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摘要 

對於移動視頻應用，所需的存儲量和幀存儲器的頻寬發揮關鍵作用。而縮減存

取和幀存儲器的大小則可以減少面積，成本以及功率消耗。大多數的視頻壓縮指出

較高的複雜性可達到更好的性能。然而，低複雜度演算法更容易被嵌入到 H.264 的

解碼器。在此提出了一種新型嵌入式有損壓縮方案提出。它壓縮一個 4x2 大小的區

塊成為 32 位元段。壓縮比（CR）是固定在 2。在信號雜訊比損失 1.27～3.94 分貝。 

所提出之管線架構所實現壓縮器和解壓器都分別為 2個週期和 1個週期。採用 90nm 

標準 CMOS 製程，有效的成本解決方案,其所需之邏輯閘數量為 4.9k，而其功率消

耗為 244uW。 
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ABSTRACT 
For mobile video applications, the required storage and bandwidth of frame memory 

play crucial roles. Reducing the accesses and the size of frame memory can decrease area, 

cost, as well as power consumption. Most of video compressions indicate that higher 

complexity can reach better performance. However, the lower complexity algorithm is 

easier to be embedded into H.264 decoder. In this paper, a novel embedded lossy 

compression scheme is proposed. It compresses a 4x2 size block into 32 bits segment. 

The compression ratio (CR) is fixed at 2. The PSNR loss is 1.89~3.45dB. A pipelined 

architecture has been proposed to realize both compressor and decompressor in 2 cycles 

and 1 cycle respectively. This cost-effective solution requires gate count of 4.9k and 

power consumption of 244uW in 90nm standard CMOS process.  
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Chapter 1  
Introduction 
 

1.1 Motivation 
 

A video coding standard achieves high compression efficiency such as MPEG-2, 

MPEG-4, H263, H.264 [1] [2], and so forth. For H.264 decoder [3], at least one previous 

frame is stored in frame memory to generate a predicted frame. Accordingly, Motion 

Compensation (MC) and Deblocking Filter demands a huge amount of data access 

between off-chip memory devices and the video decoder chip. Thereby, data access 

dominates the power consumption of H.264 decoder. 

For mobile video devices, one major issue is the limited power supply from battery. 

Even though many low power approaches, such as energy recycle, sub-threshold cell, and 

et al, can reduce a lot of power in chip. However, data transferring also consumes a lot of 

power. Therefore, for hardware design, it is important reducing access times. 

As aforementioned descriptions, our improvement aspects conclude: 1) reducing 

access times, and 2) reducing the size of frame memory. Moreover, Embedded 

Compression (EC) can deal with the above two improvement aspects. However, data 

compression is not only lossless compression but also lossy compression. Lossless 

compression can guarantee no quality loss, but variable length of the compressed data 

caused irreducible frame memory size. On the contrary, lossy compression with the fixed 

CR can guarantee the reduction of frame memory size. Consequently, it is important to 

design an applicable a lossy EC. 
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1.2 Thesis Organization 
 

The rest of this paper is organized as follows. Chapter 2 introduces data compression 

and previous works. In Chapter 3, a novel algorithm is briefly described. The hardware 

architecture suitable for mobile video applications is given in Chapter 4. The design 

implementation and verification are shown in 4.3. We discuss the integration with an 

available H.264 decoder [3] and the experimental results respectively in Chapter 5. 

Finally, the conclusions and future work will be given in Chapter 6. 
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Chapter 2  
Previous Works 
 

In general, embedded compression algorithms can be categorized into two 

fundamental groups: lossless embedded compression algorithms and lossy embedded 

compression algorithms. First, we briefly explain the existing lossless embedded 

compression algorithms. Second, we introduce the existing lossy embedded compression 

algorithms. Finally, we summarize merits and drawbacks of two fundamental groups of 

embedded compression algorithms. 

 

2.1 Lossless Embedded Compression Algorithm 
 

Lossless embedded compression algorithms [4] can guarantee no quality distortion 

of video sequences. Moreover, it has no error propagation problem in H.264 decoder. 

However, after lossless compressing, the compressed data is variable length. Therefore, 

existing lossless approaches are not suitable for frame compression because their primary 

purpose is high coding efficiency rather than low latency, low visual quality distortion, 

low computation complexity, and high random accessibility. 

 

2.2 Lossy Embedded Compression Algorithm 
 

Lossy compression algorithms, comparing with lossless compression algorithms, 

accomplish the fixed compression ratio (CR). Several lossy embedded compression 

algorithms have been proposed, such as Block Truncation Coding (BTC) [5], improving 
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BTC by line and edge information and adaptive bitplane selection [6], BTC using a set of 

predefined bitplanes [7], Modified Hadamard Transform (MHT) and quantization of 

Colomb-Rice Coding [8], DCT and Modified Bitplane Zonal Coding (MBZC) [9], and et 

al. 

 

2.2.1 Block Truncation Coding (BTC) Compression 

 

The conventional Block Truncation Coding [5] (BTC) segments a frame into n n×  

non-overlapping blocks (usually, 4 4× ) and has a two-level quantizer is independently 

designed for each block. In response to the local statistics of each block, the threshold of 

the quantizer and the two reconstructed levels are altered. Fig. 1 shows the flow of the 

BTC compression algorithm. Therefore, the compressed format includes a 16-bit bit map 

indicating the reconstructed level related with each pixel and two 8-bit reconstructed 

levels as shown in Fig. 2. 

 

 
Fig. 1  The compression flow of Block Truncation Coding 

 

 
Fig. 2  Compressed 26-bit segment format of Block Truncation Coding 

 

A two-level quantizer is designed to preserve the mean and variance of a block. First, 

a frame is divided into non-overlapping n n×  blocks. Let 2m n= , let  be 1 2, , , mX X X
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the pixel values of a block. The sample mean (α ) and absolute moment (β ) are given in 

(1) and (2). 

 
1

1 m

i
ix

m =

α = ∑  (1) 

1

m

x 1
i

im
β α

=

−∑  (2) =

The sample mean and absolute moment are preserved. By taking the mean (α ) as the 

threshold, the two reconstructed levels, a and b are given in (3) and (4). 

 2
ma

p
βα= −

 (3) 

 
2
mb

q
βα= −  (4) 

where p is number of  smaller than the mean and q is the number of  greater 

than or equal to the mean. Because BTC is a minimum mean square error (MMSE), the 

reconstructed level a can be simplified as (5). 

'iX s 'iX s

 
1

i

i
x

a
p α∀ <

= x∑  (5) 

Similarly, b also becomes as (6). 

 
1

i

i
x

b
q α∀ ≥

= x∑  (6) 

As above equations, the additions and comparisons are required. Therefore, in 

hardware implementation, BTC is very simple. The decoder is even simpler. However, 

the quality loss of BTC is not suitable to be embedded into the H.264 decoder. Therefore, 

we can learn the proposed architecture. Moreover, in H.264 decoder, the simpler decoder 

also provides higher random accessibility. 
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2.2.2 Block Truncation Coding using a set of predefined bitplanes 

 

As aforementioned BTC, the encoder generated two reconstructed levels and the 

bitplane. For a  block, the bitplane can result 65536 (= ) possible number of 

bitplanes. For the limited data budget, the bitplane occupied 16-bit of the compressed 

format. Thus, 

4 4× 162

[6] have been proposed an approach to reduce the bit number of the 

bitplane in BTC. Fig. 3 shows the flowchart of improving Block Truncation Coding. In 

the data packing, the 16-bit bitplane of the compressed format becomes the 6-bit bitplane 

as shown in Fig. 4. Using 64 predefined bitplanes, as shown in Fig. 5, matched the 

generated bitplane. 

 

 
Fig. 3  The compression flow of improving Block Truncation Coding 

 

 
Fig. 4  Compressed 16-bit segment format of improving Block Truncation Coding 
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Fig. 5  64 classes of line and edge bitplanes (reverse versions not shown)  

 

 A novel bitplane coding scheme [6] have been proposed based on the conventional 

BTC. An approaches [7] has been proposed which exploited the visually continuous 

blocks are encoded as uniform regions, whereas visually discontinuous block are encoded 

as localized patterns interpreted as edges or lines. Fig. 6 shows the flowchart of Block 

Truncation Coding using a set of predefined bitplanes. By inverting and rotating, ten 

basic predefined bitplanes, as shown in Fig. 7, can be extended the 32 predefined 

bitplanes. In the data packing, the 15-bit bitplane becomes the 6-bit bitplane as shown 

in Fig. 8. 

Although both [6] and [7] based on BTC could reduce the bit number of the bitplane. 

However, H.264 decoder has the error propagation problem. Thus, in H.264 decoder, they 

are not suitable for visual quality because their quality loss becomes unacceptable visual 

quality. 
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Fig. 6  The compression flow of Block Truncation Coding using a set of predefined 
bitplanes 

 

 
Fig. 7  Ten basic bitplanes can be extend the thirty-two bitplanes 

 

Fig. 8  Compressed 16-bit segment format of Block Truncation Coding using a set of 
predefined bitplanes 
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2.2.3 Bitplane Truncation Coding 

 

In the beginning, the integer sequence P can be decomposed in binary with a 

magnitude representation, to form a 8 N×  binary matrix, such as (7) 

 ( )
( )

( )

( ) ( )

( ) ( )

7 7 1 7

0 0 1 0

N

N

B P b p b p
B P

B P b p b p

⎛ ⎞ ⎛
⎜ ⎟ ⎜= =⎜ ⎟ ⎜
⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎟
⎟
⎠

 (7) 

,where  is the number of pixels of a block.  represents the MSB plane while  

represents the LSB plane. Then, as shown in 

N 7B 0B

Algorithm 1, the start plane (SP) is 

searched for four successive bitplanes from the MSB bitplane. For example, if  and 

 are all-0, then SP is equal to 2. 

7B

6B

 

Algorithm 1 (Bitplane Truncation Coding Algorithm) 

Input: ( )B P  is binary matrix. 

Output: SP is start plane 

  

( )

( )

( )

=

=

=
=

7

6

5

1.      ,

2. 0;

3.   ,    

4. 1;  

5.    ,  

6. 2;  

7.    3;

8.   ;

if B P is zero vector then

SP end if

else if B P is zero vector then

SP end else if

else if B P is zero vector then

SP end else if

else SP end else

return SP

NOT

NOT

NOT
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2.3 Summary 

 
Lossless compression can guarantee no quality loss, but variable length of the 

compressed data caused irreducible frame memory size. Therefore, existing lossless 

algorithms are not suitable for frame compression because their primary purpose is high 

coding efficiency rather than low latency, computation complexity, and high random 

accessibility. On the contrary, lossy compression algorithm with the fixed CR can 

guarantee the reduction of frame memory size. Consequently, it is important to design a 

lossy algorithm with the following features: 1) Low visual quality distortion, 2) Low 

complexity, 3) Low bandwidth requirement, and 4) Low power consumption.  
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Chapter 3  
Proposed Algorithm 
 

The proposed algorithm compresses a 4x2 block (64-bit) from the output of the 

deblocking filter. The CR is fixed at 2. After compressing, a 4x2 block will become a 

32-bit segment. With fixed CR, the amount of the coded data is constant. Therefore, this 

compression can guarantee access times. Besides, in H.264 standard, a 4x4 block which 

is a basic coding unit can be partitioned into two 4x2 blocks. 

 

 For each 4x2 block, the probability of the difference less than 16 is about 64%, the 

probability of the difference less than 32 is about 76%, and the probability of the 

difference less than 64 is about 89%. In [10], RPCC (Reduced Pattern Comparison 

Coding) uses the pattern comparison to compress a 4x2 block and the decoder just 

requires one cycle to reconstruct a 4x2 block. Therefore, exploiting two properties can be 

exploited to create the proposed algorithm. 

 

3.1 Algorithm of Embedded Compression 
 

Fig. 9  Compression flow of the proposed algorithm 
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Fig. 9 shows the flowchart of the proposed compression algorithm. We divide the 

algorithm into four parts: 1) Pixel Truncation, 2) Selective Start Plane, 3) Compensation, 

and 4) Predefined Bitplanes Comparison. These parts will be described in the following 

paragraphs. The compressed 32-bit segment format is shown in Fig. 10. The 

representation format consists of 2-bit Mode, 2-bit Start Plane (SP), 2-bit Decision L, 

2-bit Decision R, 12-bit Coded Data L, and 12-bit Coded Data R. 

 

 
Fig. 10  Compressed 32-bit segment format 

 

3.1.1 Pixel Truncation 

 

Fig. 11 shows the flowchart of the pixel truncation. First, we calculate the average 

value (Avg.) of the 4x2 block and the difference value (Diff.) between maximum pixel 

and minimum pixel of the 4x2 block. Second, according to the average and the difference, 

we classify those 4x2 sub-blocks into five types as the following:  

1) Avg. from 0 to 63 and Diff. less than 32. 

2) Avg. from 64 to 127 and Diff. less than 64. 

3) Avg. from 128 to 191 and Diff. less than 64. 

4) Avg. from 192 to 255 and Diff. less than 32. 

5) No change.  

In type 1, if each pixel is larger than or equal to 64, we force the pixel to be 63. In 

type 2, if each pixel is less than 64, we force the pixel to be 64; if each pixel is larger than 

or equal to 128, we force the pixel to be 127. Types 3 and 4 are processed like types 2 and 

1 respectively. In type 5, the original pixel value remains unchanged. 
12 



 

 

Fig. 11 Flowchart of the pixel truncation 

 

3.1.2 Selective Start Plane 

 

Fig. 14 shows the flowchart of the selective start plane. Bitplane coding is a 

well-known method. We exploit bitplane as a basic unit to a group numbers, instead of 

pixel-wised basic unit.  

First, we consider a 4x2 block in which each pixel value is represented by 8-bit. A 

bitplane can be formed by selecting a single bit from the same position in the binary 

representation of each pixel. We define that B7 represents the MSB plane while B0 

represents the LSB plane.  

Second, the start plane (SP) is searched for four successive bitplanes from the MSB 

bitplane with four modes as follows:  

1) From B7 to B5 are all-0.  

2) B6 is all-1; B7 and B5 are all-0. 
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3) B7 are all-1; B6 and B5 are all-0. 

4) B7 and B6 are all-1; B5 is all-0.  

In the first mode, if both B7 and B6 are all-0 and B5 is not all-0, then SP is equal to 

1. Similarly, the other modes like as the first mode. Finally, the maximum start plane of 

four modes is selected to record the mode and start plane.  

 

B7 != All 0's NO

YES

B6 != All 0's NO

YES

B5 != All 0's NO

YES

B7 != All 0's NO
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Fig. 12 Flowchart of the selective start plane 

 

3.1.3 Compensation 

 

Since lower bitplanes are truncated due to the limited budget, a simple rounding is 

applied here. The rounding is applied when the significant bit of the truncated bits is 

nonzero and the coded bits are not all 1’s. In Fig. 13(a), the simple idea is shown. This 

idea leads to a satisfied quality improvement. Two rounding modes are proposed because 

the pattern comparison has two data compressed formats. As shown in Fig. 13(b), the first 

one is the comparison rounding and the other is the no comparison rounding. For pattern 

comparison, the first rounding method is applied to the first three types and the second 

rounding method is only for the final type. 
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(a) (b) 
Fig. 13 Flowchart of the rounding 

 

3.1.4 Predefined Bitplanes Comparison 

 

The final step encodes the preserving bitplanes. First, the truncated 4x2 block is 

partitioned into two 2x2 blocks that are called the left 2x2 block and the right 2x2 block 

as shown in Fig. 14(a).  In Fig. 14(b), both the left 2x2 block and the right 2x2 block 

exploited the equal SP and compressed individually. Second, four types for a 2x2 block is 

classified as follows: 1) Group A, 2) Group B, 3) Group C, and 4) No Comparison. The 

first three types exploit a group of the eight patterns to compare with four successive 

bitplanes from SP and select one type which can hit three successive bitplanes. The three 

groups of the eight patterns are shown in  

TABLE 1.If the first three types cannot hit larger than or equal to three bitplanes, the 

type 4 is chosen and three successive bitplanes from SP are stored. 

TABLE 1 Three Group of Eight Predefined Bitplanes 

Pattern No. 1 2 3 4 5 6 7 8 

Group A 0000 1111 1110 0111 0011 1100 0001 1000 

Group B 0000 1111 1110 0111 1010 1001 0110 0101 

Group C 0000 1111 1110 0111 1101 1011 0010 0100 
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(a) (b) 
Fig. 14 An example of partitioning 4x2 block 

 

3.2 Simulation Results 
 

In the beginning, we first define the formula of MSE (Mean Square Error) and 

PSNR (Peak Signal to Noise Ratio). The MSE and PSNR are given in (8) and (9), 

 2
, ,

1 1

1 (
W H

w h w h
w h

MSE I P
W H = =

= × −
× ∑∑ )  (8) 

 
225510 log( )PSNR

MSE
= ×  (9) 

where  is the width of the frame,  is the height of the frame,  is the original 

frame, and P is the compressed frame. 

W H I

In this section, we focus on the coding efficiency for all CIF sequences. In Fig. 15, 

PSNR loss is from 1.68 dB to 3.45dB and PSNR loss average is 2.37dB. Then, we show 

the result of embedded result for different group of picture (GOP) in Fig. 16. Along with 

the number of P frame, we can see that PSNR loss is growing. Because each P frame is 

generated by the previous frame which is compressed by our proposed algorithm, the 

error is bigger and bigger along with the number of P frame. This phenomenon is also 

called error propagation or drift effect. Fig. 17 shows the results of drift effect with 

different QP and GOP. 
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Chapter 4  
Proposed Architecture 
 

In these sections, we will introduce our proposed architecture. In section 4.1, we will 

describe our proposed embedded compressor. In section 4.2, we will describe our 

proposed embedded decompressor. In section 4.3, we will show the summary of the 

proposed architecture and the flow of the design verification. 

 

4.1 Architecture of Compressor 
 

Fig. 18 shows the pipeline architecture of compressor design. We use two pipeline 

stages and each stage requires one cycle. The first stage is the pixel truncation. The 

second stage is composed of selective start plane, rounding, selective pattern comparison, 

and packer. This compressor encodes a 4x2 block in 2 cycles. 

 
 

Fig. 18 The Pipelined Architecture of Compressor Design 

 

4.1.1 Architecture of Pixel Truncation 

 

Fig. 19 shows the architecture of pixel truncation. There are seven combinational 

logics, one multiplexer, one de-multiplexer, and one register. The seven combinational 
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logics as follows: average, difference, type selector, quantizer 1, quantizer 2, quantizer 3, 

and quantizer 4. The type selector controls the multiplexer and the de-multiplexer. The 

register stores the truncated 4x2 block. 

 

Fig. 19 Architecture of Pixel Truncation 

 

4.1.2 Architecture of Selective Start Plane 
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Fig. 20 Architecture of Selective Start Plane 
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Fig. 20 shows the architecture of selective bitplane. The block of bitplane transform 

is a wrapper. There are five combinational logics, one de-multiplexer, and one look-up 

table. The five combinational logics as follows: Mode 1, Mode 2, Mode 3, Mode 4, and 

Mode selector. The look-up table records the information of B7 and B6 for each mode. 

 

4.1.3 Architecture of Compensation 

 

Fig. 21 shows the architecture of compensation. There are two combinational logics 

as follows: Comparison Rounding and No Comparison Rounding. 
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64
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64
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2

Comparison
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Fig. 21 Architecture of Compensation 

 

4.1.4 Architecture of Predefined Bitplanes Comparison 

 

Fig. 22 shows the architecture of pattern comparison. There are five combinational 

logics, one de-multiplexer, one look-up table and one register. The five combinational 

logics as follows: Comparison Group A, Comparison Group B, Comparison Group C, 

and No Comparison. The pattern selector controls the de-multiplexer. The register is 

stored the coded data. 
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4.1.5 Data Packing 

 

Fig. 23 shows the architecture of data packing. The representation format consists of 

2-bit Mode, 2-bit Start Plane, 2-bit Decision L, 2-bit Decision R, 12-bit Coded Data L, 

and 12-bit Coded Data R. 

 

 

Fig. 23 Architecture of Data Packing 
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4.2 Architecture of Decompressor 
 

Fig. 24 shows the pipeline architecture of decompressor. The decompressor only 

needs one stage with one cycle. This decompressor reaches a higher throughput; therefore 

we can provide a higher random accessibility. 

 

 

Fig. 24 The Pipeline Architecture of Decompressor 

 

4.2.1 Data Rearrange 

 

Fig. 25 shows the architecture of data rearrange. According to the representation 

format, the data rearrange can be considered as an inverse processing. 

 

 
Fig. 25 Architecture of Data Rearrange 

 

4.3 Design Implementation and Verification 
 

In section 4.3.1 and 4.3.2, we will introduce the results of design implementation 
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and the flow of the design verification, respectively. 

 

4.3.1 Design Implementation 

 

TABLE 2 shows the summary of the hardware design. The proposed hardware 

architecture is synthesized with 90-nm CMOS standard-cell library and the gate count of 

the proposed algorithm for the compressor and the decompressor are 4.0k and 0.9k, 

respectively. The working frequency is up to 150MHz@HD1080/720. The proposed 

embedded compressor is divided into 2 pipelined stages and each stage requires 1 cycle. 

The proposed embedded decompressor is divided into 1 pipelined stage and each stage 

requires 1 cycle.  For the power consumption, the compressor and the decompressor are 

158uW and 86uW@150MHz respectively. As above description, the proposed hardware 

provides less hardware complexity.  

 

TABLE 2 Summary of the hardware implementation 

Proposed EC 
Function  Compressor  Decompressor  

Technology UMC 90nm  
Working Frequency  HD1080+HD720@150MHz  
Latency/4x2 block  2 cycles  1 cycle  

Gate count  4K  0.9K  
Power Consumption  158uW  86uW  

 

4.3.2 Design Verification 

 

Fig. 26 shows the flow of verification. We utilize software and hardware to verify 

the proposed algorithm. The patterns are created by software and applied as the input of 
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hardware designs. Then the software calculates the answer to compare with the result of 

hardware and the result will be stored in memory. Afterward the coded data is accessed 

by software and hardware decompressor from memory. We check the coded data to 

confirm the result whether is matched in software and hardware. 

 

Fig. 26 The verification flow 
 
  

25 



 

Chapter 5  
System Integration 
 

In section 5.1, we will introduce Si2 H.264 Decoder System. Then, both access 

analysis and processing analysis will be discussed in sections 0 and 5.3, respectively. 

 

5.1 System Analysis 
 

 

Fig. 27 The block diagram of the overall H.264 decoder system 

 

The overall H.264 decoder [3] with the embedded compression codec is shown 

in Fig. 27. Our H.264 decoder specification is HD1080/HD720@30fps and works at 
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150MHz. The embedded compressor works between the deblocking filter and the 

external memory. The embedded decompressor works between the external memory and 

the motion compensation. To design address controller of EC is very simple since our 

compression ratio is fixed at two. Our system bus is 32 bits and the external memory is 

32 bits per entry. 

 

5.1.1 Interface Problem 

 

Fig. 28 The system interface design for embedded codec 

 

Fig. 28 shows the system; interface design for embedded codec. Between the chip 

and the off-chip memory, the embedded compression can be considered as an interface. 

In original H.264 decoder system, here are two interface issues. First interface issue 

occurs between the deblocking filter and the off-chip memory. The throughput of the 

deblocking filter is 4 pixels per clock. Therefore, avoiding the pipelined jam at the input 

of embedded compressor, the processing clocks must be less or equal to 4 cycles. The 

other issue occurs between the motion compensation (MC) and the off-chip memory. The 

input of MC requires 4 pixels per cycle, thus the throughput of the embedded 

decompressor is at least 4 pixels per cycle. Furthermore, since the compression ratio is 
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fixed at two, the address converter can be easily implemented. 

 

5.1.2 Processing Cycles Problem 

 

In this part, we talk about processing cycle problem of out H.264 decoder system. 

Our H.264 decoder specification is HD1080/HD720@30fps and works at 150MHz. From 

our simulation, MC requires average 25 cycles to deal with a 4 4×  block. Therefore, 

embedded compressor requires a fewer-cycle design to reduce the loading cycles. 

 

5.1.3 Overhead Problem 

 

 
Fig. 29 An example of overhead problem 

 

A  block is basic coding unit in H.264 standard. Moreover, due to block-based 

approaches fit in with block-oriented structure of the received bit-stream, they are most 

popular techniques. However, here is an overhead problem 

4 4×

[11] that can be defined as: 

the ratio between the number of pixels that are actually accessed during the motion 

compensation of a block and the number of pixels that are really useful in the reference 

block. In the original system without block-based approaches, the ratio is equal to 1 for 
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the required pixels accessed. On the contrary, in the original system with block-based 

approaches, the ratio is always bigger than 1. As shown in Fig. 29, if the required 4 4×  

block data, we need to fetch four 4 4×  block-based data. The overhead in this case is 

48.  

 

TABLE 3 Overhead with block grid for six sequences 

Sequence 4 4×  block grid 8 8×  block grid 16 16× block grid 
Foreman 1.31 1.77 3.69 
Flower 1.30 1.74 3.77 
News 1.14 1.51 2.78 
Silent 1.17 1.50 3.22 
Stefan 1.51 2.44 6.95 

Weather 1.17 1.49 3.18 
All 1.27 1.73 3.93 

 

As given in TABLE 3, [12] has been provided the summary of the statistical analysis 

simulated with six sequences. From this table, we can know that the faster motion 

sequence such as Stefan causes higher overhead. Consequently, it is important that the 

smaller block-grid can obtain smaller overhead. 

 

 
Fig. 30 The flow of EC accesses 
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5.2 Access Analysis 
 

Fig. 30 shows deblocking filter through the embedded compressor write the data 

into the external memory and MC through the embedded decompressor read the data 

from external memory. Moreover, exploiting SystemC, CoWare can build up a simulated 

platform to analyze the related system problem. As shown in Fig. 31, the user-defined 

field includes H.264 decoder and EC which is coded in Verilog. 

 

AMBA Slave Interface

Embedded Decompressor

Motion Compensation

Embedded Compressor

AMBA AHB

External Memory

Deblocking Filter

H.264 Decoder
User-defined

CoWare
Fig. 31 The Block Diagram of CoWare System 

 

 Fig. 32 shows the block diagram of our H.264 decoder with EC in the work space of 

CoWare platform. The external memory is accepted 128Mb Mobile LPSDR [14] and the 

bus protocol used AMBA 2.0 with 32-bit bandwidth. After CoWare simulating, we can 

get the information of the data access as shown in Fig. 33 and Fig. 34. 
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Fig. 32 Block diagram in CoWare System 

 

Write 4x4 Blocks Read 4x4 Blocks

Fig. 33 Embedded compressor waveform over CoWare system 
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Fig. 34 Data access trace 

 

5.2.1 Write Reduction 

 

The compression ratio of the proposed EC is fixed at 2. After the proposed EC 

(  block unit and ) is embedded into our H.264 decoder system, comparing 

the original system (  block-based access), the reduction ratio of the writing times is 

50%. 

4 2× 2CR =

4 1×

 

5.2.2 Read Reduction 

 

In Motion Compensation, reading required data is based on Motion Vector (MV). 

Moreover, in MV (x, y), the x value and the y value can be classified as follows: 

1) Align: The value is quadruple and the required 4 pixels fits with the  block grid. 

2) Not Align: The value is not quadruple and an integer. The required 4 pixels traverse 

two  block grids. 

4 4×

4 4×
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3) Sub Pixel: The value accurate to 1 /  or 1 / . The required 9 pixels can be 

interpolated into 4 pixels. 

2 4

 

TABLE 4 All Cases of read access required by MC with/without EC 

Case of MV (x, y)  

Access Cycles for 

System without 

EC  

Access Cycles for 

System with EC 

Reduction of 

Access Cycles 

(%)  

Probability of 

Each case (%) 

(Align, Align)  4  2  50  33  

(Align, Not Align)  4  2/3  50/25  0.4  

(Align, Sub)  9  5  44.4  5.1  

(Not Align, Align)  8  4  50  4.5  

(Not Align, Not Align) 8  4/6  50/25  0.4  

(Not Align, Sub)  18  10  44.4  5.4  

(Sub, Align)  12  6  50  23.5  

(Sub, Not Align)  12  6/9  50/25  1.81  

(Sub, Sub)  27  15  44.4  25.8  

Average 13.2  6.8~6.9  49.1~48.3   

 

In Table II, we analyze the read times of the motion compensation with/without EC. 

The worst case is the (Sub, Sub) case. To finish the motion compensation, a 4x4 block 

needs a 9x9 block. Therefore, the system with/without proposed embedded compressor 

takes 15/27 cycles. The best case is the (Align, Align) case. Original system with/without 

embedded compressor needs 2/4 cycles to finish the best case. For the other cases when 

the required data of motion compensation are not fit for 4x2 block-grids, the access times 

become increased. From our simulation with four sequences (Akiyo, Stefan, Mobile 

Calendar, Foreman), each 300 frames, we can derive the probabilities of each case. 

According to the probability of each case, the reduction ratio of the reading times is about 

50%. 
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5.3 Processing Cycle Analysis 
 

In section 5.1.2, the processing cycle problem had been mentioned. In this section, 

we will talk about the results of our system integration.  

Our system specification is HD1080/720@30fps. This specification means each 

 block accepts cycle count in 25 cycles. Because we do not want to change our 

specification, we wish that MC with the proposed embedded decompressor finishes in 25 

cycles. Moreover, based on not to change our specification, we will not to change the data 

input structure. Here, we must compute the processing cycles as given by 

4 4×

 MC with Decompressor Decompressor MC without DecompressorProccesing Time   Delay Proccesing Time= +  (10) 

TABLE 5 shows the processing cycle analysis for all cases. Excluding the (Sub, Sub) 

case, each case is less than 25 cycles. The average of processing cycles for MC without 

EC is 17.4 cycles. Therefore, the proposed embedded compression can be embedded into 

our H.264 decoder system. 

TABLE 5 All Cases of Processing Cycle Analysis for EC 

Case of MV (x, y)  
Number 

of 
Blocks 

Delay for 
our EC 
Decoder 

Processing 
Cycles for 
MC with 
our EC  

Processing 
Cycles for 

MC without 
EC  

Prob. of 
Each 

case (%) 

(Align, Align)  1  2  4  6  33  
(Align, Not Align)  2  2  4  6  0.4  

(Align, Sub)  3  3  9  12  5.1  
(Not Align, Align)  2  3  8  11  4.5  

(Not Align, Not Align) 4  4  8  12  0.4  
(Not Align, Sub)  6  6  18  24  5.4  

(Sub, Align)  3  3  12  15  23.5  
(Sub, Not Align)  6  6  12  18  1.81  

(Sub, Sub)  9  8  27  35  25.8  
Average  4.1  4.2  13.2  17.4  
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5.3.1 Access Reduction Ratio 

 

The access ratio of the system with/without EC is given in (11) 

 System with EC System with EC

System without EC System without EC

Read +Write
Access Ratio = 

Read +Write
 (11) 

From the simulation, the ratio of read times with/without EC is 0.517, the ratio of write 

times with/without EC is 0.5, and the average access ratio of read/write in the system 

without EC is about 3.51. The overall access ratio is given in (12) 

 
0.517 3.51+0.5 1Overall Access Ratio = 

3.51 1
                                   = 51.3%

× ×
+  (12) 

The average reduction ratio on memory accessed is given in (13) 

  (13) 
Average Reduction Ratio = 1 - Overall Access Ratio
                                          = 1 - 0.513
                                          = 48.7%

Therefore, the average reduction ratio is 48.7%. 

 

5.3.2 Simulation Result on Power Reduction 

 

We exploit the system-power calculator [13] as a external memory power model and 

set the parameter as [14]. The simulation of memory is employed on 

HD1080/720@150MHz. The simulation results are shown in Fig. 35. Including the core 

power of H.264 decoder, SDRAM background power and SDRAM access power 

(read/write). 
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Chapter 6  
Conclusion and Future Works 
 
6.1 Conclusion 
 

In this thesis, we have proposed a new embedded compression algorithm for mobile 

video applications. With these advantages of the proposed EC algorithm, we can lessen 

the size of external memory and bandwidth utilization to achieve power saving. The 

pipelined architecture of the proposed decompressor requires 1 cycle, thus the random 

accessibility becomes better. Due to the fixed CR, the proposed EC algorithm is easier to 

be integrated with H.264 decoder.  

From the experimental results, the PSNR loss of the proposed EC algorithm is from 

1.89 to 3.45dB. The proposed architecture is synthesized with 90-nm CMOS 

standard-cell library and the gate counts of the proposed algorithm for 

compressor/decompressor are 4.0k/0.9k respectively. The working frequency is up to 

150MHz@HD1080/720. For power consumption, the compressor is 158uW and the 

decompressor is 86uW. 

 

6.2 Future Work 
 

For the lossy embedded compression, reducing the visual quality distortion, it is the 

major objective. From our experimental results, error propagation is worth to be 

improved. For the simulation results of all I frames, between the original sequence and 

the compressed sequence, the differences are hardly found. However, for 1I/29P frames, 
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the drift effect can be found easily in the simulation results. Therefore, we can refine the 

proposed lossy embedded compression algorithm, such as adaptive predefined bitplanes, 

additive lossless embedded compression algorithm, and et al, to get better 

coding-efficiency.  
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