
Design of one-dimensional systolic-array systems
for linear state equations

C.-W. Jen
S.-J. JOU

Indexing t e r m : Electronic circuits, Matrix algebra

Abstract: To solve linear state equations, a two-
dimensional systolic-array system has been pro-
posed [SI. For the same purpose, various kinds of
one-dimensional arrays are designed in the paper.
The linear systolic-array system with first-in-first-
out (FIFO) queues can be designed by applying
double projections from the three-dimensional
dependence graph (DG). As the array thus
designed needs processors with multifunction
operations and various input/output require-
ments, tag control bits are incorporated, and so
make the overall computation more efficient. Fur-
thermore, a linear systolic-array system with
content addressable memory (CAM) is designed
which can use the advantage of matrix sparseness
to reduce the overall computation time. The parti-
tion scheme of the linear systolic-array system is
also proposed to match the limitation of the pin
number and the chip area. Finally, the cost and
performance of all the class of systolic-array
systems for solving linear state equations are illus-
trated.

1 Introduction

In many applications, such as the emulation of control
system and the transient analysis in circuit simulatjon, it
is necessary to solve the linear state equation V(t) =
A’V(t) + CU(t), where V(t) is a vector variable of size n,
v (t) is the time derivative of V(t), U(t) is the input vector
of size m, A’ and C are n x n and n x m matrixes, respec-
tively. To solve this linear state equation in a discrete-
time system, the numerical integration method (for
example, the backward Euler method) is often used to
transform the differential equations into the following
discrete-time matrix form:

AV(t,J = E (t , - ,) + CU(t ,) (1)

where A = [A’ + (l/h)Il, h = tn - t,- B’(fn-l) =
(l/h)V(tn-l), I is the identity matrix and t , is the time at
the nth step. The linear state equations have to be solved
many times in some application algorithms because the
linear state equations reside in the time loop of the algo-
rithms. Therefore, the computational time for solving

Paper 70336 (EIO), first received 15th November 1988 and in revised
form 26th September 1989
The authors are with the Institute of Electronics, National Chiao Tung
University, 75 Po-Ai St. Hsinchu, Taiwan, Republic of China

IEE PROCEEDINGS, Vol. 137, Pt . G, No. 3, J U N E 1990

eqn. 1 is usually the dominant factor of the computa-
tional time of the algorithm, especially when n is large.

To speed up the computation of solving eqn. 1, paral-
lel processing techniques may be used. As we know, the
systolic array [l] is a synchronous VLSI computing
network composed of many processor elements (PE) and
local interconnection lines. It exploits the great potential
of pipelining and multiprocessing which can solve
computation-bound problems very efficiently. In the past
few years, several systematic design methods [2-81 have
been proposed to synthesise the systolic array.

To effectively solve eqn. 1, a two-dimensional systolic-
array system has been successfully designed by the
authors [9]. In this design, the matrix-vector
multiplication-accumulation process was chosen to
compute B(t,) = B’(t,) + CU(t,) and then the Gauss-
Jordan algorithm was selected to solve AV(t,) = B(tn).
These two algorithms were described in a locally recur-
sive single-assignment (LRSA) form, by which the
geometry representations of each algorithm (i.e. the
dependence graph (DG) [2, 3, 91) can be easily derived
and then linked together. Because of the different func-
tions of nodes and input/output requirements on the DG,
tag codes have been added to the index nodes [l 13. The
concepts of adding the tag codes are described in detail in
Reference 9. Their LRSA form and the linked D G with a
tag code for the case n = m = 4 are shown in Figs. 1 and
2, respectively. From this DG, a two-dimensional
systolic-array system with tag bits has been designed by
applying the time-scheduling and node-assignment pro-
jection procedure [16] along the i direction, as shown in
Fig. 3. The computation time, i.e. latency, is reduced from
O[(n3/2) + n x m] to 4n - 3(4n - 2) if m < n (m = n) and
the block pipelining rate is n. But the two-dimensional
systolic-array system uses [(n’ + n)/2 + m] PES,
(n + 2m + 1) input ports and one output port, respec-
tively. For large n, the PE number of a two-dimensional
systolic-array system may be too large to be implemented
in a VLSI chip.

The linear state equations may also be solved by a
one-dimensional linear systolic array. Compared with the
two-dimensional array, the linear array is better owing to
its simple hardware, and it also possesses some merits
such as easy extension, simple interconnections and easy
incorporation of the fault tolerance design [lo]. In this
paper, several kinds of linear systolic-array systems are
proposed. To design the linear systolic-array system by
intuition, the original two-dimensional systolic-array
system for solving the linear state equations is projected
once again. Hence, double projections are applied onto
the DG and the index space is reduced from three dimen-
sions to one dimension [16]. As there are fewer PES the
latency should be increased.

185

/ /B = B' + C x U ; C,B:n x in; U. B':n x l / J
INPUT: C(i,j), E(;), U(0.j) = U (j) ;
OUTPUT: B(i,m) ;
FOR(ifrom 1 ton){

B(i.0) =E(;) ;
FOR(;from 1 tom){

U(i, j) = U(i - 1 j) ;
S(i , j) = B(i,; - 1) + C(i,;) x U(;, j) ;

1 >

/ / A X = B , A " = [A I B ' L A : n x n , B : n x l , n l =n+l,uniform/J
IN PUT : A" (i, j.0) = A"(;,;) ;
OUTPUT:A"(i,nl.n),i=nto2n-l;
FOR (k from 1 ton){

a

FOR (i from k ton +k - l) {
D(i,k,k) =A"(i,k,k - 1) ;
I F (i equal k)

FOR (j f r o m k + l t on l){
D(i,;,k) = D(i, j - 1 k) ;
C(i,j,k) =A"(i,J,k - l) /D(i , j ,k);

>
FOR (j f r o m k + l t o n l) {

D(i,j,k) = D(i,j - l k) ;
C(i,j,k) = C (i - l , ; , k) ;
A"(i,j,k) =A"(i , j ,k - l) -D(i,j,k) xC(I j ,k) :

ELSE

>
;OR (; from k + 1 to nl)

A"(n+k,j,k) = C (n + k - 1 , j . k) ;
>

b

Fig. 1 LRSAform
Y Mamx-vector multiplication accumulation
b Uniform Gausslordan algorithm

V I

-tag

b

8 4 '

a

C d e

Fig. 2
n = m = 4
b B = K + C x U c C = A J D d A ' = A - D x C e A ' = A

Linked DG with tag code of solving eqn. I for the case of

V = U L Y - D C = C , D ' = D
A = C

186

2

To design the one-dimensional systolic-array system, one
promising way is that the second projection is directly
applied onto the designed two-dimensional systolic-array
system which is shown in Fig. 3. By doing so, the same

Linear systolic-array system w i t h FIFO m e m o r y

v4
v3
v 2
V I

taa CodPS &- x x x x x x x x x 0 1 1 1 0

0 0 0 all
0 0 a12 a21
0 a13 a22 a31

ul c11 0 0 0 0 0 0 a14 a23 a32 a41

b'4 ti3 62 til

ul cZlu2c12 0 0 0 0 a24 a33 a42
ul c31 u2c22u3cl3 0 0 a34 a43
ul c41 ~ 2 ~ 3 2 ~ 3 ~ 2 3 ~ 4 ~ 1 4 a44

u2c42u3c33 u4c24
U3 c43 u4c34 i

u4c44
1 1

0

u c a a

b C d

Fig. 3
direction
a and c T (Tag). b b = b + c u d a ' = a

Two-dimensional systolic-array system by projecting along i

0' = c
0 c = aid

(d = d

I d = o - d x e
{ d = d
i - don't care

c = c

projection design method as applied to the DG may be
used. But first we have to attend to the difference between
the array and the DG. In contrast to the array, the DG is
an acyclic-directed graph which is the geometry represen-
tation of an algorithm and is constructed from a LRSA
form [2, 3, 91. Although there is much correspondence
between the PES and nodes, the iterated lines and depen-
dence arcs in the array and graph, respectively, the major
difference is that each PE usually processes a sequence of
data, whereas the DG each node calculates one datum
only. Thus the procedures of the second projection may
therefore be the same as the first projection, except the
time scheduling. To obtain the correct time scheduling
during the second projection, one promising way is to
first group the time for processing a sequence of data for
each original PE in the two-dimensional array as a pack-
eted time cluster, and then to make the global scheduling
for different packeted time clusters associated with differ-
ent original PES. In this way, the local FIFO queue is
required to store the intermediate results if iterated links
exist along the secondary projection direction among the
original PES.

As a result, in the second projection, the computations
associated with PES along the node-assignment direction

IEE PROCEEDINGS, Vol. 137, Pt. G , No. 3, J U N E 1990

are projected into one new PE. Thus, the pipelining com-
putations of the data through the PES along the projec-
tion direction are replaced by sequential computation in
one new PE. To maintain correct data processing, the
pipelining data along the second projection direction in
the two-dimensional systolic array must be saved in a
sequence according to the second time-scheduling func-
tion, so that the PES in the one-dimensional systolic
array can re-use it at the right time to perform all the
original computation along the projection direction.
Note that, since during the projection the data computa-
tion sequence of the two-dimensional systolic array is still
maintained, no extra controls or global lines are needed.
Therefore, by applying this time-scheduling node-
assignment projection procedure, a one-dimensional
systolic array with a local FIFO stage has been derived.
The largest size of FIFO memories can be determined by
the number of data computation of a PE x the number
of data links along the projection direction.

Observing Fig. 3, there are two permissable directions,
k and j, for the second projection on the two-dimensional
array, and the corresponding linear array structures are
shown in Figs. 4a and b, respectively. Throughout the

c

approach, tag codes [11] are added to the DG to dis-
tinguish the different functions on the index nodes. The
tag code assignment is different from that of single pro-
jection in which only a line of index nodes are mapped
into a PE. For double projections along the i and k or i
and j directions, the index nodes of the k-i or j-i plane of
the DG, respectively, will be mapped into a PE. Nodes
with different functions in the same plane must therefore
be assigned by different tag codes, so we assign 0 , 0 , 1,
2, 3', 3", 4 to the index nodes shown in Figs. 5a and b.
Although the nodes marked with grey dots have the same
function as others, their input data source is different
from the others so we assign them with different codes (0
and 1). In Fig. 5a, we add four transfer nodes to the top
of the plane to pop out the data. Note that the functions
of nodes 0 and 0 , 3' and 3" (marked by 0 and 3,
respectively) can be combined because no functional
conflicts. Therefore, it needs five tag codes in these DGs
in contrast to two tag codes in single projection cases.
The final designs are shown in Figs. 6 and 7 which corre-
spond to Figs. 4a and b, respectively. The FIFO length of
each PE is four because the PES in Fig. 6 and Fig. 7 need
four data computation. The data sequence of inputs, tag
bits and the snap shot of operation at some operation
instants is also shown in Fig. 6.

The operating functions of each PE and tag codes are
also shown in the inset of Figs. 6 and 7. With more
functions mapped into one PE, it is accordingly a little
more complex than Fig. 3. The latencies in Figs. 6 and
7 are still the same as they need n(n + 1) + n + n = n2
+ 3n - 1 and (n + 1)(n + 1) - 1 + n - 1 = n2 + 3n- 1
clocks, respectively. This is because in each elimination

a

0 '

b

Fig. 4 Linear array structure
Y Second projection direction is along the k axis
b Second projection direction is along the j axis

first and the second projections, a plane of index nodes
on the DG are projected into one PE. Consequently, the
index nodes with different functions will be mapped into
a PE, and so the PE should have the capability to
perform different functions. To do this, the appropriate Fig, Tag code in DG
control signals must be sent to the PE so that the correct
fUnCtiOn Of the PE will be performed in good time. In our

IEE PROCEEDINGS, Vol. 137, Pf. G, No. 3, J U N E 1990

b

(1 Double projection directions are a,ong the, and axeS
b Double projection directions are along the i and j axes

187

step they need n + 1 operations in each PE, and between
each elimination step one time unit is needed to propa-
gate data. Although the latency increases from (4n - 2) in
Fig. 3 to (n2 + 3n - 1) in Figs. 6 and 7, the array struc-
ture is reduced from two dimensions to one dimension.
From the comparison between Figs. 6 and 7, it is clear
that the design shown in Fig. 6 will therefore need

-
b2 a44 b l a14 a33 0 0 0 a22
b4 a14 b l a34 a43 0 0 a23 a32
b l a24 b3 a44 a13 0 a24 a33 a42
b2 a34 b4 a14 a23 b2 a34 a43 a12

a b
b3 a44
b4

C

(n + m) PES with n2 FIFO memory, (n + 2m + 1) input
ports and one output port and 2n input lines for tags,
whereas the design in Fig. 7 needs (n + 1) PES with
(n2 + n) FIFO memory, four input ports and one output
port and 2n input lines for tags, respectively. With hard-
ware costs taken into consideration, the latter design is
superior to the former, but it takes (n2 + 3) time units to

ul cll 00 0 0 0 0 O x O x O x a l l
ulc21u2c12 0 0 0 0 0 x 0 x a12000 a21
ul ~ 3 1 ~ 2 ~ 2 2 ~ 3 ~ 1 3 0 0 0 x a13000a22001 a31
ulc41 u2c32u3c23u4c14 a14000 a23001 a32001 a41

U2 c42u3 c33 u4c24 a24001 a3001 a42001
u3CWU4C34 a34001 a43001 000

u4cL4 a44001 000 010
000 011 010
011 100 010

Fig. 6
along k direction of Fig. 3
a k = 4 b k = 3 c k = 2 d k = l
d Tag:

Linear arrays with local FIFO queues designedfrom projection

T
d

OOO c = a l d ; d = d ; n ' = c
001 o ' = a - e x d ; d ' = d ; e = c
010 d = n
011 c = a"id; d = d ; d I a
100 o ' = o " - c x d , d ' = d , c = c

a
d

x x x x x x x x x x x x x x x x x x 010010010010011100100100011 -PE$-
x x x x x x x x x x x x01M)100100100111001001000110111M)1M)m011

x x x x x x 01001001M)10011100100100011011100100100011011100100100011

olooloolooloolll00lool00ollolll00~~ollolllooloolM)ollooooo1oo1oo1ooo

alla21a31a41a12a22a32a42 x a13 a23a33a43 xa14 a24a34a44x

cll C21C31C41CI2 c22c32c42 xc13c23c33cwxc14 c24c34c44x
U1 ul U1 ul U2 U2 U2 U2 x U3 U3 U3 U3 x U4 U4 U4 u4x

b 1'00
bIOO
bJOO
YE,

l l 0 ~

l l 0 I
110 j
L!!.J

810'

a

Fig. 7
along j direction of Fig. 3
b Tag: c Tag:

Linear arrays with local FIFO queues designedfrom projection

00 b = b + c x u OOO c = a i o " ; o ' = c
10 B = b = b " + c x u 001 a ' = a - a " x c ; c = c
11 No operation 010 d = d

011 c =din"; 6 =a''; a' = c
100 0' = d = a" x e, d = a", e = e

188

b

100 100 010
100 100
100 011
011 010
01 1 010
100 010
100 010
100
01 1
nin _ .
010
010
010

a'
A ."h-'
i d

C

I E E PROCEEDINGS, Vol. 137, Pt . G, No. 3, J U N E I990

input the data, whereas the design shown in Fig. 6 needs
only (2n - 1). Observing the sequence of tag bits in Figs.
6 and 7, we see that if we change the tag bit value and the
connection condition of the PE when the tag bit is
pumped through the array, the function of codes 0 and 3,
1 and 4 are the same since their connections are suitably
rearranged. This kind of modified design applied to Fig. 6
is shown in Fig. 8, where only two tag bits are required.
The design shown in Fig. 7 can also be modified using a
similar method.

b2 a44
b4 a14
b l a24
b2 a34

b l a14a33
b l a34 a43
b3 a44 a13
b4 a14 a23

0 0 0 a22
0 0 a23 a32
0 a24 a33 a42
b2 a34 a43 a12

@@ @
b3 a44
b4

0 0 0 a12 a21
0 0 a13 a22 a31
0 a14 a23 a32 a41
bl a24 a33 a42
b2 a34 a43
b3 a44 d '
b4

d

Modijied design of Fig. 6 Fig. 8
a k = 4 b k = 3 e k = 2
d k = l
Tag:
00 e = a i d ; d = d ; a' = a
10 a ' = a - c x d ; d = d ; c = c
01 a ' = e ; s e t d - - a " ; T a g = I I ; c = c
I 1 a ' = c ; s e t a - - o " ; d ' = d ; c = c

3

In many real applications, matrix A in eqn. 1 is sparse
especially when n is large, i.e. most entries of A are zeros.
So if we fully utilise this property to modify the systolic
array in Figs. 6, 7 and 9, to avoid trivial operations

Linear systolic array with content addressable
memory

R

a

Fig. 9A
along i and j axes, respectively

DG of solving eqn. I and array structures after projection

As to latency, the systems obtained by applying the
second projection on Fig. 3 are not the best. Now, let us
turn to the original 3-D DG which is redrawn in Fig. 9A.
If the first projection is along the j direction instead of
the i direction, then during each elimination step k it only
needs (n + 1 - k) operations in the PES as we can see in
the DG, where only (n + 1 - k) computations are pro-
jected into PES in the k direction. So, if the second
projection is along the k direction, the latency is fn + 1 - k) + 2n - 1 = (n2 + 7n - 2)/2, where (2n - 1) is
the time unit to propagate data between PES. Thus, a
more efficient design is to choose the first projection to
be along the j direction, and the resulting two-
dimensional systolic-array system has the same latency
4n - 2 as in Fig. 3, but the PE number becomes n2. Then
the second projection is along the k direction using the
same procedures as in Figs. 6 and 7. The linear systolic
array thus obtained is shown in Fig. 9B, which stores the
elements of the same row in one PE. The latency of this
design is (n2 + 7n - 2)/2 which is two times faster than
that in Fig. 6, but the PE number is (2n - 1 + m) with
(&'- n - 2) FIFO memory and four output ports
which are larger than those of Fig. 6.

IEE PROCEEDINGS, Vol. 137, Pt. G , No. 3, J U N E 1990

involving zero elements, and do not store the zero ele-
ments, then the computation of eqn. 1 may be speeded up
and the storage amount be reduced.

But if we only store the nonzero elements of A, the
data sequence that feeds the right PE at the right time
will be destroyed. Thus, at each PE when the elimination
step is carried out and the data are pipelining through
PES to perform the elimination, we must search for the
right data that have been stored in the local memory
when doing the division or multiplication computations.
This search requirement can be achieved by using the
content addressable memories (CAM), in which part of
the memory contents are used to search for the right data
instead of using address. In this case, each PE stores the
associated nonzero column (or row) elements in their
local CAM.

The idea of using CAM for linear sparse matrix com-
putation was first proposed in Reference 12. Figs. 10a
and b are the CAM systolic arrays designed from the
modification of Figs. 6 and 9, respectively, with data
format in arbitrary sparseness. The arrays for solving
B(t,) = B"(t,- ,) + C x U(t,) is not shown here for simpli-
city. In this design, each data word must include four
fields: the value of an element, its row (column) index, tag
bits and an end-of-column (or end-of-row) indication bit.
The tag bits have the same meaning as in Figs. 6 and 9.
Because the data sequence is destroyed and the data
cannot be piped into the array, they must be preloaded

189

into the CAM by a host computer. Also the tags can no
longer be pipelined into the associated PE. So we attach

a44 x a33 x bl can sequentially pop out the data to the PE.
b4 a14 x a34 a43 x

k, the first job is to divide the row elements by the diago-
nal elements. Thus the CAM must have the ability of
using the row (column) index to search for the data and

x bl a24 x b3 a44 a13
x x b2 a34 x b4 a14 a23

@@
a b

@
a22 0 0 0
a23 a32 0 0
a24 a33 a42 0
b2 a34 a43 a12

@@@
b3 a44

b4

C

a l l 0 0 0
a12 a21 0 0
a13 a22 a31 0
a14 a23 a32 a41

bl a24 a33 a42
b2 a34 a43

b3 a44
b4

E h
a

b

FOR (i from 1 ton){
Pop out elements of PE i ;
Transport the elements through the left(right) PES;
According to the column(row) index to get data from CAM;
Doing the multiplication or division according to the tag bits;
}

C

a' Fig. 10 C A M systolic arrays
Desimed from modification of

a a

d

tag PEA PE B

0 0 d = a d=a , r = T . s ' = s
1 0 c'=a/d a '= (aS+a" . s) - c xd, c' =c, d - d ,

0 1 d=a", T = T . s ' = s
1 1

Fig. 9B
tions along j and k axes
a k = 4 b k = 3 c k = 2 d k = l

r = T s ' = s

c' =a"/d, r = 10, s' = J

Linear arrays with local FIFO queues designed from projec-

the tag bits to the word to control the computation. The
end-of-column (end-of-row) indication bit is used to
signal the arriving of the last element of a column (row)
so as to start the elimination steps started by the next
column (row) elements. The row (column) index is used
for CAM to search for the needed data in another
column (row). The computation flow of Figs. 10a and b is
shown in Fig. 1Oc. Note that the diagonal elements of
each column (row) are stored first in each PE so that,
when popping out the data of column (row) k to carry
out the kth elimination step, the correct data sequence
can be obtained. This is because, in the elimination step

190

Y Fig. 6
b Fig. 9c by using the sparseness property of matrix A

The latency of the whole system is reduced from
(n2 + 2n + 1) and (nZ + 7n - 2)/2 to N A + n and
N Z + 2n - 1 (excludes the time of loading input data)
for Figs. 10a and b, respectively, because the trivial com-
putations are avoided, where N A is the number of
nonzero elements of matrix A and N Z is the number of
nonzero elements along and below the diagonal. The
memory requirement is also reduced from (tn' - n - 2)
and n2 to N A + n and N A + N Z + 2n - 1, respectively.
Furthermore, the systolic array in Fig. 10a is superior to
Fig. 10b not only because it has shorter latency and less
hardware requirement, but also the data b(.) are needed
after the nth time unit regardless of the sparseness of
matrix A , whereas that in Fig. 10b is dependent on the
sparseness of A. In real applications, especially when n is
large, each row (column) of matrix A has only a few
nonzero entries (3 to 4), so N A and N Z can be expressed
as r x n and (r x n + n)/2, respectively, where r denotes
the average number of nonzero elements in each row.
Consequently, if we compare the computation time of the
systolic array with FIFO, i.e. (n2 + 7n - 2)/2, we find
that much time is saved. In Wing [13], the LU decompo-
sition method is used to solve A V = B and it took
N Z + 5n - 2 time units to complete the computation,
whereas in our design of solving eqn. 1, which is much
complex than solving A V = B, it takes only N A + n time
units (which is less than N Z + 5n - 2), since N A + n is
less than N Z + 5n - 2 as long as r -= 9.

IEE PROCEEDINGS, Vol. 137, Pt . G , No. 3, J U N E 1990

4

With the advance of VLSI technology, more PES can be
integrated into one chip, but there are also physical limi-
tations imposed by the number of 1/0 pins and yield. A
natural solution is to divide the computation problem
into smaller problems with a fixed size.

Many partition methods have been proposed to solve
this problem [6, 14, 151. Roughly, according to the com-
putation sequence of the data, they can be categorised
into two types: i.e. local-serial-global-parallel (LSGP)
and local-parallel-global-serial (LPGS) [6] which are
illustrated in Figs. 1 la and b, respectively. Here, consider-
ing the overlapping of two stages for solving eqn. 1,
matrix A' is partitioned into r /p1 submatrices of size
n x p by column. The partition scheme applied to the
design of Fig. 10a is shown in Fig. 12A. As there are two
independent iterated arcs on the DG so that the data will
be changed iteratively along their propagation through
the index nodes, global memories thereby become a
necessity to save the intermediate results. The temporary
results are popped out from the last PE into global mem-
ories and then fed into the first PE. Therefore, the data
sequence can be maintained. By doing so, only global
FIFO memories are required and one global feedback
line and a switch box are needed in this partition scheme.
The systolic array with local CAM and global FIFO is

Partition of linear systolic-array system

W

yw
b

Fig. 11
a LSGP
b LPGS

IEE PROCEEDINGS, Vol. 137, Pt. G , No. 3, J U N E I990

Concept of partitioning and scheduling

demonstrated in Fig. 12B, which is easily derived from
Fig. loa. The data flow of the LPGS and LSGP partition
schemes are shown in Figs. 12C and D, respectively. The

Fig. 12A Data partition ofmatrix A"

L+m>

I A (n i p) I

U
0

LL
k i -

Fig. 1 2 8
C A M and global FIFO

Fixed size @) one-dimensional systolic array with local

FOR(/ from 1 to [nip]){
FOR(j from i to [nip]){

IF(jequal i)
FOR(column k from 1 top of Ab,){

Sequently pop elements of the (I - 1) x [nip1 + k column
out from CAM of PE k top;
Normal Gauss-Jodan operation for matrix column
from (j - 1) x [nip1 + 1 to j x [n/p1;

}
ELSE

FOR(each element in FIFO queue){
Sequently pop elements out from FIFO;
Normal Gauss-Jordan operation for matrix
column from (j - 1) x ln/pl + k toj x [nip];

}

Fig. 12C LPGS dataflows

FOR(/ from 1 ton){
Sequently pop elements of matrix column i from CAM of
P E ((/ - l) m o d p) + l ;
Normal Gauss-Jordan operation for calumn from i to [n/p1 x p ;
FOR(j from [nip1 + 1 to (n/p1){

Sequently pop elements out from FIFO;
Normal Gauss-Jordan operation for matrix columns from
(j -1) X p t o j X p ;

1
>
Fig. 12D LSGP dataflow

size of the FIFO queue is determined by the nonzero ele-
ments of matrix A for the LPGS scheme or by the
maximum number of nonzero elements in the column
vector of matrix A for the LSGP scheme. The latency can

191

Table 1 : Analvses of various svlltolic arrava solving Ban. 1

Algorithm Data link Concurrency T BT PE M O/l T x (PE/M)

Fully parallel
(Fig. 2)

Global link n2
n3

2n+m 1 - 0 nln’ n4

n2
Local link K x n 4n n - 0 l / n 2n3 Local parallel

(Fig. 3)

Local FIFO n
Local memory parallel

(Fig. 8)

Local CAM n
Local memory parallel

(Fig. 10)

Serial Local memory 1

n2
n2 - n2 - n n2 1,h - x (n/n‘)
2 2 2

NA NA n NA l /n NA x (n/NA)

T=latency, BT=block pipelining period, PE=processor element, M=memory. K=variable from 1 t o n
The number in this table is the order of the complexity

be computed as follows:

LPGS :
WPl

i - 1
latency = 1 (Nbi + p - 1) x (rn/pi - i)

(rn/Pi(r/pi + 1))
2

= ((r + l)p - 1) x

m2
2P

% _ -
LSGP:

Inlpl
latency = p 1 (r + p - 1) x ([/pi - i + 1)

i = l

where Nbi = rp is the number of nonzero elements in p
column.

Due to the partition, the latency increases by a factor
(n/2p), and a small array size will therefore pay a greater
latency. The advance of using sparseness properties is to
reduce the latency by a factor of (n/r).

5 Discussion

The one-dimensional linear systolic-array system with
local FIFO, the linear systolic-array system with local
CAM and the one-dimensional fixed-size linear systolic-
array system with local CAM and global FIFO are all
successfully designed by our DG approach. Which systol-
ic array system is suitable to solve the problem is an
interesting issue and would be determined by some prac-
tical considerations. Table 1 summarises the comparisons
of the features and performance for the various systolic-
array systems. Besides those designs in this paper, the
Table also includes a fully parallel design, which corre-
sponds to a three-dimensional systolic-array system, and
one processor system executing a serial algorithm, which
may agree with the design obtained by triple projection
on the three-dimensional DG.

6 A c k n o w l e d g m e n t

This work was supported by the National Science
Council, Taiwan ROC under Grant NSC77-0201-EO09-
01.

7 R e f e r e n c e s

I KUNG, H.T., and LEISERSON, C.E.: ‘Systolic arrays for VLSI’.
Proceedings of SIAM, Sparse Matrix Symposium, 1978, pp. 256282

2 KUNG, S.Y., LO, S.C., and LEWIS, P.A.: ‘Optimal systolic design
for the transitive closure and the shortest path problems’, IEEE
Trans., 1987, C-36, (5), pp, 603414

3 GACHET, P., JOINNAULT, B., and QUITTON, P.: ‘Synthesizing
systolic arrays using DIASTOL’. International Workshop of Systol-
ic Arrays, University of Oxford, Department for External Studies,
2nd4th July 1986, pp. F4.1LF4.12

4 CHEN, M.C.: ‘Synthesizing systolic design’. Proceedings of Interna-
tional Symposium on VLSI Technology, Systems and Applications,
Taiwan ROC, May 1985, pp. 209-215

5 MOLDOVAN, D.1.: ‘ADVIS: a software package for the design of
systolic arrays’, IEEE Trans., 1987, CAD-6, (I) , pp. 3 3 4 0

6 MOLDOVAN, D.I., and FORTES, J.A.B.: ‘Partition and mapping
algorithm into fixed size systolic arrays’, IEEE Trans., 1986, C-35,

7 FORTES, J.A.B., FU, K.S.,’ and WAH, B.W.: ‘Systematic
approaches to the design of algorithmic specified systolic arrays‘.
Proceedings of IEEE ICASSP, Piscataway, NJ, USA, 1985, pp.
891-895

8 L1, G.L., and WAH, B.W.: ‘The design of optimal systolic arrays’,
IEEE Trans., 1985, C-34, (1). pp. 6 6 7 7

9 JOU, S.J., and JEN, C.W.: ‘The design of systolic array system for
solving linear state equations’, IEE Proc. G , 1988, 135, (5) , pp.
211-218

10 RAMAKRISHNAN, I.V., and VARMAN, P.J.: ‘Synthesis of an
optimal family of matrix multiplication algorithms on linear array’,
IEEE Trans., 1986, C-35, (11)

11 JEN, C.W., and HSU, H.Y.: ‘The design of a systolic array with tags
input’. ISCAS, 1988, pp. 2263-2266

12 KIECKHAFER, R.M., and POTTLE, C.: ‘A processor array for
factorization of unstructured sparse matrices’. IEEE International
Conference on Circuits and Computers, 1982, pp. 38&382

13 WING, 0.: ‘A content-addressable systolic array for sparse matrix
computation’, J. Parallel Distrib. Cornput., 1985, pp. 17&181

14 NELIS, H., and DEPRETTERE, E.F.: ‘A systematic method for
mapping algorithms of arbitrarily large dimensions onto fixed size
systolic arrays’. IEEE International Symposium on Circuits and
System, 1987,2, pp. 559-563

15 NAVARRO, I.J., and LLABERIA, I.M., and VALERO, M.: ‘Parti-
tion: An essential step in mapping algorithms into systolic array
processors’, IEEE Cornput., 1987, pp. 77-88

16 LIU, C.-M., and JEN, C.-W.: ‘Design of algorithm-based fault-
tolerant VLSI array processor’, IEE Proc. E, 1989, 136, (6), pp.
539-547

(I), PP. 1-12

192

.

IEE PROCEEDINGS, Vol. 137, Pt . G , No. 3, J U N E I990

