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Abstract 

In [7], Yan et al. analyzed Koczy and Hirota's linear interpolative reasoning method presented in I-2, 3] and found that 
the reasoning consequences by their method sometimes become abnormal fuzzy sets. Thus, they pointed out that a new 
interpolative reasoning method will be needed which can guarantee that the interpolated conclusion will also be 
triangular-type for a triangular-type observation. In this paper, we extend the works of [2, 3, 7] to present a new 
interpolative reasoning method to deal with fuzzy reasoning in sparse rule-based systems• The proposed method can 
overcome the drawback of Koczy and Hirota's method described in [7]. It can guarantee that the statement "If fuzzy 
rules A 1 ~B1,  A 2 ~ B  2 and the observation A* are defined by triangular membership functions, the interpolated 
conclusion B* will also be triangular-type" holds. © 1998 Elsevier Science B.V. 
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1. Introduction 

It is obvious that the number of fuzzy rules in 
fuzzy rule-based systems can significantly affect the 
performance of rule-based systems. The more 
sparse the fuzzy rule bases, the faster the rule-based 
systems in execution. Thus, several approximate 
reasoning methods based on sparse fuzzy rule bases 
have been proposed in [1, 2, 3,6]. In those sparse 
rule-based systems, the rule bases are incomplete, 
i.e., there are many empty spaces between member- 
ship functions of the antecedents of rules. When the 
membership function of the observation occurs on 
empty space, no rule will be fired and no conse- 
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quence is derived [7]. In order to cope with this 
problem, in [2, 3] Koczy and Hirota have present- 
ed a linear interpolative reasoning method for solv- 
ing the "tomato classification" problem presented 
in [6, 8]. We can see that the method presented in 
[2, 3] is useful in sparse rule-based systems to deal 
with fuzzy reasoning. 

In [7], Yan et al. analyzed Koczy and Hirota's 
interpolative reasoning method presented in [2, 3], 
and pointed out that the reasoning consequences of 
the method sometimes become abnormal fuzzy 
sets, where they proved that the statement "If fuzzy 
rules A1 ~ B1, A2 ~ B2 and the observation A* are 
defined by triangular membership functions, the 
interpolated conclusion B* will also be triangular- 
type" mentioned in [2, 3] is improper, and they also 
showed two reasoning conditions in which the 
method presented in [2, 3] can work normally. 
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Furthermore, in [7], Yah et al. also hope that 
someone can develop a new interpolative reasoning 
method which can guarantee that the interpolated 
conclusion will also be triangular-type for a tri- 
angular-type observation. From the analytic result 
of [7], we can see that the reasoning consequence 
sometimes become abnormal fuzzy set using Koczy 
and Hirota's interpolative reasoning method pre- 
sented in [2, 3] due to the fact that their method 
only interpolated the bottoms of the fuzzy sets but 
ignored the interpolations of the highest points of 
the fuzzy set in the interpolative reasoning process. 

In this paper, we extend the works of [2, 3, 7] to 
present a new interpolative reasoning method to 
deal with fuzzy reasoning in sparse rule-based sys- 
tems. The proposed method can overcome the 
drawback of Koczy and Hirota's method described 
in [7]. The proposed method can guarantee that 
the statement "If fuzzy rules A1 ~ B1, A2 ~ B2 and 
the observation A* are defined by triangular 
membership functions, the interpolated conclusion 
B* will also be triangular-type" holds. Thus, 
the proposed method is more general than the one 
presented in [2, 3] because it can overcome the 
drawback of Koczy and Hirota's interpolative rea- 
soning method described in [7]. 

The rest of this paper is organized as follows. In 
Section 2, we briefly review the fuzzy reasoning 
problem in sparse fuzzy rule bases from [5, 7]. In 
Section 3, we propose a new interpolative reason- 
ing method based on [2, 3, 7]. In Section 4, we use 
some examples to illustrate the interpolative rea- 
soning process. The conclusions are discussed in 
Section 5. 

2. Fuzzy reasoning problem in sparse fuzzy rule 
bases 

A typical example for fuzzy reasoning in sparse 
rule-based systems is the "tomato classification" 
problem proposed by Mizumoto and Zimmermann 
[5]. We briefly describe this problem as follows. 
Assume that the "tomato classifier" decides the 
degree of ripeness by evaluating the colors of tom- 
atoes, where the membership functions of the fuzzy 
terms "red", "green", "ripe", "unripe", "yellow", and 

O" " //:'"" ~ colors 0 Ir ~tipencss 

Fig. 1. Fuzzy reasoning assumption of the tomato classification 
problem. 

'halfripe" are shown in Fig. 1. Assume that there is 
a sparse rule base consisting of only two rules: 

Rule 1: I fa  tomato is red then the tomato is ripe. 
Rule 2: If a tomato is green then the tomato is 

unripe. 

We can see that it cannot derive any consequence 
when the observation "This tomato is yellow" oc- 
curs, i.e., 

Rule 1: I fa  tomato is red then the tomato is ripe. 
Rule 2: If a tomato is green then the tomato is 

unripe. 
Observation: This tomato is yellow. 

Consequence: ???. 

The problem occurred due to the fact that the 
membership function "yellow" has no overlapping 
with membership functions "red" or "green". Thus, 
the conventional fuzzy reasoning schemes cannot 
fire any rule. 

In order to solve the problem mentioned above, 
Koczy and Hirota presented a linear interpolative 
fuzzy reasoning method in [2, 3]. In the following, 
we briefly review some definitions and reasoning 
conditions on Koczy's interpolative reasoning 
method in sparse fuzzy rule bases from [2, 3, 7]. 

Definition 2.1. Let the set of all normal and convex 
fuzzy sets of the universe Xi be denoted by P(Xi). 
For A1,A2 ~ P(Xi), if Vc~ e (0, 1], the following 
conditions hold: 

inf{Al~} < inf{A2~}, sup{Al~} < sup{A2~}, 

then A1 is said to be less than A2 (i.e., A1 < A2), 
where A1, and A2~ are c~-cuts of A~ and A2, respec- 
tively, inf{A,,} is the infimum of A~,, and sup{Ai~} 
is the supremum of Ai, (i = 1, 2) [7]. 
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Definition 2.2. Let R < be a fuzzy relation, R < = 
{(A1,A2)iA1,A2 ~ P(X), A1 < A2}. If fuzzy sets 
A t and A2 satisfy R<, then the lower and upper 
fuzzy distances between A, and A2 are defined as 
follows [7], by using the resolution principle [2]: 

dE(A,, A2):R< ~ P([0, 1]), 

]2dL(A,,AD(3)= 2 d( in f {Al~} , in f {A2~}) '  
a~[0, ,1 

du(A1, A2):R< ~ P([0, 1]), 

~t 

Pd~(A,,A~,(3)= ~ d(sup{A~,},sup{a2,})' 
~[0, 1] 

where 6 ~ [0, 1] and d is the Euclidean distance 
[2, 3]. 

Definition 2.3. Let A 1 ~ B  1 and A2 ~ B 2  be dis- 
joint fuzzy rules on the universe of discourse X x Y, 
and A,, A2 and B~, B2 be fuzzy sets on X and Y, 
respectively. Assume that A* is the observation of 
the input universe X. If AI < A* < A2, then the 
linear fuzzy rule interpolation between R, and R2 is 
defined as follows [7]: 

d(A*,A~): d(A*,A2) = d(B*,B,): d(B*,B2). (1) 

Definition 2.4. Let A1 and A 2 be fuzzy sets on the 
universe of discourse X with [XI < 0o. The lower 
and the upper distances between a-cuts At,  and 
A2~ are defined as follows [7]: 

dL(Al~, A2~)= d(inf{At~}, inf{A2~}), (2) 

du(A,,,A2,) = d(sup{A1,}, sup{A2~}). (3) 

From the above definitions, (1) can be redefined 
as 

* dL(A~, AI~). dL(A*, A2~) * • = dL(B~, Sly). dL(B*, B2,), 

* du(A,, A,~). * * " du(A,, A2,) = dv(S,, Sa~). du(S*, B2,), 

which can be written as 

inf{B*} 

= dL(A*,Ax,)inf{B2,} + dL(A*,A2,)inf{Bx~} 
dE(A*, A,,) + dL(A*,A2~) 

(4) 

sup{B*} 

du(A*,AI~)sup{B2~} + du(A*,A2~)sup{Bl~} 
du(A* A1~) + * , du(A~, A2~t) 

(5) 

In [7], Yan et al. have shown two reasoning 
conditions on Koczy and Hirota's interpolative 
reasoning method which can let the statement "If 
fuzzy rules A1 =~ B,,  A 2 ~ B 2 and the observation 
A* are defined by triangular membership functions, 
the interpolated conclusion B* will also be triangu- 
lar-type" hold. These two conditions are restated as 
follows: 

dL(A*, A,,) 
Condition 1: = fl, 

dE(A*, AI~ ) + dL(A*, A2~) 

where fl ~ [0, 1]. 

dL(B2~, BI~) 
Condition 2: - 7, where 7 > 0. 

dL(A2~, Ai~) 

From the analytic result of [7], we can see that 
the reasoning consequence of Koczy and Hirota's 
interpolative reasoning method sometimes become 
abnormal fuzzy sets due to the fact that their 
method only interpolated the bottoms of the fuzzy 
sets but ignored the interpolations of the highest 
points of the fuzzy set in the interpolative reasoning 
process. 

3. A new interpolative fuzzy reasoning method 

In this section, we present a new interpolative 
fuzzy reasoning method based on [2, 3, 7]. The pro- 
posed method can overcome the drawback of 
Koczy and Hirota's method described in [7]. It can 
guarantee that the statement "If fuzzy rules 
A, ~ B , ,  A2~B2 and the observation A* are 
defined by triangular membership functions, the 
interpolated conclusion B* will also be triangular- 
type" holds. The proposed method not only 
interpolates the bottoms of the fuzzy set, but also 
interpolates the highest point of the fuzzy set in the 
interpolative fuzzy reasoning process. 

Fig. 2 shows a general case of interpolative fuzzy 
reasoning schemes with triangular membership 
functions, where the fuzzy sets AI, A*, A2, BI ,  B*, 
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Fig. 2. Interpolation with triangular membership functions. 

and B 2 of the rules A 1 ~ B 1  and A 2 ~ B  2 are all 
defined by the triangular-type membership func- 
tions, where 

al = inf{A1,}, 

bl = inf{B1,}, 

a2 = inf{A2~}, a =inf{A*}, 

b2 = inf{B2~}, 

and k l , t l , k , t ,  k 2 , t 2 , h l , m i , h , m ,  h2, and m2 repre- 
sent the slopes of the above triangular-type mem- 
bership functions as shown in Fig. 2. By formulas 
(1)-(5), we can get the bottoms of the interpolated 
fuzzy set B* (i.e., inf{B* } and sup {B* }). 

The definition of the highest point of a normal 
fuzzy set is presented as follows. 

Definition 3.1. Let A be a normal fuzzy set on the 
universe of discourse X, then the highest points of 
the fuzzy set A, denoted by hst {A}, can be defined 
as 

hst{A} = {xlpA(x) = 1, x ~ X}. 

The proposed interpolative fuzzy reasoning 
method is presented as follows: 

Step 1: By formulas (1)-(5), we can get the 
bottoms of the interpolated fuzzy set B* (i.e., 
inf{B*} and sup{B*}). 

Step 2: Deriving the highest point hst{B* } of 
the fuzzy set B*. 

Step3:  Based on inf{B*}, hst{B*}, and 
sup{B*}, the interpolative conclusion B* can be 
uniquely decided. 

In the following, we discuss the interpolation of 
the highest point hst{B*} (i.e., discuss Step 2 of the 
proposed method) in order to guarantee that the 
interpolated consequence will also be triangular- 
type for a triangular-type observation.The method 
to derive the highest point hst{B* } of the fuzzy set 
B* is presented as follows: 

Step 2.1: Deciding the slopes h and m of the 
triangular-type membership function B*, let 

k = k lX  + k2y, (6) 

t = t lX + t2y, (7) 

where x and y are real numbers. If 

kl k2 

tl t2 ' 

then we can uniquely get x and y by solving (6) and 
(7) simultaneously, and let 

h = IhlX + h2ylc, (8) 

m = - I m l x  + m2ylc, (9) 

where c is a constant. Otherwise, we let 

h = kc, (10) 

m = tc, (11) 

where c is a constant. 
Step 2.2. Deciding the position of the highest 

point hst{B*} of the fuzzy set B* by solving the 
following equation, 

1--ct  ~ - 1  
= h:m, 

hst {B* ) - inf{B* ) sup {B* ) - hst {B* ) 

which can be reformulated as 

hst{B*} = m(sup{B*}) - h(inf{B*)) (12) 
m - h  

4. Examples 

In this section, we use the examples shown in 1-7] 
to illustrate the interpolative fuzzy reasoning 
process in sparse fuzzy rule bases. 

Example 4.1. Let ~ = 0, al = 0, a2 = 11, a = 7, 
bx = 0, b2 = 10, kl = 1/5, k2 = 1/2, k = 1, hi = 1/2, 
h2= 1, [1 =- -1 ,  t 2= - -1 ,  t = --1, //'/1 = - 1 / 2 ,  
and m2 = -1 /2 .  By formulas (4), (5), (8), (9), and 
(12), we can get 

inf{B* } = 6.4, 

sup {B* } = 7.4, 

hst {B* } = 6.6. 
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Fig. 3. The reasoning result of Example 4.1. Fig. 5. The reasoning result of Example 4.2. 
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Fig. 4. The reasoning result by Koczy and Hirota 's method 
(adapted from [7]). 

The  reasoning result is represented by B* shown in 
Fig. 3. F r o m  [7], we can see tha t  Koczy  and 
Hi ro ta ' s  l inear interpolat ive reasoning me thod  
shown in [2, 3] will get the a b n o r m a l  reasoning 
result represented by the B* shown in Fig. 4. F r o m  
Figs. 3 and  4, we can see that  the p roposed  me thod  
is bet ter  than  the one presented in [2, 3]. 

Example  4.2. Let ~ = 0, a~ = 0, a 2 = 11, a = 5.5, 
bl = 0, b 2 = 10, kl = 1/3, k 2 = 1, k = 1/2, hi = 1/2, 

h2 = 1, [ 1 = - - 2 / 3 ,  tz = - - 1 / 2 ,  t = - - 1 / 2 ,  ml = 
- 1/2, and  m2 = - 1/2. By formulas  (4), (5), (8), (9), 
and (12), we can get 

inf{B* } = 5.0, 

sup {B* } = 8.7, 

hst{B*} = 6.5. 

The  reasoning result is represented by B* shown in 
Fig. 5. F r o m  Fig. 5, we can see tha t  the reasoning 
result of  the p roposed  me thod  is very close to the 
one presented in [7]. 

Example  4.3. Let c~ = 0, al  = 0, a2 - =  9, a = 5, 
bl = 1, b 2 = 10, kl = 1/3, k 2 = 1/4, k = 1/2, 
hx = 1 / 2 ,  h 2 =  1/3, tl = - 1 ,  t 2 = - l ,  t = - l ,  
ml = - 1, and m2 = - 1. By formulas  (4), (5), (8), (9), 
and  (12), we can get 

inf{B* } = 6.0, 

sup{B~} = 8.0, 

hst{B*} = 7.0. 

The  reasoning result is represented by B* shown in 
Fig. 6. F r o m  Fig. 6, we can see that  the reasoning 
result of the p roposed  me thod  is very close to the 
one presented in [7]. 
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Fig. 6. The reasoning result of Example 4.3. 

5. Conclusions 

In this paper, we have extended the works of 
[-2, 3, 7] to present a new interpolative reasoning 
method to deal with fuzzy reasoning in sparse rule- 
based systems. From the examples shown in 
Section 4, we can see that the proposed method can 
overcome the drawback of the one presented in 
[-2, 3]. It can guarantee that the statement "If fuzzy 
rules A1 =~ B1, A2 =~ B2 and the observation A* are 
defined by triangular membership functions, the 
interpolated conclusion B* will also be triangular- 
type" holds. Thus, the proposed method is more 
general than the one presented in [2, 3] because it 

can overcome the drawback of Koczy and Hirota's 
interpolative reasoning method described in [7]. 
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