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Abstract: To solve linear state equations, a two- 
dimensional systolic-array system has been pro- 
posed [SI. For the same purpose, various kinds of 
one-dimensional arrays are designed in the paper. 
The linear systolic-array system with first-in-first- 
out (FIFO) queues can be designed by applying 
double projections from the three-dimensional 
dependence graph (DG). As the array thus 
designed needs processors with multifunction 
operations and various input/output require- 
ments, tag control bits are incorporated, and so 
make the overall computation more efficient. Fur- 
thermore, a linear systolic-array system with 
content addressable memory (CAM) is designed 
which can use the advantage of matrix sparseness 
to reduce the overall computation time. The parti- 
tion scheme of the linear systolic-array system is 
also proposed to match the limitation of the pin 
number and the chip area. Finally, the cost and 
performance of all the class of systolic-array 
systems for solving linear state equations are illus- 
trated. 

1 Introduction 

In many applications, such as the emulation of control 
system and the transient analysis in circuit simulatjon, it 
is necessary to solve the linear state equation V(t) = 
A’V(t) + CU(t), where V(t) is a vector variable of size n, 
v ( t )  is the time derivative of V(t), U(t) is the input vector 
of size m, A’ and C are n x n and n x m matrixes, respec- 
tively. To solve this linear state equation in a discrete- 
time system, the numerical integration method (for 
example, the backward Euler method) is often used to 
transform the differential equations into the following 
discrete-time matrix form: 

AV(t,J = E ( t , - , )  + CU(t , )  (1) 

where A = [A’ + (l/h)Il, h = tn - t,- B’(fn-l) = 
(l/h)V(tn-l), I is the identity matrix and t ,  is the time at 
the nth step. The linear state equations have to be solved 
many times in some application algorithms because the 
linear state equations reside in the time loop of the algo- 
rithms. Therefore, the computational time for solving 
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eqn. 1 is usually the dominant factor of the computa- 
tional time of the algorithm, especially when n is large. 

To speed up the computation of solving eqn. 1, paral- 
lel processing techniques may be used. As we know, the 
systolic array [l] is a synchronous VLSI computing 
network composed of many processor elements (PE) and 
local interconnection lines. It exploits the great potential 
of pipelining and multiprocessing which can solve 
computation-bound problems very efficiently. In the past 
few years, several systematic design methods [2-81 have 
been proposed to synthesise the systolic array. 

To effectively solve eqn. 1, a two-dimensional systolic- 
array system has been successfully designed by the 
authors [9]. In this design, the matrix-vector 
multiplication-accumulation process was chosen to 
compute B(t,) = B’(t,) + CU(t,) and then the Gauss- 
Jordan algorithm was selected to solve AV(t,)  = B(tn). 
These two algorithms were described in a locally recur- 
sive single-assignment (LRSA) form, by which the 
geometry representations of each algorithm (i.e. the 
dependence graph (DG) [2, 3, 91) can be easily derived 
and then linked together. Because of the different func- 
tions of nodes and input/output requirements on the DG, 
tag codes have been added to the index nodes [l 13. The 
concepts of adding the tag codes are described in detail in 
Reference 9. Their LRSA form and the linked D G  with a 
tag code for the case n = m = 4 are shown in Figs. 1 and 
2, respectively. From this DG, a two-dimensional 
systolic-array system with tag bits has been designed by 
applying the time-scheduling and node-assignment pro- 
jection procedure [16] along the i direction, as shown in 
Fig. 3. The computation time, i.e. latency, is reduced from 
O[(n3/2) + n x m] to 4n - 3(4n - 2) if m < n (m = n) and 
the block pipelining rate is n. But the two-dimensional 
systolic-array system uses [(n’ + n)/2 + m] PES, 
(n + 2m + 1) input ports and one output port, respec- 
tively. For large n, the PE number of a two-dimensional 
systolic-array system may be too large to be implemented 
in a VLSI chip. 

The linear state equations may also be solved by a 
one-dimensional linear systolic array. Compared with the 
two-dimensional array, the linear array is better owing to 
its simple hardware, and it also possesses some merits 
such as easy extension, simple interconnections and easy 
incorporation of the fault tolerance design [lo]. In this 
paper, several kinds of linear systolic-array systems are 
proposed. To design the linear systolic-array system by 
intuition, the original two-dimensional systolic-array 
system for solving the linear state equations is projected 
once again. Hence, double projections are applied onto 
the DG and the index space is reduced from three dimen- 
sions to one dimension [16]. As there are fewer PES the 
latency should be increased. 
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/ /B  = B' + C x U ;  C,B:n x in; U. B':n x l / J  
INPUT: C(i,j), E(;), U(0.j)  = U ( j ) ;  
OUTPUT: B(i,m) ; 
FOR(ifrom 1 ton){ 

B(i.0) =E(; ) ;  
FOR(;from 1 tom){ 

U(i, j )  = U(i - 1 j ) ;  
S(i , j )  = B(i,; - 1 ) + C(i,;) x U(;, j ) ;  

1 > 

/ / A X = B , A " = [ A  I B ' L A : n x n , B : n x l , n l  =n+l,uniform/J 
IN PUT : A" (i, j.0) = A"(;,;) ; 
OUTPUT:A"(i,nl.n),i=nto2n-l; 
FOR (k from 1 ton){  

a 

FOR ( i  from k ton +k - l ) {  
D(i,k,k) =A"(i,k,k - 1 ) ;  
I F  (i  equal k )  

FOR ( j f r o m k + l  t on l ){  
D(i,;,k) = D(i, j - 1 k) ; 
C(i,j,k) =A"(i,J,k - l ) /D(i , j ,k);  

> 
FOR ( j f r o m k + l  t o n l ) {  

D(i,j,k) = D(i,j - l k ) ;  
C(i,j,k) = C ( i - l , ; , k ) ;  
A"(i,j,k) =A"( i , j ,k - l )  -D(i,j,k) xC( I j ,k ) :  

ELSE 

> 
;OR (; from k + 1 to nl ) 

A"(n+k,j,k) = C ( n + k - 1 , j . k ) ;  
> 

b 

Fig. 1 LRSAform 
Y Mamx-vector multiplication accumulation 
b Uniform Gausslordan algorithm 

V I  

-tag 

b 

8 4 '  

a 

C d e 

Fig. 2 
n = m = 4  
b B = K + C x U  c C = A J D  d A ' = A - D x C  e A ' = A  

Linked DG with tag code of solving eqn. I for the case of 

V = U  L Y - D  C = C , D ' = D  
A = C  
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To design the one-dimensional systolic-array system, one 
promising way is that the second projection is directly 
applied onto the designed two-dimensional systolic-array 
system which is shown in Fig. 3. By doing so, the same 

Linear systolic-array system w i t h  FIFO m e m o r y  

v4 
v3 
v 2  
V I  

taa CodPS &- x x x x x x x x x  0 1 1 1 0 

0 0 0 all 
0 0 a12 a21 
0 a13 a22 a31 

ul  c11 0 0  0 0 0 0 a14 a23 a32 a41 

b'4 ti3 62 til 

ul cZlu2c12 0 0 0 0 a24 a33 a42 
ul c31 u2c22u3cl3 0 0 a34 a43 
ul c41 ~ 2 ~ 3 2 ~ 3 ~ 2 3 ~ 4 ~ 1 4  a44 

u2c42u3c33 u4c24 
U3 c43 u4c34 i 

u4c44 
1 1  

0 

u c  a a 

b C d 

Fig. 3 
direction 
a and c T (Tag). b b = b + c u  d a ' = a  

Two-dimensional systolic-array system by projecting along i 

0' = c 
0 c = aid 

( d = d  

I d = o - d x e  
{ d = d  
i - don't care 

c = c  

projection design method as applied to the DG may be 
used. But first we have to attend to the difference between 
the array and the DG. In contrast to the array, the DG is 
an acyclic-directed graph which is the geometry represen- 
tation of an algorithm and is constructed from a LRSA 
form [2, 3, 91. Although there is much correspondence 
between the PES and nodes, the iterated lines and depen- 
dence arcs in the array and graph, respectively, the major 
difference is that each PE usually processes a sequence of 
data, whereas the DG each node calculates one datum 
only. Thus the procedures of the second projection may 
therefore be the same as the first projection, except the 
time scheduling. To obtain the correct time scheduling 
during the second projection, one promising way is to 
first group the time for processing a sequence of data for 
each original PE in the two-dimensional array as a pack- 
eted time cluster, and then to make the global scheduling 
for different packeted time clusters associated with differ- 
ent original PES. In this way, the local FIFO queue is 
required to store the intermediate results if iterated links 
exist along the secondary projection direction among the 
original PES. 

As a result, in the second projection, the computations 
associated with PES along the node-assignment direction 
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are projected into one new PE. Thus, the pipelining com- 
putations of the data through the PES along the projec- 
tion direction are replaced by sequential computation in 
one new PE. To maintain correct data processing, the 
pipelining data along the second projection direction in 
the two-dimensional systolic array must be saved in a 
sequence according to the second time-scheduling func- 
tion, so that the PES in the one-dimensional systolic 
array can re-use it at the right time to perform all the 
original computation along the projection direction. 
Note that, since during the projection the data computa- 
tion sequence of the two-dimensional systolic array is still 
maintained, no extra controls or global lines are needed. 
Therefore, by applying this time-scheduling node- 
assignment projection procedure, a one-dimensional 
systolic array with a local FIFO stage has been derived. 
The largest size of FIFO memories can be determined by 
the number of data computation of a PE x the number 
of data links along the projection direction. 

Observing Fig. 3, there are two permissable directions, 
k and j, for the second projection on the two-dimensional 
array, and the corresponding linear array structures are 
shown in Figs. 4a and b, respectively. Throughout the 

c 

approach, tag codes [11] are added to the DG to dis- 
tinguish the different functions on the index nodes. The 
tag code assignment is different from that of single pro- 
jection in which only a line of index nodes are mapped 
into a PE. For double projections along the i and k or i 
and j directions, the index nodes of the k-i or j-i plane of 
the DG, respectively, will be mapped into a PE. Nodes 
with different functions in the same plane must therefore 
be assigned by different tag codes, so we assign 0 ,  0 ,  1, 
2, 3', 3", 4 to the index nodes shown in Figs. 5a and b. 
Although the nodes marked with grey dots have the same 
function as others, their input data source is different 
from the others so we assign them with different codes (0 
and 1). In Fig. 5a, we add four transfer nodes to the top 
of the plane to pop out the data. Note that the functions 
of nodes 0 and 0 ,  3' and 3" (marked by 0 and 3, 
respectively) can be combined because no functional 
conflicts. Therefore, it needs five tag codes in these DGs 
in contrast to two tag codes in single projection cases. 
The final designs are shown in Figs. 6 and 7 which corre- 
spond to Figs. 4a and b, respectively. The FIFO length of 
each PE is four because the PES in Fig. 6 and Fig. 7 need 
four data computation. The data sequence of inputs, tag 
bits and the snap shot of operation at some operation 
instants is also shown in Fig. 6. 

The operating functions of each PE and tag codes are 
also shown in the inset of Figs. 6 and 7. With more 
functions mapped into one PE, it is accordingly a little 
more complex than Fig. 3. The latencies in Figs. 6 and 
7 are still the same as they need n(n + 1) + n + n = n2 
+ 3n - 1 and (n + 1)(n + 1) - 1 + n - 1 = n2 + 3n-  1 
clocks, respectively. This is because in each elimination 

a 

0 '  

b 

Fig. 4 Linear array structure 
Y Second projection direction is along the k axis 
b Second projection direction is along the j axis 

first and the second projections, a plane of index nodes 
on the DG are projected into one PE. Consequently, the 
index nodes with different functions will be mapped into 
a PE, and so the PE should have the capability to 
perform different functions. To do this, the appropriate Fig, Tag code in DG 
control signals must be sent to the PE so that the correct 
fUnCtiOn Of the PE will be performed in good time. In our 
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b 

(1 Double projection directions are a,ong the, and axeS 
b Double projection directions are along the i and j axes 
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step they need n + 1 operations in each PE, and between 
each elimination step one time unit is needed to propa- 
gate data. Although the latency increases from (4n - 2) in 
Fig. 3 to (n2 + 3n - 1) in Figs. 6 and 7, the array struc- 
ture is reduced from two dimensions to one dimension. 
From the comparison between Figs. 6 and 7, it is clear 
that the design shown in Fig. 6 will therefore need 

- 
b2 a44 b l  a14 a33 0 0 0 a22 
b4 a14 b l  a34 a43 0 0 a23 a32 
b l  a24 b3 a44 a13 0 a24 a33 a42 
b2 a34 b4 a14 a23 b2 a34 a43 a12 

a b 
b3 a44 
b4 

C 

(n + m) PES with n2 FIFO memory, (n + 2m + 1) input 
ports and one output port and 2n input lines for tags, 
whereas the design in Fig. 7 needs (n + 1) PES with 
(n2 + n) FIFO memory, four input ports and one output 
port and 2n input lines for tags, respectively. With hard- 
ware costs taken into consideration, the latter design is 
superior to the former, but it takes (n2 + 3) time units to 

ul cll 00 0 0 0 0 O x  O x  O x  a l l  
ulc21u2c12 0 0  0 0 0 x 0 x a12000 a21 
ul ~ 3 1 ~ 2 ~ 2 2 ~ 3 ~ 1 3  0 0 0 x a13000a22001 a31 
ulc41 u2c32u3c23u4c14 a14000 a23001 a32001 a41 

U2 c42u3 c33 u4c24 a24001 a3001 a42001 
u3CWU4C34 a34001 a43001 000 

u4cL4 a44001 000 010 
000 011 010 
011 100 010 

Fig. 6 
along k direction of Fig. 3 
a k = 4  b k = 3  c k = 2  d k = l  
d Tag: 

Linear arrays with local FIFO queues designedfrom projection 

T 
d 

OOO c = a l d ; d = d ; n ' = c  
001 o ' = a - e x d ; d ' = d ; e = c  
010 d = n  
011 c = a"id; d = d ;  d I a 
100 o ' = o " - c x d , d ' = d , c = c  

a 
d 

x x x x x x x x x x x x x x x x x x 010010010010011100100100011 -PE$- 
x x x x x x x x x x x x01M)100100100111001001000110111M)1M)m011 

x x x x x x 01001001M)10011100100100011011100100100011011100100100011 

olooloolooloolll00lool00ollolll00~~ollolllooloolM)ollooooo1oo1oo1ooo 

alla21a31a41a12a22a32a42 x a13 a23a33a43 xa14 a24a34a44x 

cll C21C31C41CI2 c22c32c42 xc13c23c33cwxc14 c24c34c44x 
U1 ul U1 ul U2 U2 U2 U2 x U3 U3 U3 U3 x U4 U4 U4 u4x 

b 1'00 
bIOO 
bJOO 
YE, 

l l 0  ~ 

l l 0  I 
110 j 
L!!.J 

810' 

a 

Fig. 7 
along j direction of Fig. 3 
b Tag: c Tag: 

Linear arrays with local FIFO queues designedfrom projection 

00 b = b + c x u  OOO c = a i o " ; o ' = c  
10 B = b = b " + c x u  001 a ' = a - a " x c ; c = c  
11 No operation 010 d = d  

011 c =din";  6 =a''; a' = c 
100 0' = d = a" x e, d = a", e = e 
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100 100 010 
100 100 
100 011 
011 010 
01 1 010 
100 010 
100 010 
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01 1 
nin _ .  
010 
010 
010 
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input the data, whereas the design shown in Fig. 6 needs 
only (2n - 1). Observing the sequence of tag bits in Figs. 
6 and 7, we see that if we change the tag bit value and the 
connection condition of the PE when the tag bit is 
pumped through the array, the function of codes 0 and 3, 
1 and 4 are the same since their connections are suitably 
rearranged. This kind of modified design applied to Fig. 6 
is shown in Fig. 8, where only two tag bits are required. 
The design shown in Fig. 7 can also be modified using a 
similar method. 

b2 a44 
b4 a14 
b l  a24 
b2 a34 

b l  a14a33 
b l  a34 a43 
b3 a44 a13 
b4 a14 a23 

0 0 0 a22 
0 0 a23 a32 
0 a24 a33 a42 
b2 a34 a43 a12 

@@ @ 
b3 a44 
b4 

0 0 0 a12 a21 
0 0 a13 a22 a31 
0 a14 a23 a32 a41 
bl a24 a33 a42 
b2 a34 a43 
b3 a44 d '  
b4 

d 

Modijied design of Fig. 6 Fig. 8 
a k = 4  b k = 3  e k = 2  
d k = l  
Tag: 
00 e = a i d ;  d = d ;  a' = a  
10 a ' = a - c  x d ;  d = d ;  c = c 
01 a ' = e ; s e t d - - a " ; T a g = I I ; c = c  
I 1  a ' = c ; s e t a - - o " ; d ' = d ; c = c  

3 

In many real applications, matrix A in eqn. 1 is sparse 
especially when n is large, i.e. most entries of A are zeros. 
So if we fully utilise this property to modify the systolic 
array in Figs. 6, 7 and 9, to avoid trivial operations 

Linear systolic array with content addressable 
memory 

R 

a 

Fig. 9A 
along i and j axes, respectively 

DG of solving eqn. I and array structures after projection 

As to latency, the systems obtained by applying the 
second projection on Fig. 3 are not the best. Now, let us 
turn to the original 3-D DG which is redrawn in Fig. 9A. 
If the first projection is along the j direction instead of 
the i direction, then during each elimination step k it only 
needs (n + 1 - k) operations in the PES as we can see in 
the DG, where only (n + 1 - k) computations are pro- 
jected into PES in the k direction. So, if the second 
projection is along the k direction, the latency is fn + 1 - k )  + 2n - 1 = (n2 + 7n - 2)/2, where (2n - 1) is 
the time unit to propagate data between PES. Thus, a 
more efficient design is to choose the first projection to 
be along the j direction, and the resulting two- 
dimensional systolic-array system has the same latency 
4n - 2 as in Fig. 3, but the PE number becomes n2. Then 
the second projection is along the k direction using the 
same procedures as in Figs. 6 and 7. The linear systolic 
array thus obtained is shown in Fig. 9B, which stores the 
elements of the same row in one PE. The latency of this 
design is (n2 + 7n - 2)/2 which is two times faster than 
that in Fig. 6, but the PE number is (2n - 1 + m) with 
(&'- n - 2) FIFO memory and four output ports 
which are larger than those of Fig. 6. 
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involving zero elements, and do not store the zero ele- 
ments, then the computation of eqn. 1 may be speeded up 
and the storage amount be reduced. 

But if we only store the nonzero elements of A, the 
data sequence that feeds the right PE at the right time 
will be destroyed. Thus, at each PE when the elimination 
step is carried out and the data are pipelining through 
PES to perform the elimination, we must search for the 
right data that have been stored in the local memory 
when doing the division or multiplication computations. 
This search requirement can be achieved by using the 
content addressable memories (CAM), in which part of 
the memory contents are used to search for the right data 
instead of using address. In this case, each PE stores the 
associated nonzero column (or row) elements in their 
local CAM. 

The idea of using CAM for linear sparse matrix com- 
putation was first proposed in Reference 12. Figs. 10a 
and b are the CAM systolic arrays designed from the 
modification of Figs. 6 and 9, respectively, with data 
format in arbitrary sparseness. The arrays for solving 
B(t,) = B"(t,- ,) + C x U(t,) is not shown here for simpli- 
city. In this design, each data word must include four 
fields: the value of an element, its row (column) index, tag 
bits and an end-of-column (or end-of-row) indication bit. 
The tag bits have the same meaning as in Figs. 6 and 9. 
Because the data sequence is destroyed and the data 
cannot be piped into the array, they must be preloaded 
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into the CAM by a host computer. Also the tags can no 
longer be pipelined into the associated PE. So we attach 

a44 x a33 x bl  can sequentially pop out the data to the PE. 
b4 a14 x a34 a43 x 

k, the first job is to divide the row elements by the diago- 
nal elements. Thus the CAM must have the ability of 
using the row (column) index to search for the data and 

x bl  a24 x b3 a44 a13 
x x b2 a34 x b4 a14 a23 

@@ 
a b 

@ 
a22 0 0 0 
a23 a32 0 0 
a24 a33 a42 0 
b2 a34 a43 a12 

@@@ 
b3 a44 

b4 

C 

a l l  0 0 0 
a12 a21 0 0 
a13 a22 a31 0 
a14 a23 a32 a41 

bl a24 a33 a42 
b2 a34 a43 

b3 a44 
b4 

E h  
a 

b 

FOR (i from 1 ton){ 
Pop out elements of PE i ;  
Transport the elements through the left(right) PES; 
According to the column(row) index to get data from CAM; 
Doing the multiplication or division according to the tag bits; 
} 

C 

a' Fig. 10 C A M  systolic arrays 
Desimed from modification of 

a a 

d 

tag PEA PE B 

0 0  d = a  d=a ,  r = T . s ' = s  
1 0 c'=a/d a '= (aS+a" . s) - c  xd, c' =c, d - d ,  

0 1  d=a", T = T . s ' = s  
1 1  

Fig. 9B 
tions along j and k axes 
a k = 4  b k = 3  c k = 2  d k = l  

r = T s ' = s  

c' =a"/d, r = 10, s' = J  

Linear arrays with local FIFO queues designed from projec- 

the tag bits to the word to control the computation. The 
end-of-column (end-of-row) indication bit is used to 
signal the arriving of the last element of a column (row) 
so as to start the elimination steps started by the next 
column (row) elements. The row (column) index is used 
for CAM to search for the needed data in another 
column (row). The computation flow of Figs. 10a and b is 
shown in Fig. 1Oc. Note that the diagonal elements of 
each column (row) are stored first in each PE so that, 
when popping out the data of column (row) k to carry 
out the kth elimination step, the correct data sequence 
can be obtained. This is because, in the elimination step 
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Y Fig. 6 
b Fig. 9c by using the sparseness property of matrix A 

The latency of the whole system is reduced from 
(n2 + 2n + 1) and (nZ + 7n - 2)/2 to N A  + n and 
N Z  + 2n - 1 (excludes the time of loading input data) 
for Figs. 10a and b, respectively, because the trivial com- 
putations are avoided, where N A  is the number of 
nonzero elements of matrix A and N Z  is the number of 
nonzero elements along and below the diagonal. The 
memory requirement is also reduced from (tn' - n - 2) 
and n2 to N A  + n and N A  + N Z  + 2n - 1, respectively. 
Furthermore, the systolic array in Fig. 10a is superior to 
Fig. 10b not only because it has shorter latency and less 
hardware requirement, but also the data b( .) are needed 
after the nth time unit regardless of the sparseness of 
matrix A ,  whereas that in Fig. 10b is dependent on the 
sparseness of A.  In real applications, especially when n is 
large, each row (column) of matrix A has only a few 
nonzero entries (3 to 4), so N A  and N Z  can be expressed 
as r x n and (r x n + n)/2, respectively, where r denotes 
the average number of nonzero elements in each row. 
Consequently, if we compare the computation time of the 
systolic array with FIFO, i.e. (n2 + 7n - 2)/2, we find 
that much time is saved. In Wing [13], the LU decompo- 
sition method is used to solve A V  = B and it took 
N Z  + 5n - 2 time units to complete the computation, 
whereas in our design of solving eqn. 1, which is much 
complex than solving A V  = B, it takes only N A  + n time 
units (which is less than N Z  + 5n - 2), since N A  + n is 
less than N Z  + 5n - 2 as long as r -= 9. 
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With the advance of VLSI technology, more PES can be 
integrated into one chip, but there are also physical limi- 
tations imposed by the number of 1/0 pins and yield. A 
natural solution is to divide the computation problem 
into smaller problems with a fixed size. 

Many partition methods have been proposed to solve 
this problem [6, 14, 151. Roughly, according to the com- 
putation sequence of the data, they can be categorised 
into two types: i.e. local-serial-global-parallel (LSGP) 
and local-parallel-global-serial (LPGS) [6] which are 
illustrated in Figs. 1 la and b, respectively. Here, consider- 
ing the overlapping of two stages for solving eqn. 1, 
matrix A' is partitioned into r /p1  submatrices of size 
n x p by column. The partition scheme applied to the 
design of Fig. 10a is shown in Fig. 12A. As there are two 
independent iterated arcs on the DG so that the data will 
be changed iteratively along their propagation through 
the index nodes, global memories thereby become a 
necessity to save the intermediate results. The temporary 
results are popped out from the last PE into global mem- 
ories and then fed into the first PE. Therefore, the data 
sequence can be maintained. By doing so, only global 
FIFO memories are required and one global feedback 
line and a switch box are needed in this partition scheme. 
The systolic array with local CAM and global FIFO is 

Partition of linear systolic-array system 

W 

yw 
b 

Fig. 11 
a LSGP 
b LPGS 
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Concept of partitioning and scheduling 

demonstrated in Fig. 12B, which is easily derived from 
Fig. loa. The data flow of the LPGS and LSGP partition 
schemes are shown in Figs. 12C and D, respectively. The 

Fig. 12A Data partition ofmatrix A" 

L+m> .. .. 

I A ( n i p )  I 

U 
0 

LL 
k i - 

Fig. 1 2 8  
C A M  and global FIFO 

Fixed size @) one-dimensional systolic array with local 

FOR(/ from 1 to [nip]){ 
FOR(j from i to [nip]){ 

IF(jequal i )  
FOR(column k from 1 top of Ab,){ 

Sequently pop elements of the (I  - 1) x [nip1 + k column 
out from CAM of PE k top; 
Normal Gauss-Jodan operation for matrix column 
from ( j  - 1 ) x [nip1 + 1 to j x [n/p1; 

} 
ELSE 

FOR(each element in FIFO queue){ 
Sequently pop elements out from FIFO; 
Normal Gauss-Jordan operation for matrix 
column from ( j  - 1) x ln/pl + k  toj  x [nip]; 

} 

Fig. 12C LPGS dataflows 

FOR(/ from 1 ton){ 
Sequently pop elements of matrix column i from CAM of 
P E ( ( / - l ) m o d p ) + l ;  
Normal Gauss-Jordan operation for calumn from i to [n/p1 x p ;  
FOR(j  from [nip1 + 1 to (n/p1){ 

Sequently pop elements out from FIFO; 
Normal Gauss-Jordan operation for matrix columns from 
( j -1 )  X p t o j X p ;  

1 
> 
Fig. 12D LSGP dataflow 

size of the FIFO queue is determined by the nonzero ele- 
ments of matrix A for the LPGS scheme or by the 
maximum number of nonzero elements in the column 
vector of matrix A for the LSGP scheme. The latency can 
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Table 1 : Analvses of various svlltolic arrava solving Ban. 1 
___ 

Algorithm Data link Concurrency T BT PE M O/l T x (PE/M) 

Fully parallel 
(Fig. 2 )  

Global link n2 
n3 

2n+m 1 - 0 nln’ n4 

n2 
Local link K x n 4n n -  0 l / n  2n3 Local parallel 

(Fig. 3) 

Local FIFO n 
Local memory parallel 

(Fig. 8)  

Local CAM n 
Local memory parallel 

(Fig. 10) 

Serial Local memory 1 

n2 
n2 - n2 - n n2 1,h - x  (n/n‘) 
2 2  2 

NA NA n NA l /n  NA x (n/NA) 

T=latency, BT=block pipelining period, PE=processor element, M=memory. K=variable from 1 t o n  
The number in this table is the order of the complexity 

be computed as follows: 

LPGS : 
WPl 

i - 1  
latency = 1 (Nbi + p - 1) x (rn/pi - i) 

(rn/Pi(r/pi + 1)) 
2 

= ((r + l)p - 1) x 

m2 
2P 

% _  - 
LSGP: 

Inlpl 
latency = p 1 (r + p - 1) x ([/pi - i + 1) 

i = l  

where Nbi = rp is the number of nonzero elements in p 
column. 

Due to the partition, the latency increases by a factor 
(n/2p), and a small array size will therefore pay a greater 
latency. The advance of using sparseness properties is to 
reduce the latency by a factor of (n/r). 

5 Discussion 

The one-dimensional linear systolic-array system with 
local FIFO, the linear systolic-array system with local 
CAM and the one-dimensional fixed-size linear systolic- 
array system with local CAM and global FIFO are all 
successfully designed by our DG approach. Which systol- 
ic array system is suitable to solve the problem is an 
interesting issue and would be determined by some prac- 
tical considerations. Table 1 summarises the comparisons 
of the features and performance for the various systolic- 
array systems. Besides those designs in this paper, the 
Table also includes a fully parallel design, which corre- 
sponds to a three-dimensional systolic-array system, and 
one processor system executing a serial algorithm, which 
may agree with the design obtained by triple projection 
on the three-dimensional DG. 
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