

國 立 交 通 大 學

電機學院 電子與光電學程

碩 士 論 文

在 PACDSP 平台上實現 MPEG-4 物件視訊編碼器

Software Implementation of MPEG-4 Object-based Video Encoder on

PACDSP Platform

研 究 生：黃炳智

指導教授：林大衛 教授

中 華 民 國 九 十 九 年 七 月

在 PACDSP 平台上實現 MPEG-4 物件視訊編碼器

Software Implementation of MPEG-4 Object-based Video Encoder on
PACDSP Platform

研 究 生：黃炳智 Student：Ping-Chih Huang

指導教授：林大衛 Advisor：David W. Lin

國 立 交 通 大 學
電機學院 電子與光電學程

碩 士 論 文

A Thesis

Submitted to College of Electrical and Computer Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master of Science
in

Electronics and Electro-Optical Engineering

July 2010

Hsinchu, Taiwan, Republic of China

中華民國九十九年七月

在 P A C D S P 平 台 上 實 現 M P E G - 4 物 件 視 訊 編 碼 器

學生：黃炳智

指導教授：林大衛 博士

國 立 交 通 大 學 電 機 學 院 電 子 與 光 電 學 程 碩 士 班

摘 要

MPEG-4 為一廣泛應用之多媒體訊號壓縮標準。本篇論文介紹在 PACDSP v3.0
平台上 MPEG-4 物件視訊編碼器之實現，本平台由一超長指令數位訊號處理器與

一 ARM926EJ-S 處理器所組成。為了最佳化程式流程，我們也完成了許多的靜態

分析，並且利用超長指令處理器架構上之特性來達到即時編碼。我們已完成在

ARM 及 PACDSP 的平行運作，並驗證雙核心執行結果之正確性。
 在我們的實作中，我們以 MPEG-4 參考軟體，MoMuSys 為基礎，當作驗證

的比較對象。首先，我們分析了 MPEG-4 物件視訊編碼器之特性，並且對編碼流

程有了初步的瞭解。接著，我們分析編碼之運算複雜度及超長指令處理器程式碼

之平行度，並且藉此找到有效率的實現方法。在移動估測編碼中，我們利用螺旋

搜尋法中的一項參數來降低編碼的運算量，並且沒有犧牲太多的影像品質，同時

也利用 PACDSP 的架構以加速 SAD 的運算。在形狀編碼中，我們對 inter 編碼模

式做調整以降低運算複雜度，並藉由增加程式碼的平行度來提升運算速度。在紋

理編碼中，我們根據離散餘弦轉換(DCT)之特性來跳過多餘的運算。
 為了加速執行的速度，我們把規律的運算分配至 DSP 的兩組運算單元以增加

處理器之效能。我們也利用單指令多資料(SIMD)指令以及一般指令層級平行化來

減少處理器之延遲。另外，我們也討論了離散餘弦轉換(DCT)和離散餘弦反轉換

(IDCT)之效能與精確度，而且我們的離散餘弦反轉換(IDCT)實現能夠符合 IEEE
1180-1190 標準之規範。在所有的最佳化之後，我們在最好的情況下，在 intra 和

inter 編碼模式下，可分別達到每秒 43 和 35 張的 QCIF 畫面即時編碼。而整個程

式的大小為 29 Kbytes，也小於 PACDSP 的程式快取記憶體大小 32 Kbytes。
 在本篇論文當中，我們首先介紹了 MPEG-4 標準以及 PADSP 平台之概述。

接著討論靜態分析、最佳化方法、整體實作設計、以及實驗結果。最後簡單介紹

了雙核心實現的系統與機制。

Software Implementation of MPEG-4 Object-based Video Encoder on PACDSP

Platform

student：Ping-Chih Huang

Advisors：Dr. David W. Lin

Degree Program of Electrical and Computer Engineering
National Chiao Tung University

ABSTRACT

A MPEG-4 is a widely-applied multimedia coding standard. This thesis presents an
implementation of MPEG-4 object-based video encoder on the PACDSP v3.0
platform, which consists of a VLIW digital signal processor (DSP) and an
ARM926EJ-S processor. We complete many analysis to optimize the program flow
and utilize the advantage of VLIW processor to achieve real-time encoding. We have
done the parallel operation on the ARM and PACDSP, and the dual-core encoding
results is verified.
 In our implementation, the MPEG-4 reference software, MoMuSys, is used as a
golden model to verify our implementation. First, we analyze the statistics of the
MPEG-4 object-based video encoder, and have an initial understand of the encoding
flow. Second, we analyze the computation complexity of the coding, the VLIW
program parallelism and find efficient algorithms for the implementation. In the
motion coding, we use a parameter of spiral search to reduce the computation effort
without too much quality loss and utilizes VLIW processor architecture to speed up
SAD determination. In shape coding, we modify the inter mode coding to reduce
computation complexity and increase the VLIW processor code parallelism to
enhance the speed. In texture coding, we skip some computations according to the
nature of discrete cosine transform (DCT).
 Third, to reduce the execution time, we distribute the regular computations to both
clusters to increase the efficiency of the processor. Single instruction multiple data

(SIMD) instructions and general instruction level parallelism also utilized to reduce
the processor stalls. We also discuss the efficiency and accuracy of DCT and IDCT,
and the accuracy of our IDCT implementation can meet the IEEE 1180-1190 standard.
After all the optimizations, we can encode the MPEG-4 video data for QCIF format
over 43 and 35 frames per second in the best case for intra and inter encoding. The
code size is 29 Kbytes, which is smaller than the 32-Kbyte instruction cache on
PACDSP.
 In this thesis, we first introduce the MPEG-4 standard and give an overview of the
PACDSP platform. Then the static analysis, the optimization methods, the overall
implementation design, and the experiment results are discussed. Finally, we brief the
system and mechanism for the dual-core implementation on the PACDSP platform.

誌 謝

誠摯地感謝我的指導老師 林大衛 博士，老師親切和善的態度與

不間斷的鼓勵下，讓我即使遭遇任何的困難，均能勇敢不氣餒的面對

與克服。同時對於研究上所遭遇的瓶頸，每每能切中要點指引正確的

方向，使我能順利地完成此研究。在此，向老師致上最高的感謝之意。

 另外要感謝榮煌同學及政達同學，感謝他們熱心無私的協助，使我

能解決許多疑難雜症。也要感謝學校及通訊電子與訊號處理實驗室的

資源，讓我能專心致力於研究。最後，要感謝的是我的家人，在內人

的支持與協助下讓我能夠心無旁騖的從事研究工作。謝謝所有幫助過

我的師長、同儕與家人。謝謝！

Contents

1 Introduction 1

2 Overview of the MPEG-4 Video Standard 3

2.1 Structure of MPEG-4 Video Data . 3

2.2 MPEG-4 Video Texture Coding . 6

2.2.1 VOP Formation . 7

2.2.2 Shape Coding . 8

2.2.3 Motion Coder . 11

2.2.4 Texture Coder . 17

2.2.5 Other Video Coding Tools [5] 21

2.3 Profiles and Levels [4] . 23

3 Overview of PACDSP 25

3.1 Introduction . 25

3.2 ISA and Pipeline Stages . 27

3.3 Program Sequence Control Unit . 27

3.3.1 Branch Instructions . 29

3.3.2 Loops . 30

3.3.3 Customized Function Units (CFUs) 31

3.3.4 Exception Handling . 31

3.3.5 Interrupt Handling . 32

3.4 Scalar Unit . 32

3.4.1 General Purpose Scalar Register File 32

I

3.4.2 System Register and Predication Register 33

3.5 VLIW Datapath . 33

3.5.1 Ping-Pong Register File . 36

3.5.2 Address/Accumulator Registers 36

3.5.3 Constant Registers . 37

3.5.4 Status and Control Registers . 37

3.5.5 Addressing Modes . 38

3.5.6 Data Communication . 40

3.6 Conditional Execution Control . 41

3.7 Instruction Packet . 42

3.8 DSP Running Modes . 43

3.9 Dual-Core Platform and the Tool Chain 43

4 Dual-Core Program Development and Analysis 46

4.1 Profiles of the MPEG-4 Object-Based Video Encoder 46

4.1.1 PACDSP Implemented Consideration 47

4.1.2 Approach to Complexity Analysis [11] 51

4.1.3 Profile Using the Profiler of ADS [10] 51

4.2 Low-Level Computational Analysis . 53

4.2.1 Motion Coder Analysis . 53

4.2.2 Shape Coder Analysis . 57

4.2.3 Texture Coder Analysis . 57

4.3 Implementation Strategy on Dual-Core Platform 59

4.3.1 Motion Coder Optimization . 59

4.3.2 Shape Coder Optimization . 65

4.3.3 Texture Coder Optimization . 68

4.4 Dual-Core Platform Implementation . 70

5 Further Optimization of the PACDSP Code 72

5.1 Features of PACDSP . 72

5.2 General Techniques of Code Optimization 73

II

5.2.1 Memory Alignments for Efficient Data Load/Store 73

5.2.2 General Code Optimization Techniques 74

5.3 Implementation of SAD Calculation Using SIMD Instructions 77

5.4 Fixed-Point DCT and IDCT . 80

5.5 Fixed-Point Quantization . 85

5.5.1 The H.263 Quantization Method 85

5.5.2 Lossless Fixed-Point Quantization Method 87

5.5.3 Coding Quality and Bit Rates for Different QP Value 87

5.6 Simulation Results on PACDSP Instruction Set Simulator (ISS) 90

5.6.1 Statistics of Motion Estimation on ISS 90

5.6.2 Statistics of Shape Coding on ISS 91

5.7 Performance Analysis and Implementation Results 91

5.7.1 PACDSP Code Size . 92

5.7.2 Frame Rate Estimation . 93

6 Conclusion and Potential Future Work 98

6.1 Conclusion . 98

6.2 Potential Future Work . 99

III

List of Figures

2.1 Segmentation of a frame into VOPs (from [5]). 4

2.2 Structure of coded video data (from [6]). 4

2.3 Types of VOP. 6

2.4 Positions of luminance and chrominance samples in 4:2:0 data (from [7]). 6

2.5 Structure of VO encoder (from [5]). 7

2.6 A VOP in bounding box (from [5]). 8

2.7 Pixel templates used for (a) INTRA and (b) INTER context calculation of

BAB. The current pixel to be coded is marked with “?” (from [4]). 11

2.8 Simplified padding process (from [4]). 12

2.9 Priority of boundary MBs surrounding an exterior MB (from [4]). 12

2.10 Bilinear Interpolation for half sample search (from [4]). 14

2.11 Motion vector prediction (from [7]). 15

2.12 Quantizers in H.263. (a) For intra DC coefficient only. (b) For inter DC

and all AC coefficients. 19

2.13 Prediction of DC coefficients of blocks in an intra MB (from [5]). 20

2.14 Prediction of AC coefficients of blocks in an intra MB (from [5]). 21

2.15 Scans for 8× 8 blocks (from [4]). 21

3.1 Architecture of the PACDSP [1]. 28

3.2 PACDSP instruction set architecture [3]. 28

3.3 Pipeline stages of the PACDSP [3]. 29

3.4 The VLIW datapath register organization [1]. 35

3.5 The four-way VLIW datapath of PACDSP [1]. 36

IV

3.6 Address register file [1]. 39

3.7 Data exchange between two clusters [1]. 41

3.8 Data broadcast among clusters [1]. 42

3.9 Syntax of instruction packet [2]. 44

3.10 Simplified syntax of instruction packet [2]. 44

3.11 PACDSP v3.0 system[10]. 45

4.1 Flow of Dual-core software encoder development. 47

4.2 Concept of spiral search. 56

4.3 Dataflow of spiral search with tier parameter. 60

4.4 Execution cycles with different TIER PARA values. 61

4.5 PSNR values with different tier para values. 62

4.6 SAD iteration. 63

4.7 Non-iteration SAD . 64

4.8 Candidates for MVPs [4]. 65

4.9 Parallelized implementation of AlphaMotionEstimation. 67

4.10 DC spreading from quantized coefficient to output block [10]. 69

4.11 System structure of the dual-core software encoder implementation [10]. . 71

5.1 Example of memory alignment to reduce memory access cycles. 74

5.2 Example of vector addition. 74

5.3 Example of static rescheduling. 76

5.4 Example of loop unrolling. 76

5.5 Example of software pipelining technique. 77

5.6 An example code for 16×16 SAD calculation on PACDSP. 78

5.7 Syntax and operation of the SAA.Q instruction. 78

5.8 Assembly code of masked 16×16 SAD calculation in our implementation. 79

5.9 The IDCT algorithm used in MoMuSys [8]. 83

5.10 The even-odd decomposition IDCT algorithm [13]. 84

5.11 The even-odd decomposition DCT algorithm [13]. 86

V

List of Tables

2.1 List of BAB Types (from [4]) . 9

2.2 Shape Coding Modes and Their Main Usages (from [4]) 10

2.3 Default Quantization Matrix (Q) [4] . 19

2.4 Nonlinear Scaler for DC Coefficients (from [4]) 19

2.5 Profiles and Tools in MPEG-4 Video (from [4]) 24

3.1 Pipeline Stages and Their Jobs [3] . 29

3.2 System Register File [1] . 34

3.3 Definitions of AMCR (from [1]) . 38

3.4 Syntax of Address Modes and Supporting Units [2] 39

3.5 Instruction Type in Each Instruction Slot [1] 42

3.6 Running Modes of the PACDSP v3.0 [1] 45

4.1 Functionalities of Our Implementation 48

4.2 Shape Coding Data Memory Usage . 49

4.3 Motion Estimation Data Memory Usage 50

4.4 Texture Coding Data Memory Usage . 50

4.5 Profile of Object-Based MPEG-4 Encoding of QCIF I-VOP on ADS [10] 53

4.6 Profile of Object-Based MPEG-4 Encoding of QCIF P-VOP on ADS [10] 54

4.7 Major Function in Motion Estimation (ME)[10] 55

4.8 Percentage of Early Termination in SAD Calculation Under Different

Scan Orders [10] . 55

4.9 Motion Coder Analysis on PACDSP . 56

4.10 CAE Modes and Associated VOP Types 57

VI

4.11 Analysis of the ShapeInterMB function on PACDSP 58

4.12 Texture Coder Analysis on PACDSP . 58

4.13 Execution Cycles of Motion Estimation for 1 P-VOP of QCIF on ISS . . . 63

4.14 ISS Simulation Results of Reduced-Complexity ShapeInterMB Function . 66

4.15 Execution cycles of Shape Inter for 1 P-VOP of QCIF on ISS 68

4.16 Number of Skipped Blocks in 100 Frames (1 I, 99 P) 69

5.1 Comparison of SAD Implementation on Different Platforms 80

5.2 Comparison of Computational Complexity for 8-point IDCT 81

5.3 Test of Compliance for Modified IEEE Std. 1180-1190 in MPEG-4 83

5.4 Comparison of IDCT on Different Platforms [10] 85

5.5 Comparison of DCT on Different Platforms [10] 86

5.6 Fixed-Point Quantization Table . 88

5.7 Effects on Quality and Bit-Rate of Different QP values 89

5.8 Execution Time of Motion Estimation for 1 P-VOP of QCIF on ISS . . . 90

5.9 Execution Time of Shape Coding for 1 P-VOP of QCIF on ISS 91

5.10 Execution Time of P-VOP Motion Estimation and Shape Coding after

Optimization on PACDSP . 92

5.11 Code Size Profile of Object-Based MPEG-4 Video Encoder on PACDSP . 94

5.12 Frame Rate Estimation of Single-Core Implementation 94

5.13 Frame Rate Estimation for Intra Encoding of Dual-Core Implementation . 96

5.14 Frame Rate Estimation for Inter Encoding of Dual-Core Implementation . 97

VII

Chapter 1

Introduction

In modern days, compression of audio-visual information has become commonplace. It is

especially important for applications on mobile devices. Digital signal processors (DSPs)

are typically used on these mobile devices for various signal processing functions. The

present study concerns of an MPEG-4 video encoder on a dual-core platform which con-

tains an ARM core and a PACDSP core.

The MPEG-4 standard for coding of audio-visual information has been widely adopted

in various consumer products. Many compression tools are defined in the MPEG-4 stan-

dards, and they can be used in various environment to achieve desired tradeoff between

performance and complexity. In this work, we implement the object-based part (with arbi-

trary binary shape) of the MPEG-4 encoder, employing the tools in simple profile without

error-resilience.

PACDSP is a high performance, low cost VLIW (Very Long Instruction Word) DSP

for multimedia applications [2]. Optimized architecture for data stream applications gives

a strong reason for system designers to use PACDSP to implement media codecs. The in-

struction set architecture (ISA) of PACDSP is optimized for audio and video applications,

so PACDSP is suitable for products with multi-standard codec requirement. In addition,

the low power design for PACDSP makes it possible to use PACDSP on portable devices.

In our dual-core implementation in the best case, we can encode the MPEG-4 video

data at 33 and 43 frames per second in QCIF size for intra and inter encodings, respec-

tively.

1

This thesis is organized as follows. Chapter 2 gives an overview of the MPEG-4 stan-

dard. Chapter 3 introduces the architecture and specification of the PACDSP3.0 platform.

Chapter 4 discusses the dual core development and the overall system design of our imple-

mentation. It is alos discusses the algorithm analysis of MPEG-4 video encoder. Chapter

5 considers the architecture optimization technologies and their experiment results. We

also compare our implementation with that of other processors and show the performance

of the dual-core implementation. Finally, we give some conclusions in chapter 6 and list

some potential future works.

2

Chapter 2

Overview of the MPEG-4 Video

Standard

The contents of this chapter have been taken to a large extent from [4]–[7].

The MPEG-4 video standard provides core technologies allowing efficient storage,

transmission and manipulation of video data in multimedia applications. It provides tech-

nologies to view, access and manipulate objects, with great error robustness at a large

range of bit rates.The video work in MPEG-4 aimed at providing solutions in the form

of tools and algorithms that enabled functionalities such as efficient compression, object

scalability, spatial and temporal scalability, error resilience, and fine granularity scalabil-

ity.

2.1 Structure of MPEG-4 Video Data

An input video sequence can be defined as a sequence of frames or pictures, separated in

time. MPEG-4 divides a frame into a number of video object planes (VOPs). A succession

of VOPs is termed a video object (VO). Fig. 2.1 shows the decomposition of a picture into

a number of separate VOPs. Each VO is encoded separately and multiplexed to form a

bitstream that can be accessed and manipulated. The encoder sends, together with VOs,

information about scene composition to indicate where and when VOPs of a VO are to be

displayed. Fig. 2.2 shows the organization of the coded MPEG-4 video data in a top-down

3

Figure 2.1: Segmentation of a frame into VOPs (from [5]).

Figure 2.2: Structure of coded video data (from [6]).

4

hierarchical structure. The various structural levels are explained below.

1. VideoSession (VS): A video session is the highest syntactic structure of the coded

visual bitstream and simply consists of an ordered collection of video objects.

2. VideoObject (VO): A video object represents a complete scene or a portion of a

scene with a semantic. In the simplest case this can be a rectangular frame, or it can

be an arbitrarily shaped object corresponding to a physical object or background of

the scene.

3. VideoObjectLayer (VOL): Each video object can be encoded in scalable (multi-

layer) or non-scalable (single layer) form, depending on the application, represented

by VOL. The VOL provides support for scalable coding. A video object can be

encoded using spatial or temporal scalability, going from coarse to fine resolution.

4. GroupOfVideoObjectPlanes (GOV): Group of video object planes are optional en-

tities. The GOV groups video object planes together. GOVs can provide points in

the bitstream where VOPs are encoded independently from one another, and can

thus provide random access points into the bitstream.

5. VideoObjectPlane (VOP): A VOP is a time sample of a video object.

As in MPEG-4 standard, there are four types of VOP, as illustrated in Fig. 2.3. These

are briefly explained below:

1. An intra-coded (I) VOP is coded using information only from itself.

2. A predictive-coded (P) VOP is a VOP which is coded using motion-compensated

prediction from a past reference VOP.

3. A bidirectionally predictive-coded (B) VOP is a VOP which is coded using motion-

compensated prediction from a past and/or future reference VOP(s).

4. A sprite (S) VOP is a VOP for a sprite object or a VOP that is coded using prediction

based on global motion compensation from a past reference VOP. We omit further

introduction of the S VOP.

5

I−frame I−frameB−frame P−frameP−frame

Figure 2.3: Types of VOP.

Figure 2.4: Positions of luminance and chrominance samples in 4:2:0 data (from [7]).

The macroblock (MB) is a basic coding structure constructing VOP. An MB contains

a section of the luminance component of 16 × 16 pixels in size and the corresponding

sub-sampled chrominance components in 4:2:0 format. The luminance and chrominance

samples are positioned as shown in Fig. 2.4. In this format, an MB is divided into 4

luminance blocks and 2 chrominance blocks, each 8× 8 pixels in size.

2.2 MPEG-4 Video Texture Coding

The contents of this section have been taken to a large extent from [4]–[7].

6

Figure 2.5: Structure of VO encoder (from [5]).

Fig. 2.5 presents the structure of the VO encoder. The encoder is mainly composed

of three parts: shape encoder, motion encoder and texture coder. The reconstructed VOP

is obtained by combining the shape, texture and motion information. The part of shape

coding constitutes the major difference between object-based and frame-based coding.

2.2.1 VOP Formation

The video object shape information is obtained after segmentation. The shape information

is hereafter referred to as alpha plane, which is used to form a VOP. There are two kinds

of alpha planes in MPEG-4, binary alpha plane and gray scale alpha plane. For the binary

alpha plane, the value 255 is assigned to pixels belonging to the objects and 0 is assigned

to pixels outside the objects. The value of gray scale alpha plane is used for hybrid (of

natural and synthetic) scenes generated by blue screen composition and is represented by

an 8-bit component.

For the binary alpha plane, a rectangular bounding box enclosing the shape to be

coded is formed such that its horizontal and vertical dimensions are extended to multiples

of 16 pixels (MB size). For efficient coding, it is important to minimize the number of

7

Figure 2.6: A VOP in bounding box (from [5]).

macroblocks contained in the bounding box. Fig. 2.6 shows an example of an arbitrary

shape VOP with bounding box and the MB structure.

2.2.2 Shape Coding

After VOP formation, the alpha plane of VOP will be coded prior to coding motion vector

and texture based on the VOP bounding box. Binary alpha planes are encoded by modi-

fied context-based arithmetic encoding (CAE) while grey scale alpha planes are encoded

by motion-compensated discrete cosine transform (DCT) similar to texture coding. The

bounded alpha plane is partitioned into blocks of 16× 16 samples called alpha block and

the encoding/decoding process is done per alpha block.

Binary Shape Coding

CAE and motion compensation are the basic tools for encoding binary alpha blocks

(BABs) which are the primary unit in binary shape coding. InterCAE and IntraCAE are

the variants of the CAE algorithm used with and without motion compensation, respec-

tively. The motion vectors which are differentially coded can be computed by searching

for a best match position. Each BAB is coded in one of the following modes:

1. The block is all transparent. In this case no coding is necessary. Texture information

is not coded for such blocks either.

8

Table 2.1: List of BAB Types (from [4])

BAB Types Semantic Used in

0 MVDs==0 and No Update P-, B-, and S(GMC)-VOPs

1 MVDs!=0 and No Update P-, B-, and S(GMC)-VOPs

2 Transparent All VOP Types

3 Opaque All VOP Types

4 IntraCAE All VOP Types

5 MVDs==0 and InterCAE P-, B-, and S(GMC)-VOPs

6 MVDs!=0 and InterCAE P-, B-, and S(GMC)-VOPs

Note: GMC = Global Motion Compensation.

2. The block is all opaque. Shape coding is not necessary in this case, but texture

information needs to be coded.

3. The block is coded using IntraCAE without use of past information.

4. Motion vector difference (MVD) is zero but the block is not updated.

5. MVD is non-zero, but the block is not updated.

6. MVD is zero and the block is updated. InterCAE is used for coding the block

update.

7. MVD is non-zero, and the block is coded by InterCAE.

Table 2.1 shows the BAB types and the VOP types they are used in.

If the encoder needs rate control and rate reduction, the encoder realizes these through

size-conversion of binary alpha information. A 4:1 downsampled binary alpha block is

used first. If the shape errors are greater than a designed threshold value, then a 2:1

downsampled binary alpha block is used next. If, again, it is found unacceptable, then an

unsubsampled binary alpha block is used.

The MPEG-4 standard allows for 18 coding modes of each BAB: (intra/inter/inter

MC)×(horizontal/vertical scanning)×(subsampling factor 0/1/2). The influence of dif-

ferent shape coding modes is not only on coding performance in the sense of coding

9

Table 2.2: Shape Coding Modes and Their Main Usages (from [4])

Mode Main Usages

Intra I frames, arbitrarily shaped still texture object, error resilience

Inter, inter MC P frames

Horizontal/vertical scanning Low-bitrate shape coding

Subsampling to block size 8×8 or 4×4 Low-bitrate lossy shape coding

efficiency but also on computational complexity. Table 2.2 shows the main usages of

each coding mode.

CAE is used to code each binary pixel of the BAB. Prior to coding the first pixel, the

arithmetic encoder is initialized. Each binary pixel is then encoded in raster order. The

process for encoding a given pixel is as follows:

1. Compute a context number.

2. Index a probability table using the context number.

3. Use the indexed probability to drive an arithmetic encoder.

When the final pixel has been processed, the arithmetic code is terminated. Fig. 2.7 shows

the templates for the context calculation in INTRA and INTER modes.

Gray Scale Shape Coding

The gray scale shape coding has a structure similar to that of binary shape with the dif-

ference that each pixel can take on a range of values (usually 0 to 255) representing the

transparency of that pixel. The pixel value 0 corresponds to a completely transparent

pixel and 255 to a completely opaque pixel. Intermediate values of the pixel correspond

to intermediate degrees of transparencies of that pixel.

10

Figure 2.7: Pixel templates used for (a) INTRA and (b) INTER context calculation of

BAB. The current pixel to be coded is marked with “?” (from [4]).

2.2.3 Motion Coder

Motion coding is essential for P-VOP and B-VOP to reduce temporal redundancy. The

motion coder consists of a motion estimator, motion compensator, previous/next VOPs

store and motion vector (MV) predictor and coder. Furthermore, in order to perform the

motion prediction for VOP of arbitrary shape, a special padding technique is used for the

reference VOP before motion estimation.

Padding Process

Fig. 2.8 shows a simplified diagram of the padding process. The value of luminance and

chrominance samples outside the VOP are defined by the padding process.

A decoded MB d[y][x] is padded by referring to the corresponding decoded shape

block s[y][x]. An MB that lies on the VOP boundary is padded by replicating the boundary

samples of the VOP towards the exterior. This process is divided into horizontal repetitive

padding and vertical repetitive padding. The remaining MBs that are completely outside

the VOP are filled by extended padding.

• Horizontal repetitive padding: Each sample at the boundary of a VOP is replicated

horizontally to the left and/or right direction in order to fill the transparent region

11

Figure 2.8: Simplified padding process (from [4]).

Figure 2.9: Priority of boundary MBs surrounding an exterior MB (from [4]).

12

outside the VOP of a boundary block. If there are two boundary sample values for

filling, the two sample values are averaged.

• Vertical repetitive padding: The remaining unfilled transparent region from the

above procedure are padded by a similar process as the horizontal repetitive padding

but in the vertical direction.

• Extended padding: Exterior MBs immediately next to boundary MBs are filled by

replicating the samples at the border of the boundary MBs. If an exterior MBs is

next to more than one boundary MBs, one of the MBs is chosen, according to the

priority shown in Fig. 2.9. The remaining exterior MBs (not located next to any

boundary MBs) are filled with 128.

Motion Estimation

Motion estimation (ME) is a method of prediction between adjacent frames/pictures. In

general, the ME techniques used in MPEG-4 can be seen as an extension of standard

MPEG-1/2 or H.263 block matching techniques with modified block (polygon) matching

to handle arbitrary-shaped VOPs.

For an arbitrary-shape VOP, the bounded VOP is first extended to the right-bottom

side to multiples of MB size. The alpha value of the extended pixels is set to zero. The

sum of absolute differences (SAD) is used for error measure, and is computed only for

the pixels with nonzero alpha values.

The basic motion estimation may be performed on 16× 16 luminance MBs. The mo-

tion vector is specified to half-pixel accuracy. In many coding software implementations,

the motion estimation is performed by full search to integer pixel accuracy vector and,

using it as the initial estimate, a half pixel search is performed around it. Interpolation of

MB is necessary because the motion vector may be non-integer. Fig. 2.10 illustrates the

bilinear interpolation method.

In the MPEG-4 standard, besides motion vector for 16 × 16 MB, motion vector can

be sent for individual 8× 8 blocks to reduce prediction errors more.

13

+ +

+ +

+ Integer pixel position

Half pixel position

A B

C D

a b

c d

a = A,
b = (A + B + 1 - rounding_control) / 2
c = (A + C + 1 - rounding_control) / 2,
d = (A + B + C + D + 2 - rounding_control) / 4

Figure 2.10: Bilinear Interpolation for half sample search (from [4]).

Motion Vector Encoder

The motion vector (MV) must be coded when using INTER mode coding. Horizontal

and vertical motion vectors are coded differentially by using a spatial neighborhood of

three motion vectors that have already been coded (see Fig. 2.11). The differential coding

of motion vectors is performed with reference to the reconstructed shape. In the special

cases at the borders of the current VOP the following decision rules are applied:

1. If the MB of one and only one candidate predictor is outside the VOP, it is set to

zero.

2. If the MBs of two and only two candidate predictors are outside the VOP, they are

set to the third candidate predictor.

3. If the MBs of all three candidate predictors are outside the VOP, they are set to zero.

For horizontal and vertical components, the median value of the three candidates for

the same component is used as predictor, denoted Px and Py, respectively:

Px = Median(MV 1x,MV 2x,MV 3x),

Py = Median(MV 1y,MV 2y,MV 3y).

Then, the differences, MVDx (= MV x − Px) and MVDy (= MV y − Py), are

coded by variable-length coding (VLC).

14

MV2 MV3

MV1 MV

MV3MV2 MV2

MV1

MV1 MV

MVMV(0,0)

(0,0)

MV : Current motion vector
MV1: Previous motion vector
MV2: Above motion vector
MV3: Above right motion vector

: VOP border

MV1 MV1

Figure 2.11: Motion vector prediction (from [7]).

Motion Compensation

The motion compensator uses motion vectors to compute motion compensated prediction

block, pred[i][j], from the same reference VOP. In addition to basic motion compensation

processing, three alternatives are supported, namely, unrestricted motion compensation,

four MV motion compensation and overlapped motion compensation.

For unrestricted motion compensation, the motion vectors are allowed to point outside

the decoded area of a reference VOP. The pred[i][j] is defined as follows:

xref = min(max(xcurr + dx, vhmcsr), xdim+ vhmcsr − 1),

yref = min(max(ycurr + dy, vvmcsr), ydim+ vvmcsr − 1),

where vhmcsr = vop horizontal mc spatial ref, vvmcsr = vop vertical mc spatial ref,

(ycurr, xcurr) is the coordinate of a sample in the current VOP, (yref, xref) is the coor-

dinate of a sample in the reference VOP, (dy, dx) is the motion vector, and (ydim, xdim)

is the dimension of the bounding rectangle of the reference VOP.

One/two/four vectors decision is indicated by the MCBPC codeword and field prediction

flag for each MB. If one motion vector is transmitted for a certain MB, this is considered

four vectors with the same value as the MV. When two field motion vectors are transmit-

ted, each of the four block prediction motion vectors has the value equal to the average of

15

the field motion vectors (rounded such that all fractional pixel offsets become half pixel

offsets). If four vectors are used, each of the motion vectors is used for all pixels in one

of the four luminance blocks in the MB.

Overlapped motion compensation is performed when the flag obmc disable = 0. Each

pixel in an 8× 8 luminance prediction block is a weighted sum of three prediction values,

divided by 8. The creation of each pixel P (i, j), in an 8 × 8 luminance prediction block

is according to :

P (i, j) =
(p(i+MV 0

x ,j+MV 0
y)∗H0(i,j)+p(i+MV 1

x ,j+MV 1
y)∗H1(i,j)+p(i+MV 2

x ,j+MV 2
y)∗H2(i,j)+4)

8
,

where (MV 0
x ,MV 0

y) denotes the motion vector for the current block, (MV 1
x ,MV 1

y) the

motion vector of the block above or below, (MV 2
x ,MV 2

y) the motion vector of the block

to the left or to the right, and H0(i, j), H1(i, j), and H2(i, j) are the weighting value of

each pixel in the current block and neighbor blocks.

Since the VOP may be coded in P or B mode, there are three types of motion pre-

diction, namely forward mode, backward mode, and bi-directional mode. The different

modes make different predictions P̄ (i, j) as follows.

1. Forward mode: Only the forward vector (MVFx,MVFy) is applied in this mode.

The prediction blocks P̄y(i, j), P̄u(i, j), P̄v(i, j) are generated from the forward ref-

erence VOP.

2. Backward mode: Only the backward vector (MVBx,MVBy) is applied. The pre-

diction blocks P̄y(i, j), P̄u(i, j), P̄v(i, j) are generated from the backward reference

VOP.

3. Bi-directional mode: Both the forward vector (MVFx,MVFy) and the backward

vector (MVBx,MVBy) are applied. The prediction blocks P̄y(i, j), P̄u(i, j), P̄v(i, j)

are generated from the forward and the backward reference VOPs by doing the

forward and the backward predictions and then averaging both predictions pixel by

pixel.

16

2.2.4 Texture Coder

The texture information of a VOP is present in the luminance Y and two chrominance

components Cb and Cr of the video signal. For a I-VOP the coded texture information

represents the values of the luminance and chrominance components directly. A P-VOP or

a B-VOP, the texture information represents the residual values remaining after motion-

compensated prediction. The texture coder includes padding process (for object-based

coding, and applied only if needed), 8 × 8 two-dimensional (2D) DCT, quantization,

coefficient prediction, coefficient scan and variable length coding (VLC).

Padding Process

When the shape of the VOP is arbitrary, two types of MB exits, those that lie inside the

VOP and those that lie on the boundary of the VOP. The MBs that lie completely inside

the VOP are coded using a technique identical to the technique used in H.263. The MBs

that lie on the boundary of the shape need to be padded before texture coding. For residual

error blocks after motion compensation, the region outside the VOP within the blocks are

padded with zero. For intra blocks, the padding is performed in a three-step procedure

called low pass extrapolation (LPE). This procedure is as follows:

1. Compute the arithmetic mean value m of the pixels f(i, j) in the blocks that belong

to the VOP as

m = (1/N)
∑

(i,j)∈V OP

f(i, j)

where N is the number of pixels situated in the VOP.

2. Assign m to each block pixel situated outside the VOP region.

3. Apply the following filtering operation to each block pixel f(i, j) outside the VOP

region, in raster-scan order:

f(i, j) =
f(i, j − 1) + f(i− 1, j) + f(i, j + 1) + f(i+ 1, j)

4
.

If one or more of the four pixels used for filtering are outside the block, the cor-

responding pixels are not included into the filtering operation and the divisor 4 is

reduced accordingly.

17

Discrete Cosine Transform (DCT) Coding

Similar to MPEG-1 and MPEG-2, the transform coding in the MPEG-4 standard is based

on 2D 8×8 DCT. Before quantization, the encoder does forward transform. After the

inverse quantization, encoder does inverse transform for reconstructing the VOP.

Quantization

MPEG-4 video supports two quantization techniques, one referred to as the H.263 quan-

tization method and the other, the MPEG quantization method. The H.263 quantization

method has dead zone for intra and inter AC coefficients and has dead zone for intra DC

coefficients. The MPEG quantization method is uniform with the default matrix shown in

Table 2.3.

Fig. 2.12 shows the quantizer characteristics in H.263. It has uniform quantization

for intra DC coefficients and nearly uniform midtread quantization for the inter DC and

all AC coefficients. All coefficients in a MB go through the same quantizer step size Q,

which can be changed in increments of 2 from 2 to 62 as desired.

Furthermore, in order to provide a higher coding efficiency, Table 2.4 shows a nonlin-

ear scaler which is used for the DC coefficient of 8×8 block in MEPG-4 video. Note that

the characteristics of nonlinear scaling are different between the luminance and chromi-

nance blocks and depend on the quantizer used for the block.

Intra Prediction

When coding an intra block, the DC coefficients and many AC coefficients are coded by

intra prediction. Intra prediction is an operation used in MPEG-4 standards to reduce the

spatial redundancy between 8× 8 blocks.

DC prediction is illustrated in Fig. 2.13. The quantized intra coefficients are predicted

with three previous decoded DC coefficients. For example, the DC coefficients of block X

is predicted from the DC coefficients of blocks A, B and C. Unlike MPEG-2, the method

of prediction in MPEG-4 is gradient based. In computing the prediction of block X, if the

absolute value of a horizontal gradient is less than the absolute value of a vertical gradient,

18

1/2Q

−1/2Q Th

Th+1/2Q

−Th
−Th−Q

(b)(a)

3/2Q

−3/2Q

Figure 2.12: Quantizers in H.263. (a) For intra DC coefficient only. (b) For inter DC and

all AC coefficients.

Table 2.3: Default Quantization Matrix (Q) [4]

Intra Inter

8 16 19 22 26 27 29 34 16 16 16 16 16 16 16 16

16 16 22 24 27 29 34 37 16 16 16 16 16 16 16 16

19 22 26 27 29 34 34 38 16 16 16 16 16 16 16 16

22 22 26 27 29 34 37 40 16 16 16 16 16 16 16 16

22 26 27 29 32 35 40 48 16 16 16 16 16 16 16 16

26 27 29 32 35 40 48 58 16 16 16 16 16 16 16 16

26 27 29 34 38 46 56 69 16 16 16 16 16 16 16 16

27 29 35 38 46 56 69 83 16 16 16 16 16 16 16 16

Table 2.4: Nonlinear Scaler for DC Coefficients (from [4])

Component DC Scaler for Q Range

1–4 5–8 9–24 25–31

Luminance 8 2Q Q+ 8 2Q− 16

Chrominance 8 (Q+ 13)/2 Q− 16

19

���
���
���
���
���
���
���
���

A

B C D

X MacroblockY

��������
��������������������

�����
�����

��
��

or ��������������������

�����
�����
�����

�
�

or

Figure 2.13: Prediction of DC coefficients of blocks in an intra MB (from [5]).

then the quantized DC (QDC) of block C is used as the prediction, else the QDC value of

block A is used.

The AC prediction depends on DC prediction, as shown in Fig. 2.14. The AC coeffi-

cients in the first row or in the first column are predicted with three previous decoded AC

coefficients. The direction of prediction is the same as DC prediction.

Scan and VLC

Fig. 2.15 shows three kinds of scan, alternate-horizontal, alternate-vertical and zigzag

(the normal scan used in H.263 and MPEG-1), to scan the DC and AC coefficients and

change the 2D block data to 1D data. The actual scan used depends on the coefficient

prediction method used for the block. If the direction is vertical, then alternate-horizontal

scan is used. If the direction is horizontal, then alternate-vertical scan is used. For all

other blocks, zigzag scanned is used.

The coefficients after scan usually become a sequence with many zeros at the end.

This kind of data stream is good for run-length coding. In the MPEG-4 standard, differ-

ential DC coefficients in intra blocks are encoded in VLC. However, the AC coefficients

are encoded by the variable length codes for EVENTs, where an EVENT consists of a

last non-zero coefficient indication (LAST), the number of successive zeros preceding the

coded coefficient (RUN), and the non-zero value of the coded coefficient (LEVEL). Some

statistically rare events have no VLC words to represent them. For them an escape coding

method is used.

20

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
������
������
������

������
������
������������
������
������
������

������
������

�����
�����
�����
�����

�����
�����
�����
����������
�����
�����

�����
�����

��� ��

A

B

X

DC

or

Macroblock

��
������
������
������

������
������
������������
������
������
������

������
������

Y

or

Figure 2.14: Prediction of AC coefficients of blocks in an intra MB (from [5]).

Figure 2.15: Scans for 8× 8 blocks (from [4]).

2.2.5 Other Video Coding Tools [5]

In addition to texture video coding, there are some special tools defined in MPEG-4. In

this section, we briefly introduce robust video coding and scalable coding.

Robust Video Coding

Error resilience is a particular concern over wireless networks. In the error resilient mode,

the MPEG-4 video offers a number of tools as follows:

1. Object priorities

The object based organization of MPEG-4 video facilitates prioritizing of the se-

mantic objects based on their relevance. Further, the VOP types lend themselves

21

to a form of automatic prioritization. In particular, B-VOPs are noncausal and do

not contribute to error propagation and thus can be transmitted at a lower priority

or discarded in case of severe errors.

2. Resynchronization

The encoder can enhance error resilience by placing resynchronization (resync)

markers in the bitstream with approximately constant spacing, such as the beginning

of each MB.

3. Data partitioning

Data partitioning provides a mechanism to increase error resilience by separating

the normal motion and texture data of all MBs in a video packet and send all the

motion data first, followed by a motion marker, followed by all the texture data.

4. Reversible VLCs

The reversible VLCs offer a mechanism for a decoder to recover additional texture

data in the presence of errors since the special design of reversible VLCs enables

decoding of codewords in both the forward (normal) and the reverse directions.

5. Intra update and scalable coding

To prevent error propagation, intra update is a simple method to reduce the problem.

However, more intra coding will reduce the coding efficiency. Another method is

scalable coding, which can prevent error propagation without more intra coding.

Scalable Coding

The scalability tools in MPEG-4 video are designed to support applications beyond that

supported by single layer video, such as internet video, wireless video, multi-quality video

services, video database browsing, etc. In scalable video coding, it is assumed that given

a coded bitstream, decoders of various complexities can decode and display appropriate

reproductions of coded video.

22

Several different forms of scalability are provided in MPEG-4 video. Temporal and

spatial scalability are the most basic scalability tools among them. The Fine Granularity

Scalability (FGS) supports continuous scalability of bit rate and video quality.

2.3 Profiles and Levels [4]

Although there are many tools in the MPEG-4 standard, not every MPEG-4 decoder will

have to implement all of them. Similar to MPEG-2, profiles and levels are defined as

subsets of the entire bitstreams syntax of all the tools. The purpose of defining confor-

mance points in the form of profiles and levels is to facilitate interchange of bitstreams

among different applications. There are eight profiles defined in MPEG-4: simple, core,

main, simple scalable, animated & mesh, basic animated texture, still scalable texture and

simple face. The details are given in Table 2.5.

Compared with previous standards, the simple profile of MPEG-4 is similar to the

coding method in H.263. The difference is that the simple profile has error resilience but

does not have B-frame coding. The simple scalable profile is the same as simple profile,

but with rectangular scalability added. The core profile is the profile with all tools of the

simple profile, temporal scalability, B-VOP coding and binary shape coding. The main

profile is the profile with all tools in core profile, gray shape coding, interlace and sprite

coding. The other profiles are for particular purposes, such as 2D dynamic mesh coding

and facial animation coding.

23

Table 2.5: Profiles and Tools in MPEG-4 Video (from [4])
Simple Core Main Simple Animated Basic Still Simple

Tools Scalable 2D Mesh Animated Scalable Face

Texture Texture

Basic

1. I VOP

2. P VOP V V V V V

3. AC/DC Prediction

4. 4MV Unrestricted MV

Error resilience

1. Slice Resynchronization V V V V V

2. Data Partitioning

3. Reversible VLC

Short Header V V V V

B-VOP V V V V

Method 1/Method 2 V V V

quantization

P-VOP based

temporal scalability

1. Rectangular V V V

2. Arbitrary Shape

Binary Shape V V V

Gray Shape V

Interlace V

Sprite V

Temporal scalability V

(rectangular)

Spatial scalability V

(rectangular)

Scalable still V V V

texture

2D dynamic mesh V V

with uniform topology

2D dynamic mesh V

with Delaunay topology

Facial animation V

parameters

24

Chapter 3

Overview of PACDSP

The contents of this chapter have been taken to a large extent from [2]–[3].

3.1 Introduction

Programmable embedded solutions are attractive for their lower development efforts, up-

gradeability to support new applications and easier maintenance. These factors reduce

time-to-market and extend time-in-market, and thus make the best profit-sense. Today’s

media processing demands extremely high computations with real-time constraints in au-

dio, image or video applications. Instruction parallelism has been exploited to speed

up the high-performance microprocessors, and VLIW machines have low-cost compiler

scheduling with deterministic execution time and have thus become the trend of high

performance DSP processors.

Conventional VLIW processors have poor code density, because the unused instruc-

tion slots must be filled by NOPs. Variable-length VLIW instruction packet eliminates

NOPs by run-time instruction dispatch, unlike the conventional position-coded VLIW

processors where each functional unit (FU) has a corresponding bit-field in the instruc-

tion packet. Indirect VLIW has an internal instruction buffer for the VLIW instruction

packets. With this instruction buffer and the pre-fetch scheme, the VLIW processor can

reduce instruction memory bandwidth requirement and power consumption of instruction

fetches.

25

The complexity of the register file (RF) grows exponentially as more and more FUs are

integrated on a chip and operate concurrently to achieve the performance requirements.

Thus the RF is frequently partitioned into execution clusters with explicit interconnection

networks among the clusters to significantly reduce the complexity at the cost of small

performance penalty.

For high performance, the PACDSP is a VLIW processor with a single instruction

multiple-data (SIMD) instruction set architecture (ISA). The software supported schedul-

ing reduces hardware complexity and power consumption. Variable-length instruction

and instruction packet solve the poor code density problem of the conventional VLIW

architecture. Another feature of the PACDSP, cluster architecture, reduces not only ports

and entries of the register files but also the power consumption of read/write operations.

Other key features of the PACDSP include the following :

• Scalable VLIW datapath for easy extension of the computing power.

• Heterogeneous register files for more straightforward operations, less port number

and smaller entries in each RF to improve the performance and reduce power and

area.

• Constant register file in each cluster for the storage of fixed data used in the applica-

tions to reduce the frequency of data movement which may cost significant power

consumption.

• Inter-cluster communication by memory controller for reusing hardware resource

and reducing the port number of ping-pong RF in order to reduce power and area

and to increase the scalability.

• Optimized interrupt design with fast interrupt response time with hardware-supported

context switch to reduce the processing time of interrupt service routine (ISR).

• Hierarchical encoding scheme reducing the dependency between instructions and

packets to reduce area and latency of the dispatch unit.

• Dynamic power management for power saving.

26

• Customized FU interface that can be used to enhance DSP functionalities.

The architecture of the PACDSP v3.0 is shown in Fig. 3.1. The following sections will

briefly introduce its pipeline stages and its core elements, including the Program Sequence

Control Unit (PSCU), Scalar Unit, Clusters (VLIW Data path), and Customized Function

Unit (CFU). Accelerators can be added via the CFU which can execute in different threads

and synchronize the execution results through the scalar unit to enhance the computation

power of the VLIW data path.

3.2 ISA and Pipeline Stages

There are three major divisions in the PACDSP instruction set architecture (ISA): Pro-

gram Sequence Control Unit, Scalar Unit and VLIW Data path. In each division, the

instructions are divided into categories by function units. Fig. 3.2 depicts the ISA of the

PACDSP.

Fig. 3.3 shows the pipeline stages of PACDSP. The program sequence control unit

operation can be divided into four stages, which are IF, IMEM, IDP, and ID. Scalar unit

and VLIW data path operations are both divided into five stages, namely RO, EX1, EX2,

EX3, and WB. The job of each pipeline stage is shown in Table 3.1.

3.3 Program Sequence Control Unit

The program sequence control unit (PSCU) is a main component in the DSP kernel. Basi-

cally, we can regard it as the combination of the control path and the instruction path. The

control path effects the program counter updating, address fetch, pipeline control, hard-

ware context shadowing, interrupt handling, exception handling, etc., according to the

input control signals from elsewhere in the PACDSP. The instruction path is responsible

for fetching, dispatching, and decoding of the instruction packets.

27

Figure 3.1: Architecture of the PACDSP [1].

Figure 3.2: PACDSP instruction set architecture [3].

28

Figure 3.3: Pipeline stages of the PACDSP [3].

Table 3.1: Pipeline Stages and Their Jobs [3]

Stage Job

IF Instruction Fetch

IMEM Instruction Memory Access

IDP Instruction Dispatch

ID Instruction Decode

RO Read Operand

EX1 Execution One

EX2 Execution Two

EX3 Execution Three

WB Write Back

3.3.1 Branch Instructions

Branch instructions can be grouped into two categories, conditional branches and uncon-

ditional branches. There are three addressing modes defined in the PACDSP v3.0 for

generating the branch target address:

• PC-relative

Add up to 32-bit signed immediate offset to the address in the PC register, and take

the result as the branch target address, i.e.,

TA = PC + OFFSET

where TA is the target address, PC is the address in the Program Counter, and

OFFSET is the immediate value defined in the branch instruction.

29

• Register

Take the value in the register as the target address, i.e.,

TA = Rs

where TA is the target address and Rs is the source register defined in the branch

instruction.

• Register-relative

Add up to 32-bit signed immediate offset to the address saved in the register and

take the result as the branch target address, i.e.,

TA = Rs + OFFSET

where TA is the target address, Rs is the source register defined in the branch in-

struction, and OFFSET is the immediate value defined in the branch instruction.

In some circumstances, a branch operation may need to save the return address to en-

sure correct working of the program when it returns. The branch instructions defined in

the PACDSP support saving of the return address into the assigned register. The program-

mer should take care of the return addresses of nested loops. There are five branch delay

slots in the PACDSP, and the programmer could put the branch-independent instructions

in the delay slots for time efficiency. There are some constraints about instructions in the

delay slots. Reference [3] gives details of the programming constraints.

3.3.2 Loops

The programmer can use the LBCB or B instruction to describe program loops. LBCB

is similar to branch, but instead of checking a predicate register (P0–P15), it checks a

general purpose register (R0–R15) to decide whether to branch or not. There are 16

general purpose registers (R0–R15), hence up to 16 levels of nested loop can be supported

with the use of the LBCB instruction.

30

A constraint in using LBCB to control a nested loop is that the outer loop should fully

contain the inner loop. No exception will be generated if the constraint is violated, but

the program behavior may be different from expectation. However, conditional branches

can be used inside the nested loop to implement some special branch behaviors in higher

level languages, for example, “break” and “continue” in C.

3.3.3 Customized Function Units (CFUs)

The PACDSP provides Customized Function Unit Interface for extension use. The user

can attach co-processors or customized function units to PACDSP and handle them through

the scalar instructions. If an error happens in a customized function unit, it can inform

the PACDSP and the PACDSP can process it based on the particular configuration. If the

coprocessor’s work is finished successfully, the PACDSP can use its results for further

work. It is recommended that if a coprocessor is used, communication with it be made

through this interface, or the user will have to pay much more effort to handle it.

3.3.4 Exception Handling

Unpredictable exceptions may occur during program execution. The exceptions need to

be handled correctly for correct execution results. Exceptions may be caused by hardware

(e.g., overflow), software, internal (e.g., undefined instruction), or external (e.g., copro-

cessor exception). When an exception happens whether PACDSP is running a program or

not, PACDSP will check for mask information. If the exception is masked, PACDSP will

ignore the exception and return to normal execution. If the exception is unmasked, it will

be taken. PACDSP will freeze its pipeline, finish the instructions before the PC which

introduced the exception, and recover the states for consistence. After the state is recov-

ered, PACDSP will issue the exception handling interrupt service routine (ISR) to inform

the MPU and the Embedded in circuit emulator (ICE), waiting for different commands to

resolve the exception.

31

3.3.5 Interrupt Handling

Two types of interrupt are supported by the PACDSP. One is fast interrupt request (FIQ),

which has the higher priority, and the second is interrupt request (IRQ). The difference

between them is that the FIQ has a fixed ISR address and the IRQ needs the ISR to check

the IRQ source to obtain the proper ISR address.

In the PACDSP, the minimum latency from interrupt request to the first ISR instruction

to be executed is 4 cycles for both types of interrupt, and it may be postponed when the

ISR experiences cache miss.

3.4 Scalar Unit

The scalar unit plays an important role in handling control-based tasks for PACDSP. It

also has a simple capacity for data computing. Thus, the scalar unit is like a reduced

instruction set computer (RISC) machine. Programmers can exploit computing capacity

of the scalar unit to increase overall instruction-level parallelism (ILP) in compute-based

task.

The scalar unit mainly consists of one adder, one down-counter, one comparator, one

shifter and one logical arithmetic-logic unit ALU. The scalar unit has four major functions

as follows:

• Program flow control.

• Data processing.

• Memory access.

• Data transfer.

3.4.1 General Purpose Scalar Register File

In the scalar unit of the PACDSP kernel, there are sixteen 32-bit general purpose registers

named R0 to R15. These registers function as the loop boundary counter, the timer and

32

the address register in the LBCB, WAIT and Branch/Load/Store instructions, respectively.

In other instructions, they are viewed as data registers.

3.4.2 System Register and Predication Register

There are 16 system registers named as SR0 to SR15 in PACDSP. Table 3.2 shows the

names, the widths, and the meaning of the system registers in PACDSP. Note that the bits

in SR0 are used as predication registers and are named P0 to P15, where the value of P0

is always true. Most instructions of PACDSP can be executed conditionally according to

the values of the predication registers.

3.5 VLIW Datapath

As shown in Fig. 3.4, the VLIW data path of PACDSP is constructed with distributed reg-

ister file: ping-pong registers, accumulator registers, address registers, constant registers

and some control flags.

If the instruction must write into two consecutive destination registers, for example,

DLW and FMUL.D, the destination register number has to be even because of banked

structure.

The VLIW data path of PACDSP is constructed in two clusters, and each contains

an arithmetic unit (AU) and a load/store unit (L/S) as shown in Fig. 3.5. Therefore, it

can execute four instructions simultaneously, and is thus called a four-way VLIW data

path. The VLIW data path supports SIMD (single instruction multiple data) operation. It

executes in three modes: single (32-bit or 40-bit), dual (16-bit) and quad (8-bit). There

are also three types of precision in the data path of PACDSP: full, integer and fractional.

Arithmetic Unit (AU)

The arithmetic unit comprises 40-bit modules which are divided according to functions.

The function types supported by the AU are shown below:

• Arithmetic and comparison instructions.

33

Table 3.2: System Register File [1]

No Name Size(bits) Note

SR0 PREDN 16 Predication information

SR1 EN INT 1 Interrupt enable flag

SR2 MSK EXC 16 Mask inside exception

SR3 SWI EXC 16 Software exception

SR4 CF0 32 Custom function register 0

SR5 CF1 32 Custom function register 1

SR6 CF2 32 Custom function register 2

SR7 CF3 32 Custom function register 3

SR8 SD Status 8 Mix information 0’s shadow register

SR9 SD CPC 32 CPC’s shadow register (ISR return address)

SR10 SD BCTG 32 Branch target’s shadow register

SR11 SD R0 32 R0’s shadow register

SR12 Mode 4 Power mode register

SR13 CFU Info Sel 4 CFU Info select register

SR14 EXC Cause 16 Exception cause

SR15 Reserved 32 N.A.

• Data transfer instructions.

• Bit manipulation instructions.

• Multiplication and accumulation instructions.

• Special instructions.

All data processing instructions in AU begin at the same stage but not finish at the same

time due to different computing complexity.

Load/Store Unit (L/S)

The load/store unit (L/S) comprises 32-bit modules except for one 16-bit address genera-

tion unit (AGU) which is used to support the different addressing modes. The functional

34

Figure 3.4: The VLIW datapath register organization [1].

types supported by L/S are as follows:

• Arithmetic and comparison instructions.

• Data transfer instructions.

• Bit manipulation instructions.

• Load and store instructions.

• Special instructions.

Like AU, all instructions in L/S begin at the same stage but not finish at the same time

due to different computing complexity.

The L/S unit supports powerful double load/store instructions, which can load or store

two operands in one instruction. It also supports instructions that load and store by bytes

or half-words. These instructions make memory access easier and more convenient.

35

Figure 3.5: The four-way VLIW datapath of PACDSP [1].

3.5.1 Ping-Pong Register File

The ping-pong register file contains sixteen 32-bit registers which are divided into two

groups: D0–D7 and D8–D15. The AU and the L/S units can access the ping-pong register

file at the same time but the registers have to be in different groups. In other words, both

units cannot read or write the same group simultaneously. All possible access conditions

are as follows:

• LS reads D0–D7 and writes D0–D7, and AU reads D8–D15 and writes D8–D15.

• LS reads D0–D7 and writes D8–D15, and AU reads D8–D15 and writes D0–D7.

• LS reads D8–D15 and writes D0–D7, and AU reads D0–D7 and writes D8–D15.

• LS reads D8–D15 and writes D8–D15, and AU reads D0–D7 and writes D0–D7.

3.5.2 Address/Accumulator Registers

As shown in Fig. 3.4, the address registers (A0–A7) are all 32-bit and they are dedicated

to the load/store (L/S) unit for memory accesses. PACDSP supports several addressing

36

modes. In modulo addressing mode, A0 and A2 are treated as pointers, A1 and A3 con-

tain base addresses, A4 and A6 contain the values of end address plus one, and A5 and

A7 are treated as displacements. So it can support two groups of modulo addressing:

(A0,A1,A4,A5) and (A2,A3,A6,A7). In other addressing modes, they can be used as

address storage or data processing storage according to the design of the user.

The accumulator registers (AC0–AC7) are 40-bit registers which are dedicated to the

arithmetic unit (AU) for data manipulations. The most significant eight bits are guard bits

for accumulation operations.

3.5.3 Constant Registers

To avoid high frequency of data movement in the register file, PACDSP provides a small

constant register file to keep fixed data. The constant register file has eight 32-bit registers

(C0–C7). They can be read as either the first operand or the second operand in instructions

that use them. But one instruction cannot simultaneously access the constant register file

as both of its source operands.

The constant register file can be read by both the AU and the L/S unit but can only

be written by the L/S unit. All accesses to the constant register file must be pointed by

the control flags CF0 and CF1, which are pointers to the constant registers. And they

are calculated from the values contained in CF2 and CF3, which are the contents of the

pointers.

3.5.4 Status and Control Registers

A status register and a control register are provided to monitor the DSP kernel status

and handle the operation mode of the DSP kernel. The program status register records

the operation status in each cluster and the scalar unit. It includes Overflow, Negative,

and Carry bits, and instructions can only read the status register but not set it. There are

several addressing modes supported by PACDSP. The addressing mode control register

(AMCR) is a 16-bit register. This register is used to set the addressing mode for each

address register. The addressing modes are related to where the operands are to be found

37

and how the address calculations are to be made. The definitions are shown in Table 3.3.

3.5.5 Addressing Modes

PACDSP supports these addressing mode for memory access: linear addressing mode,

bit-Reverse addressing Mode, and modulo addressing mode for memory access. They

can be altered by setting the AMCR. Table 3.4 shows the syntax of addressing modes that

be used and the supporting units in each case.

Fig. 3.6 shows that the address register file A0–A7 is classified into even and odd

banks in linear and bit-reversed addressing modes. Some addressing modes use two ad-

dress registers, RsA and RsB, at the same time. They must be consecutive registers with

RsA in the even bank and RsB in the odd bank.

Linear Addressing Mode

• Offset by immediate (RsA, displacement)

The operand address is the sum of the content of the address register RsA and

the displacement (up to 24-bit signed integer, but the value range depends on the

implementation of data memory).

• Offset by register (RsA, RsB)

The operand address is the sum of the contents of the address register RsA and the

contents of the address register RsB.

• Post-increment by immediate (RsA, displacement+)

Table 3.3: Definitions of AMCR (from [1])
AM[1] AM[0] Addressing Mode

0 0 Linear

0 1 Bit-reversed

1 0 Modulo

1 1 Reserved

38

Table 3.4: Syntax of Address Modes and Supporting Units [2]

Addressing Mode Syntax Support Unit

1. Linear Scalar Cluster

Offset by Immediate RsA, displacement V V

Offset by Register RsA, RsB V V

Post-increment by Immediate RsA, displacement+ V V

Post-increment by Register RsA, RsB+ V V

2. Modulo Scalar Cluster

Post-increment by Register RsA, RsB+ - V

Post-increment by Immediate RsA, displacement+ - V

3. Bit-Reversed Scalar Cluster

Post-increment by Immediate RsA, displacement+ - V

Post-increment by Register RsA, RsB+ - V

Figure 3.6: Address register file [1].

The operand address is in the address register RsA. After the operand address is

used, it is incremented by the displacement (up to 24-bit signed integer, but the

value range depends on the implementation of data memory) and stored in the same

address register.

• Post-increment by register (RsA, RsB+)

The operand address is in the address register RsA. After the operand address is

used, it is incremented by the content of the address register RsB and RsA.

39

Bit-Reversed Addressing Mode

Bit-reversed addressing mode is also called reverse-carry addressing mode. This mode

is selected by setting the corresponding bits in AMCR, and address modification is per-

formed in the hardware by propagating the carry from each pair of added bits in the reverse

direction (from the MSB end toward the LSB end). It only supports post-increment by

immediate and post-increment by register.

This way of address modification is useful for addressing the twiddle factors in 2k

point-FFT addressing as well as to unscramble 2k-point FFT data.

Modulo Addressing Mode

Modulo address modification is useful for creating circular buffers for FIFO queues, de-

lay lines, and sample buffers. This addressing mode only supports post-increment by

immediate and post-increment by register. The definition of modulo addressing, using a

base register (Bn) and an end register (En), enables the programmer to locate the mod-

ulo buffer at any address. The current address register, An, can initially point anywhere

(aligned to its access width) within the defined modulo address range, Bn ≤ An < En.

Modulo addressing can be selected by configuring corresponding bits in AMCR. The

range of values in modulo registers is from 1 to 216 − 1.

3.5.6 Data Communication

The PACDSP provides fast data communication mechanism among scalar unit and two

clusters. As shown in Fig. 3.7, it provides a data exchange mechanism between any two of

the scalar unit and the two clusters. Fig. 3.8 shows that it can also provide data broadcast

to facilitate one of them to broadcast its data to the others. This job is accomplished by

using the ports of the memory interface unit (MIU) because MIU has connections with all

register files of the scalar unit and the two clusters. It only needs one instruction latency.

40

Data Exchanges

We can use the instruction DEX to exchange 32-bit data between any two units. Or we can

use the instruction DDEX to exchange 64-bit data between the L/S units in two clusters.

Data Broadcast

We can use the instruction pair BDT and BDR to broadcast 32-bit data from one unit to

the others. Or we can use the instruction pair DBDT and DBDR to translate 64-bit data

between two clusters.

3.6 Conditional Execution Control

A DSP processor is focused on the computing power for numerical calculations. To re-

duce control overhead, the PACDSP supports conditional execution of instructions. Pro-

grammers can set predicates by compare-and-set instructions and then the instructions

afterward can refer to the predicates to decide whether to execute or not.

All the PACDSP instructions are conditional, except TRAP, ROE, WAIT, TEST and

LBCB. If a instruction is conditionally executed, the predicates referred to will be read in

the RO (read operand) stage.

The compare-and-set instructions, including SLT, SGT, etc., compare source operands

and save the results to the predicate registers, and the comparison results can be saved to

Unit
Load/Store

Unit
Arithmetic

Cluster1

Unit
Load/Store

Unit
Arithmetic

Cluster2

M I U

Scalar
Unit

Figure 3.7: Data exchange between two clusters [1].

41

Unit
Load/Store

Unit
Arithmetic

Cluster1

Unit
Load/Store

Unit
Arithmetic

Cluster2

M I U

Scalar
Unit

Figure 3.8: Data broadcast among clusters [1].

the general purpose registers at the same time. For compiler friendliness, PACDSP saves

both positive and negative boolean results for the compare-and-set instructions concur-

rently. However, P0 is always set to 1, and each predicate bit can be set by only one

instruction at the same time.

3.7 Instruction Packet

PACDSP v3.0 can process at most five instructions concurrently. Instructions issued in the

same cycle are packeted into an instruction packet. The five slots of the instruction packet

and the types of instruction that can be contained in each slot are listed in Table 3.5.

An instruction packet is enclosed in a pair of braces and can be expressed in either

the horizontal or the vertical format. Fig. 3.9 shows the syntax of a complete instruction

Table 3.5: Instruction Type in Each Instruction Slot [1]

Instruction Slot Instruction Types

1 (Scalar Unit) PSCU Instructions / Scalar Instructions

2 (Cluster1) VLIW Load/Store Instructions

3 (Cluster1) VLIW Arithmetic Instructions

4 (Cluster2) VLIW Load/Store Instructions

5 (Cluster2) VLIW Arithmetic Instructions

42

packet in the vertical format. In the horizontal format, an instruction packet is written

in a single line and separated by pipe character “|”. The simplified syntax is shown in

Fig. 3.10. A NOP instruction should be placed in a slot where there is no instruction to

be executed.

3.8 DSP Running Modes

The PACDSP can work under various running modes. Each mode has different hardware

utilization. We can change the running modes using the assembly instructions. Table 3.6

lists the running modes and the corresponding hardware resource.

3.9 Dual-Core Platform and the Tool Chain

The previous section have focused on introducing of PACDSP v3.0. Now we briefly

introduce the dual-core platform for our encoder implementation.

The dual-core platform has been developed by SoC Technology Center (STC) of the

Industrial Technology Research Institute (ITRI). The system consists of the following

items:

• An ARM Integrator-compatible Core Module: ARM926EJ-S.

• Multi-ICE of ARM.

• PACDSP v3.0 Core Module (burned in XILINX FPGA).

• Instruction set simulator v3.0 (ISS v3.0).

The dual-core platform is shown in Fig 3.11. The operation of PACDSP is controlled

by the ARM core, and its internal memory is accessible to the ARM core as well. For a

PACDSP execution, we have to inform the DSP with its corresponding machine code of

the program and the data in the internal memory. Then we should give some signals to

start the DSP execution.

43

Figure 3.9: Syntax of instruction packet [2].

Figure 3.10: Simplified syntax of instruction packet [2].

44

Table 3.6: Running Modes of the PACDSP v3.0 [1]

Running Modes Description Resources Binary Value

High Performance Process performance-oriented All instruction 0x0

programs which need all resource slots are available

for high performance

Medium Performance Process programs which only Scalar and Cluster 1 0x2

need partial resource to achieve instruction slots are

performance constraints available

High Power Saving Process power-oriented programs Only Scalar instruction 0x3

which care power consumption slot is available

more than performance

Figure 3.11: PACDSP v3.0 system[10].

45

Chapter 4

Dual-Core Program Development and

Analysis

To start the DSP implementation, we first analyze the computational complexity of the

MPEG-4 video encoder software. Since the PAC3.0 platform and its associated software

tools were still in their early stage of development when we started the present work,

it was impractical to carry out the computational complexity analysis directly on PAC.

As a result, We employ the profile tools of ADS (ARM Developer Suite) to do the first

level analysis in section 4.1, where ADS is the development tools for ARM processors.

In section 4.2, we analyze the low level computational complexity of the motion coder,

shape coder, and texture coder, respectively, and in section 4.3 discuss our approaches to

algorithm optimization. The Fig. 4.1 shows our program development flow. Finally, in

the section 4.4, we introduce the overall system structure.

4.1 Profiles of the MPEG-4 Object-Based Video Encoder

Our encoder development employs the public source MoMuSys (Mobile Multimedia Sys-

tems) as the base [8]. The MoMuSys donated its software for MPEG-4 main profile

encoding and decoding to the MPEG standards group. To implement an MPEG-4 object-

based encoder on the PACDSP3.0 platform, the main profile appears too complicated on

the first attempt. Therefore, we implement the simple profile plus binary shape coding

46

Figure 4.1: Flow of Dual-core software encoder development.

without error resilience. Table 4.1 shows the functionalities that our implementation sup-

port.

4.1.1 PACDSP Implemented Consideration

To utilize the advantage of the VLIW processor, the features of the implemented algorithm

that can make use of the parallelism in PACDSP will be the first priority. Some iterative

computations could be divided two independent part by the two cluster of the PACDSP

like the Motion Estimation, DCT, IDCT or the CAE will be our first consideration. Since

the size of instruction cache and internal memory on PACDSP3.0 are only 32 kB and 64

kB, respectively, it is hard to implement all the encoder functions on chip. We thus need

to make use of the dual core architecture for the MPEG-4 object-based video encoder.

Since MoMuSys uses one VOP as a coding unit, we must ensure that the designed

memory space is large enough to load a VOP of any size. In the worst case, the VOP size

is equal to the frame size, 176×144. We decide to allocate a frame size (176×144 bytes)

for the input image plane. Additionally, the number of registers is limited; hence we need

some memory space for storing the calculated results in the encoding procedure. Such

47

Table 4.1: Functionalities of Our Implementation

Simple Main Our Implementation

Basic

1. I VOP

2. P VOP V V V

3. AC/DC Prediction

4. 4MV Unrestricted MV

Error resilience

1. Slice Resynchronization V V

2. Data Partitioning

3. Reversible VLC

Short header V V

B-VOP V

Method 1/Method 2 quantization V

P-VOP based

temporal scalability

1. Rectangular V

2. Arbitrary shape

Binary shape V V

Grey shape V

Rate control V

48

memory space is designated “Temporary.”

In the shape coder as Table 4.2 shows, the current alpha plane (176×144) and refer-

ence alpha plane (unextended, 176×144) are both needed as the input data. We allocate

3 kB of memory to store the output bitstream of the coded shape information.

In the motion coder as Table 4.3 shows, the current luminance plane (176×144) and

the reference luminance plane (extended, 208×176) are both required input data. The

motion vectors and the compensated luminance plane (176×144, which is saved in the

same memory space as current luminance plane) are the motion coder output data.

For the transformer as Table 4.4 shows, the current luminance and chrominance planes

are input data. Since the residual data are in the range [-255,255], it needs 2 bytes to store

one pixel. The total memory size used for the luminance and the chrominance data of

one complete frame (176×144×1.5×2 = 76032 bytes) is larger than the PACDSP data

memory 64 KB. However, the data of different MB are independent in the transformer,

Table 4.2: Shape Coding Data Memory Usage

Item Data Size (Bytes)

Curr, pred alpha planes 50688

Input Data Curr, ref shape Mode 198

Curr block decisions 396

MVx, MVy, motion mode 891

Other input data 14

Output Data Shape bitstream 3072

Alpha MB 256

Curr BAB, pred BAB 1448

CAE stream 512

Temporary Alpha motion temp 333

Coding table 3541

Other temporary data 48

Total 61397

49

Table 4.3: Motion Estimation Data Memory Usage

Item Data Size (Bytes)

Curr, ref luma image 61952

Input Curr shape mode, block decisions 495

Other input data 12

Output MVx, MVy 792

Motion Mode 99

Luma MB, alpha MB 512

Temporary Data Diag, ver, hor pel 1121

Other temporary data 110

Total 65093

and we can input the non-transparent MBs one at a time. Therefore, we only allocate

the memory space required of the quantized coefficients and reconstructed data for each

macroblock.

The goal of our implementation is to achieve a real-time MPEG-4 video encoder on

PACDSP v3.0. Thus the execution time and the code size are the most important issues.

Since an efficient high-level compiler of the PACDSP3.0 was not available when we began

Table 4.4: Texture Coding Data Memory Usage

Item Data Size(Bytes)

Curr YUV(Qcoeff) MB 768

Input Data Block Decesions 4

Coding Mode, QP 2

Output Data YUV(Rec) MB 768

CBP 1

Temporary QP Table,Temp block 864

Total 2407

50

the work, we have carried out the implementation using assembly programming.

4.1.2 Approach to Complexity Analysis [11]

Our approach to codec complexity analysis consists of two levels, which may be viewed

as employing a divide-and-conquer strategy. First, we do an operational analysis of the

time the codec software spends in coding of practical video sequences. Two major usages

of this analysis are the identification the time-critical codec functions and the acquisition

of some senses concerning the relative complexity of different codec functions in actual

encoder operation. As a result, the complexities of various encoder components, such

as the motion estimation and the shape coding, are statistically variable and not a set

of fixed numbers. To capture the complexity variation over different video material, we

consider several common test video sequences of different amount of motion that likely

represent the type of material the PACDSP3.0 platform will largely address in its video

coding applications for some years. They are the QCIF (176×144) “Foreman,” “Akiyo,”

and “Stefan” sequences.

The second is a low-level computational analysis of the time-critical codec functions.

We check the amount of computation (arithmetic, data load store, etc.) of each function.

This provides us for optimizing these functions on the PAC platform. One way to carry out

such analysis is to examine the block diagrams of the video codec and estimate the num-

ber of computations from the mathematical equations that define each block’s function.

But this way of analysis may overlook some overhead needed in a practical software im-

plementation such as address computations. We thus also employ the MoMuSys software

in this level of analysis, understanding that the results do not necessarily carry directly

over to the PAC platform,but provide some reference data.

4.1.3 Profile Using the Profiler of ADS [10]

As stated previously, we employ the profile tools of ADS (ARM Developer Suite) to do

the first level analysis, where ADS is the development tools for ARM processors. The

profiling results, in Tables 4.5 and 4.6, are obtained from encoding an I-VOP and a P-

51

VOP, respectively. We employ H.263 quantization with a fixed quantization step (QP), 4.

Note that the quantization step size affects the length of bitstreams, so larger QP results

in shorter bitstream and reduces the required encoding time.

The execution clockticks of the motion coder, the shape coder, and the texture coder

are denoted as “MotionEstimation,” “ShapeCoding,” and “TextureCoding,” respectively,

in Tables 4.5 and 4.6. The execution clockticks of the critical functions belonging to each

are also shown in the tables. Besides the three coders, the remaining execution clockticks

are included in “Others,” which contains VOP formation, writing header bitstream, VOP

padding, etc.

In I-VOP encoding, we can see in Table 4.5 that the most time-critical components

are “BlockDCT” and “BlockIDCT” of “TextureCoding.” The reason why DCT and IDCT

consume so much time is that DCT and IDCT in the reference code are implemented in

floating-point. Moreover, the function “CAE MB,” which does context-based arithmetic

coding of binary alpha blocks, is an important part of “ShapeCoding.”

For P-VOP encoding, from Table 4.6 we see that, most computation is spent on func-

tions related to motion estimation, which occupies about 40% to 50% of the execution

time. In comparison to I-VOP, the mode “inter MC” is added to “ShapeCoding” of P-

VOP encoding, the function “ShapeInterMB,” which finds the best matching of binary

alpha block, is another time-consuming function.

In the object-based video encoder, the VOP size is arbitrary in each frame. Among

the three test sequences, “akiyo qcif” has the biggest VOP size, “foreman qcif” the sec-

ond, and “stefan qcif” the smallest. Therefore, we see that the execution times of some

functions in I-VOP encoding, such as DCT and IDCT, are proportional to the VOP size.

For functions which only operate on boundary macroblocks, such as “CAE MB,” the ex-

ecution times are proportioned to the boundary MB counts. However, for the functions

called in P-VOP encoding, not only the VOP size but also the sequence characteristics

may affect the execution time. Take “akiyo qcif” for example, though its VOP size is

the biggest, since the motion in this sequence is little, the execution times of the inter

functions are less than “foreman qcif” and even less than “stefan qcif” sometimes.

52

Table 4.5: Profile of Object-Based MPEG-4 Encoding of QCIF I-VOP on ADS [10]

foreman qcif akiyo qcif stefan qcif

Function Name Clockticks % Clockticks % Clockticks %

TextureCoding 41,409,898 78.25 42,557,578 74.24 12,047,483 62.22

BlockDCT 17,368,343 32.82 17,867,992 31.17 4,798,081 24.78

BlockIDCT 18,156,851 34.31 18,452,700 32.19 5,212,443 26.92

ShapeCoding 3,958,416 7.48 3,674,489 6.41 2,228,649 11.51

CAE MB 2,799,468 5.29 2,505,073 4.37 1,547,081 7.99

Others 7,551,684 14.27 11,092,257 19.35 5,086,585 26.27

Total 52,919,998 100.00 57,324,324 100.00 19,362,717 100.00

4.2 Low-Level Computational Analysis

In the following analysis, we analyze the critical functions of each component coder to

figure out the greatest computation efforts and the instruction-level parallelism for the

VLIW architecture and SIMD instructions of the PACDSP. In the analysis, “Function”

indicates each function block of the coder, “Cycles Estimation” means the estimated ex-

ecution cycles for this block, “Instruction Counts” show the instructions needed for the

function block, and “Parallelism” denotes average number of parallel instructions exe-

cuted per cycle of the VLIW processors.

4.2.1 Motion Coder Analysis

Motion estimation is a most important component in the video encoder, affecting the en-

coding speed and image quality significantly. Our main target is to reduce the computation

complexity in these functions. Table 4.7 summarizes the major functions in the motion

coder and the percentage computation efforts of each function in the total as obtained with

the ADS.

53

Table 4.6: Profile of Object-Based MPEG-4 Encoding of QCIF P-VOP on ADS [10]

foreman qcif akiyo qcif stefan qcif

Function Name Clockticks % Clockticks % Clockticks %

MotionEstimation 79,675,422 50.20 48,952,190 45.19 24,251,478 41.60

FullPelMotionEstMB 71,951,245 45.34 40,752,077 37.62 22,069,388 37.86

FindSubPel 7,703,016 4.85 8,183,547 7.55 2,174,324 3.73

TextureCoding 37,139,540 23.40 38,101,536 35.17 10,856,089 18.62

BlockDCT 16,004,337 10.08 15,611,662 14.41 4,768,944 8.18

BlockIDCT 16,252,774 10.24 16,749,806 15.46 4,564,249 7.83

ShapeCoding 35,191,526 22.17 12,907,962 11.91 18,419,663 31.60

ShapeInterMB 30,833,225 19.43 10,436,508 9.63 15,631,836 26.82

CAE MB 3,231,739 2.04 1,636,398 1.51 2,351,171 4.03

Others 6,694,822 4.22 8,372,839 7.73 4,764,480 8.17

Total 158,701,310 100.00 108,334,527 100.00 58,291,710 100.00

The reference search method is full search in raster-scan order with check for early

termination each row. The search range is [−16,16) and the motion vector is specified to

half-pixel accuracy. As we can see in Table 4.7, the critical function is “SAD MB,” which

is used to calculate the SAD (sum of absolute differences) in a 16×16 MB at integer pixel

displacements. After searching for the MB motion vector, an additional search is made

for each 8×8 block. The integer block motion estimation uses the MB motion vector

as the search center and the search range is ±2 pixels. “SAD Block” is the function to

calculate the SAD of an 8×8 block.

In order to reduce the searched displacements by increasing the probability of early

termination, we replace the original raster-scan method with spiral search. Experience

54

Table 4.7: Major Function in Motion Estimation (ME)[10]

Execution Time Percentage in Total for ME

Function Name foreman qcif akiyo qcif stefan qcif

Obtain SR 0.40% 0.61% 0.26%

SAD MB 81.65% 71.07% 83.38%

SAD Block 3.16% 3.86% 2.43%

ChooseMode 0.53% 0.85% 0.48%

FindSubPel 9.67% 16.72% 7.78%

Others 4.59% 6.89% 5.67%

shows that most motions are within ±5 pixels, and the spiral search may reduce the com-

plexity of SAD calculation by increasing the occurrence of early termination. Fig. 4.2

shows the concept of spiral search.

Table 4.8 shows the percentage of early termination in SAD calculation under two

different scan orders: raster-scan order and spiral order. Three test sequences of different

motion characteristics are used here each running 10 inter frames on the ADS.

According to Table 4.9, most of the computation in the motion coder is due to the MB

motion search, wherein the critical component is the “SAD MB.” If the SAD calculation

can be reduced, then the efficiency of the motion estimation can be improved.

Table 4.8: Percentage of Early Termination in SAD Calculation Under Different Scan

Orders [10]

Scan Order foreman qcif akiyo qcif stefan qcif

Raster-scan order 46.62% 55.33% 43.24%

Spiral order 66.00% 80.66% 60.37%

55

Tier 0

Tier 1

Tier 2

Tier 3

Search Window

Tier 4

Figure 4.2: Concept of spiral search.

Table 4.9: Motion Coder Analysis on PACDSP

Function Name Cycles Estimation Instruction Counts Parallelism

Load MB 5+8x8 38 38/13=2.9

Count MB Number 7+16x21 80 80/28=2.9

Search Range 30 85 85/30=2.8

MB Motion Search 32+SAD MB+5x25+121x(27+SAD MB) 427 427/169=2.5

Compute 8x8 MV 4x(169+SAD Block+25x(28+SAD Block)) 361 361/130=2.8

Others 22 77 77/22=3.5

SADMB 2+8x35 63 63/37=1.7

SADBlock 2+2x34 64 64/36=1.8

56

4.2.2 Shape Coder Analysis

In the lossless ShapeCoding for the context-based arithmetic encoding (CAE), as the Ta-

ble 4.10 shows, there are four modes and each may have different supporting VOP. In

I-VOP coding, only two modes are available for ShapeCoding, and Table 4.5 shows that

CAE operation takes much of time spent in shape coding. In P-VOP coding, all four CAE

modes are available for ShapeCoding. As shown in Table 4.6, the function “ShapeIn-

terMB,” depending on motion characteristic, may occupy about 10% to 30% of the ex-

ecution time in P-VOP encoding. Since the CAE algorithm has a complicated coding

procedure and strong data dependency, it is hard to exploit the parallel processing ca-

pability of PACDSP. We will focus on the “ShaperInterMB” analysis and optimization.

Table 4.11 shows the execution cycles, instruction and parallelism status. It shows that

the “AlphamotionEstimation” function is a more time consuming function in “ShapeIn-

terMB.” The reason is that it performs a full search on the binary alpha plane.

4.2.3 Texture Coder Analysis

The floating-point DCT and IDCT of the texture coder are time-consuming functions.

Implementing the transforms in fixed-point is essential for PACDSP. We will discuss this

subject in the next chapter. By the block-based coding structure of MPEG-4, we can dis-

tribute the texture coding operations to the two clusters simultaneously. Table 4.12 shows

that the program can almost fully utilize the processor units except for some program loop

andbranch conditions.

Table 4.10: CAE Modes and Associated VOP Types

Mode Intra / Inter MC Scanning Supporting VOP

1 Intra Horizontal I-VOPs and P-VOPs

2 Intra Vertical I-VOPs and P-VOPs

3 Inter MC Horizontal P-VOPs

4 Inter MC Vertical P-VOPs

57

Table 4.11: Analysis of the ShapeInterMB function on PACDSP

Function Name Cycles Estimation Instruction Counts Parallelism

Initial PredAlpha MB 4x10 13 13/10=1.3

FindMVP 74 156 156/74=2.1

FindPredAlpha4MC 8+16x(7+16x10) 54 54/25=2.2

Error detection 1+8x20 54 54/21=2.6

AlphaMotionEstimation 5+16x(13+16x(29+16x(38+8x6)) 162 162/91=1.8

AMVbits 28+8x6+8x6+8x62 77 77/22=3.5

Find18x18PredAlphaMC 15+18x(14+9x7) 89 89/36=2.5

others 24 47 47/24=1.9

Table 4.12: Texture Coder Analysis on PACDSP

Function Name Cycles Estimation Instruction Counts Parallelism

Block DCT 3+4x82 287 287/85=3.4

BlockQuantH263 20+8x31 145 145/51=2.8

DCSpreading 7+7x9 35 35/14=2.5

BlockDequantH263 1+8x31 114 114/32=3.6

BlockIDCT 9+4x74 276 276/83=3.3

Clipping 21 72 77/21=3.4

58

4.3 Implementation Strategy on Dual-Core Platform

After the profiling analysis on ADS and PACDSP, we see that SAD of Motion Estimation,

ShapeInterMB of the Shape Coder and Texture Coder are the time-critical parts of the en-

coder. A big issue concerning software implementation on a VLIW processor is that if

there is any stall or program sequence branch,the entire processor has to stall or branch

[12]. That is, we should try to synchronize the program sequence in both clusters to avoid

inefficiency or incorrect programming. Otherwise,the computation in one cluster will be

terminated by the change of program sequence caused by the other cluster. Besides,the

register files are not shared between the two clusters; so we cannot access some data in

parallel in the two clusters simultaneously. Therefore, we distribute the regular compu-

tations to both clusters to increase processing efficiency. Single-instruction-multiple-data

(SIMD) instructions and general instruction level parallelism are utilized to reduce pro-

cessor stalls. We also modify some algorithm techniques to improve the encoder perfor-

mance.

4.3.1 Motion Coder Optimization

As stated, to accelerate the motion search and reduce the occurrence of full search over

the entire search range, we use the spiral search to increase the probability of the early

termination.

Spiral Search with a Tier Parameter

we uses a tunable parameter, “TIER PARA,” to help reduce the computation effort of

SAD function by terminating the search procedure when we find a local minimum SAD.

A termination test is added at the end of every tier’s motion estimation. The flow of spiral

search is illustrated in Fig. 4.3. A “TIER PARA” value of N means that if we find a best

match at tier m and the best match is unchanged between tier m and tier m + N , then

we terminate the search procedure and take the best match as the search result. Note that

when “TIER PARA” is equal to 16, the modified search procedure is equivalent to full

spiral search.

59

Calculate SAD

If Curr_Tier ==0

Complete

No

Yes

Spiral Search

Set min_SAD=SAD0
Set min_MV
Set Curr_tier

Calculate SAD0

Curr_Tie--
Tier++

Update min_SAD
Set tier

No

YES
If tier==TIER_PARA

Figure 4.3: Dataflow of spiral search with tier parameter.

60

The following results are obtained by encoding the P-frames for each sequence at

a fixed quantization step size (QP) of 4. Fig. 4.4 shows the execution cycles on the

PACDDSP instruction set of simulator (ISS) with different tier parameter values. The

video quality is measured by PSNR (peak signal to noise ratio) and Fig. 4.5 shows the av-

erage PSNR. We see that, even with small “TIER PARA,” the quality is still very close to

full search. With residual coding, the quality loss is compensated by adding reconstructed

residual. As illustrated in Fig. 4.5, the three curves are nearly horizontal. However, choos-

ing too small a tier parameter may cause an originally inter-coded block to be coded in

intra mode, which increases the related bit-rate. The amount of increase in bitrate is

dependent on the QP of texture coding.

Synchronizing SAD Termination

For spiral search with the search range within ±5 pixels, there are several hundreds times

of SAD calculation for each MB. So the SAD function efficiency will dominate the motion

estimation performance. Table 4.9 shows that there are 282 execution cycles for each

SAD MB function execution in the worst case. The original motion estimation SAD

0

1000000

2000000

3000000

4000000

5000000

6000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

c
y
c
le

s

TIER Parameter

Foreman

Akiyo

Stefan

Figure 4.4: Execution cycles with different TIER PARA values.

61

32

33

34

35

36

37

38

39

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P
S

N
R

(d
B

)

Tier Parameter

PSNR Comparison

Foreman

Akiyo

Stefan

Figure 4.5: PSNR values with different tier para values.

function calculation will be 8 or 16 times iteration in the worst case as Fig. 4.6 shows.

In the PACDSP implementation, there are 5 delay cycles for the program branch in each

iteration loops. We mentioned that the performance of a VLIW processor would degrade

if there were many such branches with unfilled delay cycles. To reduce the program

branch stall cycles in the SAD functions, we compare different way to test the condition

SAD>SADmin for program branch and their performance.

Synchronize the SAD calculation and the testing of SAD>SAD min condition si-

multaneously utilizing the VLIW process architecture to distribute the code to the scalar

unit and the two clusters. And we unroll the loop to eliminate the program branch

stall cycles as shows in Fig. 4.7. Since the MB motion characteristic may determine

whether and when an early termination may be possible, we have retained one test of the

SAD>SAD min condition per row of 16 pixels. Table 4.13 shows that this gains 22.64%

in reduction of execution cycles for the Stefan sequence at about 1kByte code size incease

compared to the original method that contains 8 loop iterations(ie., one loop iteration per

16 pixels).

62

SAD Calculation

If SAD<SAD min
and loop <8

Return SAD

SAD_Loop

Yes

No

SAD Calculation

If SAD<SAD min
and loop <8

Return SAD

SAD_Loop

Yes

No

Iteration

Figure 4.6: SAD iteration.

Table 4.13: Execution Cycles of Motion Estimation for 1 P-VOP of QCIF on ISS

Test Seq.(QCIF) Orig. Implement Optimized Cycles Reduced (%)

foreman 2,466,672 1,979,922 19.7%

akiyo 1,481,553 1,299,660 12.27%

stefan 778,744 602,381 22.64%

63

Yes

SAD Calculation

Return SAD

SAD_Loop

SAD Calculation

SAD Calculation

SAD Calculation

SAD Calculation

SAD Calculation

SAD Calculation

SAD Calculation

Yes

Yes

Yes

Yes

Yes

Yes

Cluster 1,2 unit Scalar unit

If SAD>SAD min

If SAD>SAD min

If SAD>SAD min

If SAD>SAD min

If SAD>SAD min

If SAD>SAD min

If SAD>SAD min

SAD Calculation

SAD Calculation

SAD Calculation

SAD Calculation

SAD Calculation

SAD Calculation

SAD Calculation

SAD Calculation

Yes

Yes

Yes

Yes

Yes

Yes

Yes

If SAD>SAD min

If SAD>SAD min

If SAD>SAD min

If SAD>SAD min

If SAD>SAD min

If SAD>SAD min

If SAD>SAD min

Figure 4.7: Non-iteration SAD

64

4.3.2 Shape Coder Optimization

Recall that “ShapeInterMB” is an important function for ShapeCoding in P-VOP cod-

ing. It is similar to motion estimation, but performs search in the binary alpha plane. A

predicted motion vector, MVPs, is taken as the search center, and then a full search is per-

formed over the search window [−8, 8). The MVPs is determined by analyzing certain

candidate motion vectors of shape (MVs) and motion vectors of selected texture blocks

(MV) around the MB corresponding to the current BAB. They are located and denoted

as shown in Fig. 4.8, where MV1, MV2 and MV3 are rounded up to integer values. By

traversing MVs1, MVs2, MVs3, MV1, MV2 and MV3 in this order, MVPs is determined

by taking the first encountered MV that is defined. If no candidate motion vectors are

defined, MVPs = (0,0).

After the search, the motion compensated BAB having the least difference with cur-

rent BAB is obtained. Then IntraCAE and InterCAE are done separately, and the mode

selection criterion is as follows:

ShapeBitsINTRA <
> ShapeBitsINTER + offset

where offset consists of coded bits for the shape mode and that for MVDs. However, we

find that under the two conditions below the odds are in favor of choosing the inter mode:

1. Number of different pels between motion compensated BAB and current BAB are

small.

Figure 4.8: Candidates for MVPs [4].

65

2. The offset is small.

both the different pixels and offset are known before CAE operation.

The function “ShapeInterMB” which performs a full search on binary alpha plane

aims to find an optimal match over the search range. Based on the characteristics men-

tioned above, there must be a sub-optimal match at nearby positions of the best match.

Therefore, we use a search step equal to 2 in both the horizontal and the vertical directions

to reduce the number of candidates for MVs. This results in omitting the comparison of

roughly 3/4 of the number of the blocks, thus decreasing the complexity. However, the

cost is that the shape bits are increased when a sub-optimal match is taken. We show the

experiment results in Table 4.14 where the execution time (cycles) is obtained by encod-

ing 1 P-VOP on ISS, and the shape bits (bpv) are statistically averages from encoding 100

P-VOPs.

Section 4.2.2 (on Shape Coder Analysis) has shown that “AlphaMotionEstimation” is

a critical function of ShapeInterMB. By the block-based characteristic of the shapecoding,

we can distribute the program to the two clusters evenly as shown in Fig. 4.9 to utilize the

VLIW processor for increased program parallelism to maximize the speed performance.

During the optimization, we find that if the main loop in the “AlphaMotionEstima-

tion” function is reduced by one code cycle, the ISS would report a reduction of 10,000

execution cycles. Table. 4.15 shows final optimized results for ShapeCoding, where we

observe up 10% reduction in computation for coding one P-VOP in the ISS simulation.

Table 4.14: ISS Simulation Results of Reduced-Complexity ShapeInterMB Function

Test Seq. Execution Time (cycles) Shape Bits (bpv)

(QCIF) Original Modified % Original Modified %

foreman 2,305,983 1,396,864 39.42 555.85 610.14 9.77

akiyo 774,147 541,507 30.05 230.71 225.31 -2.34

stefan 1,398,361 846426 39.47 315.55 338.25 7.19

66

Row by Row Sum distance
calculation

Row by Row sum distance
calculation

If out of Ref_VOP

Pixel by pixel sum distance Pixel by pixel sum distance

Load Left AlphaMB data and
check if out Ref_VOP left

Load Right AlphaMB data and
check if out Ref_VOP top

 check if out Ref_VOP bottom
And Load Ref_VOP data

 check if out Ref_VOP Right
And Load Ref_VOP data

Alpha Motion Estimation

MB Sum_dist calculation MB Sum_dist calculation

If Sum_dist >
Sum_dist min

YES

Get Alpha motion vector Get Alpha motion vector

Return

If loop end

YES

No

Cluster2Cluster1Scalar unit

YES

No

Row by Row sum distance
calculation

Pixel by pixel sum distance

Load Right AlphaMB data and
check if out Ref_VOP top

check if out Ref_VOP bottom
And Load Ref_VOP data

MB Sum_dist calculation

Get Alpha motion vectorGet Alpha motion vector

Row by Row Sum distance
calculation

Pixel by pixel sum distance

Load Leftff AlphaMB data and
check if out Ref_VOP leftff

check if out Ref_VOP Right
And Load Ref_VOP data

MB Sum_dist calculation

If out of Ref_VOP

If Sum_dist >
Sum_dist min

YES

If loop end

YES

No

YES

No

Figure 4.9: Parallelized implementation of AlphaMotionEstimation.

67

Table 4.15: Execution cycles of Shape Inter for 1 P-VOP of QCIF on ISS

Test seq.(QCIF) Orig. Implement Optimization Cycles reduced (%)

foreman 1,551,904 1,396,864 9.99%

akiyo 586,435 541,507 7.66%

stefan 914,766 846,426 7.47%

4.3.3 Texture Coder Optimization

In this section, we do some analysis to eliminate dequantization and inverse transform in

some situations.

An important property of DCT is that it concentrates signal energy in lower frequency

coefficients [11]. For example, if a block is filled with constant coefficients, there will

be only one coefficient at the DC after the transform. In other words, if we can make

sure that there is only a DC component in the quantized block, the corresponding output

block data can be obtained with copying the DC component to the entire block. This is

illustrated in Fig. 4.10.

In MPEG-4 Video, the CBP (coded block pattern) parameter in the macroblock header

tells the decoder which blocks in a MB are variable length coded. “FindCBP” is the func-

tion to set the coded block pattern by scanning the quantized blocks. The procedure to

check skipped blocks is similar to the function “FindCBP.” We combine the checking

procedure with the function “FindCBP”. This can be applied in both intra-mode and

inter-mode coding. The simulation results on PC are listed in Table 4.16. We see that the

skipping rate is highly related to the motion characteristics of the test sequence and the

quantization step size (QP). Thus we can reduce the computation complexity of recon-

structed loop of video encoder in our implementation.

68

Figure 4.10: DC spreading from quantized coefficient to output block [10].

Table 4.16: Number of Skipped Blocks in 100 Frames (1 I, 99 P)

Test Seqs. (QCIF) Transformed Block No. Skipped Block No. %

QP=2 8,109 29.59

foreman 27,401 QP=4 13,654 49.80

QP=7 18,012 65.73

QP=2 14,389 53.83

akiyo 26,732 QP=4 19,075 71.36

QP=7 21,662 81.03

QP=2 636 10.83

stefan 5,874 QP=4 1,408 23.97

QP=7 2,360 40.18

69

4.4 Dual-Core Platform Implementation

We implement the encoder on the dual-core system as illustrated in Fig. 4.11. We encode

the shape information on DSP, meanwhile texture padding is executed on ARM. The

texture coder is split into two parts: the transformer and the bitstream coder. After forward

transform on the DSP, we transmit the quantized coefficients to the bitstream coder on

ARM. Then, variable length coding and the inverse transform are performed at the same

time on ARM and the DSP respectively. At last, we pad the reconstructed VOP to be

the reference VOP for coding of the next frame. In P-VOP coding, we do the motion

estimation on the DSP.

70

Figure 4.11: System structure of the dual-core software encoder implementation [10].

71

Chapter 5

Further Optimization of the PACDSP

Code

In this chapter, we discuss the optimization of the PACDSP part of our implementation of

the MPEG-4 object-based video encoder besides that allready discussed in the last chap-

ter. First, some general techniques of code optimization are introduced. Then, we present

the fixed-point design of DCT, IDCT, and quantization. We also discuss the performance

of the optimization. In addition, we compare the performance with some other reported

implementations on other hardware platforms.

5.1 Features of PACDSP

To effect an efficient implementation on PACDSP, we should utilize the parallelism offer

by the VLIW architecture and SIMD instructions. However, not all the computations can

be distributed to both clusters; so we have to check if the features of the implemented

algorithm can make use of the parallelism in PACDSP.

For example, since the branch instructions affect the program execution sequence of

both clusters, we may put two regular and independent parts of a loop in different clus-

ters. In the MPEG-4 object-based video encoder, the functions for motion estimation,

DCT, IDCT, and quantization, and inverse quantization are very regular computations.

We will discuss these functions in the following sections. However, we usually use only

72

one cluster to implement code that requires sequential execution. In some complicated

functions, such as CAE, we can put some independent parts of the computation in an-

other cluster and use the broadcast instruction to fetch the desired results back. That is

one way to improve the performance, but we should pay attention to the stalls caused by

data communication so that they would not outweigh the gain from parallel computation.

SIMD instructions are also very helpful for optimization. The data length in motion

estimation is equal to a byte per pixel. Thus it is useful to use the special SIMD instruc-

tions available on PACDSP to calculate SAD. We will show the SIMD example below.

5.2 General Techniques of Code Optimization

The utilization of architectural advantages is important in DSP implementation of com-

plicated algorithms such a as video encoder. In this section, we introduce some general

software optimization techniques, including static rescheduling, loop unrolling, and soft-

ware pipelining. In addition, the computations are dispatched to different units to utilize

the advantage of the VLIW processor. Some special SIMD instructions of PACDSP are

used to compute or load/store multiple data at the same time. The advantage of SIMD

instructions consists in increase of the throughput of computations.

5.2.1 Memory Alignments for Efficient Data Load/Store

For hardware design reason, there are some memory access limitations on PACDSP. The

scalar unit, cluster 1 and cluster 2 could access the data memory simultaneously except

when a cluster issue a nonaligned load/store instruction, but there aren’t any warning or

error message from the ISS when the two cluster issue the nonaligned memory access si-

multaneously. In order to improve the memory access efficiency and program parallelism,

we re-allocate the alpha MB, luma MB, VOP data, etc, that can be accessed with 32- or

64-bits instructions for 32- or 64-bits alignments as shown in Fig. 5.1 to reduced the stall

cycles.

73

;Examples

MB_data=0xC2000100 ;32/64 bits alignments

.byte 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00

.byte 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00

.byte 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00

.byte 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00

;;***************************************

; Not 32/64bits alignment memory access

;32 bytes memory Load needs 4 cycles

{ NOP | DLNW | NOP | NOP | NOP }

{ NOP | DLNW | NOP | NOP | NOP }

{ NOP | NOP | NOP | DLNW | NOP }

{ NOP | NOP | NOP | DLNW | NOP }

;;***************************************

; 32/64bits alignment memory access

;32 bytes memory Load needs 2 cycles

{ NOP | DLW | NOP | DLW | NOP }

{ NOP | DLW | NOP | DLW | NOP }

Figure 5.1: Example of memory alignment to reduce memory access cycles.

5.2.2 General Code Optimization Techniques

In order to get a higher performance, we should try to fill all the slots in an instruction

packet. That is, how to achieve a full-pipeline implementation is very important to a better

performance. Three optimization methods, namely, static rescheduling, loop unrolling,

and software pipelining, are introduced in this section. The purpose of these techniques

is to reduce the stalls resulting from hazards, and the appropriateness for PADCDSP of

these techniques are discussed here in as well.

In the following discussion, we use an example of summing the data in a 1-D array

which contains eight 8-bit element. The corresponding C program is shown in Fig. 5.2. In

order to simplify the discussion of different techniques, we use only one instruction slot

in the instruction packet.

Figure 5.2: Example of vector addition.

74

Static Rescheduling

In assembly programming, dependence of data may cause stalls in the processor, which

increases the required computation time. There are three types of data hazard, namely,

read-after-write (RAW), write-after-read (WAR), and write-after-write (WAW).

In the left half of Fig. 5.3, we simply translate the C program in Fig. 5.2 to the

PACDSP assembly code. We can see that two stalls after the “LB” instruction result

from the dependency of the register D0, because data loading from memory requires two

cycles to be valid in PACDSP.

In addition, the conditional branch, whose predicate register is p2, depends on the

comparison instruction “SLTI.” Therefore, there are seven stalls (NOPs) in the direct

translation with five delay slots, and these stalls significantly degrade the execution speed.

We can utilize the independence of instructions to eliminate the stalls as much as

possible. In the right half of Fig. 5.3, we change the order of the assembly code, which

reduces the stalls from seven to four. However, since the computation is not very complex,

we cannot further reduce the number of stalls simply through rescheduling.

Loop Unrolling

Loop unrolling is a general technique to deal with the implementation of an iterative

computation, especially if there are stalls in a single iteration.

To use the technique, we have to find the independent computations in consecutive

iterations. We can use different registers to store data from different iterations, and the

instructions still need to be scheduled well to reduce the stalls. The number of unrolled

loops depends on the stalls and independent computations in a single loop. Fig. 5.4 shows

the assembly code before and after loop unrolling.

We see that in Fig. 5.4, all the stalls (NOPs) are eliminated. The loop maintenance

code and branch condition should be changed to watch the new iterative computations.

However, there is a tradeoff between execution time and corresponding code size. Al-

though the stalls are all eliminated, the code size increases after loop unrolling. There-

fore, we have to assess if code size is critical or not. In addition, the number of available

registers is a limitation to the use of loop unrolling.

75

Figure 5.3: Example of static rescheduling.

Figure 5.4: Example of loop unrolling.

Software Pipelining

The concept of software pipelining is to reorganize the loop and to interleave dependent

instructions from different loop iterations to separate dependent instructions within the

original loop. Different from loop unrolling, we just reschedule the loop, so the stalls may

not be entirely eliminated. An example of software pipelining is illustrated in Fig. 5.5.

Note that the start-up code and clean-up code are used to interleave the dependent

code. Compared to loop unrolling, there are still two stalls. The advantage of software

pipelining is the smaller code size. However, the loop overhead cannot be reduced through

76

Figure 5.5: Example of software pipelining technique.

software pipelining. But we can apply loop unrolling and software pipelining to our

implementation simultaneously and take the advantage of both techniques.

5.3 Implementation of SAD Calculation Using SIMD In-

structions

The sum of absolute differences (SAD) is the most time-consuming function in motion

estimation. Due to the block based characteristic, we can carry out the 16×16 or 8×8

SAD calculation into two clusters in parallel. Meanwhile,we also use the SIMD instruc-

tions on PACDSP to optimize the SAD calculation. Since the luminance data only contain

8 bits per pixel, we can use 32-bit SIMD instructions to handle 4 pixels in a single instruc-

tion. The optimization techniques described in the previous sections can be used. Fig. 5.6

shows an example code for 16×16 SAD calculation in PACDSP.

In the example code, we use double-loads to load 8 pixels in one instruction. Then, a

special SIMD instruction, namely “SAA.Q,” is used. Fig. 5.7 shows the syntax and oper-

ation of “SAA.Q.” It subtracts four pairs of 8-bit values, takes the absolute values and ac-

cumulates them separately. Finally, we use the instructions “ADDU.D” and “MERGEA”

to sum up the results. It takes 130 cycles to implement a 16×16 SAD calculation and 32

cycles to implement an 8×8 SAD calculation on PACDSP.

77

SAD_loop:
{ NOP | DLNW D4,A3,0 | DCLR AC2 | NOP | NOP }
{ NOP | NOP | NOP | DLNW D4,A3,0 | DCLR AC2 }
{ NOP | DLW D6,A2,256 | DCLR AC4 | DLW D6,A2,256 | DCLR AC4 }
{ NOP | DLW D12,A2,0 | NOP | DLW D12,A2,0 | NOP }
{ NOP | DLNW D4,A3,8 | NOP | NOP | NOP }
{ NOP | NOP | NOP | DLNW D4,A3,8 | NOP }
{ NOP | NOP | SAA.Q AC2,D4,D6 | NOP | SAA.Q AC2,D4,D6 }
{ NOP | NOP | SAA.Q AC4,D5,D7 | NOP | SAA.Q AC4,D5,D7 }
{ NOP | NOP | SAA.Q AC2,D4,D12 | NOP | SAA.Q AC2,D4,D12 }
{ LBCB R15,SAD_LOOP | NOP | SAA.Q AC4,D5,D13 | NOP | SAA.Q AC4,D5,D13 }
{ NOP | NOP | ADDU.D D12,AC2,AC3 | NOP | ADDU.D D12,AC2,AC3 }
{ NOP | MERGEA D6,D12 | ADDU.D D13,AC4,AC5 | MERGEA D6,D12 | ADDU.D D13,AC4,AC5 }
{ NOP | MERGEA D7,D13 | NOP | MERGEA D7,D13 | NOP }
{ NOP | ADDI A2,A2,16 | ADDU AC6,D7,D6 | ADDI A2,A2,16 | ADDU AC6,D7,D6 }
{ NOP | ADD A3,A3,D10 | ADDU D3,D3,AC6 | ADD A3,A3,D10 | ADDU D3,D3,AC6 }
 ;D15=SAD_min
{ NOP | BDR D7 | NOP | BDT D3 | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | ADDU D14,D7,D3 | NOP | NOP }
 ;D14=SAD
{ NOP | NOP | SGT AC6,P1,P2,D14,D15 | NOP | MOVIU D15,0x2000000}
 ;P1=if(SAD > SAD_min) ;D15=MV_MAX_ERROR
{ (P1)BR R6 | NOP | ANDP P5,P3,P2 | (P1)SNW D15,A7,28 | NOP }
;(P1)5 delay slots ;Return SAD=MV_MAX_ERROR
{ (P5)B SAD_loop | NOP | ANDP P6,P4,P2 | NOP | NOP }
;(P5)5 delay slots
{ (P6)BR R6 | (P6)SNW D14,A7,28 | NOP | NOP | NOP }
;(P6)5 delay slots ;Return SAD
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
;(P1)+++++5 delay slots+++++
{ NOP | NOP | NOP | NOP | NOP }
;(P5)+++++5 delay slots+++++
{ NOP | NOP | NOP | NOP | NOP }
;(P6)+++++5 delay slots+++++

Figure 5.6: An example code for 16×16 SAD calculation on PACDSP.

Figure 5.7: Syntax and operation of the SAA.Q instruction.

78

Table 5.1 shows the performance of various SAD implementations. We can see from

the last column of Table 5.1 that the implementation on PACDSP is competitive.

In object-based video encoder, the SAD calculation is only applied to the pixels be-

longing to the object. For this, a conditional operation is used in the reference code. How-

ever, in order to utilize the advantages of SIMD instructions, we use a masking method

in place of conditional operation. That means we use the shape information to mask

the reference data before the subtraction operation. The assembly code for masked SAD

calculation in our implementation is shown in Fig. 5.8.

Figure 5.8: Assembly code of masked 16×16 SAD calculation in our implementation.

79

Table 5.1: Comparison of SAD Implementation on Different Platforms

Block Equivalent

Size Designs Processing units Clock (MHz) Cycles Instruction Counts

TI C62x [9] 2 MUL, 6 ALU 200 272 2176

16× 16 TI C64x [21] 2 MUL, 6 ALU 600 67 536

PACDSP v3.0 (ours)∗ (1 Scalar), 2 AU, 2 L/S 200 130 456

TI C62x [9] 2 MUL, 6 ALU 200 80 640

8× 8 TI C64x [21] 2 MUL, 6 ALU 600 31 248

PACDSP v3.0 (ours)∗∗ (1 Scalar), 2 AU, 2 L/S 200 36 128

∗If considered having 5 processing units, then equivalent instruction counts = 570.
∗∗If considered having 5 processing units, then equivalent instruction counts = 160.

5.4 Fixed-Point DCT and IDCT

We have seen previously that efficient and accurate fixed-point DCT and IDCT are essen-

tial in our implementation on PACDSP. In this section, we discuss the fixed-point design

which takes into account the PACDSP architecture. Since the optimization techniques are

similar for DCT and IDCT, our discussion focuses on IDCT only.

DCT and IDCT Algorithm

The DCT and IDCT in MPEG-4 are defined as

F (u, v) =
2

N
C(u)C(v)

N−1∑
x=0

N−1∑
y=0

f(x, y) cos
(2x+ 1)uπ

2N
cos

(2y + 1)vπ

2N
, (5.1)

f(x, y) =
2

N

N−1∑
u=0

N−1∑
v=0

C(u)C(v)F (u, v) cos
(2x+ 1)uπ

2N
cos

(2y + 1)vπ

2N
, (5.2)

where u, v, x, y = 0, 1, 2, . . . , N − 1, and

C(u), C(v) =

1√
2
, for u, v = 0,

1, otherwise.

To implement DCT and IDCT on PACDSP, there are two critical issues, namely, effi-

ciency and accuracy, which are discussed below.

80

Efficiency of IDCT

For fast computation of 2-D IDCT, a conventional approach is the row-column method,

which requires 16 1-D IDCTs for the computation of an 8×8 IDCT [16]. One fast method

reduces the required 1-D IDCTs from 16 to 8 [16]. However, since the number of required

registers is very big in this algorithm, it is not appropriate for implementation on PACDSP.

Similar to the derivation from discrete Fourier transform (DFT) to fast Fourier transform

(FFT), a fast cosine transform (FCT) is proposed in [17]. A comparison of the computa-

tional complexity of different algorithms is listed in Table 5.2.

Note that the computational complexity is estimated for floating-point computation.

Since the transform coefficients used in [17] are reciprocals of cosine values, the error

may increase because of limited accuracy with fixed-point approximation on PACDSP.

In addition, the number of multiplications is bigger in the even-odd decomposition algo-

rithm. As a result, we first consider the IDCT algorithm of MoMuSys on PACDSP.

Accuracy of IDCT

Since the PACDSP is not capable of floating-point computations, we have to convert

the IDCT algorithm to fixed-point computation. There are also many approximation al-

gorithms to floating-point IDCT. There are integer reversible algorithms for DCT/IDCT

[19], [20], but they consist of several matrix computations, and the computational com-

plexity should be much higher. Therefore, we do not implement a reversible transform.

Since the native wordlength is 16-bit on PACDSP, we scale the floating-point cosine

coefficients with 215. We then right shift 15 bits after multiplications, which rounds the

products to the nearest integers.

Table 5.2: Comparison of Computational Complexity for 8-point IDCT

Direct Form FCT [17] MoMuSys EvenOdd FCT [18]

Multiplications 64 12 16 20

Additions 56 29 26 28

81

The 1-D IDCT algorithm used in MoMuSys has the signal flow shown in Fig. 5.9. We

need to check if the implementation is accurate enough. The modified IEEE Std. 1180-

1190, which is currently withdrawn, has often been used to test the compliance of IDCT

implementations. The compliance test requires five statistical measurements as follows

[4]:

• For any pixel location, the peak error (ppe) shall not exceed 2 in magnitude.

• For any pixel location, the mean square error (pmse) shall not exceed 0.06.

• Overall, the mean square error (omse) shall not exceed 0.02.

• For any pixel location, the mean error (pme) shall not exceed 0.015 in magnitude.

• Overall, the mean error (ome) shall not exceed 0.0015 in magnitude.

• For all-zero input, the proposed IDCT shall generate all-zero output.

The testing results of MoMuSys algorithm is shown in Table 5.3. We see that the sim-

ple rounding method introduces significant errors, so this algorithm does not comply with

the IEEE 1180-1190 standard after converting to fixed-point computation. In particular,

the odd-indexed coefficients are rounded twice in this algorithm, yielding serious round-

ing errors. Therefore, we try to use the even-odd decomposition algorithm [18] whose

signal flow is shown in Fig. 5.10. In this algorithm, each coefficient is rounded once,

which can reduce the rounding error. Moreover, we use the following rounding rules:

• Perform the shift as late as possible, just enough to prevent overflow.

• Minimize the bits shifted, just enough to prevent overflow.

• Minimize the number of shifts.

Following the above rules, the rounding operations are postponed to the output stage

and we can reduce the number of roundings. After the calculation of each row IDCT, we

only do right shift of 11 bits for rounding to maximize the accuracy, so we need to do 19

bits of right shift after each column IDCT to keep the format correct. The accuracy testing

result of our algorithm is also shown in Table 5.3. We see that our fixed-point IDCT has

enough accuracy to pass the test.

82

Figure 5.9: The IDCT algorithm used in MoMuSys [8].

Table 5.3: Test of Compliance for Modified IEEE Std. 1180-1190 in MPEG-4

Item Modified IEEE 1180-1190 MoMuSys with Simple Rounding Our Algorithm

ppe ≤2 >2 (X) ≤2 (⃝)

pmse ≤0.06 137.8279 (X) 0.0081 (⃝)

omse ≤0.02 5.2222 (X) 0.0056 (⃝)

pme ≤0.015 10.8429 (X) 0.0019 (⃝)

ome ≤0.0015 0.5742 (X) 0.0001 (⃝)

all zero input all zero output ⃝ ⃝

83

Figure 5.10: The even-odd decomposition IDCT algorithm [13].

Optimization of IDCT on PACDSP

There are two clusters in the PACDSP. Due to the independence in IDCT computation of

each row or column, we can distribute the eight 1-D row-wise and column-wise IDCTs to

both clusters. As a result, we only need four iterations for either a row or a column IDCT

computations.

According to the characteristics of the even-odd decomposition algorithm, we can use

double-load, double-store, MAC, and butterfly instructions to facilitate the computation,

where the butterfly instruction can sum and subtract the data in the two source registers at

the same time.

The performance of various IDCT implementation are listed in Table 5.4. We see that

the implementation on PACDSP is competitive. Compared to the implementation using

the TI DSPs, less arithmetic units are involved, yielding a lower equivalent instruction

count.

84

Table 5.4: Comparison of IDCT on Different Platforms [10]

Equivalent

Designs Processing Units Clock (MHz) 2-D Fast Algo. Cycles Instruction Counts

TI C62x [9] 2 MUL, 6 ALU 200 row-column 230 1840

TI C64x [21] 2 MUL, 6 ALU 600 row-column 154 1232

IDCT Core [9] 1 ALU 33 direct 2-D 1208 1208

PACDSP v3.0 (ours)∗ 2 AU, 2 L/S 200 even-odd 293 1172

∗If considered having 5 processing units, then equivalent instruction counts = 1465.

Implementation of DCT on PACDSP

Similar to the optimization of IDCT, we can use a similar same way to implement DCT on

PACDSP. Fig. 5.11 shows the signal flow of the even-odd decomposition DCT algorithm.

The performance of various DCT implementations is listed in Table 5.5.

5.5 Fixed-Point Quantization

5.5.1 The H.263 Quantization Method

We only consider the H.263 quantization method in our implementation. The quantization

method is as follows:

• For intra coded block,

QF [v][u] =

F [0][0] +

dc scaler

2
dc scaler

, if v, u=0 (DC component),

|F [v][u]|
2×QP

×SIGN(F[v][u]), otherwise (AC component),

(5.3)

where dc scaler is a nonlinear scaling factor introduced in chapter 2.

85

Figure 5.11: The even-odd decomposition DCT algorithm [13].

Table 5.5: Comparison of DCT on Different Platforms [10]

Equivalent

Designs Processing Units Clock (MHz) 2-D Fast Algo. Cycles Instruction Counts

TI C62x [9] 2 MUL, 6 ALU 200 row-column 208 1664

TI C64x [21] 2 MUL, 6 ALU 600 row-column 116 928

PACDSP v3.0 (ours)∗ 2 AU, 2 L/S 200 even-odd 321 1284

∗ If considered having 5 processing units, then equivalent instruction counts = 1605.

86

• Inter coded block

QF [v][u] =
|F [v][u]| − QP

2
2×QP

× SIGN(F [v][u]) (5.4)

Since the division operation is unavailable in PACDSP, we should find a fixed-point

method to replace the division operation, and the accuracy is an important issue.

5.5.2 Lossless Fixed-Point Quantization Method

If floating-point division were available, the quantizations defined above could be achieved

by floating-point division and rounding or truncation. However, in our case, a more ef-

ficient way is to replace it by fixed-point multiplication. That is, an approximate inverse

of the divisor is multiplied to the dividend followed by a right shift of the result. A key

issue is how many bits should be used to represent the divisor’s fixed-point approximate

inverse to achieve a lossless substitution.

Since the quantizer parameter (QP) is in the range from 1 to 31, the divisor, dc scaler

is from 8 to 46 for luminance blocks, and from 8 to 25 for chrominance blocks. That

means, among all the possible divisor values, i.e., 2× QP and dc scaler, the maximum

value is 62. If the precision of the fixed-point approximation can distinguish the minimum

difference between the nonlinear scaling factors 1
61
− 1

62
= 1

3782
, then we can achieve loss-

less substitution. Therefore, it needs at least 13 bits (Q1.12 representation) to represent

the divisor’s inverse in fixed-point approximation. Table 5.6 lists all the needed values of

the inverse of divisor in Q1.15 format.

The memory space required for the table is 248 bytes. In our implementation of

quantization, we can get the dc scaler and the associated inverse of divisor by looking up

the table. Then the division operation can be achieved by multiplication and right shift

without any precision loss.

5.5.3 Coding Quality and Bit Rates for Different QP Value

In MPEG-4 video encoding, quantization follows DCT . Therefore, the value of quanti-

zation step affects the quantized coefficients, and there with the bit-rate and reconstructed

87

Table 5.6: Fixed-Point Quantization Table

QP DC Scaler 1
QP

1
DC Scaler QP DC Scaler 1

QP
1

DC Scaler

Luma Chroma Luma Chroma Luma Chroma Luma Chroma

1 8 8 32768 4096 4096 17 25 15 1928 1311 2185

2 8 8 16384 4096 4096 18 26 15 1820 1260 2158

3 8 8 10923 4096 4096 19 27 16 1725 1214 2048

4 8 8 8192 4096 4096 20 28 16 1638 1170 2048

5 10 9 6554 3277 3641 21 29 17 1560 1130 1928

6 12 9 5461 2731 3641 22 30 17 1489 1092 1928

7 14 10 4681 2341 3277 23 31 18 1425 1057 1820

8 16 10 4096 2048 3277 24 32 18 1365 1024 1820

9 17 11 3641 1928 2979 25 34 19 1311 964 1725

10 18 11 3277 1820 2979 26 36 20 1260 910 1638

11 19 12 2979 1725 2731 27 38 21 1214 862 1560

12 20 12 2731 1638 2731 28 40 22 1170 819 1489

13 21 13 2521 1560 2521 29 42 23 1130 780 1425

14 22 13 2341 1489 2521 30 44 24 1092 745 1365

15 23 14 2185 1425 2341 31 46 25 1057 712 1311

16 24 14 2048 1365 2341

88

video quality. To have a further understanding of how QP affects the two properties of the

coded video, we do some analysis with different QP values in this section.

In our analysis, we encode 1 I-frame and 99 P-frames with different QP values. The

averaged texture bits and PSNR values are shown in Table 5.7. Since larger QP introduces

more quantization distortion, the quality decreases with increase in the QP value. As a

result, more coefficients are quantized to zero, and the texture bit-rate decrease as well.

In addition, the percentage of skipped blocks increase with larger QP value. Therefore,

the execution time of the transformer is reduced with increasing QP, as have been shown

in chapter 4.

Table 5.7: Effects on Quality and Bit-Rate of Different QP values

Test Seq. Quality and Bit-Rate

(QCIF) QP = 2 QP = 4 QP = 7 QP = 10 QP = 13

Texture Bits (bpv) 12289.70 4833.48 2180.42 1140.04 822.54

foreman PSNR Y (dB) 42.79 37.91 34.35 32.15 30.49

PSNR U (dB) 44.38 40.97 37.01 35.06 32.82

PSNR V (dB) 44.72 40.93 36.82 34.84 32.75

Texture Bits (bpv) 7108.33 2544.56 1309.92 722.47 610.40

akiyo PSNR Y (dB) 42.43 37.21 33.40 31.08 29.46

PSNR U (dB) 45.76 42.03 37.13 34.70 32.62

PSNR V (dB) 45.18 41.69 36.92 34.84 32.64

Texture Bits (bpv) 8246.52 3801.51 1785.19 943.82 589.71

stefan PSNR Y (dB) 40.53 34.45 30.23 27.37 25.80

PSNR U (dB) 40.58 35.86 32.64 30.78 29.06

PSNR V (dB) 40.52 35.69 32.27 30.25 28.60

Note: bpv = bits per VOP.

89

5.6 Simulation Results on PACDSP Instruction Set Sim-

ulator (ISS)

Before the dual-core implementation of object-based video encoder on the hardware sys-

tem, we test and verify our assembly code for PACDSP on the instruction set simulator

(ISS). The ISS is developed by the SoC Technology Center (STC) of the Industrial Tech-

nology Research Institute in Chutung of Taiwan. The input file of the simulator is split

through a parsing tool, “as2tic,” which parses the assembly code into two parts, data and

instructions. We can configure the ISS to decide which kinds of information we want to

print out to files.

5.6.1 Statistics of Motion Estimation on ISS

We set the “TIER PARA” to 5 for the motion estimation. Table 5.8 shows the execution

time obtained by performing the motion estimation for 1 P-VOP on ISS. The information

about object size is listed in the second column, “MB Number,” which means how many

macroblocks containing object pixels are there within the VOP. The average cycles for

each MB and breakdown for integer-pixel search and half-pixel search are also shown.

The average cycles for integer-pixel search are related to the motion characteristics of the

sequences. However, since the number of search points of half-pixel motion estimation

for each MB is fixed, the average execution times for half-pixel searches are almost the

same.

Table 5.8: Execution Time of Motion Estimation for 1 P-VOP of QCIF on ISS

Test Seq. MB Execution Time (cycles) Execution Time/MB (cycles)

(QCIF) Number Total Integer-Pel Half-Pel Total Integer-Pel Half-Pel

foreman 47 1,979,922 1,441,826 512,038 42,126 30,677 10,894

akiyo 48 1,299,660 783,777 491,370 27,076 16,329 10,237

stefan 15 602,381 433,013 156,792 40,158 28,868 10,453

90

5.6.2 Statistics of Shape Coding on ISS

The execution time statistics of shape coding are shown in Table 5.9, which are obtained

by implementing the shape coding for 1 P-VOP on ISS. The information about object

size and the percentage of boundary MBs over total MBs is given in the second column.

All the MBs call the function “ShapeInterMB”, but only the boundary MBs would do

motion search on the alpha plane. That means, the execution time of “ShapeInterMB” is

dependent on the percentage of boundary MBs over total MBs. Another fact affecting the

execution time is the motion characteristics. Take the almost stationary sequence, akiyo,

for example. About half of the boundary MBs find an identical BAB over its search range.

It can not only terminate the search procedure but also skip the CAE operation. That is

why the execution time of the sequence akiyo is much less than the other two sequences.

5.7 Performance Analysis and Implementation Results

We used several optimization techniques to improve our implementation of the MPEG-4

video encoder on PACDSP. We first discussed some algorithm optimization techniques in

the previous chapter. Then we rescheduled a dual-core implementation on the PAC sys-

tem and tried to eliminate all the unnecessary stalls in our assembly code on the DSP.

We further distributed the regular and independent computations into two clusters as

much as possible. If there were any consecutive loads or stores, we replaced the orig-

inal program with double-loads or stores. In addition, we also applied the general code

Table 5.9: Execution Time of Shape Coding for 1 P-VOP of QCIF on ISS

Test seq. Boundary MBs Execution Time (cycles)

(QCIF) /Total MBs Total ShapeInterMB % CAE MB %

foreman 23/47 1,396,384 630,387 45.13 732,613 52.45

akiyo 23/48 541,507 298,644 55.15 207,889 38.39

stefan 15/15 846,426 345,808 40.86 506,918 59.89

91

optimization techniques discussed in this chapter. Now we show the speed-ups of these

optimization methods for shape coding and motion coding.Table 5.10 shows the results

from implementing the optimized coder on PACDSP. We can see that the implementation

on PACDSP is much faster than on ARM926EJ-S. The first reason is that we utilized the

DSP architecture to optimize our implementation. In addition, we have a well-scheduled

hand code on PACDSP, while C-level coding is used on the ARM926EJ-S platform. We

have placed the most computation-intensive parts of the MPEG-4 object-based video en-

coder on PACDSP.

5.7.1 PACDSP Code Size

In order to prevent the problem of cache miss, we should ensure that the total code size is

smaller than the 32 kB program memory provided by PACDSP.

Table 5.11 shows the code size of the three coders and the major functions of each

coder in MPEG-4 object-based video encoder on PACDSP. The size of “16x16FullPel ME”

is the biggest, which perform motion estimation over the luminance plane. The second

are “ShapeCodingIntraCAE” and“ShapeCodingInterCAE”, whose purpose is to encode

Table 5.10: Execution Time of P-VOP Motion Estimation and Shape Coding after Opti-

mization on PACDSP
Test Seq. Execution Time (cycles)

Coder (QCIF) Original† Architecture Optimized % Reduction

foreman 28,433,273 1,979,922 93.04

Motion akiyo 17,296,872 1,299,660 92.49

stefan 7,361,425 602,381 91.82

foreman 12,984,353 1,396,864 89.24

Shape akiyo 5,342,844 541,507 89.86

stefan 6,751,031 846,426 87.46
†Original means the execution time after algorithm optimization

on ARM926EJ-S.

92

the binary shape information. The total program size is 29,413 bytes in our implemen-

tation, and it is smaller than the instruction cache size. Therefore, no cache miss will

happen in our implementation.

5.7.2 Frame Rate Estimation

After optimization, we now estimate the frame rate of our implementation. First, the

frame rate of single-core implementation (only ARM) is shown in Table 5.12. The cycles

are obtained by encoding 1 I-VOP or P-VOP for each test sequence with a fixed QP, 4.

Before we estimate the frame rate of dual-core implementation on the PAC system,

we note the operating frequency of the two cores and the frequency of the bus, which as

follows.

• ARM core: 200 MHz.

• PACDSP core: 200 MHz (real chip).

• Bus: 35 MHz (32 bits width).

• Write data: 2 cycles.

• Read data: 1 cycle.

Tables 5.13 and 5.14 list some estimation results. There are three major parts in Ta-

bles 5.13 and 5.14, which concern the ARM core, the PACDSP core and bus transmission,

respectively. The cycles for the ARM and the PACDSP give information on the execution

times on these. We can get the expected execution time in (ms) by dividing the cycle

counts by the operating frequency. Since our implementation is on a dual-core system,

the ARM part need to write data to the memory which can be accessed by PACDSP. After

PACDSP finished the coding, the ARM part needs to read the output data from the specific

memory. Note that the clock-rate of the bus is 35 MHz and the bus width is 32 bits. In

addition, two cycles are taken for writing data to memory, and only one cycle for reading

data from memory.

93

Table 5.11: Code Size Profile of Object-Based MPEG-4 Video Encoder on PACDSP

Coder Category Function Name Code Size (Bytes) %

ShapeInterMB 2999 10.20

ShapeCoder ShapeCodingIntraCAE 3268 11.11

ShapeCodingInterCAE 3256 11.06

Others 4904 16.67

16x16FullPel ME 3854 13.77

8x8FullPel ME 1700 5.78

InterPolate SubPel 420 1.43

MotionCoder Inter16 SubPelME 1036 3.52

Inter8 SubPelME 1400 4.76

MC Luma 896 3.05

Others 2232 7.59

BlockDCT 772 2.62

BlockQuantH263 492 1.67

Transformer BlockDequantH263 344 1.17

BlockIDCT 672 2.28

Others 1168 3.97

Total 29413 100.00

Table 5.12: Frame Rate Estimation of Single-Core Implementation

I- or P-VOP Test Seq.(QCIF) foreman akiyo stefan

ARM (cycles) 19,083,255 22,791,904 9,683,303

I-VOP Execution Time (ms) 95.42 113.96 48.42

Frame Rate (fps) 10.5 8.8 20.7

ARM (cycles) 54,578,073 38,005,537 21,053,337

P-VOP Execution Time (ms) 272.89 190.03 105.27

Frame Rate (fps) 3.7 5.3 9.5

Note: Operating frequency of ARM926EJ-S is 200 MHz.

94

We separate the execution time into several groups. The first group, “Others,” per-

formed only by the ARM core, includes the following functions: reading frame data,

VOP formation, output bitstream to disk, subsampling, and VOP padding (only for inter

coding). For intra coding, the texture padding and shape coding are done in parallel by the

ARM core and the PACDSP core, respectively. After the shape bitstreams are transmitted

from PACDSP to ARM part and the texture data are updated from ARM to PACDSP, we

start forward transform on PACDSP. Then, another parallel processing of variable length

coding (VLC) and inverse transform is carried out. The quantized coefficients are then

transmitted from PACDSP to ARM.

The procedure has been described in Fig. 4.11 and outlined in section 4.4. We can see

the total execution time for intra encoding in Table 5.13, where the percentage of the total

execution time for each group of operations is also shown. From the above results, we

can estimate the frame rate of each sequence, which is shown in terms of fps (frame per

second) in the table.

Similarly, the execution time for inter encoding is shown in Table 5.14. Note that,

for the group of operations working in parallel on ARM and PACDSP, we only need to

consider the longer of them when we estimate the total execution time. In other words,

the percentage of the shorter will be zero in the total execution time.

For the sequence “stefan” with the smallest VOP size of three, we can get the best

frame rate which are 34.7 and 43.0 frames per second for intra and inter encodings, re-

spectively. For the sequence “akiyo” which has the biggest VOP size, that takes many

cycles in VOP formation, we can get about 18 fps for both intra and inter encodings.

Compared to single-core implementation, intra encoding has a averaged speed-up ra-

tio of about 225.2%, and the averaged speed-up ratio of inter encoding is about 438.6%.

95

Table 5.13: Frame Rate Estimation for Intra Encoding of Dual-Core Implementation

Test Seq. (QCIF) foreman akiyo stefan

ARM (cycles) 4,049,467 7,250,105 3,360,106

Others % 54.69 66.91 72.17

ARM (cycles) 414,107 410,254 231,431

TexturePadding % 0 0 0

PACDSP (cycles) 565,928 510,028 321,888

ShapeCoding % 7.64 4.71 6.91

PACDSP (cycles) 169,818 170,404 46,190

Forward Transform % 2.29 1.57 0.99

ARM (cycles) 2,578,148 2,867,222 914,104

VLC % 34.82 26.46 19.63

PACDSP (cycles) 167,278 176,434 51,263

Inverse Transform % 0 0 0

Bus (Write) (bytes) 63,620 65,924 25,988

Bus (Read) (bytes) 76,980 76,980 24,756

% 0.49 0.35 0.29

Execution Time (ms) 37.02 54.18 23.28

Frame Rate (fps) 27.0 18.5 43.0

96

Table 5.14: Frame Rate Estimation for Inter Encoding of Dual-Core Implementation

Test Seq. (QCIF) foreman akiyo stefan

ARM (cycles) 4,640,664 7,760,793 3,737,575

Others % 50.17 71.24 64.89

ARM (cycles) 346,208 492,459 291,998

EncodeVOPHeader % 0 0 0

PACDSP (cycles) 1,979,922 1,299,660 602,381

MotionCoding % 21.40 11.93 10.46

ARM (cycles) 589,291 376,944 162,904

MC Chroma & TexturePadding % 0 0 0

PACDSP (cycles) 1,396,864 541,507 846,426

ShapeCoding % 15.10 4.97 14.69

PACDSP (cycles) 174,424 177,074 46,474

Forward Transform % 1.88 1.63 0.81

ARM (cycles) 1,009,160 1,063,955 510,228

VLC % 10.91 9.77 8.86

PACDSP (cycles) 55,185 59,824 43,142

Inverse Transform % 0 0 0

Bus (Write) (bytes) 125,372 135,868 511,32

Bus (Read) (bytes) 92,472 96,312 31,800

% 0.64 0.60 0.40

Execution Time (ms) 46.25 54.47 28.80

Frame Rate (fps) 21.6 18.4 34.7

97

Chapter 6

Conclusion and Potential Future Work

6.1 Conclusion

In this thesis, we considered implementing a real-time MPEG-4 object-based video en-

coder on the dual-core PAC platform.

Firstly, we focused on the correct of encoding the bitstream, and the coded bitstream

have been verified with the reference software of MPEG-4, MoMuSys. Then, we analyzed

the statistics of the MPEG-4 object-based video encoder on PC. Therefore, we had an

initial understand of the encoding flow and the critical part of computation. According to

the analysis, we designed our dual-core structure and implemented the DSP part on the

PACDSP platform. The dual-core results was verified with the single core platform.

After the implementation was verified, we further analyzed the encoding algorithm

and coding flow to find if there was any removable computation. Based on our analy-

sis, we optimized the program sequence to reduce the computation complexity without

too much quality loss or bit-rate increased. In addition, we also utilized several gen-

eral software optimization techniques, such as static rescheduling, loop-unrolling, and

software-pipelining to reduce the stalls.

Finally, the optimization results were discussed. For the best case, stefan, which has

the smallest VOP size, we can encode the MPEG-4 video data near 43 frames and 35

frames per second for intra and inter encoding, respectively. And the program size was

about 29KB, which was smaller than the instruction cache size. In addition, the used data

98

size of each coder was also under the limit of memory provided on PACDSP. Therefore, no

cache missing problem happened in our implementation. In conclusion, the performance

and quality of our implementation of MPEG-4 object-based video encoder on PAC system

was competitive.

6.2 Potential Future Work

There are several improvements and extensions that can be considered in the future:

• Data structure refinement

The data structure is very important to the implementation on DSPs. If we can

design the more efficient data structure, the memory accesses can be significantly

reduced, and the performance also can be improved.

• Add some popular fast motion estimation algorithm

Motion estimation is the most computational part in MPEG-4 video encoder. How-

ever, many fast motion estimation algorithm has been proposed, and used popularly.

We consider to add some fast motion estimation algorithm for flexibility.

• Dual-core loading balance

We can find the estimated frame rate in previous chapter, and the bottleneck is still

the execution time of ARM part. If we share more computation to PACDSP part,

the performance will be improved by the advantage of dual-core implementation.

• Add other MPEG-4 tools

To simplify our implementation, the error-resilience tool in MPEG-4 simple profile

is neglected. However, this tool is very important when the bitstream is transmit-

ted through real channels. In the future, we need to implement the techniques of

error-resilience, such as resynchronization, data partition, and reversible variable

length coding (RVLC). Moreover, the other advanced profiles of MPEG-4 video

compression technique can be implemented to extend the capability of PACDSP.

99

• Verify the ISS simulator on PAC system

We have done the Dual-core implementation on ARM926EJ-S platform, the bit-

stream have been verified with the ADS single core.Since some coding constraints

are not included on the ISS, we need to do some modification fitting the PACDSP

chips. To verify the ISS simulator result, more program condition need to testing.

100

Bibliography

[1] SoC Technology Center, Industrual Technology Research Institute, PACDSP v3.0

— Software Developer’s Bible — Vol. 1 Software Developer’s Guide. Doc. no.

PACDSP3S0001, Feb. 2006.

[2] SoC Technology Center, Industrual Technology Research Institute, PACDSP

v3.0 — Software Developer’s Bible — Vol. 2 Instruction Set Manual. Doc. no.

PACDSP3S0002, May. 2006.

[3] SoC Technology Center, Industrual Technology Research Institute, PACDSP v3.0

— Software Developer’s Bible — Vol. 3 Programming Constraints and Optimized

Guide. Doc. no. PACDSP3S0003, Apr. 2006.

[4] ISO/IEC 14496-2:2001, Information Technology — Coding of Audio-Visual Objects

— Part 2: Visual. July 2001.

[5] A. Puri and A. Eleftheriadis, “MPEG-4: an object-based multimedia coding stan-

dard supporting mobile applications,” Mobile Networks Applic., vol. 3, pp. 5–32,

1998.

[6] A. Ebrahimi and C. Horne, “MPEG-4 natural video coding — an overview,” Signal

Processing Image Commun., vol. 15, pp. 365–385, 2000.

[7] MPEG-4 Video Group, “MPEG-4 video verification model version 18.0,” doc. no.

ISO/IEC JTC1/SC29/WG11 N3908, Pisa, Jan. 2001.

[8] http://www.tnt.uni-hannover.de/project/eu/momusys.

101

[9] T.S. Chang, C.S. Kung, and C.W. Jen, “A simple processor core design for DC-

T/IDCT transform,” IEEE Trans. Circuits Syst. Video Technology, vol. 10, no. 3 , pp.

439–447, Apr. 2000.

[10] Cheng-Ta Chiang, “Software implementation of MPEG-4 Object-based Video En-

coder on PACDSP platform,” M.S. thesis, Department of Electronics Engineering,

National Chiao Tung University, Hsinchu,Taiwan, R.O.C., July 2007.

[11] Chung-Yen Tsai, “Software implementation of MPEG-4 video decoder on PACDSP

platform,” M.S. thesis, Department of Electronics Engineering, National Chiao Tung

University, Hsinchu, Taiwan, R.O.C., July 2006.

[12] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Ap-

proach, 3rd ed. San Francisco: Morgan Kaufmann Publishers, 2003.

[13] S. Sriram and C. Y. Hung, “MPEG-2 video decoding on the TMS320C6X DSP

architecture,” in IEEE Signal Systems Computer Conf., vol. 2, Nov. 1998, pp. 1735–

1739.

[14] C. E. Fogg, “Survey of software and hardware VLC architectures,” in Proc. SPIE

Image and Video Compression, vol. 2186, May 1994, pp. 29–37.

[15] R. Prasad and R. Korada, “Efficient implementation of MPEG-4 video encoder on

RISC core,” IEEE Trans. Consumer Electronics, vol. 49, pp. 204–209, Feb. 2003.

[16] N. I. Cho and S. U. Lee, “Fast algorithm and implementations of 2-D discrete cosine

transform,” IEEE Trans. Circuit Syst., vol. 38, pp. 297–305, Mar. 1991.

[17] B. G. Lee, “A new algorithm to compute the discrete cosine transform,” IEEE Trans.

Acoust. Speech Signal Processing, vol. 32, no. 6, pp. 1243–1245, Dec. 1984.

[18] C. Y. Hung and P. Landman, “A compact IDCT design for MPEG video decoding,”

in Proc. IEEE Workshop Signal Processing Systems, Nov. 1997.

[19] G. Plonka and M. Tasche, “Reversible integer DCT algorithms,” preprint, Gerhard-

Mercator-Univ. Duisburg, 2002.

102

[20] Y. Chen and P. Hao, “Integer reversible transformation to make JPEG loseless,” in

Int. Conf. Siganl Processing, Beijing, China, Sept. 2004, pp. 835–838.

[21] Texas Instuments, TMS320C64x Image/Video Processing Library — Programmers

Reference, Literature no. SPRU023B, Oct. 2003.

[22] N. Ventroux, J. F. Nezan, H. Raulet, and O. Deforges, “Rapid prototyping for an

optimized MPEG-4 decoder implementation over a parallel heterogenous architec-

ture,” in Proc. Int. Conf. Multimedia Expo, vol. 3, July 2003, pp. 417–420.

[23] K. Ramkishor and U. Gunashree, “Real time implementation of MPEG-4 video de-

coder on ARM7TDMI,” in Proc. Int. Symp. Intelligent Multimedia Video Speech

Processing, May 2001, pp. 522–526.

[24] J. H. Kuo, J. L. Wu, J. Shiu, and K. L. Huang, “A low-cost media-processor based

real-time MPEG-4 video decoder,” in IEEE Int. Conf. Consumer Electronics, June

2002, pp. 272–273.

[25] J. T. J. VanEijndhoven et al., ”TriMedia CPU64 architecture,” in IEEE Int. Conf.

Computer Design, 1999

103

	封面
	書名頁
	中文摘要
	英文摘要
	Degree Program of Electrical and Computer Engineering
	National Chiao Tung University

	誌謝
	9467513

