應用直接數位頻率合成器架構數位調變器

學生:鄭恒杉	指導教授:李鎮宜	博士

國立交通大學電機資訊學院 電子與光電學程(研究所)碩士班

摘 要

本論文嚐試著以直接數位頻率合成器實現一個可做FSK,DFSK,BPSK 及 QPSK 等不同形式調變之數位調變器,而此數位調變器則是架構在直接數位頻率合成器, 論文中亦討論正弦相位輸入及輸出位元數對正弦輸出特性的影響,進而利用兩段直 線作為正弦值的起始猜測值及 ROM 作為補償值逼近正弦值,在可接受的 SFDR 下 採用分割 ROM 補償值來降低 ROM 的大小。ROM 表被分為粗細兩個表,粗表含有 384 位元,細表含有 192 位元,共用到 ROM 表大小為 576 位元,在合成頻率中,模擬結 果最差的 SFDR 可達 61dBc,相關控制電路只用到加法器,不需減法及乘法器,與相同 規格的直接數位頻率合成器比較,所用到的 ROM 表大小及所需控制電路皆比較小, 只是需要稍微犧牲 SFDR 特性。本文同時利用所提出的直接數位頻率合成器實現 一個可做 FSK,DFSK,BPSK 及 QPSK 等不同形式具正餘弦調變輸出之數位調變器, 最後使用 Synplify Pro 合成 verilog 碼,並以 Altera EPK100ARC240-1 作為數位調變 器功能的驗證,用到 238 邏輯單元(4%)及 1152 記憶位元(2%)IC 資源。

Application Of Direct Digital Frequency Synthesizer In Digital Modulator

Student : Hen-Shan Cheng

Advisor : Dr. Chen-Yi Lee

Degree Program of Electrical Engineering Computer Science National Chiao Tung University

Abstract

In this thesis, we propose a digital modulator with FSK, DFSK, BPSK and QPSK function by using direct digital frequency synthesizer (DDFS). For DDFS, the spur item were caused by finite output word length, phase truncation and sine/cosine mapping function (SCMF) are also presented. The initial guess and error correct ROM table are used to approximate the sine function, Initial guesses techniques using 2-segment line approximation. In order to reduce the ROM size, the ROM memory was partitioned into two ROM blocks. Coarse ROM (384 bits) and fine ROM (192 bits) were explored. The total size of ROM table is 576 bits. Only adder circuits were required in the additional circuits. No subtractor and multiplier were needed. Simulation shows that the worst case of SFDR (spurious free dynamic range) is 61dBC for various output frequency. When we compared with other same spec DDFS, Rom table size and additional circuits are smallest, but under sacrificing the performance of SFDR. The proposed DDFS is used to implement the digital modulator with FSK, DFSK, BPSK and QPSK function; the digital modulator is also with sine/cosine output. Using Synplify Pro to synthesize the verilog code and Altera device EPF10K100ARC240-1 to verify the function of digital modulator; it share the 238 logic elements (4%) and 1152 bits (2%) memory with device.

誌謝

首先要感謝指導教授 李鎮宜博士三年來悉心的指導,在學識、思考、生活上的 啟迪,使得本篇論文之研究得以在工作之餘順利完成,中央大學電機系周世傑教授, 交通大學電工系桑梓賢老師及交通大學資工系許騰尹老師給予的寶貴意見,也在此 致上由衷的感激與謝意。

在研究期間,同學們的互相討論、鼓勵及協助也令我難忘,畢竟能夠在學校畢業 多年的這個時候還能在一起求學,真是一個難得的經驗。另外還要管謝我的家人陳 桂華在背後默默的支持,為我照顧兩個可愛的小孩,讓我得以無後顧之憂,全力在工 作與課業上衝刺。

CONTENT

Chapter 1	Introduction	1
1.1 Motiv	vation	1
1.2 Thesi	s Organization	4
Chapter 2	Principles of Direct Digital Frequency Synthesizer	6
2.1 The C	Concepts of Direct Digital Frequency Synthesizer	6
2.2 Sine/	Cosine mapping function (SCMF)	9
2.2.	1 Quadrant Compression	11
2.2.2	2 $\pi/2$ Sine/Cosine Mapping Function (SCMF)	12
	2.2.2.1 ROM-based Look-UP Table(LUT) For π /2 SCMF	13
	2.2.2.2 Computational Method	15
	2.2.2.3 Initial Guess/Correction Method	16
2.3 Spur	noise of DDFS	19
2.3.	1 Output Spectrum of DDFS in the Present of Phase Truncation	19
2.3.2	2 Output Spectrum of DDFS in the Present of Quantization	23
2.3.	3.Spurious Free Dynamic Range (SDFR)	24
Chapter 3 I	DDFS Architecture and Verification	26
3.1 Spur	of Finite Output Word	26
3.2. Spur	of Phase Truncation	28
3.3 Sine/	Cosine Mapping Function (SCMF)	30
3.4 Archi	itecture of DDFS and Verification	38
3.5 Spec	of DDFS	42
3.6 Imple	ementation Result and Comparison	43
Chapter 4 I	Digital modulation and DDFS	45
4.1 Binar	y FSK	45
4.2 Doub	le Frequency Shift Keying (DFSK)	46
4.3 PSK		47
4.3.	1 Binary Phase Shift Keying	47
4.3.2	2 Quadrature Phase Shift Keying	48
Chapter 5 I	Digital Modulation Verification	51
5.1 Signa	Il Interface	51
5.2 Simu	lation Result of Verilog code	53
5.3 FPGA	A Implementation Result	59

Chapter 6 Conclusion	63
Bibliography	65
Appendix	68
Autobiography	91

List of Tables

Table 1-1	Bluetooth Specification	3
Table 1-2	IEEE 802.11b Specification	3
Table 2-1	Quadrant Table	11
Table 3-1	The simulation result for different phase segmentations	34
Table 3-2	Coarse error correct values ROM table	36
Table 3-3	Fine error correct values ROM table	37
Table 3-4	The spec of DDFS	42
Table 3-5	Comparison of Memory Size reduction and additional circuit for	
	12-bits phase to 10 bits amplitude mapping	43
Table 4-1	one-of-four code tables for two binary bits	46
Table 4-2	BPSK encoding table	48
Table 4-3	QPSK encoding table	50
Table 5-1	Signal Function Table of digital modulator	52
Table 5-2	Resource of device used in digital modulator	59

List of Figures

Fig 1-1	OFDM PHY frequency channel plan for the United States	2
Fig 2-1	Block diagram of the direct digital frequency synthesizer	6
Fig 2-2	Sine quadrant symmetry	11
Fig 2-3	Logic exploit quarter wave symmetry	12
Fig 2-4	Block diagram of modified Sunderland architecture quarter sin function -	14
Fig 2-5	The sine function generation of Nicholas's architecture	15
Fig 2-6	Noise source of DDFS	19
Fig.2-7	(a) Bluetooth in-band spurious emission requirement	24
Fig.2-7	(b) Bluetooth out-of-band spurious emission requirement	24
Fig 2-8	IEEE 802.11b WLAN in-band spurious emission requirement	24
Fig 2-9	Transmit spectrum mask	25
Fig 3-1	SNR (dB) for different output bit length	27
Fig 3-2	SFDR (dBc) for different output bit length	27
Fig 3-3	SFDR (dBc) for phase truncation bits (based on conclusion of Torosyan) -	- 29
Fig 3-4	SFDR (dBc) for phase truncation bits (based on simulation of matlab)	29
Fig 3-5	The DDFS architecture (sine-phase difference Algorithm)	30
Fig 3-6	Initial guess techniques using 2-segment approximation	31
Fig 3-7	Approximated sine function without error correct ROM	31
Fig 3-8	Error between sine wave and initial guess function	32
Fig 3-9	Harmonic levels without error correcting ROM	33
Fig 3-10	Worse case spurious response for partitioning ratio	35
Fig 3-11	ROM size for partitioning ratio	35
Fig 3-12	Approximated sin function with error correct ROM for one period	37
Fig 3-13	Proposed DDFS architecture	38
Fig 3-14	Input frequency control word and output of DDFS	40
Fig 3-15	Synthesized quasi-sinusoid and digital phase sweep	40
Fig 3-16	Frequency-switching behavior of DDFS	41
Fig 3-17	SFDR vs. output frequency	42
Fig 4-1	Binary FSK	45
Fig 4-2.	DFSK signal	46
Fig 4-3	BPSK modulation	47
Fig 4-4	BPSK constellation bit encoding	48
Fig 4-5	QPSK modulations	49
Fig 4-6	QPSK	49

Fig 5-1	Signal interface of digital modulator	51
Fig 5-2	DFSK with symboltime = 4	53
Fig 5-3	FSK with symbol time = 4	54
Fig 5-4	BPSK with symbol ime = 4	54
Fig 5-5	QPSK with symboltime = 4	55
Fig 5-6	FSK with variable symboltime (4,8,6,4)	55
Fig 5-7	Modulator.v RTL schematic view	56
Fig 5-8	DDFS.v RTL schematic view	56
Fig 5-9	Phasetoamp.v RTL schematic view	57
Fig 5-10	Accumulator.v RTL schematic view	57
Fig 5-11	Modset.v RTL schematic view	58
Fig 5-12	Digital modulator test system	59
Fig 5-13	BPSK with symbol ime = 4	60
Fig 5-14	FSK with symboltime = 4	61
Fig 5-15	QPSK with symboltime = 4	61
Fig 5-16	DFSK with symbol ime = 4	62

