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ABSERACT

For mobile video applications; the required storage:and bandwidth 'of frame memory
play crucial roles. Reducing the accesses and the size.of frame memory can decrease area,
cost, as well"as power consumption. Most of video compressions”indicate that higher
complexity_can reach better performance. However, the lower complexitysalgorithm is
easier to be embedded into H.264 decoder. In- this paper, a novel embedded lossy
compression scheme is proposed. It compresses a 4x2 size block{into 32 bits segment.
The compression ratio (CR)uis fixed at 2. The PSNR«loss«is 1.89~3.45dB. A pipelined
architecture has been proposed to realize both compressor-and decompressor in 2 cycles
and 1 cycle respectively. This cost-effective solution requires gate count of 4.9k and

power consumption of 244uW in 90nm standard CMOS process.
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Chapter 1
Introduction

1.1 Motivation

A video coding standard"achieves_high compression efficiency such as MPEG-2,
MPEG-4, H263, H«264 [1] [2], and so forth. For H.264 decoder [3], at least one previous
frame is stored in frame memory to generate a predicted frame.. Accordingly, Motion
Compensation (MC) and Deblocking Filter demands a huge. amount of data access
between off=chip memory devices and the video decoder chip. Thereby, data access
dominates the power consumption of H.264 decoder.

For mobile video devices, one major issue is the limited power supply from battery.
Even though-many. low power approaches, such as energy.recycle, sub-threshold cell, and
et al, can reducesa lot.of power in chip. However, data‘transferring also consumes a lot of
power. Therefore, for hardware design, it is important reducing.@access times.

As aforementioned deseriptions, our improvement aspects conclude: 1) reducing
access times, and 2) reducing the size of frame memory. Moreover, Embedded
Compression (EC) can deal with the above two improvement aspects. However, data
compression is not only lossless compression but also lossy compression. Lossless
compression can guarantee no quality loss, but variable length of the compressed data
caused irreducible frame memory size. On the contrary, lossy compression with the fixed
CR can guarantee the reduction of frame memory size. Consequently, it is important to

design an applicable a lossy EC.



1.2 Thesis Organization

The rest of this paper is organized as follows. Chapter 2 introduces data compression
and previous works. In Chapter 3, a novel algorithm is briefly described. The hardware
architecture suitable for mobile video applications is given in Chapter 4. The design
implementation and verification are shown in 4.3. We discuss the integration with an

available H.264 decoder [3] and:t esults respectively in Chapter 5.

Finally, the conclusions@and



Chapter 2
Previous Works

In general, embedded compression algorithms can be categorized into two
fundamental groups: lossless embedded compression algorithms and lossy embedded
compression algorithms. First, we briefly explain the existing lossless embedded
compression algorithms. Second, we introduce the existing lossy embedded compression
algorithms. Finally, we summarize merits and drawbacks,of two_ fundamental groups of

embedded compressionalgorithms.

2.1 Lossless Embedded Compression Algorithm

Lossless embedded compression algorithms [4] can guarantee no guality distortion
of video sequences. Moreover; it has_no_error._propagation_problem in/H.264 decoder.
However, afterdossless compressing, the compressed data is variable/length. Therefore,
existing lossless approaches are not suitable for frame compression because their primary
purpose is high coding.efficiency rather than low_latency,<low visual quality distortion,

low computation complexity, and'high random accessibility.

2.2 Lossy Embedded Compression Algorithm

Lossy compression algorithms, comparing with lossless compression algorithms,
accomplish the fixed compression ratio (CR). Several lossy embedded compression

algorithms have been proposed, such as Block Truncation Coding (BTC) [5], improving



BTC by line and edge information and adaptive bitplane selection [6], BTC using a set of
predefined bitplanes [7], Modified Hadamard Transform (MHT) and quantization of
Colomb-Rice Coding [8], DCT and Modified Bitplane Zonal Coding (MBZC) [9], and et

al.

2.2.1 Block Truncation Coding (BTC) Compression

The conventional Block Truncation”Coding [5].(BTC) segments a frame into nxn
non-overlapping blocks (usually,4x 4) and has a two-level quantizer is independently
designed for each block. In‘response to the local statistics of each block;the threshold of
the quantizer.and the two reconstructed levels are altered. Fig. 1 shows the«flow of the
BTC compression algorithm. Therefore, the compressed format includes a 16-bit bit map
indicating the reconstructed level related with each pixel and two 8-bit reconstructed

levels as shown in Fig. 2.

4x4 Sample | Standard | Bitplane J Data 26-bit
Block Mean " | Deviation "| Generator | Packing Segment
| F3

Fig. 1 The compressionflow-of Block Truncation Coding

« Header >
Sample Mean |Standard Deviation Bitplane
| ——6-bit—w-l——4-bit >| 16-bit

Y

Fig. 2 Compressed 26-bit segment format of Block Truncation Coding

A two-level quantizer is designed to preserve the mean and variance of a block. First,

a frame is divided into non-overlapping nxn blocks. Letm =n?, let X,,X,,---, X, be



the pixel values of a block. The sample mean (& ) and absolute moment (£ are given in

(1) and (2).
a=1%x )
m 5z
p=r2 b @

i=1

The sample mean and absolute moment are preserved. By taking the mean (&) as the

threshold, the two reconstructed levels, a and b are given in (3) and (4).

2P 3)
/—~ 4)

, 's greater

where p is nu

than or equal to (MMSE), the

reconstrug
()
Similarly, b a
(6)
As above equations, the additions and ¢ arisons are required. Therefore, in

hardware implementation, BTC is very simple. The decoder is even simpler. However,
the quality loss of BTC is not suitable to be embedded into the H.264 decoder. Therefore,
we can learn the proposed architecture. Moreover, in H.264 decoder, the simpler decoder

also provides higher random accessibility.



2.2.2 Block Truncation Coding using a set of predefined bitplanes

As aforementioned BTC, the encoder generated two reconstructed levels and the
bitplane. For a 4x4 block, the bitplane can result 65536 (=2'°) possible number of
bitplanes. For the limited data budget, the bitplane occupied 16-bit of the compressed
format. Thus, [6] have been proposed an approach to reduce the bit number of the
bitplane in BTC. Fig. 3 shows the: flowchart of improving Block Truncation Coding. In
the data packing, the 16<bit bitplane-of'the compressed format becomes the 6-bit bitplane

as shown in Fig.“4. . Using 64 predefined bitplanes, as.shown in<Fig. 5, matched the

generated bitplane:

4x4 Sample
Block_> Mean

64 Predefined
Bitplanes
v
Standard Ld Bitplane v Bitplane Data
Deviation (Generator Matching Packing
| X

16-bit
Segment

Fig. 3« The compression flow of improving Block Truncation Coding

- Header

.

-

Sample Mean

Standard Deviation

Index of 64 Predefined Bitplanes

< —6-bit—

[

6-bit

.

<—4-bit

-
Lot

Fig. 4 Compressed 16-bit segment format of improving Block Truncation Coding
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Fig. 5 ., 64 classes of line and edge bitplanes (reverse versions not. shown)

A novel bitplane coding-seheme [6] have been proposed based on the.conventional
BTC. Anapproaches [7] has been proposed which-exploited the visually continuous
blocks are'encoded as uniform regions, whereas visually discontinuous block are encoded
as localized patterns interpreted<as edges or lines. Fig. 6 shows the flowchart of Block
Truncation Coding using a set of predefined bitplanes. By inverting’ and rotating, ten
basic predefined bitplanes, as shown in Fig. 7, can be extended.the 32 predefined
bitplanes. In the data packing, the.15-bit bitplane becomes<the 6-bit bitplane as shown
in Fig. 8.

Although both [6] and [7] based on BTC could reduce the bit number of the bitplane.
However, H.264 decoder has the error propagation problem. Thus, in H.264 decoder, they
are not suitable for visual quality because their quality loss becomes unacceptable visual

quality.



32 Predefined
Bitplanes
v
4x4 Sample Standard Bitplane Bitplane Data 15-bit
Block Mean Deviation Generator Matching Packing Segment
| X
Fig. 6 The compression flow of Block Truncation Coding using a set of predefined
bitplanes
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Fig. 7 Ten basic bitplanes can be extend the thirty-two bitplanes

< Header—————————— |
SampledMean ' | Standard Deviation Index of 32 Predefined Bitplanes
——6-bit——-|———4-bit > 5-bit >

Fig. 8 Compressed 16-bit segment format of Block Truncation Coding using a set of
predefined bitplanes



2.2.3 Bitplane Trun

cation Coding

In the beginning, the integer sequence P can be decomposed in binary with a

magnitude representation, to forma 8x N binary matrix, such as (7)

Wwhere N isthen

represents the LSE
searched fq

B, areall-0,

Algorithm ;\\
Input: B(P) isbin g

Output: SP is start pla ‘,

SP=0;end if
else if B;(P)is N

else if B,(P)is N

©® N vk~ w N RE

return SP;

if B,(P)is NOT zero vector, [the

SP =1;end else if

SP=2;end else if
else SP =3; end else

B7(P) b, (_pl) b7(.pN)

S, ( P 0 | o pN)

of pixels of a block. B, represe B plane while B,

OT zerovector, then

OT zerovector,then

(7)



2.3 Summary

Lossless compression can guarantee no quality loss, but variable length of the
compressed data caused irreducible frame memory size. Therefore, existing lossless
algorithms are not suitable for frame compression because their primary purpose is high

coding efficiency rather than low latency, computation complexity, and high random

accessibility. On the contrar with the fixed CR can

guarantee the reductien important to design a
lossy algorithm v istortion, 2) Low

complexity,
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Chapter 3
Proposed Algorithm

The proposed algorithm compresses a 4x2 block (64-bit) from the output of the
deblocking filter. The CR is fixed at 2. After compressing, a 4x2 block will become a
32-bit segment. With fixed CR, the amount of the coded data is constant. Therefore, this
compression can guarantee access times. Besides, in H.264 standard, a 4x4 block which

is a basic coding unit«an be partitioned into two 4x2 blocks.

For each.4x2 block, the.probability of the difference less.than 16'1s about 64%, the
probability of the differenceless than 32 is about 76%, and the probability of the
difference " less than 64 is about 89%. In [10],.RPCC (Reduced Pattern Comparison
Coding) uses the pattern comparison to<compress a 4x2 block ‘and the .decoder just
requires one cycle to reconstruct a4x2 block. Therefore, exploiting two properties can be

exploited to create the proposed algorithm.

3.1 Algorithm.of.Embedded Compression

4x2 Block v v

v [  Left2x2Block | | Right2x2 Block |
| Pixel Truncation | v v

v | Predefined Bitplanes Comparison |
[ Selective Start Plane | v v

v | Bitstream Packer |
| Compensation | v

| 32-bit Segment

Fig. 9 Compression flow of the proposed algorithm
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Fig. 9 shows the flowchart of the proposed compression algorithm. We divide the
algorithm into four parts: 1) Pixel Truncation, 2) Selective Start Plane, 3) Compensation,
and 4) Predefined Bitplanes Comparison. These parts will be described in the following
paragraphs. The compressed 32-bit segment format is shown in Fig. 10. The
representation format consists of 2-bit Mode, 2-bit Start Plane (SP), 2-bit Decision L,

2-bit Decision R, 12-bit Coded Data L, and 12-bit Coded Data R.

- Headen -
Mode Start Plane«| Dec¢ision L | Decision R | Coded Data L. | Coded Data R
-2 -bit--|—2-bit—p{—2-bit—P|4—2-bit—P—12-bit—P}—1 2-bit—>|

Fig. 10 Compressed 32-bit segment format

3.1.1 Pixel Truncation

Fig. 11'shows the flowchart of the pixel‘truncation. First, we calculate the average
value (Avg.)-of the 4x2 block.and the difference value (Diff.) between maximum pixel
and minimum pixel of the 4x2 block. Second, according to the average and the difference,
we classify those 4x2 sub-blocks into five types as the following:

1) Avg. from 0 to 63 and Diff=less than 32.

2) Avg. from 64 to 127 and Diff. less than 64.

3) Avg. from 128 to 191 and Diff. less than 64.

4) Avg. from 192 to 255 and Diff. less than 32.

5) No change.

In type 1, if each pixel is larger than or equal to 64, we force the pixel to be 63. In
type 2, if each pixel is less than 64, we force the pixel to be 64; if each pixel is larger than
or equal to 128, we force the pixel to be 127. Types 3 and 4 are processed like types 2 and

1 respectively. In type 5, the original pixel value remains unchanged.
12



4x2 Block

[ Average & Difference |

| Type Selection [

Type 5 +Type 4 +Type 3 +Type 2 +Type 1
192 < Avg. <256 128 < Avg. <192 64 < Avg. <128 0<Avg. <64
0 <Diff. <32 0 < Diff. < 64 0 < Diff. < 64 0 <Diff. <32

NO

Pixel < 64 Pixel > 64

Pixel = 128

Output

v

Truncated 4x2 Block

Fig. 11 Flowchart.of the pixel truncation

3.1.2 Selective Start Plane

Fig. 14 shows the flowchart of the selective start.plane. Bitplane coding is a
well-known method. \We.exploit bitplane as a basic unit to a group numbers, instead of
pixel-wised basic unit.

First, we consider a 4x2/block in whicheach pixel value is represented by 8-bit. A
bitplane can be formed by selecting a single bit from the same position in the binary
representation of each pixel. We define that B7 represents the MSB plane while BO
represents the LSB plane.

Second, the start plane (SP) is searched for four successive bitplanes from the MSB
bitplane with four modes as follows:

1) From B7 to B5 are all-0.

2) B6 is all-1; B7 and B5 are all-0.

13



3) B7 are all-1; B6 and B5 are all-0.

4) B7 and B6 are all-1; B5 is all-0.

In the first mode, if both B7 and B6 are all-0 and B5 is not all-0, then SP is equal to
1. Similarly, the other modes like as the first mode. Finally, the maximum start plane of

four modes is selected to record the mode and start plane.

Truncated 4x2 Block

Bitplane Transform
Mode 1 ode 2
7 1= All o>N0 7 1= All To>10
pa sp=0] YES SP=0
6 1= All To>N0 6 1= All x>0
M SP=1 YES SP=1
5 1= All 0aNO 5 1= All 0o
R SP=2 e SP=2
SP=3 SP=3
A\ A A 4 y

A y y %
Select Maximum Start Plane and Record Mode

v

Start Plane Mode
Fig. 12 Flowchart of the selective start plane

3.1.3 Compensation

Since lower bitplanes are truncated.due.to.the-limited budget, a simple rounding is
applied here. The rounding is applied when the significant bit of the truncated bits is
nonzero and the coded bits are not all 1’s. In Fig. 13(a), the simple idea is shown. This
idea leads to a satisfied quality improvement. Two rounding modes are proposed because
the pattern comparison has two data compressed formats. As shown in Fig. 13(b), the first
one is the comparison rounding and the other is the no comparison rounding. For pattern
comparison, the first rounding method is applied to the first three types and the second

rounding method is only for the final type.
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Fig. 13 Flewchart of thesrounding

3.1.4 Predefined Bitplanes Comparison

The final step encodes-the-preserving bitplanes. First, the truncated.4x2 block is
partitioned into two 2x2 blocks that are called the left-2x2 block and the right 2x2 block
as shownjin Fig. 14(a). In Fig. 14(b),-both_the left 2x2 block and the right'2x2 block
exploited the equal SP and‘compressed individually. Second, four types for a.2x2 block is
classified asfollows: 1) Group A, 2) Group B, 3).Group C; and 4) No'Comparison. The
first three types exploit a group of the eight patterns to compare‘with four successive
bitplanes from SP and select.oneitype which can hit three suecessive bitplanes. The three

groups of the eight patterns are shown in

TABLE L1.If the first three types cannot hit larger than or equal to three bitplanes, the

type 4 is chosen and three successive bitplanes from SP are stored.

TABLE 1 Three Group of Eight Predefined Bitplanes

Pattern No. 1 2 3 4 5 6 7 8

Group A 0000 1111 1110 | 0111 0011 1100 | 0001 1000

Group B 0000 1111 1110 | 0111 1010 1001 0110 | 0101

Group C 0000 1111 1110 | Ol11 1101 1011 0010 | 0100
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Fig. 14 An example of partitioning 4x2.block

3.2 Simulation Results

In the beginning, we first-define the formula of MSE (Mean Square-Error) and

PSNR (Peak Signal to'Noise Ratio). The MSE and PSNR are given in (8) and (9),
1

W
MSE = Il —P )?
W » H X;;( w,h w,h)
2557
PSNR =10x lo
< 109(0ee)

where W is the-width, of the‘frame, H is the height of the frame, I ‘is the original
frame, and P is the'compressed. frame.

In this section, we focus on the.coding efficiency for all CIF sequences. In Fig. 15,
PSNR loss is from 1.68 dB to 3.45dB and PSNR"loss average is 2.37dB. Then, we show
the result of embedded result for different group of picture (GOP) in Fig. 16. Along with
the number of P frame, we can see that PSNR loss is growing. Because each P frame is
generated by the previous frame which is compressed by our proposed algorithm, the
error is bigger and bigger along with the number of P frame. This phenomenon is also
called error propagation or drift effect. Fig. 17 shows the results of drift effect with

different QP and GOP.
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Chapter 4
Proposed Architecture

In these sections, we will introduce our proposed architecture. In section 4.1, we will
describe our proposed embedded compressor. In section 4.2, we will describe our
proposed embedded decompressor. In section 4.3, we will show the summary of the

proposed architecture and the flow of the design verification.

4.1  Architecture of Compressor

Fig. 18 shows_ the pipeline architecture of compressor design. We use two pipeline
stages and_each stage requires one cycle. The first'stage is the pixel truncation. The
second stage is composed of selective start plane, rounding, selective pattern comparison,

and packer.-This compressor encodes a 4x2 block in 2 cycles.

I<—Stage 1—>I< Stage 2 >I
|

| |
a2 V| opixel [ ] selective Y Compensation 158 Péftdelg;:sd | Daa T
Block | Truncation| |~ [Start Plane p plane Packing | Segment
' ' Comparsion '

Fig. 18 The Pipelined Architecture of Compressor Design

4.1.1 Architecture of Pixel Truncation

Fig. 19 shows the architecture of pixel truncation. There are seven combinational

logics, one multiplexer, one de-multiplexer, and one register. The seven combinational
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logics as follows: average, difference, type selector, quantizer 1, quantizer 2, quantizer 3,

and quantizer 4. The type selector controls the multiplexer and the de-multiplexer. The

register stores the truncated 4x2 block.
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1915139
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I
I
I

Truncated
4x2 Block
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—
I /| Type 1 34 64 N
I 4 ~| Quantizer 1 4%
| Type2 | 64
1 y4a
I ¢ Quantizer 2 [
o pd I al L4
7 | Quantizer 3 =43 [7 7]
I g Type 4 6:4 /64
I % | Quantizer 4 —
64
I 8 TypeS /e
>
I 92 - }3
o =
I o < I
¢ 3 s
3
'L = —
» Difference
N . _ __ L & _ PixelTruncation

Fig. 19 Architecture of Pixel Truncation

4.1.2 Architecture of Selective Start Plane
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—

I 64 Y
Mode 1 5 % 2 |
I 4 5| Mode_1 > |
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| % I Mode_3 41— I
3 64
Mode 4 2
I / " Mode_4 i :
I 8 Yy 2 I 2
I Mode Mode
| LUT Selector I
~_ — — __ __ __ __ __ _Selective start Plane )

Fig. 20 Architecture of Selective Start Plane
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Fig. 20 shows the architecture of selective bitplane. The block of bitplane transform
is a wrapper. There are five combinational logics, one de-multiplexer, and one look-up
table. The five combinational logics as follows: Mode 1, Mode 2, Mode 3, Mode 4, and

Mode selector. The look-up table records the information of B7 and B6 for each mode.

4.1.3 Architecture of Compensation

Fig. 21 shows the architecture ofrcompensation.. There are.two combinational logics

as follows: Comparison Reunding and No Comparison Rounding.

Truncated 94 l » Comparison 64\ Comparison

4x2 Block | 7 I Rou?]ding +I_> RouFr)1ding
St 2 I No Comparison 654 I 5 No Comparison
s // I Rounding | Rounding

Fig. 21 Architecture of Compensation

4.1.4 Architecture of Predefined Bitplanes Comparison

Fig. 22 shows the architecture of pattern comparison. There are five combinational
logics, one de-multiplexer, one look-up table and one register. The five combinational
logics as follows: Comparison Group A, Comparison Group B, Comparison Group C,
and No Comparison. The pattern selector controls the de-multiplexer. The register is

stored the coded data.
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Fig. 22 Architecture of Predefined Bitplanes Comparison

4.1.5 Data Packing

Fig. 23 shows the architecture of data packing. The representation format consists of
2-bit Mode, 2-bit Start Plane, 2<bit Decision L, 2-bit Decision R, 12-bit Coeded Data L,

and 12-bit Coded Data R.

4x2 Block

v

[ Pixel Truncation |

| Selective Start Plane |—»| Compensation |

v

| Selective Pattern Comparison |

v v v v

Mode |Start Plane| Decision L | Decision R | Coded Data L | Coded Data R
-—2-bit—»{a—2-bit—{e—2-bit—w}a—2-bit—wt—12-bit—w{t—12-bit—

Fig. 23 Architecture of Data Packing
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4.2  Architecture of Decompressor

Fig. 24 shows the pipeline architecture of decompressor. The decompressor only
needs one stage with one cycle. This decompressor reaches a higher throughput; therefore

we can provide a higher random accessibility.

<———Stage |—P»
| |
—+»| Data Rearrange [—H»

32-bit
Segment

Reconstructed
4x2 Block

Fig:24 The Pipeline Architecture of Decompressor

4.2.1 Data Rearrange

Fig. 25 shows the architecture of<data.rearrange. According to the representation

format, the data rearrange can be considered as an inverse processing.

a—2 -bit—p|4—2-bit—m|—2-bit—»|a—2-bit—»|a—12-bit—>|t—12-bit—»]
Mode |Start Plane| Decision L | Decision R | Coded Data.LL | Coded Data R

v Y v Y v v

| Data Rearrange |

v

Reconstructed
4x2 Block

Fig. 25 Architecture of Data Rearrange

4.3 Design Implementation and Verification

In section 4.3.1 and 4.3.2, we will introduce the results of design implementation
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and the flow of the design verification, respectively.

4.3.1 Design Implementation

TABLE 2 shows the summary of the hardware design. The proposed hardware
architecture is synthesized with 90-nm CMOQOS standard-cell library and the gate count of
the proposed algorithm for the compressor and the .decompressor are 4.0k and 0.9k,
respectively. The working " frequency=is up to 150MHz@HD1080/720. The proposed
embedded compressor is divided into 2 pipelined stages and each stage requires 1 cycle.
The proposed/embedded decompressor is divided into 1 pipelined stage'and each stage
requires 1 cycle. / For the power-consumption, the compressor and the decompressor are
158uW and 86uW@150MHz respectively. As above description; the proposed hardware

provides less hardware complexity.

TABLE 2 Summary-of the hardware-implementation

Proposed EC

Function Compressor Decompressor
Technology UME€ 90nm
Working Frequency HD1080+HD720@150MHz
Latency/4x2 block 2 cycles 1 cycle
Gate count 4K 0.9K
Power Consumption 158uW 86uW

4.3.2 Design Verification

Fig. 26 shows the flow of verification. We utilize software and hardware to verify

the proposed algorithm. The patterns are created by software and applied as the input of
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hardware designs. Then the software calculates the answer to compare with the result of
hardware and the result will be stored in memory. Afterward the coded data is accessed
by software and hardware decompressor from memory. We check the coded data to

confirm the result whether is matched in software and hardware.

[ External Memory |

< T T

Y

o Check Hardware Software
Embedded Embedded
A Compressor Compressor
Hardware Software Verilog C
Embedded Embedded
Compressor Compressor
Verilog C Y
7'}
I »  Check
v
Software Software
IM 16.2 IM 16.2
Deblocking Motion
Filter Compensation
C C

Fig. 26 The verification.flow
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Chapter 5
System Integration

In section 5.1, we will introduce Si2 H.264 Decoder System. Then, both access

analysis and processing analysis will be discussed in sections 0 and 5.3, respectively.

5.1 System Analysis

| External Memorya |

-~ e -

| Wrapper & H.264 Arbiter |
7Y A
Embedded Embedded
Decompressor Compressor
H.264 Temporary AFiltered
Bitstream Data Pixels
(- ) 4 ) 4 2
Data Fetch
& Operation
MC info. Motion %
“|  Compensation %
Entropy Deblocking
Decoder coef. % 10 T Residue o Filter
L d i %! Intra Prediction >

\ H.264 Decoder J

Fig. 27 The block diagram of the overall H.264 decoder system

The overall H.264 decoder [3] with the embedded compression codec is shown

in Fig. 27. Our H.264 decoder specification is HD1080/HD720@30fps and works at
26



150MHz. The embedded compressor works between the deblocking filter and the
external memory. The embedded decompressor works between the external memory and
the motion compensation. To design address controller of EC is very simple since our
compression ratio is fixed at two. Our system bus is 32 bits and the external memory is

32 bits per entry.

5.1.1 Interface Problem

Address from ( %
Motion Compensation > 5 5 Address for
Address 7 SDRAM
Address fromy Mapping/Calculation 7 >
Deblocking Filter < PP
Deblocking Filter 32 5 Tossy 32 Bus .
7 "] Embedded Compressor ‘< "
11/Iot10n Compensation 32 Tossy ‘ 32 Bus
- 7 Embedded Decompressor |7

\. System Interface
Fig. 28 The system interface design for embedded codec

Fig. 28 shows the system; interface design for embedded codec. Between the chip
and the off-chip memory, the'embedded compression can be considered as an interface.
In original H.264 decoder system, here are two interface issues. First interface issue
occurs between the deblocking filter and the off-chip memory. The throughput of the
deblocking filter is 4 pixels per clock. Therefore, avoiding the pipelined jam at the input
of embedded compressor, the processing clocks must be less or equal to 4 cycles. The
other issue occurs between the motion compensation (MC) and the off-chip memory. The
input of MC requires 4 pixels per cycle, thus the throughput of the embedded

decompressor is at least 4 pixels per cycle. Furthermore, since the compression ratio is
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fixed at two, the address converter can be easily implemented.

5.1.2 Processing Cycles Problem

In this part, we talk about processing cycle problem of out H.264 decoder system.

Our H.264 decoder specification is HD1080/HD720@30fps and works at 150MHz. From

our simulation, MC requires averag deal/with a 4x4 block. Therefore,

embedded compressor.require wer-cycle design to reduce.the leading cycles.

cad problem

A 4x4 block is basic coding unit in H.264 standard. Moreover, due to block-based
approaches fit in with block-oriented structure of the received bit-stream, they are most
popular techniques. However, here is an overhead problem [11] that can be defined as:
the ratio between the number of pixels that are actually accessed during the motion
compensation of a block and the number of pixels that are really useful in the reference

block. In the original system without block-based approaches, the ratio is equal to 1 for
28



the required pixels accessed. On the contrary, in the original system with block-based
approaches, the ratio is always bigger than 1. As shown in Fig. 29, if the required 4x4

block data, we need to fetch four 4x4 block-based data. The overhead in this case is

48.
TABLE 3 Overhead with block grid for six sequences

Sequence 4x4 block grid 8 x 8 block grid 16 x16 block grid
Foreman 131 1.77 3.69
Flower 1.30 1.74 3.77
News 1.14 1.51 2.78
Silent 1.17 1.50 3.22
Stefan 151 2.44 6.95
Weather 117 1.49 3118
All 1.27 173 3.93

As given in TABLE 3, [12] has been provided the summary of the statistical analysis
simulated with six sequences.From this table, we can know that the faster motion
sequence such as Stefan causes higher overhead: Consequently, it s important that the

smaller block-grid can.obtain smaller overhead.

| External Memory |

>

| Wrapper & H.264 Arbiter |
| Embedded Decompressor | [ Embedded Compressor |
[ Motion Compensation | | Deblocking Filter |

Fig. 30 The flow of EC accesses
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5.2 Access Analysis

Fig. 30 shows deblocking filter through the embedded compressor write the data
into the external memory and MC through the embedded decompressor read the data
from external memory. Moreover, exploiting SystemC, CoWare can build up a simulated

platform to analyze the related system problem. As shown in Fig. 31, the user-defined

field includes H.264 decoder and ECwhich is coded in.\erilog.

-

[ External Memory _ |

AMBA AHB

<

AMBA Slave Interface

A

[ v | )

[ Embedded Decompressor | [ Embedded Compressor |

v
| Motion Compensation | | Deblocking Filter |
H.264 Decoder
\_ User-defined /
- CoWare /

Fig. 32 shows the block diagram of our H.264 decoder with EC in the work space of
CoWare platform. The external memory is accepted 128Mb Mobile LPSDR [14] and the

bus protocol used AMBA 2.0 with 32-bit bandwidth. After CoWare simulating, we can

Fig. 31 The Block Diagram of CoWare System

get the information of the data access as shown in Fig. 33 and Fig. 34.
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5.2.2 Read Reduction

In Motion Compensation, reading required data is based on Motion Vector (MV).
Moreover, in MV (X, y), the x value and the y value can be classified as follows:
1) Align: The value is quadruple and the required 4 pixels fits with the 4x4 block grid.
2) Not Align: The value is not quadruple and an integer. The required 4 pixels traverse

two 4x4 block grids.
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3) Sub Pixel: The value accurate to 1/2 or 1/4. The required 9 pixels can be

interpolated into 4 pixels.

TABLE 4 All Cases of read access required by MC with/without EC

Access Cycles for | Access Cycles for Reduction of Probability of
Case of MV (X, ) System without System with EC Access Cycles Each case (%0)
EC (%0)
(Align, Align) 4 2 50 33
(Align, Not Align) 4 2/3 50/25 0.4
(Align, Sub) 9 5 44 4 5.1
(Not Align, Align) 8 4 50 4.5
(Not Align, Not Align) 8 4/6 50/25 0.4
(Not Align,Sub) 18 10 44.4 54
(Sub, Align) 12 6 50 235
(Sub, Not'Align) 12 6/9 50/25 1.81
(Sub, Sub) 27 15 44.4 25.8
Average 132 6.8~6.9 49.1~48.3

In Table I, we analyze the read times of the.motion compensation with/without EC.
The worst case is‘the (Sub, Sub) case. To finish the motion compensation, a 4x4 block
needs a 9x9 block. Therefore; the system with/without proposed embedded compressor
takes 15/27 cycles. The best case isithe (Align, Align)case. Original system with/without
embedded compressor needs 2/4 cycles'to finish the best case. For the other cases when
the required data of motion compensation are not fit for 4x2 block-grids, the access times
become increased. From our simulation with four sequences (Akiyo, Stefan, Mobile
Calendar, Foreman), each 300 frames, we can derive the probabilities of each case.
According to the probability of each case, the reduction ratio of the reading times is about

50%.
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5.3 Processing Cycle Analysis

In section 5.1.2, the processing cycle problem had been mentioned. In this section,
we will talk about the results of our system integration.

Our system specification is HD1080/720@30fps. This specification means each
4x4 block accepts cycle count in 25 cycles. Because we do not want to change our
specification, we wish that MC with the proposed eémbedded decompressor finishes in 25
cycles. Moreover, based©n not to change our specification;,we will not to change the data

input structure. Here, we must compute the processing cycles as . given by

Proccesing Time = Delay . ompressor + Proceesing Time (10)

MC with Decompressor MC without Decompressor

TABLE 5 shows' the processing-eycle analysis. for all cases: Excluding the (Sub, Sub)
case, eachrcase is less than 25 cycles. The average of processing cycles forrMC without
EC is 17.4 cycles. Therefore, the proposedembedded compressioncan be embedded into

our H.264 'decader system.

TABLE 5 All Cases of Processing. Cycle Analysis for EC

Processin Processin
Number | Delay for 9 0 Prob. of
Cycles for Cycles for
Case of MV (X, y) of our EC ) i Each
MC with MC without
Blocks |“Decoder case (%)
our EC EC
(Align, Align) 1 2 4 6 33
(Align, Not Align) 2 2 4 0.4
(Align, Sub) 3 3 9 12 5.1
(Not Align, Align) 2 3 8 11 4.5
(Not Align, Not Align) 4 4 8 12 0.4
(Not Align, Sub) 6 6 18 24 54
(Sub, Align) 3 3 12 15 23.5
(Sub, Not Align) 6 6 12 18 1.81
(Sub, Sub) 9 8 27 35 25.8
Average 4.1 4.2 13.2 17.4
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5.3.1 Access Reduction Ratio

The access ratio of the system with/without EC is given in (11)

Read
Read

System with EC +Wr|te5ystem with EC

Access Ratio = (11)

System without EC +W”teSystem without EC

From the simulation, the ratio of read times with/without EC is 0.517, the ratio of write

times with/without EC is 0.5, and atio of read/write in the system

without EC is about 3.

(12)

The averagereduction rati

(13)

We exploit the system-power ca as'a external memory power model and
set the parameter as [14]. The simulation of memory is employed on
HD1080/720@150MHz. The simulation results are shown in Fig. 35. Including the core
power of H.264 decoder, SDRAM background power and SDRAM access power

(read/write).
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Chapter 6
Conclusion and Future Works

6.1 Conclusion

In this thesis, we have proposed a new embedded.compression algorithm for mobile
video applications. With theseradvantages of the proposed/EC algorithm, we can lessen
the size of external memory and bandwidth utilization.to achieve power saving. The
pipelined architecture of the proposed decompressor requires 1 cycle,«thus the random
accessibility:becomes better.-"Due-to the fixed CR; the proposed EC algorithmi is easier to
be integrated with H.264 decoder.

From the experimental results, the PSNR lossof the proposed EC algorithm is from
1.89 to 345dB. The proposed architecture is synthesized with 90=am CMOS
standard-cell” _library and the < gate counts of the proposed / algorithm for
compressor/decompressor. are 4.0k/0.9k respectively. The working frequency is up to
150MHz@HD1080/720.. For. power consumption, the compressor 1S 158uW and the

decompressor is 86uW.

6.2 Future Work

For the lossy embedded compression, reducing the visual quality distortion, it is the
major objective. From our experimental results, error propagation is worth to be
improved. For the simulation results of all | frames, between the original sequence and
the compressed sequence, the differences are hardly found. However, for 11/29P frames,
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the drift effect can be found easily in the simulation results. Therefore, we can refine the
proposed lossy embedded compression algorithm, such as adaptive predefined bitplanes,
additive lossless embedded compression algorithm, and et al, to get better

coding-efficiency.
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