem [3], the
problem of mining polyphonic repeating patterns treats a set-sequence data as a database and
defines a different pattern in a set-sequence. When applying sequential pattern mining
algorithm to find the polyphonic repeating patterns, the music object has to be divided into a
set of set-sequence. However, to divide a music object is unreasonable because polyphonic
repeating patterns may appear anywhere. Hence, sequential pattern mining algorithm can not

apply to this issue.

4.2.2 Music Representation

In this chapter, a music object is ‘represented by a sequence of sets, i.e., set-sequence.
Preprocessing of music data is composed of two steps. First, the quantization process is
performed. This process is to adjust the onset time and note duration of each note to
reasonable rhythmic unit. An example is given and shown in Figure 4-3. This process is
necessary. Because the time resolution of note in symbolic music data is usually high for
flexibility of expression, some notes may not appear in rhythmic position precisely. Second,
the notes occurring in the same time are grouped and the sets are ordered in time sequence.

After preprocessing, a set-sequence of notes is generated.
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Figure 4-3. An example of quantization process

To discover musical patterns, we consider two'attributes of a note. Two of them are pitch and
duration. We use sdpitch, duration).f0 denote a set-sequence data represented in 2-tuple. In pitch,
two types of value are used, exact pitch value (EPV) and pitch interval (PI). For EPV, a note
is recorded by its exact pitch value. For Pl, all intervals between successive two sets are
recorded. For attribute duration, exact duration value (EDV) is employed; that is, the number
of beats of a note sustains. We give an example of variant representations in  Figure 4-4. We
represent exact pitch value following MIDI format, i.e., the MIDI number of center C is 60,
etc. On the other hand, the extract duration value of the note is 0.5 when the note is an eighth
note. The elements in first set under (EPV, EDV) representation are (31, 0.5), (43, 0.5) and
(74, 0.5). For (PI, -) representation, the elements in first set are the interval between the first
set and the second set, i.e., (49, -), (37, -) and (-4, -). For simplification, we use an alphabetic
symbol to denote identical 2-tuple elements (pitch, duration) while describing the problem

and the proposed algorithms.
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Figure 4-4. An example of variant representations

A common repeating pattern can be found by considering exact pitch value and duration. By
employing these representations in.this-study, some kinds of motif development defined by
music theorem [49] can be found by discovering. polyphonic repeating pattern in a music
object represented in some combinations of these features. For instance, one of the most
important motif developments, Sequence, can-be found by considering pitch interval and
duration. One point needed to mention_is that there are two kinds of transposition, real
transposition and tonal transposition. The main difference of these two transpositions is made
by naturally occurring half steps (abbreviated by NOHS) in musical scale. For example, in C
major scale the pitch interval between C-D and E-F are different in tonal transposition, but
they are viewed as the same distance in real transposition. Real transposition is not affected
by NOHS, it keeps the intervallic structure exactly. On the other hand, the quality of the
interval structure in tonal transposition is also flexible to fit NOHS in musical scale. Therefore,

we consider both two types of representations in pitch interval.
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Algorithm A-PRPD(sd,t)

Input: sd, t

Output: polyphonic repeating pattern set

L,={sp;: [all frequent length-1 patterns};

2: for (k=2; L, #¢; k++)

3 C=pattern-extend(L-1);

4. foreach length-k candidate pattern ceC, do
5

6

7

[EEN

freg-count(c, sd);
L={ceC,| freq(c,sd) >t}
output all frequent patterns;

freg-count(sp,sd)

Input: a set-sequence pattern sp, a set-sequence data sd
Output: frequency

1. freq=0;

2: for(i=1; i<(sd.size—sp.size+1); i++) do

3 if sp has an i-position instance in sd do
4: freq++;

5. return freq;

pattern-extend((k —1)-RPRSet)

Input: a set of length-(k —1) patterns

Output: a set of length-k candidate patterns

for all pair (spl, sp2) in(k —1)-RPRSet do
2 sp1’= spl with no first element;

3 sp2’= sp2 with no last element;

4 if spl’ is equal to sp2’ then

5: if the cardinality of the‘last-set of sp2.is 1 then
6:

7

8

c_sp =append the last set of sp2 to sp1;
else then
: c_sp =add the last element of sp2 to spl’s last set
9: if c_sp.length=k then
10: add c_sp to Cy
11: return Cy;

Figure 4-5. A-PRPD algorithm

The set-sequence representation is a type of a piano-roll or a string-based representation for
music. This representation is suitable for homophonic music* [30]. As to polyphonic music, it
can be represented sufficiently by combining the notes with two attributes, pitch and duration,

occurring at a short period of time into a set. Comparing to the geometric representation [39],

* Comparing to polyphonic music, in monophonic music, all parts move in parallel rhythm and pitch.
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the set-sequence representation is more rigid showing less flexibility in discovered patterns.
But, without missing some significant patterns, the set-sequence representation can focus on
the patterns occurring repeatedly over time domain to avoid plenty of irrelevant patterns

occurring in geometric view.

4.3 Mining Polyphonic Repeating Patterns

Two approaches, A-PRPD and D-PRPD, are proposed for mining polyphonic repeating

patterns from a set-sequence data.

4.3.1 Apriori-based Polyphonic Repeating Pattern Discovery (A-PRPD)

Algorithm A-PRPD (Apriori-based Polyphonic Repeating Pattern Discovery) is a level-wise
approach based on Apriori property [2] to discover polyphonic repeating patterns from music
data. The patterns are generated step by step from short length pattern to long length one. The
frequent patterns with short length. are discovered first.and used to generate longer patterns.
For the description of the process, we denote the set of length-k polyphonic repeating pattern
by C«. The frequent patterns are collected from Cy is denoted by Lx. The main process makes
multiple passes over data. The k-th pass generates length-k patterns. The first pass, find L; by
checking if the frequency of each possible length-1 pattern is larger or equal to the threshold t.
The subsequent passes consist of two steps. In the k-th pass, the first step generates the set of
length-k candidate patterns Cx from Lx.; by employing pattern-extend method described later.
Then, the second step checks frequency freq for each candidate pattern in Cy and finds the set
of length-k frequent patterns Lx. The subsequent pass repeats until Ly is empty. The answer is
the union of all frequent patterns in each pass. The detailed algorithm is shown in Figure 4-5.

The pattern-extend is used to generate all possible patterns Cy from Ly;. We borrow the
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concept from anti-monotonic principle®. For example, if a length-4 set-sequence pattern <{A},
{AD,E}> is frequent, then the length-3 set-sequence patterns, <{A}, {A,D}> and <{A,D,E}>,

must be frequent. Thus, we check all pairs in Ly.; to check if there are length-k patterns.

Hence, pattern-extend procedure is designed as follows. Let spl=<{e11, €12, ..., €101}, {€21,
€22, -.vy €22} ooy {Bk11 €K1y .oy Ekanka)> aNd Sp2=<{fi1, f12, ..., f1m}, {f21, f21, ...,
fomet, ooy {fkr1s T, -.., feamka}>, then spl’= spl with no the first element, i.e., <{ei.,
€13, ..., €101}, {€21, €22, ..., €22}, ..., {€k11s k11, .-y Ekanka}™; @Nd SP2°= sp2 with no last
element, i.e., <{fi1, fi2, ..., fum}, {f21, f21, ..., fam2}, -0y {11, T2, ..., feamk2}. FOr each
pair of patterns (spl, sp2) in Ly.1, it is checked if spl’is equal to sp2’. If established, it means
that this pair can be used to generate a length-k candidate pattern, c_sp, by adding fx.1 mk-1 into
the first set of sp; , i.e., c_sp = <{e11, €12, ..., €1m}; {€21, €22, ..., €22}, +--, {€k11) €11, -- -
ek-1nk-1, Tkimk-1}>. Note that only when c-sp.length = k, ¢ _sp is added into Cy, i.e., Ve €

{11, 11, ---» Bk}, ftmked 7 €.

We give an example of pattern-extend-as follows. \While checking the pair of patterns in Ly,
(spl, sp2)=(<{A}{C,D}{E}>, <{C,D}{E;F}>), we compute spl’ and sp2’, respectively.
Since spl’ is <{C,D}, {E}> by deleting the first element of sp1 and sp2’ is <{C,D}, {E}> by
deleting the last element of sp2; spl’ is equal to sp2’. Therefore, the length-5 pattern <{A},
{C,D}, {E,F}> is generated from this pair of length-5 by adding the last element of sp2 to the
last set of spl since the cardinality of the last set of sp2 is not 1. On the other hand, consider
this pair (<{A,C,D}>, <{C,D}, {E}>) which can be used to generate a candidate after
checking that these two conditions are established, the length-4 pattern <{A,C,D}, {E}> is

generated from this pair by appending the last set of sp2 to the last of spl because of the

® |If a frequent length-1 set-sequence pattern, then all I-1 set-sequence patterns are frequent in this set-sequence

pattern.
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cardinality of the last set of sp2 is 1. By this approach of generating candidates, any possible

solution would not be lost.

sd = <{A},{C,E},{A,D},{B,C,E}{A,E},{A}>, t=2

C;: L,: G Ly
pattern| freq pattern| freq pattern | freq pattern | freq
<{A}> 4 <{A}> 4 <{AL{A}>] 1 <{AL{C}>| 2
BB | 1 <(Ch | 2 ?L‘; {Cc}}> (2) <{AMER | 2
<{C}> 2 <{E}> 3 < > <{C}{AP> | 2
<§D§> n © C—> <(Af> | 1 <(CE> | 2
<Eb> 3 <{A},{E}> 2 <{E},{A}> 3
<{CL{A}> 2
<{C}L{C}> 0
<{C,E}> 2
lf <CLER | 1
C;: Ly <{E},{A}> 2
pattern | freq pattern | freq <ELick| o
<{AL{CL{AB 2 <{AL{CL{AP>| 2 <{E}L{E}> | 1
<{AL{CE}>| 2 <{A}{CE}>| 2
<{A}{E},{A}>| 2 <{A}L{E},{A}>| 2
ACLIALCH| 1 <(CELAR | 2 s Ly
<{CH{ALIE}| 1 Pattern | freq Pattern | freq
<CELA | 2 <ALICELA] 2 <{AL{CELAR] 2
<{EL{AL{C}>| 1
<{E}L{AL{E}>| 1

Figure 4-6. An example of running A-PRPD algorithm

An example of running A-PRPD is given in Figure 4-6.. A set-sequence data, <{A}, {C,E},
{A,D}, {B,C,E}, {AE}, {A}>, is given and we assume threshold t is 2. L; is obtained by
scanning the given data sequence and checking frequency for each item. The pattern-extend is
called to generate C, by inputting L;. In the process of pattern-extend, each pair of the patterns
in L; will be checked, including itself, that is, (<{A}>, <{A}>), (<{A}>, <{C}>), (<{A}>,
<{E}>), (<{C}>, <{A}>), (<{C}>, <{C}>) and all other pairs. There are 12 set-sequence
patterns in C,. After checking each pattern in C, whether it is larger or equal to 2, we will
have L,. By repeating this process, step 2 to 6 in algorithm, L3 is derived, and then L4. Since
the empty set is generated by applying the L4 to pattern-extend function, the process will be

terminated. All set-sequence patterns in L;, where i={ 1, 2, 3, 4 }, are frequent polyphonic
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repeating patterns.

Algorithm T-PRPD(sd,t)
Input: sd, t
Ouput: polyphonic repeating pattern set
. Generate root node r_node;
L,={sp: [all frequent length-1 patterns};
foreach pattern sp; in L; do
Generate child c_node linked by r_node and record sp;
foreach child ¢_node in r_node do
DFS-tree(c_node, ds, Ly);
extract_pattern(r_node);

NoeghkwhE=

Algorithm DFS-tree(p_node, ds, L;)

1: foreach pattern sp, el, do

2 sp_set=set-extend(p_node, sp);

3 sp_seq=sequence-extend(p_node, sp); //append the sp to the p_node
4: if (sp_set.length=p_node.length+1) AND (freq(sp_set,ds) =t) do

5: Generate a node ¢_nodes; linked by p_node and recording sp_set;
6

7

8

9

1

DFS-tree(c_nodesg);
if (freq(sp_seq,ds)=t) do
Generate a node ¢_nodesglinked by p_node and recording sp_seq;
DFS-tree(c_nodeseg);
0: return null;

Figure 4-7.'D-PRPD algorithm

4.3.2 DFS-based Polyphonic Repeating Pattern Discovery (D-PRPD)

Since observing that A-PRPD takes too much time to generate candidates for discovering
polyphonic repeating patterns, an efficient algorithm called D-PRPD (DFS-based Polyphonic
Repeating Pattern Discovery), is proposed to overcome the issue of candidate generation. A
lexicographic tree is used in D-PRPD to provide a path to search polyphonic repeating
patterns from shorter length pattern to longer one in depth-first-search manner. The frequent
lenth-1 patterns are used to extend the length of the discovered frequent pattern for finding
longer patterns. When In the lexicographic tree of D-PRPD, the node contains three types of
data: root node, set-sequence pattern and frequency. Moreover, the height of a node means the

length of the pattern in this node.
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<{A}{B}>

set-extend( sequence-extend(

<{AL{B}>, {A}) <tAL{BI>, {A})

<{AL{AB}>  <{AL{BL{A}>

Figure 4-8. An example of two operations for pattern extension in D-PRPD, set-extend and

sequence-extend

Algorithm description of D-PRPD is given in Figure 4-7. First, D-PRPD generates the root
node with an empty set-sequence pattern and discovers all length-1 set-sequence. For each
length-1 set-sequence, D-PRPD generates a node which stores the pattern and is linked by
root node. After that, D-PRPD performs the DFS-tree to grow the node in the tree recursively.
Note that DFS-tree method adapts-depth-first-search approach to find set-sequence patterns,
i.e., it will find pattern as longer length as-possible until the frequency of the pattern is less
than user-defined threshold t.

set-sequence data: <{A,E},{B,D},{A,B,C},{B},{A},{B,C},{A,C}>
threshold: 2

<{A}> <{B}> <cp | ;iD}> L <{E}> !

,,,,,,,,,,,,,,,,,,,,,,,

oo N, ThEs

| <{AL{AP | <{AB)> | | <{A}{B}>

,,,,,,,,,,,,,,,,,,,,,,,,,,,

N
/ <---- sequence-extend
””””” ezl <« set-extend )

>

 <{AL{BLIALIAP> {{ <{A}L{BLIAB)> | <{A}{BLIAL{BI> {| <{A}{BLIAC)>

,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 4-9. An example of a long pattern found by running D-PRPD

While a node generates its child node, D-PRPD extends the length of set-sequence by using
set-extend and sequence-extend to avoid neglecting possible candidates. The set-extend

operation is to extend the pattern by adding an item to the last set of a pattern. Another
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operation, sequence-extend is used to extend the pattern by appending a set formed by an item
to the last of the pattern. An example of these two operations is shown in Figure 4-8. However,
in some circumstances, when the set-extend operation is applied, the item we added has
already in the last set of the pattern. In this case, the extended pattern will be ignored because
the length of the pattern does not increase. For example, as set-extend operation is performed

over this pair (<{A,B},{C,D}>,{C}), the result <{A,B}, {C,D}> is ignored.

set-sequence data: <{A,E},{B,D},{A,B,C},{B} {A},{B,C} {A,C}>
threshold: 2

,’% T e

<{A‘}> <{B}> ¢k | i <{pp ! 37--<{E}>

......................

<{A},{B}> <{A,C}> <{B},{A}>

T~ N\

<{A}L,{BL{A}> |[ <{AL{BL{C}> [| <{BL{AC}> || <{B}{AL{B}>

~, i

<{A}L{B},{A,C}> <{B},{A},{B},{A}>

Figure 4-10. An example of all‘patterns found by D-PRPD

While a pattern is not frequent, the pattern generated in the subtree of this node will not be
frequent, according to anti-monotonic property. As a result, DFS-tree does not grow at this
node to find the longer length pattern. Instead, this procedure finds the shorter length pattern,
but in different prefix. Finally, all frequent patterns will be found in lexicographic order. We
give an example in Figure 4-9. Assume there is a set-sequence data sd=<{A,E}, {B,D},
{A,B,C}, {B}, {A}, {B,C}, {A,C}> and threshold is 2. To discover all frequent set-sequence
patterns in sd, we first find all length-1 patterns, running as breadth first search in the
lexicographic tree, and the length-1 patterns <{A}>, <{B}> and <{C}> are found. The
frequent patterns are framed in bold line and the infrequent ones are framed in a dotted line.
Then, the node of the pattern <{A}> is grown by extended <{A}> with set-extend and

sequence-extend operations. But, only <{A}, {A}> is formed. After checking this pattern is
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infrequent, the pattern is also eliminated. By repeating this process, we find pattern <{A},
{B}> is frequent. From this node, the pattern is extended. We find frequent pattern <{A}, {B},

{A}> and then <{A}, {B}, {A,C}> in the next level. The final result is given in Figure 4-10.

4.4 Bit-String Approach

Frequency counting is the main performance issue of our proposed algorithms. To improve

the performance, a bit-string approach is developed for counting frequency efficiently.

sd=<{A,E}, {B,D}, {A,B,C}, {B}, {A}, {B,C} {ACkH

<{A}> 1 0 1 0 1 0 1
<{B}> 0 1 1 1 0 1 0
<{C}> 0 0 1 0 0 1 1
<{A,C}> 0 0 1 0 0 0 1
<{A},{B},{A}> 1 0 1 0 1 0 0

Figure 4-11. An example of bit-string index

4.4.1 Bit-String Index

A set-sequence pattern sp in a set-sequence data sd can be represented by a bit-string. The
length of the bit-string bs(sp) is equal to the size of sd. The k-th value of bs(sp) is 1 when sp
has a k-position instance in sd ; otherwise, k-th value is 0. Furthermore, the total number of bit
“1” in the bit string is equal to the frequency of this pattern. We give the formal definition of

the bit-string index as follows.

Definition 4 (bit-string index) Given a set-sequence pattern sp=< p;, p2, ..., pi > and a
set-sequence data sd=< qi, gy, ..., g; >, where size(sp) =size(sd) and size(sd) is j. We say the
bit-string of sp in sd is bs(sp)= by b, ... bj, where b=1, if b has a k-position instance in sd;

otherwise, b,=0.
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An example of bit-string index is given in Figure 4-11. For a sequence pattern sp=< {A}, {B},

{A} >, it has k-position instances in sd at 1, 3 and 5; thus, bs(< {A}, {B}, {A}>)=1010100.

4.4.2 Frequency Counting with Bit-String Operation

While the bit strings are maintained, the frequency of the extended pattern can be counted

efficiently by applying bit-string operation. We denote the bit string of the length-I pattern as

bs(spi).

Bit-String Approach used in A-PRPD

In the proposed A-PRPD algorithm, pattern-extend function is used for finding longer
polyphonic repeating patterns. That is, a fength-l-pattern c_sp is generated by two length-(I-1)
pattern spl;.; and sp2.;. As previous mentioned, we have already maintained their bit strings,
bs(spli.1) and bs(sp2.1). The pattern-extend function is performed when sp1’.; (spl.1 deleting
the first element) and sp2’.; (sp2.1 deleting: the- last element) are equal. Depended on the
cardinality of first set of spl;.; (larger than 1 or-equal to 1), the size of spl’.; and sp2’.; are
equal to spl.1.size or spl;.;.size —1. When the cardinality of the first set of spl,.; is larger than
1, then the first set of sp2,.; is included by the first set of spl;.;; otherwise, the first set of sp2,.;
is included by the second set of sp1;.;. According to pattern-extend operation, c_sp is equal to
the pattern which the last element of sp2,.; is added to the last set of spl;.; or is appended to

spl.1. We discuss these two cases for designing bit-string operation as follows.

Case 1: Since the second set of sp2;.; is comprised by the first set of spl,.1, a property is in the
extended pattern sp;: the element i used to extend will occur at the size’-th position. We know
bs(sp2i.1) records all k-positions instances in sd. It also denotes that, for each k-position
instances, there is an element i appearing after size’ or size’—1 position. Thus, bs(sp;) can be

derived by checking all k-position instances of spl,.; whether there is an element appearing
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after size’ or size’—1 position. The examination can be accomplished by using two hardware
operations, bitwise-and-operation (denoted by ‘&’) and bitwise-shift-operation (denote by

LEFT_SHIFT), as the formula: bs(spli.1) & LEFT_SHIFT1(bs(sp2i.1)).

Case 2: Since the first set of sp2,.; is included by the first set of spl,.;, it not necessary to shift

bs(sp2:.1) to align bs(spl.1). Thus, bs(sp;) can be derived by bs(spli.1) & bs(sp2i.1).

To summarize, the bit-string of length-l pattern, bs(sp)) can be derived by the following

formula.
bs(spi) = bs(spli1) & LEFT_SHIFT;(bs(sp2i.1)) (8)
where i=0, if the cardinality of the first set of sp1,.; is equal to 1; otherwise, i=0.

For example, given spl; = <{A}, {B}, {A}>, sp23= <{B}, {A,C}>, and their bit-string
representations are bs(spls) = 1010100, bs(sp2s) = 0100010. After checking, these two
length-3 patterns can be used-to generate a candidate spz= <{A}, {B}, {A,C}>. We need to
check the frequency of sps. The process of calculating the frequency of this sp, by bit-string
operation is described as follows. First, we obtain LEFT_SHIFT;(bs(sp23)) = 1000100. After
that, we perform AND operation with bs(spl;) = 1010100 and LEFT_SHIFT;(bs(sp23)) =
1000100. Hence, we obtain bs(<{A}, {B}, {A,C}>)=1000100. Consequently, the frequency

of spy4 is 2 by counting ‘1’ of the bit-string.

Bit-String Approach in D-PRPD

In D-PRPD, a candidate pattern is generated from the pattern in parent node and length-1
pattern by set-extend or sequence-extend operation. For descriptions, we discuss

sequence-extend operation first, then, set-extend operation.
(a) sequence-extend operation

The sequence-extend operation extends a length-(I-1) pattern by appending a size-1 pattern.
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According to definition, we know sp;.1=< S,..., Sm-1> and sp;=< sy,..., Sm-1, {1}>, Where s; is a

m-1

Ssl=1-1

setand . The sequence-extend is to attached the size-1 set to the pattern; that is,
spi has one more set {i} than sp;1, which appears at m-th position. If we know which

k-position instances of spy.1 in sd appearing {i} after m position(s), then, k-position instances
of sp; is derived. As we known, bs(sp;1) and bs(sp1) record all position instances of sp;.; and
sp1, respectively. The behavior “checking every k-position instances of bs(spi.1) whether has

sp1 (i.e. {i}) after m position(s)” is equal to Equation (9).
bs(sp 1) = bs(spi-1) & LEFT_SHIFT;(bs(sp1)) 9)
where i is the position of the last set of spj..

For example, given sp.1=<{A}, {B},  {A}> spi=<{B}>, bs(sp;1)=1010100,
bs(<{B}>)=0111010, and we apply set-extend(<{A}, {B}, {A}>, <{B}>) to derive bs(<{A},
{B}, {A}, {B}>). In this case, the position of the last set-of sp is 3, so bs(<{B}>) has to left
shift 3 positions, and we obtain LEFT_SHIFT;(bs(sp1))=1010000. Then, performing AND
operation between bs(spi.1)=1010100-.and LEFT. SHIFT,(bs(sp1))=1010000 will derive
bs(<{A}, {B}, {A}, {B}>)=1010000. After aggregating ‘1’ in the bit string, frequency of sp’|
is 2.

(b) set-extend operation

Since spj1=< Sy,..., Sm-1> and sp1=< {i} >, by set-extend(spi.1, Sp1) , we have spj=< Ss,..., Sm1
U {i}>. In spy, the position of the last set which {i} is included is m-1 position after the first
set. The set {i} is less one position than {i} in sequence-extend. Thus, with the same reason,
we check every k-position instances of bs(spy.1) if sp; (i.e. {i}) appears m position(s) later. In
set-extend operation, compare to sequence-extend operation, sp; is added to the last set of sp.1,
consequently, sp; needs to be shifted left less 1 position than the position of sp; in

set-sequence operation be shifted.
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In set-extend operation, the formula is designed as Equation (10).
bs(sp’)) = bs(spi-1) & LEFT_SHIFT;.1(bs(sp1)) (10)
where i is the position of the last set of spj..

For example, given sp=<{A}, {B}, {A}>, spi=<{C}>, and their bit string are
bs(spi-1)=1000100, bs(<{C}>)=0010011. We apply set-extend(<{A}, {B}, {A}>, <{C}>) to
derive bs(<{A}, {B}, {A,C}>). In this case, the position of the last set of sp is 3, so bs(<{C}>)
has to left shift 3—1 positions, and we obtain LEFT_SHIFT,(bs(sp;1))=1001100. Then,
performing AND operation between bs(sp;.1)=1000100 and LEFT_SHIFT,(bs(sp1))=1001100
will derive bs(<{A}, {B}, {A,C}>)=1000100. After aggregating ‘1’ in the bit string, the

frequency of sp’ is 2.

4.5 Experiments of Polyphonic Repeating Pattern Mining

To show efficiency of our approaches, @ series of experiments are conducted. We also show

the effectiveness of our approaches.

4.5.1 Efficiency

We present experimental results on the performance of our two algorithms and these two ones
improved by bit-string approaches. All the experiments were conducted on a IBM desktop
computer with a 2.4 Ghz Intel(R) Pentium(R) quad-core processor with 4 gigabytes main
memory running Microsoft Windows XP Professional sp2 (32-bit) operating system. The
algorithms were implemented in C++ with Standard Template Library (STL). The source
codes of these algorithms are available at URL
(http://mpc.cs.nctu.edu.tw/~stevechiu/exp_data/prpd_algo.zip). Note that the runtime was

measured with the output turned off. For our experimental evaluation we used both real and
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synthetic set-sequence data.

Table 4-2. Parameters of experiments

Parameter | Description

t Minimal frequency threshold

S Average size of a set-sequence data

T Average cardinality of a set in a set-sequence data
N Number of distinct elements in a set-sequence data

The real music objects of MIDI format were collected from internet. There were 143 music
objects in total. Interested readers can download these music objects at URL
(http://mpc.cs.nctu.edu.tw/~stevechiu/exp_data/music143.zip). They were classical music
objects composed by various composers in different periods, from Baroque to Romantic.
After preprocessing, each music object was converted into a set-sequence data. The average
size of a set-sequence data was 1451 and the average cardinality of a set was 1.89. In the
experiments, these set-sequences were represented in exact pitch. According to MIDI standard,
the alphabet size of EPV (exact pitch value representation) was 128. We counted distinct
elements of every set-sequence from 1 to 128. The real data music objects were average 46
distinct elements in a set-sequence data.” As far as the synthetic dataset is concerned, the
dataset is generated based on the method [18] with some modifications to generate
set-sequence data and patterns. The set-sequence patterns and a set-sequence data are
generated with uniform note distribution. Each generated set-sequence pattern is duplicated
into several instances. These instances are inserted into the generated set-sequence data. Due
to flexibility of synthetic dataset, we can control four factors which dominate the performance
of the proposed algorithms in Table 4-2: minimal frequency threshold t, the average size of a
set-sequence data |S|, the average cardinality of a set in a set-sequence data |T| and the number

of distinct elements in a set-sequence data |N|.
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Figure 4-12. Elapsed time versus frequency for the real dataset, |S|:1451, |T|:1.89 (a) real dataset

(INJ:46 in (P1, -)), (b) real dataset (|N|:72 in (EPV, EDV))

The first two experiments, as shown in Figure 4-12a and Figure 4-12b, illustrate the elapsed
time of A-PRPD, D-PRPD, “A-PRPD=+bit_string” and “D-PRPD+bit_string” with respect to
the minimal frequency threshold t (percentage in total number) on real data in (PI, -) and (EPV,
EDV) representations, respectively. Comparing Figure 4-12a and Figure 4-12b, we can notice
that the elapsed time of all algorithms performing on real data in (PI, -) is higher than in (EPV,
EDV). For most case, [N| in (EPV, EDV) representation is larger than in (P, -) representation
while one more attribute is considered. In the same condition, while |N| is lower, more
polyphonic repeating patterns found leads to more candidates being checked and generated.
By analyzing these two real datasets, the average maximal length of discovered repeating
pattern is 15.8 and 4.7, in (EPI, -) and (EPV, EDV), respectively. Hence, the elapsed time
mining in (PI, -) representation is longer than in (EPV, EDV). “D-PRPD + bit_string” clearly

outperforms the others under two representations.
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Figure 4-13. Synthetic dataset: (a) elapsed time versus frequency |S|:1000, |T|:2, |N|:40, (b)

elapsed time versus average size of a set-sequence data, t:4%, |S|:1000, |T|:2
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Figure 4-14. Synthetic dataset: (a) elapsed time versus average cardinality of a set in sd, t:4%,
|S]:1000, |N|:40, (b) elapsed time versus number of distinct of elements in sd, t:4%,|S|:1000,

T|:2

Notice that D-PRPD, however, shows the longest elapsed time. The major diversity is caused
by the large number of candidate generated by D-PRPD. While frequency counting operation

costs time, the drawback imposes much elapsed time on D-PRPD. Although for most case
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A-PRPD generates fewer candidates than D-PRPD generates, it takes too much time to check
whether a candidate can be generated (see pattern-extend in A-PRPD). While string-bit
approach is proposed for frequency counting in both algorithms, the algorithm taking much
time for frequency counting will takes more advantages. Therefore, the bit-string approach

improves much performance in D-PRPD than in A-PRPD.

For synthetic dataset, Figure 4-13 illustrates the elapsed time versus t and |S| (average size of
a set-sequence data sd). In Figure 4-13a, the elapsed time of four algorithms with respect to t
for synthetic dataset is shown. The average number of found polyphonic repeating patterns at
t=2%, t=4%, t=6%, t=8%, and t=10% is 597.89, 150.03, 76.83, 41.43, and 30.13, respectively.
The result is similar to that of real dataset; that is, “D-PRPD + bit_string” is consistently the
most efficient in these four experiments.-For the varied |S|, our algorithms are linearly scalable,
as Figure 4-13b shown. Especially, the algorithms. with-bit-string index perform in uniform
behavior. Because the bit-string approach uses small storage to index the elements and count
frequency by low-level binary operation, the “elapsed -time is almost not affected by the
average size of sd. However, the algorithms without bit-string approaches need to check more
positions for a candidate pattern as the average size of sd increases. In addition, Figure 4-14
illustrates |T| (average cardinality of a set in sd) and |N| (number of distinct elements in sd).
For the varied |T|, the elapsed time is not affected by this factor, as Figure 4-14a shown. In
Figure 4-14b, one thing needs to be noticed is that the D-PRPD performs well than A-PRPD
while |N| is less than about 19. This is because when |N| is smaller, the number of the possible
frequent length-1 patterns is fewer. That is, in D-PRPD fewer candidates need to check their

frequency. Overall, “D-PRPD + bit_string” outperforms than the others in most cases.

4.5.2 Effectiveness

To show the effectiveness, we give two examples from the results after performing our
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polyphonic repeating pattern algorithms. For clear readability, we only demonstrate the

pattern with higher frequency.

>
p 1 e e F e pPfa, »F
e W
Sa == — —
A [——
o1 - 1 T | I |
e e —_——t——— ===
LS B 1 1 - P~ " | 1 P I - | r A r A
o) S| " T ™ T

Figure 4-15. A pattern appearing in different voices is discovered from C. Nichelmann’s Gigue

The first example from C. Nichelmann’s “Gigue” is shown in Figure 4-15. A pattern is
discovered in the music represented in sde epvy and it’s instances are in rectangle. While these
instances of this pattern locate over different voices, our algorithms have an ability to find this

pattern.

The second example is an excerpt from Chopin’s Op.18;.as Figure 4-16 shown. The music is
represented in (P1, EDV), where Plis real transposition. We show two significant polyphonic
repeating patterns discovered by our algorithm:-one is in colored rectangle and the other one
is in colorless rectangle. The pattern in-colored.rectangle is one of the important motifs in this
music. According to motif development, the varied motif is transformed by shifted its original
pitch. Thus, while the music is viewed in pitch interval of real transportation perspective, this
kind of patterns can be found. On the other words, only the colorless pattern can be found
from the music represented in (EPV, EDV). The patterns discovered from sdeiepv) iS
contained by the patterns discovered from sdepvepv). Note that the instances in colorless
rectangle show an example that this period of repetition cannot be found by traditional
repeating patterns mining algorithm because the circled note could lead to the fault of the
main melody extraction approach [51]. The significant motif pattern can be found when the

music is in polyphonic form and discovered by our proposed algorithms.
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Figure 4-16. The patterns discovered from Chopin’s “Grande Valse brillante” (Op. 18)

As these two examples shown, we believe that most significant musical patterns can be found.
Moreover, we can find not only traditional repeating patterns in monophonic form but also
more significant repeating patterns in polyphonic-form which cannot be found by previous
approaches. We think that there are two: future -directions can be made to improve our
approaches. First, our developed approaches match the instances of the pattern exactly
thereby missing some instances which appears approximately. Compare to approximate
repeating pattern, it will be a different challenge to define what is similar in polyphonic form.
Second, different patterns are discovered in different representations by our proposed
approaches. An interesting direction is to design a method to present only significant patterns

by integrating all results of discovered patterns in different representations.
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CHAPTER S CONCLUSIONS AND FUTURE WORK

In this Chapter, summaries of our works are given. Some possible future works are also

discussed.

5.1 Conclusions

5.1.1 Summary of Automatic Music Arrangement Framework

In this dissertation, we propose a new framework that is able to arrange multipart scores for
an instrument with consideration of its role in music. The arrangement element analysis
shows an important factor for arrangement, and can contribute to main melody extraction. To
test our framework, we implemented a system which arranges for a piano. The Turing-test
experiment shows that it is difficult to distinguish between human- and system-arranged
music. While our system is able to produce viable and adaptable arrangement for piano, it can

also be applied to many other instruments with the ' madification of playability function.

5.1.2 Summary of Polyphonic Repeating Pattern Mining

In this chapter, we studied a problem of polyphonic repeating patterns in music. A music
object is modeled as a set-sequence data. We formally defined the polyphonic repeating
pattern discovery problem. Two algorithms, A-PRPD (Apriori-based Polyphonic Repeating
Pattern Discovery) and D-PRPD (DFS-based Polyphonic Repeating Pattern Discovery), are
proposed for mining polyphonic repeating patterns from music data. A-PRPD uses
Apriori-based method to discover longer set-sequence patterns, and D-PRPD maintains a
lexicographic tree which provides a path to search these patterns. Furthermore, we also
proposed a bit-string approach to improve the efficiency of frequency counting for both

algorithms. Our experimental results demonstrate that D-PRPD with bit-string approach
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outperforms others in most case. An interesting direction for future work is to consider how to

extend these techniques in general to discover other kinds of advanced patterns.

5.2 Future Work

With the capabilities of the proposed music arrangement framework, there are several

interesting extensions on this framework, as listed below.

Arranging for Various Instruments

In our proposed automatic music arrangement framework, it is able to arrange multipart
scores for an instrument. Since the piano arrangement system is implemented, we will try to
arrange for the other instruments by designing .the various playability functions. Some
playability functions are not intuitive to-design, such as guitar, piano, etc. How to design these

playability functions is an interesting research topic.

Arranging for an Ensemble

While the proposed framework can‘arrange for various instruments, the next interesting
research issue is how to arrange for an ensemble, i.e., a set of instruments. The main problem
is as follows: Given a set of instruments, how to decide which one plays which type of
arrangement element is an interesting issue. After deciding the types of the arrangement
element for each instrument, the system will be able to perform the phrase selection and finish

the arrangement for an ensemble.
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