

i

國立交通大學

電機學院 IC 設計產業研發碩士班

碩 士 論 文

應用於行動式視訊裝置之精簡化圖樣比對之嵌入式編

解碼器

An Embedded Codec Based on Reduced Patterns

Comparison for Mobile Video Devices

學生 ： 楊均宸

指導教授 ： 李鎮宜 教授

中華民國九十八年十二月

ii

iii

應用於行動式視訊裝置之精簡化圖樣比對之嵌入式編

解碼器

An Embedded Codec Based on Reduced Patterns

Comparison for Mobile Video Devices

研 究 生：楊均宸 Student：Jun-Chen Yang

指導教授：李鎮宜 Advisor：Dr. Chen-Yi Lee

國 立 交 通 大 學
電機學院 IC 設計產業研發碩士班

碩 士 論 文

A Thesis
Submitted to College of Electrical and Computer Engineering

National Chiao Tung University
in Partial Fulfillment of the Requirements

for the Degree of
Master

in

Industrial Technology R&D Master Program on
IC Design

December 2009

Hsinchu, Taiwan, Republic of China

中華民國九十八年十二月

iv

v

一應用於行動式視訊裝置之精簡化圖樣比對之嵌入式

編解碼器

學生：楊均宸 指導教授：李鎮宜 教授

國立交通大學電機學院產業研發碩士班

摘要

隨著多媒體、通訊系統與半導體製程的進步，行動式視訊裝置功能越來越強

大，也造成有大量的資料需要傳送或儲存以及電池續航力的問題。然而有限的儲

存元件、頻寬與電池容量的限制下，直接地限制了大部分行動式視訊裝置的應用，

於是可以達成高品質及低儲存空間的高效率資料壓縮與解壓縮演算法是非常重要

的。

 我們提出一適合嵌入於行動式視訊裝置之有失真嵌入式壓縮器/解壓縮器來

減少晶片與外部記憶體間所需的資料傳輸量，以達成減低頻寬使用、縮小對外部

記憶體的空間需求以及降低能量消耗。

 在我們提出的演算法中，是以位元平面截斷編碼(BPTC)與預先定義的位元平

面(圖樣)所構成。在維持壓縮率為 2 的前提下，將一 4x2 的像素陣列，由 64 位元

壓縮為 32 位元的封包。首先將一 4x2 陣列以位元平面截斷編碼找出起始平面，再

根據我們設定的門檻來選擇使用圖樣比對編碼(PCC)或是一倍壓縮與二倍壓縮平

均對剩下的位元平面作處理，最後封存編碼後之像數至外部記憶體。

我們提出的硬體架構可以在 100 MHz 的操作頻率下，支援每秒三十張的高解

析度電視規格(HD 1080)以及 150 MHz 的操作頻率下，支援 H.264/SVC 規格下，

vi

雙層每秒三十張的 HD720/HD1080。由於壓縮率固定為 2 倍，可輕易地轉換記憶

體位址並支援動作補償單元(Motion Compensation)的亂數存取。壓縮一巨型區塊

(Macro Block)需要 32 個週期，解壓縮一個巨型區塊(Macro Block)只需 16 個週期。

對於記憶體的存取次數節省了將近 50%，降低了相當可觀的能量耗損。

vii

An Embedded Codec Based on Reduced Patterns

Comparison for Mobile Video Devices

Student: Jun-Chen Yang Advisor: Dr. Chen-Yi Lee

Industrial Technology R & D Master Program of
Electrical and Computer Engineering College

National Chiao Tung University

ABSTRACT
With the development of multimedia, communication system and semiconductor

progress, the functions of mobile video applications are getting stronger and stronger,

resulting in the problems on huge volume of data transmission, storage and battery

endurance concerns. Under the constraints of limited storage components, bandwidth

and battery capacity, most of the applications of mobile video devices are restricted.

Therefore, the algorithm which can achieve high quality and little storage space with

high efficiency of data coding and decoding is very important.

We propose a lossy embedded compressor/de-compressor which is suitable for

embedding into mobile video devices to reduce the data transmission between chip and

external memory, in order to reduce utilization of bandwidth, volume of external

memory and power consumption.

In the proposed algorithm, we adopt Modified Bit Plane Truncation Coding

(MBPTC) and Predefined Bit Planes (Patterns). Under the premise of compression

ratio as 2, we compress one 4x2-pixel array from 64 bits to 32 bits into one packet. The

Modified Bit Plane Truncation Coding (MBPTC) calculates the Start Plane (SP) of the

viii

4x2-pixel array first. Then, selecting Patterns Comparison Coding (PCC) or 1x and 2x

Average according to the coding threshold we setup to compress residual bit planes and

last, packs the compressed pixels to external memory. The average PSNR loss of

proposed algorithm is 5.98 dB.

The hardware architecture we proposed is able to support HD 1080@100 MHz of

30 frames per second for HDTV specification and HD 720/HD1080@150 MHz of 30

per frames second in double layers for H.264/SVC specification. Because the

compression ratio is fixed as two, it is easy to re-map memory address and support

random access of Motion Compensation (MC).

To compress a Macro Block takes 16 cycles while to decompress a Macro block

takes only 16 cycles. It saves 48.7% of memory accesses on the average, leading to

save considerable power consumption.

ix

誌 謝

 還記得當初剛進交大在尋找指導教授時，老師願意收留後進，後來繞了

一圈後進還是回歸在這裡，真的感謝老師還是願意收留學生。在交大的這段時間

裡，在 SI2 Lab 的時光是後進在人生中最寶貴的！非常感謝李鎮宜教授對於後進

的教導與栽培，讓後進在這段時間裡面獲益良多。老師，非常地謝謝您！

在這段時間裡，一路上受到許許多多人的幫助。感謝鍾崇斌教授及其高徒蔣

昆成學長當初在生活上的幫助，感謝蔣迪豪教授、蔡文祥教授及其高徒李哲瑋學

長於論文上的指點，以及黃聖傑助理教授於課業上的解惑。非常感謝我們

Multi-media Group 整個團隊，尤其是李曜學長與歐陽在研究領域上的協助與指

導，讓後進研究過程的困難得以順利度過。義澤，沒有你的搞笑我哪有力挑燈夜

戰呢？顏魚，沒有你的幫忙公式哪會這麼快出來呢？Arryz，感謝你在程式上的解

答。Libra，感謝你時常的關心，以及浩民的反向鼓勵。義閔、柏均、人偉、洋蔥、

小馬、佳龍、欣儒、建辰、博彥、H.D.以及 SI2 的每個成員們，還有子菁、伶霞、

易蓁、美玲四位美麗的助理們，感謝這些有你們陪伴的日子。立偉、旭萍、柏頤、

群旻、延曦、柏仁、裕昇、泰霖、肇廷、佩瑾、雅弦、文玲，感謝你們的支持。

Sharon、KiKi、Jessie、Alice、Fay、Jamie，謝謝妳們的協助。BOGI、球、Navi、

老猴、Ju、大熊，感謝你們所做的一切。

最後我要感謝我的家人以及這一路上我知道的、我不知道的人事物。還記得

國小國語的課文《謝天》中讀到：「要感謝的人太多了，就感謝天吧！」

x

Index

CHAPTER 1 INTRODUCTION ... 1

1.1 MOTIVATION .. 1

1.2 THESIS ORGANIZATION .. 2

CHAPTER 2 PREVIOUS WORKS .. 3

2.1 LOSSLESS COMPRESSION METHOD .. 3

2.2 LOSSY COMPRESSION METHOD .. 4

2.2.1 Transform-based Compression methods ... 4

2.2.2 Differential Pulse Code Modulation (DPCM) Compression 5

2.2.3 Block Truncation Coding (BTC) Compression ... 6

2.3 SUMMARY .. 12

CHAPTER 3 PROPOSED ALGORITHM ... 13

3.1 OVERVIEW ... 13

3.2 ALGORITHM OF EMBEDDED COMPRESSION .. 16

3.2.1 Fully Patterns Comparison Coding .. 17

3.2.2 Patterns Comparison and Average Coding .. 20

3.2.3 Patterns Comparison and Multi-MBPTC Coding 21

3.2.4 Reduced Patterns Comparison and Average Coding 23

3.2.5 Formula ... 26

3.3 SUMMARY .. 28

CHAPTER 4 PROPOSED ARCHITECTURE .. 32

4.1 ARCHITECTURE OF ENCODER ... 32

4.1.1 Architecture of Modified Bit Plane Truncated Coding Encoder 33

xi

4.1.2 Architecture of the Reduced Patterns Comparison Coding 33

4.1.3 Overall Encoder Design .. 34

4.2 ARCHITECTURE OF DECODER ... 35

4.2.1 Data Rearrange ... 36

4.2.2 Overall Decoder Design ... 36

4.3 IMPLEMENTATION AND VERIFICATION .. 37

4.3.1 Implementation .. 37

4.3.2 Verification .. 38

CHAPTER 5 SYSTEM INTEGRATION ... 41

5.1 ADOPTED H.264 HARDWARE SYSTEM .. 41

5.2 ACCESS ANALYSIS .. 43

5.2.1 Write Access .. 48

5.2.2 Read Access ... 48

5.3 PROCESSING CYCLE ANALYSIS ... 51

5.3.1 Ratio of Access Reduction ... 52

5.3.2 Simulation Result on Power Consumption .. 53

CHAPTER 6 CONCLUSION AND FUTURE WORKS ... 56

6.1 CONCLUSION .. 56

6.2 FUTURE WORK ... 57

xii

Figures List
FIGURE 1: BLOCK TRUNCATION CODING (BTC) ALGORITHM .. 6

FIGURE 2: THE CODED FORMAT OF BTC ALGORITHM ... 7

FIGURE 3: 64 PREDEFINED BIT PLANES [8] .. 8

FIGURE 4: THE CODED FORMAT OF BTC ALGORITHM WITH 64 PREDEFINED BIT PLANES

[8] .. 8

FIGURE 5: 10 PATTERNS FOR 32 PREDEFINED BIT PLANES [9] .. 9

FIGURE 6: THE CODED FORMAT OF BTC ALGORITHM WITH 32 PREDEFINED BIT PLANES

[9] .. 9

FIGURE 7: BIT PLANE TRUNCATION CODING (BPTC) .. 10

FIGURE 8: THE CODED FORMAT OF BPTC ALGORITHM ... 11

FIGURE 9: PIXEL-BASED AND BLOCK-BASED .. 14

FIGURE 10: AN EXAMPLE OF DATA FETCHING OVERHEAD ... 15

FIGURE 11: RELATIVITY BETWEEN OVERHEAD AND CODING BIT-RATE SIMULATION

(STEFAN SEQUENCE) .. 15

FIGURE 12: FLOW CHART OF PROPOSED EMBEDDED COMPRESSION 17

FIGURE 13: FULLY PATTERNS COMPARISON CODING ALGORITHM 18

FIGURE 14: 8 2X2-BASED PATTERNS ... 19

FIGURE 15: PROBABILITY OF 2X2-BASED PATTERNS ... 19

FIGURE 16: THE CODED FORMAT OF FULLY PATTERNS COMPARISON CODING ALGORITHM20

FIGURE 17: PATTERNS COMPARISON AND AVERAGE CODING ALGORITHM 21

FIGURE 18: THE CODED FORMAT OF PATTERNS COMPARISON AND AVERAGE CODING

ALGORITHM ... 21

FIGURE 19: PATTERNS COMPARISON AND MULTI-MBPTC CODING ALGORITHM 22

FIGURE 20: THE CODED FORMAT OF PATTERNS COMPARISON AND MULTI-MBPTC

xiii

CODING ALGORITHM .. 22

FIGURE 21: PROBABILITY OF 4X1-BASED PATTERNS ... 23

FIGURE 22: REDUCED PATTERNS COMPARISON CODING ALGORITHM 24

FIGURE 23: EIGHT 4X1-BASED PATTERNS ... 25

FIGURE 24: REDUCED PATTERN COMPARISON CODING ALGORITHM 25

FIGURE 25: THE CODED FORMAT OF REDUCED PATTERNS COMPARISON CODING

ALGORITHM ... 26

FIGURE 26: DISTRIBUTION OF PSNR LOSS IN 4X1-BASED PCC ALGORITHM 28

FIGURE 27: WORST CASE IN DIFFERENT ALGORITHMS .. 30

FIGURE 28:BEST CASE IN DIFFERENT ALGORITHMS ... 31

FIGURE 29: OVERALL DIAGRAM OF EMBEDDED COMPRESSOR .. 32

FIGURE 30: THE HARDWARE ARCHITECTURE OF MBPTC .. 33

FIGURE 31: THE HARDWARE ARCHITECTURE OF RPCC ... 34

FIGURE 32: ENCODER DESIGN .. 35

FIGURE 33: THE OVERALL DIAGRAM OF EMBEDDED DECOMPRESSOR 35

FIGURE 34: DECODER DESIGN .. 36

FIGURE 35: FLOW OF VERIFICATION ... 39

FIGURE 36: BLOCK DIAGRAM OF THE VIDEO DECODER SYSTEM 42

FIGURE 37: THE SYSTEM INTERFACE FOR EMBEDDED CODEC .. 43

FIGURE 38: DATA FLOW OF RELATED ACCESSES OF EC ... 44

FIGURE 39: SCHEMATIC DIAGRAM FOR COWARE SYSTEM ... 45

FIGURE 40: COMPLETE BLOCK DIAGRAM FOR COWARE SYSTEM 46

FIGURE 41: BLOCK DIAGRAM IN COWARE SYSTEM ... 47

FIGURE 42: EMBEDDED COMPRESSOR WAVEFORM OVER COWARE SYSTEM 47

FIGURE 43: DATA ACCESS TRACE ... 48

FIGURE 44: WORST CASE ON FETCHING ... 50

xiv

FIGURE 45: BEST CASE ON FETCHING .. 50

FIGURE 46: AN EXAMPLE OF SPECIAL CASES (ALIGN, NOT ALIGN) 51

FIGURE 47: POWER ANALYSIS ON CIF @ 4.8 MHZ .. 54

FIGURE 48: POWER ANALYSIS ON HD 1080/AVC @ 100 MHZ .. 55

FIGURE 49: POWER ANALYSIS ON HD 1080 + HD 720/SVC @ 150 MHZ 55

xv

Tables List
TABLE 1: OVERHEAD WITH EC BLOCK-GRID FOR EACH SEQUENCE 16

TABLE 2: RATIO OF ERROR RATE PER POSITION IN EACH 4X1 BIT PLANE 27

TABLE 3: WEIGHT UNDER DIFFERENT THRESHOLDS .. 27

TABLE 4: COMPARISON OF PREVIOUS ALGORITHMS ... 29

TABLE 5: SPECIFICATION OF HARDWARE DESIGN ... 37

TABLE 6: ALL CASES OF READ ACCESS REQUIRED BY MC WITH/WITHOUT EC 49

TABLE 7: ALL CASES OF PROCESSING CYCLE ANALYSIS FOR EMBEDDED COMPRESSOR ... 52

1

Chapter 1
Introduction

1.1 Motivation

To improve the video coding efficiency, diminishing the data correlation of the

temporal redundancy in each frame is widely used in the latest video coding standard,

such as H.264/AVC [1]-[2]. However, it causes a large amount of data transmission

between chip and external memory. In addition, the rapid and huge amount of data

accesses from Motion Compensation (MC) consuming the majority of system power is

another serious problem.

For a mobile video device, power consumption is the most critical issue that

people concern about. Many low power techniques have already been proposed to

reduce power consumption, but data transmission still dominates huge amount of

system power. Hence, reduce data access between chip and external memory is the

critical consideration in a mobile video device.

Although the mobile video devices are suffered from limited battery capability,

the visual quality requirement is not as high as high resolution applications. Therefore,

the embedded compression is suitable to lessen the volume of data access and the size

of off-chip memory under the premise of maintaining acceptable visual quality.

The mobile video devices are more and more important due to their various

functions at the present time. Reducing the usage of bandwidth and the required

resource of hardware in the mobile video devices is a critical topic.

2

1.2 Thesis Organization

This thesis is organized as follows. In Chapter 2, we introduce the basic

compression methods and review previous works. Chapter 3 explains the proposed

lossy embedded compression algorithm. To integrate the proposed design into

H.264/AVC and H.264/SVC decoders, there are some restrictions which must be

specified. Under these restrictions, the proposed algorithm needs to be modified to fit

for them, and the implementation and verifications of the proposed design are

described in Chapter 4. The performance comparison and experimental results are

shown in Chapter 5. Last, Chapter 6 gives the conclusion and future works.

3

Chapter 2
Previous Works

In general, the embedded compression methods are classified into two categories:

lossless embedded compression and lossy embedded compression. The algorithms that

have been proposed before are briefly described in Sections 2.1 and 2.2 and

summarized in Section 2.3.

2.1 Lossless Compression Method

Many lossless compression methods have been proposed before. It is obvious that

lossless compression methods [3] reserve the information while truncating the size of

data, so there has no quality loss of data.

However, some problems of lossless compression are so fatal that it’s not suitable

for system integration application. The lossless compression suffers from variable

length of lossless compressed data that we cannot regularly control the compression

ratio, frame memory size and bandwidth requirement. These disadvantages are also

attributed to the needs of memory to prepare for the worst case of data access and the

unknown size of data. For the reasons mentioned above, we decide to develop a lossy

embedded compression method in this research.

4

2.2 Lossy Compression Method

There exists an important characteristic of lossy compression methods [4]-[15]

which differs them from lossless compression methods. The characteristic of fixed

compression ratio allows us to improve the disadvantages of lossless compression

methods mentioned previously. Although lossy embedded compression algorithm

will sacrifice tolerable visual quality, the reduced power consumption memory size

and bandwidth requirement is more attractive for mobile video devices.

2.2.1 Transform-based Compression methods

The main function of transform-based compression methods is to convert the

signal from time domain to frequency domain. In addition, transform-based

compression methods can gather the energy to up-left corner. In human visual system,

the lower frequency component is more important than the higher frequency

component. It is a critical feature that we can employ to efficiently compress the

amount of data, such as in [4]-[5].

 In [4], the research utilizes the Hadamard transform and the quantization of

Golomb-Rice Coding (GRC). Golomb-Rice Coding is an efficient compression scheme

because it can provide the compression ability which approximates the Huffman

Coding by selecting K factors. Hence, this paper focuses on low complexity so it fixes

the K values based on simulation. It can be operated at 100 MHz and the processing

cycle of a macroblock (MB) on embedded encoder/decoder is 16/16 cycles,

respectively.

 To improve the performance of [4], [5] proposed another transform-based

5

compression method. It adopts Discrete Cosine Transform (DCT) instead of Hadamard

Transform and Modified Bit Plane Zonal Coding (MBPZC) instead of Golomb-Rice

Coding. The compression ability of Bit Plane Zonal Coding depends on distribution of

“1” in each bit plane. In [5], it exploits a Variable Length Coding (VLC) codebook to

improve the performance of BPZC. It can be operated at 100 MHz and the processing

cycle in a macroblock (MB) on encoder/decoder is 72/34 cycles, respectively.

Although [5] increases the value of PSNR, it also increases the overhead of hardware

complexity and coding latency heavily.

2.2.2 Differential Pulse Code Modulation (DPCM) Compression

Theoretically, there exists approximate difference between each two neighboring

pixels in original pictures. Therefore, Differential Pulse Code Modulation (DPCM)

compression utilizes previous feature to achieve high compression efficiency, but also

causes the strong data dependency over correlated data.

In [6], the research adopts DPCM as basic compression scheme. It improves the

performance of DPCM compression through exploiting the intra prediction modes

from H.264 video coding standard to search the best course. The modified DPCM is

much more adopted than [4] and [5] in each video sequence.

 However, DPCM compression needs to gather each difference into limited data

budget and those differences are not always as small as we expect. Moreover, to derive

the best performance, the DPCM-based compression method needs several repetitions

to obtain the best quantization level for every difference. These disadvantages make

the algorithm unable to exploit the pipeline scheme and lead to longer coding latency.

In the view point of system, we need to increase the operation frequency or reduce the

6

system throughputs to achieve the DPCM-based compression method. That’s why we

do not adopt it into our proposed algorithm.

2.2.3 Block Truncation Coding (BTC) Compression

The traditional Block Truncation Coding (BTC) [7] compression is a two-level

non-parameter quantizer. As shown in Figure 1, BTC algorithm partitions an input

image into several 4x4-sized blocks and each block is coded respectively. It computes

the average value of pixels (AVG) within each block by (1). For each pixel with value

is Pn within a block. First, the values of pixels greater than AVG are marked as “1” and

the rest are marked as “0” to form the Bit-Map. Then, the average value of 1-marked

and 0-marked pixels will be generated as High Eigen-value of Group (EOG) and Low

EOG, respectively. Finally, each 4x4-sized block can be compressed into High-EOG,

Low-EOG and Bit Map. The data coded format of BTC algorithm is shown in Figure

2.

0
4

8
12

1
5

9
13

2
6

10
14

3
7

11
15

0
0

0
0

0
1

1
0

0
1

1
0

0
0

0
0

Bit Map

Eigen-value
of Group

Average

Figure 1: Block Truncation Coding (BTC) Algorithm

7

16

n
n 1

1
AVG = P

16 =
∑ (1)

Average H_EOG L_EOG Bit MapBTC

8 Bits 8 Bits 8 Bits 16 Bits

Header Information
(HI Bits)

Figure 2: The Coded Format of BTC Algorithm

 There exist hardware requirements and coding latency problems in BTC

algorithm that it’s not suitable to be embedded into the H.264/SVC system. In

hardware design, multiplication and division operations will increase the requirements

of hardware. Besides, the Bit-Map occupied 16 bits is another serious problem for

limited compressed data budget.

 Therefore, [8] proposed a method to improve the BTC algorithm with predefined

bit planes as shown in Figure 3. To invert these 32 predefined bit planes, we can obtain

the other 32 patterns. By comparing each Bit-Map with 64 predefined bit planes to get

the highest similar index of predefined bit planes, we can reduce the amount of data.

The coded format of BTC algorithm with 64 predefined bit planes is shown as Figure

4.

8

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1

1 1 1 1

1 1 1 1

0 0 0 0

0 0 0 0

3

1 1 0 0

1 1 1 0

1 1 1 1

1 1 1 1

5

1 1 1 1

1 1 1 1

1 1 1 0

1 1 0 0

7

1 1 1 1

1 1 1 1

0 1 1 1

0 0 1 1

9

0 0 0 0

1 1 1 1

1 1 1 1

1 1 1 1

17

0 1 1 1

0 1 1 1

0 1 1 1

0 1 1 1

19

1 1 1 1

1 1 1 1

1 1 1 1

0 0 0 0

21

1 1 1 0

1 1 1 0

1 1 1 0

1 1 1 0

23

1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1

25

0 0 1 1

0 1 1 1

1 1 1 1

1 1 1 1

11

0 0 1 1

0 1 1 1

1 1 1 0

1 1 0 0

13

1 1 0 0

1 1 1 0

0 1 1 1

0 0 1 1

15

0 0 0 1

0 0 1 1

0 1 1 1

1 1 1 1

27

1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

29

1 1 1 1

1 1 1 0

1 1 0 0

1 0 0 0

31

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

33

1 1 0 1

1 1 0 1

1 1 0 1

1 1 0 1

35

1 1 1 1

0 0 0 0

1 1 1 1

1 1 1 1

37

1 1 1 1

1 1 1 1

0 0 0 0

1 1 1 1

39

0 0 0 0

1 1 1 1

1 1 1 1

0 0 0 0

41

1 1 0 0

0 1 1 0

0 0 1 1

0 0 0 1

49

0 0 1 1

0 1 1 0

1 1 0 0

1 0 0 0

51

1 0 0 0

1 1 0 0

0 1 1 0

0 0 1 1

53

0 0 0 1

0 0 1 1

0 1 1 0

1 1 0 0

55

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

57

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

43

0 0 0 0

1 1 1 1

0 0 0 0

1 1 1 1

45

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

47

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

59

1 0 0 1

0 1 1 0

0 1 1 0

1 0 0 1

61

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

63

Figure 3: 64 Predefined Bit Planes [8]

Figure 4: The Coded Format of BTC Algorithm with 64 Predefined Bit Planes [8]

However, comparing each Bit-Map with 64 predefined bit planes may increase the

coding latency. In [9], it reduced the 64 predefined bit planes of [8] to 10 patterns as

shown in Figure 5. By shifting and rotating, we can obtain the complete 32 predefined

bit planes from 10 patterns. By reducing the number of predefined bit planes, [9]

maintains acceptable visual quality to reduce the amount of data and coding latency.

The coded format of BTC algorithm with 32 predefined bit planes is shown in Figure

6.

9

Figure 5: 10 Patterns for 32 Predefined Bit Planes [9]

Figure 6: The Coded Format of BTC Algorithm with 32 Predefined Bit Planes [9]

 Both [8] and [9] are limited by BTC algorithm; the coding latency is still too long

to be well-embedded into the target H.264/SVC system. However, through [8] and [9],

we find a way to utilize the predefined bit planes to reduce the coding latency and the

amount of data.

10

2.2.4 Bit Plane Truncation Coding (BPTC) Compression

[7]-[9] imply the compression schemes from different viewpoints in [10]. As

shown in Figure 7, BPTC algorithm partitions one 4x4-sized block into 8 bit planes

first. Then, it starts to search for the Start Plane (SP) which is the highest plane without

all-zero from MSB to LSB. Finally, BPTC algorithm will save Magnitude Bit Planes

with 60 bits and truncate the rest data.

0
4

8
12

1
5

9
13

2
6

10
14

3
7

11
15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0

1

0

1

0

0

0

0

0

1

1

0

0

0

1

0

0

1

0

0

0

1

0

0

0

1

0

0

1

0

1

0

0

1

0

1

0

1

0

0

0

1

1

0

1

0

0

0

0

1

0

1

0

0

0

0

0

1

1

0

0

0

1

0

0

1

0

0

0

1

0

0

0

1

0

0

1

0

1

0

0

1

0

1

0

1

1

0

0

1

1

0

1

1

0

0

0

1

0

1

1

0

1

0

0

1

1

1

0

1

0

0

0

1

1

0

1

0

0

0

0

1

1

0

0

0

1

MSB

LSB

Pixels

Magnitude Bit
Planes

Start
Plane

MSB

LSB

Figure 7: Bit Plane Truncation Coding (BPTC)

As shown in Figure 8, the BPTC algorithm is similar to lossless compression

method, but the coding latency is shorter.

11

Figure 8: The Coded Format of BPTC Algorithm

2.2.5 Other Compression Methods

There are more and more lossy compression methods proposed, such as the

adaptive DPCM in [11], the adaptive Vector Quantization (VQ) in [12], and the

down-sampling based compression scheme in [13]. Discrete Wavelet Transform (DWT)

with Set Partitioning of Hierarchical Trees (SPIHT) in [14] provides another

transform-based compression approach which is able to perform lossy and lossless

with the same architecture. [15] proposes two lossy compression methods and adopts a

pre-determining mechanism to select which one to utilize. It declares that the

mechanism can reach better performance by selecting adaptive algorithm to suit for

different video sequences.

 According to the above discussion, no matter which one of lossy compression

methods it is, the characteristic in common is to preserve the visual quality as complete

as possible within limited data budget to avoid drift effect. Therefore, how to preserve

complete visual quality under the restriction of maintaining compression ratio (CR) is

the critical challenge of lossy compression methods.

12

2.3 Summary

In previous discussions, we classify the existing compression methods into two

basic categories and introduce them briefly. In lossy compression methods, there are

two main advantages of fixed compression ratio and the amount of coded data.

However, higher visual quality usually accompanies with huge time consumption

while low complexity brings lower visual quality. Most of preceding compression

schemes derives higher performance from enlarging requirement of buffer and

processing cycle, but it magnifies the obstruction to embed the extra function into a

H.264 system. Even though slowing the operation frequency is able to fix prior

problem, the former compression schemes still raised other problems such as

decreasing coding throughput.. It is easy to be embedded into a H.264 decoder system

that some of lossy compression methods are low complexity and coding latency.

 For real time and mobile video devices, low latency and power consumption are

the basic requirements. Diminish the overhead from original system is another

objective. Therefore, an optimal trade-off among low latency, low power consumption,

low complexity and high performance is our design challenge on embedded

compressor/de-compressor.

13

Chapter 3
Proposed Algorithm

3.1 Overview

Data compression has been developed for a long time. From those proposed

algorithms, we know that enhancing the complexity can obtain high performance.

According to the restrictions of embedding an extra function into H.264 decoder

system in chapter 2, low latency and power consumption are the basic requirements. In

this chapter, we will discuss those in detail.

Actually, because blocked-based compression methods match the block-oriented

structure in H.264 system, they are the most compatible schemes. However, overhead

is another serious problem in H.264/SVC system embedment. The overhead is defined

as follows: the ratio between the number of pixels that are actually accessed during the

motion compensation of a block and the number of pixels that are really useful in the

reference block [5]. Originally, the ratio is always 1 for the pixels accessed on demand.

In the system with block-based algorithms, the ratio is always superior to 1 due to the

individuality of block-based compression method. The notion of pixel-based and

block-based compression methods are shown in Figure 9.

14

Pixel-based Block-based

Pixel-based Data Fetch 1x1

Block-based Data Fetch 4x4

Figure 9: Pixel-based and Block-based

In the standard of H.264, a 16x16-sized macro block (MB) can be partitioned into

several 8x8, 8x16 or 16x8 blocks during the process of Motion Compensation (MC). In

addition, an 8x8 block can be sub-partitioned into 4x4, 4x8 or 8x4-sized sub-blocks in

advance. An example of overhead is shown in Figure 10. The overhead is occurred

while the compensated block is not aligned on the coded block grid. The four coded

blocks need to be loaded and then decoded to derive the required data. It must be

loaded 256 pixels to obtain the 16 required pixels if the compensated block is

4x4-sized block and the EC method is 8x8-sized block-based. In this example, the

overhead is 16 cycles. The relativity between gain of memory access and compression

ratio of EC is not direct due to the overhead.

15

Required Data

Pixel-based Data Fetch

Block-based Data Fetch

Figure 10: An Example of Data Fetching Overhead

 In [15], it provides the statistic material of overhead. The relativity between

overhead and coding bit-rate simulation with Stefan Sequence in three kinds of EC

block-grid is shown in Figure 11. Table 1 summarizes the statistical result simulated

with six sequences.

Figure 11: Relativity between Overhead and Coding Bit-rate Simulation (Stefan

Sequence)

16

Table 1: Overhead with EC Block-grid for Each Sequence

Foreman 1.31

Sequence 4x4 Block-grid 8x8 Block-grid 16x16 Block-grid

Flower

1.77 3.69

1.30 1.74 3.77

News 1.14

Silent

1.51 2.78

1.17 1.50 3.22

Stefan 1.51 2.44 6.95

Weather 1.17

All (Average)

1.49 3.18

1.27 1.73 3.93

3.2 Algorithm of Embedded Compression

Under the restriction of mobile video devices, we know that low latency and

power consumption are the basic requirements. Although utilizing transform-based

algorithms, such as [4], [5] and [14], as the first step before compression methods can

derive higher visual quality, we need to adopt other algorithms to lessen the coding

latency.

We adopt pattern-based and 4x2 block-grid as the proposed coding algorithm

including Modified Bit Plane Truncation Coding (MBPTC) and Patterns Comparison

Coding (PCC). The main reason relies on the lower overhead than the statistical results

described in previous section. In MBPTC algorithm, we define to search the Start

Plane (SP) in 4 continuous layers which are close to MSB with 2 bits. We also change

coding unit to improve the PCC algorithm.

To combine MBPC with PCC is the basic notion of the proposed algorithm.

Modified Bit Plane Truncation Coding (MBPTC) and Reduced Patterns Comparison

17

Coding (RPCC) algorithm are the critical features. No matter Multi-MBPTC or RPCC

is considerably efficient and suitable to be utilized in software and hardware. The flow

chart of proposed algorithm is shown in Figure 12. There contains no iteration in the

proposed algorithm which is a single-way and open-loop coding method. The bit

planes are coded by Multi-MBPTC to search the SP. Then the remaining bit planes are

coded by RPCC to derive the Pattern Indices (PIs). Development of the proposed

algorithm will be introduced in the following sections.

4x2 Pixels
(64 Bits)

4x2 Pixels
(64 Bits)

Multi-Modified
Bit Plane

Truncation
Coding Encoder

Reduced Patterns
Comparison and
Average Coding

Encoder

Data
Packing

External
Memory

Multi-Modified
Bit Plane

Truncation
Coding Decoder

Reduced Patterns
Comparison and
Average Coding

Decoder

Data
Unpacking

32-bit
Segment

32-bit
Segment

System
Bus

System
Bus

Figure 12: Flow Chart of Proposed Embedded Compression

3.2.1 Fully Patterns Comparison Coding

As shown in Figure 13, fully Patterns Comparison Coding algorithm includes

MBPTC and 2x2-based PCC. Because PCC can preserve and compress five bit planes,

we just compress the residual bit planes. Therefore, we adopt MBPTC algorithm to

compress the 4 bit planes which are close to MSB.

 There are 65536 (216) kinds of patterns in each 4x4 bit planes. [8] and [9] employ

18

64 and 32 patterns to compress the amount of data, respectively. The more quantities of

patterns there is, the better performance there will be. However, it will make

comparison more difficult. Therefore, the 2x2-based patterns are proposed which are

shown in Figure 14 to improve the problem. A bit plane is partitioned into four

2x2-sized parts and compared with them with the proposed 8 patterns at the same time.

As the simulation result shown in Figure 15, while the error rate occurred, there is a

1-bit error in a part at most. We exploit previous method to extend the quantities of

patterns close to 4096 (212) categories in each bit plane. Hence, we reduce the coding

latency to 4 cycles and maintain acceptable visual quality under CR as 2. We show the

coded format of data for Fully Patterns Comparison Coding in Figure 16. PSNR loss of

this algorithm is 8.18 dB for simulation in H.264 system with the following video

sequences: akiyo, flower, football, foreman, mobile_calendar, carphone, canoa,

coastguard, waterfall and tempete in CIF format.

0

4

8

12

1

5

9

13

2

6

10

14

3

7

11

15

0

4

8

12

1

5

9

13

2

6

10

14

3

7

11

15

Patterns
Comparison

Coding

4x4 Block

0

4

8

12

1

5

9

13

2

6

10

14

3

7

11

15

Modified
Bit Plane

Truncation
Coding

Figure 13: Fully Patterns Comparison Coding Algorithm

19

Figure 14: 8 2x2-based Patterns

Probability of 2x2-based Patterns

Hit Rate
69%

Error Rate
31%

Hit Rate Error Rate

Figure 15: Probability of 2x2-based Patterns

20

Figure 16: The Coded Format of Fully Patterns Comparison Coding Algorithm

3.2.2 Patterns Comparison and Average Coding

Although Fully Patterns Comparison Coding algorithm provides acceptable visual

quality, it is a serious problem that the frames are not very smooth. That is because the

2x2-based patterns cannot contain all cases in a sequence causes. Hence, we exploit the

average coding to smooth the frames and show it in Figure 17. We partition the four bit

planes which are close to MSB into four parts and employ 2x2-based PCC algorithm to

compress them to obtain the PIs. Then we partition the residual bit planes into four

parts and compute the average value with 4 bits in each part. The coded format of data

for Patterns Comparison and Average Coding Algorithm is shown in Figure 18.

According to the simulation result, PSNR loss is 7.80 dB in this algorithm.

21

0

4

8

12

1

5

9

13

2

6

10

14

3

7

11

15
Part

A
Part

B
Part

C
Part

D

0

4

8

12

1

5

9

13

2

6

10

14

3

7

11

15

Patterns
Comparison

Coding
4x4 Block

4x Average

Figure 17: Patterns Comparison and Average Coding Algorithm

Figure 18: The Coded Format of Patterns Comparison and Average Coding Algorithm

3.2.3 Patterns Comparison and Multi-MBPTC Coding

With the respect of system, the higher the coding latency is, the higher overhead

there will be. Therefore, we still need to reduce coding latency. According to Table 1,

we know the smaller block-grid there is, the less overhead there will be. Hence, we

exploit the feature to reduce coding latency and adopt the 4x2 block-grid. Although the

2x2-based PCC algorithm is suitable for 4x2 block-grid, the MBPTC algorithm needs

22

to be modified. We propose the Multiple Modified Bit Plane Truncation Coding

(Multi-MBPTC) algorithm to replace with MBPTC algorithm. In Figure 19, we divide

a 4x4 block into four 2x2-sized parts which are partitioned into eight bit planes in

advance. Multi-MBPTC algorithm searches the SPs in each part which is close to MSB

and the 2x2-based PCC algorithm compress each part which is close to LSB. The

coded format of data for Patterns Comparison and Multi-MBPTC Coding algorithm is

shown in Figure 20. Although the coding latency is lessened, the PSNR loss is also

enlarged to 8.95 dB.

Figure 19: Patterns Comparison and Multi-MBPTC Coding Algorithm

SP of
Part AVer. 3

2 Bits 12 Bits 12 Bits 12 Bits

Header Information
(HI Bits)

PI of
First Layer

PI of
Second Layer

PI of
Third Layer

PI of
Forth Layer

12 Bits

SP of
Part B

SP of
Part C

SP of
Part D

2 Bits 2 Bits 2 Bits

Figure 20: The Coded Format of Patterns Comparison and Multi-MBPTC Coding

Algorithm

23

3.2.4 Reduced Patterns Comparison and Average Coding

In previous algorithms, we know that Multi-MBPTC algorithm can reduce the

coding latency and average coding can smooth the frames. However, to overuse

Multi-MBPTC algorithm will reduce visual quality. Therefore, we propose a 4x1-based

PCC algorithm which is combined with average coding, as called Reduced Patterns

Comparison Coding (RPCC) algorithm to improve previous disadvantages.

In practice, the higher the hit rate is, the higher PSNR we get. Additionally,

according to simulation result, it achieves higher hit rate in 4x1-based patterns as

shown in Figure 21. Thus, we adopt 4x1-based patterns to modify the PCC algorithm.

Probability of 4x1-based Patterns

Hit Rate
73%

Error Rate
27%

Hit Rate Error Rate

Figure 21: Probability of 4x1-based Patterns

24

As Figure 22, we partition 4x1 section with 4 bits into four 4x1 layers. According

to the threshold, RPCC algorithm will adopt left or right strategy. While we set the

threshold to level 2, RPCC algorithm compares layer 1 and layer 2 with eight

4x1-based patterns, as shown in Figure 23, at the same time. If there is no error in layer

1 and layer 2, RPCC algorithm will adopt left strategy to compress the 4x1 section.

Otherwise, RPCC algorithm will adopt right strategy. According to the simulation

result with different thresholds, while the right strategy is adopted, the right strategy is

often in worse case. We exploit this feature to improve the drawback in 4x1-based PCC

algorithm.

4x1 Section

4x1-based
PCC 1x Average

2x Average

1x Average

2x Average

Level 1

Level 2

Level 3

Level 4

4x1-based
PCC

4x1-based
PCC

4x1-based
PCC

Figure 22: Reduced Patterns Comparison Coding Algorithm

25

Figure 23: Eight 4x1-based Patterns

The proposed algorithm is including Multi-MBPTC, RPCC and average coding

algorithm. As shown in Figure 24, we partition a 4x2 block into eight bit planes which

are coded by MBPTC algorithm to derive SP. Then RPCC algorithm compresses four

bit planes which are closed to SP and divided into two 4x1 sections. Finally, we

compute the average value of residue after RPCC algorithm coding in each 2x2 part

with 2 bits. The coded format of data for the proposed algorithm is shown in Figure 25.

Strategy bits which indicate the compression strategy of each 4x1 part are coded by

RPCC algorithm. The proposed algorithm reduces PSNR loss to 5.98 dB and maintains

the 4x2 block-grid.

0

4

1

5

2

6

3

74x2 Block

0

4

1

5

2

6

3

7
MBPTC

0

4

1

5

2

6

3

7RPCC

Part
A

Part
B4x Average

Figure 24: Reduced Pattern Comparison Coding Algorithm

26

Figure 25: The Coded Format of Reduced Patterns Comparison Coding Algorithm

3.2.5 Formula

We derive the formula (2) from the simulation result. It is about the PSNR loss of

4x1-based PCC algorithm. i is the number of 4x1 error bit plane. Pm is the error rate

shown in Figure 21 and Pn is the ratio of error rate per position in each 4x1 bit plane as

described in Table 2. As described in the previous section, we can setup the different

thresholds (Level 0~4) in 4x1-based PCC algorithm to get corresponding weight (Wi)

as described in Table 3. We can exploit the formula to estimate for the PSNR loss in

4x1-based PCC algorithm while the previous parameters are modified. Figure 26

shows the distribution of PSNR loss in all thresholds. It helps us to simplify the

improving procedure in the algorithm.

() ()
4

i 4 i4
i m n m n i

i 0

PSNR Loss (4x1-based PCC) C P P 1 P P W
−

=

⎡ ⎤= ⋅ ⋅ − ⋅ ⋅⎣ ⎦∑ (2)

27

Table 2: Ratio of Error Rate per Position in each 4x1 Bit Plane

Table 3: Weight Under Different Thresholds

240

720

720

240

W1

W2

W3

W4

Wi

0W0

Level 0

112

224

112

0

0

Level 1

48

48

0

0

0

Level 2

16

0

0

0

0

Level 3

0

0

0

0

0

Level 4

28

Distribution of PSNR Loss in 4x1-based PCC

6.044165

2.74101

1.141542

0.369767
00

1

2

3

4

5

6

7

Level 0 Level 1 Level 2 Level 3 Level 4

Thresholds

dB

PSNR Loss of All Thresholds

Figure 26: Distribution of PSNR Loss in 4x1-based PCC Algorithm

3.3 Summary

In this section, we show all results and focus on comparing the visual quality with

those above-mentioned algorithms. Table 4 shows the comparison results. Figure 27 is

the worst case and Figure 28 is the best case in different algorithms.

In Figure 27, there are many bright spots in the coded sequence of fully Patterns

Comparison Coding (PCC) algorithm. Although the value of PSNR is acceptable, the

visual quality is not enough to accept. Therefore, we employ average coding instead of

MBPTC to smooth the frames as shown in Figure 27. Even though it lessens the PSNR

loss and smoothes frames, we still cannot clearly to recognize the details in frames.

Multi-MBPTC algorithm provides a method in recognition of edge. Nevertheless, to

overuse the Multi-MBPTC algorithm will enlarge PSNR loss heavily. Thus, the

algorithm we proposed is to combine the advantages of these previous algorithms.

29

With the respect of system, we adopt 4x2 block-grid to reduce coding latency further.

Fig. 27 shows the details of the proposed algorithm in frames which are clearer than

those previous methods.

Table 4: Comparison of Previous Algorithms

[8]

Algorithms

[9]

Fully Patterns
Comparison Coding

Patterns Comparison
& Average Coding

Patterns Comparison
& Multi-BPTC Coding

Proposed

13.63

PSNR Loss (dB)

16.46

8.18

7.80

8.95

5.98

30

Original Fully PCC

PCC&AVG Multi-BPTC

Proposed

Figure 27: Worst Case in Different Algorithms

31

Original Fully PCC

PCC&AVG Multi-BPTC

Proposed

Figure 28:Best Case in Different Algorithms

32

Chapter 4
Proposed Architecture

In sections 4.1 and 4.2, the hardware design of the proposed embedded

compressor and de-compressor are introduced separately. The implementation and

verification are described in section 4.3.

4.1 Architecture of Encoder

The overall diagram of the proposed embedded compressor is shown in Figure 29

and we will introduce these blocks in the following sections.

Figure 29: Overall Diagram of Embedded Compressor

33

4.1.1 Architecture of Modified Bit Plane Truncated Coding Encoder

The hardware design of MBPTC is improved from original BPTC. It is a

combinational block to deal with 4x2 pixels to obtain Start Plane (SP) and 4x2-plane

component for each 4x2 array. In Figure 30, we employ three 8-input OR gates as

thresholds to control the value of SP. The bits of layer 1, 2 and 3 are used to be input of

8-input OR gate individually.

Figure 30: The Hardware Architecture of MBPTC

4.1.2 Architecture of the Reduced Patterns Comparison Coding

RCPP is a combinational block to deal with coded data by MBPTC. As shown in

Figure 31, SP selects four layers to be compressed and threshold is exploited to choose

the strategy to be adopted. The SP is produced by MBPTC and the threshold is defined

by users with different levels as described in Table 3. (Here we adopt Level 2)

34

0

1

SP

Threshold

Coded Data
Segment

4x1 Section

4x1-based
PCCLayer 1

Layer 2

Layer 3

Layer 4

4x1-based
PCC

4x1-based
PCC

4x1-based
PCC

4x1 Section

1x Average

2x Average

1x Average

2x Average

Layer 1

Layer 2

Layer 3

Layer 4

Figure 31: The Hardware Architecture of RPCC

4.1.3 Overall Encoder Design

The actual architecture of compressor design is shown in Figure 32. It takes one

cycle to deal with 4x2 block. Here each Macro Block takes 16 cycles to be encoded.

35

Figure 32: Encoder Design

4.2 Architecture of Decoder

Overall diagram of the embedded compressor is shown in Figure 33 and we will

introduce these blocks in the following sections.

SP

2 Bits

Header
Information

(HI Bits)

Strategy
Bits

2 Bits 12 Bits 12 Bits

Coded 4x1
Section A for

RPCC

Coded 4x1
Section B for

RPCC

AVG. of
Part A

AVG. of
Part B

2 Bits 2 Bits

Data Rearrange

4x2 Pixels

Figure 33: The Overall Diagram of Embedded Decompressor

36

4.2.1 Data Rearrange

Data unpacking is a simple reverse process of encoding. The less calculation

needed on decoder and the information is ready are the main dissimilarities and lead to

smaller gate count compared with encoder. Thus, decoder focuses on putting the data

on proper positions.

According to coded data format, the SP selects the initial bit plane of decoding.

The continuous four layers are then placed on corresponding positions depending on

strategy bits. Afterward AVG. of part A and B are placed on the continuous two bit

planes after the four layers.

4.2.2 Overall Decoder Design

For providing data to Motion Compensation (MC), the decompressor needs to

support higher throughput. The actual architecture of decompressor design is shown in

Figure 34. A 4x2 block takes one cycle to be decoded. Under the design, each Macro

Block takes 16 cycles to be decoded.

Figure 34: Decoder Design

37

4.3 Implementation and Verification

In this thesis, we propose a flexible algorithm to achieve good coding efficiency.

It reduces the usage of bandwidth and the required resource of hardware in the mobile

video devices is a critical topic and it suits to be integrated into any mobile video

decoder. We will introduce the Specifications of the proposed hardware design and

verification in the following sections.

4.3.1 Implementation

The specifications of the proposed architecture are described in Table 5. The

proposed architecture is synthesized with UMC 90-nm CMOS standard-cell library and

operated at 5, 100 and 150 MHz for different specifications, respectively. For

compressor/decompressor, the gate counts are 1.8/1.3 K respectively and the latencies

are 1 cycle per MB.

Table 5: Specification of Hardware Design

38

4.3.2 Verification

Figure 35 shows the flow of verification. We utilize software and hardware to

verify the proposed algorithm. The patterns are created by software and applied as the

input of hardware designs. Then the software calculates the answer to be compared

with result of hardware and the result is stored in memory. Afterward the coded data is

accessed by software and hardware decompressor from memory. We check the coded

data to confirm the result is matched in software and hardware.

39

Figure 35: Flow of Verification

40

The previous MHT work [4] costs 20K gate counts in dealing with a 1x8 pixels

array and previous DCT work [5] costs 30K gate counts in dealing with a 4x4 block

while the proposed architecture costs 3.1K gate counts in dealing with a 4x4 block.

The peak power consumption of proposed embedded codec @ 100 MHz is 358 uW.

Thus, the proposed algorithm not only gains 5.95 dB in quality loss but achieves an

area-efficient and power-aware hardware implementation.

41

Chapter 5
System Integration

In this chapter, we show the experimental results including the cycle analysis,

bandwidth and power consumption. In addition, we will discuss the problems occurred

during integration in detail.

5.1 Adopted H.264 Hardware System

Figure 36 shows the overall block diagram of this system. The adopted H.264

decoder works at 5, 100 and 150 MHz respectively to perform CIF, HD 1080 AVC, HD

1080/720 SVC at 30 frames/per second (FPS). The embedded compressor compresses

the data from deblocking filter into 64-bit data segment which is stored in external

memory. The embedded decompressor decompresses the coded data segment from

off-chip memory into 4x2-sized block which is sent to Motion Compensation. The

bandwidth of system bus is 32 bits and the external memory is 32 bits per entry.

42

H.264

Bus

Embedded
Decompressor

Entropy
Decoder

Data
Fetch

Data Fetch
& Operation

Embedded
Compressor

SRAM

SRAM

Data
Fetch

Data Fetch
& OperationSRAM

AHB Master / Slave Interface & SVC Arbiter

Intra
Prediction

Motion
Compensation

IQ IT Deblocking
Filter

Figure 36: Block Diagram of the Video Decoder System

The embedded codec can be considered as an interface between the chip and

external memory. The system interface for embedded codec is shown in Figure 37.

Because deblocking Filter sends out four pixels per cycle, the best processing latency

for each pipeline stage of embedded compressor is less or equal to four cycles to avoid

idle delay at the input of embedded compressor. In addition, the input bandwidth of

MC in original system is 4 pixels per cycle, thus the embedded decompressor outputs

four pixels per cycle at least. Due to the fixed compression ratio as 2, the address

converter is easy to implement.

43

Embedded
Decompressor

Embedded
Decompressor

Address for
Motion Compensation

Address form
Deblocking Filter 20 Address

Mapping/Calculation

20

32

32

Address
for SDRAM

To
Bus

From
Bus

To
Motion Compensation

Form
Deblocking Filter

32

32

Interface to
IP Block

Interface to
System Bus

Figure 37: The System Interface for Embedded Codec

5.2 Access Analysis

As shown in Figure 38, the related accesses of EC are partitioned into write

accesses and read accesses. Write accesses from deblocking filter write the data to

external memory and read accesses read the data from external memory to MC.

44

AHB Master / Slave Interface & SVC Arbiter

Bus

Embedded
Decompressor

Embedded
Compressor

Deblocking
Filter

Motion
Compensation

Figure 38: Data Flow of Related Accesses of EC

Many methods have been proposed to improve embedded compression and all of

them aim to improve the performance of embedded compression. However most of

performance measured by these methods is fragmental, lacking verification from

system level. In addition, we expect to precisely estimate the amount of read/write

accesses on system view point. Thus, we employ “CoWare” to deal with the

complicated problems. As shown in Figure 39, CoWare provides many functions to

simulate a complete system and the user-defined means user’s design.

45

CoWare System

Clock &
Reset

DMA
Family

ARM
Processor

Family

DMA
Controller

Bus
Family

Memory
Family

Vector Interrupt
Controller Family

User-
defined

Figure 39: Schematic Diagram for CoWare System

It makes more efficient that we can change the user-defined field relied on our

demands. We add the proposed design and H.264 system into user-defined field as

shown in Figure 40. The AMBA interface between CoWare and user-defined is coding

in System C and it provides a protocol to commutate each other. Furthermore,

user-defined means all designs in this filed need to be coded in Verilog.

46

CoWare System

User-defined

Memory

H.264

Embedded
Decompressor

Embedded
Compressor

Motion
Compensation

De-blocking
Filter

Bus

AMBA Interface

Figure 40: Complete Block Diagram for CoWare System

Figure 41 shows the block diagram in CoWare system in practice. SI2 H.264

video decoder employs single bus/memory. The external memory is adopted 128Mb

Mobile LPSDR: MT48H4M32LFB5-6 [17] produced by Micron and the bus protocol

exploited AMBA 2.0 with 32bits width.

47

Figure 41: Block Diagram in CoWare System

We adopt CoWare to verify our design as shown in Figure 42 and Figure 43

shows the data access trace.

Figure 42: Embedded Compressor Waveform over CoWare System

48

[Write 8 4x4 Block]

[Read Result]

Polling for finish-checking

Figure 43: Data Access Trace

5.2.1 Write Access

Because the proposed algorithm provides fixed CR as two, write accesses are easy

to be analyzed. The access times after adding EC are always half of original system.

The reduction ratio of write access is 50%.

5.2.2 Read Access

The required read accesses from MC are much more complex. MC requests data

which is based on Motion Vector (MV). The value of x and y in MV (x, y) are

classified into three categories: align, not align and sub-pixel.

(1) Align: the value is quadruple. It fits with a 4x4 coded block-grid.

(2) Not Align: the value is not quadruple but is an integer. It may span two 4x4

block-grids due to needed four pixels.

(3) Sub-pixel: the value is not integer and accurate at 1/2 or 1/4. It needs nine

pixels to be interpolated into four pixels.

49

As we discussed in the previous chapters, embedded compressor confronts

overhead problems and the overhead ratio connects to the coding unit directly. Because

the block-grid of our system is 4x1 block-based not pixel-based, the overhead

problems can be simplified and analyzed as described in Table 6 and we will simply

introduce two cases: the worst case and the best case.

Table 6: All Cases of Read Access Required by MC with/without EC

The worst condition is the sub-pixel case as shown in Figure 44. Both x and y are

not integers in MV (x, y). The 4x4 block in worst case needs a 9x9 block to complete

the motion compensation. While original system needs 27 cycles to deal with this case,

embedded compressor takes 15 cycles to do that.

50

Figure 44: Worst Case on Fetching

We show the best case in Figure 45. If the required 4x4 blocks of MC are aligned

with the coded 4x4 blocks, original system with/without embedded compressor needs

2/4 cycles to deal with the case.

Figure 45: Best Case on Fetching

51

There are three special cases including (Align, Not Align), (Not Align, Not Align)

and (Sub, Not Align). In Figure 46, we explain one of these special cases as an

example. If required data of MC is not fit for 4x2 block-grids as the proposed

algorithm adopts, it may increase an extra access.

Pixel

Target of MC

Original Data
Fetch

Required Data

EC Data Fetch

Block

4x2

4x1

4x4

4x4

1x1

Figure 46: An Example of Special Cases (Align, Not Align)

The probabilities of each case are obtained from simulation on four sequences

(Akiyo, Foreman, Stefan and Mobile Calendar) which are formed by GOP 30, three

hundred frames each. According to the probabilities, the average reduction rate on read

accesses is 50% of original accesses.

5.3 Processing Cycle Analysis

52

There is a main restriction in this original system that we do not respect to modify

the data input mechanism of MC. Under this constraint, we need to insert a register

between MC and embedded decompressor. Because this solution will increase latency,

we must recalculate the processing cycles as described in (3).

EC without MCfor Time Processing Decoder ECfor Delay
EC with MCfor Time Processing
+

=
(3)

We can derive the new processing cycles for all cases from (3) as described in

Table 7. MC with EC are much less than 25 cycles excluding the (sub, sub) case. The

average processing cycles for MC with EC are 17.4 cycles. Although the (sub, sub)

case more than 25 cycles, there are available cycles from other modes. Thus, the

proposed EC can be embedded into original system in practice.

Table 7: All cases of Processing Cycle Analysis for Embedded Compressor

Case of MV (x , y) Number
of Blocks

Delay for
our EC

Decoder

Probability
of Each case

(%)

(Align , Align) 1

Processing
Cycles for

MC without
EC

(Align , Not Align) 2
(Align , Sub) 3

(Not Align , Align) 2
(Not Align , Not Align) 4

(Not Align , Sub) 6
(Sub , Align) 3

(Sub , Not Align) 6
(Sub , Sub) 9

Processing
Cycles for

MC with our
EC

6
6

12
11
12
24
15
18
35

2
2
3
3
4
6
3
6
8

4
4
9
8
8

18
12
12
27

4.2 17.4AVG. 4.1 13.2

Reduction
Ratio of

Delay for our
EC (%)

50
60
40
40

42.9
14.3
50

33.3
11.1
31.1

33
0.4
5.1
4.5
0.4
5.4

23.5
1.81
25.8

5.3.1 Ratio of Access Reduction

The access ratio is defined as (4). According to the simulation result, the ratio of

53

read accesses with/without EC is 51.7%, and the ratio of write accesses with/without

EC is fixed as 50%. In addition, the average ratio of read/ write accesses is about 3.51.

Thus, the overall ratio of access (with/ without EC) is recalculated as (5).

Mem_Read_EC Mem_ Write _EC
Access Ratio

Mem_Read_ Ori. Mem_ Write _ Ori.
+

=
+

 (4)

0.517 x (Mem_Read_ Ori.) 0.5 x (Mem_ Write _ Ori.)

Overall Access Ratio =
Mem_Read_ Ori. Mem_ Write _ Ori.

0.517 x (3.51) 0.5 x (1)
 = = 51.3 %

3.51 1

+
+

+
+

(5)

Thus, the reduction ratio on memory accesses is shown in (6).

Average Reduction Ratio = 1 Overall Access Ratio
 = 1 0.513 = 48.7 %

−
−

 (6)

The average reduction ratio is about 48.7%.

5.3.2 Simulation Result on Power Consumption

We adopt the system-power calculator as [16] as power model of external

memory and set the parameter according to [17]. The utilization of memory is

simulated on CIF @ 4.8 MHz, HD 1080 / AVC @ 100 MHz and HD 1080 + HD 720 /

SVC @ 150 MHz. We show the results in Figure 47, Figure 48 and Figure 49

respectively. There are core power of H.264 decoder, SDRAM background power and

SDRAM access power (read/write) which are operated at different frequencies.

Although the EC operated at 5 MHz, 100 MHz and 150 MHz consumes 0.0116 uW,

0.238uW and 0.358 uW respectively, it reduces power of each for 1 mW @ CIF (37 %),

16.15 mW @ HD 1080 / AVC (28.4 %) and 32.8 mW @ HD 1080 + HD 720 / SVC

54

(38.4 %). It is very obvious that the average available cycles for a 4x4 block on these

video formats are the same. In addition, the access ratio on read/write is slightly

different due to different test sequences. Thus, the amount of reduced power is almost

proportional to the frame size.

Power Distribution @ 4.8 MHz (CIF)

2.7

1.7

0

0.0116

0

0.5

1

1.5

2

2.5

3

Power_Ori._System Power_EC_System

m
W

Power_SDRAM_R/W Power_EC

Figure 47: Power Analysis on CIF @ 4.8 MHz

55

Power Distribution @ 100 MHz (HD 1080 / AVC)

56.8

40.65

0

0.238

0

10

20

30

40

50

60

Power_Ori._System Power_EC_System

m
W

Power_SDRAM_R/W Power_EC

Figure 48: Power Analysis on HD 1080/AVC @ 100 MHz

Power Distribution @ 150 MHz (HD 1080 + HD 720)

85.2

52.4

0

0.358

0
10

20
30

40
50

60
70

80
90

Power_Ori._System Power_EC_System

m
W

Power_SDRAM_R/W Power_EC

Figure 49: Power Analysis on HD 1080 + HD 720/SVC @ 150 MHz

56

Chapter 6
Conclusion and Future Works

6.1 Conclusion

In this thesis, we have proposed a flexible algorithm whose compression ratio is

fixed as 2. This coding efficiency suits for any mobile video device. With these

advantages of the proposed EC engine, we can lessen the size of external memory and

bandwidth utilization to achieve the goal of power saving. Due to the fixed

Compression Ratio, the proposed function is easy to be integrated with an H.264

system. The proposed architecture is synthesized with 90-nm CMOS standard-cell

library and the gate counts of the proposed algorithm for embedded

compressor/decompressor are 1.8K/3.1K respectively. The average PSNR loss of

proposed algorithm is 5.98 dB. The working frequencies are 5 (CIF), 100 (HD 720)

and 150 (HD 1080 + HD720) MHz depending on different operation modes. The

proposed algorithm compresses a MB takes 16 cycles while to decompress a MB takes

only 16 cycles. It saves 48.7% of memory accesses on the average, leading to save

considerable power consumption.

57

6.2 Future Work

The main objective is improving coding efficiency because reducing quality loss

is the only way to improve error propagation. Thus, we proposed two improving

directions of coding efficiency.

First, we combine the 4x1-based Patterns Comparison Coding (PCC) and average

coding into the proposed Reduced Patterns Comparison Coding (RPCC) method. With

the adopted threshold, although average coding exactly solves the worse cases of PCC

methods in visual quality, it will increase PSNR loss. Therefore, we can develop a

more efficient and adaptive scheme by combining PCC with other embedded methods

which can be modified to fix into 4x2 block-grid or improving the adopted threshold.

Second part is patterns adaptive. The proposed algorithm includes 4x1-based PCC

and average coding scheme, which is two-bit-planes based coding method. According

to simulation result, the certain of patterns will appear at the certain of bit planes. Thus,

we can improve the method by comparing different layers with different patterns for

PCC.

58

Bibliography

[1] ITU-T Recommendation H.264 and ISO/IEC 14496-10, Advanced Video Coding

for Generic Audiovisual Services, May 2003.

[2] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview of the
H.264/AVC video coding standard,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 13, no. 7, pp. 560–576, July 2003.

[3] R. Manniesing, R. Kleihorst1, R. V. Vleuten1, and E. Hendriks, “Implementation
of lossless coding for embedded compression,” IEEE ProRISC, 1998.

[4] T. Y. Lee, “A New Frame-Recompression Algorithm and its Hardware Design for
MPEG-2 Video Decoders,” IEEE Trans. CSVT, vol. 13, no. 6, pp. 529-534, June
2003.

[5] Y. -D. Wu, Y. Li, C. -Y. Lee, “A Novel Embedded Bandwidth-Aware Frame
Compressor for Mobile Video Applications”, ISPACS’09, pp. 1-4, Feb. 2009.

[6] Yongie Lee, et al, "A New Frame Recompression Algorithm Integrated with
H.264 Video Compression," IEEE Circuits Sys. ISCAS Vol. 6, pp. 6110-6113,
May 2007.

[7] E. J. Delp and O. R. Mitchell, “Image Compression Using Block Truncation
Coding”, IEEE Trans. Commun., Volume 27, Issue 9, pp. 1335 - 1342, Sep. 1979.

[8] C. -K. Yang and W. -H. Tsai, “Improving block truncation coding by line and
edge information and adaptive bit plane selection for gray-scale image
compression”, Volume 16, Issue 1 pp. 67 – 75 Jan. 1995.

[9] Amarunnishad T. M., Govindan V. K., and Abraham T. Mathew, “Block
Truncation Coding Using a Set of Predefined Bit Planes”, ICCIMA, Volume 3, pp.
73 – 78, Dec. 2007.

59

[10] R. Dugad and N. Ahuja, “A Fast Scheme for Image Size Change in the
Compressed Domain,” IEEE Trans. CSVT, vol. 11, no. 4, pp. 461-474, April
2001.

[11] D. Pau et al., “MPEG-2 Decoding with a Reduced RAM Requisite by ADPCM
Recompression before Storing MPEG Decompressed Data,” U.S. patent 5838597,
Nov. 1998.

[12] R. Bruni et al., “A novel adaptive vector quantization method for memory
reduction in MPEG-2 HDTV decoders,” in Proc. Int. Conf. Consumer Electronics,
pp. 58-59, 1998.

[13] R. Dugad and N. Ahuja, “A Fast Scheme for Image Size Change in the
Compressed Domain,” IEEE Trans. CSVT, vol. 11, no. 4, pp. 461-474, April
2001.

[14] C. –C. Cheng, P. -C. Tseng, and L. –G. Chen, “Multimode Embedded
Compression Codec Engine for Power-Aware Video Coding System”, TCSVT,
Volume 19, pp. 141 – 150, Feb. 2009.

[15] A. Bourge and J. Jung, “Low-Power H.264 Video Decoder with Graceful
Degradation,” SPIE Proc. Visual Communications and Image Processing, vol.
5308, pp. 372-383, Jan. 2004.

[16] Micron® Technology Inc. The Micron® System-Power Calculator: SDRAM.
[Online Available]: http://www.micron.com/support/part_info/powercalc

[17] Micron® Technology Inc. MT48H4M32LFB5-6 128Mb Mobile LPSDR. [Online
Available]:
http://www.micron.com/products/partdetail?part=MT48H4M32LFB5-6

60

作 者 簡 歷

 姓名 ：楊均宸

 戶籍地 ：台灣省台北市

 出生日期：1980 年 12 月 15 日

 學歷：

1995 年 9 月~ 1998 年 6 月 台北市立內湖高工 電子科

 2000 年 9 月~ 2004 年 6 月 私立龍華科技大學 電子工程系

 2004 年 9 月~ 2009 年 12 月 國立交通大學 IC 設計產業研發碩士

專班

