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國立交通大學電機學院產業研發碩士班 

 

摘要 

隨著多媒體、通訊系統與半導體製程的進步，行動式視訊裝置功能越來越強

大，也造成有大量的資料需要傳送或儲存以及電池續航力的問題。然而有限的儲

存元件、頻寬與電池容量的限制下，直接地限制了大部分行動式視訊裝置的應用，

於是可以達成高品質及低儲存空間的高效率資料壓縮與解壓縮演算法是非常重要

的。 

 我們提出一適合嵌入於行動式視訊裝置之有失真嵌入式壓縮器/解壓縮器來

減少晶片與外部記憶體間所需的資料傳輸量，以達成減低頻寬使用、縮小對外部

記憶體的空間需求以及降低能量消耗。 

 在我們提出的演算法中，是以位元平面截斷編碼(BPTC)與預先定義的位元平

面(圖樣)所構成。在維持壓縮率為 2 的前提下，將一 4x2 的像素陣列，由 64 位元

壓縮為 32 位元的封包。首先將一 4x2 陣列以位元平面截斷編碼找出起始平面，再

根據我們設定的門檻來選擇使用圖樣比對編碼(PCC)或是一倍壓縮與二倍壓縮平

均對剩下的位元平面作處理，最後封存編碼後之像數至外部記憶體。 

我們提出的硬體架構可以在 100 MHz 的操作頻率下，支援每秒三十張的高解

析度電視規格(HD 1080)以及 150 MHz 的操作頻率下，支援 H.264/SVC 規格下，
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雙層每秒三十張的 HD720/HD1080。由於壓縮率固定為 2 倍，可輕易地轉換記憶

體位址並支援動作補償單元(Motion Compensation)的亂數存取。壓縮一巨型區塊

(Macro Block)需要 32 個週期，解壓縮一個巨型區塊(Macro Block)只需 16 個週期。

對於記憶體的存取次數節省了將近 50%，降低了相當可觀的能量耗損。 
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ABSTRACT 
With the development of multimedia, communication system and semiconductor 

progress, the functions of mobile video applications are getting stronger and stronger, 

resulting in the problems on huge volume of data transmission, storage and battery 

endurance concerns. Under the constraints of limited storage components, bandwidth 

and battery capacity, most of the applications of mobile video devices are restricted. 

Therefore, the algorithm which can achieve high quality and little storage space with 

high efficiency of data coding and decoding is very important. 

We propose a lossy embedded compressor/de-compressor which is suitable for 

embedding into mobile video devices to reduce the data transmission between chip and 

external memory, in order to reduce utilization of bandwidth, volume of external 

memory and power consumption. 

In the proposed algorithm, we adopt Modified Bit Plane Truncation Coding 

(MBPTC) and Predefined Bit Planes (Patterns). Under the premise of compression 

ratio as 2, we compress one 4x2-pixel array from 64 bits to 32 bits into one packet. The 

Modified Bit Plane Truncation Coding (MBPTC) calculates the Start Plane (SP) of the 
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4x2-pixel array first. Then, selecting Patterns Comparison Coding (PCC) or 1x and 2x 

Average according to the coding threshold we setup to compress residual bit planes and 

last, packs the compressed pixels to external memory. The average PSNR loss of 

proposed algorithm is 5.98 dB. 

The hardware architecture we proposed is able to support HD 1080@100 MHz of 

30 frames per second for HDTV specification and HD 720/HD1080@150 MHz of 30 

per frames second in double layers for H.264/SVC specification. Because the 

compression ratio is fixed as two, it is easy to re-map memory address and support 

random access of Motion Compensation (MC). 

To compress a Macro Block takes 16 cycles while to decompress a Macro block 

takes only 16 cycles. It saves 48.7% of memory accesses on the average, leading to 

save considerable power consumption. 
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Chapter 1  
Introduction 
 

1.1 Motivation 
 

To improve the video coding efficiency, diminishing the data correlation of the 

temporal redundancy in each frame is widely used in the latest video coding standard, 

such as H.264/AVC [1]-[2]. However, it causes a large amount of data transmission 

between chip and external memory. In addition, the rapid and huge amount of data 

accesses from Motion Compensation (MC) consuming the majority of system power is 

another serious problem. 

For a mobile video device, power consumption is the most critical issue that 

people concern about. Many low power techniques have already been proposed to 

reduce power consumption, but data transmission still dominates huge amount of 

system power. Hence, reduce data access between chip and external memory is the 

critical consideration in a mobile video device. 

Although the mobile video devices are suffered from limited battery capability, 

the visual quality requirement is not as high as high resolution applications. Therefore, 

the embedded compression is suitable to lessen the volume of data access and the size 

of off-chip memory under the premise of maintaining acceptable visual quality. 

The mobile video devices are more and more important due to their various 

functions at the present time. Reducing the usage of bandwidth and the required 

resource of hardware in the mobile video devices is a critical topic. 
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1.2 Thesis Organization 
 

This thesis is organized as follows. In Chapter 2, we introduce the basic 

compression methods and review previous works. Chapter 3 explains the proposed 

lossy embedded compression algorithm. To integrate the proposed design into 

H.264/AVC and H.264/SVC decoders, there are some restrictions which must be 

specified. Under these restrictions, the proposed algorithm needs to be modified to fit 

for them, and the implementation and verifications of the proposed design are 

described in Chapter 4. The performance comparison and experimental results are 

shown in Chapter 5. Last, Chapter 6 gives the conclusion and future works. 
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Chapter 2  
Previous Works 

 

In general, the embedded compression methods are classified into two categories: 

lossless embedded compression and lossy embedded compression. The algorithms that 

have been proposed before are briefly described in Sections 2.1 and 2.2 and 

summarized in Section 2.3. 

 

2.1 Lossless Compression Method 
 

Many lossless compression methods have been proposed before. It is obvious that 

lossless compression methods [3] reserve the information while truncating the size of 

data, so there has no quality loss of data. 

However, some problems of lossless compression are so fatal that it’s not suitable 

for system integration application. The lossless compression suffers from variable 

length of lossless compressed data that we cannot regularly control the compression 

ratio, frame memory size and bandwidth requirement. These disadvantages are also 

attributed to the needs of memory to prepare for the worst case of data access and the 

unknown size of data. For the reasons mentioned above, we decide to develop a lossy 

embedded compression method in this research. 
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2.2 Lossy Compression Method 
 

There exists an important characteristic of lossy compression methods [4]-[15] 

which differs them from lossless compression methods. The characteristic of fixed 

compression ratio allows us to improve the disadvantages of lossless compression 

methods mentioned previously. Although lossy embedded compression algorithm 

will sacrifice tolerable visual quality, the reduced power consumption memory size 

and bandwidth requirement is more attractive for mobile video devices. 

 

2.2.1 Transform-based Compression methods 

 

The main function of transform-based compression methods is to convert the 

signal from time domain to frequency domain. In addition, transform-based 

compression methods can gather the energy to up-left corner. In human visual system, 

the lower frequency component is more important than the higher frequency 

component. It is a critical feature that we can employ to efficiently compress the 

amount of data, such as in [4]-[5]. 

 In [4], the research utilizes the Hadamard transform and the quantization of 

Golomb-Rice Coding (GRC). Golomb-Rice Coding is an efficient compression scheme 

because it can provide the compression ability which approximates the Huffman 

Coding by selecting K factors. Hence, this paper focuses on low complexity so it fixes 

the K values based on simulation. It can be operated at 100 MHz and the processing 

cycle of a macroblock (MB) on embedded encoder/decoder is 16/16 cycles, 

respectively.  

 To improve the performance of [4], [5] proposed another transform-based 
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compression method. It adopts Discrete Cosine Transform (DCT) instead of Hadamard 

Transform and Modified Bit Plane Zonal Coding (MBPZC) instead of Golomb-Rice 

Coding. The compression ability of Bit Plane Zonal Coding depends on distribution of 

“1” in each bit plane. In [5], it exploits a Variable Length Coding (VLC) codebook to 

improve the performance of BPZC. It can be operated at 100 MHz and the processing 

cycle in a macroblock (MB) on encoder/decoder is 72/34 cycles, respectively. 

Although [5] increases the value of PSNR, it also increases the overhead of hardware 

complexity and coding latency heavily. 

 

2.2.2 Differential Pulse Code Modulation (DPCM) Compression 

 

Theoretically, there exists approximate difference between each two neighboring 

pixels in original pictures. Therefore, Differential Pulse Code Modulation (DPCM) 

compression utilizes previous feature to achieve high compression efficiency, but also 

causes the strong data dependency over correlated data. 

In [6], the research adopts DPCM as basic compression scheme. It improves the 

performance of DPCM compression through exploiting the intra prediction modes 

from H.264 video coding standard to search the best course. The modified DPCM is 

much more adopted than [4] and [5] in each video sequence. 

 However, DPCM compression needs to gather each difference into limited data 

budget and those differences are not always as small as we expect. Moreover, to derive 

the best performance, the DPCM-based compression method needs several repetitions 

to obtain the best quantization level for every difference. These disadvantages make 

the algorithm unable to exploit the pipeline scheme and lead to longer coding latency. 

In the view point of system, we need to increase the operation frequency or reduce the 
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system throughputs to achieve the DPCM-based compression method. That’s why we 

do not adopt it into our proposed algorithm. 

 

2.2.3 Block Truncation Coding (BTC) Compression 

  

The traditional Block Truncation Coding (BTC) [7] compression is a two-level 

non-parameter quantizer. As shown in Figure 1, BTC algorithm partitions an input 

image into several 4x4-sized blocks and each block is coded respectively. It computes 

the average value of pixels (AVG) within each block by (1). For each pixel with value 

is Pn within a block. First, the values of pixels greater than AVG are marked as “1” and 

the rest are marked as “0” to form the Bit-Map. Then, the average value of 1-marked 

and 0-marked pixels will be generated as High Eigen-value of Group (EOG) and Low 

EOG, respectively. Finally, each 4x4-sized block can be compressed into High-EOG, 

Low-EOG and Bit Map. The data coded format of BTC algorithm is shown in Figure 

2. 
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Figure 1: Block Truncation Coding (BTC) Algorithm 
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Figure 2: The Coded Format of BTC Algorithm 

 

 There exist hardware requirements and coding latency problems in BTC 

algorithm that it’s not suitable to be embedded into the H.264/SVC system. In 

hardware design, multiplication and division operations will increase the requirements 

of hardware. Besides, the Bit-Map occupied 16 bits is another serious problem for 

limited compressed data budget. 

 Therefore, [8] proposed a method to improve the BTC algorithm with predefined 

bit planes as shown in Figure 3. To invert these 32 predefined bit planes, we can obtain 

the other 32 patterns. By comparing each Bit-Map with 64 predefined bit planes to get 

the highest similar index of predefined bit planes, we can reduce the amount of data. 

The coded format of BTC algorithm with 64 predefined bit planes is shown as Figure 

4. 
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Figure 3: 64 Predefined Bit Planes [8] 

 

Figure 4: The Coded Format of BTC Algorithm with 64 Predefined Bit Planes [8] 

 

However, comparing each Bit-Map with 64 predefined bit planes may increase the 

coding latency. In [9], it reduced the 64 predefined bit planes of [8] to 10 patterns as 

shown in Figure 5. By shifting and rotating, we can obtain the complete 32 predefined 

bit planes from 10 patterns. By reducing the number of predefined bit planes, [9] 

maintains acceptable visual quality to reduce the amount of data and coding latency. 

The coded format of BTC algorithm with 32 predefined bit planes is shown in Figure 

6. 
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Figure 5: 10 Patterns for 32 Predefined Bit Planes [9] 

 

 

Figure 6: The Coded Format of BTC Algorithm with 32 Predefined Bit Planes [9] 

 

 Both [8] and [9] are limited by BTC algorithm; the coding latency is still too long 

to be well-embedded into the target H.264/SVC system. However, through [8] and [9], 

we find a way to utilize the predefined bit planes to reduce the coding latency and the 

amount of data. 
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2.2.4 Bit Plane Truncation Coding (BPTC) Compression 

 

[7]-[9] imply the compression schemes from different viewpoints in [10]. As 

shown in Figure 7, BPTC algorithm partitions one 4x4-sized block into 8 bit planes 

first. Then, it starts to search for the Start Plane (SP) which is the highest plane without 

all-zero from MSB to LSB. Finally, BPTC algorithm will save Magnitude Bit Planes 

with 60 bits and truncate the rest data. 
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Figure 7: Bit Plane Truncation Coding (BPTC) 

 

As shown in Figure 8, the BPTC algorithm is similar to lossless compression 

method, but the coding latency is shorter. 

 



 

11 

 

Figure 8: The Coded Format of BPTC Algorithm 

 

2.2.5 Other Compression Methods 

There are more and more lossy compression methods proposed, such as the 

adaptive DPCM in [11], the adaptive Vector Quantization (VQ) in [12], and the 

down-sampling based compression scheme in [13]. Discrete Wavelet Transform (DWT) 

with Set Partitioning of Hierarchical Trees (SPIHT) in [14] provides another 

transform-based compression approach which is able to perform lossy and lossless 

with the same architecture. [15] proposes two lossy compression methods and adopts a 

pre-determining mechanism to select which one to utilize. It declares that the 

mechanism can reach better performance by selecting adaptive algorithm to suit for 

different video sequences. 

 According to the above discussion, no matter which one of lossy compression 

methods it is, the characteristic in common is to preserve the visual quality as complete 

as possible within limited data budget to avoid drift effect. Therefore, how to preserve 

complete visual quality under the restriction of maintaining compression ratio (CR) is 

the critical challenge of lossy compression methods. 
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2.3 Summary 
 

In previous discussions, we classify the existing compression methods into two 

basic categories and introduce them briefly. In lossy compression methods, there are 

two main advantages of fixed compression ratio and the amount of coded data. 

However, higher visual quality usually accompanies with huge time consumption 

while low complexity brings lower visual quality. Most of preceding compression 

schemes derives higher performance from enlarging requirement of buffer and 

processing cycle, but it magnifies the obstruction to embed the extra function into a 

H.264 system. Even though slowing the operation frequency is able to fix prior 

problem, the former compression schemes still raised other problems such as 

decreasing coding throughput.. It is easy to be embedded into a H.264 decoder system 

that some of lossy compression methods are low complexity and coding latency.  

 For real time and mobile video devices, low latency and power consumption are 

the basic requirements. Diminish the overhead from original system is another 

objective. Therefore, an optimal trade-off among low latency, low power consumption, 

low complexity and high performance is our design challenge on embedded 

compressor/de-compressor. 
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Chapter 3  
Proposed Algorithm 
 

3.1 Overview 
 

Data compression has been developed for a long time. From those proposed 

algorithms, we know that enhancing the complexity can obtain high performance. 

According to the restrictions of embedding an extra function into H.264 decoder 

system in chapter 2, low latency and power consumption are the basic requirements. In 

this chapter, we will discuss those in detail. 

Actually, because blocked-based compression methods match the block-oriented 

structure in H.264 system, they are the most compatible schemes. However, overhead 

is another serious problem in H.264/SVC system embedment. The overhead is defined 

as follows: the ratio between the number of pixels that are actually accessed during the 

motion compensation of a block and the number of pixels that are really useful in the 

reference block [5]. Originally, the ratio is always 1 for the pixels accessed on demand. 

In the system with block-based algorithms, the ratio is always superior to 1 due to the 

individuality of block-based compression method. The notion of pixel-based and 

block-based compression methods are shown in Figure 9.  
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Pixel-based Block-based

Pixel-based Data Fetch 1x1

Block-based Data Fetch 4x4

 

Figure 9: Pixel-based and Block-based 

 

In the standard of H.264, a 16x16-sized macro block (MB) can be partitioned into 

several 8x8, 8x16 or 16x8 blocks during the process of Motion Compensation (MC). In 

addition, an 8x8 block can be sub-partitioned into 4x4, 4x8 or 8x4-sized sub-blocks in 

advance. An example of overhead is shown in Figure 10. The overhead is occurred 

while the compensated block is not aligned on the coded block grid. The four coded 

blocks need to be loaded and then decoded to derive the required data. It must be 

loaded 256 pixels to obtain the 16 required pixels if the compensated block is 

4x4-sized block and the EC method is 8x8-sized block-based. In this example, the 

overhead is 16 cycles. The relativity between gain of memory access and compression 

ratio of EC is not direct due to the overhead. 
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Required Data

Pixel-based Data Fetch

Block-based Data Fetch
 

Figure 10: An Example of Data Fetching Overhead 

 

 In [15], it provides the statistic material of overhead. The relativity between 

overhead and coding bit-rate simulation with Stefan Sequence in three kinds of EC 

block-grid is shown in Figure 11. Table 1 summarizes the statistical result simulated 

with six sequences. 

 

Figure 11: Relativity between Overhead and Coding Bit-rate Simulation (Stefan 

Sequence) 
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Table 1: Overhead with EC Block-grid for Each Sequence 

Foreman 1.31

Sequence 4x4 Block-grid 8x8 Block-grid 16x16 Block-grid

Flower

1.77 3.69

1.30 1.74 3.77

News 1.14

Silent

1.51 2.78

1.17 1.50 3.22

Stefan 1.51 2.44 6.95

Weather 1.17

All (Average)

1.49 3.18

1.27 1.73 3.93
 

 

3.2 Algorithm of Embedded Compression 
 

Under the restriction of mobile video devices, we know that low latency and 

power consumption are the basic requirements. Although utilizing transform-based 

algorithms, such as [4], [5] and [14], as the first step before compression methods can 

derive higher visual quality, we need to adopt other algorithms to lessen the coding 

latency. 

We adopt pattern-based and 4x2 block-grid as the proposed coding algorithm 

including Modified Bit Plane Truncation Coding (MBPTC) and Patterns Comparison 

Coding (PCC). The main reason relies on the lower overhead than the statistical results 

described in previous section. In MBPTC algorithm, we define to search the Start 

Plane (SP) in 4 continuous layers which are close to MSB with 2 bits. We also change 

coding unit to improve the PCC algorithm. 

To combine MBPC with PCC is the basic notion of the proposed algorithm. 

Modified Bit Plane Truncation Coding (MBPTC) and Reduced Patterns Comparison 
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Coding (RPCC) algorithm are the critical features. No matter Multi-MBPTC or RPCC 

is considerably efficient and suitable to be utilized in software and hardware. The flow 

chart of proposed algorithm is shown in Figure 12. There contains no iteration in the 

proposed algorithm which is a single-way and open-loop coding method. The bit 

planes are coded by Multi-MBPTC to search the SP. Then the remaining bit planes are 

coded by RPCC to derive the Pattern Indices (PIs). Development of the proposed 

algorithm will be introduced in the following sections. 
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Multi-Modified 
Bit Plane 

Truncation 
Coding Encoder

Reduced Patterns 
Comparison  and 
Average Coding 

Encoder

Data 
Packing

External 
Memory

Multi-Modified 
Bit Plane 

Truncation 
Coding Decoder

Reduced Patterns 
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32-bit 
Segment

System 
Bus

System 
Bus

Figure 12: Flow Chart of Proposed Embedded Compression 

 

3.2.1 Fully Patterns Comparison Coding 

 

As shown in Figure 13, fully Patterns Comparison Coding algorithm includes 

MBPTC and 2x2-based PCC. Because PCC can preserve and compress five bit planes, 

we just compress the residual bit planes. Therefore, we adopt MBPTC algorithm to 

compress the 4 bit planes which are close to MSB. 

 There are 65536 (216) kinds of patterns in each 4x4 bit planes. [8] and [9] employ 
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64 and 32 patterns to compress the amount of data, respectively. The more quantities of 

patterns there is, the better performance there will be. However, it will make 

comparison more difficult. Therefore, the 2x2-based patterns are proposed which are 

shown in Figure 14 to improve the problem. A bit plane is partitioned into four 

2x2-sized parts and compared with them with the proposed 8 patterns at the same time. 

As the simulation result shown in Figure 15, while the error rate occurred, there is a 

1-bit error in a part at most. We exploit previous method to extend the quantities of 

patterns close to 4096 (212) categories in each bit plane. Hence, we reduce the coding 

latency to 4 cycles and maintain acceptable visual quality under CR as 2. We show the 

coded format of data for Fully Patterns Comparison Coding in Figure 16. PSNR loss of 

this algorithm is 8.18 dB for simulation in H.264 system with the following video 

sequences: akiyo, flower, football, foreman, mobile_calendar, carphone, canoa, 

coastguard, waterfall and tempete in CIF format. 
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Figure 13: Fully Patterns Comparison Coding Algorithm 
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Figure 14: 8 2x2-based Patterns 

 

Probability of 2x2-based Patterns

Hit Rate
69%

Error Rate
31%

Hit Rate Error Rate

Figure 15: Probability of 2x2-based Patterns 
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Figure 16: The Coded Format of Fully Patterns Comparison Coding Algorithm 

 

3.2.2 Patterns Comparison and Average Coding 

 

Although Fully Patterns Comparison Coding algorithm provides acceptable visual 

quality, it is a serious problem that the frames are not very smooth. That is because the 

2x2-based patterns cannot contain all cases in a sequence causes. Hence, we exploit the 

average coding to smooth the frames and show it in Figure 17. We partition the four bit 

planes which are close to MSB into four parts and employ 2x2-based PCC algorithm to 

compress them to obtain the PIs. Then we partition the residual bit planes into four 

parts and compute the average value with 4 bits in each part. The coded format of data 

for Patterns Comparison and Average Coding Algorithm is shown in Figure 18. 

According to the simulation result, PSNR loss is 7.80 dB in this algorithm. 
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Figure 17: Patterns Comparison and Average Coding Algorithm 

 

Figure 18: The Coded Format of Patterns Comparison and Average Coding Algorithm 

 

3.2.3 Patterns Comparison and Multi-MBPTC Coding 

 

With the respect of system, the higher the coding latency is, the higher overhead 

there will be. Therefore, we still need to reduce coding latency. According to Table 1, 

we know the smaller block-grid there is, the less overhead there will be. Hence, we 

exploit the feature to reduce coding latency and adopt the 4x2 block-grid. Although the 

2x2-based PCC algorithm is suitable for 4x2 block-grid, the MBPTC algorithm needs 
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to be modified. We propose the Multiple Modified Bit Plane Truncation Coding 

(Multi-MBPTC) algorithm to replace with MBPTC algorithm. In Figure 19, we divide 

a 4x4 block into four 2x2-sized parts which are partitioned into eight bit planes in 

advance. Multi-MBPTC algorithm searches the SPs in each part which is close to MSB 

and the 2x2-based PCC algorithm compress each part which is close to LSB. The 

coded format of data for Patterns Comparison and Multi-MBPTC Coding algorithm is 

shown in Figure 20. Although the coding latency is lessened, the PSNR loss is also 

enlarged to 8.95 dB.  

 

Figure 19: Patterns Comparison and Multi-MBPTC Coding Algorithm 
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Figure 20: The Coded Format of Patterns Comparison and Multi-MBPTC Coding 

Algorithm 
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3.2.4 Reduced Patterns Comparison and Average Coding 

 

In previous algorithms, we know that Multi-MBPTC algorithm can reduce the 

coding latency and average coding can smooth the frames. However, to overuse 

Multi-MBPTC algorithm will reduce visual quality. Therefore, we propose a 4x1-based 

PCC algorithm which is combined with average coding, as called Reduced Patterns 

Comparison Coding (RPCC) algorithm to improve previous disadvantages. 

In practice, the higher the hit rate is, the higher PSNR we get. Additionally, 

according to simulation result, it achieves higher hit rate in 4x1-based patterns as 

shown in Figure 21. Thus, we adopt 4x1-based patterns to modify the PCC algorithm. 

 

Probability of 4x1-based Patterns

Hit Rate
73%

Error Rate
27%

Hit Rate Error Rate

Figure 21: Probability of 4x1-based Patterns 
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As Figure 22, we partition 4x1 section with 4 bits into four 4x1 layers. According 

to the threshold, RPCC algorithm will adopt left or right strategy. While we set the 

threshold to level 2, RPCC algorithm compares layer 1 and layer 2 with eight 

4x1-based patterns, as shown in Figure 23, at the same time. If there is no error in layer 

1 and layer 2, RPCC algorithm will adopt left strategy to compress the 4x1 section. 

Otherwise, RPCC algorithm will adopt right strategy. According to the simulation 

result with different thresholds, while the right strategy is adopted, the right strategy is 

often in worse case. We exploit this feature to improve the drawback in 4x1-based PCC 

algorithm. 
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Figure 22: Reduced Patterns Comparison Coding Algorithm 
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Figure 23: Eight 4x1-based Patterns 

 

The proposed algorithm is including Multi-MBPTC, RPCC and average coding 

algorithm. As shown in Figure 24, we partition a 4x2 block into eight bit planes which 

are coded by MBPTC algorithm to derive SP. Then RPCC algorithm compresses four 

bit planes which are closed to SP and divided into two 4x1 sections. Finally, we 

compute the average value of residue after RPCC algorithm coding in each 2x2 part 

with 2 bits. The coded format of data for the proposed algorithm is shown in Figure 25. 

Strategy bits which indicate the compression strategy of each 4x1 part are coded by 

RPCC algorithm. The proposed algorithm reduces PSNR loss to 5.98 dB and maintains 

the 4x2 block-grid. 
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Figure 24: Reduced Pattern Comparison Coding Algorithm 
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Figure 25: The Coded Format of Reduced Patterns Comparison Coding Algorithm 

 

3.2.5 Formula 

 

We derive the formula (2) from the simulation result. It is about the PSNR loss of 

4x1-based PCC algorithm. i is the number of 4x1 error bit plane. Pm is the error rate 

shown in Figure 21 and Pn is the ratio of error rate per position in each 4x1 bit plane as 

described in Table 2. As described in the previous section, we can setup the different 

thresholds (Level 0~4) in 4x1-based PCC algorithm to get corresponding weight (Wi) 

as described in Table 3. We can exploit the formula to estimate for the PSNR loss in 

4x1-based PCC algorithm while the previous parameters are modified. Figure 26 

shows the distribution of PSNR loss in all thresholds. It helps us to simplify the 

improving procedure in the algorithm. 
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Table 2: Ratio of Error Rate per Position in each 4x1 Bit Plane 

 

 

Table 3: Weight Under Different Thresholds 
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Distribution of PSNR Loss in 4x1-based PCC
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Figure 26: Distribution of PSNR Loss in 4x1-based PCC Algorithm 

 

3.3 Summary 
 

In this section, we show all results and focus on comparing the visual quality with 

those above-mentioned algorithms. Table 4 shows the comparison results. Figure 27 is 

the worst case and Figure 28 is the best case in different algorithms.  

In Figure 27, there are many bright spots in the coded sequence of fully Patterns 

Comparison Coding (PCC) algorithm. Although the value of PSNR is acceptable, the 

visual quality is not enough to accept. Therefore, we employ average coding instead of 

MBPTC to smooth the frames as shown in Figure 27. Even though it lessens the PSNR 

loss and smoothes frames, we still cannot clearly to recognize the details in frames. 

Multi-MBPTC algorithm provides a method in recognition of edge. Nevertheless, to 

overuse the Multi-MBPTC algorithm will enlarge PSNR loss heavily. Thus, the 

algorithm we proposed is to combine the advantages of these previous algorithms. 
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With the respect of system, we adopt 4x2 block-grid to reduce coding latency further. 

Fig. 27 shows the details of the proposed algorithm in frames which are clearer than 

those previous methods. 

 

Table 4: Comparison of Previous Algorithms 

[8]

Algorithms

[9]

Fully Patterns 
Comparison Coding

Patterns Comparison 
& Average Coding

Patterns Comparison
& Multi-BPTC Coding

Proposed

13.63

PSNR Loss (dB)

16.46

8.18

7.80

8.95

5.98
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Original Fully PCC

PCC&AVG Multi-BPTC

Proposed  

Figure 27: Worst Case in Different Algorithms 
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Original Fully PCC

PCC&AVG Multi-BPTC

Proposed

Figure 28:Best Case in Different Algorithms 
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Chapter 4  
Proposed Architecture 
 

In sections 4.1 and 4.2, the hardware design of the proposed embedded 

compressor and de-compressor are introduced separately. The implementation and 

verification are described in section 4.3. 

 

4.1 Architecture of Encoder 
 

The overall diagram of the proposed embedded compressor is shown in Figure 29 

and we will introduce these blocks in the following sections. 

 

 

Figure 29: Overall Diagram of Embedded Compressor 
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4.1.1 Architecture of Modified Bit Plane Truncated Coding Encoder 

 

The hardware design of MBPTC is improved from original BPTC. It is a 

combinational block to deal with 4x2 pixels to obtain Start Plane (SP) and 4x2-plane 

component for each 4x2 array. In Figure 30, we employ three 8-input OR gates as 

thresholds to control the value of SP. The bits of layer 1, 2 and 3 are used to be input of 

8-input OR gate individually. 

 

 

Figure 30: The Hardware Architecture of MBPTC  

 

4.1.2 Architecture of the Reduced Patterns Comparison Coding 

 

RCPP is a combinational block to deal with coded data by MBPTC. As shown in 

Figure 31, SP selects four layers to be compressed and threshold is exploited to choose 

the strategy to be adopted. The SP is produced by MBPTC and the threshold is defined 

by users with different levels as described in Table 3. (Here we adopt Level 2) 
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Figure 31: The Hardware Architecture of RPCC 

 

4.1.3 Overall Encoder Design 

 

The actual architecture of compressor design is shown in Figure 32. It takes one 

cycle to deal with 4x2 block. Here each Macro Block takes 16 cycles to be encoded. 
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Figure 32: Encoder Design 

 

4.2 Architecture of Decoder 
 

Overall diagram of the embedded compressor is shown in Figure 33 and we will 

introduce these blocks in the following sections. 
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Figure 33: The Overall Diagram of Embedded Decompressor 
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4.2.1 Data Rearrange 

 

Data unpacking is a simple reverse process of encoding. The less calculation 

needed on decoder and the information is ready are the main dissimilarities and lead to 

smaller gate count compared with encoder. Thus, decoder focuses on putting the data 

on proper positions. 

According to coded data format, the SP selects the initial bit plane of decoding. 

The continuous four layers are then placed on corresponding positions depending on 

strategy bits. Afterward AVG. of part A and B are placed on the continuous two bit 

planes after the four layers. 

 

4.2.2 Overall Decoder Design 

 

For providing data to Motion Compensation (MC), the decompressor needs to 

support higher throughput. The actual architecture of decompressor design is shown in 

Figure 34. A 4x2 block takes one cycle to be decoded. Under the design, each Macro 

Block takes 16 cycles to be decoded. 

 

  

Figure 34: Decoder Design 
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4.3 Implementation and Verification 
 

In this thesis, we propose a flexible algorithm to achieve good coding efficiency.  

It reduces the usage of bandwidth and the required resource of hardware in the mobile 

video devices is a critical topic and it suits to be integrated into any mobile video 

decoder. We will introduce the Specifications of the proposed hardware design and 

verification in the following sections. 

 

4.3.1 Implementation 

 

The specifications of the proposed architecture are described in Table 5. The 

proposed architecture is synthesized with UMC 90-nm CMOS standard-cell library and 

operated at 5, 100 and 150 MHz for different specifications, respectively. For 

compressor/decompressor, the gate counts are 1.8/1.3 K respectively and the latencies 

are 1 cycle per MB. 

 

Table 5: Specification of Hardware Design 
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4.3.2 Verification 

 

Figure 35 shows the flow of verification. We utilize software and hardware to 

verify the proposed algorithm. The patterns are created by software and applied as the 

input of hardware designs. Then the software calculates the answer to be compared 

with result of hardware and the result is stored in memory. Afterward the coded data is 

accessed by software and hardware decompressor from memory. We check the coded 

data to confirm the result is matched in software and hardware. 
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Figure 35: Flow of Verification 
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The previous MHT work [4] costs 20K gate counts in dealing with a 1x8 pixels 

array and previous DCT work [5] costs 30K gate counts in dealing with a 4x4 block 

while the proposed architecture costs 3.1K gate counts in dealing with a 4x4 block. 

The peak power consumption of proposed embedded codec @ 100 MHz is 358 uW. 

Thus, the proposed algorithm not only gains 5.95 dB in quality loss but achieves an 

area-efficient and power-aware hardware implementation. 
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Chapter 5  
System Integration 
 

In this chapter, we show the experimental results including the cycle analysis, 

bandwidth and power consumption. In addition, we will discuss the problems occurred 

during integration in detail. 

 

5.1 Adopted H.264 Hardware System 
 

Figure 36 shows the overall block diagram of this system. The adopted H.264 

decoder works at 5, 100 and 150 MHz respectively to perform CIF, HD 1080 AVC, HD 

1080/720 SVC at 30 frames/per second (FPS). The embedded compressor compresses 

the data from deblocking filter into 64-bit data segment which is stored in external 

memory. The embedded decompressor decompresses the coded data segment from 

off-chip memory into 4x2-sized block which is sent to Motion Compensation. The 

bandwidth of system bus is 32 bits and the external memory is 32 bits per entry. 
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Figure 36: Block Diagram of the Video Decoder System 

 

The embedded codec can be considered as an interface between the chip and 

external memory. The system interface for embedded codec is shown in Figure 37. 

Because deblocking Filter sends out four pixels per cycle, the best processing latency 

for each pipeline stage of embedded compressor is less or equal to four cycles to avoid 

idle delay at the input of embedded compressor. In addition, the input bandwidth of 

MC in original system is 4 pixels per cycle, thus the embedded decompressor outputs 

four pixels per cycle at least. Due to the fixed compression ratio as 2, the address 

converter is easy to implement. 
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Figure 37: The System Interface for Embedded Codec 

 

5.2 Access Analysis 
 

As shown in Figure 38, the related accesses of EC are partitioned into write 

accesses and read accesses. Write accesses from deblocking filter write the data to 

external memory and read accesses read the data from external memory to MC. 
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Figure 38: Data Flow of Related Accesses of EC 

 

Many methods have been proposed to improve embedded compression and all of 

them aim to improve the performance of embedded compression. However most of 

performance measured by these methods is fragmental, lacking verification from 

system level. In addition, we expect to precisely estimate the amount of read/write 

accesses on system view point. Thus, we employ “CoWare” to deal with the 

complicated problems. As shown in Figure 39, CoWare provides many functions to 

simulate a complete system and the user-defined means user’s design. 
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Figure 39: Schematic Diagram for CoWare System 

 

It makes more efficient that we can change the user-defined field relied on our 

demands. We add the proposed design and H.264 system into user-defined field as 

shown in Figure 40. The AMBA interface between CoWare and user-defined is coding 

in System C and it provides a protocol to commutate each other. Furthermore, 

user-defined means all designs in this filed need to be coded in Verilog. 
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Figure 40: Complete Block Diagram for CoWare System 

 

Figure 41 shows the block diagram in CoWare system in practice. SI2 H.264 

video decoder employs single bus/memory. The external memory is adopted 128Mb 

Mobile LPSDR: MT48H4M32LFB5-6 [17] produced by Micron and the bus protocol 

exploited AMBA 2.0 with 32bits width.  
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Figure 41: Block Diagram in CoWare System 

 

We adopt CoWare to verify our design as shown in Figure 42 and Figure 43 

shows the data access trace. 

Figure 42: Embedded Compressor Waveform over CoWare System 
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Figure 43: Data Access Trace 

 

5.2.1 Write Access 

 

Because the proposed algorithm provides fixed CR as two, write accesses are easy 

to be analyzed. The access times after adding EC are always half of original system. 

The reduction ratio of write access is 50%. 

 

5.2.2 Read Access 

 

The required read accesses from MC are much more complex. MC requests data 

which is based on Motion Vector (MV). The value of x and y in MV (x, y) are 

classified into three categories: align, not align and sub-pixel. 

(1)  Align: the value is quadruple. It fits with a 4x4 coded block-grid. 

(2)  Not Align: the value is not quadruple but is an integer. It may span two 4x4 

block-grids due to needed four pixels. 

(3)  Sub-pixel: the value is not integer and accurate at 1/2 or 1/4. It needs nine 

pixels to be interpolated into four pixels. 
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As we discussed in the previous chapters, embedded compressor confronts 

overhead problems and the overhead ratio connects to the coding unit directly. Because 

the block-grid of our system is 4x1 block-based not pixel-based, the overhead 

problems can be simplified and analyzed as described in Table 6 and we will simply 

introduce two cases: the worst case and the best case. 

 

Table 6: All Cases of Read Access Required by MC with/without EC 

 

The worst condition is the sub-pixel case as shown in Figure 44. Both x and y are 

not integers in MV (x, y). The 4x4 block in worst case needs a 9x9 block to complete 

the motion compensation. While original system needs 27 cycles to deal with this case, 

embedded compressor takes 15 cycles to do that.  
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Figure 44: Worst Case on Fetching 

 

We show the best case in Figure 45. If the required 4x4 blocks of MC are aligned 

with the coded 4x4 blocks, original system with/without embedded compressor needs 

2/4 cycles to deal with the case. 

 

 

Figure 45: Best Case on Fetching 

 

 

 



 

51 

There are three special cases including (Align, Not Align), (Not Align, Not Align) 

and (Sub, Not Align). In Figure 46, we explain one of these special cases as an 

example. If required data of MC is not fit for 4x2 block-grids as the proposed 

algorithm adopts, it may increase an extra access. 

 

Pixel

Target of MC

Original Data 
Fetch

Required Data

EC Data Fetch

Block

4x2

4x1

4x4

4x4

1x1

Figure 46: An Example of Special Cases (Align, Not Align) 

 

The probabilities of each case are obtained from simulation on four sequences 

(Akiyo, Foreman, Stefan and Mobile Calendar) which are formed by GOP 30, three 

hundred frames each. According to the probabilities, the average reduction rate on read 

accesses is 50% of original accesses. 

 

5.3 Processing Cycle Analysis 
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There is a main restriction in this original system that we do not respect to modify 

the data input mechanism of MC. Under this constraint, we need to insert a register 

between MC and embedded decompressor. Because this solution will increase latency, 

we must recalculate the processing cycles as described in (3).  

EC without MCfor  Time Processing Decoder  ECfor Delay            
EC with MCfor  Time Processing
+

=
(3) 

 

We can derive the new processing cycles for all cases from (3) as described in 

Table 7. MC with EC are much less than 25 cycles excluding the (sub, sub) case. The 

average processing cycles for MC with EC are 17.4 cycles. Although the (sub, sub) 

case more than 25 cycles, there are available cycles from other modes. Thus, the 

proposed EC can be embedded into original system in practice. 

 

Table 7: All cases of Processing Cycle Analysis for Embedded Compressor 

Case of MV (x , y) Number 
of Blocks

Delay for 
our EC 

Decoder

Probability
of Each case

(%)

( Align , Align ) 1

Processing 
Cycles for 

MC without 
EC

( Align , Not Align ) 2
( Align , Sub ) 3

( Not Align , Align ) 2
( Not Align , Not Align ) 4

( Not Align , Sub ) 6
( Sub , Align ) 3

( Sub , Not Align ) 6
( Sub , Sub ) 9

Processing 
Cycles for 

MC with our 
EC

6
6

12
11
12
24
15
18
35

2
2
3
3
4
6
3
6
8

4
4
9
8
8

18
12
12
27

4.2 17.4AVG. 4.1 13.2

Reduction 
Ratio of 

Delay for our 
EC (%)

50
60
40
40

42.9
14.3
50

33.3
11.1
31.1

33
0.4
5.1
4.5
0.4
5.4

23.5
1.81
25.8

 

 

5.3.1 Ratio of Access Reduction 

 

The access ratio is defined as (4). According to the simulation result, the ratio of 
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read accesses with/without EC is 51.7%, and the ratio of write accesses with/without 

EC is fixed as 50%. In addition, the average ratio of read/ write accesses is about 3.51. 

Thus, the overall ratio of access (with/ without EC) is recalculated as (5). 

 

Mem_Read_EC  Mem_ Write _EC
Access Ratio  

Mem_Read_ Ori.  Mem_ Write _ Ori.
+

=
+

 (4)

 
0.517 x ( Mem_Read_ Ori. )  0.5 x ( Mem_ Write _ Ori. )

Overall Access Ratio = 
Mem_Read_ Ori.  Mem_ Write _ Ori.

0.517 x ( 3.51 )  0.5 x ( 1 )
                                    =  = 51.3 %

3.51  1

+
+

+
+

(5)

 

Thus, the reduction ratio on memory accesses is shown in (6).  

 

Average Reduction Ratio = 1  Overall Access Ratio 
                                            = 1  0.513 = 48.7 %

−
−

 (6)

 

The average reduction ratio is about 48.7%. 

 

5.3.2 Simulation Result on Power Consumption 

We adopt the system-power calculator as [16] as power model of external 

memory and set the parameter according to [17]. The utilization of memory is 

simulated on CIF @ 4.8 MHz, HD 1080 / AVC @ 100 MHz and HD 1080 + HD 720 / 

SVC @ 150 MHz. We show the results in Figure 47, Figure 48 and Figure 49 

respectively. There are core power of H.264 decoder, SDRAM background power and 

SDRAM access power (read/write) which are operated at different frequencies. 

Although the EC operated at 5 MHz, 100 MHz and 150 MHz consumes 0.0116 uW, 

0.238uW and 0.358 uW respectively, it reduces power of each for 1 mW @ CIF (37 %), 

16.15 mW @ HD 1080 / AVC (28.4 %) and 32.8 mW @ HD 1080 + HD 720 / SVC 
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(38.4 %). It is very obvious that the average available cycles for a 4x4 block on these 

video formats are the same. In addition, the access ratio on read/write is slightly 

different due to different test sequences. Thus, the amount of reduced power is almost 

proportional to the frame size. 

Power Distribution @ 4.8 MHz ( CIF )
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Figure 47: Power Analysis on CIF @ 4.8 MHz 
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Power Distribution @ 100 MHz ( HD 1080 / AVC )
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Figure 48: Power Analysis on HD 1080/AVC @ 100 MHz 

 

Power Distribution @ 150 MHz ( HD 1080 + HD 720 )
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Figure 49: Power Analysis on HD 1080 + HD 720/SVC @ 150 MHz 
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Chapter 6  
Conclusion and Future Works 
 
6.1 Conclusion 
 

In this thesis, we have proposed a flexible algorithm whose compression ratio is 

fixed as 2. This coding efficiency suits for any mobile video device. With these 

advantages of the proposed EC engine, we can lessen the size of external memory and 

bandwidth utilization to achieve the goal of power saving. Due to the fixed 

Compression Ratio, the proposed function is easy to be integrated with an H.264 

system. The proposed architecture is synthesized with 90-nm CMOS standard-cell 

library and the gate counts of the proposed algorithm for embedded 

compressor/decompressor are 1.8K/3.1K respectively. The average PSNR loss of 

proposed algorithm is 5.98 dB. The working frequencies are 5 (CIF), 100 (HD 720) 

and 150 (HD 1080 + HD720) MHz depending on different operation modes. The 

proposed algorithm compresses a MB takes 16 cycles while to decompress a MB takes 

only 16 cycles. It saves 48.7% of memory accesses on the average, leading to save 

considerable power consumption. 
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6.2 Future Work 
 

The main objective is improving coding efficiency because reducing quality loss 

is the only way to improve error propagation. Thus, we proposed two improving 

directions of coding efficiency.  

First, we combine the 4x1-based Patterns Comparison Coding (PCC) and average 

coding into the proposed Reduced Patterns Comparison Coding (RPCC) method. With 

the adopted threshold, although average coding exactly solves the worse cases of PCC 

methods in visual quality, it will increase PSNR loss. Therefore, we can develop a 

more efficient and adaptive scheme by combining PCC with other embedded methods 

which can be modified to fix into 4x2 block-grid or improving the adopted threshold. 

Second part is patterns adaptive. The proposed algorithm includes 4x1-based PCC 

and average coding scheme, which is two-bit-planes based coding method. According 

to simulation result, the certain of patterns will appear at the certain of bit planes. Thus, 

we can improve the method by comparing different layers with different patterns for 

PCC. 
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