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摘  要 

在日常的生活中，數位簽章及公開金鑰加密是保護線上交易安全的二

種常用機制。前者確保鑑別性與不可否認性，後者則保障機密性。 

欲提供密碼方法同時具備機密性與鑑別性，鑑別加密方法是一較佳的

選擇，與直接簽章再加密的方式相較，鑑別加密法可提升效率與降低通訊

成本。此方法允許簽署者產生一鑑別加密訊息，使得僅特定驗證者有能力

來解密此訊息並驗證其對應的簽章。可轉換鑑別加密方法不僅具備上述所

提的特性，當發生事後的否認爭議時，更提供額外的簽章轉換機制使任意

人信服簽署者的不誠實。 

代理簽章方法允許一位被授權者，稱為代理簽署者，根據事先定義好

的簽署策略，代表原始簽署者產生合法的代理簽章。在本論文中，作者提

出三種具代理授權特性的可轉換鑑別加密方法，分別植基於 RSA、CDHP、

BDHP 不同的密碼假設難題。所提之方法允許一位代理簽署者代表原始簽

署者產生一合法的鑑別加密訊息，同時僅有一位特定接收者有能力解密並

驗證其對應的代理簽章。由於轉換後的原始代理簽章會在訊息回復與驗證

簽章的過程中被運算出來，因此簽章轉換的程序相當簡單，而且可由特定

驗證者在不需額外計算或通訊成本的情況下獨立完成。我們也提出一個群

體導向的變形方法，其允許一個由 n 位原始簽署者組成的群體授權他們的



-iv- 

簽署能力給一位代理簽署者，來代表此原始簽署群體產生鑑別加密訊息。

為了方便大訊息的加密，作者進一步提出藉由將一個大訊息切割為多個小

訊息區塊的具訊息鏈結的變形方法。 

與之前的文獻相比，所提的方法不僅有較低的計算成本，同時亦提供

較佳的功能性。此外，在抵抗調整式選擇密文攻擊的機密性安全需求與抵

抗調整式選擇訊息攻擊的不可偽造性安全需求，也在 random oracle 模型下

證明。 

 

關鍵字：可轉換、鑑別加密、代理授權、機密性、公開金鑰系統 
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ABSTRACT 

In modern daily life, digital signatures and public key encryptions are two commonly 

applied mechanisms for protecting the security of on-line transactions. The former ensures 

authenticity and non-repudiation while the latter guarantees confidentiality. 

To simultaneously provide cryptographic schemes with confidentiality and authenticity, 

an authenticated encryption (AE) scheme is a better alternative for promoting efficiency and 

reducing communication overheads as compared to the straightforward sign-then-encrypt 

method. Such schemes allow a signer to produce an authenticated ciphertext, such that only a 

designated recipient has the ability to decrypt the ciphertext and verify its corresponding 

signature. Convertible authenticated encryption (CAE) schemes not only inherit the 

characteristic mentioned above, but also provide additional signature conversion mechanism 

to convince anyone of signer’s dishonesty when a later dispute occurs.  

Proxy signature schemes allow an authorized person called proxy signer to generate 

proxy signatures on behalf of an original signer according to the predefined signing policy. In 

this dissertation, the author proposes three CAE schemes with proxy delegation based on 

different cryptographic assumptions, i.e., RSA, CDHP, BDHP, respectively. The proposed 

schemes allow a proxy signer to generate a valid authenticated ciphertext on behalf of an 

original signer and only the intended recipient is capable of decrypting it and verifying the 

corresponding proxy signature. The signature conversion is rather simple and can be solely 

done by the designated recipient with neither extra computation costs nor communication 

overheads, since the converted proxy signature will be derived during the message recovery 
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and signature verification phase. We also present a group-oriented variant which enables an 

original group consisting of n signers to delegate their signing power to a proxy signer such 

that the latter can generate an authenticated ciphertext on behalf of the former. For facilitating 

the encryption of a large message, the author further introduces the other variant with 

message linkages by dividing a large message into many small message blocks. 

As compared with previous works, the proposed schemes not only have lower 

computation costs, but also provide better functionalities. Additionally, the security 

requirement of confidentiality against indistinguishability under adaptive chosen-ciphertext 

attacks (IND-CCA2) and that of unforgeability against existential forgery under adaptive 

chosen-message attacks (EF-CMA) are proved in the random oracle model.  

 

Keywords: convertible, authenticated encryption, proxy delegation, confidentiality, public 

key system. 
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1. Introduction 

With the rapid development of electronic commerce (eCommerce), the security of 

on-line transactions has received great attention. Generally speaking, cryptographic 

techniques can be adopted to protect communication content over the Internet. Public key 

encryption [DH76] and digital signature schemes [ElG85, RSA78, NR93] are two 

fundamental cryptographic mechanisms which primarily aim for providing confidentiality 

[HWT+04, Jac91] and authenticity [Sta05], respectively. The digital signature scheme can 

further satisfy the requirement of non-repudiation [Sch98] to prevent signer’s dishonesty. 

 

1.1 Motivation 

Some applications, however, like contract signings, electronic funds transfer (EFT), 

on-line auctions and credit card transactions require all the above security requirements 

simultaneously be achieved. A straightforward way would be sign-then-encrypt [VM97]. Yet, 

the approach is costly in terms of computation efforts and communication overheads. In some 

special circumstances, a proxy might be properly delegated to conduct these confidential 

transactions, e.g., proxy auctions and contract signings by an authorized proxy signer. 

Consider group-oriented applications such as a joint account owned by two or more 

individuals. To withdraw money from such an account, all owners must cooperatively sign a 

withdrawal receipt which can only be verified by the bank teller. In case that account owners 

are unable to sign personally, they can delegate their signing power to a proxy signer who can 

legitimately conduct transactions on behalf of them. It thus can be seen that the design of 

efficient and provably secure cryptographic schemes fulfilling such requirements is crucial 

and benefits the practical implementation. 

 

1.2 Related Works 

Since Diffie and Hellman [DH76] proposed the first public key system based on discrete 

logarithm problems (DLP) in 1976, public key systems have been extensively studied. In 

public key cryptosystems [Gir91, RSA78, Sha84], each one has a private key and its 

corresponding public one. To achieve the security requirements of confidentiality and data 

integrity [Sta05], one can use a recipient’s public key to encrypt messages such that only the 
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designated recipient can decrypt the ciphertext with his own private key. However, it might be 

even hard for an arbitrator to handle if a sender disclaims having transmitted the encrypted 

message. A digital signature scheme is applicable for that the signature is generated with a 

signer’s unique private key and thereafter everyone can verify its validity with the signer’s 

public key. It can be seen that only the actual owner of private key can produce a valid 

signature so as to prevent a dishonest signer from disclaiming, which is referred to as 

non-repudiation. 

In 1994, Horster et al. [HMP94] proposed an authenticated encryption (AE) scheme 

further providing digital signature schemes with the property of confidentiality and only a 

designated recipient can verify the signature instead of everyone. Since only a designated 

recipient has the ability to decrypt the ciphertext and verify the corresponding signature, there 

might be a potential drawback that a signer repudiates his signature. In such circumstance, it 

is even difficult for an arbitrator to judge who is lying.  

To deal with the case of a later dispute over repudiation, Araki et al. [AUI99] presented a 

convertible limited verifier signature scheme. However, the signature conversion of their 

scheme requires the assistance of signer and will incur extra computation efforts, which is 

considered to be inefficient and unworkable if a signer is reluctant to cooperate with. Besides, 

Zhang and Kim [ZK03] also pointed out that Araki et al.’s scheme could not withstand a 

universal forgery attack on an arbitrary chosen message.  

In 2002, Wu and Hsu [WH02] proposed a convertible authenticated encryption (CAE) 

scheme, in which the signature conversion is rather simple and can be solely done by a 

designated recipient without extra computation efforts or communication overheads. Huang 

and Chang [HC03] further introduced an enhanced variant in the next year. However, both the 

Wu-Hsu and the Huang-Chang schemes cannot fulfill the security requirement of 

confidentiality, i.e., a ciphertext is computationally distinguishable with respect to two 

candidate messages. To eliminate such security weakness, Lv et al. [LWK05] addressed a 

secure and practical solution. In 2005, Wu et al. [WHL25] proposed generalized CAE 

schemes and adapted them based on elliptic curves [Kob87, Mil85] for facilitating gradually 

popular applications like smart cards [Hen94, RRK+04, SP02], mobile phones and PDAs. In 

2008, Chien [Chi08] proposed a selectively CAE scheme allowing either a signer or a 

designated recipient to perform signature conversion. In 2009, Lee et al. [LHT09] addressed a 

CAE scheme based on the ElGamal cryptosystem. Considering the RSA cryptosystem, Wu 
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and Lin [WL09] also presented a CAE scheme based on RSA assumption. To fulfill the 

group-oriented application requirement, in 2008, Wu et al. [WHT+08] and Chang [Cha08] 

proposed convertible multi-authenticated encryption (CMAE) schemes for group 

communication, respectively. In 2009, Tsai [Tsa09] presented a more efficient CMAE scheme 

with lower computation costs. Lin and Yeh [LY08] further proposed a threshold CAE scheme 

allowing any t or more signers to cooperatively generate a valid authenticated ciphertext on 

behalf of an original signing group. So far, lots of CAE variants [DC06, DCZ05, EA08, 

HLL+05, LC04, LW08, LWH+07, LWH+08, WC05, WL08a, WL08b, WLC06, WLH+07, 

ZD04] have been proposed. 

In a separate development, Mambo et al. [MUO96a, MUO96b] extended the concept of 

digital signature and introduced the notion of proxy signatures. A proxy signature scheme 

allows an original signer to delegate his signing power to an authorized person called proxy 

signer such that the proxy signer can generate a valid proxy signature on behalf of an original 

one. As to the proxy delegation, it can be categorized into four different kinds as follows: 

(i). Full delegation [MUO96a, MUO96b]: The proxy signer’s signing key is the same as an 

original signer’s private key so that all (proxy) signatures are generated with an identical 

private key. Consequently, it is difficult to convince any verifier that a proxy signature is 

indeed generated by the proxy signer. That is to say, it cannot offer secure mechanisms 

to protect any one of them from being framed by the other. 

(ii). Partial delegation [MUO96a, MUO96b]: Based on the intractability of some security 

assumptions, e.g., factorization and discrete logarithm problems, a proxy signature key is 

computed from an original signer’s private key while the latter cannot be derived from 

the former. Nevertheless, there might be a drawback that it requires an additional 

revocation protocol, as no information (e.g., the period of validity) is bonded to the 

delegation. Besides, it is difficult to identify the actual signer for a given signature, since 

a malicious original signer can easily impersonate a proxy one to forge a valid proxy 

signature.  

(iii). Delegation by warrant [Neu93, Var91]: An original signer prepares a warrant containing 

some necessary proxy information, such as the period of validity and the identifiers of 

original and proxy signers, and then sends it to the proxy signer as his delegation 

authorization. The warrant could be viewed as an original signer’s signature to convince 

any verifier of his agreement. However, it requires extra efforts to certify and transmit 
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the warrant, which is costly in terms of computation efforts and communication 

overheads. 

(iv). Partial delegation with warrant [KPW97]: This type preserves the merits of partial 

delegation and delegation by warrant. Equivalent to the second approach, it is 

computationally infeasible for a proxy signer to derive an original signer’s private key 

from his proxy signature key. Moreover, to certify a warrant and validate a signature can 

be simultaneously carried out in a single step.  

Obviously, the fourth approach, partial delegation with warrant, is more flexible and 

secure as compared with the first three. Because of its efficiency and security as compared 

with the other three, the author also adopts partial delegation with warrant to implement the 

proposed schemes. Up to the present, lots of variations of proxy signatures have been 

proposed [HC01, HLL00, HS00, HWW01, KPW97, LHW98, LWH02, SLH99, TYH04, 

WHL08, XC04a, XC04b, YX00]. These schemes can be classified into the five categories 

according to the signing policy and the number of original and proxy signers as follows:  

(i). Proxy multisignature [YX00]: A group of two or more original signers delegates the 

signing power to a proxy signer. Then the proxy signer can generate a multisignature on 

behalf of the original group. 

(ii). Multi-proxy signature [CC06, HS00, LWH02, WHL08, XC04b]: An original signer 

delegates his signing power to two or more proxy signers and all of them must 

cooperatively sign on behalf of the original signer. 

(iii). Threshold proxy signature [HLL00, KPW97, LHW07, LHW98, SLH99, WCL+07]: In a 

(t, n) threshold proxy signature, an original signer delegates his signing power to n proxy 

signers such that any t or more of them can cooperatively generate a valid signature on 

behalf of the original signer. 

(iv). Multi-proxy multisignature [HC01, XC04a]: A group composed of two or more original 

signers can delegate the signing power to a designated proxy group. All members in the 

proxy group must cooperatively generate a valid multisignature on behalf of the original 

group. 

(v). Threshold multi-proxy multisignature [HWW01, LHL+01, TYH04]: In a (t, n) threshold 

multi-proxy multisignature, a group comprising two or more original signers can 
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delegate the signing power to n proxy signers. Any t or more proxy signers can 

cooperatively generate a valid multisignature on behalf of the original group. 

 

1.3 Our Contributions 

In this dissertation, the author elaborates on the merits of CAE schemes and proxy 

signature schemes to propose three proxy CAE schemes named PCAE-(I), PCAE-(II) and 

PCAE-(III), respectively. To the best of our knowledge, the proposed PCAE-(I) scheme is the 

first provably secure one based on RSA assumption. The proposed PCAE schemes allow a 

delegated proxy signer to generate a valid authenticated ciphertext on behalf of an original 

signer such that only a designated recipient can recover the message and verify its embedded 

proxy signature. When the case of a later dispute over repudiation occurs, a designated 

recipient can solely convert the authenticated ciphertext into a publicly verifiable proxy 

signature without any computation or communication cost. Moreover, the author also presents 

two extensions. One is a group-oriented variant allowing one proxy signer to generate an 

authenticated ciphertext on behalf of an original signing group composed of n signers. The 

other is a variant with message linkages which enables the encryption of large messages. We 

also prove that the proposed schemes achieve the security requirement of confidentiality 

against indistinguishability under adaptive chosen-ciphertext attacks (IND-CCA2) and that of 

unforgeability against existential forgery under adaptive chosen-message attacks (EF-CMA) 

in the random oracle model. Compared with previous works, the proposed schemes not only 

have lower computation costs, but also provide better functionalities. 

Table 1.3.1 summarizes the functionalities and security proofs among the proposed and 

related schemes including Elkamshoushy et al.’ (EAM for short) [EAM06], the Zhang-Dong 

(ZD for short) [ZD04], Dai et al.’s (DYD for short) [DYD03], the 

Elkamchouchi-Abouelseoud (EA for short) [EA08], Duan et al.’s (DCZ for short) [DCZ05], 

the Li-Chen (LC for short) [LC04] and the Wang-Liu (WL for short) [WL05] schemes. 

Table 1.3.2 further summarizes the computation costs in terms of required modular 

exponentiation computation among the proposed PCAE-(II) and those [EAM06, DYD03, 

ZD04] based on the computational Diffie-Hellman problem (CDHP).  

Table 1.3.3 further summarizes the computation costs in terms of required bilinear 

pairing and multiplication computation among the proposed PCAE-(III) and those [EA08, 
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DCZ05, LC04, WL05] based on the bilinear Diffie-Hellman problem (BDHP). 

 

Table 1.3.1. Comparisons of functionalities and security proofs 

                        Scheme 
 
Item 

EAM ZD DYD EA DCZ LC WL Ours

Against key exposure attack O O O O × O O O 
Signature conversion O O × × × O O O 
No conversion cost × × × × × O O O 
Non-interactive conversion procedure O O × × × O O O 
Formal Proof × × × × × × × O 

 

Table 1.3.2. Comparisons of computation costs in terms of modular exponentiation 

computation 

            Scheme 
Item EAM DYD ZD PCAE-(II) 

Costs for PCG phase* 5Te 3Te 3Te 2Te 
Costs for ACG phase 2Te 2Te 2Te 2Te 
Costs for SRV phase 5Te 7Te 4Te 4Te 
Total Costs  12Te 12Te 9Te 8Te 

Remark *: Te stands for the time for performing one modular exponentiation computation. 

 

Table 1.3.3. Comparisons of computation costs in terms of bilinear pairing and multiplication 

computation 

            Scheme
Item EA DCZ LC WL2 PCAE-(III)

Costs for PCG phase1 2TB + 2TM 2TB + 3TM 3TB + 4TM 3TB + 3TM 2TB + TM 
Costs for ACG phase 2TB + 2TM 2TB + 4TM 2TB + 2TM 2TB + 3TM 2TB + 2TM

Costs for SRV phase 4TB + 2TM 4TB + 4TM 8TB + 6TM 5TB + 4TM 4TB + 2TM

Total Costs  8TB + 6TM 8TB + 11TM 13TB + 12TM 10TB + 10TM 8TB + 5TM

Remarks: 1. TB and TM stands for the time for performing one bilinear pairing and one 

multiplication computation, respectively. 

 2. To obtain fair comparison results, we assume that only one proxy signer is 
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involved in the Wang-Liu scheme. 

 

1.4 Organization of Dissertation 

This dissertation consists of seven chapters. Chapter 1 is an introductory section 

describing the motivation, related works, our contributions and the organization of the 

dissertation. The rest of others are stated as follows: 

In chapter 2, the author reviews some security notions and important cryptographic 

building blocks with respect to the proposed PCAE schemes. 

In chapter 3, the author defines the formal model of PCAE schemes, including involved 

parties, composed algorithms and its security model. 

In chapter 4, the author proposes a PCAE scheme based the RSA assumption, 

demonstrates its correctness and proves its security in the random oracle model. 

In chapter 5, the author introduces a PCAE scheme based on CDHP, demonstrates its 

correctness and proves its security in the random oracle model. Moreover, a group-oriented 

variant for facilitating multiuser applications, and a variant with message linkages for 

benefiting the large message encryption are presented, respectively. 

In chapter 6, the author addresses a PCAE scheme based on BDHP, demonstrates its 

correctness and proves its security in the random oracle model. 

Finally, in chapter 7, the author makes a conclusion with regard to the significance of 

this dissertation and gives the future research. 
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2. Preliminaries 

In this section, we first review some security notions and related cryptographic building 

blocks. The used notations are stated as follows: 

 

Table 2.1. The used notations 

 Zp integers modulo p 
*
pZ  multiplicative group of integers modulo p 

 GF(p) Galois field of p elements 

 x∈Zp element x in set Zp 

 x∈R Zp element x is a random integer in set Zp 

 x ← Zp sampling element x uniformly in set Zp 

 #Zp number of elements in set Zp 

 a mod b modulo operation: reminder of a divided by b 

 a | b integer b is divisible by integer a 

 a || b concatenation of a and b 

|x| bit-length of integer x, also absolute value of x 

∑∑
∈= Si

i
n

i
i vv ,

1
 sum of values vi for i = 1, 2, …, n, or for i∈S 

∏∏
∈= Si

i
n

i
i vv ,

1
 product of values vi for i = 1, 2, …, n, or for i∈S 

 log b x logarithm to base b of x 

 ⊕ logical operation XOR 

 ¬ logical operation NOT 

 ∧ logical operation AND 

 ∨ logical operation OR 

 ∀ for all 

 Pr[E] probability of event E occurring 
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2.1 Security Notions [DK02, BLS03, MOV97, RSA78, Sta05] 

We review some essential cryptographic security assumptions with respect to the 

proposed schemes as follows: 

 

RSA Problem 

Let N = pq be the product of two large primes (p, q), and (e, d) two integers satisfying 

that gcd(e, φ(N)) = 1 and ed = 1 mod φ(N), where φ(⋅) is the Euler totient function and     

φ(N) = (p − 1)(q − 1). Given c = me mod N as input, the RSA problem is to output m ∈ ZN 

satisfying m = cd mod N. 

 

RSA Assumption 

Let G be an RSA key generator which takes a security parameter 1k as its input and 

outputs (N, e, d, p, q). Given an RSA instance (N, e, c = me mod N), the advantage for any 

probabilistic polynomial-time adversary A, every positive polynomial P(⋅) and all sufficiently 

large w to solve the RSA problem is at most 1/P(w), i.e., 

Pr[A(N, e, c) = m; c ← me mod N, m ← ZN, (N, e, d, p, q) ← G] ≤ 1/P(w). 

The probability is taken over the uniformly and independently chosen instance with a given 

security parameter k and over the random choices of A. 

 

Definition 2.1.1. The (t, ε)-RSA assumption holds if there is no polynomial-time adversary 

that can solve the RSA problem in time at most t and with the advantage ε. 

 

Discrete Logarithm Problem; DLP 

Let p and q be two large primes satisfying q | p − 1, and g a generator of order q over 

GF(p). The discrete logarithm problem is, given an instance (y, p, q, g), where y = gx mod p 

for some x ∈ Zq, to derive x. 
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Discrete Logarithm (DL) Assumption 

Let Ik = {(p, q, g) ∈ I | |p| = k} with k ∈ N, where I is the universe of all instances and |p| 

represents the bit-length of p. For every probabilistic polynomial-time algorithm A, every 

positive polynomial P(⋅) and all sufficiently large k, the algorithm A can solve the DLP with 

an advantage at most 1/P(k), i.e., 

Pr[A(y, p, q, g) = Log p, q, g(y); (p, q, g) ← Ik, y ← *
pZ ] ≤ 1/P(k). 

The probability is taken over the uniformly and independently chosen instance with a given 

security parameter k and over the random choices of A. 

 

Definition 2.1.2. The (t, ε)-DL assumption holds if there is no polynomial-time adversary that 

can solve the DLP in time at most t and with the advantage ε. 

 

Computational Diffie-Hellman Problem; CDHP 

Let p and q be two large primes satisfying that q | p − 1 and g a generator of order q over 

GF(p). The computational Diffie-Hellman problem is, given an instance (p, q, g, ga, gb) for 

some a, b ∈ Zq, to derive gab mod p. 

 

Computational Diffie-Hellman (CDH) Assumption 

Let Ik = {(p, q, g) ∈ I | |p| = k} with k ∈ N, where I is the universe of all instances and |p| 

represents the bit-length of p. For every probabilistic polynomial-time algorithm A, every 

positive polynomial P(⋅) and all sufficiently large k, the algorithm A can solve the CDHP with 

an advantage at most 1/P(k), i.e., 

Pr[A(p, q, g, ga, gb) = gab; (p, q, g) ← Ik, a, b ← Zq] ≤ 1/P(k). 

The probability is taken over the uniformly and independently chosen instance with a given 

security parameter k and over the random choices of A. 
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Definition 2.1.3. The (t, ε)-CDH assumption holds if there is no polynomial-time adversary 

that can solve the CDHP in time at most t and with the advantage ε. 

 

Bilinear Pairing 

Let (G1, +) and (G2, ×) denote two groups of the same prime order q and e: G1 × G1 → 

G2 be a bilinear map which satisfies the following properties: 

(i) Bilinearity: 

e(P1 + P2, Q) = e(P1, Q)e(P2, Q); 

e(P, Q1 + Q2) = e(P, Q1)e(P, Q2); 

(ii) Non-degeneracy: 

If P is a generator of G1, then e(P, P) is a generator of G2. 

(iii)Computability: 

Given P, Q ∈ G1, e(P, Q) can be efficiently computed by a polynomial-time algorithm. 

 

Bilinear Diffie-Hellman Problem; BDHP 

The BDHP is, given an instance (P, A, B, C) ∈ G1
4 where P is a generator, A = aP,     

B = bP and C = cP for some a, b, c ∈ *
qZ , to compute e(P, P)abc ∈ G2. 

 

Bilinear Diffie-Hellman (BDH) Assumption 

For every probabilistic polynomial-time algorithm A, every positive polynomial Q(⋅) and 

all sufficiently large k, the algorithm A can solve the BDHP with the advantage at most 1/Q(k), 

i.e., 

Pr[A(P, aP, bP, cP) = e(P, P)abc; a, b, c ← *
qZ , (P, aP, bP, cP) ← G1

4] ≤ 1/Q(k). 
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The probability is taken over the uniformly and independently chosen instance and over the 

random choices of A. 

 

Definition 2.1.4. The (t, ε)-BDH assumption holds if there is no polynomial-time adversary 

that can solve the BDHP in time at most t and with the advantage ε. 

 

2.2 Designated Verifier Signature Scheme 

A digital signature scheme is one fundamental cryptographic technique which primarily 

aims for providing authenticity and non-repudiation [MWX02]. Since all public keys are 

either maintained by the system authority (SA) or stored in the public key directory, one can 

easily obtain the corresponding public key of the other to verify his/her signature. The actual 

signer thus can not deny his/her generated signature later. However, in some applications such 

as electronic voting [RN01, Sch99] and electronic auction [JS03, WCL08], the 

non-repudiation property is not desirable. With an eye to the above requirement, in 1990, 

Chaum and Antwerpen [CA90] proposed an undeniable signature scheme in which a signer 

must assist a verifier to validate a generated signature. It is obvious that any third party 

attempting to verify the signature has to reach an agreement with the signer in advance. That 

is to say, in an undeniable signature scheme, a signer has completely control over his 

generated signatures. In 1996, Jakobsson et al. [JSI96] came up with the notion of designated 

verifier proofs and in a sense proposed a designated verifier signature (DVS) scheme. In their 

scheme, a designated verifier can be convinced of the signer’s identity regarding a given 

signature without the assistance of the actual signer. Yet, a designated verifier can not transfer 

the proofs to convince any third party, since he is also capable of generating another DVS 

which is computationally indistinguishable from the received one. In 2003, Wang [Wan03] 

formalized the notion of DVS scheme and further proposed a so-called strong designated 

verifier signature (SDVS) scheme in which a designated verifier’s private key is directly 

involved in the validation equation. Consequently, anyone cannot even perform the validation 

equation without the knowledge of designated verifier’s private key. In 2007, Lee and Chang 

[LC07] further combine SDVS schemes with message recovery signatures. More recently, 

they [LC09] pointed out that signer’s ambiguity could be a vital property of secure SDVS 

schemes. Namely, even if a signer’s private key is compromised, any attacker still cannot 
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identify the actual signer for a given SDVS which has not been received by the designated 

verifier. Another SDVS scheme satisfying such a property is also proposed in their paper. 

Nevertheless, they give no formal proof. In 2004, Susilo et al. [SZM04] addressed the first 

identity-based SDVS scheme from bilinear pairings. Since then, several researchers [HSM+08, 

KBD09, KSS06, ZM08, LW09] have devoted themselves to the design of pairing-based 

SDVS schemes. However, we find out that none of these schemes could fulfill the property of 

signer’s ambiguity addressed by Lee and Chang [LC09]. 

Generally speaking, an SDVS scheme should satisfy the following security requirements 

[SKM03]:  

(i) Unforgeability: It is computationally infeasible for any polynomial-time adversary to 

forge a valid SDVS without knowing the private key of either the signer or the 

designated verifier. 

(ii) Non-Transferability: Based on the transcript simulation property in an SDVS scheme, a 

designated verifier can also generate another SDVS which is computationally 

indistinguishable from the received one. Therefore, a designated verifier cannot transfer 

the SDVS to any third party. 

(iii) Signer’s Ambiguity: It is difficult to determine the identity of signer from an actual signer 

and a designated verifier for a given SDVS. 

Recently, Lin et al. [LWY10] proposed a DL based short strong designated verifier 

signature scheme. An SDVS scheme has two involved parties, a signer and a designated 

verifier. Each one is a probabilistic polynomial-time Turing machine (PPTM). The signer will 

generate an SDVS intended for the designated verifier. Consequently, the corresponding 

SDVS can only be validated by the designated verifier with his private key. An SDVS scheme 

is correct if a signer can generate a valid SDVS and only a designated verifier can be 

convinced of the signer’s identity. Lin et al.’s SDVS scheme consists of the following 

algorithms: 

– Setup: Taking as input 1k where k is a security parameter, the algorithm generates system’s 

public parameters params. 

– Signature-Generation (SG): The SG algorithm takes as input system parameters params, a 

message, the public key of designated verifier and the private key of signer. It generates a 
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corresponding SDVS δ. 

– Signature-Verification (SV): The SV algorithm takes as input system parameters params, 

a message m, an SDVS δ, the private key of designated verifier and the public key of signer. 

It outputs True if δ is a valid SDVS for m. Otherwise, an error symbol ⊥ is returned as a 

result. 

– Transcript-Simulation (TS): The TS algorithm takes as input system parameters params, a 

message m, an SDVS δ and the private key of designated verifier. It outputs another valid 

SDVS δ* for m. 

The concrete construction of each algorithm is described as follows: 

– Setup: Taking as input 1k, the system authority (SA) selects two large primes p and q where 

|q| = k and q | (p − 1). Let g be a generator of order q and f: *
pZ × *

pZ → Zq, F: Zq → Zq and  

H: {0, 1}* × Zq → Zq collision resistant hash functions. The system publishes public 

parameters params = {p, q, g, f, F, H}. Each user Ui chooses his private key xi ∈ Zq and 

computes the public key as .mod pgy ix
i =  In addition, he also announces a universal 

parameter Ti = gci mod p where ci ∈R Zq. 

– Signature-Generation (SG): Let Us and Uv separately be a signer and a designated verifier. 

For signing a message m ∈R {0, 1}*, Us first chooses w ∈R Zq to compute Q = F(w) and 

 R = f(yv
w mod p, yv

cs mod p),  (2.2.1) 

 S = (w − xs H(m, Q, Ts)) mod q.  (2.2.2) 

 Then Us delivers m along with its SDVS δ = (Q, R, S) to Uv. 

– Signature-Verification (SV): Upon receiving (m, δ), Uv computes 

 Z1 = yv
Sys

xvH(m, Q, Ts) mod p,  (2.2.3) 

 Z2 = Ts
 xv mod p,  (2.2.4) 

 and then verifies the signature by checking whether 
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 R = f(Z1, Z2).   (2.2.5) 

We show that the verification of Eq. (2.2.5) works correctly. From the right-hand side 

of Eq. (2.2.5), we have 

f(Z1, Z2) 

 = f(yv
Sys

xvH(m, Q, Ts) mod p, Ts
 xv mod p) (by Eqs. (2.2.3) and (2.2.4)) 

 = f(yv
S + xs(H(m, Q, Ts) mod p, Ts

 xv mod p) 

 = f(yv
S + xs(H(m, Q, Ts) mod p, yv

cs mod p) 

 = f(yv
w mod p, yv

cs mod p)  (by Eq. (2.2.2)) 

 = R (by Eq. (2.2.1)) 

which leads to the left-hand side of Eq. (2.2.5). 

– Transcript-Simulation (TS): To generate another SDVS δ* intended for himself, Uv 

computes 

 S* = S + 1 mod q,  (2.2.6) 

 R* = f(yvZ1 mod p, Z2).  (2.2.7) 

 Here, δ* = (Q, R*, S*) is another valid SDVS for the message m. In fact, the probability that 

the computed δ* = (Q, R*, S*) and the received δ = (Q, R, S) are identical is at most 1/2k, 

i.e., Pr[δ* = δ] ≤ 1/2k. 

Motivated by Schnorr’s signature scheme [Sch91], Lin et al.’s scheme can be regarded 

as a generic signature scheme. Therefore, we can directly apply the Forking lemma introduced 

by Pointcheval and Stern [PS00] to prove the security of their scheme. Concretely speaking, 

we can first obtain two equations 

 Z1 = yv
Sys

xvH(m, Q, Ts) mod p, 

 Z1 = yv
S'ys

xvH'(m, Q, Ts) mod p, 
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and then compute the private key xs as (S − S')/(H'(m, Q, Ts) − H(m, Q, Ts)). Theorem 2.2.1 

gives more detailed security proof and advantage analyses to show the tight relation between 

the security of their SDVS scheme and the hardness of the DLP. 

 

Theorem 2.2.1. Lin et al.’s SDVS scheme is (t, qF, qH, qSG, qSV, ε)-secure against existential 

forgery on adaptive chosen-message attacks (EU-CMA) in the random oracle model if there 

is no probabilistic polynomial-time adversary that can (t', ε')-break the DLP, where 

 ε' ≥ (qF
−1)(ε − 2−k) + ((qF − 1)qF

−1)(4−1(ε − 2−k)3(qF
−1 + qH

−1)), 

 t' ≈ t + tλ (2qSG + 2qSV). 

Here tλ is the costs for performing a modular exponentiation over a finite field. 

Proof: Please refer to [LWY10] for the full version. 

 

Table 2.2.1. Comparisons of previous SDVS schemes 

          Scheme 
Item JSI SKM YL LWY LC-1 LC-2 

Unforgeability × O O O O O 
Non-Transferability O O O O O O 
Signer’s Ambiguity × × × O × O 
Provable Security × × O O × × 
Signature Length 3|p| + 3|q| 3|q| |p| + |q| 3|q| 2|p| + 2|q| |p| + |q| 
#Exponentiation for 
entire scheme 16 6 3 5 12 7 

 

Table 2.2.1 summarizes the comparison of previous SDVS schemes including Jakobsson 

et al.’s (JSI for short) [JSI96], Saeednia et al.’s (SKM for short) [SKM03], the Yang-Liao 

(YL for short) [YL10], Lin et al.’s (LWY for short) [LWY10] and two presented by Lee and 

Chang separately in 2007 (LC-1 for short) [LC07] and 2009 (LC-2 for short) [LC09]. 

Although the Yang-Liao scheme has the lowest computation costs, the signature length of 

their scheme is longer than that of Lin et al.’s. Most importantly, their scheme cannot satisfy 

the requirement of signer’s ambiguity addressed in [LC09], which is regarded as an essential 
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property of secure SDVS schemes. To sum up, Lin et al.’s SDVS scheme not only provides 

better functionalities, but also has lower computation costs and shorter signature length. 

 

2.3 Convertible Authenticated Encryption Scheme 

Considering the RSA cryptosystem, in 2009, Wu and Lin [WL09] presented a CAE 

scheme based on RSA assumption. A CAE scheme has two involved parties, a signer and a 

designated recipient. Each one is a polynomial-time-bounded probabilistic Turing machine 

(PPTM). A signer will generate an authenticated ciphertext and deliver it to a designated 

recipient. Yet, a dishonest signer might repudiate his generated ciphertext. Finally, the 

designated recipient decrypts the ciphertext and verifies the signature. The Wu-Lin scheme 

consists of the following algorithms: 

– Setup: Taking as input 1k where k is a security parameter, the algorithm generates system’s 

public parameters params. 

– Authenticated-Ciphertext-Generation (ACG): The ACG algorithm takes as input system 

parameters params, a message m, the public key of designated recipient and the private key 

of signer. It generates a corresponding authenticated ciphertext δ. 

– Signature-Recovery-and-Verification (SRV): The SRV algorithm takes as input system 

parameters params, an authenticated ciphertext δ, the private key of designated recipient 

and the public key of signer. It outputs a message m and its converted signature Ω if the 

authenticated ciphertext δ is valid. Otherwise, an error symbol ⊥ is returned as a result. 

The concrete construction of each algorithm is described as follows: 

– Setup: Initially, each user chooses two large primes (pi, qi), computes Ni = pi qi, selects ei 

relatively prime to φ(Ni) and then derives d satisfying that ed = 1 mod φ(N). Here, (Ni, ei) 

and (pi, qi, di) are public and private keys of each user, respectively. Let h: {0, 1}k × {0, 1}k 

→ {0, 1}k be a collision resistant hash function, where |k| = 160 bits and |k| < |Ni| ≈ 2048 

bits. 

– Authenticated-Ciphertext-Generation (ACG): For signing a message m, a signer Us 

chooses an integers c ∈ {0, 1}k and computes 
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 R = mc c mod Nv,  (2.3.1) 

 T = c ev mod Nv,  (2.3.2) 

 S = h(m, c)ds mod Ns,  (2.3.3) 

and then delivers the authenticated ciphertext δ = (S, R, T) to a designated recipient Uv.  

– Signature-Recovery-and-Verification (SRV): Upon receiving δ, Uv first computes 

 c = T dv mod Nv.  (2.3.4) 

He then recovers the message m as 

 m = Rc − c mod Nv,  (2.3.5) 

and checks the redundancy embedded in m. Uv can further verify the signature by checking 

if 

 S es = h(m, c) mod Ns.  (2.3.6) 

We show that Uv then can correctly recover the message m with embedded redundancy 

by Eq. (2.3.5). From the right-hand side of Eq. (2.3.5), we have 

Rc − c 

 = (mc c)c − c (by Eq. (2.3.1)) 

 = m (mod Nv)  

which leads to the left-hand side of Eq. (2.3.5). 

If the authenticated ciphertext (S, R, T) is correctly generated, it will pass the test of Eq. 

(2.3.6). From the right-hand side of Eq. (2.3.6), we have 

h(m, c) 

 = (h(m, c)ds)
es 

 = S es (mod Ns) (by Eq. (2.3.3)) 
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which leads to the left-hand side of Eq. (2.3.6). 

Since the secret parameter c is obtained during the verification of authenticated 

ciphertext, the recipient can easily reveal the converted signature (S, c) along with the 

message m in case of a later repudiation. One can see that the conversion process is efficient 

as it will not incur extra computation costs or communication overheads. Anyone can 

perform Eq. (2.3.6) to verify the correctness of converted signature. 

The IND-CCA2 and the EF-CMA security for their scheme can be proved in the random 

oracle model as Theorems 2.3.1 and 2.3.2, respectively. 

 

Theorem 2.3.1. (Proof of Confidentiality) The Wu-Lin scheme is (t, qh, qACG, qSRV, ε)- 

secure against indistinguishability under adaptive chosen-ciphertext attacks (IND-CCA2) in 

the random oracle model if there is no probabilistic polynomial-time adversary that can    

(t', ε')-break the RSA problem, where 

 ε' ≥ (qh
−1)(2ε − k

SRVq
2

), 

 t' ≈ t + tλ (qh + qACG + qSRV). 

Here tλ is the average running time of one oracle-query. 

Proof: Please refer to [WL09] for the full version. 

 

Theorem 2.3.2. (Proof of Unforgeability) The Wu-Lin scheme is (t, qh, qACG, ε)-secure 

against existential forgery under adaptive chosen-message attacks (EF-CMA) in the random 

oracle model if there is no probabilistic polynomial-time adversary that can (t', ε')-break the 

RSA problem, where 

 ε' ≥ (qh
−1)(ε − 2−k), 

 t' ≈ t + tλ(qh + qACG). 

Here tλ is the average running time of one oracle-query. 
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Proof: Please refer to [WL09] for the full version. 

 

2.4 Proxy Signcryption Scheme 

In 1997, Zheng [Zhe97] proposed a so-called signcryption scheme which is suitable for 

confidential applications. A signcryption scheme only allows a designated recipient to verify 

a signer’s signature instead of everyone for the purpose of confidentiality. In 1998, Petersen 

and Michels [PM98] also proposed another signcryption variant modified from an 

authenticated encryption scheme. Yet, He and Wu [HW99] pointed out that their scheme is 

vulnerable to the forgery attack. To deal with a later dispute that a signer repudiates his 

signature, Zheng [Zhe97] introduced an arbitration mechanism by using the zero-knowledge 

protocol [BJY97, Cha90]. However, the arbitration mechanism is inefficient as it will increase 

extra computation efforts and communication overheads. In 1998, Bao and Deng [BD98] 

addressed an efficient way to handle a repudiation dispute. Their scheme enables a designated 

recipient to convert a signcrypted message into an ordinary signature for public verification 

without imposing extra burdens on computation or communication cost. In 2002, Baek et al. 

[BSZ02] introduced the formal security proof model for a signcryption scheme in the random 

oracle model. The next year, Boyen [Boy03] proposed a provably secure identity-based 

signcryption scheme with ciphertext anonymity. In 2005, Hwang et al. [HLS05] proposed an 

elliptic curve based signcryption scheme with forward secrecy for facilitating the gradually 

widely used mobile applications. 

Considering proxy delegation, in 2010, Lin et al. [LWH10] proposed an efficient proxy 

signcryption scheme based on bilinear pairings. A proxy signcryption scheme mainly has 

three involved parties, an original signer, a proxy signer and a designated recipient. All parties 

are probabilistic polynomial-time Turing machines (PPTM). An original signer delegates his 

signing power to a proxy signer by issuing a proxy credential. After that, the latter can 

generate a signcrypted message on behalf of the former and sends it to a designated recipient. 

Finally, the designated recipient decrypts the message and verifies the proxy signature. A 

proxy signcryption scheme is correct if a proxy signer can generate a valid signcrypted 

message on behalf of an original signer and only a designated recipient is capable of 

decrypting it and verifying the proxy signature. Lin et al.’s scheme consists of the following 

algorithms: 



-21- 

– Setup: Taking as input 1k where k is a security parameter, the algorithm generates system’s 

public parameters params. 

– Proxy-Credential-Generation (PCG): The PCG algorithm takes as input the private key 

of original signer and outputs a corresponding proxy credential for a proxy signer. 

– Signcrypted-Message-Generation (SMG): The SMG algorithm takes as input a plaintext 

m, a proxy credential, the public key of designated recipient and the private key of proxy 

signer. It generates a corresponding signcrypted message δ. 

– Signature-Recovery-and-Verification (SRV): The SRV algorithm takes as input a 

signcrypted message δ, the private key of designated recipient and the public keys of 

original and proxy signers. It outputs a plaintext m and its converted ordinary proxy 

signature Ω if the signcrypted message δ is valid. Otherwise, an error symbol ⊥ is returned. 

The concrete construction of each algorithm is described as follows: 

– Setup: Taking as input 1k, the system authority (SA) selects two groups (G1, +) and (G2, ×) 

of the same prime order q with |q| = k. Let P be a generator of order q over G1, e: G1 × G1 

→ G2 a bilinear pairing and h1: {0, 1}k × G1 → Zq, h2: G1 → G1 and h3: G2 × G1 → {0, 1}k 

collision resistant hash functions. The system publishes params = {G1, G2, q, P, e, h1, h2, 

h3}. Each user Ui chooses his private key xi∈R Zq and computes the corresponding public 

one as Yi = xiP. 

– Proxy-Credential-Generation (PCG): Let Uo be an original signer delegating his signing 

power to a proxy signer Up. Uo first chooses an integer d ∈ Zq to compute 

 N = dP,    (2.4.1) 

 σ = xo + d(mw) mod q,  (2.4.2) 

where mw is a warrant consisting of the identifiers of original signer, proxy signer and 

designated recipient, the delegation duration and so on. The proxy credential (σ, N, mw) is 

then sent to Up. Upon receiving (σ, mw, N), Up first checks its validity by verifying whether 

 σP = Yo + mwN.  (2.4.3) 
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If it does not hold, (σ, mw, N) is requested to be sent again. 

We first show that the verification of Eq. (2.4.3) works correctly. From the left-hand 

side of Eq. (2.4.3), we have 

σP 

 = (xo + d(mw))P (by Eq. (2.4.2)) 

 = xoP + d(mw)P 

 = Yo + mwN (by Eq. (2.4.1)) 

which leads to the right-hand side of Eq. (2.4.3). 

– Signcrypted-Message-Generation (SMG): For signcrypting a plaintext m ∈R {0, 1}k on 

behalf of the original signer Uo, Up chooses r ∈R Zq to compute 

 R = rP,    (2.4.4) 

 S = r(h1(m, R) + xp + σ)−1P,  (2.4.5) 

 V = e(h2(σYv), xpYv),  (2.4.6) 

 X = EV(S),    (2.4.7) 

 Y = h3(V, R) ⊕ m,  (2.4.8) 

and then delivers the warrant mw and the signcrypted message δ = (R, X, Y, N) to a 

designated recipient Uv, where EV denotes a symmetric encryption function with key V.  

– Signature-Recovery-and-Verification (SRV): Upon receiving (R, X, Y, N), Uv first 

computes  

 V = e(h2(xv(Yo + mwN)), xvYp),  (2.4.9) 

 to recover the plaintext m as 

 m = h3(V, R) ⊕ Y  (2.4.10) 
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and checks the redundancy embedded in m. Uv further computes S as  

 S = DV(X)    (2.4.11) 

and verifies the proxy signature by checking if  

 e(h1(m, R)P + Yp + Yo + mwN, S) = e(P, R).  (2.4.12) 

Note that DV is a corresponding symmetric decryption function with key V.  

We demonstrate that with received (R, X, Y, N) and the warrant mw, a designated 

recipient can correctly recover the plaintext and verify the embedded proxy signature with 

Eq. (2.4.12). From the left-hand side of Eq. (2.4.12), we have 

e(h1(m, R)P + Yp + Yo + mwN, S) 

 = e(h1(m, R)P + Yp + Yo + mwN, r(h1(m, R) + xp + σ)−1P) (by Eq. (2.4.5)) 

 = e((h1(m, R) + xp + xo + d(mw))P, r(h1(m, R) + xp + xo + d(mw))−1P) 

  (by Eqs. (2.4.1) and (2.4.2)) 

 = e(P, rP) 

 = e(P, R) (by Eq. (2.4.4)) 

which leads to the right-hand side of Eq. (2.4.12). 

Since a converted proxy signature Ω = (S, R, N) is derived during the verification 

process, a designated recipient Uv can easily announce it together with (m, mw) in case of a 

later dispute over repudiation. Accordingly, anyone can check Eq. (2.4.12) to realize proxy 

signer’s dishonesty. 

The IND-CCA2 and the EF-CMA security for their scheme can be proved in the random 

oracle model as Theorems 2.4.1 and 2.4.2, respectively. 

 

Theorem 2.4.1. (Proof of Confidentiality) Lin et al.’s scheme is (t, qh1
, qh2

, qh3
, qPCG, qSMG, 

qSRV, ε)-secure against indistinguishability under adaptive chosen-ciphertext attacks 
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(IND-CCA2) in the random oracle model if there is no probabilistic polynomial-time 

adversary that can (t', ε')-break the BDHP, where 

 ε' ≥ (qh3
−1)(2ε − qSRV(2−k)), 

 t' ≈ t + tλ (qSMG + 2qSRV). 

Here tλ is the time for performing one bilinear pairing operation. 

Proof: Please refer to [LWH10] for the full version. 

 

Theorem 2.4.2. (Proof of Unforgeability) Lin et al.’s scheme is (t, qh1
, qh2

, qh3
, qPCG, qSMG, 

ε)-secure against existential forgery under adaptive chosen-message attacks (EF-CMA) in the 

random oracle model if there is no probabilistic polynomial-time adversary that can       

(t', ε')-break the BDHP, where 

 ε' ≥ (ε − (qh2
 + 1)/2k)/(qh2

qh3
), 

 t' ≈ t + tλ (qSMG). 

Here tλ is the time for performing one bilinear pairing operation. 

Proof: Please refer to [LWH10] for the full version. 

 

Table 2.4.1 summarizes the comparison of previous signcryption schemes including the 

Elkamchouchi-Abouelseoud [EA08] (EA for short), Duan et al.’s (DCZ for short) [DCZ05], 

the Li-Chen (LC for short) [LC04], the Wang-Cao (WC for short) [WC05], the Duan-Cao 

(DC for short) [DC06] and Lin et al.’s (LWH for short) [LWH10] schemes in terms of 

functionalities and security proofs. Note that the Elkamchouchi-Abouelseoud and Duan et 

al.’s schemes are vulnerable to the key exposure attack, i.e., once the private key of proxy 

signer is compromised, an attacker can easily recover the plaintext without the knowledge of 

designated recipient’s private key. From this table, it can be seen that Lin et al.’s scheme not 

only provides better functionalities, but also has provable security. 
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Table 2.4.1. Comparisons of previous signcryption schemes 

                        Scheme
Item EA DCZ LC WC DC LWH

Pairing-based scheme O O O O O O 
Against key exposure attack × × O O O O 

Proxy delegation O O O O × O 
Partial delegation with warrant × O O O × O 
Public verifiability × O O O O O 
No conversion cost × O O O O O 
Complete proof of confidentiality × × ×  × O O 
Complete proof of unforgeability × × × × O O 

 

Table 2.4.2 further summarizes the comparison of computation costs in number of the 

most time-consuming operations, i.e., bilinear pairing computation. To obtain fair comparison 

results, the Duan-Cao scheme is excluded in Table 2.4.2, since their scheme does not have the 

property of proxy delegation. From the comparison results shown in Table 2.4.2, one can see 

that Lin et al.’s scheme outperforms compared ones and hence is more suitable for practical 

implementation. 

 

Table 2.4.2. Comparisons of computation costs for previous proxy signcryption schemes 

                     scheme 
Item EA DCZ LC WC LWH 

#Bilinear pairing for PCG 2 3 3 2 0 
#Bilinear pairing for SMG 2 2 2 1 1 
#Bilinear pairing for SRV 4 4 8 3 3 
Total costs for the entire scheme 8 9 13 6 4 
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3. Formal Model of the PCAE Scheme 

In this section, we first state involved parties of a PCAE scheme and then address its 

algorithms and security model. 

 

3.1 Involved Parties 

A proxy CAE scheme has three involved parties, an original signer, an authorized proxy 

signer and a designated recipient. Each one is a probabilistic polynomial-time Turing machine 

(PPTM). An original signer will compute and transmit a proxy credential to a proxy signer. 

The latter is responsible for producing an authenticated ciphertext on behalf of the former 

while a dishonest proxy signer might repudiate having generated his ciphertext. Finally, a 

designated recipient decrypts the ciphertext and verifies the proxy signature. A proxy CAE 

scheme is correct if a proxy signer can generate a valid authenticated ciphertext and only a 

designated recipient is capable of decrypting it and verifying the proxy signature. 

 

3.2 Algorithms 

The proposed proxy CAE (PCAE) scheme consists of following algorithms: 

– Setup: Taking as input 1k where k is a security parameter, the algorithm generates system’s 

public parameters params. 

– Proxy-Credential-Generation (PCG): The PCG algorithm takes as input system 

parameters params, a warrant and the private key of original signer. It outputs a 

corresponding proxy credential. 

– Authenticated-Ciphertext-Generation (ACG): The ACG algorithm takes as input system 

parameters params, a proxy credential, a message m, the public key of designated recipient 

and the private key of proxy signer. It generates a corresponding authenticated ciphertext δ. 

– Signature-Recovery-and-Verification (SRV): The SRV algorithm takes as input system 

parameters params, an authenticated ciphertext δ, the private key of designated recipient 

and the public keys of original and proxy signers. It outputs a message m and its converted 

proxy signature Ω if the authenticated ciphertext δ is valid. Otherwise, an error symbol ⊥ is 
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returned as a result. 

 

3.3 Security Models 

Two crucial security requirements of proposed proxy CAE schemes are message 

confidentiality and unforgeability. The widely accepted notion for the security of message 

confidentiality comes from the definition of indistinguishability-based security, i.e., an 

adversary attempts to distinguish a target ciphertext with respect to two candidate plaintexts. 

In the taxonomy of cryptanalysis, there are three kinds of attacks: ciphertext-only attack, 

chosen-ciphertext attack (CCA) and adaptive chosen-ciphertext attack (CCA2). An adversary 

in ciphertext-only attack cannot make any query while that in CCA can query the plaintext for 

his chosen ciphertext once. An adversary in CCA2 is the most advantageous as he can 

adaptively make new queries based on previous results. We therefore consider an adversary in 

CCA2 against our proposed schemes in the security requirement of message confidentiality. 

In addition to SRV queries, we also give an adversary the ability to make PCG and ACG 

queries. When it comes to the security requirement of unforgeability, we usually refer to an 

adversary in adaptive chosen-message attack (CMA). Such an adversary attempts to forge a 

valid authenticated ciphertext for his chosen message and is permitted to adaptively make 

PCG and ACG queries in our defined security notion. We describe several game models for 

the above two crucial security requirements as Definitions 3.3.1 to 3.3.4, respectively. 

Then we can formally prove the security of our schemes in the random oracle model. 

Namely, one-way hash functions are simulated as random oracles controlled by a challenger 

who is responsible for answering an adversary’s queries in the defined game model. Note that 

simulated results of each random query should be computationally indistinguishable from 

those generated by a real scheme. Basically, the concept of security proof is a security 

reduction. That is to say, we can reduce a well-known cryptographic problem such as CDHP 

to our proposed schemes meaning that if there is any adversary winning the game in CCA2 or 

CMA, a challenger that takes the adversary’s advantages is able to break CDHP. We define 

these notions as follows: 

 

Definition 3.3.1. (IND-onetime secure) A proxy CAE scheme is said to achieve the security 

requirement of confidentiality against indistinguishability (IND-onetime) if there is no 
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probabilistic polynomial-time adversary A with a non-negligible advantage in the following 

game played with a challenger B: 

Setup: The challenger B first runs the Setup(1k) algorithm and sends system’s public 

parameters params to the adversary A. 

Phase 1: A can only ask random oracles adaptively, i.e., each query might be based on the 

result of previous queries. 

Challenge: A produces two messages, m0 and m1, of the same length. The challenger B flips a 

coin λ ← {0, 1} and generates an authenticated ciphertext δ* for mλ. The ciphertext δ* is 

then delivered to A as a target challenge. 

Guess: At the end of the game, A outputs a bit λ′. The adversary A wins this game if λ′ = λ. 

We define A’s advantage as Adv(A) = | Pr[λ′ = λ] − 1/2 |. 

 

Definition 3.3.2. (IND-CPA2 secure) A proxy CAE scheme is said to achieve the security 

requirement of confidentiality against indistinguishability under adaptive chosen-plaintext 

attacks (IND-CPA2) if there is no probabilistic polynomial-time adversary A with a 

non-negligible advantage in the following game played with a challenger B: 

Setup: The challenger B first runs the Setup(1k) algorithm and sends system’s public 

parameters params to the adversary A. 

Phase 1: A can issue several queries adaptively, i.e., each query might be based on the result 

of previous queries: 

– Proxy-Credential-Generation (PCG) queries: A issues a PCG query with respect to an 

original and a proxy signers. B returns a corresponding proxy credential. 

– Authenticated-Ciphertext-Generation (ACG) queries: A chooses a message m and then 

gives B a proxy credential along with a message m. B returns a corresponding authenticated 

ciphertext δ to A. 

Challenge: A produces two messages, m0 and m1, of the same length. The challenger B flips a 
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coin λ ← {0, 1} and generates an authenticated ciphertext δ* for mλ. The ciphertext δ* is 

then delivered to A as a target challenge. 

Phase 2: A can issue new queries as those in Phase 1. 

Guess: At the end of the game, A outputs a bit λ′. The adversary A wins this game if λ′ = λ. 

We define A’s advantage as Adv(A) = | Pr[λ′ = λ] − 1/2 |. 

 

Definition 3.3.3. (IND-CCA2 secure) A proxy CAE scheme is said to be semantically secure 

against adaptive chosen ciphertext attacks (IND-CCA2) if there is no probabilistic 

polynomial-time adversary A with a non-negligible advantage in the following game played 

with a challenger B: 

Setup: The challenger B first runs the Setup(1k) algorithm and sends system’s public 

parameters params to the adversary A. 

Phase 1: A can issue several queries adaptively, i.e., each query might be based on the result 

of previous queries: 

– Proxy-Credential-Generation (PCG) queries: A issues a PCG query with respect to an 

original and a proxy signers. B returns a corresponding proxy credential. 

– Authenticated-Ciphertext-Generation (ACG) queries: A chooses a message m and then 

gives B a proxy credential along with a message m. B returns a corresponding authenticated 

ciphertext δ to A. 

– Signature-Recovery-and-Verification (SRV) queries: A submits an authenticated ciphertext 

δ along with a warrant mw to B. If δ is valid, B returns a recovered message m and its 

converted proxy signature Ω. Otherwise, an error symbol ⊥ is outputted as a result. 

Challenge: The adversary A produces two messages, m0 and m1, of the same length. The 

challenger B flips a coin λ ← {0, 1} and generates an authenticated ciphertext δ* for mλ. 

The ciphertext δ* is then delivered to A as a target challenge. 

Phase 2: The adversary A can issue new queries as those in Phase 1 except an SRV query for 
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the target ciphertext. 

Guess: At the end of the game, A outputs a bit λ′. The adversary A wins this game if λ′ = λ. 

We define A’s advantage as Adv(A) = | Pr[λ′ = λ] − 1/2 |. 

 

Definition 3.3.4. (EF-CMA secure) A proxy CAE scheme is said to achieve the security 

requirement of unforgeability against existential forgery under adaptive chosen-message 

attacks (EF-CMA) if there is no probabilistic polynomial-time adversary A with a 

non-negligible advantage in the following game played with a challenger B: 

Setup: B first runs the Setup(1k) algorithm and sends system’s public parameters params to 

the adversary A. 

Phase 1: A adaptively issues PCG and ACG queries as those in Phase 1 of Definition 3.3.3. 

Forgery: Finally, A arbitrarily chooses a message m and produces an authenticated ciphertext 

δ* which is not outputted by ACG query. The adversary A wins if δ* is valid. 
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4. PCAE-(I) Scheme 

In this section, we demonstrate the proposed first proxy CAE (abbreviated to PCAE-(I)) 

scheme. 

 

4.1 Construction 

– Setup: Initially, each user chooses two large primes (pi, qi), computes Ni = pi qi, selects ei 

relatively prime to φ(Ni) and then derives di satisfying that eidi = 1 mod φ(Ni). Here, (Ni, ei) 

and (pi, qi, di) are public and private keys of each user, respectively. Let h1: {0, 1}k →    

{0, 1}k and h2: {0, 1}k × ZNo × {0, 1}k → {0, 1}k be collision resistant hash functions, where 

|k| = 160 bits and |k| < |Ni| ≈ 2048 bits. 

 

– Proxy-Credential-Generation (PCG): Let Uo be an original signer delegating his signing 

power to a proxy signer Up. Uo distributes a proxy credential σ and mw to Up with the 

following steps: 

Step 1 Uo first uses his private key do to compute 

 σ = h1(mw)do mod No,  (4.1.1) 

where mw is a warrant consisting of identifiers of original signer, proxy signer and 

designated recipient, the delegation duration and so on. Note that σ is regarded as 

the signature of mw. 

Step 2 Then Uo sends the proxy credential σ and mw to Up via a secure channel. 

Step 3 Upon receiving it, Up acquires Uo’s public key (No, eo) to verify whether 

 σ eo = h1(mw) mod No.  (4.1.2) 

If it holds, Up is convinced of the validity of received proxy credential; else, (σ, mw) 

is requested to be sent again. 
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– Authenticated-Ciphertext-Generation (ACG): For signing a message m on behalf of the 

original signer Uo, Up first chooses two integers r, c ∈ {0, 1}k and then computes 

 Q = r eo mod No,  (4.1.3) 

 R = σ r mod No,  (4.1.4) 

 D = mQ c mod No,  (4.1.5) 

 T = c ev mod Nv,  (4.1.6) 

 S = h2(m, Q, c)dp mod Np.  (4.1.7) 

Here, the proxy authenticated ciphertext δ = (S, R, T, D) and mw are delivered to a 

designated recipient Uv.  

 

– Signature-Recovery-and-Verification (SRV): Upon receiving δ and mw, Uv first computes 

 c = T dv mod Nv,  (4.1.8) 

 Q = R eo h1(mw)−1 mod No.  (4.1.9) 

He then recovers the message m as 

 m = DQ − c mod No,  (4.1.10) 

and checks the redundancy embedded in m. Uv can further verify the proxy signature by 

checking if 

 S ep = h2(m, Q, c) mod Np.  (4.1.11) 

In case of the proxy signer’s repudiation, the designated recipient can solely release the 

converted proxy signature Ω = (S, R, c) along with (m, mw) without extra computation 

efforts or communication overheads. To verify the correctness of the converted proxy 

signature, anyone can first compute Q with Eq. (4.1.9) and then verify the proxy signature 

by checking Eq. (4.1.11).  
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4.2 Correctness 

We first show that in the proposed PCAE-(I) scheme, the proxy signer Up can correctly 

verify the proxy credential with Eq. (4.1.2). From the left-hand side of Eq. (4.1.2), we have 

σ eo 

 = h1(mw)doeo (by Eq. (4.1.1)) 

 = h1(mw)(eodo −1) + 1 

 = h1(mw)h1(mw)(eodo −1) 

 = h1(mw)h1(mw)tφ(No) 

 = h1(mw)(h1(mw)φ(No))t 

 = h1(mw)(1)t (by Euler’s Theorem [Sta06]) 

 = h1(mw) (mod No)  

which leads to the right-hand side of Eq. (4.1.2). 

With Eq. (4.1.10), the designated recipient Uv can correctly recover the message M with 

embedded redundancy. We first show that Uv can correctly obtain the shared secret Q. From 

the right-hand side of Eq. (4.1.9), we have 

R eo h1(mw)−1 

 = (σ r) eo h1(mw)−1 (by Eq. (4.1.4)) 

 = (σ r)eoσ −eo (by Eq. (4.1.2)) 

 = r eo 

 = Q (mod No) (by Eq. (4.1.3)) 

which leads to the left-hand side of Eq. (4.1.9). 
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With the shared secret Q, Uv then can correctly recover the message m. From the 

right-hand side of Eq. (4.1.10), we have 

DQ − c 

 = mQ cQ − c (by Eq. (4.1.5)) 

 = m (mod No)  

which leads to the left-hand side of Eq. (4.1.10). 

If an authenticated ciphertext (S, R, T, D) is correctly generated, it will pass the test of Eq. 

(4.1.11). From the right-hand side of Eq. (4.1.11), we have 

h2(m, Q, c) 

 = (h2(m, Q, c)dp)
ep 

 = S ep (mod Np) (by Eq. (4.1.7)) 

which leads to the left-hand side of Eq. (4.1.11). 

 

4.3 Security Proofs 

We prove that the proposed PCAE-(I) scheme achieves the IND-CCA2 and the EF-CMA 

security in the random oracle model as Theorems 4.3.1 and 4.3.2, respectively.  

 

Theorem 4.3.1. (Proof of Confidentiality) The proposed PCAE-(I) scheme is (t, qh1
, qh2

, 

qPCG, qACG, qSRV, ε)-secure against indistinguishability under adaptive chosen-ciphertext 

attacks (IND-CCA2) in the random oracle model if there is no probabilistic polynomial-time 

adversary that can (t', ε')-break the RSA problem, where 

 ε' ≥ (qh2
−1)(2ε − k

SRVq
2

), 

 t' ≈ t + tλ(qh1
 + qh2

 + qPCG + qPACG + qPSRV). 
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Here tλ is the average running time of one oracle-query. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.3.1. The proof structure of confidentiality in Theorem 4.3.1 

 

Proof: Fig. 4.3.1 depicts the proof structure of this theorem. Suppose that a (t, qh1
, qh2

, qPCG, 

qPACG, qPSRV, ε)-PPTM A can break the proposed proxy CAE scheme with a non-negligible 

advantage ε under the adaptive chosen-ciphertext attack after running in time at most t and 

asking at most qhi
 hi random oracle (for i = 1 and 2), qPCG PCG, qPACG PACG and qPSRV 

PSRV queries. Then we can take A as a subroutine to construct another (t', ε')-algorithm B 

that solves the RSA problem with respect to the designated recipient’s key pair in time at 

most t' and with the probability ε'. The algorithm B is said to (t', ε')-break the RSA problem. 

Let all involved parties and parameters be defined the same as those in Section 4.1. The 

objective of B is to obtain α (= bdv mod Nv) by taking (Nv, ev, b = α ev mod Nv) as inputs. In 

this proof, B simulates a challenger to A in the following game. 

Setup: The challenger B runs the Setup(1k) algorithm and sends system’s public parameters 

params = {Ni, ei} to the adversary A. 

B 
A 

λ′

{Ni, ei} 

α (= bdv mod Nv) 

Random oracles 
PCG oracle 
ACG oracle 
SRV oracle

(Nv, ev, b = α ev mod Nv) 

output

output

input

input 

access
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Phase 1: A issues the following queries adaptively: 

– h1 oracle: When A asks an h1 oracle of h1(mw), B returns O-Sim(I)_h1(mw). The simulated 

random oracle O-Sim(I)_h1 operates as Fig. 4.3.2. Note that the function insert(N, b) will 

insert the value b into the array N. 

 

 

 

 

 

 

Fig. 4.3.2. Algorithm of the simulated random oracle O-Sim(I)_h1 

 

– h2 oracle: When A asks an h2 oracle of h2(m, Q, c), B returns O-Sim(I)_h2(m, Q, c). The 

simulated random oracle O-Sim(I)_h2 operates as Fig. 4.3.3. 

 
 

 

 

 

 

 

Fig. 4.3.3. Algorithm of the simulated random oracle O-Sim(I)_h2 

 

– PCG queries: When A makes a PCG query, B chooses a proper mw and then returns (mw, 

O-Sim(I)_PCG(mw)). The simulated PCG oracle O-Sim(I)_PCG operates as Fig. 4.3.4. 

oracle O-Sim(I)_h1(mw)  // Let Q_h1[qh1
] and A_h1[qh1

][2] be two arrays. 
1: for i = 0 to qh1

 − 1 
2:  if (Q_h1[i] = s) then  // It is an old query. 
3:   exit for; 
4:  else if (Q_h1[i] = null) then  // It is a new query. 
5:   insert(Q_h1, s); insert(A_h1, (σ ∈R ZNo, v1 = σ eo mod No)); exit for; 
6:   end if 
7: next i 
8: return A_h1[i][1]; 

oracle O-Sim(I)_h2(m, Q, c)  //Let Q_h2[qh1
] and A_h2[qh1

][2] be two arrays. 
1: for i = 0 to qh2

 − 1 
2:  if (Q_h2[i][0] = m) and (Q_h2[i][1] = Q) and (Q_h2[i][2] = c) then 
3:   exit for;  // It is an old query. 
4:  else if (Q_h2[i][0] = null) then  // It is a new query. 
5:   insert(Q_h2, (m, Q, c)); insert(A_h2, (S ∈R{0, 1}k, v2 = S ep mod Np)); 
6:   exit for; 
7:   end if 
8: next i 
9: return A_h2[i][1]; 
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Fig. 4.3.4. Algorithm of the simulated PCG oracle O-Sim(I)_PCG 

 
– ACG queries: When A makes an ACG query for some message m, B returns 

O-Sim(I)_ACG(m) as the result. The simulated ACG oracle O-Sim(I)_ACG operates as Fig. 

4.3.5. 

 

 

 

 

 

 

 

 

 

Fig. 4.3.5. Algorithm of the simulated ACG oracle O-Sim(I)_ACG 

 

– SRV queries: When A makes an SRV query for a proxy authenticated ciphertext δ = (S, R, T, 

D) along with mw, B returns O-Sim(I)_SRV(δ, mw) as the result. The simulated SRV oracle 

O-Sim(II)_SRV operates as Fig. 4.3.6. Note that the function check(N, b) will return a 

Boolean value depending on whether the value b is stored in the array N. 

 

oracle O-Sim(I)_PCG(mw) 
1: v1 ← O-Sim(I)_h1(mw) 
2: for i = 0 to qh1

 − 1 
3:  if (A_h1[i][1] = v1) then  
4:   return A_h1[i][0]; 
5:   end if 
6: next i 

oracle O-Sim(I)_ACG(m) 
1: Choose r, c ∈ {0, 1}k and a proper mw;  
2: (σ, mw) ← O-Sim(I)_PCG(mw); 
3: Compute Q = r eo mod No;  
4: R = σ r mod No;  
5: D = mQ c mod No;  
6: T = c ev mod Nv; 
7: v2 = O-Sim(I)_h2(m, Q, c); 
8: for i = 0 to qh2

 − 1 
9:  if (A_h2[i][1] = v2) then 

10:   S = A_h2[i][0]; 
11:   end if 
12: next i 
13: return δ = (S, R, T, D) along with mw; 
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Fig. 4.3.6. Algorithm of the simulated SRV oracle O-Sim(I)_SRV 

 

Challenge: A generates two messages, m0 and m1, of the same length. The challenger B flips 

a coin λ ← {0, 1} and generates a proxy authenticated ciphertext δ* = (S*, R*, T*, D*) for 

mλ by running the simulated Sim(I)_Challenge(mλ). The algorithm of Sim(I)_Challenge 

operates as Fig. 4.3.7. 

 

 

 

 

 

 

 

 

Fig. 4.3.7. Algorithm of the simulated Sim(I)_Challenge 

oracle O-Sim(II)_SRV(δ, mw)  //δ = (S, R, T, D) 
1: Q = R eo(O-Sim(II)_h1(mw)−1) mod No; 
2: if (check(A_h2, S) = true) then 
3:  for j = 0 to qh2

 − 1 
4:   if (A_h2[j][0] = S) then  
5:    M = Q_h2[j][0]; Q = Q_h2[j][1]; c = Q_h2[j][2]; exit for; 
6:   end if 
7:  next j 
8:  if (m = DQ−c mod No) then  
9:   return {m, Ω = (S, R, c)}; 

10:  else  
11:   return ⊥; 
12:  end if 
13: else 
14:  return ⊥; 
15: end if 

algorithm Sim(I)_Challenge(mλ) 
1: (σ, mw) ← O-Sim(I)_PCG(mw);  //mw is a properly chosen warrant. 
2: Choose r ∈R{0, 1}k and compute Q* = r eo mod No and R* = σ r mod No; 
3: Choose D* ∈R ZNo; 

  // i.e., implicitly define D* = mλ Q*α; 
4: Set T* = b; // implicitly define c = α in Eq. (4.1.6) 
5: Choose S* ∈R {0, 1}k and compute v2 = S* ep mod Np; 
6: insert(Q_h2, (mλ, Q*,  ∇)) where ∇ denotes the null symbol; 
7: insert(A_h2, (S*, v2); 
  // i.e., implicitly define h2(mλ, Q*, α) = v2. Note that the third parameter in Q_h2 array 

is normally c (= α), but B does not know it. 
8: return {mw*, δ* = (S*, R*, T*, D*)}; 
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Phase 2: A issues new queries as those stated in Phase 1 except an SRV query for the target 

challenge δ*. 

Guess: Finally, A outputs a bit λ′ as the result. If λ′ = λ, A wins this game. We define A’s 

advantage as Adv(A) = | Pr[λ′ = λ] − 1/2 |. 

Analysis of the game: For each PCG or ACG query, B always returns a valid and 

computationally indistinguishable proxy credential or proxy authenticated ciphertext 

without unexpected terminations. Hence, the simulations of PCG and ACG queries could be 

regarded as perfect. Considering the simulation of SRV queries, B might return an error 

symbol ⊥ for a valid proxy authenticated ciphertext δ if A has the ability to guess a correct 

random value without asking corresponding h2(m, Q, c) random oracle in advance. Let 

SRV_ERR, AC-V and QH2 separately denote the events that B returns ⊥ for some valid δ 

during the entire game, a ciphertext δ submitted by A is valid, and A has ever asked 

corresponding h2(m, Q, c) oracle beforehand. Then we can express the probability that B 

returns an error symbol for a valid ciphertext as Pr[AC-V | ¬QH2] ≤ 2−k. Because A is 

allowed to make at most qSRV SRV queries, we can represent the probability of SRV_ERR 

as 

 Pr[SRV_ERR] ≤ k
SRVq
2

.  (4.3.1) 

In the challenge phase, B has returned a simulated proxy authenticated ciphertext δ* = (S*, 

R*, T*, D*) where T* = b, which implicitly implies  

 c = T* dv = bdv = α mod Nv.  

When A happens to ask h2(mλ, Q*, α) oracle in Phase 2, denoted by QH2*, the simulation 

aborts as B does not know α. On the contrary, if the entire simulation game does not abort, 

denoted by (¬Ab), A gains no advantage in guessing λ due to the randomness of the output 

of the random oracle, i.e., 

 Pr[λ′ = λ | ¬Ab] = 1/2.  (4.3.2) 

Derived from the expression of Pr[λ′ = λ], we have 
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 Pr[λ′ = λ] = Pr[λ′ = λ | ¬Ab] Pr[¬Ab] + Pr[λ′ = λ | Ab] Pr[Ab] 

  ≤ (1/2)Pr[¬Ab] + Pr[Ab]  (by Eq. (4.3.2)) 

  = (1/2)(1 − Pr[Ab]) + Pr[Ab] 

  = (1/2) + (1/2)Pr[Ab].  (4.3.3) 

Besides, we can also derive that  

 Pr[λ′ = λ] ≥ Pr[λ′ = λ | ¬Ab] Pr[¬Ab] 

  = (1/2)(1 − Pr[Ab]) 

  = (1/2) − (1/2)Pr[Ab].  (4.3.4) 

Combining inequalities (4.3.3) and (4.3.4), we get 

 | Pr[λ′ = λ] − 1/2 | ≤ (1/2)Pr[Ab].  (4.3.5) 

Recall that A’s advantage is defined as | Pr[λ′ = λ] − 1/2 |. Since A has non-negligible 

probability ε to break the proposed scheme, we therefore can obtain 

 ε = | Pr[λ′ = λ] − 1/2 | 

    ≤ (1/2)Pr[Ab]  (by Eq. (4.3.5)) 

    = (1/2)(Pr[QH2* ∨ SRV_ERR]) 

    ≤ (1/2)(Pr[QH2*] + Pr[SRV_ERR])  

    ≤ (1/2)(Pr[QH2*] + k
SRVq
2

)   (by Eq. (4.3.1)) 

Rewriting the above inequality, we have Pr[QH2*] ≥ 2ε − k
SRVq
2

. If the event QH2* happens, 

we claim that the correct answer α (= bdv mod Nv) will be stored in some entry of Q_h2 

array. Consequently, B would have non-negligible probability 

  ε' ≥ (qH2
−1)(2ε − k

SRVq
2

) 
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to solve the RSA problem. The running time required for B is t' ≈ t + tλ (qH1
 + qH2

 + qPCG + 

qACG + qSRV). 

 Q.E.D. 

 

Theorem 4.3.2. (Proof of Unforgeability) The proposed PCAE-(I) scheme is (t, qh1
, qh2

, 

qPCG, qACG, ε)-secure against existential forgery under adaptive chosen-message attacks 

(EF-CMA) in the random oracle model if there is no probabilistic polynomial-time adversary 

that can (t', ε')-break the RSA problem, where 

 ε' ≥ (qh2
−1)(ε − 2−k), 

 t' ≈ t + tλ (qh1
 + qh2

 + qPCG + qPACG). 

Here tλ is the average running time of one oracle-query. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3.8. The proof structure of unforgeability in Theorem 4.3.2 
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α (= bdp mod Np) 
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Proof: Fig. 4.3.8 depicts the proof structure of this Theorem. Suppose that a (t, qh1
, qh2

, qPCG, 

qACG, ε)-PPTM A can break the proposed PCAE-(I) scheme with a non-negligible advantage 

ε under adaptive chosen-message attacks after running in time at most t and asking at most 

qhi
 hi random oracle (for i = 1 and 2), qPCG PCG and qACG ACG queries. Then we can take 

A as a subroutine to construct another (t', ε')-algorithm B that solves the RSA problem with 

respect to the proxy signer’s key pair in time at most t' and with the probability ε'. Let all 

involved parties and parameters be defined the same as those in Section 4.1. The objective 

of B is to obtain α (= bdp mod Np) by taking (Np, ep, b = α ep mod Np) as inputs. In this proof, 

B simulates a challenger to A in the following game. 

Setup: The challenger B runs the Setup(1k) algorithm and sends system’s public parameters 

params = {Ni, ei} to the adversary A. 

Phase 1: A adaptively asks hi random oracle (for i = 1 and 2), PCG and ACG queries as those 

defined in Theorem 4.3.1. Note that in the j-th h2 random oracle, B directly returns b as the 

answer, where j is a random positive integer less than or equal to qh2
. 

Forgery: Finally, A outputs a proxy authenticated ciphertext δ* = (S*, R*, T*, D*) for his 

arbitrarily chosen message m*. If the proxy authenticated ciphertext is valid, A wins the 

game. 

Analysis of the game: According to the analyses of Theorem 4.3.1, we know that the 

simulation of each PCG or ACG query will be normally terminated. Besides, B answers 

each h1 or h2 random oracle with a computationally indistinguishable value without collision. 

Let AC-V and QH2 separately be the events that the outputted proxy authenticated 

ciphertext δ* = (S*, R*, T*, D*) is valid and A has ever asks corresponding h2(m*, Q*, c*) 

random oracle. The probability that A can guess a correct random value without asking h2 

random oracle is not greater than 2−k. Since A has a non-negligible advantage ε to break the 

proposed scheme under adaptive chosen-message attacks, we have 

 ε = Pr[AC-V] 

  ≤ Pr[AC-V | QH2] + Pr[AC-V | ¬QH2] 
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  ≤ Pr[AC-V | QH2] + 2−k.  

Further writing the above inequality, we can also obtain 

 Pr[AC-V | QH2] ≥ ε − 2−k. 

Seeing that in the j-th h2 random oracle, B directly returned b as the result, we claim that 

when the event (AC-V | QH2) occurs, B would have the probability of (qh2
−1) to output 

 S* = α = bdp mod Np. 

Therefore, we can express the probability of B to solve the RSA problem as  

ε' ≥ (qh2
−1)(ε − 2−k). 

The running time required for B is t' ≈ t + tλ (qh1
 + qh2

 + qPCG + qACG). 

 Q.E.D. 

 

According to Theorem 4.3.2, the proposed PCAE-(I) scheme is secure against existential 

forgery attacks. That is to say, the delegated proxy signer cannot repudiate having generated 

his authenticated ciphertext. Hence, we obtain the following corollary. 

 

Corollary 4.3.1. The proposed PCAE-(I) scheme satisfies the security requirement of 

non-repudiation.
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5. PCAE-(II) Scheme 

In this section, we demonstrate the proposed second proxy CAE (abbreviated to 

PCAE-(II)) scheme. 

 

5.1 Construction 

– Setup: Taking as input 1k, the system authority (SA) selects two large primes p and q 

satisfying q | (p − 1), and a generator g of order q, where |q| = k. Let h1: {0, 1}k × *
pZ → Zq, 

h2: {0, 1}k × *
pZ × *

pZ → Zq, h3: {0, 1}k → *
pZ  and h4: *

pZ → {0, 1}k be collision resistant 

hash functions. The system publishes public parameters params = {p, q, g, h1, h2, h3, h4}. 

Each user Ui chooses his private key xi ∈ *
qZ  and computes the public key as 

.mod pgy ix
i =  

 

– Proxy-Credential-Generation (PCG): Let Uo be an original user delegating his signing 

power to a proxy signer Up. Uo first chooses d ∈R Zq to compute 

 T = g d mod p,  (5.1.1) 

 σ = d − xoh1(mw, T) mod q,  (5.1.2) 

 where mw is a warrant consisting of the identifier of original signer, proxy signer and 

designated recipient, the delegation duration and so on. (σ, mw, T) is then sent to Up. Upon 

receiving (σ, mw, T), Up computes C as Eq. (5.1.3) and performs Eq. (5.1.4) to check its 

validity. 

 C = yo
h1(mw, T) mod p,  (5.1.3) 

 T = gσC (mod p).  (5.1.4) 

 If it does not hold, (σ, mw, T) is requested to be sent again. 
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– Authenticated-Ciphertext-Generation (ACG): For signing a message m ∈R {0, 1}k on 

behalf of an original signer Uo, Up chooses r ∈R Zq to compute 

 R = gr
 h3(m) mod p,  (5.1.5) 

 K = yv
σ mod p,  (5.1.6) 

 s = r − xp h2(m, C, R) mod q,  (5.1.7) 

 r1 = s(K mod q) mod q,  (5.1.8) 

 r2 = h4(K) ⊕ m,  (5.1.9) 

 and then delivers the warrant mw and the authenticated ciphertext δ = (r1, r2, R, T) to a 

designated recipient Uv. 

 

– Signature-Recovery-and-Verification (SRV): Upon receiving (δ, mw), Uv first computes 

 C = yo
h1(mw, T) mod p,  (5.1.10) 

 K = (TC −1)xv mod p,  (5.1.11) 

 s = (K mod q)−1r1 mod q,  (5.1.12) 

 m = r2 ⊕ h4(K),  (5.1.13) 

 and then checks the redundancy embedded in m. Uv can further verify the proxy signature 

by checking if 

 R = gs yp
h2(m, C , R)h3(m) mod p.  (5.1.14) 

When the case of a later dispute over repudiation occurs, Uv can reveal the converted 

proxy signature Ω = (R, s, T), the warrant mw and the original message m to prove proxy 

signer’s dishonesty without any additional computation effort or communication overhead. 

Thus, anyone can verify the converted proxy signature with the assistance of Eqs. (5.1.10) 

and (5.1.14). 
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5.2 Correctness 

We first show that the verification of Eq. (5.1.4) works correctly. From the right-hand 

side of Eq. (5.1.4), we have 

gσC 

 = gσ yo
h1(mw, T) (by Eq. (5.1.3)) 

 = gd − xoh1(mw, T)yo
h1(mw, T) (by Eq. (5.1.2)) 

 = gd 

 = T (mod p) (by Eq. (5.1.1)) 

which leads to the left-hand side of Eq. (5.1.4). 

With the private key xv and received T, the designated recipient can correctly compute 

the shared secret K. From the right-hand side of Eq. (5.1.11), we have 

(TC −1)xv 

 = (gσ)xv (by Eq. (5.1.4)) 

 = yv
σ 

 = K (mod p) (by Eq. (5.1.6)) 

which leads to the left-hand side of Eq. (5.1.11). 

If the authenticated ciphertext (r1, r2, R, T) is correctly generated, it will pass the test of 

Eq. (5.1.14). From the right-hand side of Eq. (5.1.14), we have 

gs yp
h2(m, C , R)h3(m) 

 = gr − xph2(m, C , R) yp
h2(m, C , R)h3(m) (by Eq. (5.1.7)) 

 = gr
 h3(m) 

 = R (mod p) (by Eq. (5.1.5)) 
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which leads to the left-hand side of Eq. (5.1.14). 

 

5.3 Security Proofs 

We prove that the proposed PCAE-(II) scheme achieves the IND-CCA2 and the 

EF-CMA security in random oracle models as Theorems 5.3.1 and 5.3.2, respectively.  

 

Theorem 5.3.1. (Proof of Confidentiality) The proposed scheme is (t, qh1
, qh2

, qh3
, qh4

, qPCG, 

qACG, qSRV, ε)-secure against indistinguishability under adaptive chosen-ciphertext attacks 

(IND-CCA2) in the random oracle model if there is no probabilistic polynomial-time 

adversary that can (t', ε')-break the CDHP, where 

 ε' ≥ (qh4
−1)(2ε − k

hhSRV qqq

2

)1(
42

++
) , 

 t' ≈ t + tλ (qh3
 + 2qPCG + 4qACG + 3qSRV + 3). 

Here tλ is the time for performing a modular exponentiation over a finite field. 

Proof: Fig. 5.3.1 depicts the proof structure of this Theorem. Suppose that a probabilistic 

polynomial-time adversary A can (t, qh1
, qh2

, qh3
, qh4

, qPCG, qACG, qSRV, ε)-break the 

proposed scheme with a non-negligible advantage ε under adaptive chosen-ciphertext 

attacks after running in time at most t and asking at most qhi
 hi random oracle (for i = 1 to 4), 

qPCG PCG, qACG ACG and qSRV SRV queries. Then we can construct another algorithm B 

that (t', ε')-breaks the CDHP by taking A as a subroutine. Let all involved parties and 

parameters be defined the same as those in Section 5.1. The objective of B is to obtain (gα1α2 

mod p) by taking (p, q, g, gα1, gα2) as inputs. In this proof, B simulates a challenger to A in 

the following game.  

Setup: The challenger B first runs the Setup(1k) algorithm to obtain system’s public 

parameters params = {p, q, g} and sets yv = gα1. Then, params and (yo, yp, yv = gα1) are sent 
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to the adversary A. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.3.1. The proof structure of confidentiality in Theorem 5.3.1 

 

Phase 1: A issues the following queries adaptively: 

– h1 oracle: When A queries an h1 oracle of h1(mw, T), B returns O-Sim(II)_h1(mw, T). The 

simulated random oracle O-Sim(II)_h1 operates as Fig. 5.3.2.  

 

 

 

 

 

 

Fig. 5.3.2. Algorithm of the simulated random oracle O-Sim(II)_h1 

oracle O-Sim(II)_h1(mw, T)  // Let Q_h1[qh1
][2] and A_h1[qh1

] be two arrays. 
1: for i = 0 to qh1

 − 1 
2:  if (Q_h1[i][0] = mw) and (Q_h1[i][1] = T) then  // It is an old query. 
3:   exit for; 
4:  else if (Q_h1[i][0] = null) then  // It is a new query.  
5:   insert(Q_h1, (mw, T)); insert(A_h1, v1 ∈R Zq); exit for; 
6:   end if 
7: next i 
8: return A_h1[i]; 

B 
A 

λ′

{p, q, g, yo, yp, yv = gα1} 

gα1α2 mod p 

Random oracles 
PCG oracle 
ACG oracle 
SRV oracle

(p, q, g, gα1, gα2) 
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– h2 oracle: When A queries an h2 oracle of h2(m, C, R), B returns O-Sim(II)_h2(m, C, R). 

The simulated random oracle O-Sim(II)_h2 operates as Fig. 5.3.3. 

 
 

 

 

 

 

Fig. 5.3.3. Algorithm of the simulated random oracle O-Sim(II)_h2 

 

– h3 oracle: When A queries an h3 oracle of h3(K), B returns O-Sim(II)_h3(K). The simulated 

random oracle O-Sim(II)_h3 operates as Fig. 5.3.4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.3.4. Algorithm of the simulated random oracle O-Sim(II)_h3 

oracle O-Sim(II)_h2(m, C, R)  // Let Q_h2[qh2
][3] and A_h2[qh2

] be two arrays. 
1: for i = 0 to qh2

 − 1 
2:  if (Q_h2[i][0] = m) and (Q_h2[i][1] = C) and (Q_h2[i][2] = R) then 
3:   exit for;  // It is an old query. 
4:  else if (Q_h2[i][0] = null) then  // It is a new query. 
5:   insert(Q_h2, (m, C, R)); insert(A_h2, v2 ∈R Zq); exit for; 
6:   end if 
7: next i 
8: return A_h2[i]; 

oracle O-Sim_h3(m)  // Let Q_h3[qh3
] and A_h3[qh3

][3] be two arrays. 
2: for i = 0 to qh3

 − 1 
3:  if (Q_h3[i] = m) then  // It is an old query. 
4:   exit for; 
5:  else if (Q_h3[i] = null) then  // It is a new query. 
6:   insert(Q_h3, m); Choose v3 ∈R Zq; 
8:   if (check(Q_h2, m)) = true) then // h2(m, *, *) has been queried. 
9:    for j = 0 to qh2

 − 1 
10:     if (Q_h2[j][0] = m) then  
11:      R = Q_h2[j][2]; insert(A_h3, (v3, R, V3 = Rgv3)); exit for; 
13:     end if 
14:    next j 
15:   else // h2(m, *, *) has never been queried. 
16:    insert(A_h3, (v3 ∈R Zq, 1, V3 = gv3)); 
17:   end if 
18:   exit for; 
19:   end if 
20: next i 
21: return A_h3[i][2]; 
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– h4 oracle: When A queries an h4 oracle of h4(K), B returns O-Sim(II)_h4(K). The simulated 

random oracle O-Sim(II)_h4 operates as Fig. 5.3.5. 

 
 

 

 

 

 

Fig. 5.3.5. Algorithm of the simulated random oracle O-Sim(II)_h4 

 

– PCG queries: When A makes a PCG query, B chooses a proper mw and then returns (mw, 

O-Sim(II)_PCG(mw)) as a result. The simulated PCG oracle O-Sim(II)_PCG operates as 

Fig. 5.3.5.  

 

 

 

 

 

Fig. 5.3.6. Algorithm of the simulated PCG oracle O-Sim(II)_PCG 

 

– ACG queries: When A makes an ACG query for some message m, B returns 

O-Sim(II)_ACG(m) as a result. The simulated ACG oracle O-Sim(II)_ACG operates as Fig. 

5.3.7.  

 

 

oracle O-Sim(II)_PCG(mw) 
1: do 
2:   Choose σ, v1 ∈R Zq;  
3:  Compute T = gσ yo

v1 mod p; 
4: while (check(Q_h1, (mw, T)) = true) 
5: insert(Q_h1, (mw, T)); insert(A_h1, v1);  // define h1(mw, T) = v1 
6: return (σ, T); 

oracle O-Sim(II)_h4(K)  // Let Q_h4[qh4
] and A_h4[qh4

] be two arrays. 
1: for i = 0 to qh4

 − 1 
2:  if (Q_h4[i] = K) then  // It is an old query. 
3:   exit for; 
4:  else if (Q_h4[i] = null) then  // It is a new query. 
5:   insert(Q_h4, K); insert(A_h4, v4 ∈R {0, 1}k); exit for; 
6:   end if 
7: next i 
8: return A_h4[i]; 



-51- 

 

 

 

 

 

 

Fig. 5.3.7. Algorithm of the simulated ACG oracle O-Sim(II)_ACG 

 

– SRV queries: When A makes an SRV query for some authenticated ciphertext δ with a 

warrant mw, B returns O-Sim(II)_SRV(δ, mw) as the result. The simulated SRV oracle 

O-Sim(II)_SRV operates as Fig. 5.3.8. Note that the symbol ‘*’ denotes wildcard. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

Fig. 5.3.8. Algorithm of the simulated SRV oracle O-Sim(II)_SRV 

oracle O-Sim(II)_ACG(m) 
1: Choose a proper mw; 
2: (σ, T) = O-Sim(II)_PCG(mw); V3 = O-Sim_h3(m); v1 = O-Sim_h1(mw, T); 
3: Compute C = yo

v1 mod p; K = yv
σ mod p; 

4: do 
5:   Choose s, v2 ∈R Zq; Compute R = gs yp

v2 V3 mod p; 
6: while (check(Q_h2, (m, C, R)) = true) 
7: insert(Q_h2, (m, C, R)); insert(A_h2, v2);  // define h2(m, C, R) = v2 
8: Compute r1 = s(K mod q) mod q; r2 = O-Sim_h4(K) ⊕ m; 
9: return δ = (r1, r2, R, T) along with mw; 

oracle O-Sim(II)_SRV(δ, mw)  // δ = (r1, r2, R, T) 
1: v1 = O-Sim(II)_h1(mw, T); Compute C = yo

v1 mod p; 
2: if (check(Q_h2, (*, C, R)) = true) then // h2(*, C, R) has ever been queried. 
3:  m = Q_h2[j][0];  // Assume that Q_h2[j][1] = C and Q_h2[j][2] = R. 
4:  v4 = r2 ⊕ m; 
5:  if (check(A_h4, v4)) = true) then  
6:   K = Q_h4[j];  // Assume that A_h4[j] = v4. 
7:   s = r1(K mod q)−1 mod q; 
8:   if (R = gs yp

h2(m, C , R)h3(m) mod p) then  
9:    return (m, R, s, T); 

10:   else 
11:    return ⊥; 
12:   end if 
13:  else 
14:   return ⊥; 
15:  end if 
16: else // h2(*, C, R) has never been queried. 
17:   return ⊥; 
18: end if 
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Challenge: A generates two messages, m0 and m1, of the same length. The challenger B flips 

a coin λ ← {0, 1} and produces an authenticated ciphertext δ* = (r1*, r2*, R*, T*) for mλ by 

running the simulated Sim(II)_Challenge(mλ). The algorithm of Sim(II)_Challenge 

operates as Fig. 5.3.9. 

 

 

 

 

 

 

 

 

 

Fig. 5.3.9. Algorithm of the simulated Sim(II)_Challenge 

 

Phase 2: A makes new queries as those stated in Phase 1 except an SRV query for the target 

ciphertext δ*. 

Analysis of the game: Consider above simulations of PCG and ACG queries. We can 

observe that the simulated proxy credential and authenticated ciphertext are computationally 

indistinguishable from those generated by a real scheme. Hence, we refer simulations of 

PCG and ACG queries to be perfect. Then we evaluate the simulation of SRV queries. From 

the algorithms of O-Sim(II)_SRV, one can find out that it is possible for an SRV query of 

some valid δ = (r1, r2, R, T) to return an error symbol ⊥ on condition that A has the ability to 

produce δ without asking corresponding h2(m, C, R) or h4(K) random oracles in advance. 

algorithm Sim(II)_Challenge(mλ) 
1: Choose a proper mw*;  
2: do 
3:   Choose v1 ∈R Zq; Compute C* = yo

v1 mod p and T* = (gα2)C* mod p; 
4: while (check(Q_h1, (mw*, T*)) = true) 
5: insert(Q_h1, (mw*, T*)); insert(A_h1, v1);  // define h1(mw*, T*) = v1 
6: V3* = O-Sim(II)_h3(mλ); 
7: do 
8:   Choose s*, v2 ∈R Zq; Compute R* = gs* yp

v2 V3* mod p; 
9: while (check(Q_h2, (mλ, C*, R*)) = true) 

10: insert(Q_h2, (mλ, C*, R*)); insert(A_h2, v2);  // define h2(mλ, C*, R*) = v2 
11: Choose r1* ∈R Zq and v4 ∈R {0, 1}k; 
12: Compute r2* = v4 ⊕ mλ; 
   // Implicitly define h4(K*) = v4, where K* = gα1α2 and B does not know it. 
13: return δ* = (r1*, r2*, R*, T*) and mw*; 
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Let SRV_ERR be the event that an SRV query returns an error symbol ⊥ for some valid δ 

during the entire game and AC-V an event that an authenticated ciphertext δ submitted by A 

is valid. QH2 and QH4 separately denote events that A has ever asked corresponding h2 and 

h4 random oracles beforehand. Then we can express the error probability of any SRV query 

as 
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 = Pr[(AC-V ∧ QH2) | ¬QH4] + 2Pr[AC-V | (¬QH2 ∧ ¬QH4)]  

  + Pr[(AC-V ∧ QH4) | ¬QH2] 

 ≤ Pr[QH2 | ¬QH4] + 2Pr[AC-V | (¬QH2 ∧ ¬QH4)] + Pr[QH4 | ¬QH2] 
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Since A can make at most qSRV SRV queries, we can further express the probability of 

SRV_ERR as 

 Pr[SRV_ERR] ≤ k
hhSRV qqq

2

)1(
42

++
.  (5.3.15) 

Additionally, in the challenge phase, B has returned a simulated authenticated ciphertext  

δ* = (r1*, r2*, R*, T*) where T* = (gα2) yo
v1 mod p, which implies the shared secret K* is 

implicitly defined as K* = gα1α2 mod p. Let GP be an event that the entire simulation game 

does not abort. Obviously, if the adversary A never makes an h4(K*) query in Phase 2, the 

entire simulation game could be normally terminated. We denote the event that A does ask 

such an query in Phase 2 by QH4*. When the entire simulation game does not abort, it can 

be seen A gains no advantage in guessing λ due to the randomness of output of random 

oracles, i.e., 

 Pr[λ′ = λ | GP] = 1/2.  (5.3.16) 

Rewriting the expression of Pr[λ′ = λ], we have 

 Pr[λ′ = λ] = Pr[λ′ = λ | GP] Pr[GP] + Pr[λ′ = λ | ¬GP] Pr[¬GP] 

  ≤ (1/2)Pr[GP] + Pr[¬GP]  (by Eq. (5.3.16)) 

  = (1/2)(1 − Pr[¬GP]) + Pr[¬GP] 

  = (1/2) + (1/2)Pr[¬GP].  (5.3.17) 

On the other hand, we can also derive that  
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 Pr[λ′ = λ] ≥ Pr[λ′ = λ | GP] Pr[GP] 

  = (1/2)(1 − Pr[¬GP]) 

  = (1/2) − (1/2)Pr[¬GP].  (5.3.18) 

With inequalities (5.3.17) and (5.3.18), we know that  

 | Pr[λ′ = λ] − 1/2 | ≤ (1/2)Pr[¬GP].  (5.3.19) 

Recall that in Definition 3.3.3, A’s advantage is defined as Adv(A) = | Pr[λ′ = λ] − 1/2 |. By 

assumption, A has non-negligible probability ε to break the proposed scheme. We therefore 

have 

 ε = | Pr[λ′ = λ] − 1/2 | 

    ≤ (1/2)Pr[¬GP]  (by Eq. (5.3.19)) 

    = (1/2)(Pr[QH4* ∨ SRV_ERR]) 

    ≤ (1/2)(Pr[QH4*] + Pr[SRV_ERR])  

Combining Eq. (5.3.15) and rewriting above inequality, we get 

 Pr[QH4*] ≥ 2ε − Pr[SRV_ERR] 

 ≥ 2ε − k
hhSRV qqq

2

)1(
42

++
. 

If the event QH4* happens, we claim that a correct answer K* = gα1α2 to the CDHP will be 

stored in some entry of the Q_h4 array. Consequently, B has non-negligible probability 

 ε' ≥ (qh4
−1)(2ε − k

hhSRV qqq

2

)1(
42

++
) 

to solve the CDHP. The computation time required for B is t' ≈ t + tλ (qh3
 + 2qPCG + 4qACG + 

3qSRV + 3). 

 Q.E.D. 
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In 2000, Pointcheval and Stern introduced the Forking lemma [PS00] to prove EF-CMA 

security for generic digital signature schemes in the random oracle model. If we apply their 

techniques to prove our scheme, we can also obtain the generic result as follows. 

 

(The Forking Lemma) In the random oracle mode, let (G, Σ, V) be a generic signature 

scheme and A a probabilistic polynomial-time Turing machine whose input only consists of 

public data. We denote respectively by N1 and N2 the number of queries that A can ask to the 

random oracle and the number of queries that A can ask to the signer. Assume that, within a 

time bound T, A produces, with probabilityε ≥ 10(N2 + 1)(N2 + N1)/2k, a valid signature (m, 

σ1, h, σ2) where σ1 = (mw, R, T), h = (h2(m, C, R), h3(m)) and σ2 = s. If the triples (σ1, h, σ2) 

can be simulated without knowing the private key with an indistinguishable distribution 

probability, then there is another machine which has control over the machine obtained from 

A replacing interaction with the signer by simulation and produces two valid signatures (m, 

σ1, h, σ2) and (m, σ1, h', σ2') such that h2(m, C, R) ≠ h'2(m, C, R) in the expected time T ' ≤ 

120686T/ε. 

More concretely, in our scheme, we can first obtain two equations below: 

 R = gs
 yp

h2(m, C, R)h3(m) mod p, 

 R = gs'
 yp

h'2(m, C, R)h3(m) mod p. 

By combining above two equalities, we can further derive the private key xp as 

 xp = (s − s')/(h'2(m, C, R) − h2(m, C, R)). 

Yet, to give a tight reduction from the hardness of DLP to our proposed scheme, we 

present another more detailed security proof and the advantage analysis as Theorem 5.3.2. 

 

Theorem 5.3.2. (Proof of Unforgeability) The proposed scheme is (t, qh1
, qh2

, qh3
, qPCG, 

qACG, ε)-secure against existential forgery under adaptive chosen-message attacks (EF-CMA) 

in the random oracle model if there is no probabilistic polynomial-time adversary that can  
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(t', ε')-break the DLP, where 

 ε' ≥ (2−1)(ε − 2−2k)(1 + 4−1(ε − 2−2k)2(2−1 + qh2
−1)), 

 t' ≈ t + tλ (qh3
 + 2qPCG + 4qACG). 

Here tλ is the time for performing a modular exponentiation over a finite field. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.3.10. The proof structure of unforgeability in Theorem 5.3.2 

 

Proof: Fig. 5.3.10 depicts the proof structure of this Theorem. Suppose that a probabilistic 

polynomial-time adversary A can (t, qh1
, qh2

, qh3
, qPCG, qACG, ε)-break the proposed 

PCAE-(II) scheme with a non-negligible advantage ε under adaptive chosen-message 

attacks after running in time at most t and asking at most qhi
 hi random oracle (for i = 1 to 3), 

qPCG PCG and qACG ACG queries. Then we can construct another algorithm B that       

(t', ε')-breaks the DLP by taking A as a subroutine. Let all involved parties and notations be 

defined the same as those in Section 5.1, h4 a collision resistant hash function and (h1, h2, h3) 
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random oracles. The objective of B is to obtain )log( pgp yx =  by taking (p, q, g, yp) as 

inputs. In this proof, B simulates a challenger to A in the following game. 

Setup: The challenger B runs the Setup(1k) algorithm to obtain system’s public parameters 

params = {p, q, g, h4} and comes up with a random tape composed of a long sequence of 

random bits. Then B simulates one or two runs of the proposed scheme to the adversary A 

on input params, yo, yp, yv = gα mod p where α ∈ R Zq, and the random tape. 

Phase 1: A adaptively asks h1, h2 and h3 random oracles, PCG and ACG queries as those 

defined in Theorem 5.3.1. 

Analysis of the game: According to analyses of Theorem 5.3.1, simulations of PCG and 

ACG queries are perfect. Namely, the adversary A can not distinguish whether he is playing 

in either a simulation or a real scheme. Let AC-V be an event that A forges a valid 

authenticated ciphertext δ = (r1, r2, R, T) for his arbitrarily chosen message m. Since A has 

non-negligible probability ε to break the proposed scheme under adaptive chosen-message 

attacks by the initial assumption, we know that 

 Pr[AC-V] = ε.  

Now we further consider a situation where A is able to output a valid δ without asking h2 

and h3 random oracles in advance. Let NH be an event that A guesses correct output values 

of h2(m, C, R) and h3(m) without asking random oracles, i.e., Pr[NH] ≤ 2−2k. Then, we can 

express the probability that A outputs a valid forgery δ = (r1, r2, R, T) after asking h2(m, C, R) 

and h3(m) random oracles as 

 Pr[AC-V | ¬NH] ≥ (ε − 2−2k). 

    = ε* 

With the initially selected private key α, B first recovers  

 m = r2 ⊕ h4((T(yo
h1(mw, T))−1)α mod p), 

 s = (((T(yo
h1(mw, T))−1)α mod p) mod q)−1r1 mod q.  
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Then B checks the entry of A_h3 array with respect to the h3(m) random oracle query. By the 

algorithm of O-Sim(II)_h3(m) in Fig. 5.3.4, it can be seen that the simulated result of h3(m) 

random oracle would be in the form of either Rgv3 or gv3. If h3(m) = Rgv3, we know that 

 R = gs
 yp

h2(m, C, R)h3(m) mod p 

  = gs
 yp

h2(m, C, R)Rgv3 mod p 

⇒  g−v3 = gs
 yp

h2(m, C, R) mod p 

Consequently, B can derive the private key xp by computing  

 xp = (−v3 − s)h2(m, C, R)−1 mod q. 

When Pr[h3(m) = Rgv3] = 1, we obtain a tight security reduction. On the contrary, when 

Pr[h3(m) = Rgv3] = 0, we get a loose security reduction just like the Forking lemma. As the 

provided random tape is composed of a long sequence of random bits which are statistically 

random and unpredictable, we can let Pr[h3(m) = Rgv3] = 2−1 eclectically. Specially, if the 

event (AC-V ∧ ¬NH) happens, B would have the probability of 2−1 to solve the DLP in the 

first simulation. 

In case that h3(m) = gv3, B has to launch the second simulation and we know such a 

situation happens with the probability of (1 − 2−1) = 2−1. B again runs A on input params, yo, 

yp, yv = gα mod p where α ∈R Zq, and the same random tape. Since A is given the same 

sequence of random bits, we can anticipate that the i-th random query A asks will always be 

the same as the one during the first simulation. In this simulation, B returns identical results 

as those he responds in the first time until A makes the h2(m, C, R) query. At this time, B 

directly gives another new answer v2*∈R Zq rather than original v2. From the statement of 

“Forking lemma”, we can learn that when A finally makes another valid forgery δ* = (r1*, 

r2*, R, T*) where h2(m, C, R) ≠ h2*(m, C, R) or that h3(m) = Rgv3 this time, B could solve the 

DLP with non-negligible probability. To analyze B’s success probability, we use the 

“Splitting lemma” [PS00] described below:  
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Let X and Y be the sets of possible sequences of random bits and random function 

values provided to A before and after the h2(m, C, R) query is issued, respectively. It follows 

that on inputting a random value (x || y) for any x ∈ X and y ∈ Y, A returns a valid forgery 

with non-negligible probability ε, i.e.,  

 Pr x∈X, y∈Y [AC-V] = ε. 

By the “Splitting lemma”, there is a subset D ∈ X such that 

(a). Pr[x ∈ D] = |D| ⋅ |X|−1 ≥ 2−1ε. 

(b). ∀x ∈ D, Pr y∈Y [AC-V] ≥ 2−1ε. 

If we let ρ ∈ D and y' ∈ Y separately be the supplied sequences of random bits and random 

function values before and after A makes the h2(m, C, R) query, A is able to make a valid 

forgery in the second simulation with the probability of at least (2−1ε)2 = 4−1ε2, i.e.,  

 Pr ρ ∈D, y'∈Y [AC-V] ≥ 4−1ε2.  

Since we have let Pr[h3(m) = Rgv3] = 2−1 and the probability that A eventually returns 

another valid δ* = (r1*, r2*, R, T*) with h2(m, C, R) ≠ h2*(m, C, R) is qh2
−1, the probability 

of B to solve the DLP in the second simulation can be represented as 

 (ε*)(4−1ε*2)(2−1 + qh2
−1) 

 =(ε − 2−2k)(4−1(ε − 2−2k)2)(2−1 + qh2
−1) 

 = 4−1(ε − 2−2k)3(2−1 + qh2
−1). 

Considering the results of two rounds of simulation, we can obtain that after the second 

simulation, B could solve the DLP with non-negligible probability 

 ε' ≥ (2−1)(ε*) + (1 − 2−1)((ε*)(4−1ε*2)(2−1 + qh2
−1)) 

  = (2−1)(ε − 2−2k) + (1 − 2−1)(4−1(ε − 2−2k)3(2−1 + qh2
−1)) 
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  = (2−1)(ε − 2−2k)(1 + 4−1(ε − 2−2k)2(2−1 + qh2
−1)). 

Moreover, the computation time required for B in one simulation is 

 t + tλ (qh3
 + 2qPCG + 4qACG). 

We therefore can compute the total computation time for B as  

 t' ≈ (2−1)(t + tλ (qh3
 + 2qPCG + 4qACG)) 

  + (1 − 2−1)(t + tλ (qh3
 + 2qPCG + 4qACG)) 

  = t + tλ (qh3
 + 2qPCG + 4qACG). 

 Q.E.D. 

 

According to Theorem 5.3.2, the proposed PCAE-(II) scheme is secure against 

existential forgery attacks. That is, the delegated proxy signer can not repudiate having 

generated his authenticated ciphertext. Hence, we obtain the following corollary. 

 

Corollary 5.3.1. The proposed PCAE-(II) scheme satisfies the security requirement of 

non-repudiation. 

 

5.4 Group-Oriented Variant 

In this subsection, we modify the proposed PCAE-(II) scheme to present a 

group-oriented variant. This variant allows a proxy signer to generate an authenticated 

ciphertext on behalf of an original signing group composed of n signers while only a 

designated recipient can decrypt the ciphertext and verify its corresponding multi-signature. 

The detailed construction is described as follows: 

– Setup: Taking as input 1k, the system authority (SA) selects two large primes p and q 

satisfying q | (p − 1), and a generator g of order q, where |q| = k. Let h1: {0, 1}k × *
pZ → Zq, 
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h2: {0, 1} k × *
pZ × *

pZ × *
pZ → Zq and h3: *

pZ → {0, 1}k be collision resistant hash functions. 

The system’s public parameters params = {p, q, g, h1, h2, h3}. Each user Ui chooses his 

private key xi ∈ Zq and computes the public key as .mod pgy ix
i =  

 

– Proxy-Credential-Generation (PCG): Let O = {U1, U2, …, Un} be a group of n original 

users delegating their signing power to a proxy signer Up. With the following steps, Ui ∈ O 

distributes the proxy share to Up: 

Step 1 Ui ∈O first chooses di ∈R Zq to compute 

 Ti = idg mod p,  (5.4.1) 

 and then sends Ti to Up and Uj ∈O, for j ≠ i.  

Step 2 Upon receiving all Tj’s, Ui computes 

 ∏ == pTT j
n
j mod1 ,  (5.4.2) 

 σi = di − xi h1(mw, T) mod q,  (5.4.3) 

where mw is a warrant consisting of the identifier of original signers, proxy signer 

and designated recipient, the delegation duration and so on. (σi, mw, T) is then sent 

to Up. 

Step 3 Upon receiving (σi, mw, T), Up computes 

 Ci = ,mod),(1 py Tmh
i w   (5.4.4) 

and verifies whether 

 )(mod pCgT ii iσ= .  (5.4.5) 

If it does not hold, (σi, mw, T) is requested to be sent again.  
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We show that the verification of Eq. (5.4.5) works correctly. From the right-hand side of 

Eq. (5.4.5), we have 

iCg iσ  

 ),(),( 11 Tmh
i

Txhxd wwii yg −=  (by Eqs. (5.4.3) and (5.4.4)) 

 idg=  

 )(mod pTi=  (by Eq. (5.4.1)) 

which leads to the left-hand side of Eq. (5.4.5). 

 

– Authenticated-Ciphertext-Generation (ACG): For signing a message m ∈R {0, 1}k on 

behalf of the original signing group O, Up chooses r ∈R Zq to compute 

 R = gr mod p,  (5.4.6) 

 σ = ,
1

∑
=

n

i
iσ     (5.4.7) 

 C =∏
=

n

i
i pC

1
,mod   (5.4.8) 

 K = yv
σ mod p,  (5.4.9) 

 s = r + (σ − xph2(m, C, K, R)) mod q,  (5.4.10) 

 r2 = h3(K) ⊕ m,  (5.4.11) 

 and then delivers the warrant mw and the authenticated ciphertext δ = (s, r2, R, T) to a 

designated recipient Uv. 

 

– Signature-Recovery-and-Verification (SRV): Upon receiving (δ, mw), Uv first computes 

C as Eq. (5.4.8) and derives K as 
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 K = (TC −1)xv mod p.  (5.4.12) 

He then recovers the message as 

 m = r2 ⊕ h3(K),  (5.4.13) 

 and checks the redundancy embedded in m. Uv can further verify the proxy multi-signature 

by checking if 

 RT = gs yp
h2(m, C , K, R)C mod p.  (5.4.14) 

The correctness of Eqs. (5.4.13) and (5.4.14) can be easily confirmed. From the right-hand 

side of Eq. (5.4.13), we have 

r2 ⊕ h3(K) 

 = r2 ⊕ h3((TC −1)xv mod p) (by Eq. (5.4.12)) 

 = r2 ⊕ h3((gσ)xv mod p) (by Eqs. (5.4.5), (5.4.7) and (5.4.8)) 

 = m (by Eq. (5.4.9) and (5.4.11)) 

which leads to the left-hand side of Eq. (5.4.13). 

If the authenticated ciphertext (s, r2, R, T) is correctly generated, it will pass the test of 

Eq. (5.4.14). From the right-hand side of Eq. (5.4.14), we have 

gs yp
h2(m, C , K, R)C 

 Cyg RKCmh
p

RKCmhxr p ),,,(),,,( 22−+= σ  (by Eq. (5.4.10)) 

 CRgσ=  (by Eq. (5.4.6)) 

 )(mod pRT=  (by Eqs. (5.4.2), (5.4.5) and (5.4.8)) 

which leads to the left-hand side of Eq. (5.4.14). 

When the case of a later dispute over repudiation occurs, Uv can reveal the converted 



-65- 

proxy multi-signature Ω = (s, R, T, K), the warrant mw and the original message m to prove 

proxy signer’s dishonesty without any additional computation effort or communication 

overhead. Thus, anyone can verify the converted proxy multi-signature with the assistance of 

Eqs. (5.4.4), (5.4.8) and (5.4.14).  

Since the group-oriented variant is modified from our proposed PCAE-(II) scheme, we 

can adopt similar approaches to prove its security in random oracle models. 

 

5.5 Variant with Message Linkages 

Consider the practical implementation that an original message may be large. It therefore 

will cause the difficulty in encryption. In this subsection, we propose a variant with message 

linkages to benefit the encryption of a large message by dividing it into lots of small message 

blocks. The phases of Setup and PCG are defined the same as those in Section 5.1. We 

describe the other two phases as follows: 

 

– Authenticated-Ciphertext-Generation (ACG): For signing a large message m on behalf 

of an original signer Uo, Up first divides the message m into n pieces, i.e., m = m1 || m2 || … 

|| mn, mi’s ∈ GF(p), and then chooses r ∈R Zq and w0 = 0 to compute 

 R = gr
 h3(m) mod p,  (5.5.1) 

 K = yv
σ mod p,  (5.5.2) 

 s = r − xp h2(m, C, R) mod q,  (5.5.3) 

 r1 = s(K mod q) mod q,  (5.5.4) 

 wi = mi ⋅ h4(wi − 1 ⊕ h4(K)) mod p, for i = 1, 2,…, n,  (5.5.5) 

 and then delivers the warrant mw and the authenticated ciphertext δ = (r1, R, T, w1, w2, …, 

wn) to a designated recipient Uv. 

 



-66- 

– Signature-Recovery-and-Verification (SRV): Upon receiving δ, Uv first computes 

 C = yo
h1(mw, T) mod p,  (5.5.6) 

 K = (TC −1)xv mod p,  (5.5.7) 

 s = (K mod q)−1r1 mod q,  (5.5.8) 

 mi = wi ⋅ h4(wi − 1 ⊕ h4(K))−1 mod p, for i = 1, 2,…, n, (5.5.9) 

 and recovers the original message m as m1 || m2 || … || mn. Uv can further verify the proxy 

signature by checking if 

 R = gs yp
h2(m, C , R)h3(m) mod p.  (5.5.10) 

When the case of a later dispute over repudiation occurs, Uv can reveal the converted 

proxy signature Ω = (R, s, T), the warrant mw and the original message m to prove proxy 

signer’s dishonesty without any additional computation effort or communication overhead. 

Thus, anyone can verify the converted proxy signature with the assistance of Eqs. (5.5.6) and 

(5.5.10). 

We show that with the authenticated ciphertext (r1, R, T, w1, w2, …, wn) and the warrant 

mw, a designated recipient Uv can recover the message m and check its validity with Eq. 

(5.5.9). From the right-hand side of Eq. (5.5.9), we have 

wi ⋅ h4(ri − 1 ⊕ h4(K))−1 

 = mi ⋅ h4(ri − 1 ⊕ h4(K)) ⋅ h4(ri − 1 ⊕ h4(K))−1 (by Eq. (5.5.5)) 

 = mi (mod p) 

which leads to the left-hand side of Eq. (5.5.9). 

Since the variant with message linkages is based on our proposed PCAE-(II) scheme, we 

can adopt the similar approaches to prove its security in random oracle models. 
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6. PCAE-(III) Scheme 

Since Wu and Hsu [WH02] proposed the first convertible authenticated encryption (CAE) 

scheme in 2002, lots of researchers have devoted themselves to the enhancement of CAE 

schemes. Recently, a so-called bilinear pairings cryptosystem from elliptic curves [Kob87, 

Men93, Mil85] has been found various applications [BKL+02, BF01, BLS01, GS02, Sma02, 

ZK02] in cryptography. In this section, we demonstrate the proposed third proxy CAE 

(abbreviated to PCAE-(III)) scheme based on BDHP. 

 

6.1 Construction 

– Setup: Taking as input 1k, the system authority (SA) selects two groups (G1, +) and (G2, ×) 

of the same prime order q, where |q| = k. Let P be a generator of order q over G1, e: G1 × G1 

→ G2 a bilinear pairing and h0: {0, 1}* → G1, h1: G2 × G2 → {0, 1}k, h2: G1 → G1 and h3: 

{0, 1}k × G2 × G1 → Zq collision resistant hash functions. The system publishes public 

parameters params = {G1, G2, q, P, e, h0, h1, h2, h3}. Each user Ui chooses his private key  

xi ∈ Zq and computes the corresponding public key as Yi = xiP. 

 

– Proxy-Credential-Generation (PCG): Let Uo be an original signer delegating his signing 

power to a proxy signer Up. Uo computes 

 D = xo ⋅ h0(mw),  (6.1.1) 

where mw is a warrant consisting of the identifiers of original signer, proxy signer and 

designated recipient, the delegation duration and so on. (D, mw) is then sent to Up. Upon 

receiving (D, mw), Up checks its validity by verifying whether 

 e(Yo, h0(mw)) = e(D, P).  (6.1.2) 

If it does not hold, (D, mw) is requested to be sent again. 
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– Authenticated-Ciphertext-Generation (ACG): For signing a message m∈R{0, 1}k on 

behalf of an original signer Uo, Up chooses r ∈R Zq to compute 

 R = rP + D,   (6.1.3) 

 T = e(D, Yv),   (6.1.4) 

 V = e(h2(R), Yv)
xp,  (6.1.5) 

 S = r(h3(m, T, R) + xp)−1P,  (6.1.6) 

 X = h1(T, V) ⊕ m,  (6.1.7) 

and then delivers the warrant mw and the authenticated ciphertext δ = (R, S, X) to a 

designated recipient Uv. 

 

– Signature-Recovery-and-Verification (SRV): Upon receiving it, Uv first computes 

 T = e(Yo, h0(mw))xv,  (6.1.8) 

 V = e(h2(R), Yp)xv,  (6.1.9) 

 to recover the message m as 

 m = h1(T, V) ⊕ X  (6.1.10) 

and checks the redundancy embedded in it. Uv further verifies the proxy signature by 

checking whether 

 e(Yo, h0(mw))e(S, h3(m, T, R)P + Yp) = e(R, P).  (6.1.11) 

Since the converted proxy signature Ω = (R, S, T) is derived during the verification 

process, a designated recipient Uv can easily announce it together with (m, mw) in case of a 

later dispute over repudiation. Accordingly, anyone can check Eq. (6.1.11) to realize proxy 

signer’s dishonesty. 
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6.2 Correctness 

We first show that the verification of Eq. (6.1.2) works correctly. From the left-hand side 

of Eq. (6.1.2), we have 

e(Yo, h0(mw)) 

 = e(xoP, h0(mw)) 

 = e(xoh0(mw), P) 

 = e(D, P) (by Eq. (6.1.1)) 

which leads to the right-hand side of Eq. (6.1.2). 

Upon receiving δ = (R, S, X) with the warrant mw, a designated recipient can correctly 

recover the message m and check its validity with Eq. (6.1.10). From the right-hand side of Eq. 

(6.1.10), we have 

h1(T, V) ⊕ X 

 = h1(e(Yo, h0(mw))xv, e(h2(R), Yp)xv) ⊕ X (by Eqs. (6.1.8) and (6.1.9)) 

 = h1(e(D, P)xv, e(h2(R), Yv)
xp) ⊕ X (by Eq. (6.1.2)) 

 = m (by Eqs. (6.1.4), (6.1.5) and (6.1.7)) 

which leads to the left-hand side of Eq. (6.1.10). 

If an authenticated ciphertext (R, S, X) is correctly generated, it will pass the test of Eq. 

(6.1.11). From the left-hand side of Eq. (6.1.11), we have 

e(Yo, h0(mw))e(S, h3(m, T, R)P + Yp) 

 = e(Yo, h0(mw))e(r(h3(m, T, R) + xp)−1P, h3(m, T, R)P + Yp) (by Eq. (6.1.6)) 

 = e(D, P)e(rP, P) (by Eq. (6.1.2)) 

 = e(D + rP, P) 

 = e(R, P) (by Eq. (6.1.3)) 
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which leads to the right-hand side of Eq. (6.1.11). 

 

6.3 Security Proofs 

We prove that the proposed PCAE-(III) scheme achieves the IND-CCA2 and the 

EF-CMA security in random oracle models as Theorems 6.3.1 and 6.3.2, respectively. 

 

Theorem 6.3.1. (Proof of Confidentiality) The proposed PCAE-(III) scheme is (t, qh0
, qh1

, 

qh2
, qh3

, qPCG, qACG, qSRV, ε)-secure against indistinguishability under adaptive 

chosen-ciphertext attacks (IND-CCA2) in the random oracle model if there is no probabilistic 

polynomial-time adversary that can (t', ε')-break the BDHP, where 

 ε' ≥ (qh1
−1)(2ε − k

hhSRV qqq

2

)1(
31

++
) , 

 t' ≈ t + tλ (2qACG + 3qSRV + 1). 

Here tλ is the time for performing one bilinear pairing computation. 

Proof: Fig. 6.3.1 depicts the proof structure of this Theorem. Suppose that a probabilistic 

polynomial-time adversary A can (t, qh0
, qh1

, qh2
, qh3

, qPCG, qACG, qSRV, ε)-break the 

proposed PCAE-(III) scheme with a non-negligible advantage ε under adaptive chosen- 

ciphertext attacks after running in time at most t and asking at most qhi
 hi random oracle (for 

i = 0 to 3), qPCG PCG, qACG ACG and qSRV SRV queries. Then we can construct another 

algorithm B that (t', ε')-breaks the BDHP by taking A as a subroutine. Let all involved 

parties and parameters be defined the same as those in Section 6.1. The objective of B is to 

obtain e(P, P)xoxpxv by taking (P, q, e, Yo = xoP, Yp = xpP, Yv = xvP) as inputs. In this proof, B 

simulates a challenger to A in the following game. 

Setup: The challenger B runs the Setup(1k) algorithm and sends system’s public parameters 

params = {G1, G2, q, P, e, Yo, Yp, Yv} to the adversary A. 
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Fig. 6.3.1. The proof structure of confidentiality in Theorem 6.3.1 

 

Phase 1: A issues the following queries adaptively: 

– h0 oracle: When A asks an h0 oracle of h0(mw), B returns O-Sim(III)_h0(mw). The simulated 

random oracle O-Sim(III)_h0 operates as Fig. 6.3.2.  

 

 

 

 

 

 

Fig. 6.3.2. Algorithm of the simulated random oracle O-Sim(III)_h0 

 

 

oracle O-Sim(III)_h0(mw)  // Let Q_h0[qh0
] and A_h0[qh0

][2] be two arrays. 
1: for i = 0 to qh0

 − 1 
2:  if (Q_h0[i] = mw) then  // It is an old query. 
3:   exit for; 
4:  else if (Q_h0[i] = null) then  // It is a new query. 
5:   insert(Q_h0, mw); insert(A_h0, (σ ∈R Zq, V0 = σP)); exit for; 
7:   end if 
8: next i 
9: return A_h0[i][1]; 

B 
A 

λ′

{G1, G2, q, P, e, Yo, Yp, Yv}

e(P, P)xoxpxv 
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PCG oracle 
ACG oracle 
SRV oracle
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– h1 oracle: When A asks an h1 oracle of h1(T, V), B returns O-Sim_h1(T, V). The simulated 

random oracle O-Sim_h1 operates as Fig. 6.3.3. 

 

 

 

 

 

 

 

Fig. 6.3.3. Algorithm of the simulated random oracle O-Sim(III)_h1 

 

– h2 oracle: When A asks an h2 oracle of h2(R), B returns O-Sim(III)_h2(R). The simulated 

random oracle O-Sim(III)_h2 operates as Fig. 6.3.4. 

 

 

 

 

 

 

 

Fig. 6.3.4. Algorithm of the simulated random oracle O-Sim(III)_h2 

 

– h3 oracle: When A asks an h3 oracle of h3(m, T, R), B returns O-Sim(III)_h3(m, T, R). The 

simulated random oracle O-Sim(III)_h3 operates as Fig. 6.3.5.  

 

oracle O-Sim(III)_h2(R)  // Let Q_h2[qh2
] and A_h2[qh2

][2] be two arrays. 
1: for i = 0 to qh2

 − 1 
2:  if (Q_h2[i] = R) then  // It is an old query. 
3:   exit for; 
4:  else if (Q_h2[i] = null) then  // It is a new query. 
5:   insert(Q_h2, R); insert(A_h2, (v2 ∈ R Zq, V2 = v2P));  
6:   exit for; 
7:   end if 
8: next i 
9: return A_h2[i][1]; 

oracle O-Sim(III)_h1(T, V)  // Let Q_h1[qh1
][2] and A_h1[qh1

] be two arrays. 
1: for i = 0 to qh1

 − 1 
2:  if (Q_h1[i][0] = T and Q_h1[i][1] = V) then  // It is an old query. 
3:   exit for; 
4:  else if (Q_h1[i][0] = null) then  // It is a new query. 
5:   insert(Q_h1, (T, V)); insert(A_h1, v1 ∈R {0, 1}k); exit for; 
6:   end if 
7: next i 
8: return A_h1[i]; 
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Fig. 6.3.5. Algorithm of the simulated random oracle O-Sim(III)_h3 

 

– PCG queries: When A makes a PCG query, B chooses a proper mw and then returns (mw, 

O-Sim(III)_PCG(mw)) as the result. The simulated PCG oracle O-Sim(III)_PCG operates 

as Fig. 6.3.6. 

 

 

 

 

 

 

Fig. 6.3.6. Algorithm of the simulated PCG oracle O-Sim(III)_PCG 

 

– ACG queries: When A makes an ACG query for some message m, B returns 

O-Sim(III)_ACG(m) as a result. The simulated ACG oracle O-Sim(III)_ACG operates as 

Fig. 6.3.7.  

 

 

oracle O-Sim(III)_PCG(mw) 
1: V0 ← O-Sim_h0(mw); 
2: for i = 0 to qh0

 − 1 
3:  if (A_h0[i][1] = V0) then  
4:   σ ← A_h0[i][0];  
5:   Compute D = σYo; 
6:   return D; 
7:   end if 
8: next i 

oracle O-Sim(III)_h3(m, T, R)  // Let Q_h3[qh3
][3] and A_h3[qh3

] be two arrays. 
1: for i = 0 to qh3

 − 1 
2:  if (Q_h3[i][0] = m) and (Q_h3[i][1] = T) and (Q_h3[i][2] = R) then 
3:   exit for;  // It is an old query. 
4:  else if (Q_h3[i][0] = null) then  // It is a new query. 
5:   insert(Q_h3, (m, T, R));  
6:   insert(A_h3, v3 ∈R Zq);  
7:   exit for; 
8:   end if 
9: next i 

10: return A_h3[i]; 
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Fig. 6.3.7. Algorithm of the simulated ACG oracle O-Sim(III)_ACG 

 
– SRV queries: When A makes an SRV query for some authenticated ciphertext δ with a 

warrant mw, B returns O-Sim(III)_SRV(δ, mw) as the result. The simulated SRV oracle 

O-Sim(III)_SRV operates as Fig. 6.3.8.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 6.3.8. Algorithm of the simulated SRV oracle O-Sim(III)_SRV 

 

oracle O-Sim(III)_ACG(m) 
1: Choose a proper mw; D = O-Sim(III)_PCG(mw); 
2: Choose s ∈R Zq to compute S = sP and T = e(D, Yv); 
3: do 
4:   Choose v3 ∈R Zq; Compute R = sv3P + sYp + D; 
5: while (check(Q_h3, (m, T, R)) = true); 
6: insert(Q_h3, (m, T, R)); insert(A_h3, v3);  // define h3(m, T, R) = v3 
7: V2 = O-Sim_h2(R); v2 = A_h2[i][0];  // Assume that A_h2[i][1] = V2. 
8: Compute V = e(Yp, Yv)

v2; X = O-Sim_h1(T, V) ⊕ m; 
9: return δ = (R, S, X) along with mw; 

oracle O-Sim(III)_SRV(δ, mw)  // δ = (R, S, X) 
1: if (check(Q_h3, (*, *, R)) = true) then  // h3(*, *, R) has ever been queried. 
2:  m = Q_h2[i][0]; T = Q_h3[i][1];  // Assume that Q_h3[i][2] = R. 
3:  if (check(Q_h1, (T, *)) = true) then  // h1(T, *) has ever been queried. 
4:   V = Q_h1[i][1]; v1 = A_h1[i]; // Assume that Q_h1[i][0] = T. 
5:   if (X = v1 ⊕ m) then  
6:    if (e(Yo, h0(mw))e(S, h3(m, T, R)P + Yp) = e(R, P)) then 
7:     return (m, R, S, T, mw); 
8:    else  // Signature verification fails. 
9:     return ⊥; 

10:    end if 
11:   else  // Message recovery fails. 
12:    return ⊥; 
13:   end if 
14:   else  // h1(T, *) has never been queried. 
15:    return ⊥; 
16:   end if 
17: else  // h3(*, *, R) has never been queried. 
18:   return ⊥; 
19: end if
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Challenge: A generates two messages, m0 and m1, of the same length. The challenger B flips 

a coin λ ← {0, 1} and produces an authenticated ciphertext δ* = (R*, S*, X*) for mλ by 

running the simulated Sim(III)_Challenge(mλ). The algorithm of Sim(III)_Challenge 

operates as Fig. 6.3.9. 

 

 

 

 

 

 

 

 

Fig. 6.3.9. Algorithm of the simulated Sim(III)_Challenge 

 

Phase 2: A makes new queries as those stated in Phase 1 except an SRV query for the target 

ciphertext δ*. 

Analysis of the game: Consider the simulations of PCG and ACG queries. It can be seen that 

the simulated proxy credential D and authenticated ciphertext δ are computationally 

indistinguishable from those generated by a real scheme. We refer the simulations of PCG 

and ACG queries to be perfect. Then we evaluate the simulation of SRV queries. From the 

algorithms of O-Sim(III)_SRV, one can observe that it is possible for an SRV query of some 

valid δ = (R, S, X) to return an error symbol ⊥ on condition that A has the ability to produce 

δ without asking corresponding h3(m, T, R) or h1(T, V) random oracles in advance. Let 

SRV_ERR be an event that an SRV query returns an error symbol ⊥ for some valid δ during 

the entire game, AC-V an event that an authenticated ciphertext δ submitted by A is valid. 

QH3 and QH1 separately denote the events that A has ever asked corresponding h3 and h1 

algorithm Sim(III)_Challenge(mλ) 
1: Choose a proper mw*; D* ← O-Sim(III)_PCG(mw*); 
2: Choose z, s ∈R Zq to compute S* = sP and T* = e(D*, Yv); 
3: do 
4:   Choose v3 ∈R Zq; Compute R* = sv3P + sYp + D*; 
5: while (check(Q_h3, (mλ, T*, R*)) = true); 
6: insert(Q_h3, (mλ, T*, R*)); insert(A_h3, v3);  // define h3(mλ, T*, R*) = v3 
7: insert(Q_h2, R*); insert(A_h2, (∇, zYo)) where ∇ denotes the null symbol; 

   // define h2(R*) = zYo 
8: Choose v1 ∈R {0, 1}k;  
9: Compute X* = v1 ⊕ mλ;  // Implicitly define v1 = h1(T*, V*) where V* = e(zYo, Yv)

xp. 
10: return δ* = (R*, S*, X*) and mw*; 
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random oracles beforehand. Then we can express the error probability of any SRV query as 

 Pr[AC-V | ¬QH3 ∨ ¬QH1] 
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 ≤ k
h
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h qq
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2
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 = k
hh qq

2

1
31

++
. 

Since A can make at most qSRV SRV queries, we can further express the probability of 

SRV_ERR as 

 Pr[SRV_ERR] ≤ k
hhSRV qqq

2

)1(
31

++
.  (6.3.1) 

Additionally, in the challenge phase, B has returned a simulated authenticated ciphertext  

δ* = (R*, S*, X*) where h2(R*) = zYo, which implies the shared secret V* is implicitly 

defined as V* = e(dYo, Yv)
xp. Let GP be an event that the entire simulation game does not 

abort. Obviously, if the adversary A never makes an h1(T*, V*) query in Phase 2, the entire 

simulation game could be normally terminated. We denote an event that A does ask such a 

query in Phase 2 by QH1*. When the entire simulation game does not abort, it can be seen A 

gains no advantage in guessing λ due to the randomness of output of random oracles, i.e., 

 Pr[λ′ = λ | GP] = 1/2.  (6.3.2) 

Rewriting the expression of Pr[λ′ = λ], we have 

 Pr[λ′ = λ] = Pr[λ′ = λ | GP] Pr[GP] + Pr[λ′ = λ | ¬GP] Pr[¬GP] 

  ≤ (1/2)Pr[GP] + Pr[¬GP]  (by Eq. (6.3.2)) 

  = (1/2)(1 − Pr[¬GP]) + Pr[¬GP] 

  = (1/2) + (1/2)Pr[¬GP].  (6.3.3) 

On the other hand, we can also derive that  

 Pr[λ′ = λ] ≥ Pr[λ′ = λ | GP] Pr[GP] 

  = (1/2)(1 − Pr[¬GP]) 

  = (1/2) − (1/2)Pr[¬GP].  (6.3.4) 
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With inequalities (6.3.3) and (6.3.4), we know that  

 | Pr[λ′ = λ] − 1/2 | ≤ (1/2)Pr[¬GP].  (6.3.5) 

Recall that in Definition 3.3.3, A’s advantage is defined as Adv(A) = | Pr[λ′ = λ] − 1/2 |. By 

assumption, A has non-negligible probability ε to break the proposed scheme. We therefore 

have 

 ε = | Pr[λ′ = λ] − 1/2 | 

    ≤ (1/2)Pr[¬GP]  (by Eq. (6.3.5)) 

    = (1/2)(Pr[QH1* ∨ SRV_ERR]) 

    ≤ (1/2)(Pr[QH1*] + Pr[SRV_ERR])  

Combining Eq. (6.3.1) and rewriting the above inequality, we get 

 Pr[QH1*] ≥ 2ε − Pr[SRV_ERR] 

 ≥ 2ε − k
hhSRV qqq

2

)1(
31

++
. 

If the event QH1* happens, we claim that V* = e(zYo, Yv)
xp will be stored in some entry of 

Q_h1 array. Consequently, B has non-negligible probability 

 ε' ≥ (qh1
−1)(2ε − k

hhSRV qqq

2

)1(
31

++
) 

to solve the BDHP by outputting (V*)z −1
. The computation time required for B is         

t' ≈ t + tλ (2qACG + 3qSRV + 1). 

 Q.E.D. 

 

Theorem 6.3.2. (Proof of Unforgeability) The proposed PCAE-(III) scheme is (t, qh0
, qh1

, qh2
, 

qh3
, qPCG, qACG, ε)-secure against existential forgery under adaptive chosen-message attacks 

(EF-CMA) in the random oracle model if there is no probabilistic polynomial-time adversary 



-79- 

that can (t', ε')-break the BDHP, where 

 ε' ≥ (ε − 2−(k + |G1|))/(qh1
qh2

), 

 t' ≈ t + tλ (2qACG). 

Here tλ is the time for performing one bilinear pairing computation. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.3.10. The proof structure of unforgeability in Theorem 6.3.2 

 

Proof: Fig. 6.3.10 depicts the proof structure of this Theorem. Suppose that a probabilistic 

polynomial-time adversary A can (t, qh0
, qh1

, qh2
, qh3

, qPCG, qACG, ε)-break the proposed 

PCAE-(III) scheme with a non-negligible advantage ε under adaptive chosen-message 

attacks after running in time at most t and asking at most qhi
 hi random oracle (for i = 0 to 3), 

qPCG PCG and qACG ACG queries. Then we can construct another algorithm B that       

(t', ε')-breaks the BDHP by taking A as a subroutine. Let all involved parties and parameters 

be defined the same as those in Section 6.1. The objective of B is to obtain e(P, P)xoxpxv by 

B 
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(P, q, e, Yo = xoP, Yp = xpP, Yv = xvP)
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output 
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taking (P, q, e, Yo = xoP, Yp = xpP, Yv = xvP) as inputs. In this proof, B simulates a challenger 

to A in the following game.  

Setup: The challenger B runs the Setup(1k) algorithm and sends system’s public parameters 

params = {G1, G2, q, P, e, Yo, Yp, Yv} to the adversary A. 

Phase 1: A adaptively asks hi random oracle (for i = 0 to 3), PCG and ACG queries as those 

defined in Theorem 6.3.1. Note that in the j-th h2 random oracle, where j is a random 

positive integer less than or equal to qh2
, B directly returns zYo for z ∈R Zq. 

Forgery: Finally, A outputs an authenticated ciphertext δ* = (R*, S*, X*) and mw* for his 

arbitrarily chosen message m*. If the ciphertext is valid, A wins the game. 

Analysis of the game: According to analyses of Theorem 6.3.1, we know that the simulation 

of each PCG or ACG query will be normally terminated. Besides, B answers each hi random 

oracle with a computationally indistinguishable value without collision. Let AC-V and QH 

separately be the events that the outputted ciphertext δ* = (R*, S*, X*) is valid and A has 

ever asks corresponding h1(T*, V*) and h2(R*) random oracles. The probability that A can 

guess correct random values without asking h1 and h2 random oracles is not greater than  

2−(k + |G1|). Since A has a non-negligible advantage ε to break the proposed scheme under 

adaptive chosen-message attacks, we have 

 ε = Pr[AC-V] 

  ≤ Pr[AC-V | QH] + Pr[AC-V | ¬QH] 

  ≤ Pr[AC-V | QH] + 2−(k + |G1|). 

Further writing above inequality, we can also obtain 

 Pr[AC-V | QH] ≥ ε − 2−(k + |G1|). 

Seeing that in the j-th h2 random oracle, B directly returned zYo as a result, i.e., Pr[R* = Rj] = 

qh2
−1, we claim that when the event (AC-V | QH) ∧ (R* = Rj) occurs, B would have the 

probability of (qh1
−1) to output 
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 (V*)z −1
 = e(Yo, Yv)

xp 

from some entry of Q_h1 array. Therefore, we can express the probability of B to solve the 

BDHP problem as  

ε' ≥ (ε − 2−(k + |G1|))/(qh1
qh2

). 

The running time required for B is t' ≈ t + tλ (2qACG). 

 Q.E.D. 

 

According to Theorem 6.3.2, the proposed PCAE-(III) scheme is secure against 

existential forgery attacks. That is, the delegated proxy signer cannot repudiate having 

generated his authenticated ciphertext. Hence, we obtain the following corollary. 

 

Corollary 6.3.1. The proposed PCAE-(III) scheme satisfies the security requirement of 

non-repudiation. 
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7. Conclusions and Future Research 

In this dissertation, the author proposed three PCAE schemes to solve the delegation 

problem for confidential transactions. The proposed schemes allow a proxy signer to produce 

an authenticated ciphertext on behalf of an original signer and only a designated recipient is 

capable of recovering the message and verifying its proxy signature for ensuring 

confidentiality.  

It is unnecessary to establish a session key in advance between a proxy signer and a 

designated recipient. Without revealing the private key, a designated recipient can 

independently convert an authenticated ciphertext into an ordinary proxy signature for public 

arbitration in case of a later repudiation. Since a converted proxy signature is obtained during 

the message recovery and signature verification phase, the signature conversion process 

requires no extra computation efforts or communication overheads.  

The author also presented a group-oriented PCAE variant allowing one proxy signer to 

generate a valid authenticated ciphertext on behalf of a signing group composed of n original 

signers. To benefit the encryption of large messages, the author addressed another variant 

with message linkages by dividing a large message into many small message blocks. 

Furthermore, the proposed schemes are proved to achieve the security requirement of 

confidentiality against indistinguishability under adaptive chosen-ciphertext attacks 

(IND-CCA2) and that of unforgeability against existential forgery under adaptive 

chosen-message attacks (EF-CMA) in random oracle models. To the best of our knowledge, 

the proposed PCAE-(I) scheme is the first provably secure PCAE scheme based on RSA 

assumption. As compared with previous works, the proposed schemes not only have lower 

computation costs, but also provide better functionalities. 

With more and more complicated business applications, the signing policy and the way 

of proxy delegation might vary depending on different needs. For example, one original 

signer can delegate his signing power to two or more proxy signers, such that all proxy 

signers must cooperatively generate a valid authenticated ciphertext on behalf of the original 

one. In some circumstances, an authenticated ciphertext intended for a designated group can 

only be decrypted if t-out-of-n verifiers are willing to corporate, which is referred to as     

(t, n)-shared verification.  

To mitigate the impact caused by the key exposure, a key-insulated cryptosystem is a 
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better alternative for designing cryptographic protocols. In such a system, each user stores a 

long-term private key in a physically-secure but computation limited device (called base or 

helper). Another short-term private key is kept secret by the user and used to perform 

cryptographic protocols such as digital signature schemes. Integrating PCAE schemes with 

key-insulated systems will bring more benefits to realistic applicability. Therefore, in the 

future research, the author will devote himself to the study of more flexible PCAE schemes 

with provable security to fulfill all kinds of practical requirements. 
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