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CHAPTER 1 
Introduction 

 
1.1Motivation  

Orthogonal frequency division multiplexing (OFDM) is an attractive technique [1], 

which is suitable for frequency selective channel such as multipath wireless channel. In 

Europe, OFDM has been standardized for digital audio broadcasting (DAB) and digital 

terrestrial video broadcasting (DTVB).Meanwhile, the applications of the OFDM 

transmission technique for various broadband communication systems and services have 

been reported in the literature . For example, OFDM has been chosen for the extension of 

the IEEE 802.11a standard for the 5-GHz frequency band. In this chapter, 

Fig 1-1 shows the channelization scheme for IEEE802.11a standard [2], which shall 

be used with the FCC U-NII frequency allocation. The lower and middle U-NII 

sub-bands accommodate eight channels in a total bandwidth of 200 MHz. The upper 

U-NII band accommodates four channels in a 100 MHz bandwidth. The centers of the 

outermost channels are at a distance of 30 MHz from the band's edges for the lower and 

middle U-NII bands, and 20 MHz for the upper U-NII band. The OFDM PHY l operates 

in the 5 GHz band, as allocated by a regulatory body in its operational region. The center 

frequency is indicated in Figure 1. In a multiple cell network topology, overlapping 

and/or adjacent cells using different channels can operate simultaneously. 

The system uses 52 subcarriers that are modulated using binary or quadrature phase 

shift keying (BPSK/QPSK), 16-quadrature amplitude modulation (QAM), or 64-QAM 

Specifications of Bluetooth and IEEE 802.11b [3] are shown in TABLE 1 and 

TABLE 2, IEEE 802.11b WLAN builds on the data rate capabilities to provide 

5.5Mbits/s and 11Mbits/s payload data rates in addition to the 1Mbps and 2Mbps rates. 

To provide the higher rates, 8-chip complementary code keying (CCK) is employed as 

the modulation scheme. An optional mode is provided that allows data throughput at the 

higher rates (2, 5.5 and 11Mbits/s) to be significantly increased by using a shorter PLCP 

preamble. Another optional mode replacing the CCK modulation with packet binary 
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convolutional coding (PBCC) is provided. IEEE 802.11b WLAN is defined for both 

DSSS and FHSS technique in the 2.4GHz ISM band. 

 

 
  Fig 1-1 OFDM PHY frequency channel plan for the United States 

For a 1Mbit/sec FHSS technique of Bluetooth, 2 level Gaussian FSK modulation 

scheme with a nominal bandwidth bit-period (BT) = 0.5 is used. The symbol {1} shall be 

encoded with a peak deviation of (+fd), giving a peak transmit frequency of (Fc+fd), which 

is greater than the carrier center frequency and vice versa. The deviation factor for the 

modulation is nominally 0.32. For a 2Mbit/sec FHSS technique, 4 level Gaussian FSK 

modulation scheme with a nominal bandwidth bit-period (BT) = 0.5 is employed. The 

deviation factor for the modulation is nominally 0.144 and it will be no less than 0.135. 

For a DSSS technique, DBPSK modulation scheme is used for 1Mbit/sec transmission and 

DQPSK is used for 2Mbit/sec enhanced access rate. 

In Bluetooth system, that is, a frequency hopping (FH) transceiver architecture, 

Gaussian Frequency Shift Keying (GFSK) is chosen to allow noncoherent detection 

capability and constant-envelope signaling. In IEEE 802.11b WLAN system, GFSK is 

also adopted for FH transceiver architecture. However, DBPSK/DQPSK are selected for 

direct sequence (DS) transceiver architecture because of its power efficiency and 

spectrum efficiency. On the other hand, CCK/PBCC are chosen for DS high data rate 

transceiver architecture because of the Block Coded Modulation (BCM) and the Trellis 
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Coded Modulation (TCM) concept. Both of the modulation schemes use coded 

modulation concept to get better performance than conventional modulation schemes. 

OFDM subcarries are modulated by using BPSK, QPSK, 16-QAM, 64-QAM modulation 

in IEEE 802.11a 

  

    Table 1-1 Bluetooth Specification 

   
      Table 1-2 IEEE 802.11b Specification 

Based on Specifications of Bluetooth, IEEE 802.11b and IEEE 802.11a, we have 

much interesting on how to obtain a fast switching speed and high-resolution sine waves 

for modulation scheme. Many methods deal with emerging modern digital techniques 

used to generate and modulate sine waves. These waveforms are used in almost all radio 

applications, communications, radar, digital communications, electronic imaging, and so 

on.  

There are many different ways to generate the sine waves. The most traditional and 

most popular way uses the phase-locked loop (PLL) technology. The PLL is a feedback 

mechanism locking its output frequency to a reference clock . Because of the mature of 

the PLL technology, the PLL synthesizers gained popularity for their simplicity and 

economics. But there are some drawbacks to PLL. In PLL architecture, if we want to get 
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a higher resolution output, it will much increase the circuit complexity. And due to the 

feedback structure, the lock-time is variable, and it usually needs many reference clocks 

to generate the needed output.  

In order to get a more precise and fast-switching speed sine waves, the direct digital 

frequency synthesizer (DDFS) architecture was chosen . In the last few years, direct 

digital synthesis technology has captured the attention of synthesizer designers and 

enjoys an unusual popularity. Various designs and architectures are used to implement 

DDFS, and the applications vary according to the requirements.  

In this thesis, we try to find good algorithm to built hardware efficient DDFS. The 

tuning range can reach from 100KHz to 12.5 MHz, frequency resolution is 95.4hz. 

Multi-mode modulator is implemented by using proposed DDFS, The modulator consists 

of four kinds of digital modulation schemes including frequency shift keying (FSK), Double 

frequency shift keying (DFSK), binary phase shift keying (BPSK) and quadrature phase shift 

keying (QPSK). Some of these modulation are used in IEEE802.11a standard.     

 

1.2 Thesis Organization  

In chapter 2, Principles of Direct Digital Frequency Synthesizer will be discussed, 

including concepts of Direct Digital Frequency Synthesizer, DDFS parameter and review 

of existing phase to amplitude algorithm, Spur items were caused by finite output length, 

phase truncation are also depicted. 

In chapter 3,  DDFS Architecture and Algorithmic Approximation  are  

described and verified by verilog code ,SFDR of DDFS is calculated by Matlab with 

Verilog Outputs.  

In chapter4  Application of DDFS for multi-mode modulation is illustrated. 

Function of multi-mode modulator includes frequency shift keying (FSK), Double 

frequency shift keying (DFSK), binary phase shift keying (BPSK) and quadrature phase shift 
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keying (QPSK). . 

In chapter 5 Verilog simulation and verification for multi-mode modulator will be 

proceed, Verilog code are synthesized by using Synplify Pro. Altera device 

EPF10K100ARC240-1 and simple test system are used to verify the function of proposed 

digital modulator. 

In chapter 6 Conclusion 
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CHAPTER 2 
Principles of Direct Digital 
Frequency Synthesizer 
 

2.1 The Concepts of Direct Digital Frequency Synthesizer 

In 1971, Tierney [4] proposed an architecture for direct digital frequency 

synthesizer (DDFS) with an L-bit frequency control word (FCW) and D-bit output word 

length, it employs an L-bit accumulator to generate the advancing phase of a sine wave, 

then uses a ROM table to look-up the D-bit pre-stored sine samples. That is, one period 

of a sine wave is divided into 2W segments and a sample is chosen within each segment to 

be stored in the ROM. According to the current phase accumulator output ,which served 

as the ROM table address, a sample is looked-up and outputted from the table each clock 

cycle.   

There are a great variety of DDFS implementations since Tierney . However, Most 

of DDFS designs are based on Tierney, The main block function for DDFS is shown in 

Fig 2-1. It consists of four elements: phase accumulator, a sine/cosine mapping function 

(SCMF), digit to analog converter(DAC) and low-pass filter(LPF). Remembering that the 

presentation of a fixed-amplitude, fixed-frequency, and fixed-phase sine wave is given by 

A sin (ωt + φ) 
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   Fig 2-1 Block diagram of the direct digital frequency synthesizer 

We can trace the signal buildup as follows: The signal phase is a linear function,  The 
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slope of the phase dθ/dt is the angular frequency ω. To generate the amplitude of the 

output waveform, it is necessary to transform the phase θ(t) to sin[θ(t)], and this is 

usually done by using sine/cosine mapping function (SCMF). Since the transformation is 

nonlinear and most of SCMF use ROM (or RAM) look-up table or computational method 

for nonlinear transformation.  

The output of the SCMF is thus the digital representation of the sine wave signal 

amplitude(digital samples) and the DAC converts it to an analog sine wave. The LPF 

removes all the aliasing frequency and causes the signal to appear smooth.. The 

accumulator is a device that performs the function S(n) = S(n-1) + FCW . Such a device 

is a digital integrator and produces a linear output ramp whose slope (rate of change) is 

given by FCW, the input frequency control word. This device is used to generate the 

phase ωt  depends on the clock at which the accumulator runs. The accumulator is 

operating as an indexer whose output (representing the phase) controls the input of 

sine/cosine mapping function (SCMF).   

Suppose that the accumulator size is L bits, say L = 32 bit binary device. It is 

therefore able to accumulate from 0 to 232 – 1. Obviously, above this number, the 

accumulator overflows and will start from zero again. The rate of the accumulation 

depends only on the clock rate Fclk = 1/T and FCW. And FCW can be as low as 0, in this 

case, the accumulator will not increment (equivalent to generating a dc signal)- or any 

arbitrary number FCW < 2L – 1. If we equate 0 with zero phase and 232 – 1 with 2π, then 

we have a device that generates phase from 0 to 2π periodically (since the device 

operates modulo 232).  

For a demonstration of the operation of the accumulator, let us assume that we clock 

the device, an L = 32 bit accumulator, at Fclk = 232 / 10. Then if FCW = 1, it will take 

exactly 10 s (2L clock ticks) to generate 0 to 2π. However, if FCW = 230, then it will take 

10 / 230 s (four clock ticks). Obviously FCW controls the rate of change of the 

accumulator, and the rate of change of the phase is the frequency ω. In the above 

example, for FCW = 1, Frequency of DDFS is 0.1 Hz, while for FCW = 230, the 

frequency of DDFS is Fclk / 4 Hz. Mathematically, since ω = dθ/ dt, we can rewrite  



 8 

    L
clk

out

FCWF

dt

d
F

2
2 ==

θπ   12 −< LFCW    (2-1) 

where  

  Fout  : output frequency of DDFS 

  Fclk  : input clock frequency   

  FCW : frequency control word 

 L  : phase accumulator bit length 

 

The constraint in (2-1) come from the sampling theorem .The phase control word in FCW 

is an integer; therefore, the frequency resolution L
clk

res

F
F

2
= is found by setting FCW 

=1.   

The numerical period of the phase accumulator output sequence is defined as the 

minimum value of P for which θ(N)= θ(N+P) for all N. The numerical period [5] of 

phase accumulator output sequence (in clock cycle) is: 

     
)2,(

2
L

L

FCWGOD
P =         (2-2) 

where GOD(FCW,2L) represents the greatest common divisor of (FCW,2L). An example 

of frequency control words is FCW1 = 0001, FCW2 = 0101 and L = 4,we see that the 

sequence generated from FCW1 is q = {q0, q1, q2, q3, q4, q5, q6, q7, q8, q9, q10, q11, 

q12, q13, q14, q15} and sequence generated from FCW2 is p = {p0, p1, p2, p3, p4, p5, p6, 

p7, p8, p9, p10, p11, p12, p13, p14, p15}, The terms of p sequence are obtained by 

picking terms from the q sequence when reaching its end. Sequence of p can be rewritten 

in terms of q sequence p = {q0, q5, q10, q15, q4, q9, q14, q3, q8, q13, q2, q7, q12, q1, q6, 

q11} In fact, this arrangement can be written as p(n) = q((nxFCW2)mod2L), where the 

sequence index n begins at 0,where FCW1 is the value after normalization ,and the 

(.)mod2L denotes a modulo operation. The time output vectors for FCW can be formed 

from a permutation of the individual elements of the vectors for FCW = 1 

    )2mod)(()( 1
L

FCW nFCWn θθ =        (2-3) 

Where FCW and 2L are relatively prime. As shown in (2-3), each input time vector may 

be formed from a permutation of another time vectors by permuting the indices using 
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(nFCW) mod 2L . 

The sine output DDFS operates by applying some memory-less nonlinear function 

s{} to the phase accumulator output to produce the sine function. The DFT of SCMF 

output using (2-3) is: 

 
mnL

n
FCW L

L

WnFCWsmS
21

12

0

)}2mod)(({)}({ ×=∑
−

=

θθ    

m=0,1,……,2L-1   (2-4) 

Where the period of phase accumulator is 2L when FCW and 2L are relatively prime, and 

L

L

jeW 2/2

2

π−= . It can be used to show that the permutation samples in the time domain 

result in the same type permutation in the frequency domain [5] . 
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The above equation establishes that the permutation of the samples in the time domain 

results in the same type permutation of the DFT samples in the frequency domain, 

because J and 2L are relatively prime. This means that the spectrum due to all system   

nonlinearities can be generated from a permutation of another spectrum, when 

GOD(FCW,2L) = 1 for all FCW, because each spectrum will differ only in the position of 

the spectrum and not in the magnitudes.  

 

 

2.2 Sine/Cosine mapping function (SCMF) 

Once the phase is generated by the phase accumulator , it is converted into digital 

representation of output waveform using the sine/cosine-computation block as 

y(θ)=sin(2πθ/2W).The synthesized digital signal can be either directly used in digital 

systems or converted to analog form and then filtered in analog applications. 
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The SCMF converter is normally the most complex, power hungry and slow 

sub-unit, this block has therefore been the subject of much research and much innovative 

architecture has been proposed. 

There are a wide variety of methods for SCMF, from full memory to full-hardware 

approaches. The methods can be placed into three categories. 

(1) Based on ROM look-up tables, containing amplitude samples of complete, half, or 

quarter-period of a sinusoid, and addressed by digital phase, which is generated by the 

phase accumulator. In the case of half- or quarter-period ROM look-up tables, the 

other half-or quarter periods are reconstructed from the stored data. 

(2) Computational methods [6] [7] [8], trying to compute the sine amplitude samples 

from the digital phase, which is generated by phase accumulator. Sine/Cos 

computation by using Taylor series and CORDIC algorithm are examples of this 

category 

(3) Initial guess /correction methods [9] [10] [11], in which an initial guess for the 

sine/cos function is generated by digital hardware and then is corrected by a small 

ROM look-up table, containing the difference between the initial guess and the 

accurate value for the sine/cos amplitude. If the initial guess is properly provided, in 

each memory location just small correcting data will be stored instead of the whole 

sine/cos amplitude. It is obvious that the closer the approximation is to the ideal 

son/cos function, the more memory-wordlength shortening there will be. Compared 

with the approaches based on ROM lookup tables, these methods require smaller 

memories, and hence will be faster and consume less power. Also, because of their 

lower hardware complexity in comparison to computational methods, Hence designer 

has widely preferred this method to first two categories. 
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2.2.1 Quadrant Compression  

The most elementary method of sine storage compression or reduction of 

computational hardware implementation is to exploit the symmetry of sin function about 

0 and π/2 ,as shown in Fig 2-2 

     

 Fig 2-2 Sine quadrant symmetry.  

Thus, for 0 ≦ θ ≦ 90, sin (90 –θ) = sin (90 + θ), sin (270 –θ) = sin (270 + 

θ), sinθ= – sin (–θ), and sinθ= –sin (180 + θ). The presentation of sin a only across 

the first quadrant 0 < θ < 90 °  is sufficient to reconstruct all quadrants from the first 

quadrant, for example ,the sine function betweenπ/2 and π may be synthesized from 

the samples between 0 andπ/2 by taking the phase moduloπ/2 and then taking the 

absolute value of the phase. Thus the 2 MSBs of W (phase accumulator output bit width) 

are needed to control the quadrants, and the values of the first quadrant need to be 

manipulated as shown in Table 2-1. 

PHASE ACCUMULATOR 

OUT(W) MSB 

ACCUMULATOR 

OUT(W) MSB-1 
Sine 

0<θ<π/2 0 0 Sinθ 

π/2 <θ<π 0 1 Sin(π/2-θ) 

π<θ< 3π/2 1 0 -Sinθ 

3/2π< θ < 2π 1 1 -Sin(π/2-θ) 
    

 
Table 2-1 Quadrant Table.  
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This is easily implemented in hardware by truncating the phase accumulator output 

MSB bit and the use the second MSB to full wave rectifies the magnitude of the phase. 

As shown in Fig 2-3, the sampled waveform at the output of the SCMF is a full wave 

rectify version of the desired sine wave. The final output sine wave is the generated by 

multiplying the full wave rectified version by –1 when the phase is between π and     

2π.This is accomplished simply by multiplying by the negative of the phase accumulator 

MSB. Thus, given sin over only the first quadrant, the operations necessary to flip to the 

other quadrants are shown in Fig 2-3  
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Fig 2-3 Logic exploit quarter wave symmetry 

 

2.2.2π/2 Sine/Cosine mapping function (SCMF) 

From a conceptual point of view, the simplest approach consists of using a 

ROM-based Look-UP Table(LUT). Many ROM size reduction techniques have been 

described in the paper [9] [10] [11]. First the quarter wave symmetry of sine function can 

be exploited to reduce by 4 the number of angles for which a sine amplitude. Truncating 

the phase accumulator output is another common method, although it induces spurious 

harmonics. Various angular decomposition methods [12][13] have been proposed to 
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further reduce memory requirements with LUT-based methods, More recent approaches 

have attempted to further reduced the ROM size by increasing the amount of calculations 

performed to obtain a sine approximate the first quadrant of the sine function. These have 

been based on trigonometric approximation, on Taylor series expansion, on simplified 4th 

degree polynomial, on Chebyshev polynomial or linear segments of unequal lengths. 

 

2.2.2.1 ROM-based Look-UP Table(LUT) Forπ/2 SCMF 

The simplest approach for π/2 SCMF consists of using a ROM-based Look-UP 

Table(LUT). Its main disadvantage is that the ROM size grows exponentially with the 

width of the phase accumulator. However, many ROM size reduction techniques have 

been described in the published paper [9][10][11]. Various angular decomposition 

methods have been proposed to further reduce memory requirements with LUT-based 

methods. The typical method for angular decomposition is Sunderland Architecture [12].  

The modified Sunderland Architecture is based on simple trigonometry identities , 

the phase address of the quarter of sine wave is decomposed to θ=α+β+γwith 

wordlength of variables α->A,β->B,γ->C . In this way the 12 phase bits are divided 

into three 4 bit fractions such thatα<1,β< 2-4,γ< 2-8. The desired sine function is given 

by:  

 )
2

sin())(
2

cos()
2

cos())(
2

sin())(
2

sin( γπβαπγπβαπγβαπ
×++×+=++  

                 (2-6) 

Given the relative sizes ofα,β andγ,this expression may be approximated by : 

)
2

sin()
2

cos())(
2

sin())(
2

sin( γπαπβαπγβαπ
×++≈++     (2-7)



 14 

  

Sin(π/2(α+β))
COARSE ROM

Cos(π/2(α+β)) 
x Sin(γπ/2) 

  FINE ROM 

A(4)

B(4)

A(4)

C(4)

12

9

4

9

 

 Fig 2-4 Block diagram of modified Sunderland architecture quarter sin function 

Fig 2-4 the coarse ROM provides low-resolution samples, and the fine ROM gives 

additional resolution by interpolating between the low-resolution samples  

An alternative methodology for choosing the samples to be stored in the ROM is 

based on the numerical optimization [13], The phase address of quarter of sine wave is 

defined as α+β+γ with word-length of the variableα to be A , the word-length ofβ

to be B, andγto be C . The variablesα,βform the coarse ROM address and the variable

α,γform the fine ROM, the fine ROM samples are chosen to be the difference, the 

function is divided into four regions, corresponding toα= 00,01,10 and 11. Within each 

region, only one interpolation value may be used for all the sameγvalues. The 

interpolation value used for each value ofγis chosen to minimize either the mean square 

or the maximum absolute error of the interpolation within the region [13]. 

 Exploiting the symmetry in the fine ROM correction factors provides further storage 

compression. If the coarse ROM samples are chosen in the middle of the interpolation 

region , the fine ROM samples will be approximately symmetry around theγ=(2
C
-1)/2 

axis. Thus , by using an adder/subtractor instead of an adder to sum the coarse and fine 

ROM values, the size of fine ROM may be halved. Some additional complexity must be 

added to the adder/subtractor control logic if this technology is used with Initial 

guess/correction method. Since the fine ROM is generally not in the critical speed path , 

the effective resolution of the fine ROM may be doubled, rather than halving the fine 

ROM. It allows the segmentation of the compression algorithm to be changed, effectively 

adding an extra bit of phase resolution to the look-up table, which thereby reduces the 
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magnitude of the worst-case spur due to phase accumulator truncation.   
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  Fig 2-5 The sine function generation of Nicholas’s architecture 

 

 

2.2.2.2 Computational method 

Instead of ROM LUT, some computational methods are depicted in some paper 

[6][7][8], The Taylor and Chebyshev [7] series approximation are also used in DDFS, 

using either Taylor and Chebyshev approximation in its basic form requires heavy 

computation and the direct utilization of series approximation in phase-to-amplitude 

conversion is infeasible. However, the amount of computation can be reduced by using 

the commonly known summery of sin and cosine signals [14]. In order to achieve a high 

operation clock frequency, pipeline stages were added to the phase-to-amplitude 

conversion logic, all the multipliers and squarers were implemented using carry save 

arithmetic, for further speed up the design, the final addition of the sum and carry vectors 

was put on a separate pipeline stage. So the computational complexity required by the 

Taylor and Chebyshev approach is significantly. 

Langlois [6] propose to use a hardware-optimized SCMF that approximates the first 

quadrant of sine function with eight equal-length piecewise line segments, no 

multiplication was required. Where: 

iii y
i

xmxS +−= )
8

(*)(  , ]7,0[∈i          (2-8) 
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He carefully select the slope of each segment to eliminate the requirement for 

multiplication by representing each one as a sum of at most two powers of two, also 

restrict the precision of the slope representation and select equal-length linear segments to 

reduce control circuitry costs  

Mohieldin’s [8] proposed architecture is based on the idea of breaking the sine 

function into linear segments, for a given number of segments, the segments’ slopes 

(k0,k1,….) are chosen to minimize the integrated mean square error between the ideal 

sin(θ) and the approximate piecewise linear P(θ) curves. In order to simplify the 

implementation of such approximation, the number of segments is chosen to be in power 

of 2. The pointθi are selected to be equally spaced to further simplify the design. Given 

the number of piecewise segments, the slope values yielding minimum mean square error 

(MMSE) are determined where MMSE is expressed as  

∫
=

−= 2

0

2)]()[sin(min
πθ

θθθ dPMMSE         (2-9) 

For the computation methods, it has been demonstrated that it can achieve ROM-less 

goal at expense of increasing in hardware complexity, this hardware overhead can be 

justified for high-speed applications where the large ROM size can represent a bottleneck. 

For the low-power applications, the reduction in power through ROM size reduction has 

to be weighed against the increase in overhead power consumption, so as to determined 

the most suitable compression technique. 

 

2.2.2.3 Initial guess/correction method 

In which an initial guess for the sine function is generated by digital hardware and 

then is corrected by small ROM lookup table, containing the difference of the initial 

guess and accurate value for sine amplitude, the simplest form of initial guess is to use a 

straight line as the initial guess for the first quarter-period of sine function, called the 

sine-phase difference method. In this methods, a straight line represented as y(θ) = 2θ/



 17 

π for 0<θ<π/2 ,which is proportion to the output of the phase accumulator, is taken as 

initial guess. Then , a ROM lookup table, which contains the difference between sin(θ) 

and initial guess 2θ/π,is used to yield an accurate sinusoid. Since max[sin(θ)- 2θ/π] 

= 0.21max[sin(θ)] for 0<θ<π/2 , this save 2 bits of memory word length. 

Another similar work of this category is a double trigonometric approximation, 

devised by Yamagishi [15] which leads to a memory width reduction of 3 bits, In this 

approximation, the initial guess for sin amplitude will need less correction, and hence 

more memory compression will occur. In [16], this paper describes same idea in 

sine-amplitude approximation called parabolic approximation, a parabola whose 

maximum and x-axis intersections are the same as that of the sine half period is generated 

by digital hardware and is considered as the initial guess for the sine function. Such a 

parabola is expressed as y(θ) = (4θ/π)(1-θ/π) for 0<θ<π/2.A comparison between 

a quarter-period of a sinusoid and approximation error for sine-phase difference method 

and that of parabolic is max[sin(θ)- (4θ/π)(1-θ/π)] = 0.056max[sin(θ)] for 0<θ<

π/2 , parabolic approximation will save 4 bits of memory word length. 

Langlois [9] use the straight-line to approximate sine function; the sine function can 

be approximated with n straight-line segments of the form mix+bi : 


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       (2-10) 

Detail calculation can be seen in [9], The concept of this technique is to select n 

straight lines defined by coefficients mi and bi that make points along these straight lines 

easy to calculate. The coefficients can be selected to bound the value ofε(x) to a 

maximum such that a desired number of amplitude bits in the ROM are saved. For 

example, to save 1 bit of storage , the maximum value ofε(x) must less than 0.5.For 2 

bits, it must be less than 0.25 and for k bits, less than 2k .  
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Soudris [10] choose the new function y(x) to be the (a+b+c)/2, the function y(x) 

approximates the sin(x) in a good level, so the dynamic range of sin(x) is reduced 

significantly. Continuing further, it is possible to reduce the dynamic range of derived 

function sin (x)- (a+b+c)/2 even more by taking advantage of its symmetry, this can be 

realized by generating the rectilinear segments L1, L2, L3, L4. These segments are 

implemented by reusing the function (a+b+c)/2 with proper slope faction. so as to 

approximate the function sin(x)-(a+b+c)/2 in a closer level than the previous case ,By 

storing, in the coarse ROM table , the samples of the difference between the above 

function and the value of segment at each point , he can reduce more the memory size 

according to the previous ascertainment.  
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2.3 Spur noise of DDFS 

The are three sources of noise which are inherent to all DDFS implementations, in 

addition to the noise generated in the D/A conversion process. The first source of noise is 

P(n),The distortion due to phase truncation at the input to the sine function computing 

hardware(SCMF), The second is g(*),which is a nonlinear distortion that is usually 

present when compressing the storage requirements of the look-up table or approximation 

method  are employed, and the third is A(n),the noise introduced by finite precision of 

the sine samples generated from SCMF. These noise sources are depicted symbolically in 

Fig2-6  
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       Fig 2-6 Noise Source of DDFS 
 

 

2.3.1 Output Spectrum of DDFS in the present of Phase truncation 

In order to limit the complexity of phase to amplitude such that it can be 

implemented with reasonable amount of hardware, the phase accumulator output is 

typically truncated before being fed into SCMF, as shown in Fig2-6. The phase truncation 

is known to manifest itself as a set of spurious frequencies at the outputs. The first 

rigorous mathematical treatment for determining the magnitude and spectral location of 

spurious frequencies (often called “spurs”) was attempted in 1987 by Nicholas and 

Samueli [18] and resulted in a rather complicated algorithm. In 1993 Kroupa [19] present 

a simpler algorithm for estimation of spur magnitudes with the introduction of 

approximation.     
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The source P(n) is due to the truncation of the phase accumulator bits addressing the 

sine ROM. Since the amount of memory require to encode the entire width of the phase 

accumulator would be usually prohibitive, only W of the most significant bits of the 

accumulator are generally used to calculate the sine-wave samples. The worse case 

carrier-to-spur ratio due to the phase truncation is [18] 

 )
2

)2,(
(2

WL

WL
w FCWGCD
Sinc

S

C
−

−

= ,  If  GCD (FCW,2W)<2L-W    (2-11) 

The phase truncation occurs only, when GCD(FCW,2W) is small than 2L-W, If 

GCD(FCW,2W) is equal or greater than 2L-W, the phase bits are zeros below 2L-W, no 

phase error occurs. 

 Modificated Nicholas Phase Accumulator, This method does not destroy the 

periodicity of the error sequences, but it spreads the spur power into many spur peaks 

[18]. If GCD(FCW,2L-W) is equal 2L-W-1 in (2-11), the spur power is concentrated in one 

peak. Then the worst case carrier-to spur ratio is from (2-11) 

)992.302.6( −= W
S

C
  dBC             (2-12) 

Where W is wordlength of phase accumulator output used to address the ROM. If 

GCD(FCW,2L-W) is equal to 1, the spur power is spread over many peaks. The 

carrier-to-spur ratio is approximately from 

  W
S

C
02.6=           dBC          (2-13) 

Compare (2-12) and (2-13) show that the worst case spur can be reduced in 

magnitude by 3.992 dB by forcing GCD(FCW,2L-W) to be unity, i.e., by forcing the 

frequency control word to be relatively prime to 2L-W. This causes the phase accumulator 

output sequence to have a maximal numerical period for all value of FCW, all possible 

value of phase accumulator output sequence are generate, before any value are repeated. 
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Arthur Torosyan [17] present simple algorithm for calculation of the output 

spectrum of DDFS in the presence of phase accumulator truncation in 2001. By using no 

approximations, a simple formula calculates the magnitudes of the spurious noise 

frequency (spur) due to phase truncation, their spectral position is also determined by a 

simple expression. The derivation process itself provides strong insight into spur 

magnitude and spectral location and it makes evident that the set of spurs due to phase 

word truncation and the set resulting from finite arithmetic precision are disjoint. Briefly 

description is as follows.  

For Torosyan’s discussion of phase word truncation, first assume the SCMF is ideal 

(with infinite precision output). Let f be an L-bit frequency control word with the 

rightmost non-zero LSB located in at the W +B position from the MSB. For example, if L 

= 24, then for W = 15 and B =5 the first non-zero LSB will be at position 20. The word f 

= 010011011011110101110000 is an example of such a frequency control word, where 

underlined bits correspond to phase word bit positions that address the SCMF., the set of 

spurious lines generated by the frequency control word f = 010011011011110101110000 

is identical to the set of spurious lines generated by g = 

000000000000000000010000(identical in the number and amplitude of spurs). If the 

frequency control word is g = 000000000000000000010000 and the phase accumulator 

output is truncated to W = 15 bits before addressing the SCMF, the SCMF input will step 

once every 2(20-15) = 32 cycles. Since the SCMF simply outputs the sin and cos values for 

input phase, the same “redundant” behavior can be observed at the output sin (n) and 

cos(n) of the DDFS. Notice that SCMF will go through all possible 215 = 32768 inputs 

and their corresponding outputs, each repeated 32 times, before repeating the cycle again.  
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Where S’(k) is the 215 –point DFT of non-redundant subsequence s’(n) = s(32n). Thus, by 

summing the finite geometric series, the derivative of the following expression and is 

depicted in paper of Torosyan [17]: 
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     S(k) = V(k)S’(k)          (2-14) 
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                   (2-15) 

Where S’W(k) is periodic in k with period 2W and one period of VW,B window over 2B 

periods of S’W(k). Since we know the locations of deltas in S’W(k) not only do we know 

the locations of the spurious lines created from phase word, but we also know the exact 

spurious noise line magnitudes since we can evaluate the windowing function V for 

values of k corresponding to the location of the deltas in S’W(k). More precisely, the 

amplitude of the spurious frequency at k, relative to that of the desired sinusoid, is 

)1(

)(

,

,

BW

BW

V

kV . That is in dB, the spur magnitude at k will be: 

)1(log20)(log20 ,10,10 BWBW VkV −           (2-16) 
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2.3.2 Output Spectrum of DDFS in the present of quantization 

Finite output word length also leads to the DDFS output spectrum impairment, if it 

is assumed that the phase truncation does not exist, then the output of the DDFS is given 

by )()
2

2
sin()(' nA

n
ns

W
+=

π
, where A(n) is the quantization error due to finite output 

word length D, the output resolution, is an important design parameter, because it has a 

large effect in the accuracy parameter of the synthesizer. In that respect, it is necessary to 

define the main accuracy metrics typically used for DDFS. A straightforward method to 

characterize the accuracy of the synthesized signal is to measure the maximum absolute 

error (MAE) of actual output valued with respect to the theoretical one. 

MAE represents the bound of the error that occurs in the generation of each output 

sample. Therefore a system performs with MAE approaching the null value exhibits a 

good performance also with respect to any other accuracy parameters.  

Another accuracy metric of a DDFS is the mean square error (MSE). This 

parameter measures the mean power of the output quantization noise, independently from 

the spectral quality of the noise itself. Also for MSE we can state a theoretical limit of 

LSB2/12, obtained realizing the DDFS as an ideal quantizer following a sine generator. If 

we evaluate the ratio between signal power and MSE, we obtain another accuracy 

parameter, the signal to noise ratio (SNR), which is typically expressed in dB (SNRdB). 

Obviously, the maximum SNR of a DDFS is related to the output resolution by the 

following equations [20]:  

 
MSE

LSB
SNR

D

*2

)12( 221 −
=

−

 

 SNRdB = 6.02D + 1.76 dB            (2-17) 

That, for example, leads to SNRdB = 55.94 dB for a system with an output resolution of 

D = 9 bits. 
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2.3.3.Spurious Free Dynamic Range (SDFR) 

In Bluetooth, within the ISM band the transmitter shall pass a spectrum mask, that 

is, in-band spurious emission requirement that is shown in Fig. 2-7(a). The transmitted 

power shall be measured in a 100 kHz bandwidth using maximum hold. Moreover, the 

out-of-band spurious emission requirement is shown in Fig. 2-7(b). 

 

 

Fig. 2-7 (a) Bluetooth In-Band Spurious Emission Requirement 

(b) Bluetooth Out-of-Band Spurious Emission Requirement 

 In IEEE 802.11b WLAN system, the transmit spectral mask is shown in Fig. 2-8 

and the measurements shall be made using a 100kHz resolution bandwidth  

 Fig. 2-8 IEEE 802.11b WLAN In-Band Spurious Emission Requirement 

In IEEE 802.11a the transmitted spectrum shall have a 0 dBr (dB relative to the 

maximum spectral density of the signal) bandwidth not exceeding 18 MHz, –20 dBr at 11 

MHz frequency offset, –28 dBr at 20 MHz frequency offset and –40 dBr at 30 MHz 

frequency offset and above. The transmitted spectral density of the transmitted signal 

shall fall within the spectral mask, as shown in Figure 2-9. The measurements shall be 



 25 

made using a 100 kHz resolution bandwidth and a 30 kHz video bandwidth. 

Fig 2-9 Transmit spectrum mask 
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CHAPTER 3 
DDFS Architecture 
and Verification 

In this chapter, the spur items caused by finite output word length, phase truncation 

and sine/cosine mapping function (SCMF) are discussed. Using the MATLAB to simulate 

DDFS performance. DDFS architecture and algorithmic approximation is described and 

verified by verilog code, Matlab is used to calculate SFDR of DDFS with output of 

ModelSim. 

3.1 Spur of Finite Output Word  

Accuracy metric of a DDFS is the mean square error (MSE). The signal to noise 

ratio (SNR), which is typically expressed in dB (SNRdB). Using MATLAB to simulate the 

finite output word length and the SNR result are shown in Fig 3-1. From the result of 

simulation, Formula (2-17) can achieve good approximation for SNR of finite output 

word. 

For many applications, the most important accuracy parameter in a DDFS is the 

spectral purity, often referred as spurious free dynamic range (SFDR), which is defined as 

the ratio (in dBc) between the fundamental and the largest spurious amplitude in the 

spectrum of the generated output. Fig 3-2 is the simulation result of MATLAB program, 

from Fig 3-1 and Fig 3-2, it shows good values SNR generally lead to good values of 

SFDR too.   
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   Fig 3-1 SNR(dB) for different output bit length 

For the same condition of simulation, it is reasonable for value of SFDR larger than 

SNR at same bit of quantizer. 
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    Fig 3-2 SFDR(dBc) for different output bit length   
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3.2. Spur of phase truncation 

 Torosyan presents simple algorithm for calculation of the output spectrum of 

DDFS in the presence of phase accumulator truncation. By using no approximations, a 

simple formula calculates the magnitudes of the spurious noise frequency (spur) due to 

phase truncation, their spectral position is also determined by a simple expression. The 

derivation process itself provides strong insight into spur magnitude and spectral location 

and it makes evident that the set of spurs due to phase word truncation and the set 

resulting from finite arithmetic precision are disjoint.  

For a DDFS with an L-bit frequency control word and W-bit input SCMF, Matlab 

program is written to simulate spurious noise of phase truncation based on conclusion of 

Torosyan (L-bit frequency control word is truncated to be W-bit input SCMF, bits of 

truncation B = L-W), The following is algorithm for Matlab programming. 

(1). Calculate S’W(k), the 2W-point of DFT of the SCMF output corresponding to 

the frequency control word having a single non-zero bit at the position W, and where k 

denotes the bin number (or frequency index).  

(2). For 1 ≤ B ≤ (L-W) and VW, B given in (2-15), evaluate (2-16) for k ={d (2W±1); 

for 1 ≤ d ≤ (2B-1)} to obtain the magnitudes of the “phase truncation“ spurs for any 

frequency control word with its rightmost non-zero bit at position W+B. The entire 

DDFS output spectrum will be obtained from SW,B(k) = VW,B(k)S’W(k). 

Spurious noise for phase truncation bit based on Torosyan’s formula is shown in Fig 

3-3. The spur caused by phase truncation is simulated by Matlab program and the result is 

shown in Fig3-4, two results are consistent, so it is good for algorithm of Torosyan to 

calculation of the output spectrum of DDFS in the presence of phase accumulator 

truncation. 
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 Fig 3-3 SFDR (dBc) for phase truncation bits (based on conclusion of 

Torosyan) 
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 Fig 3-4 SFDR (dBc) for phase truncation bits (based on simulation of MATLAB) 
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3.3 Sine/Cosine mapping function (SCMF) 

Initial guess /correction methods, in which an initial guess for the sine function is 

generated by digital hardware and then is corrected by a small ROM look-up table, 

containing the difference between the initial guess and the accurate value for the sine 

amplitude. These methods require smaller memories, and hence will be faster and 

consume less power. Because of their lower hardware complexity in comparison to 

computational methods. Hence the initial guess and error correct ROM are used to 

approximate the sine function. 

 Fig 3-5 is the DDFS based on sine-phase difference algorithm, the auxiliary 

function f(x) (x= A+B+C) 
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
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 Using 3rd MSB of phase to choice which segment of curve B (shown in Fig3-6) will 

be used, for example 3rd MSB = 0 for (A+B+C)/4 and 3rd MSB =1 for 0.25- (A+B+C)/4.  
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  Fig 3-5 The DDFS architecture (sine-phase difference Algorithm) 
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Auxiliary function f(x) ;that is approximated function is shown in Fig 3-6 , curve A 

is first approximation function (A+B+C) and curve B is second approximation function 

by using two segment lines , (A+B+C)/4  for 0 <θ<π/4 , 0.25-(A+B+C)/4 for π/4 < 

θ<π/2, curve A+B combines first and second approximation function for quarter 

quadrant. 

 

  Fig 3-6 Initial guesses techniques using 2-segment approximation 

A complete period of the approximation function f(x) and the ideal reference 

sinusoid are shown in Fig 3-7  

 

Fig 3-7 Approximated sine function without error correct ROM 
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Error between sine wave and approximated function f(x) is shown in Fig 3-8. 

  max[sin(θ)-f(x)] = 0.1163 max[sin(θ)]     for 0 <θ<π/2   (3-2) 

The maximum error is 0.1163 less than 0.125, which saves 3 bits of ROM output, A 

more detailed study on the errors, depicted in Fig3-8, shows that the approximated 

function is so chosen that the approximation error is entirely positive.   

 

  Fig 3-8 Error between sine wave and initial guess function  

From a different viewpoint, the likelihood of the approximation to an ideal sinusoid 

can be judged from its power spectrum. Harmonic levels without error correction are 

shown in Fig 3-9. Maximum power levels is -27.93 dBc, As can be seen, only odd 

harmonics have appeared in the spectrum, and their levels are such that they can be 

neglected in some general applications. However, for precise systems, they should be 

pushed down by using an error correcting ROM lookup table.  

In order to reduce the ROM size, the ROM memory is partitioned into two ROM 

blocks. The first ROM (coarse ROM) presents the total ROM in less address than the 

original and the second one can use a form of linear interpolation (Fine ROM). The sum 

of coarse and fine ROM compensate the error  
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    Fig 3-9 Harmonic levels without error correcting ROM 

Between the approximation function f (x) and ideal sin function. The coarse ROM output 

word length may be reduced and this method reduces the lookup table storage 

requirements at least of 2A+B+C bit totally. The drawback of this reduction of ROM is that 

another adder/subtract is required 

The phase address of quarter sine wave is decomposed to θ= a+b+c with the word 

length of the variables : a = A, b = B, c = C .The variables A,B form the coarse ROM 

address, and the variables A,C form the fine ROM address The sine function between [ 0,

π/2] is divided into 2A different regions . In each region we define 2B points, which are 

the samples that stored in coarse ROM by taking minimum error value of coarse interval 

(2A+B coarse intervals). The fine ROM samples are chosen to be average error value of 

entire fine interval (2A+C fine intervals), the fine error value is directly below that point. 

Within each coarse region (same A , different B), only one sets fine correction error value 

were used for different 2B coarse interval. Using ROM splitting under sacrificing the 

performance of SFDR can reduce ROM size. 

MATLAB program is used for partitioning ratio study. Furthermore, It was 

determined by simulating SFDR and ROM size measurements that the segmentations of 

the address word to the coarse and fine ROM have values of A, B and C. As the value of 

A increases, the ROM size is increased proportionally (Fig 3-11), Upon to these 

constraints, the spurious responses of the possible segmentations were simulated (Fig 

3-10), the results show the size of the memory plotted against to the word length variable 
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A, B, C (Fig 3-11).   

(A, B, C) 
SFDR  
(dBc) 

Max Coarse  
Error 

Max Fine 
 Error 

ROM Size 
(Bits) 

Compression 
Ratio 

Remark 

(2, 3, 5) 58.71 0.1141 0.0134 576 71.1 25x6+27x3 = 576 

(2, 5, 3) 68.55 0.1141 0.0044 832 49.2 27x6+25x2 = 832 

(2, 4, 4) 66.84 0.1145 0.0078 576 71.1 26x6+26x3 = 576 

(3, 2, 5) 66.11 0.1141 0.019 1216 33.7 25x6+28x4 = 1216 

(3, 3, 4) 66.34 0.1141 0.0087 768 53.3 26x6+27x3 = 768 

(3, 5, 2) 68.33 0.1141 0.0017 1568 26.1 28x6+25x1 = 1567 

(4, 2, 4) 70.52 0.1141 0.0097 1152 27.8 26x6+28x3 = 1152 

(4, 3, 3) 70.98 0.1141 0.0055 1024 40 27x6+27x2 = 1024 

(4, 4, 2) 68.35 0.1151 0.0027 1600 25.6.3 28x6+26x1 = 1600 

(5, 1, 4) 69.03 0.1141 0.0112 1920 21.3 26x6+29x3 = 1920 

(5, 2, 3) 71.31 0.1141 0.0057 1280 32 27x6+28x2 = 1280 

(5, 3, 2) 68.36 0.1151 0.0028 1664 24.6 28x6+27x1 = 1664 

(5, 4, 1) 66.95 0.1156 0.0019 3072 13.3 29x6+26x0 = 3072 

Table 3-1 the simulation result for different phase segmentations  

 Table 3-1 is the simulation result for different phase segmentations and simulation 

condition is FCW = 1, Phase to Amplitude bit = 12 bits, no phase truncation and 

amplitude quantization bits is 10, that is, amplitude output bit is 10 bits. When A = 2, 

B=4 and C=4, the SFDR is 66.8 dBc, requirement of total ROM size (coarse ROM size 

384 bits and fine Rom size 192 bits) is 576 bits. From the simulation result, even we use 

larger ROM size, SFDR performance is limited by the Rom splitting and quantization, 

given a certain spectrum specification, the designer has the ability to choose among 

alternative implementations meeting the design requirement.  
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   Fig 3-10 Worse Case Spurious Response for partitioning ratio 
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      Fig 3-11 ROM Size for partitioning ratio 

However, SFDR 66.8 dBc can meet our requirement in the further applications. 

Proposed DDFS based on sine-phase difference algorithm with ROM segmentation (A=2, 

B=4 and C=4) is shown in Fig 3-5. The auxiliary function f(x) A+B+C is simple 9-bit 

phase data and (A+B+C)/4, 0.25- (A+B+C)/4 are 7 bit phase data, The DDFS 

architecture uses adder blocks for phase data add, further reduction in the size of the 

ROM is realized by a ROM, segmentation algorithm show in Fig 3-5, The 10-bit phase 

data of accumulator is  divided  into  three  parts. A = 2, B = 4, C = 4 ROM  

segmentation will be implemented in proposed DDFS. Coarse and fine error correct value 

are shown in table 3-2 & 3-3. The 212x10 sine samples are compressed into 26x6 coarse 
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samples and 26x3 fine samples, compressed ratio is 71:1. 

2A 2B Float 
Value 

Int 
(6 bits) 2A 2B Float Value 

Int 
(6 bits) 2A 2B Float 

Value 
Int 

(6 bits) 2A 2B Float 
Value 

Int 
(6 bits) 

1 0.000615  0  1 0.070602  36  1 0.081967  42  1 0.107484  55  

2 0.005624 3 2 0.073603 38 2 0.087344 45 2 0.104399 53 

3 0.010617 5 3 0.076359 39 3 0.092283 47 3 0.100747 52 

4 0.015578 8 4 0.078857 40 4 0.096774 50 4 0.096524 49 

5 0.020494 10 5 0.081082 42 5 0.100768 52 5 0.091725 47 

6 0.025350 13 6 0.083022 43 6 0.104218 53 6 0.086346 44 

7 0.030130 15 7 0.084663 43 7 0.107190 55 7 0.080383 41 

8 0.034820 18 8 0.085921 44 8 0.109675 56 8 0.073833 38 

9 0.039405 20 9 0.086804 44 9 0.111664 57 9 0.066693 34 

10 0.043872 22 10 0.087346 45 10 0.113150 58 10 0.058959 30 

11 0.048205 25 11 0.087494 45 11 0.114124 58 11 0.050630 26 

12 0.052390 27 12 0.087132 45 12 0.114578 59 12 0.041704 21 

13 0.056413 29 13 0.086388 44 13 0.114271 59 13 0.032178 16 

14 0.060260 31 14 0.085251 44 14 0.113396 57 14 0.022052 11 

15 0.063916 33 15 0.083710 43 15 0.111977 57 15 0.011324 6 

1 

16 0.067368 34 

2 

16 0.080667 41 

3 

16 0.110008 56 

4 

16 0.000006 0 

 Table 3-2 Coarse error correct values ROM table 

 
 A complete period of approximation with ROM compensation is shown in Fig 3-12. 

From the table 3-3, fine ROM size can be further reduced to 128 bits by using two bits. 

Of course, it will degrade the performance of SFDR. 
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2A 2C Float 
Value 

Int 
(3 bits) 2A 2C Float 

Value 
Int 

(3 bits) 2A 2C Float 
Value 

Int 
(3 bits) 2A 2C Float 

Value 
Int 

(3 bits) 

1 0.000446 0 1 0.000803  0  1 0.001551  1  1 0.007804  4 

2 0.000000 0 2 0.000134 0 2 0.000464 0 2 0.006166 3 

3 0.001507 1 3 0.001442 1 3 0.001327 1 3 0.006478 3 

4 0.001060 1 4 0.000860 0 4 0.000237 0 4 0.004836 2 

5 0.002567 1 5 0.002214 1 5 0.001159 1 5 0.005144 3 

6 0.002119 1 6 0.001592 1 6 0.000038 0 6 0.003496 2 

7 0.003624 2 7 0.002929 1 7 0.000954 0 7 0.003800 2 

8 0.001223 1 8 0.000326 0 8 0.001860 1 8 0.004101 2 

9 0.002727 1 9 0.001605 1 9 0.002700 1 9 0.004400 2 

10 0.002278 1 10 0.000910 0 10 0.001521 1 10 0.002743 1 

11 0.003781 2 11 0.002144 1 11 0.002306 1 11 0.003037 2 

12 0.003331 2 12 0.001379 1 12 0.001199 1 12 0.001376 1 

13 0.004834 2 13 0.002588 1 13 0.002043 1 13 0.001666 1 

14 0.004382 2 14 0.001920 1 14 0.000932 0 14 0.000000 0 

15 0.005884 3 15 0.003039 2 15 0.001772 1 15 0.000285 0 

1 

16 0.003479 2 

2 

16 0.000588 0 

3 

16 0.002610 1 

4 

16 0.000568 0 

 
Table 3-3 Fine error correct values ROM table 

  
 
 
 

 
Fig 3-12 Approximated sin function with error correct ROM for one period. 
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3.4 Architecture of DDFS and Verification  

  The DDFS architecture of Fig 3-5 is simulated in system level, in order to verify 

feasibility of the idea. Then, the system was designed by digital circuitry and simulated 

by verilog code. Phase accumulator is 20 bits width input (FCW) and output of phase 

accumulator are truncated to 12 bits (12 MSB bits) and feed into SCMF block that 

convert from phase to amplitude. 

Fine
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ROM
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3

1's

9

7

7

12

6
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Sine/Cosine mapping function (SCMF)

1

1

 
      Fig 3-13 Proposed DDFS architecture 
 

The SCMF converter block includes 2 sets of 1’s complementary to exploit 

quarter-wave symmetry. First MSB and second MSB are used to full wave rectify the 

magnitude of the phase. The final output sine wave is generated by multiplying the full 

wave rectified version by –1 when the phase is betweenπ and 2π(1st MSB = 1). This is 

accomplished simply by taking the amplitude bits (9bits) exclusive or with MSB of phase. 

MSB bit of phase is to be the sign bits, total 10 bits is for sine output amplitude. For the 

second and fourth quadrant, the phase bits should be complemented so the slope of the 

saw tooth is inverted, by taking 2ndMSB of phase exclusive or with phase bit to determine 

whether the amplitude is increasing or decreasing. the full wave output can be recovered 

by inverting the phase and amplitude appropriately. 

In Fig 3-13, the notation {>>N} signifies a right shift by n bits or division by 2N. 
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Phase bits shift one bit right and rounds to 9 bits to form A+B+C, phase bits shift three 

bits right and rounds to 7 bits to be (A+B+C)/4 for phase between 0 andπ/4, by taking 

the inverse bits of (A+B+C)/4 to be 0.25-A+B+C for phase  betweenπ/4 andπ/2. Third 

MSB of phase bit determine which segment will be used, that is , 3rdMSB = 0 for phase 0 

toπ/4, 3rdMSB = 1 for phase π/4 toπ/2 . Multiplexer is used for switching (A+B+C)/4 

and 0.25-A+B+C under controlled by 3rdMSB phase bit. 

Coarse and fine Rom are used as error correcting ROM lookup table. Individual 

Rom sizes are 384 bits for coarse Rom and 192 bits for fine Rom. Output bit width is 6 

bits for coarse and 3 bits for fine Rom. The values of Rom are listed in table 2&3. All the 

parameters of DDFS were determined by the simulation result of Matlab described in 

previous section. Output of error corrects Rom (6 bits), the auxiliary function (9 bits) and 

MSB phase bit were summed to be the output of DDFS (10 bits)   

Verilog code has been written to simulate the DDFS architectures. All simulations 

have been realized with ModelSim. Figure 3-14 show the output bits for frequency 

control word of h01000 and h04000 (FCW), or an output frequency equal to (h1000/hfffff) 

x Fclk and (h4000/hfffff) x Fclk. The simulation is presented in waveform tool of ModelSim. 

In Fig 3-14, from top to down, they are system clock (clk), system reset (rst), frequency 

control word (FCW), output of DDFS (10bits), address for coarse ROM (6 bits), output of 

coarse ROM (6 bits), address for fine ROM (6 bits), output of fine ROM (3 bits), 

truncated phase address (12 bits), output of coarse ROM (6 bits), output of fine ROM (3 

bits), output of multiplex for switching (A+B+C)/4 and 0.25-A+B+C. 

The output sinusoid amplitude from simulation of ModelSim is saved to file and use 

Matlab to do post-processing. The synthesized waveform and the digital phase sweep 

result from verilog code simulation are shown in Fig 3-15, three waveforms are shown in 

the figure, the waveforms are full sine amplitude, half sine amplitude and phase 

accumulation. When phase accumulation output MSB = 1(π to 2π), the full sine 

amplitude can be achieved from half sine amplitude by proceeding exclusive or with half 

amplitude(inverse the amplitude). When phase accumulation output 2ndMSB = 1(π/2 to 
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π or 3π/2 to 2π), by taking 2ndMSB exclusive or with phase bits(inverse the phase), 

the half amplitude can be recovered from first quadrant. All the property is depicted in 

the Fig 3-15. 

 
 
   Fig 3-14 Input frequency control word and output of DDFS 

       

 

   Fig 3-15 Synthesized quasi-sinusoid and digital phase sweep 
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Frequency–switching behavior is also simulated and the waveform was shown in Fig 

3-16. In the beginning, input frequency control word FCW = h04000, after 3360 time unit, 

change the FCW to h01000, through 5760 time unit, switching back to FCW = h04000. 

One can find that phase of output waveform is continuous when the frequency is 

changed.   

.   
   Fig 3-16   Frequency-switching behavior of DDFS 

  The output spectrum of implementation is calculated in Matlab environment, The 

FFT was performed over the output period, so the problem of leakage in the Fast Fourier 

transform (FFT) analysis is avoided. SFDR for various output frequency are simulated 

and calculated, which is depicted in Fig 3-17. 

From the result of verilog simulation, SFDR is affected by output frequency; it is 

caused by distortion of Sine/Cosine mapping function, output bit quantization and phase 

truncation; (here did not cover distortion of DAC), individual factor that has an effect on 

SFDR is described in previous section.  It can be seen that SFDR is over 61 dBc for all 

synthesized output frequency. 
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     Fig 3-17 SFDR vs. output frequency  
 
 
 

3.5 Spec of DDFS 

From the result of previous section, the spec of proposed DDFS is listed in table3-4. 

System clock is 100MHz, tuning Bandwidth is 20MHz, and the dimension of look-up 

table is 576 bits. The phase resolution is 20 bit with 95.4Hz frequency resolution and is 

truncated to 12 bits which is input of SCMF, output bits of DDFS is 10 bits with spectral 

purity better than 61 dBc for all synthesized output frequency. 

Parameter Value Unit 

Frequency Control Word 20 Bits 

No. Of  Phase Address Bits 12 Bits 

No. Of Output Bits 10 Bits 

ROM Size 576 Bits 

Max. Clock 100 MHz 

Frequency Resolution 95.4 Hz 

Tuning Bandwidth 12.5 MHz 

SFDR 61 dBc 

Table 3-4 The spec of DDFS 
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3.6 Implementation Result and Comparison 

The summary of memory compression and algorithmic techniques are listed in Table 

3-5. Table 3-5 shows how much memory and how many additional circuits are needed in 

each memory compression and algorithm technique under the worst case spur level. From 

the data in table 3-5, and assume that the system output amplitude is quantized with the 9 

bits plus a sign bits, then realizes a reduction in ROM size of 25% compare with the 

Parabolic Approximation, MTA ROM segmentation, of 50% with Modified Nicholas 

Architecture and of 55% with Modified Sunderland Architecture.  

Method 
Need ROM 

(bits) 
SFDR 
(dBc) 

Additional 
Circuits 

Uncompressed memory 212 x 10 81.76 - 

Quarter sine wave 210 x 9 78.76 - 

Modified Sunderland 
Architecture [12] 

27 x 7 
27 x 3 

73.59 9-bits adder 

Modified Nicholas 
Architecture [21] 

27 x 7 
27 x 2 

74.56 9-bits adder 

Parabolic Approximation [16] 
27 x5 
27 x 1 

66.8 
Multiplier, 
9-bits adder 

MTA Quarter period [11] 210 x 4 78.76 
7-bitsadd/sub, 
9-bits adder*2, 

Switch 

MTA ROM segmentation [11] 
27 x 4 
27 x 2 

73.84 
7-bitsadd/sub, 
9-bits adder*2, 

Switch 

DTA with ROM segment 
26x6 
26x3 

61 
6-bitsadder, 
9-bits adder 

 Table 3-5 Comparison of memory size reduction and additional circuit for  

12-bits phase to 10 bits amplitude mapping 
 

This implementation is simple and straightforward. The amplitude value 
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computation utilizes two adders, one is 9-bit adder and the other is 6 bits adder, the 

parabolic approximation requires full multiplier and a 2’s complementor. Since the ROM 

is generally the hungriest subsystem in a DDFS synthesizer, it is expected that the 

substantial reduction in ROM size and power consumption more than justifies the modest 

increase in processing and control costs. Initial investigation show that can reduce the 

ROM size and maintaining additional circuits cost very low. Of course, additional circuit 

and Rom size can be increased to improve performance of SFDR.  
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CHAPTER 4 
DIGITAL 

MODULATION and 
DDFS 

 
4.1 Binary FSK 

Frequency shift keying (FSK) is the most common form of digital modulation in the 

high-frequency radio spectrum, and has important applications in telephone circuits. 

Binary FSK (usually referred to simply as FSK) is a modulation scheme typically used to 

send digital information between digital equipment such as teleprinters and computers. 

The data are transmitted by shifting the frequency of a continuous carrier in a binary 

manner to one or the other of two discrete frequencies. One frequency is designated as 

the “1” frequency and the other as the “0” frequency. The  “1” and  “0” correspond to 

binary one and zero, respectively. By convention, “1” corresponds to the higher radio 

frequency. Fig 4-1 shows the relationship between the data and the transmitted signal. 

Frequency Shift Keying (FSK) – 1/0 represented by two different frequencies slightly 

offset from carrier frequency 

 BFSK:    f0(t)= Acos((ωc -∆ω)t)   

    f1(t)= Acos((ωc+∆ω)t)          (4-1) 
 

 

 

       Fig 4-1 Binary FSK 
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4-2 Double frequency shift keying (DFSK) 

DFSK, sometimes called DFS is a scheme to transmit two independent binary data 

streams by shifting the frequency of a single carrier among four discrete frequencies. 

Table 4-1 shows a code table to convert two binary bits to one of four output states. For 

example, if bit X and bit Y is 1 and 0, respectively, the output state is C. If each of the 

four output frequency states (A through D) is assigned to a corresponding FSK frequency, 

then it is possible to transmit any two bits as a single element. Fig 4-2 illustrates a typical 

DFSK signal.  

Input    Bits 

X     Y 
Output Frequency 

0      0 
0      1 
1      0 
1      0 

A 
B 
C 
D 

 
Table 4-1 one-of-four code tables for two binary bits. 

In the example of Fig 4-2, output states A through D are assigned to frequencies f1 

through f4, respectively.  

 

Fig 4-2. DFSK signal.  
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4-3 PSK 

The IEEE 802.11a standard defines OFDM modulation for the high-speed physical 

layer (PHY) in the 5 Ghz band. The OFDM process provides for a wireless LAN with 

data payload communication capabilities of 6,9,12,18,24,36,48 and 54 Mbps. 

transmission and reception of data at the rates of 6,9,12 and 18 Mbps are addressed; The 

standard specifies 52 subcarriers that are modulated using either binary or quadrature 

phase-shift keying (BPSK/QPSK) and data rate are 6,9 Mbps for BPSK, 12,18 Mbps for 

QPSK.  

 
4.3.1 Binary Phase Shift Keying 

For binary PSK (BPSK), symbol waveforms have the form:  

 S0(t) = A cos (ωc+π) = -Acosωct   represents binary “0” 

    S1(t) = A cosωc       represents binary “1”    (4-2) 

 

     Fig 4-3 BPSK modulation 

In 802.11a standard, The OFDM training symbols shall be followed by the SIGNAL 

field, which contains the RATE and the LENGTH fields of the TXVECTOR. The RATE 

field conveys information about the type of modulation and the coding rate as used in the 

rest of the packet. The encoding of the SIGNAL single OFDM symbol shall be performed 

with BPSK modulation of the subcarriers. The BPSK constellation bit encoding is shown 

in Fig 4-4 and for BPSK, b0 determines I value, as illustrated in Table 4-2. 
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Fig 4-4 BPSK constellation bit encoding 

 

Input bit (b0) I-out Q-out 
0 -1 0 
1 1 0 

     Table 4-2 BPSK encoding table 

 

4.3.2 Quadrature Phase Shift Keying 

If we define four signals, each with a phase shift differing by 900 then we have 

quadrature phase shift keying (QPSK). The input binary bit stream {dk}, k = 0,1,2... 

arrives at the modulator input at a rate 1/T bits/sec and is separated into two data streams 

DI (t) and DQ (t) containing odd and even bits respectively. 

DI (t) = d0, d2, d4, --- 

DQ (t) = d1, d3, d5, --- 

1/T bits/sec and is separated into two data streams DI (t) and DQ (t) containing odd 

and even bits respectively. A convenient orthogonal realization of a QPSK waveform, s(t) 

is achieved by amplitude modulating the in-phase and quadrature data streams onto the 

cosine and sine functions of a carrier wave as follows: 

)4/2sin()(2/1)4/2cos()(2/1)( ππππ +++= fttDQfttDIts   (4-3) 
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Using trigonometric identities this can also be written as 

 

)](4/2cos[)( tftAts θππ ++=               (4-4) 

The pulse stream DI(t) modulates the cosine function with amplitude of ±1. This is 

equivalent to shifting the phase of the cosine function by 0 or π; consequently this 

produces a BPSK waveform. Similarly the pulse stream DQ(t) modulates the sine 

function, yielding a BPSK waveform orthogonal to the cosine function. The summation 

of these two orthogonal waveforms is the QPSK waveform.  

 

    Fig 4-5 QPSK modulations 

Each of the four possible phases of carriers represents two bits of data. Thus there 

are two bits per symbol. Since the symbol rate for QPSK is half the bit rate, twice as 

much data can be carried in the same amount of channel bandwidth as compared to BPSK. 

This is possible because the two signals Q and I are orthogonal to each other and can be 

transmitted without interfering with each other. 
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      Fig4-6 QPSK 

In 802.11a standard, The standard specifies 52 subcarriers that are modulated using 

quadrature phase-shift keying (QPSK) and data rate are 12,18 Mbps, b0 determines the I 

value and b1 determines the Q value, as illustrated in Table 4-3. 

Input bit (b0) I-out Input bit(b1) Q-out 

0 -1 0 -1 

1 1 1 1 

     Table 4-3 QPSK encoding table 
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CHAPTER 5 
Digital Modulation 
Verification 

 

In this chapter, We will use architecture of DDFS depicted in chapter 3 to realize the 

digital modulation described in chapter 4, the proposed digital modulator will include 

FSK, DFSK, BPSK and QPSK digital modulation function of base band. Using Synplify 

Pro to synthesize the verilog code and Altera device EPF10K100ARC240-1 to verify the 

function of digital modulator. 

5.1 Signal Interface  

 The signal interface of proposed digital modulator is shown in Fig 5-1 and the 

signal definition are described in Table 5-1 

   

FCW [19:0]

DIGITAL MODULATOR
(FSK,DFSK,BPSK,QPSK)

SYMBOL_TIME [7:0]

DATA [1:0]

MODE [1:0]

FREQ_OFFSET [11:0]

SYSCLK

SINOUT [9:0]

COSOUT [9:0]

RSTN

DACCLK

 

Fig 5-1 Signal interface of digital modulator 
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Signal name Type Description 

FCW [19:0] I 

This input is the frequency control word to the 
DDFS. This word controls the phase accumulator 
rate, the output frequency of the SINOUT and 
COSOUT waveform. The output frequency is 
calculated by the following: 
Fout = FCW [19:0]*(SYSCLK/220)Hz 

SYMBOLTIME [7:0] I 
Symbol time, it can be multiple of full sine/cos 
wave, the range from 0 to 255.  

MODE [1:0] I 

These two input bits are used to choice the type of 
digital modulation, the type of modulation is as 
follows: 

2’b00: FSK    
2’b01: DFSK   
2’b10: BPSK   
2’b11: QPSK 

FREQ_OFFSET [11:0] I 

This 12 bit are used in determining the frequency 
offset for FSK and DFSK 

FSK:  
1’b0: FCW = FCW 

  1’b1: FCW = FCW+ FREQ_OFFSET  
DFSK: 

    2’b00: FCW = FCW 
    2’b01: FCW = FCW+ FREQ_OFFSET/256 
    2’b10: FCW = FCW+ FREQ_OFFSET/8 
    2’b11: FCW = FCW+ FREQ_OFFSET 

DATA [1: 0] I 
Data input for digital modulation.  

Bit 0 is for FSK & BPSK 
Bit 0-1 is for DFSK & QPSK 

SYSCLK I 

This is the system reference clock input to the 
DDFS. This clock is the sampling clock of output 
data .the maximum frequency for SYSCLK is 
100MHz  

RSTN I 

This input is a high asserted global reset. When 
asserted, the internal phase and frequency control 
word registers are cleared stopping the output carrier 
at 0 radians. 

SINOUT [9:0] O 
This output is the sine digital amplitude. The output 
is valid in the rising edge of the DACCLK.  

COSOUT [9:0] O 
This output is the cos digital amplitude . The output 
is valid in the rising edge of the DACCLK. 

DACCLK O 

This output is the DAC clock strobe. This clock is 
the SYSCLK feed to an output pin. The output 
SINOUT and COSOUT amplitude words will be 
valid on the rising edge of the DACCLK  

    Table 5-1 Signal function table of digital modulator 
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5.2 Simulation Result of Verilog Code 

The verilog codes are simulated in ModelSim. The sinusoid amplitude output from 

simulation of ModelSim is saved to file and use Matlab to do post-processing. The 

synthesized waveform of sine and cosine for DFSK, FSK, BPSK and QPSK with symbol 

time are shown in Fig 5-2,5-3,5-4,5-5 respectively. 

 
    Fig 5-2 DFSK with symboltime = 4 
 
 

We can easily find that the difference in phase between sine and cosine waveform 

equal 90∘exact in FSK, DFSK and BPSK. In QPSK, phase is defined according to the 

spec of IEEE802.11a is shown in Fig 5-5.  
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    Fig 5-3. FSK with symboltime = 4,8,4 
 
 
 
 
 

 
        Fig 5-4 BPSK with symboltime = 4 
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    Fig 5-5 QPSK with symboltime = 4 
 

The function of signal symbol time are used to generate number of full sine/cosine 

wave at setting frequency, it can be seen in Fig 5-6.  

 
   Fig 5-6 FSK with variable symboltime (4,8,6,4) 
 

After hardware description by verilog and function check, we use the Synplify Pro 

to synthesize the verilog code from the behavior level to gate level, The target device is 

the Altera Flex10K; the part is EPF10K100ARC240-1, It has 189 I/O pins and 48K 
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memory bits. We can see each RTL schematic view of verilog module design in Fig 

5-7,5-8,5-9,5-10 and 5-11 
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     Fig 5-7 Modulator.v RTL schematic view 
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      Fig5-8 DDFS.v RTL schematic view 
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     Fig 5-9 Phasetoamp.v RTL schematic view 
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 Fig 5-11 Modset.v RTL schematic view  
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5-3 FPGA Implementation Result 

 Net list file for verilog code is generated by using the Synplify Pro and transform the 

net list file from the output of Synplify Pro into SOF file, Altera format file used in Quart 

environment, then download this SOF file from the computer to the FPGA board and 

connect the output pin of EPF10K100ARC240-1 to Tektronix TLA 700 logic analyzer.   

Family FLEX10KA 
Device EPF10K100ARC240-1 

 Total Used % 
Logic elements 4,992 238 4% 
Memory bits 49,152 1,152 2% 

   Table 5-2 Resource of device used in digital modulator 

From the table 5-2, requirement of resource for device EPF10K100ARC240-1 is 238 

logic elements (4% of total), 1152 memory bits (2% of total). 

In order to evaluate the digital modulator, a test board is built. Since we only want to 

verify the algorithm of DDFS, the test system does not include the DAC; the test systems 

is shown in Fig 5-12 and combine the Altera EPF10K100ARC240-1 with 32Mhz 

oscillator on a PCB board to design a simple experimental board. 

 

Personal
Computer

EPF10K100A
RC240-1

Board
Logic Analyzer

Clock Source

Input Source

Test Board

 

     Fig 5-12 Digital Modulator test system 

The digital waveforms (captured by Tektronix TLA 700 logic analyzer) of digital 

modulator are shown in Fig. 5-13,5-14,5-15 and 5-16. There are four types of digital 

modulation (BPSK, FSK, QPSK, DFSK); the input conditions are depicted as follows: 
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(1). FCW = h01000, FREQ_OFFSET = hfff, MODE [1:0] = 0, SYMBOLTIME = 4, 

data input is switched between 0 and 1, the digital waveforms of FSK is shown in Fig 

5-14. 

(2). FCW = h00400, FREQ_OFFSET = hfff, MODE [1:0] = 1, SYMBOLTIME = 4, 

data input is switched between 0 and 2, the digital waveforms of DFSK is shown in Fig 

5-16. 

 

Fig 5-13 BPSK with symboltime = 4  

(3). FCW = h01000, MODE [1:0] = 2, SYMBOLTIME = 4, data input is switched 

between 0 and 1, the digital waveforms of BPSK is shown in Fig 5-13. 

(4). FCW = h01000, MODE [1:0] = 3, SYMBOLTIME = 4, data input is switched 

between 0 and 2, the digital waveforms of QPSK is shown in Fig 5-15. 
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Fig 5-14 FSK with symboltime = 4 

 

 

 

    Fig 5-15 QPSK with symboltime = 4 
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Fig 5-16 DFSK with symboltime = 4  

All the results, which are shown in Fig 5-13, 5-14, 5-15, 5-16, are consistent with 

the results that are simulated in ModelSim. It shows that we can implement the DDFS in 

the digital modulator to get more precise and fast-switching speed sine waves. 
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CHAPTER 6 
Conclusion  

 

In this thesis, we propose a digital modulator with FSK, DFSK, BPSK and QPSK 

function by using direct digital frequency synthesizer (DDFS). It provides overview for 

the DDFS design, the error caused by finite output word length, phase truncation and 

sine/cosine mapping function (SCMF) are also presented. It depicts the error source of 

spurious information and method of estimation. Therefore, designers can choice the 

output word length, number of phase truncation bits and proper SCMF algorithm 

according to the spec of DDFS.  

For algorithm of SCMF in this thesis, this implementation is simple and 

straightforward. The amplitude value computation utilizes two adders, one is 9-bit adder 

and the other is 6 bits adder, only adder circuits are required in the additional circuits. No 

subtractor and multiplier are needed, since the ROM is generally the hungriest subsystem 

in a DDFS synthesizer, it is expected that the substantial reduction in ROM size and 

power consumption. Rom table size can be reduced to 576 bits without additional circuit 

under sacrificing the performance of SFDR. Simulation shows that the worst case of 

SFDR is 61dBC for various output frequency  

It is expected that the substantial reduction in ROM size and power consumption 

more than justify the modest increase in processing and control costs. Initial investigation 

show that can reduce the ROM size and maintaining additional circuits cost very low. Of 

course, Additional circuit and Rom size can be increased in order to improve the SFDR.  

We use the proposed DDFS to implement the digital modulator with FSK, DFSK, 

BPSK and QPSK function; the digital modulator is also with sine/cosine output. Using 

Synplify Pro to synthesize the verilog code and Altera device EPF10K100ARC240-1 to 

verify the function of digital modulator; it share the 238 (4%)logic elements and 1152(2%) 

memory with device. 
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Finally, we did not use the DAC in the verification of DDFS and digital modulator, 

but we can combine the design of DDFS and DAC to do more flexible digital modulator 

(QAM ---- and so on) for the future work. 

 


