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摘 要       
 

 

本篇論文使用新的錯誤更正碼的建構方式去實現了一個新型可程式化控制的錯誤

更正編解碼器之架構，這個被提議的錯誤更正碼具有「單一位元的錯誤更正，單一位元

組內有奇數位元的錯誤更正及單一位元組的錯誤偵測，兩個位元的錯誤偵測」之錯誤更

正及偵測的能力，並命名為SEC-SoddEC-SBED-DED codes。 此外一個關鍵的重點是它

很適合用於可程式化(n, k, m)編碼參數之控制，此處的n表示整個ECC編碼長度、k表示被

編碼的資料長度、m表示被編碼的資料的寬度，因此這個被提議的SEC-SoddEC-SBED 

-DED codes具有非常彈性化的資料編碼長度及寬度，可進行任何的(n, k)系統體系上區

塊編碼。 

本篇論文主要的目的是利用這個被提議的錯誤更正碼，去完成一個具有高速化及低

複雜度的可程式化之順向錯誤更正編碼與解碼電路，能符合多種類記憶晶片系統應用上

所需的高性能、低成本及適當的可靠度之需求。 另外地，我們也提出了交錯式

SEC-SoddEC-SBED-DED codes方法，可使得順向錯誤更正編解碼器具有多個位元組的錯

誤更正及偵測的能力，大幅提高了整體錯誤控制系統的可靠度，進而可朝向更廣泛與多

樣化的串列資料傳輸上的錯誤更正編碼之應用。 
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ABSTRACT 
 

 

This paper utilizes new error-correcting-codes constructing approaches to present a new 

programmable control (n, k, m) error-correcting encoder-decoder architecture. The proposed 

ECC is named SEC-SoddEC-SBED-DED codes to have these capabilities of random Single bit 

Error Correction－Single odd-bit Error Correction within a single byte－Single Byte Error 

Detection－random Double bits Error Detection. An important key point is that the proposed 

error-correcting code/circuit (ECC) is very well to these programmable or variable (n, k, m) 

parameters, where n=an ECC codeword length, k=an encoded information length, m= 

data-I/O wide. In other words, the proposed SEC-SoddEC-SBED- DED code has a very 

flexible code-length and code-width to any type of a (n, k) systematic block-code without 

restriction.  

Main purpose of the thesis is to show that the proposed error-correcting codes can finish a 

high-speed, low-complexity, programmable forward ECC encoding and decoding circuits to 

meet the high-performance, low-cost and moderate reliability demands for various 

memory-chips system applications. In addition, we propose also interleaving SEC-SoddEC- 

SBED-DED codes for the FEC-codec system which reaches to multiple bytes error 

correcting-detecting accomplishment. Hence the reliability of whole error control system is 

enhanced in order to drive toward the wide varieties of serial error control coding systems 

applications.  
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Chapter 1 
Introduction 
 
1.1 Motivations 
 

Recently, more and more kinds of memory chips are applied to portable devices, such as 

digital cameras, digital audio and video player, mobile phone, and personal multi-media 

assistants, etc. In general, many varieties of high capacity memory chips are integrated into a 

memory card, a multi-chips module package (MCM), a product in package (PIP), or stacked 

multi-chip package (stacked MCP) for reducing chip-to-chip dimension toward the portable 

device applications. These varieties of integrated memory-chips modules are almost based on 

dram and flash memory to organize a specific combo-memory module. Furthermore, more 

and more the large-capacity memory chips using a deep submicron fabrication process and 

multi-level cell (MLC, i.e. multiple-bit in a cell unit) device technology is to induce more 

critical reliability issues, such as disturbs and data retention, and radiation induced soft errors 

[3]. So the memory control system must guarantee the reliability problems of these varieties 

of combo memory-modules during the operational life time of memory-chips. Therefore it 

can be said that memory control system need to adopt some form of error detecting and 

correcting codes in order to enhance the reliability of memory-chips. In most applications to 

semiconductor memory systems, errors that occur in semiconductor memory systems can be 

regarded as either random errors or byte error. The speed of the operations for semiconductor 

memory systems is very high, and therefore the error-correcting codes (ECC) decoders must 

be extremely fast. Also the number of redundant overhead cannot be too large [32].  

Though many flash and dram memory-chips with on-chip ECC have been presented in the 

papers [1]-[9], [15]-[19], these ECC-memory chips must pay the access time penalty about 

5~25ns and an additional ECC area overhead about 10%~35%. Thus memory-chips with 

on-chip ECC have high cost and poor performance in access-speed. For the both low-cost and 

high performance factors of the varieties of integrated memory-chips modules in serial page 

access operations to compare the figure 1.1 (a) with (b), and figure 1.1 (a), (b) show multiple 

memory-chips application that the system-level cost of a memory interface controller with 

ECC like figure (a) may be lower than that figure (b) with ECC-memory chips. In figure 1.1, 

we know a host memory-controller employ an error correcting code circuits that it will be 

more efficient to improve the whole memory system performance, reliability and minimize 

the cost for multiple memory-chips integration. 
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Therefore memory interface controller built-in ECC will be a better choices as shown in 

figure 1.1 (a). 

Now most of memory-chips have a high speed clock rate or page access-time, such as a 

100~200Mhz clock-rate for mobile SDRAM, 200~400Mhz clock-rate for DDR FCRAM, 

SDRAM, 20ns~40ns page-access PSRAM, 50~100Mhz for page-mode flash. Besides, most 

of memory-chips have different page or burst-length such as 8bytes~512bytes burst-length for 

mobile-SDRAM/PSRAM, and specific 264bytes, 528bytes, 2112bytes page-length for 

NAND-flash, and different data I/O wide such as 1, 4, 8, 16, 18-bits….etc. So we need a 

simpler, faster, flexible and programmable error-correcting-coding technology to reach to 

system-user defined low-cost and high performance demands, and we must also think about 

the error-correcting-detecting capabilities and parity check-bits overhead. 
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By the above reasons, for the varieties of integrated memory-chips system, it is needed that 

the forward error-correcting encoder-decoder can provide a wide programmable coding length, 

and data-I/O width, minimum decoding latency, acceptable redundancy overhead and 

error-correcting-detecting ability, high throughput and high speed encoding-decoding 

operation with real time mapping-out process.  

 

1.2 Outlines 

 
  In chapter 2, the basic concept of dram and flash reliability problems, some key features of 

error-correcting code for various memory-chips system are described, and the fundamentals 

of the existing error-correcting code circuits are reviewed briefly.  

In chapter 3, the constructed methods and interleaved mechanisms of the proposed 

SEC-SoddEC-SBED-DED code and Multi-Bit-Layer SEC-SoddEC-SBED-DED 

interleaved-codes are clarified for fast and flexible programmable issues due to the different 

page size of the varieties of memory-chips.  

In chapter 4, this section mainly describes hardware implementation for the programmable 

architecture and circuit design of the proposed FEC codec. Furthermore, the proposed ECC 

codes have been implemented in C-language software design for any (n, k, m) parameters. In 

addition, many performances comparisons with the existing ECC also are listed, such as 

throughput rate (maximum operating transfer rate), complexity (area overhead), decoded error 

rate...etc. 

In chapter 5, the hardware and software simulation results are described, such as 

encoding-decoding waveform, read-write data flow of the proposed FEC-Codec, decoded 

error-rate...etc. 

In chapter 6, a summary to our error correcting codec is given in this section.  
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Chapter 2 
Basic Concepts for Memory Reliability Issues 
and the Existing ECC Codes 
 

2.1 The DRAM and Flash memory reliability issues 

 
Firstly, we introduce the common reliability problems to both dram and flash memory. 

The common reliability problems on flash memory have generally two types of errors [4]: 

(1) After write and erase cycles, stored electrons can leak away from the floating gate through 

tunnel oxide during aging. The charge loss causes a decrease in the memory transistor 

threshold voltage, which may result in random 0 to1 errors.  

(2) During read operation, the floating gate slowly gains electrons with the control gate held 

at Vcc. The charge gain causes an increase in the memory transistor threshold voltage, which 

may result in random 1 to 0 errors. The above (1) and (2) reliability problems are shown in 

Fig. 2.1. 

 

 
Another reliability problems for dram memories mainly have also two types of errors [5]: 

(1) One is called the memory cell error-upset that the associated cell or node capacitance in 

deep submicron process is scale-down, hence the capacitor is highly susceptible to being 
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discharge by noise electrons. 

(2) Another is called bit-line error-upset that the sensing margin of sense amplifier is a very 

small signals, thus the bit-line differential voltage may degrade due to noise-couple, and 

hence the resulting read operation may be erroneous. 

The foregoing flash and dram reliability will become a significant concern in deep sub-micron 

MLC (multi-level-cell, a 2q level cell has q bits storage unit) technology. a bi-level single 

memory cell must distinguish between two voltage states, whereas a multiple-bit MLC-cell 

uses a voltage window with similar structure size, the distance between adjacent bit-to-bit 

threshold voltage levels in MLC is much smaller than traditional binary-level memory, which 

makes the reliability problems of MLC-memories more critical than conventional bi-level cell 

(BLC) memories [3], [8], as shown in Fig. 2.2 (a), (b). 

The most of foregoing reliability issues are caused mainly by soft error due to alpha 

particles and soft errors are defined widely such as transient errors, power-supply noise spikes, 

thermal effects, and man-made states. These errors are called soft, because they do not 

damage the physical functions of a cell permanently, and they can easily corrected by 

complementing the data in the faulty cells [2], [5]. In a DRAM chip more than 98% of 

single-bit failures are radiation induced soft-errors [20]-[21], and In NAND-flash memory 

Over 99% of failures are attributed to single-bit soft errors [22]. Because dram storage unit is 

a trench or stacked capacitor and flash storage unit is by using floating-gate, which is a 

solid-state memory so the influence of the alpha particle induced soft error rate on dram 

memory is more significant than flash memory. About DRAM and flash memory reliability 

testing results are shown in the papers [23]-[27], we can know the average FIT (Failure in 

Time) and Bit-Error-Rate (BER) under different process, chip-size or different conditions. 

The soft error rate of different memory-chips is listed as follows [23]-[27], where 1-FIT = 1 

failure per billion device-hours. 

Type BLC 

NOR-Flash 

MLC 

NOR-Flash 

BLC 

NAND-Flash 

MLC 

NAND-Flash 

BLC  

DRAM 

# bits 16M/64M 64M 256M 256M ~512M 

Process 0.23/0.17um 0.23um 0.16um 0.16um 0.25~0.13um

FITs/Mbit 

(Sea Level) 
6E-9/3E-6 3E-7 

1E-3 (read) 

1E-4 (program)

1.0 (read) 

1E-2 (program) 
500~1000 

FITs/Mbit 

(aircraft) 
2E-6/1E-5 1E-4 - - - 
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As a consequence of these issues, the use of error correcting code techniques can help to 

reach adequate reliability of the deep sub-micron process, high-capacity, MLC-memories for 

immunity to soft-errors. 

 

 
 

2.2 A discussion on the existing ECC codes 

 
Many ECC schemes have been widely proposed to enhance the reliability of 

dynamic-RAM, NAND-type flash and solid-state disk [1]-[9], [15]-[19]. In these [1]-[19] 

papers, it was understood that applying ECC to a memory control system requires a moderate 

balance between performance (access time penalty, operation frequency, throughput rate, 

encoding-decoding cycle count, error correcting ability, other features such as interleaving 

function, etc), chip-size overhead (circuitry complexity and parity check-bit overhead), and 

reliability enhancement (low decoded error rate or error probability, high detected error rate, 

soft-error-rate or yield improvement, reducing mean time to failure). Based on the above 

reasons, the proposed error-correcting code circuit must satisfy the following conditions for 

the most of various memory chips. 

1) For a reliability issue of memory-chips in page-oriented memory-system application, 

because the memory chips usually can’t have built-in error correcting code circuits 
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(ECC-circuits) due to the limitations of access time penalty and an additional area cost of 

ECC-circuits, i.e. the non-ECC commodity memory chips have NAND-type flash and 

specific mobile-DRAM. So the external memory control systems need a system/board-level 

ECC to ensure the validity of received data of the page/sector-oriented memories. In 

general, memory reliability depends on the both error correcting-detecting capability and 

the soft-error rate or failure rate of memory-chips. 

2) For a high throughput data rate, the memory control systems need a high-speed FEC Codec 

hardware to minimize access latency and maximum operating clock speed. In order to 

demands of execute in place, the error-correcting code circuit can correct any error-bit of 

reading random address immediately after serial download program-code procedure from 

external memory as shown in Fig. 2.3. In other words, after the received n-bytes serial 

program-code data, the ECC circuit must be to look for the error-address and error-value 

instantly so that the CPU can execute the program-code right now for real-time application 

requirements. In general, a high-speed page access time is about 5ns~15ns based on 

DDR/SDR SDRAM memory, 10ns~70ns for NOR-Flash, 50ns for NAND-memory. 

3) For low-cost considerations as Fig. 1.1. We need a compact, flexible FEC Codec to 

minimize the ECC Codec complexity, parity check-bits overhead, and furthermore 

programmable code-length feature that applied to the different page sizes demands of 

various memory-chips, i.e. a page or sector in a single memory-chip is organized as m-bits 

data width (m-bit is one byte length) and an n-bytes data-length, where a page or sector has 

the number of bits. Programmable (n, k, m) parameters are necessary so that the users 

of memory-chips can define an arbitrary data length with ECC parity check-bits. 

mn×

  In general, memory-chip data-wide m is a multiple of 4, such as 4, 8, 16, 32 bits, but some 

special memories have a specific data-wide. A page length usually is a multiple of 8, such 

as 8, 16, 32, 64, 128 Bytes, and so on. Furthermore, a page size of NAND-flash is 528, or 

2112-Bytes. 
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Among [1]-[19] literatures, we try to compare these error control code for finding the 

optimal coding style and to investigate the range of the page-sizes, data-width and an 

acceptable Bit-Error-Rate to correspond to the transition error probability of both DRAM and 

FLASH memories in practical conditions, so that our proposed FEC-Codec has low-cost, 

low-complexity and high-speed to provide a good performance and moderate reliability meet 

with the foregoing 1 to 3 ideas. Basically, the existing ECC generation methods have still 

some restrictions to the programmable coding length and width, and we propose 

ECC-generation methods that have almost no restrictions to coding length and width. Here we 

analyze the existing ECC codes in order to apply for the programmable (n, k, m), where 

n=code-length, k=data, message or information length, m=data I/O wide or a byte/symbol size 

in bit. We known parity check-bit length )( knr −= , then the number of parity-check 

bits , the number of information-bitsmknR ×−= )( mkK ×= , and the total number of 

coding-bits are mnRKN ×=+= (bits). N is user-defined memory block-size with both 

parity check-bits and information bits equal to a page memory-space, and k >> m in general 

memory-chips applications. 

SEC/SEC-DED Hamming-codes or odd-weight column modified-Hamming-codes were 

presents in [4], [8], [15], [16] that they are suitable for on-chip, fixed code-length ECC design. 

It has a proper number of parity-bits ⎡ ⎤ 2log2 += kR , and NKR =+  for SEC-DED and 

suits to serial data-bit coding by using a Hamming cyclic-code. It is hard and complex to 

design a variable code-length n and data-wide m in the modular decoding-circuit unless a 

multi-SEC-DED code using multiple decoding circuits can solve this problem.  
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However the cost overhead will be obviously increased, i.e. the larger parity check-bits is 

about ⎡ ⎤ mkR ×+= )2log( 2 . 

Another traditional SEC-DED codes are bidirectional cross-parity/product codes that the 

type of code have been present in [1], [19] for on-chip ECC applications. Though it is suitable 

for programmable n and m parameters due to a simple encoding-decoding circuit, it also has a 

large number of parity check bits in proportion to k and m, such as 1++= mkR . 

Some DEC-TED codes and TEC-QED codes are presents in [2], [5] and [7] respectively. 

They have a good correcting capability, and programmable (n, k, m) circuits are feasible, but 

that’s necessary to pay a largest number of parity check-bits, i.e. the TEC-QED research [7] 

was designed by combining odd-weight-column SEC-DED with vertical parity bit technique 

for a memory array, i.e. all word-lines of memory-array are along column direction, bit-lines 

of array are along row direction. Each column employs odd-weight-column SEC-DED codes, 

and each row employs a parity bits. So we get a parity check bits kkmR ++×= )2(log2 , 

or . The DEC-TED researches [2], [5] were designed using 

orthogonal Latin-square code which belong a majority-logic decoding code. For a square 

arrangement of the m

mmkR ++×= )2(log2

2 data array, it has also a large parity check-bit . 13 += mR

The Reed-Solomon code (RS-code), or BCH-code have a powerful multiple bytes error 

correcting and detecting capability, and a small number of check-bits for single/double byte 

correction, but have a complex decoding hardware and a longer decoding time. The RS-code 

defined in for programmable (n, k, m) are feasible but have some coding limitations 

by , , t = the number of error-correcting bytes. In these RS-code 

researches [9]-[14], the versatility of RS-decoders could be achieved by changing only the 

information length k with the block length n and symbol size m fixed [10], [11], [14], in order 

to change the error correcting capability t. Another type is to fix symbol-size m in order to the 

both n and k are variable [12]-[13]. These architectures pay a largest area cost for decoding 

circuit, and clock time and decoding latency is also bigger. 

)2( mGF

12 −= mn tknr 2=−=

  A class of multiple bits error correcting and detecting code were presented in [28]-[31] that 

these codes are based on Fujiwara codes, i.e. An odd-weight-column-matrix code over GF(2b) 

is an SbEC-DbED code, where b denotes the number of bits in a byte and equal to m. the 

kinds of code may have arbitrary code and byte length, and the researches have a proper 

number of parity check-bits as follows. ))2(log3(
2
1

2 ++= kmR  in [28], and 

⎡ mmkmRR +− ⎤+×+= 1log2  in [29], and ⎡ ⎤ 112)(log 12
2 −−+×= −mkmR  in [30]. The 
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based-on Fujiwara codes for programmable (n, k, m) are feasible but still pay a complex 

decoding circuit though these codes have a proper error correcting capability, such as [30] has 

random double bit within a block error correction- single byte error detecting capability, [29] 

has single bit error correction-double bit error detection and fixed b-bit byte error detection 

capability, [28] has t-bit error correction within a single b-bit byte and single b-bit byte error 

detection capability, where t=3 and b=8, but they still have a poor error detection capability of 

random double/triple bit failures. 
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Chapter 3 
The Proposed ECC Codes Constructed 
Methods and Interleaved Mechanisms 
 

3.1 Constructed method of the proposed SEC-SoddEC-SBED-DED  

ECC code 

 
We propose a systematic error-correcting code by modified bidirectional cross-parity code 

which called SEC-SoddEC-SBED-DED codes to have the kinds of capabilities, such as 

random Single bit Error Correction－Single odd-bit Error Correction within a single byte－

Single Byte Error Detection－random Double bits Error Detection. Traditional bidirectional 

cross-parity/product SEC-DED codes need parity check-bits 1++= mkr , that we utilize 

hierarchical structure to reduce the number of parity check bit. The proposed (n, k, m) 

systematic code is constructed as shown Fig. 3.1, and the following steps are performed: 

 Step1: To define an encoded data page or sector size as km× bits for m-bit data wide and the 

information length k, where 10 −≤≤ mi , and 10 −≤≤ kj . 

 Step2: Each i-column is to perform a vertical-direction parity-bit for all  bits. 

This will result in generating m-bit column-parity-bits as the expression: 

where addition is equal to XOR logic-operation and b

10 −≤≤ kj

∑
−

=

=
1

0

k

j
iji bC ij indicates 

coordinate of one bit position. 

 Step3: Each row is to perform horizontal-direction parity bits using a hierarchical method for 

these m-bit bytes of k rows. This will result in generating ( ⎡ k2log2 ⎤× ) row 

parity-bits. These parity check-bit generating expression is as follows. 

     for ,i.e. (j mod 2)=1, and  for∑
−

=

=
1

0
1

m

i
ijbR oddj = ∑

−

=

=
1

0
1 '

m

i
ijbR evenj = ,i.e. (j mod 2)= 0. 

∑
−

=

=
1

0
2

m

i
ijbR  for ( j mod 4) = 2 or 3, and  for ( j mod 4) = 0 or 1. ∑

−

=

=
1

0
2 '

m

i
ijbR

∑
−

=

=
1

0
3

m

i
ijbR  for ( j mod 8) = 4,5,6, or 7, and  for ( j mod 8) = 0,1,2 or 3. ∑

−

=

=
1

0
3 '

m

i
ijbR

     As the same computing form, we can continue to prove the formula: 
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If j=0, 1, 2….k-1, let  is the number of a pair of row parity-bits, 

then  for ( j mod ) = 0 ~ (

⎡ kx 2log= ⎤

∑
−

=

=
1

0

'
m

i
ijX bR X2 12 )1( −−X ), and 

    for ( j mod ) = ~ (∑
−

=

=
1

0

m

i
ijX bR X2 )1(2 −X 12 −X ), where mod≣modulo-operator. 

Hence we can utilize ⎡ ⎤kx 2log~1=  to compute all pairs of row parity-bits. 

  Step4: By the step1 to step3, we can get the total parity check bit:  for a 

data page size of bits, hence the bits number of code-length n = k (the number 

of data-bits) + r (the number of parity check-bits) =

⎡ ⎤ )log2( 2 mk +×

)( km×

⎡ ⎤ )log2()( 2 mkmk +×+×  bits.  

If m-bit data-wide usually represents a byte wide, let n = ⎡ ⎤ )1
log2

( 2 +
×

+
m

k
k  bytes. 

         In a write operation, firstly we write k data-bytes to external-memory in sequence, 

and then the encoded r parity check-bytes by step1~step3 continue to write in 

memory after k data-bytes, in order to finish the proposed systematic 

error-correcting-code. Hence a serial access operation, it just 

needs rkn += clock-cycle counts. 

 

 
 

In a read operation, firstly we read n data-bytes from external-memory in sequence, and then 
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the encoded r parity check-bytes by step1~step3 will gain new column parity check-bits  

for and new row parity check pair-bits for

iC

10 −≤≤ mi )',( XX RR ⎡ kx 2log1 ≤ ⎤≤  after the 

received k data-bytes. The decoding process is as following steps. 

Step5: Syndrome generation methods are expressed as follows. 

During the 0~(k-1) cycles for reading information bytes, and this k-th cycle for 

reading old column parity check-byte, and (k+1)~(n-1) cycles for reading old row 

parity check-bytes, so that we generate column syndrome bits at k-th cycle, and row 

syndrome bits during (k+1)~(n-1) cycles as the following expression: 

Let indicates one bit position of old column parity check-byte on the read k-th byte  ikb

for . Here addition is equal to an XOR logic-operation. 10 −≤≤ mi

Column syndrome-bits： iikcol CbiS +=)(  

Let indicates one bit position of old row parity check-byte forijb )1()1( −≤≤+ njk , 

10 −≤≤ mi , and ⎡ ⎤kx 2log1 ≤≤ . 

Row syndrome-bits： , for i= odd integer. X

m

i
ijrow RbxS += ∑

−

=

1

1

)(

                      , for i= even integer. X

m

i
ijrow RbxS ')('

1

0
+= ∑

−

=

Step6: Error correcting and detecting methods are analyzed as follows. 

   (a) No error: all 0)(')()( === xSxSiS rowrowcol , for 10 −≤≤ mi , and . ⎡ ⎤kx 2log1 ≤≤

     Another type of error is that it has a single bit error falling in the ECC-area, and we 

assume that it’s no error occurring in information-area when the three 

results has only 1 bit equal to logic-1. )('),(),( xSxSiS rowrowcol

   (b) SEC-SoddEC: there are odd-bit errors occurring on a single-byte that these error-bits 

can be corrected. When the both , and  for 

 are existence, where  indicate error-bits position as an error 

value and  indicate error-address as an error location. We know the error 

value and error location that we can invert the error-bit data in order to correct it 

when the error address is read. 

∑
−=

=

=
1

0
1)(

mi

i
col iS 1)}(')({ =+ xSxS rowrow

⎡ kx 2log1 ≤≤ ⎤ )(iScol

)(xSrow

   (c) SBED: if (a), (b) are inexistence, but  and ∑
−=

=

=
1

0
0)(

mi

i
col iS 0)(')( == xSxS rowrow  
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for ⎡ kx 2log0 ⎤≤≤ , indicate that a single-byte error at least are detected. 

In the other words, there are some even-bits errors occurring in a single-byte or 

multiple-bytes. 

   (d) DED: The type of error is assumed that it has the case of double errors or larger than 

double errors. If (a), (b), (c) are inexistence, then any ,  or 0)( ≠iScol 0)( ≠xSrow

0)(' ≠xS row indicates at least a double error existence.  

The above (a), (b) both may be correctable, and the both (c) and (d) may be 

detectable and not to be correctable. 

The foregoing error correcting code generation methods are very suitable for software or 

hardware implementation, programmable (n, k, m) ECC especially. By the above constructed 

method, we present a low-complexity and high-speed hardware in chapter 4. 

Fig. 3.2 shows four capabilities of the proposed code for the16-bits memory page-size of 

information length k=4, and data wide m=4. The “X” denotes one fail-bit position. 

 

 
Fig. 3.3 shows logical-scheme of the SEC-SoddEC-SBED-DED code for the16-bits memory 

page-size of information length k=4, and data wide m=4. We can generate the parity 

check-bits by the foregoing step1~3. 
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3.2 Constructed methods of Multi Bit-Layer SEC-SoddEC-SBED-DED  

ECC code 

 
Most interleaved techniques mainly can be used to solve the burst errors problems [32], and 

error patterns involving two or more adjacent cells are generally recovered by a proper 

physical interleaving of cells belong to the same codeword, thereby increasing overall 

memory reliability [18]. Some multi-SEC/DED codes are interleaved for each word-line of 

on-chip ECC or each data I/O of off-chip ECC are presented in [3], [4], [7], [16], [18]. The 

papers [3], [18] present an on-chip ECC scheme for MLC-flash memories, based on a binary 

code providing single-bit correction, are organized in different bit-layer. The paper [4] is a 

(522,512) SEC hamming cyclic code for each data I/O, that this multi-ECC (n, k) codes are 

optimized in consideration of balance between the reliability improvement and 

redundant-cells area overhead, but its weakness is that has a fixed 2n decoding latency even if 

the data is no error. The paper [7] is a TEC-QED ECC code which was designed by 

combining odd-weight-column SEC-DED hamming-code with the vertical parity bit 

techniques, but it has a large redundant cell overhead as parity-check bit . 

The paper [16] is a multi SEC-DED (n, k) Hamming code that a k-bit information data was 

kkmR ++×= )2(log2
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split up into two SEC-DED hamming codeword so that it able to correct a two-bit error in 

two-bits-per-cell MLC-DRAM. The foregoing paper [3], [7],[16], [18] are only suitable to 

specific on-chip ECC coding way, and in practical, we need a compact, flexible and quick 

interleaved coding method in order to reach programmable coding and real-time mapping-out 

operation. So we propose an interleaved method which is called Multi-Bit-Layer 

SEC-SoddEC-SBED-DED code. The principle of the proposed interleaved-code is to encode a  

-bits block-data, and generate respective SEC-S)( mk × ),,( lll mkn oddEC-SBED-DED code on 

each data I/O so m-bit data I/O perform m-number of SEC-S),,( lll mkn oddEC-SBED-DED 

code which is called Multi-Bit-Layer SEC-S),,,( mmkn lll oddEC-SBED-DED code. 

For a programmable Multi-Bit-Layer SEC-S),,,( mmkn lll oddEC-SBED-DED code, each 

data I/O code-length has nl-bytes, the user-defined coding-data wide on each data-I/O has 

ml-bit, the number of data I/O wide is m-bit, and the encoded information length on each 

data-I/O has also kl-bytes correspond to ⎥
⎥

⎤
⎢
⎢

⎡ +
=

l
l m

Rkn , where R is the number of parity check 

bits on each data-I/O equals )log2( 2 l
l

m
m
k

+
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
× -bit, and

l
l m

kk =  must be an integer.  

When m=1 (only one data I/O), and k is equal to 64-bit, 512bit, 4096-bit respectively, the 

dependence of user-defined coding-data wide ml and the number of parity check bit R is 

shown in Fig. 3.4. 

For a Multi-Bit-Layer SEC-SoddEC-SBED-DED code, if the number of data I/O wide is m, the 

number of information-length is k and the number of total information-bit is k×m, then the 

total number of parity check bit is 

( )⎡ ⎤ mmkmm
m
kR lll

l
×+×=×+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×= )log2()log2( 22  (bits). 
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The above Multi-Bit-Layer SEC-S),,,( mmkn lll oddEC-SBED-DED code can be constructed as 

shown in figure 3.5, and the generating method is described as following steps. 

Step1: To define an encoded data page or sector size as km× bits for m-bit data wide and the 

information length k, the user-defined coding-data wide on each data-I/O has ml-bit, 

Firstly let ,10 −≤≤ mi 10 −≤≤ kj , and 10 −≤≤ lmh  in order to construct 

multi-bit-layer ECC code, and we can gain 
l

l m
kk = =integer, 

)log2( 2 l
l

m
m
kR +

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×= , ⎥

⎥

⎤
⎢
⎢

⎡ +
=

l
l m

Rkn  on each data-I/O. Thus each data I/O is to 

perform a single Bit-Layer SEC-S),,( lll mkn oddEC-SBED-DED code, total data-I/O 

number is m-bit to perform a Multi-Bit-Layer SEC-S),,,( mmkn lll oddEC-SBED-DED 

code. 

 

Step2: Each data I/O is to perform column-parity check-bits and row-parity check-bits, where 

the number of column-parity check-bits equal to ml-bits and the number of row-parity 

check-bits equal to ( )⎡ )log2( 2 lk× ⎤ -bits. Let i=0, 1,till (m-1), and the both j, h are 
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variable for 10 −≤≤ kj , and 10 −≤≤ lmh .  

Hence each data I/O generate ml -bit column parity bits as the expression:  

 if and only if ( j mod mjihi bC ,, ⊕= l = h). 

Each data I/O generate row parity bits as the expression: 

jii bR ,1, ⊕=  iff ( ⎥
⎦

⎥
⎢
⎣

⎢

lm
j  mod 2)=1, and  iff (jii bR ,

'
1, ⊕= ⎥

⎦

⎥
⎢
⎣

⎢

lm
j  mod 2)= 0. 

jii bR ,2, ⊕=  iff ( ⎥
⎦

⎥
⎢
⎣

⎢

lm
j  mod 4) = 2 or 3, and  iff (jii bR ,

'
2, ⊕= ⎥

⎦

⎥
⎢
⎣

⎢

lm
j  mod 4) = 0 or 1. 

As the same computing form, we can continue to prove the formula: 

If j is a variable equal to 0, 1, 2…till k-1, let ( )⎡ l
l

k
m
kX 22 loglog =

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ⎤  is the 

number of a pair of row parity-bits, then  iff (jiXi bR ,
'
, ⊕= ⎥

⎦

⎥
⎢
⎣

⎢

lm
j  mod ) = 0 ~ 

( 2 ), and  iff (

X2

1)1( −−X
jiXi bR ,, ⊕= ⎥

⎦

⎥
⎢
⎣

⎢

lm
j  mod ) = ~ ( ), where mod≣

modulo-operator, the sign ⊕ equals to an XOR logic-operation, denotes the 

largest integer less than or equal to x, and 

X2 )1(2 −X 12 −X

⎣ ⎦x

⎡ ⎤x denotes the smallest integer greater than 

or equal to x. 

 

Step3: By the above step1 and step2, the km× block-data is encoded into )( Rkmnm +×=×  

multi-bit-layer ECC code, and we can generate the parity-check bit on each data I/O: 

( )⎡ ⎤ lll
l

mkm
m
kR +×=+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×= 22 log2log2  (bits).  

Total parity-check-bit overhead is ( )⎡ ⎤ mmkmR ll ×+×=× )log2( 2  (bit). 

     Thus an overall encoded page size equals to ( )⎡ ⎤ mmkmk ll ×+×+× )log2()( 2  (bits). 

An example of logical scheme is shown in Fig. 3.6, and the logical expressions of parity 

check-bits are also list in figure 3.6 by using the above step1~tep3. 

In the figure 3.6, we know a (14, 8, 2, 4) Multi-Bit-Layer SEC-SoddEC-SBED-DED code has 

2-bit column-parity-check-bit, and 4-bit row-parity-check-bit on each data-I/O to encode an 

information area )48()( ×=×mk -bit into an ECC-codeword bitmnl )412()( ×=× . 

  Here we propose a powerful and programmable interleaved-code which is called 
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),,,( mmkn lll Multi-Bit-Layer SEC-SoddEC-SBED-DED code owns the capability of 

Single-Byte Error Correction－Odd-bytes Error Correction within consecutive bytes－

consecutive Bytes Error Detection－random Double bits Error Detection on each data-I/O. 

lm

lm

Because of the constructed method of Multi-Bit-Layer SEC-SoddEC-SBED-DED code has the 

simpler and faster generation steps, hence this interleaved code can be implemented in a 

compact and high-speed hardware circuit, and it has a very large programmable 

range. ),,,( mmkn lll
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3.3 Application Examples of Interleaved Mechanisms using Multi-Bit-Layer 

SEC-SoddEC-SBED-DED code 

 
Many types of interleaved methods using the proposed code can apply to different page 

size for various memory-chips system. Here we utilize Multi-Bit-Layer SEC-SoddEC-SBED 

-DED codes to form two interleaved-code mechanisms, which are mainly applied to the 

NAND-type flash memory that its memory array consists of many pages unit. A page size 

equals 528-bytes which is used to page-program or page-read operation, and a block size are 

32 pages which is used to block-erase operation.  

The first interleaved method using Multi-Bit-Layer SEC-SoddEC-SBED-DED code is 

described as follows: 

Basically, the conventional multiple ECC codes utilize the proposed (n, k, m)=(66, 63, 8) 

SEC-SoddEC-SBED-DED code to let a 528-bytes page-size is divided into 8 segments, and 

every segment has 63 data-bytes and additional 3 parity check bytes. The conventional 

multiple ECC codes organization are shown in Fig. 3.7 (a), and every segment has only the 

default error-correcting and detecting capability of SEC-SoddEC-SBED-DED code, therefore 

it can not correcting single-byte error or detection double-byte errors. For improving this 

weakness of the conventional multiple ECC code, we may utilize the foregoing interleaved 

code in section 3.2 that the =(66, 63, 8, 8) Multi-Bit-Layer 

SEC-S

),,,( mmkn lll

oddEC-SBED-DED coding method to let this interleaved code is capable of Single-Byte 

Error Correction－Odd-bytes Error Correction within eight consecutive bytes－Eight 

consecutive Bytes Error Detection－random Double bits Error Detection on each data I/O as 

shown in Fig. 3.7 (b). According to figure 3.7 (a) and (b), we know segment-1 has 63 

data-bytes from , until , and 3 parity check-bytes from to , where each  

denotes a data byte position, each denotes a parity check-byte position, m=data 

wide=segment number for , and k=the information length for . Every 

segment stores 63 data-bytes with 3 parity check-bytes on each horizontal row-direction as 

figure 3.7 (a), so we change the arrangement of 66-bytes codeword to let 66-bytes(528-bits) 

lie on each vertical column-position in sequence as figure 3.7 (b). An n-bytes (n×m bits) 

codeword is stored in the same bit-layer data-I/O, i.e. the segement-1 codeword is stored in 

the first bit-layer data-I/O of the 528-bits (b

0,1D 1,1D 62,1D 0,1C 2,1C kmD ,

kmC ,

81 ≤≤ m 620 ≤≤ k

0,0~ b0,511) memory space, the segement-2 

codeword is stored in the second bit-layer data-I/O of the 528-bits (b1,0~ b1,511) memory space, 
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and so on. Therefore the above way can create a =(66, 63, 8, 8) Multi-Bit-Layer 

SEC-S

),,,( mmkn lll

oddEC-SBED-DED code to fit into a 528-bytes page size.  

 

 

For a specific page size like shown in figure 3.7(b), we can construct the (66, 63, 8, 8) 

Multi-Bit-Layer SEC-SoddEC-SBED-DED coding mechanism within a single-page by using 

section 3.2 constructing methods is described as following steps. 

Step1: We have known a page size equal to mn× =528×8-bit. Let lmm = , 
l

l m
nn = =integer, 

then a page has m number of bit-layer ECC-codeword, and each ECC-codeword is 

said that l
l

m
m
nR +

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×= 2max log2  (bits), ⎥

⎦

⎥
⎢
⎣

⎢ −
=

l
l m

Rn
k max  (bytes), ll mkk ×=  
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(bits), and the real ( )⎡ ⎤ ll mkR +×= 2log2  (bits), and ⎥
⎥

⎤
⎢
⎢

⎡
+==

l
l

l
l m

Rk
m
nn  (bytes). 

    By the above descriptions, we can solve the values: When ,8,528 === lmmn then 

66,20,504,63 ==== ll nRkk . 

 

Step2: Each data I/O is to perform an ECC-codeword with column-parity check-bits and 

row-parity check-bits. The number of column-parity check-bits is equal to ml-bits. 

 Let i=0, 1, till (m-1), and j is a variable for 10 −≤≤ kj .  

Thus each data I/O generate 8-bit column parity bits as the expression:  

 if and only if ( j mod 8 = 0);jii bC ,0, ⊕= jii bC ,1, ⊕=  if and only if ( j mod 8 = 1); 

jii bC ,2, ⊕=  if and only if ( j mod 8 = 2); jii bC ,3, ⊕=  if and only if ( j mod 8 = 3); 

jii bC ,4, ⊕=  if and only if ( j mod 8 = 4); jii bC ,5, ⊕=  if and only if ( j mod 8 = 5);  

jii bC ,6, ⊕=  if and only if ( j mod 8 = 6); jii bC ,7, ⊕=  if and only if ( j mod 8 = 7); 

 

Each data I/O generate row parity bits as the expression: 

jii bR ,1, ⊕=  iff ( ⎥⎦
⎥

⎢⎣
⎢
8
j  mod 2)=1, and  iff (jii bR ,

'
1, ⊕= ⎥⎦

⎥
⎢⎣
⎢
8
j  mod 2)= 0. 

jii bR ,2, ⊕=  iff ( ⎥⎦
⎥

⎢⎣
⎢
8
j  mod 4) = 2 or 3, and  iff (jii bR ,

'
2, ⊕= ⎥⎦

⎥
⎢⎣
⎢
8
j  mod 4) = 0 or 1. 

As the same computing form, we can continue to prove the formula: 

If j is a variable equal to 0, 1, 2…till k-1, let ( )⎡ ⎤ 6log2 == lkX  is the number of a pair 

of row parity-bits, then  iff (jii bR ,
'
6, ⊕= ⎥⎦

⎥
⎢⎣
⎢
8
j  mod ) = 0 ~ ( ), and  

 iff (

62 125 −

jii bR ,6, ⊕= ⎥⎦
⎥

⎢⎣
⎢
8
j  mod ) = ~ (62 52 126 − ), where mod≣modulo-operator, the sign 

⊕ equals to an XOR logic-operation, ⎣ ⎦x denotes the largest integer less than or equal 

to x, and denotes the smallest integer greater than or equal to x. ⎡ ⎤x

 

Step3: By the above step1 and step2, we can generate the parity-check bit on each data I/O: 

R= 20-bits, total parity-check-bit overhead is 160=×mR -bits and an overall encoded 

page size equals mRkmRmk ll ×+=×+× )()( =524×8-bit. So we must make sure that 
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the overall encoded page size is smaller than a page size mn× =528×8-bit. 

 

The result is that an interleaved ),,( mmkn lll = SEC-SoddEC-SBED-DED code for a 

single page-size owns the capability of Single-Byte Error Correction－Odd-bytes 

Error Correction within m consecutive bytes－m consecutive Bytes Error Detection－

random Double bits Error Detection on each data I/O. 

)( mn×

 

The second interleaved method using Multi-Bit-Layer SEC-SoddEC-SBED-DED code is 

described as follows: 

Furthermore, we can continue to expand the error-correcting and detecting capable of an 

interleaved (66, 63, 8, 8) SEC-SoddEC-SBED-DED code for four consecutive pages that this 

code owns these capability of four consecutive Bytes Error Correction－Odd-bytes Error 

Correction within (8×4) consecutive bytes－(8×4) consecutive Byte Error Detection－four 

random Double bits Error Detection on each data I/O. The skill is shown in Fig. 3.8, 

where indicates a data bit position, f= page number from 0 to 3, i=data wide=segment 

number from 0 to 7, j=the bit number of each segment from 0 to 2015. The segment of each 

page has 63 data-bytes equal to 504-bits length and 3 parity-check bytes equal to 24-bits 

length that we expand the overall interleaved codeword over four pages, e.g., the four-bits 

, , ,  are included in the first group, where the first-bit  is as the first 

data-bit of segment-1 in page1, the second-bit  is as the first data-bit of segment-1 in 

page2, the third-bit  is as the first data-bit of segment-1 in page3, the fourth-bit  is 

as the first data-bit of segment-1 in page4, respectively. Therefore a four page has (63×8)=504 

groups as 2016-bits data-length on each segment, it implies that every column or each 

segment has four (66, 63, 8, 8) SEC-S

jifb ,,

0,0,1b 1,0,2b 2,0,3b 3,0,4b 0,0,1b

1,0,2b

2,0,3b 3,0,4b

oddEC-SBED-DED interleaved code over four 

consecutive-page for reaching to the four consecutive bytes error correcting ability. 
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Thus the specific consecutive-pages like shown in figure 3.8, we can construct the 

interleaved Multi-Bit-Layer SEC-S),,,( mmkn lll oddEC-SBED-DED coding mechanism over 

l-page is described as following steps. 

 

Step1: We have known a page size is equal to )( mn× -bits, and need to encode l 

consecutive-pages. A single page has m number of bit-layer ECC-codeword, and each 

ECC-codeword is said that l
l

m
m
nR +

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×= 2max log2  (bits), ⎥

⎦

⎥
⎢
⎣

⎢ −
=

l
l m

Rn
k max  

(bytes),  (bits), and the realll mkk ×= ( )⎡ ⎤ ll mkR +×= 2log2  (bits), and 

⎥
⎥

⎤
⎢
⎢

⎡
+==

l
l

l
l m

Rk
m
nn  (bytes). The denotes the bit position of each data-I/O over 

l-page, where f denotes the number of page for

jifb ,,

10 −≤≤ lf , i denotes the number of 

data-I/O for , j denotes the number of the encoded information length over 

l-page for

10 −≤≤ mi

1)(0 −×≤≤ lkj . 
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Step2: Each data I/O is to perform the interleaved ECC-codeword over l-page, the number of 

column-parity check-bits is equal to )( lml × bits, and the number of row-parity 

check-bits is equal to ( )⎡ ⎤ })log2{( 2 lkl ×× bits. 

Let i=0~(m-1), f=0~ , and the both j, h are variable for)1( −l 1)(0 −×≤≤ lkj , 

.  

Hence each data I/O generate column parity bits as the expression:  

 if and only if { j mod

10 −≤≤ lmh

jifbC hif ,,,, ⊕= )()( flhlml +×=× }. 

For example as shown in figure 3.8, the first data-I/O is to perform the interleaved 

ECC-codeword over 4-page, the number of column-parity check-bits is equal 

to 3248)( =×=× lml bits. Therefore we know 20150 ≤≤ j , 70 ≤≤ h  then 

jh bC ,0,0,0,0 ⊕=  if and only if { j mod )4(32 ×= h }, 

jh bC ,0,1,0,1 ⊕=  if and only if { j mod )14(32 +×= h }, 

jh bC ,0,2,0,2 ⊕=  if and only if { j mod )24(32 +×= h }, 

jh bC ,0,3,0,3 ⊕=  if and only if { j mod )34(32 +×= h }. 

 

Each data I/O generate row parity bits as the expression: 

jifbR if ,,1,, ⊕=  iff ( ⎥
⎦

⎥
⎢
⎣

⎢
× lm
j

l
 mod 2)=1, and  iff (jifif bR ,,

'
1,, ⊕= ⎥

⎦

⎥
⎢
⎣

⎢
× lm
j

l
 mod 2)= 0. 

jifbR if ,,2,, ⊕=  iff ( ⎥
⎦

⎥
⎢
⎣

⎢
× lm
j

l
 mod 4) = 2 or 3, and  iff (jifif bR ,,

'
2,, ⊕= ⎥

⎦

⎥
⎢
⎣

⎢
× lm
j

l
 mod 

4) = 0 or 1. As the same computing form, we can continue to prove the formula: 

Let ( )⎡ l
l

k
m
kX 22 loglog =

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ⎤  is the number of a pair of row parity-bits, 

then  iff (jifXif bR ,,
'

,, ⊕= ⎥
⎦

⎥
⎢
⎣

⎢
× lm
j

l
 mod ) = 0 ~ (X2 12 )1( −−X ), and 

 iff (jifbR Xif ,,,, ⊕= ⎥
⎦

⎥
⎢
⎣

⎢
× lm
j

l
 mod ) = ~ (X2 )1(2 −X 12 −X ). 

For example as shown in figure 3.8, the first data-I/O is to perform the interleaved 

ECC-codeword over 4-page, the number of row-parity check-bits is equal 

to ( )⎡ ⎤ ( )⎡ ⎤ 48}4)63log2{(})log2{( 22 =××=×× lkl bits, and the number of a pair of row 
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parity-bits ( )⎡ ⎤ 6log2 == lkX . When 20150 ≤≤ j , 70 ≤≤ h , and f=1, we know that 

 iff (jbR ,0,01,0,0 ⊕= ⎥⎦
⎥

⎢⎣
⎢
32
j  mod 2)=1, and  iff (jbR ,0,0

'
1,0,0 ⊕= ⎥⎦

⎥
⎢⎣
⎢
32
j  mod 2)= 0,  

and ,…., till  iff (

2,0,0R

'
2,0,0R jbR ,0,06,0,0 ⊕= ⎥⎦

⎥
⎢⎣
⎢
32
j  mod ) = ~ ( ), 

and  iff (

62 52 126 −

jbR ,0,0
'

6,0,0 ⊕= ⎥⎦
⎥

⎢⎣
⎢
32
j  mod ) = 0 ~ (62 125 − ). 

 

Step3: By the above step1 and step2, we can generate the parity-check bit of each data-I/O 

over l-page: ( )⎡ ⎤ lmkR ll ×+×= )log2( 2  (bits).  

Total parity-check-bit overhead over l-page is ( )⎡ ⎤ mlmkR ll ××+×= )log2( 2  (bit). 

      Thus an overall encoded page size is equal to ( )⎡ ⎤{ } mlmkk ll ××+×+ )log2( 2  (bits). 

 

Therefore, the consequence is that a )( mn× page-size and l-consecutive-pages using an 

interleaved SEC-S),,( lll mkn oddEC-SBED-DED code which owns the capability of l -Byte 

Error Correction－Odd-bytes Error Correction within )( lml × consecutive bytes－

consecutive Bytes Error Detection－l-random Double bits Error Detection on each 

data I/O. 

)( lml ×
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Chapter 4 
Programmable Architecture, Circuit and 
Software Program Design for the proposed 
FEC Codec 
 
4.1 Programmable architecture of the proposed FEC Codec 

 
For a various page or sector size to different memory-chips, The proposed error-correcting 

methods are designed into a programmable encoder-decoder for (n, k, m)= (4100~4, 4096~2, 

8~1), where information-length k may be changed from 2, 3 or 4, until 4096-bytes and m may 

be changed from 1, 2, or 3 until 8-bits, and rkn += in byte notation, or 

 in bit notation as shown in table 4.1. mrmkmn ×+×=×

Table 4.1 When data-wide m = 8-bit as one byte, the number of parity check bits for 

different information length.  

Information 
(k-bytes) 

2~16Bytes 17~256Bytes 257~4096Bytes 
Above 

4097Bytes 

Column 
Parity-bits 

1Byte(8bit) 1Byte(8bit) 1Byte(8bit) 1Byte(8bit) 

Row  
Parity-bits 

1Byte(2~8bit) 2Byte(10~16bit) 3Byte(18~24bit) 4Byte(26bit) 

Total parity-bit 
r-bytes, (R-bits) 

2Byte(10~16bit) 3Byte(18~24bit) 4Byte(26~32bit) 5Byte 

Codeword 
n-bytes 

N=K+2 
(4~18Byte) 

N=K+3 
(20~259Byte) 

N=K+4 
(261~4100Byte) 

N=K+5 
(4102Byte≦) 

Code-rate (k/n) 0.5~0.889 0.85~0.988 0.985~0.999 0.9988~ 
 

The block diagrams of the proposed programmable encoder-decoder architectures are shown 

in Fig. 4.1. These functional sub-blocks are described as follows. 
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4.1.1 Sub-block Functions of Encoder 
Column parity-bits generator: By the foregoing step2, this generator uses XOR-operation 

from the first data-bit of data-width to the final data-bit of data-width that the results of 

XOR-operation store in m column parity-bit registers, where m=1~8bit is decided by 3-bit 

value of as below. im

Mi (setup of data wide) 000/b 001/b 010/b 011/b 100/b 101/b 110/b 111/b
m (data-I/O wide) 1-bit 2-bit 3-bit 4-bit 5-bit 6-bit 7-bit 8-bit
 

Row parity-bits generator: By the foregoing step3, this generator also uses XOR-operation 

from the first data byte of page-length to the final data-byte of page-length that the results of 

XOR-operation store in x-pairs of row parity-bit registers, where ⎡ ⎤kx 2log=  is decided by 

13-bit value of as below. ik

Ki (setup of data length) 0~1/h 2/h 3/h 4/h ⋯ 0fff/h 1000/h above
k (data-byte length) unused 2B 3B 4B ⋯ 4095B 4096B unused
 

Code-length control unit: It may setup the different page-sizes from 2-bytes to 4096-bytes 

that it consists of Code-Length Address Counter and Code-Length Comparator. 

Code-length comparator decides mainly the number of parity check-bytes by the comparison 
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with value. ik

Code-length address counter executes the work of target address counter so that row 

parity-bits generator can carry out each byte XOR-operation, and switch the row parity-bytes, 

column parity-bytes, and information/data bytes to encoding output terminal. 

4.1.2 Sub-block Functions of Decoder 
Syndrome unit: The functional block mainly consists of column parity-bits checker and row 

parity-bits checker. The syndrome bits may be gained by the foregoing step5. 

Column parity-bits checker: In read operation, the old parity check bytes are compared with 

new generation parity-bytes in order to generate the column syndrome bits which indicate the 

error-bits positions. 

Row parity-bits checker: the old parity check bytes are compared with new generation 

parity-bytes in order to generate the row syndrome bits which indicate the error address. 

Error-type Detector: By the foregoing step6. It mainly shows that odd-bits error in a single 

byte as SEC-SoddEC type, or no error existence, or an uncorrectable error existence as 

SBED-DED type. 

The error correction mechanism is that the read-out data-byte as an error byte can corrected 

simultaneously when the error address is read from buffer memory. In other words, after the 

n-bytes data are received, the CPU can execute program code in any place of buffer memory. 

If the error address is read, the error-bits will be output inversely. 

Finally, the programmable architecture of the proposed FEC codec has the characteristics as 

shown in table 4.2 and table 4.3. Pin descriptions of the FEC codec are listed as shown in 

table 4.4.  

 

Table 4.2 Operating clock-cycle counts of each functional block during encoding process 
for a page write. 

Encoder 
Block-name 

Code-length 
Control unit 

Column parity-bits 
generator 

Row parity-bits 
generator 

Clock-gating 
multiplexer 

Cycle count n n n n 
Decoder 

Block-name 
Error-type 
generator 

Column parity-bits 
checker 

Row parity-bits 
checker 

Internal SRAM 
memory 

Cycle count 0 0 0 0 
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Table 4.3 Operating clock-cycle counts of each functional block during decoding process 
for a page read 

Encoder 
Block-name 

Code-length 
Control unit 

Column parity-bits 
generator 

Row parity-bits 
generator 

Clock-gating 
multiplexer 

Cycle count n n n n 
Decoder 

Block-name 
Error-type 
generator 

Column parity-bits 
checker 

Row parity-bits 
checker 

Internal SRAM 
memory 

Cycle count n-k+1 n-k n-k k 
 

Table 4.4 Pin descriptions of the FEC codec 
Pin name I/O(bit-number) Description 

DIN I(8bit) Data-input of Codec for write/read-operation 

CLK I(1bit) Codec clock (positive-edge latch) 

CLRB I(1bit) Codec reset (active low) 

EN_ENC I(1bit) Encoder enable (active high) 

EN_DEC I(1bit) Decoder enable (active high) 

Mi I(3bit) The number of Data-I/O wide 

Ki I(13bit) The number of Data-length 

read_addr  I(10bit) Address-input of decoder for the read-operation from system-request 

buf_dout I(8bit) Data-input of decoder from buffer for the read-operation. 

buf_din I(8bit) Data-input of memory-buffer 

buf_wr I(1bit) Write or read control-signal of memory-buffer 

enc_dout O(8bit) Data-output of encoder in order to write data to external-memory 

dec_dout O(8bit) Data-output of decoder for the read-operation of memory-buffer. 

end O(1bit) Response of the end of a page access 

*one_err O(1bit) Response of single-error detection 

*two_err O(1bit) Response of double-error detection 

*no_err O(1bit) Response of no-error detection  

*err_addr  O(12bit) Response of error address location 

*err_bit O(8bit) Response of error bit location 
 

4.2 Circuit Design of the proposed FEC Codec 

 
  The section introduce the circuit implementation that the proposed FEC-codec has a 

low-complexity logic circuit (FEC-Codec gate-count = 883+628=1511), high-speed operation 

(clock frequency larger than 400Mhz). The column and row parity-check-bit generators are 

shown in Fig. 4.2 and Fig. 4.3 respectively. 
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The critical path of FEC-codec is created by the code-length address counter and code-length 

comparator. 

Here we use 0.35um logic-process under high-temperature=90℃, and VDD=2.5V to estimate 

critical path delay of the proposed FEC-codec as shown in the following table 4.5. 

 

Table 4.5 Critical path delay for each stage 
stage Gate name of each-stage Gate-delay of each stage 
1 CK to Q delay 0.8ns 
2 Two-input XOR 0.35 
3 Three-input NOR 0.35 
4 Three-input NAND 0.25 
5 Two-input NOR 0.2 
6 Pass-gate + Ts(setup-time) 0.5ns 
total 1+2+3+4+5+6 2.45ns (408Mhz) 
 

Hence we know that the clock speed of the FEC-codec can be operated larger than 400-Mhz. 

The operating speed of FEC-codec can be cover all-kinds of high-speed memory-chip in 

real-time operation. Furthermore, timing flow-diagram of encoder-decoder logic-behavior are 

shown in Fig. 4.4, and 4.5 separately. 
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The programmable (n, k, m)=(4100~4, 4096~2, 8~1) FEC-codec logic gate count can be 

estimated without k-bytes RAM-buffer as table 4.6. 

Table 4.6 Estimated counts for the proposed FEC-Codec 

no 
Cell name Equivalent 

gate-counts
The number of cells 

for encoder 
The number of cells 

for decoder 
1 DFF with reset 6.6 57 41 
2 Two-input NAND 1 63 35 
3 Three-input NAND 1.4 24 6 
4 Two-input NOR 1.2 4 18 
5 Three-input NOR 1.5 32 8 
6 Two-input multiplexer 2.2 85 61 
7 Two-input XOR 2.5 52 46 
8 Inverter 0.6 52 35 
9 Latch 4.4 2 2 

10 
Equivalent gate-counts 
(1+2+3+4+5+6+7+8+9) 

- 883 628 
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The proposed FEC codec can gain low complexity logic circuits, and the number of 

gate-counts are 1511 and only slightly incremental to code-length and data-wide width. In the 

other words, the number of gate-counts is slight increment by the code-length and data-wide, 

and RAM buffer size is proportional to code-length and data-wide. Basically, this FEC-codec 

increases 1-bit data-wide which only need to increase about 50 gate-counts, and increases a 

multiple of code-length which only need to increase also about 50 gate-counts, i.e. the 

programmable (n, k, m) equal to (65540~3, 65536~2, 16~1), only need the additional gate 

counts about 1200, so the total gate-counts of FEC-codec are 2711. 

Moreover, the modular design methods are very suitable for the proposed FEC-codec to keep 

a constant high-speed operation over 400Mhz clock rate, regardless of the number of the both 

code-length and data wide. 

 

4.3 Software-Program Design for an arbitrary (n, k, m) 

SEC-SoddEC-SBED-DED Codec 

 
  Here we use C/C++ language program to finish the software design for an arbitrary (n, k, m) 

SEC-SoddEC-SBED-DED code. The C-language application program is designed in order to 

simulate error-correcting and detecting behavior model of the proposed (n, k, m) FEC-codec 

that this program design architecture is shown in Fig. 4.6.  
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This program has five function-block is described as follows. 

(1) Message-Generator：To generate k message or information-codewords by using a random 

generator and every codewords has m-bits the, i.e. codewords value is among . 

The number of messages can be set as a parameter, and n codeword-length including 

k-message or information-length and n-k parity-check codewords that these n, k, m value 

can be set as parameters, too. 

)12(~0 −m

(2) Encoder：To encode k message-codewords into an ECC codeword that owns n codewords 

including k message or information-codewords and (n-k) parity-check codewords. 

(3) Noise-Channel：To receive n codewords and fail-bits are introduced into n codewords by 

Noise-mode. The noise channel instead of memory-chip with fail-bits, and we create 6 

type of noise mode as (a) ~ (e). 

(a) Error-Free channel. 

(b) Random bit error for a BSC (Binary Symmetric Channel) with a bit error transition 

probability p. Hence each bit of overall codewords has the same error probability p 

and p can be set manually. 

(c) Burst bit errors for a BSC (Binary Symmetric Channel) with a bit error transition 

probability p. The burst error length L and p can be defined manually, and we have 

some ‘tricks’ on it to guarantee that no two sequential burst errors will be connected 

together. 

(d) Fixed p-bit random-bit errors on each (n, k, m) code, i.e. every (n, k, m) code can be 

induced with p-bit error by manual input, where p=1~ n. 

   (e) Fixed p-bit random bit errors within a single byte of each (n, k, m) code, where 

p=1~m. 

(4) Decoder：To receive the original n-k parity-check codewords, compared with new 

generating parity-check codewords. The decoder will show 5 error types, such as a 

single-bit error, odd-bit error within a single codeword, a codeword (byte) error, two 

random bit errors at least, and a single-bit error in parity check codewords. 

(5) Statistics：To receive the both original and new codewords that compare the both and 

analyze these error type so that we can make a statistical results for the number of error bit, 

the number of error codeword, the number of error sector. 
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4.4 Comparisons and Summary 
 

4.4.1 Comparisons of Random multiple-bit errors Detecting Capability 

 
The comparison of error-detection capabilities of existing ECC codes [28]-[31] and our 

proposed SEC-SoddEC-SBED-DED code are listed as following table 4.7, that use the same 

information-bit length, such as K1=64-bits with parity-check R1 bits, K2=128-bits with 

parity-check R2 bits, and this table mainly shows the comparison results for random 

double-bit errors, and random triple-bit errors detecting capabilities, and mis-correction 

capability. The existing code [28]-[32] has specific error-correcting and detecting capabilities, 

such as [28] has 3-bit error correction within a single 8-bit byte and single 8-bit byte error 

detection capability, and [29] has single bit error correction-plus fixed 8-bit byte error 

correction capability, and [30] has random double bit error correction within 16-bytes - single 

4-bit byte error detecting capability, and [31] has single bit error correction and a single 4-bit 

byte error detecting capability within each 32-bit block-length. The [32] has a single bit error 

correction and double bit error detection, and Odd-weight-column Hamming-code has better 

triple error-bits detecting capabilities than traditional Hamming-code. Furthermore, our 

proposed code has single bit error correction and a single odd-bit Error Correction within a 

single byte single byte error detection and random double bits error detection capability for 

any (n, k, m) value. The error-detection capabilities results of our proposed code are 

simulated by the parameters: 

The k information or message codewords has 106 pattern-numbers by random-generator, 

which are executed on noise-channel (d) item for p=2, or 3, i.e. 2-bit or 3-bit random errors on 

every (N, K,M) block-code.  
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Table 4.7 Comparisons of random-bit errors detecting capabilities and mis-correction 
ECC-codes [28] [29] [30],[31] [32] ours 
ECC-code 
capability 

S3/8EC-S8ED, 
For (76,64) and 

(141,128) code. 

(S+F8)EC,  
For (79,64) and 

(144,128) code. 

DEC16-S4ED, for

(270,256) code. 

SEC-S4/32EL, for

(72,64) code. 
 

K1:Odd-weight-column 

Hamming-code  

K2:Non-Odd-weight 

column Hamming-code 

SEC/SoddEC- 

-SBED-DED, 

For (78,64,8) and 

(144,128,8) code. 

Data-bit and 
Parity-bit 

K1=64

R1=12

K2=128 

R2=13 
K1=64

R1=15

K2=128

R2=16 
K1=64

R1=8 
K2=256

R2=14 
K1=64 

R1=8 
K2=64 

R2=8 
K1=64

R1=14

K2=128

R2=16 
Detection 
capabilities 
of 
double-bit 
errors (%) 

44.52 46.16 
≦64.9

(a) 

≦55.8

(a) 
54.0 53.31 99~100 99~100 

81.34

(81.34)

90.54 

(90.54)

Detection 
capabilities 
of Triple-bit 
errors (%) 

44.60 47.23 
≦74.2

(a) 

≦63.9

(a) 
- 88.20 43.72 24~43.5 

57.60

(83.65)

39.47 

(78.85)

Double-bit 

error miscor- 

rection or 

mislocate 

(%) 

≦55.5

(a) 

≦53.8 

(a) 
35.15 44.26 46.0 

≦46.7

(a) 
- - 17.53

(17.53)

9.23 

(9.23)

Triple-bit 

error miscor- 

rection or 

mislocate 

(%) 

≦55.4

(a) 

≦52.8 

(a) 
25.85 36.15 - 

≦11.8

(a) 
- - 42.18

(16.13)

60.48 

(21.11)

Note that (a): denotes an estimated bound-value, though the papers don’t refer to these values. 

(b) - : the papers don’t refer to the value. 

(c) If our proposed code is the (78, 64, 8) and (144, 128, 8) SEC-SoddEC-SBED-DED code, 

triple-bit miscorrection is 42.18% and 60.48%, but we don’t use odd-bit errors correction 

within a single-byte, i.e. the (78, 64, 8) and (144, 128, 8) SEC-SBED-DED code only has 

single-bit error correction capability, then the percentages of triple-bit miscorrection are 

reduced to 16.13% and 21.11% respectively. 
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The summary of the compared results in the table 4.7 are that the proposed (78, 64, 8) and 

(144, 128, 8) SEC-SoddEC-SBED-DED code has a better double-bit errors detection capability 

about 1.9, 1.6, 1.7, and 1.5 times than [28], [29], [30], and [31] respectively, and a better 

triple-bit errors detection capability about 1.29, and 1.32 times than [28], and [32] 

respectively. Furthermore, it also has a smaller double-bit errors miscorrection about 0.31, 0.5, 

0.2, and 0.38 times than [28], [29], [30] and [31] respectively. 

 

4.4.2 Comparisons and Analysis of Sector Error Rate for NAND-flash 

memory 
 

  In Flash memory, the erase operation is performed in sector units, and a sector is 8k-bytes 

equal to 16-pages, where a page is (512+16)-bytes. Hence we introduce sector error rate, 

which is the probability that an error occurs in a sector [4]. The sector error rate of the 

flash-memory can denote the endurance level in program and erase cycles. 

 

Part I：Principle for the error probability of no alignment 

A memory has W pages, we can assign the number of error-correcting-code words has also W 

ECC-codeword on the memory-chip, and an ECC-codeword as a page. For example, a 512Mb 

(64Mx8bit) memory-chip has totally 131072 pages, i.e. W=131072 and a page size organized 

as 512x8bit (512-Bytes). If we start with a fault-free chip, the chances that the first failing cell 

will not occur coincident with another failing cell is absolute certainty. However, for the 

second faulty cell not to occur in the same ECC-codeword as the first one, the probability is 

131071÷131072. Similarly for the third random failing cell can’t to occur in the same 

ECC-codeword as 131070÷131072. Multiplication of these three probabilities results in the 

probability of no alignment between the first, second, and third fault in the same ECC 

codeword [15-17]. Assume that a memory-chip has e single-cell faults on an ECC codeword 

which the probability of no alignment can be expressed as the following formula 

Pw (no-alignment) =
)!(

!)(1)1(
1

01 eWW
WiW

WW
iW

e

e

i
e

e

i −
=−=

+− ∏∏
−

==

     (4-1) 

 

Part II：Comparison and Analysis of sector error rate 

Assume that error probability of an error occur on a sector is p without ECC, and a sector has 

w ECC-codewords with e single-cell faults on the same ECC codeword. Then the sector error 
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probability with ECC instead of the formula (4-1) can be written into (4-2) as the follows. 
e

wSER pPP ×−= )1(      (4-2) 

If the sector rate without ECC is p=10-4 after one million write and erase cycles [4]. Since the 

sector size is constant to be 8kB, the number of ECC codewords is inversely proportional to 

data length, i.e. more and more the number of ECC-words in a sector indicate that sector error 

rate is becoming more and more low value. For the proposed SEC-SoddEC-SBED-DED code, 

Fig. 4.7 and table 4.8 show the dependence of the sector error rate with ECC and cell area 

overhead on the ECC code-length in an ECC codeword when the sector error rate without 

ECC is 10-4. When two random bit errors occur in the same ECC codeword of a sector, the 

sector is uncorrectable that sector error rate of the proposed code is as . 2
2 )1( pPP wSER ×−=

As the same way, when three random bit errors occur in the same ECC codeword of a sector, 

the sector error rate of the SEC Hamming-code is as the formula (4-2), . 

Our ECC code has odd-bit errors correcting capability within a single byte, and a sector has 

8kB (8192-bytes) so we rewrite formula (4-2) into (4-3) as the following expression: 

         (4-3) 

3
3 )1( pPP wSER ×−=

3
8192

3
81923 )()}1()1{( pPPpPPP wwSER ×−=×−−−=−

Therefore the PSER3- of our ECC-code is lower than that of the existing SEC code as shown in 

table 4.8. Besides, a sector is not counted as a failure sector until a double bit error occurs in 

one of ECC words in the sector. Therefore the PSER2 of sector error rate with ECC is improved 

about 6~7 order than that without ECC when code-length is from 528-bytes to 8-bytes. 

 

Table 4.8 Sector error rate with ECC for different code-length when the sector error 
rate without ECC is p=10-4

Code-length for our 
(n, k, m) code 

The number of  
ECC-codewords

Redundant-cells
Overhead:

k
kn )( −

Sector 
Error Rate 
(PSER2) 

Sector Error Rate 
(PSER3, PSER3-) 

528-Byte, (528,524,8) 16 0.76% 6.25E-10 1.797E-13, 1.793E-13

256-Byte, (256,253,8) 33 1.19% 3.03E-10 8.907E-14, 8.871E-14

128-Byte, (128,125,8) 66 2.40% 1.52E-10 4.500E-14, 4.463E-14

64-Byte, (64,61,8) 132 4.92% 7.58E-11 2.261E-14, 2.225E-14

32-Byte, (32,29,8) 264 10.34% 3.79E-11 1.133E-14, 1.097E-14

16-Byte, (16,14,8) 528 14.28% 1.89E-11 5.675E-15, 5.309E-15

8-Byte, (8,6,8) 1056 25.0% 9.47E-12 2.839E-15, 2.473E-15
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The summary is as follows. 

In figure 4.7, we found that an optimum ECC code-length is close to 66-bytes in order to 

balance the trade-off of the sector error rate and redundant cells overhead. Hence a (66, 63, 8) 

SEC-SoddEC-SBED-DED code just fits a page size (528-bytes) because of 528 equal )866( × . 

The (66, 63, 8) SEC-SoddEC-SBED-DED code has a redundant cells overhead of 4.76%, and a 

sector-error-rate of 7.81E-11. Thus, the reliability target of flash memory endurance can be 

expressed by the sector error rate which is improved by six orders than that without ECC after 

one million write and erase cycles. 

 

4.4.3 Performance Comparisons between the existing ECC-codes and  

the proposed ECC-code 
 

Here we will compare ours ECC-code with the existing code for the programmable 

hardware implementation of FEC-codec. The compared results are list table 4.9.  
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Table 4.9 Performance comparisons of different programmable FEC Codec 
Reference papers [4] [6] [35] 

ECC-Code type 

<note 1> 

Multi-bit-layer 

SEC Hamming-code, 

A fixed 

 (N,K,M)=(522, 512,8) 

codec 

RS-code, 

A fixed 

 (n, k, m)=(72,64,8) 

decoder 

RS-code, 

A programmable codec

 (n, k, m)=(255,239,8) 

for n=255~(23+10t), 

t=1~10, m=8 

Correcting/Detecting 

capability 

8 random-bits 

column-error-correction 

or only a single-byte 

error correction for m=8

4 random-bytes error 

correction (t=4) 

8 random-bytes error 

correction (t=8) 

The number of 

redundant check bit 
⎡ ⎤ mkR ×+= )1log( 2  mtR ×= 2  mtR ×= 2  

Ratio of redundant 

overhead: (R/K)％ 

<note 2> 

2% for (522, 512) 
12.5%  

for (72, 64, 8),t=4 
6.7% 

for (255, 239, 8),t=8 

Data transfer wide 

 (bit/clock) 
8 8 8 

Clock rate (Mhz) Larger than 100-Mhz 33 10 

Throughput Bit rate 

(Mbit/sec) 
Larger than 800 80 80 

Total gate-counts of 

Codec 
About 1000 16,000 (only decoder) 

about 50,000~70,000 

(200,000 transistors) 

Data output Latency 

 (clock) 
2n 3n 2n+10t+34 

Random access after 

Decoding finish (clock) 
No 

Yes 

(after 2n clock) 

Yes 

(after n+10t+34 clock) 
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Table 4.9 (To be continued) 
Reference papers [12] [13] [10] 

ECC-Code type 

RS-code, 

A programmable 

(n, k, m)=(255, 239, 8) 

decoder for 

n=255~13, t=1~10,m=8

RS-code, 

A programmable 

(n, k, m)= (255, 239, 8) 

decoder for 
8t8,m1,2n m ≤≤−=

RS-code, 

A programmable 

 (n, k, m)= (255, 239, 8) 

decoder for 

 n=255, any k ,m=8 

Correcting/Detecting 

capability 

8 random-bytes error 

correction (t=8) 

8 random-bytes error 

correction (t=8) 

8 random-bytes error 

correction (t=8) 

The number of 

redundant check bit 
mtR ×= 2  mtR ×= 2  mtR ×= 2  

Ratio of redundant 

overhead: (R/K)％ 

6.7% 
for (255, 239, 8),t=8 

6.7%  
for (255, 239, 8),t=8 

6.7% 
for (255, 239, 8),t=8 

Data transfer wide 

 (bit/clock) 
8 1 8 

Clock rate (Mhz) 30 48 About 11 

Throughput Bit rate 

(Mbit/sec) 
240 48 83 

Total gate-counts of 

Codec 
211,296 (only decoder) 43987 (only decoder) 340,500 (only decoder)

Data output latency (clock) 

<note 4> 

3n-1+(4t2+t+20)/pk 

<note 3> 
3mn+4mt+4m n(n+1) 

Random access after 

Decoding finish (clock) 

<note 5> 

Yes 

(after n+10t+34 clock) 

Yes 

(after 3mn+4mt+4m-n 

clock) 

Yes 

(after n2 clock) 

Note 1: (N, K, M) denotes N-bit code-length, K-bit information-length, M-bit data-wide, and 

the (n, k, m) denotes n-byte length, k-byte information-length, m-bit data-wide as a byte. 

Note 2: The ratio of Redundant overhead equals the number of redundant check-bit divided 

by the number of information-bit. 

Note 3: the larger product value of p and k is the smaller block length. 

Note 4: This column of “data output latency” indicates that the decoded operations is finished, 

and we will read-out all data sequentially from the k-bytes data-buffer RAM, and it usually 

needs k or n clock cycles to finish the read action. 

Note 5: This column of “random-access after decoding finish” indicates that we want to 

read-out data in random access from the k-bytes data-buffer RAM after the decoding finish, 

i.e. the decoder must be can compute the error address and error-bits value in order to correct 

the fail data immediately when read-out the error address.  
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Table 4.9 (To be continued) 
Reference papers [9] Ours-1 Ours-2 

ECC-Code type 

RS-code 

One-Shot RS-decoder, 

A programmable  

(n, k, m)=(40,32,8) 

for n=40~34, k=32, m=8 

The proposed code: 

SEC-SoddEC-SBED-DED,

A programmable Codec 

(n,k,m)=(4100,4096,8) 

for n=4100~4, 

k=4096~2, m=1~8. 

The interleaved code: 

multi-bit-layer 

SEC-SoddEC-SBED-DED,

A programmable 

Interleaved (nl,kl,ml,m) 

Codec 

for nl=4100~4, 

kl=4096~2, ml=m=1~8. 

Correcting/Detecting 

capability 

4 random-bytes 

error-correction (t=4) 

Single bit error 

correction 

8 random-bits 

column-error-correction 

or only a single-byte 

error correction for m=8

The number of 

redundant check bit 
mtR ×= 2   ⎡ ⎤ mk +× 2log2  mm

m
k

l
l

×+
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
× )log2( 2

Ratio of redundant 

overhead: (R/K)％  

25% 
for (40, 32, 8),t=4 

0.1% for (4100,4096,8) 

1.2% for (256,253,8) 

0.6% for (4122,4096,8) 

7.6% for (256,238,8) 
Data transfer wide 

 (bit/clock) 
320bit (40x8) 8 8 

Clock rate (Mhz) 22.2 (45ns) Over 400 Over 400 

Throughput Bit rate 

(Mbit/sec) 

7Gb/s for 320bit-inpu 

 178Mb/s for 8bit-input

Over 3.2Gb/s for m=8, 

Over 6.4Gb/s for m=16,

Over 3.2Gb/s for m=8, 

Over 6.4Gb/s for m=16,

Total gate-counts of 

Codec 
24,000 (only decoder) 

1511 

(without k-bytes RAM) 

About 9000 

(without k-bytes RAM) 

Data output Latency 

 (clock) 
2n+(45ns) 2n+1 2n+1 

Random access after 

Decoding finish (clock) 

Yes 

(after n-clock+45ns) 

Yes 

(after n+1 clock) 

Yes 

(after n+1 clock) 
 

From Table 4.9, the proposed ours-1 and ours-2 is compared to the RS-code type of Codec 

that our proposed codec gains 8~40 times faster in clock rate, a more wide programmable 

range for (n, k, m) parameters, area cost-down about 12~170 times, a high throughput bit rate 

or data rate of 13~67 times for m=8, 26~134 times for m=16 due to the data-wide m and code 

length n are almost irrelative to clock speed. Furthermore, data output latency is reduced 

about (10t+34)~2n clock, and only need n+1 decoding clock to finish the computations of 
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error address and error-bit value. The ours-1 only has a poor SEC-SoddEC error correcting 

capabilities but its overhead also only pay a very little redundancy about 1.2%. 

The ours-2 has a good error correcting capability to multiple random-bits error, and only has 

an acceptable redundancy overhead about 7.6%. 

 

In additional, advantages and disadvantages between the existing ECC codes and the 

proposed ECC codes are listed in Table 4.10. We can also clearly know these ECC-codes 

performance from table 4.10. 

 

Table 4.10 Advantages and disadvantages between the existing ECC codes and the 
proposed ECC codes 

ECC-Code type 
Multi-bit-layer 

SEC Hamming-code 

Bi-directional 

Product Code 

RS or BCH 

Code 

Correcting/Detecting 

capability 
Multi-SEC [4] SEC-DED [1],[19] 

Multiple-bits correcting 

and detecting by t. [9-14]

The number of 

redundant check bit 
⎡ ⎤ mkR ×+= )1log( 2 1++= mkR  mtR ×= 2  

Ratio of redundant 

overhead: (R/K)％ 

(When k=16~1024-bytes, m=8) 

Medium--Low 

(31.3~1.1%) 

Medium 

(19.5~12.6%) 

Low 

(12.5~0.2% for t=1) 

High--Low 

(100~1.6% for t=8) 

Circuit complexity of 

Programmable (n, k, m) 

<Medium> 

About several thousand 

gate-counts 

<Low> 

About several thousand 

gate-counts 

<High> 

Several ten-thousand 

gate-counts  

A programmable 

(n, k, m) range 
Large Larger Small 

Limitations of a (n, k, m) 

coding parameter 

(r=redundant check-bit) 

Just for m=1, and k is a 

regular variable 

n=2r, k=2r-r-1, 

n-k=r+1, 

k and m are any 

variable, and n=k+m. 

n or m is fixed by the 

formulas n=2m-1 and 

n-k=2t, n and k is a 

regular variable 

m=a symbol size in bit.

Operating clock-speed High--Medium High Medium--Low 

Decoding-Latency Medium Medium--Low High--Medium 
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Table 4.10 (To be continued) 

ECC-Code type 
DEC/TEC 

Code 

SbEC- 

DbED 

Code 

The proposed Code 

(Ours-1 and Ours-2) 

Correcting/Detecting 

capability 

DEC-TED [2], 

TEC-QED [7]. 

S3EC-SBED [28], 

SEC-SBED [29], 

DEC-SBED [30]. 

Ours1: 

SEC-SoddEC-SBED-DED 

Or 

Ours2: Multi-bit-layer ECC

The number of 

redundant check bit 

13 += mR  [2] 

kkmR ++×= )2(log2

[7] 

))2(log3(
2
1

2 ++= kmR

[28] 

⎡ ⎤ mkR +×= 2log2  

or 
mm

m
k

l
l

×+
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
× )log2( 2

 

Ratio of redundant 

overhead: (R/K)％ 

(When k=16~1024 bytes, m=8) 

High--Medium 

(50~13.7%) for [7] 

Low 

(11~0.4%) for [28] 

Low 

(12.5~0.34% for ours-1)

High--Low 

(60~2.1% for ours-2) 

Circuit complexity of 

Programmable (n, k, m) 

<High> 

About several thousand 

gate-counts 

<High> 

About several thousand 

gate-counts 

<Low> 

Less than two thousand 

gate-counts  

A programmable 

(n, k, m) range 
Medium Small Larger 

Limitations of a (n, k, m) 

coding parameter 

(r=redundant check-bit) 

K=m2,m=odd integer [2]

n=2r, k=2r-r-1, [7] 

Any )( bb× matrix, 
RbNbt bR +−×=< − )12(,

 

Any k and m, and 

n=k+r 

Operating clock-speed Medium Medium--Low High 

Decoding-Latency  Medium High--Medium Medium--Low 
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Chapter 5 
Hardware and Software Simulation Results 
 

This section mainly describes the simulation results of the both proposed FEC-Codec 

hardware and software design. ECC-capabilities of our proposed SEC-SoddEC-SBED-DED 

code will be simulated by using the foregoing C-language program in the chapter 4.3. 

The programmable hardware circuits of the proposed FEC-Codec for (n, k, m)=(4100~4, 

4096~2, 8~1) are also simulated to show timing-diagram of encoding-decoding behavior. 

 

5.1 Hardware Simulation Results 
 

  Here we will show the operation behavior and waveform simulations results of the 

proposed programmable (n, k, m) FEC-Codec hardware. 

Memory-control-unit writes data to external-memory through ours FEC-Codec, A write 

flow-chart is shown in Fig. 5.1. Memory-control-unit reads data from external-memory 

through ours FEC-Codec, A read flow-chart is described in Fig. 5.2. Therefore we can know 

the control flow of the proposed programmable FEC-Codec that it’s how to access data from 

external memory. 

 

 46



 

 

 47



 

 

 

 48



We simulate the programmable FEC-Codec hardware when we set the data-length equal to 

256 (Ki=100\h) and data-wide equal to 8-bit (Mi=7\h), i.e. we set the FEC-Codec which is a 

programmable (n, k, m)=(259, 256, 8) ECC-encoder-decoder, and the simulation waveforms 

are shown in Fig. 5.3, 5.4, 5.5, 5.6. 

Figure 5.3 shows the encoding timing waveforms, and figure 5.4 shows decoding timing 

waveforms when a single error is occurred. Figure 5.5 shows decoding timing waveforms 

when no errors. Figure 5.6 shows decoding timing waveforms when double errors are 

occurred. This FEC-hardware only needs 260 clock-cycle times at most to compute the 

error-address and error-bit value, and it has a low decoded latency, hence a high throughput is 

gained to access the consecutive pages. 
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5.2 Software Simulation Results 
 

We use the above C-language application program to simulate the error detection and 

correction capabilities of SEC-SoddEC-SBED-DED code that execute 106 pattern-numbers of 

k information codewords (also called data codewords or message codewords). 

Some symbols definitions of SEC-SoddEC-SBED-DED code as follows: 

(1) The (n, k, m) parameters: n=code-length in bytes, k=information or data or 

message-length in bytes, m= a byte wide or the number of a byte, or a codeword. 

(2) The (N, K, M) parameters: N= mn× =code-length in bits, K= mk × =information or data or 
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message-length in bits, M=m= a data I/O wide, a byte wide or the number of a byte, or a 

codeword. 

(3) r is parity check length in bytes, and R= mr × = parity check length in bits. 

 

Part I: Error-correcting-detecting capabilities simulation results by using multiples random 

bit errors happening on each SEC-SoddEC-SBED-DED (n, k, m) code. 

The software program parameters is set to select noise-channel (d) with 1~8 random bit errors 

on each (n, k, m) code. In table 5.1 and table 5.3, we know the proposed 

SEC-SoddEC-SBED-DED code has an 80~90% detecting error capability for random even-bit 

errors, and a 40~81% detecting error capability for random odd-bit errors. 

Furthermore, the software program parameters is set to select noise-channel (e) with 1~8 

random bit errors on a single codeword of each (n, k, m) code. In table 5.2 and table 5.4, we 

know the proposed SEC-SoddEC-SBED-DED code has a 100% correcting error capability for 

a single odd-bit errors byte, and a 93~99% detecting error capability for a single even-bit 

errors byte. In table 5.1 and 5.5, we found that (78, 64, 8) and (76, 64, 4) 

SEC-SoddEC-SBED-DED codes have the same information length, but have some different 

features that the (76, 64, 8) code has a better detecting error capability about 99.5~100% for 

random even-bit errors, and a poor detecting error capability about 40~66% for random 

odd-bit errors than (78, 64, 8) code. 

 

In table 5.1 and table 5.2, the software program parameters is set to select noise-channel (e) 

with 1~8 random bit errors on each (N, K, M) code. 

 

Table 5.1 Simulation results for multiple random-bit errors when the 
SEC-SoddEC-SBED-DED (N, K, M)=(78, 64, 8) code. 

Random-bit 

errors-numbers 
1bit 2bit 3bit 4bit 5bit 6bit 7bit 8bit 

Mis-correction 0% 
17.53% 

(17.53%) 

42.18% 

(16.13%)

19.83%

(6.98%)

28.47% 

(6.01%)

18.16% 

(3.48%) 

21.44% 

(3.05%) 

16.14% 

(2.09%)

Correction 100% 0% 0% 0% 0% 0% 0% 0% 

Detectable 0% 
81.34% 

(81.34%) 

57.60% 

(83.65%)

79.95%

(92.8%)

71.42% 

(93.08%)

81.75% 

(96.43%) 

78.51% 

(96.9%) 

83.82% 

(97.87%)

Un-detectable 0% 1.13% 0.23% 0.22% 0.11% 0.09% 0.05% 0.04% 
Note that () value indicates simulation results only for the both miscorrection and detection of 

SEC-SBED-DED (N, K, M)=(78, 64, 8) code. 
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Table 5.2 Simulation results for multiple random-bit errors on a single-byte when the 
SEC-SoddEC-SBED-DED (N, K, M)= (78, 64, 8) code. 

Random-bit 

errors-numbers 
1bit 2bit 3bit 4bit 5bit 6bit 7bit 8bit 

Mis-correction 0% 0% 0% 0% 0% 0% 0% 0% 

Correction 100% 0% 100% 0% 100% 0% 100% 0% 

Detectable 0% 93.62% 0% 94.8% 0% 96.17% 0% 96.71%

Un-detectable 0% 6.37% 0% 5.2% 0% 3.83% 0% 3.29% 
 

Table 5.3 Simulation results for multiple random-bit errors when the 
SEC-SoddEC-SBED-DED (N, K, M)=(144, 128, 8) code. 

Random-bit 

errors-numbers 
1bit 2bit 3bit 4bit 5bit 6bit 7bit 8bit 

Mis-correction 0% 
9.23% 

(9.23%) 

60.48% 

(21.1%)

13.32% 

(4.58%)

45.1% 

(8.4%) 

14.69% 

(2.66%) 

34.8% 

(4.35%) 

14.7% 

(1.77%)

Correction 100% 0% 0% 0% 0% 0% 0% 0% 

Detectable 0% 
90.54% 

(90.54%) 

39.47% 

(78.85%)

86.54% 

(95.28%)

54.86% 

(91.56%)

85.25% 

(97.28%) 

65.18% 

(95.63%) 

85.27%

(98.2%)

Un-detectable 0% 0.23% 0.04% 0.14% 0.04% 0.06% 0.02% 0.03% 
Note that () value indicates simulation results only for the mis-correction of SEC-SBED-DED 

(N, K, M)= (144, 128, 8) code. 

 

Table 5.4 Simulation results for multiple random-bit errors on a single-byte when the 
SEC-SoddEC-SBED-DED (N, K, M)= (144, 128, 8) code. 

Random-bit 

errors-numbers 
1bit 2bit 3bit 4bit 5bit 6bit 7bit 8bit 

Mis-correction 0% 0% 0% 0% 0% 0% 0% 0% 

Correction 100% 0% 100% 0% 100% 0% 100% 0% 

Detectable 0% 97.79% 0% 97.04% 0% 98.02% 0% 98.37%

Un-detectable 0% 2.21% 0% 2.96% 0% 1.98% 0% 1.63% 
 

Table 5.5 Simulation results for multiple random-bit errors when the 
SEC-SoddEC-SBED-DED (N, K, M)= (76, 64, 4) code. 

Random-bit 

errors-numbers 
1bit 2bit 3bit 4bit 5bit 6bit 7bit 8bit 

Mis-correction 0% 0% 59.97% 0% 44.19% 0% 33.68% 0% 

Correction 100% 0% 0% 0% 0% 0% 0% 0% 

Detectable 0% 100% 40.03% 99.5% 55.81% 99.68% 66.32% 99.76%

Un-detectable 0% 0% 0.09% 0.5% 0% 0.32% 0% 0.3% 
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Part II: Error decoding probability simulation results by using a bit error probability p 

happening on consecutive SEC-SoddEC-SBED-DED (n, k, m) codewords. 

From the references [3],[33],[34], we can define error probability and bit error rate as below. 

(1) The error probability Pe without error correction for a (N, K) block code is define as the 

following formula:  
K

e pP )1(1 −−= ............. (5-1), where p= single cell error probability, and k indicates k-bits 

data length or K symbols data length. 

(2) The expected number of decoded errors with e errors in a (n, k) SEC-DED block-code is 

as the formula:  
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 We can rewrite formula 5-2 into formula 5-3:  
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(3) The probability that the number i of errors exceed the (n, k) block-code recovery 

capability t can be expressed as an erroneous decoding probability is upper bounded by the 

formula: PECC ≦ .................. (5-4), where the expression ini
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Therefore the system BER (Bit-Error-Rate) of a t-error-correcting (n, k) block-code after 

decoding can be written into the formula 5-5: 
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So a SEC (n, k) code has the formula 5-6: 
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The BER without error correction for a (N, K) block code is the formula 5-7: 

BERout = })1(1{ k
inBER

k
e

−− ............... (5-7), where e=the number of error-bits,  

BERin=input bit error rate or bit error probability before encoding-decoding procedure. 

An example of different (n, k)=(76, 64) 4-ary block-codes for bit-error-rate after decoding are 

shown in Fig. 5.7, where “Pne” is the decoded BER without ECC by the formula 5-7, “SSC” 

is a Single Symbol-error-correcting Code which only can correct a single q-ary symbol, where 

q=4, and n=19, k=16. “DSC” is a Double Symbol-error-correcting Code which only can 
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correct two q-ary symbol, where q=4, and n=21, k=16. We use formula 5-5, and 5-6 to 

compute “DSC”, and “SSC” respectively. The blue curve is a theoretical value for a SEC 

block-code, n=76, k=64 by formula 5-6. Ours curve is drawn by the software program 

parameters which is set to select noise-channel (b), and n=76, k=64, m=4 for random bit error 

on a BSC (Binary Symmetric Channel) with a bit error transition probability p=10-1~10-7. 

Ours (76, 64,) curve has a lower BER than a SEC (76, 64) curve. 

 

 
 

The decoding Bit-error-rate of the proposed SEC-SoddEC-SBED-DED codes for different 

data-length from 4-byte to 4096bytes is shown in P1~P4 curve of figure 5.8 when a bit error 

transition probability p=10-3~10-6. Furthermore, the number of parity check bit divided by the 

number of information-bit equals redundancy-rate as shown in the purple curve of figure 5.8, 

the rate is about 0.1%~27.27%. 

Table 5.6 shows the simulations value and redundancy rate for information length=4096~4 as 

the figure 5.8. 
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Table 5.6 Simulations value and redundancy rate for different information length in 
figure 5.8 
Data-length 4096 2048 1024 512 256 64 16 4 
p=10-3 1.43E-3 1.37E-3 1.29E-3 1.21E-3 1.14E-3 4.71E-4 1.39E-4 4.19E-5

p=10-4 1.27E-4 1.05E-4 6.83E-5 3.77E-5 1.97E-5 5.25E-6 1.45E-6 5.08E-7

p=10-5 3.14E-6 1.52E-6 9.85E-7 2.93E-7 2.05E-7 6.97E-8 2.24E-8 3.91E-9

p=10-6 3.62E-8 2.5E-8 1.95E-8 3.7E-9 1.40E-9 7.00E-10 2.30E-10 3.50E-11

Red. Rate 
(N-K)/K 

0.001 0.0018 0.0034 0.0063 0.0116 0.0376 0.1111 0.2727 

 

 

 
 

The software program parameters is set to select noise-channel (c) for 2~7 burst-bit errors on 

a BSC (Binary Symmetric Channel) with a bit error transition probability p=10-2~10-8. 

An example of (N,K,M)=(78,64,8) SEC-SoddEC-SBED-DED code is shown as the following 

table 5.7. 
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Table 5.7 Simulation results for burst-bit errors when the SEC-SoddEC-SBED-DED  
(N, K, M)= (78, 64, 8) code. 

Burst-bit errors 2-bit 3-bit 4-bit 5-bit 6-bit 7-bit 
p=10-2 with ECC 1.94E-2 2.03E-2 3.83E-2 3.84E-2 5.67E-2 6.05E-2 
p=10-4 with ECC 1.98E-4 9.90E-5 3.91E-4 3.02E-4 5.97E-4 5.85E-4 
p=10-6 with ECC 1.88E-6 8.10E-7 3.84E-6 3.16E-6 5.96E-6 5.81E-6 
p=10-8 with ECC 1.91E-8 8.90E-9 3.90E-8 3.05E-8 5.97E-8 5.80E-8 

p=10-8  

without ECC 
2E-8 3E-8 4E-8 5E-8 6E-8 7E-8 

 

The decoding bit error rate of burst-errors is shown that the proposed code has a little error 

correcting capability and odd-bit error rate is less than even-bit error rate, burst-error equal to 

3-bit especially. In general, SEC-DED code has a worst decoding bit error rate under burst 

error conditions, because of un-detecting error or mis-correction, hence decoding bit error rate 

of the SEC-DED code is larger or equal to that without ECC [32]. For burst-error rate, the 

SEC-SoddEC-SBED-DED code has a stable decoding bit error-rate than the SEC-DED codes 

as shown in the last two-column of the table 5.7. 
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Chapter 6 
Conclusions 
 

Because most of memory-chips have a high-speed clock rate, such as a 133Mhz clock-rate 

for mobile SDRAM, 200Mhz for DDR FCRAM, 400Mhz for RDRAM, 100Mhz for 

page-mode flash. Furthermore, most of memory-chips have different page or burst-length 

such as 8bytes~512bytes burst-length for mobile-SDRAM/1T-sram, and specific 264bytes, 

528bytes, 2112bytes page-length for NAND-flash, and different data I/O wide such as 1, 4, 8, 

16, 18-bits….etc. Hence we propose a class of systematic ECC codes called the (n, k, m) 

SEC-SoddEC-SBED-DED code which is capable of correcting a random single-error or 

odd-bit error occurring within a single byte, detecting double-bit error or a single-byte error, 

and another extended code of SEC-SoddEC-SBED-DED codes is an interleaved code which 

called the Multi-Bit-Layer SEC-S),,,( mmkn lll oddEC-SBED-DED code which is capable of 

correcting Single-Byte Error Correction－Odd-bytes Error Correction within consecutive 

bytes－ consecutive Bytes Error Detection－random Double bits Error Detection on each 

data-I/O. The number of parity-check-bit overhead of the proposed interleaved code is smaller 

than DEC-TED [2] and TEC-QED [7] ; the error-correcting-detecting capability is better than  

lm

lm

DEC [2], TEC [7], SbEC [28-30], and other multi-bit-layer SEC-DED code [1], [4], [19]; the 

programmable range is very large than the existing ECC-codes. Furthermore, 

the hardware implementation is more compact, flexible and faster than the existing ECC 

codec. 

),,,( mmkn lll

Finally, we developed a new programmable SEC-SoddEC-SBED-DED encoder-decoder, 

and Multi-Bit-Layer SEC-SoddEC-SBED-DED generating methods suitable for different type 

of memory-chips due to the better features, such as high speed clock-rate and high throughput 

data-rate (over 400Mhz, and 3.2Gbit/sec), cost-effective (less than two-thousand logic gated 

counts), a shorter decoding latency (n+1 clock-cycles), low redundancy, and a very large 

programmable range for code-length and data-wide . A compact, modular, and parallel 

pipelined hardware design makes the FEC-codec keeping a high-speed operation over 

400Mhz, and is almost regardless of the code-length and data-wide.  
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