ORI R P B A R
FREARFAHL Y 2R

A Case Study on DFT and BIST Design for
a Wired Equivalent Privacy IP

oy oA A
hERE: 240 KR

P EIE 41tz & A~ ¥

FORIGAER I E P E p ARBHT G MI R
RN SR Tl F)
A Case Study on DFT and BIST Design for a
Wired Equivalent Privacy IP

g2 R Student: Lung-Yu Lin

¥R 2 %= K# Advisor: Prof. Chung-Len Lee

CINRC I R
TBFaFm e xisn

FA e

A'Thesis
Submitted to Degree Program of Electrical Engineering Computer
Science
College of Electrical Engineering and Computer Science
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master of Science
in
Electronics and Electro-Optical Engineering
August 2004
Hsinchu, Taiwan, Republic of China

Py

\l\
A)

\

’
‘E ;EN
N

VORGP E SRR
IR B BT

"

-

Ly 2 iR KI A =L

&H
S
R
10"
=
g
g.?,
&
4y
%
&
&
g
?“\’3
gt
3
_?}
N
]
|
Aol
J—\

FLEMIE e o - FE LS P e RER e kR S
Ft o KEFTEAF R Y A (IP) K3 ad B aSoC &b ¢ 58 - AARE o 2

Ao el FHet R * TR AR PR e > Sdein Ry R AR F

\mk

\

BE - BRADFE A ? 0 2 AFET TREP REp A PEREH
(BIST) & # M3 Y § 404 HE B 10 £ ERRFF LI THRF PR
FRE S TR P RIREPNT S AR T R o

Rihe WE R TG 0 F AR - B & IEEE 802.11 R “f Mok
F%” (WEP) B4 5 £ ¥ M8 LR engm > L - BP s R
AR £ f ARIECE > REFAPMRIEE AT Bt L EeBpp R
BlEBCEg - R B RRES EAA R N RASY F TRER

""f/\’i"j\“’\i “P\ L‘ké # /?Jvé‘#i/fﬁ:” EH ij% Fl L

\\\?{r

¥ o

A Case Study on DFT and BIST Design for a Wired

Equivalent Privacy IP

Student: Lung-Yu Lin Advisor: Prof. Chung-Len Lee

Degree Program of Electrical Engineering Computer Science

National Chiao Tung University

Abstract

Due to the advance of the”IC itechnology, we have entered the era of chips of
multimillion-gate. It is a trend to design. modern System-on-a-Chip (SoC) by using
reusable intellectual properties (IPs). However, testing is a very difficult problem on a
multimillion-gate chip, when it is composed of embedded cores such as IPs especially. In
this thesis, we propose and demonstrate a built-in self-test (BIST) module for an IP,
trying to ease this testing issue.

First, we design a reusable “wired equivalent privacy” (WEP) IP based on the IEEE
802.11 standard. Then, in order to test and qualify this IP, we employ the BIST strategy,
accommodating some design skills, used in the IP design, to test the IP. Analysis on this
strategy has been done to compare it with the traditional testing technique such as scan in
terms of fault coverage and hardware overhead. The experience and information obtained

will serve as valuable reference to those who engage in BIST research and practice.

Whs et B Rl B FREI A CEF LR P RET D
EHSmol o U AE RIETELPREL Pl E o A @ af e gL
RS LR B iR B A Rl g o

B ABRWY EAEMA - XEHN G AT P RENTFR AL 2
SR AAY L FL G i o AL SRy BALES S PFRORAE
FK o

Foobo BB R A R A I NEE Y AT TR e end R

Boil o WHAH P EA AR B VRS AEBE A B F) PR RGP

- B ERER G RS 0 S]

A
Akt ATH A

’L"L.:_-E N B

Chinese abstract

English abstract

Acknowledgments
Contents
List of Figures

List of Tables

Acronyms

Contents

Chapter 1 INtroducCtionccoiiiii i e e e e e e e e e L

1.1 Reusable Intellectual Propertycoooiiiiiiiiii e 1
1.2 Built-In Self Test Technique for’'VLSI Design ccooeiiiiiiieinnnns 2
1.3 Purpose Of ThiS FRESIS oluis et s eeee e eeieeee e ven e e ea s 3
1.4 Outline of This ThesIS| it e e 4
Chapter 2 The Wired Equivalent Privacy (WEP) IPccooiiiiiiiiiinnnns 5
2.1 Wired Equivalent PrivaCyoooiiiiiii i 5
2.1.1 Introduction ... D
2.1.2 WEP Theory of Operationccceiviiiiiiiieiee B
2.1.3 WEP Frame Body Expansionccoccoiiiiiiiiiiiiiin 8
214 RC4 PRNG Algorithm ..., 9

2.2 Designing a Reusable WEP IP ... 11
2.2.1 Design FIow ... 1D
2.2.2 Specification ... 2213
2.2.3 Architecture ... e 1D
224 Simulation Results ..o 18
2.2.5 Synthesis ResUlts ..o, 22

v

2.3 Summary

.22

Chapter 3 Traditional Testing Methods for WEP ..., 23
3.1 Functional TeStiNg ...c.ovriir it et e e e e e e 23
3.1.1 Flow of Function Pattern Generationccocevnenen. 24
3.1.2 Testing for Embedded Memorycoooiviiiiiiiiiiniinn. 26
3.1.3 Fault Coverage Resultsccoeiiiiiiiii i, 28

3.2 Test Method by Scan-Chaincooiiiii i 29
3.21 ATPG with a WEP Hard-Macrocooooviiiiin i 29
3.2.2 ATPG on WEP IP without Memory Wrapper 31
3.2.3 ATPG on WEP IP with Memory Wrapper Y

3.3 Summary ...33
Chapter4 A Built-In Self Test:Design for WEP IP cooiiiiiiinennnn. 35
4.1 Features ...35
4.2 Description of the BISFIOr-WEP 1P~ ..., 35
421 Architecture ...35
422 Testing Method ...38
4.2.3 Testing FIOW ..o 40
4.2.4 Embedded 14N March C+ for Embedded Memory 43
4.25 The Golden Checksum by CRC-16cccoveiiiiiiiinnnnes 44

4.3 Other Special SKills ... 46
43.1 Power Down Mode ...46
4.3.2 Speed Up Mode AT
4.3.3 Internal Multiplexerso 48
4.3.4 Self-Test of BIST for WEP IP ..o, 49

4.4 EXPEriment REPOITS ...iuiieit it ittt e e e e e e 52

4.5

4.6

4.7
Chapter 5
References

Vita

44.1 Synthesis Results

4.4.2 Fault Coverage Results
Analysis and Discussion of BIST for WEP IP

45.1 The Fault Coverage of the Sub-Modules
45.2 Improvements of the Fault Coverage

BIST vs. Traditional Testing Methods for WEP IP

Summary

Conclusions

Vi

...o4

54

55

57

...59

...61

...63

...64

Figure 1.1
Figure 1.2
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 2.11
Figure 2.12
Figure 2.13
Figure 2.14
Figure 2.15
Figure 2.16
Figure 2.17
Figure 2.18
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11

List of Figures

An example of complex SoC 1
Basic BIST architecturec.coiiii i el 3
A confidential data channel 6
WEP encipherment block diagramcoooiiiiiiiiiiii 7
WEP decipherment block diagramccoooiiiiiii i, 7
Format of Seed = { Secret Key , Initialization Vector } 8
Construction of expanded WEP Frame Body oo vee e venenn .. 8
RC4 PRNG Engine and S-BOX — ...ooveiine i eeine e e 9
RC4 seeding equation . .10
RC4 Generation Key Sequence Equatlon 11
The design flow of the WEP IP with BIST .12
The Block diagram of WEP IPo e 15
The FSM of WEP_RX .16
The FSM of WEP_PRNG ..o i e e e e, 17
The WEP encryption. proCedUre = fu...o.vvevie i e ieevee e cee veeeneaa 18
The encryption chart b, " .19
The simulation waveform of encmherment A 0
The WEP decrypt-procedure™ oo e enn22 . 20
The decrypt chart .21
The simulation waveform of dempherment .21
The WEP IP simulation waveform of functional vectors .24
A test vector example without compressioncoocevvieiennnnnn. 25
Local scan-chain in a Hard-Macro [Pcccceviiiiiic e 30
ATPG on WEP IP without Memory Wrapperccccoeovevvenviiiesiinenenn 31
Memory Wrapper INATPG ..o e e e v e e e e e 32
The block diagram of the WEP IP with the BIST module ..36
The WEP IP data flow in the normal operation mode .37
The WEP IP data flow in the BIST operation mode .37
The multiplexers of the WEP BIST38
The WEP IP simulation waveform the during BIST mode 40
The Major FSM of the WEP BIST Controller —ccoooiin il 41
The sub-FSM of Encrypt Mode (a.) and Decrypt Mode (b.) 42
WEP BIST Controller’s FSM vs. WEP RX’s FSM .43
WEP BIST Clock Controller circuit and waveform .47
The internal faults on a normal design ...48
The circuit with the internal multiplexer ...49

Vil

Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15
Figure 4.16
Figure 4.17

The undetectable faults on normal input ports
The data flow in the bypass mode ...
Fault Coverage vs. Gate Count and Testing Timecovevenenn.
Fault Coverage vs. BIST Area Overhead ...,
Comparison diagrams of the fault coverage and area overhead
Comparison diagrams of the total gate count and test cycles.................

Vil

...50
o1

56
57

..58

List of Tables

Table 2.1 The pin description of WEP IP ... e, 14
Table 2.2 The synthesis results of the WEP IP, 22
Table 3.1 WEP IP fault coverage report with functional test vectors28
Table 3.2 Fault coverage report of the Hard-Macro WEPIP30
Table 3.3 Fault coverage report of the WEP IP without Memory Wrapper 32
Table 3.4 Fault coverage report of the WEP IP with Memory Wrapper 33
Table 4.1 The input vs. output mapping table in the bypass mode. X !
Table 4.2 The synthesis results of the WEP IPwith BIST 52
Table 4.3 The fault coverage report of WEP IPwith BIST53
Table 4.4 Fault coverage and area report of sub-modules54
Table 4.5 Improvements of the fault coverage co e iii e enn.56
Table 4.6 WEP BIST vs. ATPG vs. Functional Testingce v vee vl ..l .57

Acronyms

AF Address Decode Fault
ATE Automatic Test Equipment
ATPG Automatic Test-Pattern Generation
BIST Built-In Self Test
CUT Circuit under Test
FSM Finite State Machine
HDL Hardware Description Language
ICV Integrity Check Value defined in IEEE 802.11 standard
IP Intellectual Property
v Initialization Vector defined in IEEE 802.11 standard
LFSR Linear Feedback Shift Register
MBIST Memory Built-In Self Test
NRZI Non-Return to Zero, Inverted
Pl Parallel Inputs in ATPG
PO Parallel Outputs in ATPG
PRNG Pseudo-Random Number Generator
RTL Register Transfer:Level
RZI Return to Zero, Inverted
SAF Stuck-at Fault
S-Box Substitution Box
SoC System-on-a-Chip
WEP Wire Equivalent Privacy defined in IEEE 802.11 standard

WEP_TOP The top module of our WEP IP design with BIST module
WEP_IP The top module of our WEP IP design without BIST module
WEP_CORE The sub-module includes all digital logic of WEP_IP.
WEP_RX The sub-module manages the input signals of WEP_CORE.
WEP_PRNG The sub-module generates pseudo-random number the in WEP_CORE.
WEP_ICV The sub-module manages the ICV in WEP_CORE.
WEP_BIST The BIST sub-module in WEP_TOP to generate the test vectors to WEP_IP.
wepbtclk WEP BIST Clock Controller. A sub-module in WEP_TOP.
wepbc WEP BIST Controller. A sub-module in WEP_BIST.
wepcrcl6 WEP CRC-16 Checker. A sub-module in WEP_BIST

Chapter 1 Introduction

1.1 Reusable Intellectual Property

In 1965, Gordon Moore noted that the number of transistors on a chip doubled every
18 to 24 months. Now, advance in silicon technology allows us to build chips consisting of
tens of millions of transistors. The ability to leverage valuable intellectual property (IP)
through design reuse will be the invariable cornerstone of any effective attack on the
productivity issue. Reusable IP is essential to achieving the engineering quality and the
timely completion of multimillion-gate ICs [1].

Figure 1.1 is an example of complex System-on-a-Chip (SoC) design. This design is
the USB2.0-to-IEEE802.11 bridge controller. We can find many reusable IPs in this design,

such as a microprocessor, a USB;Z‘."O Slﬁ a USI§2.0 PHY, memories, the IEEE802.11

B9

controller, and a WEP IP, ey =

Clock Management Subsystem

USB 2.0 USB 2.0 USB 2.0 802.11 Bi;(s):t')ﬁd 802.11
Signal PHY SIE MAC IP P Signal
Control Control
Signal Signal

Memory

Power Management Subsystem

Figure 1.1 An example of complex SoC

1.2 Built-In Self Test Technique for VLSI Design

Testing has become a more difficult problem, due to increasing chip complexity over
the past two to three decades. Especially, embedded core functions have become common
in VLSI devices with the embedded nature of these functions, making them more difficult
to test. In addition, more expensive test equipments are required to handle larger number of
I/0 pins, higher operating frequencies, and larger sets of test vectors, typically associated
with the more complex VLSI device. Finally, due to the growing complexity of VLSI
devices, the ability to provide some level of fault diagnosis during manufacturing testing is
needed to assist failure mode analysis (FMA) for yield enhancement and repair procedures.
Built-In Self Test (BIST) is considered to be one of the primary solutions to these predicted
and growing testing problems.

The basic idea of BIST is to:designza-circuit’so that the circuit can test itself and
determine whether it is fault-free or faulty. This typically requires additional circuitry and
functionality to be incorporated into. the circuit-to facilitate the self-testing. This additional
functionality must be capable of generating test patterns as well as providing a mechanism
to determine if the output responses of the CUT to the test patterns agree to that of the
fault-free circuit.

A representative architecture of the BIST is illustrated in the block diagram of Figure
1.2. This BIST architecture includes two essential functions as well as two additional
functions that are necessary to facilitate execution of the self-testing feature while in the
system. These two essential functions include the test pattern generator (TPG) and the
output response analyzer (ORA). While the TPG produces a sequence of patterns for
testing the CUT, the ORA compacts the output responses of the CUT into some type of
Pass/Fail indication. The other two functions needed for system-level use of the BIST

include the BIST controller and the input multiplexers.

Aside from the normal system 1/O pins, the incorporation of BIST may also require
additional 1/O pins for activating the BIST sequence (the BIST Start signal), reporting the
results of the BIST (the Pass/Fail indication), and an optional indication (BIST Done) that
the BIST sequence is complete and that the BIST results are valid to be read to determine

the fault-free/faulty status of the CUT [2].

BIST Start > » BIST Done
BIST Controller

Test Pattern Output Response | Pass / Fail
Generator Analyzer

A

v

Input Circuit Under _ System
System Mux Test (CUT) "~ Outputs
Inputs

\

Figure 1.2 -Basic BIST architecture

1.3 Purpose of This Thesis

Because of the exponentially growing in wireless communications, many VLSI
designers invest much time and resource in creating these components in wireless
communications. However, at the same time, the eavesdropping is a familiar problem to
users of any types of wireless communications. For this reason, there are many algorithms
and architectures about encryption and decryption in wireless technology.

In this thesis, we will design a reusable Wire Equivalent Privacy (WEP) IP for the
secrecy requirement. The specification of WEP is defined in the IEEE 802.11 wireless

standard. In order to guarantee the quality and ease to be reused, we will not only create a

reusable WEP component but also design a built-in self test (BIST) circuit for this IP. We

hope to devise a smart method to obtain the quality fault coverage with less effort.

1.4 Outline of This Thesis

This thesis is organized as follows. Chapter 2 presents the IEEE 802.11 Wire
Equivalent Privacy standard and describes the architecture of the WEP IP. Chapter 3
presents the traditional testing methods for the WEP IP. Chapter 4 presents the new BIST

design in the WEP IP. In chapter 5, conclusions are given.

Chapter 2 The Wired Equivalent Privacy (WEP) IP

2.1 Wired Equivalent Privacy [3]

2.1.1 Introduction

Eavesdropping is a familiar problem to users of any types of wireless technology.
IEEE 802.11 specifies an optional privacy algorithm “Wire Equivalent Privacy” that is
designed to satisfy the goal of wired LAN “equivalent” privacy. The algorithm is not
designed for ultimate security but rather to be “at least as secure as a wire”.

The WEP algorithm has the following properties:

1. It is reasonably strong because WEP allows for the changing of the key and

frequent changing of the initialization vector (IV) to against the brute-force

attack.

2. WEP is self-synchronizing for each message to reduce the packet loss rates.

3. The WEP algorithm is efficient and-may be implemented in either hardware or
software

4, The WEP algorithm may be exportable from the USA.

5. The implementation and use of WEP is an IEEE 802.11 option.

2.1.2 WEP Theory of Operation

Data that are not enciphered are called plaintext (denoted by P) and data that are
enciphered are called ciphertext (denoted by C). The process of disguising (binary) data in
order to hide their information content is called encryption (denoted by E) and the process
of turning ciphertext back into plaintext is called decryption (denoted by D).
The encryption function E operates on P to produce C:

Ex(P)=C 1)

In the reverse process, the decryption function D operates on C to produce P:
Dk(C) =P (2)
WEP is a symmetric algorithm in which the same key is used for encipherment and
decipherment. We can get the following equation:
Dk(Ek(P)) = Dk(C) =P 3)

The procedure of encryption and decryption is depicted in Figure 2.1.

Same Secret Key from the Key Management Service

: o

Plaintext Ciphertext Plaintext
—»| Encryption p——»| Decryption ———»

T » Eavesdropper

Figure 2.1 __A confidential data channel

Referring to Figure 2.2, the secret key is concatenated with an initialization vector (1V)
and the resulting seed is input to a pseudo-random number generator (PRNG). WEP uses
the RC4 PRNG algorithm as defined in Section 2.1.4. The PRNG outputs a key sequence k
of pseudorandom octets equal in length to the number of data octets that are to be
transmitted plus 4. The key sequence is used to protect the integrity check value (ICV) as
well as the data. The WEP ICV is 32 bits. The WEP Integrity Check algorithm is CRC-32,
as defined with the following equation:

G(X)=X32+X26+X23+X22+X16+x12+ X114+ x10+ X8+ X7+ X5+ X4+X2+x1+1 (4)

The encrypted ICV can guarantee the completeness of message and protect the
ciphertext from malicious distortion.

WEP combines key sequence k with plaintext using bitwise XOR to generate
ciphertext. The output of the process is a message containing the IV and ciphertext.

6

Initialization |

Vector (1V)
Secret Key =

Plaintext L

WEP
PRNG

Key Sequence

Integrity Algorithm

—

-

Integrity Check Value (ICV)

XOR

Figure 2.2 WEP encipherment block diagram

Ciphertext

Message

Referring to Figure 2.3, decipherment begins with the arrival of a message. The IV of

the incoming message shall be combined with the same secret key to generate the same

seed as encipherment, as depicted in Figure 2.4. The same seed and the same PRNG

algorithm generate the same key,sequenceto-decipher the incoming encrypted message.

Combining the ciphertext with the proper key sequence yields the original plaintext and

ICV. The same integrity check algorithm is-used to generate the ICV’ from the recovered

plaintext. Correct decipherment shall be verified by comparing the output ICV’ to the ICV

transmitted with the message. If ICV” is not equal to ICV, the received message is in error

and an error indication is sent to the management.

Secret Key

v

Ciphertext

WEP
PRNG

Key
Sequence

XOR

Message

Integrity

Algorithm

(CRC-32)

ICV

Figure 2.3 WEP decipherment block diagram

» Plaintext

ICV=ICV'?

63 /127 24 23 0

Secret Key [39:0] or Secret Key [103:0] Initialization Vector [23:0]

Figure 2.4 Format of the Seed = { Secret Key , Initialization Vector }

2.1.3 WEP Frame Body Expansion

Figure 2.5 shows the encrypted Frame Body in general frame form as constructed by

the WEP algorithm.

0~2312
2 Bytes 2 Bytes 6 Bytes 6 Bytes 6 Bytes 2 Bytes 6 Bytes Bytes 4 Bytes

Frame | puration | Address | Address | Address | Sequence | Address | Frame FCS

Control ID 1 2 3 Control 4 Body (CRC-32)
- MAC Header ——=——— -
"""""""""""""""""""" Encrypted Data
\Y} Data ICV
4 Bytes >= (Byte 4 Bytes

«— Not Encrypted Data

1 Byte
Pad Key ID
000000 2 bits

Initial VVector
3 Bytes

Figure 2.5 Construction of expanded WEP Frame Body

The encipherment process has expanded the original Frame Body by 8 octets, 4 for the
IV field and 4 for the ICV. The ICV is calculated on the data field only. The IV field shall
contain three subfields: a three-octet field that contains the initialization vector, a 2-bit key
ID field, and a 6-bit pad field. The initialization vector is a part of seed which was

described in the early part of this chapter. The contents of the pad subfield shall be zero.

The Key ID subfield contents select one of four possible secret key values for use in

decrypting this Frame Body.

2.1.4 RC4 PRNG Algorithm [4]

WEP uses the “RC4 PRNG algorithm” which was originally from RSA Data Security,
Inc. The RC4 PRNG is a stream cipher symmetric key algorithm. The transmitter and the
receiver have same secret key sequence. Referring to Figure 2.6, a 256-byte RAM that is
named substitution boxes (denoted by S-Box) contents 256 independent number in random

order. The RC4 PRNG engine is like a stirrer to stir the random number in the S-Box.

Pl_aintext [7:0]/
bowl Ciphertext [7:0] stirrer
SBOX
| 4 RC4 Seed[127:0]
Sync. SRAM « , | or SeedI63:0
256 X 8 Engine or Seed[63:0]
Ciphertext [7:0]
/ Plaintext [7:0]

Figure 2.6 RC4 PRNG Engine and S-Box

There are two major steps in RC4 PRNG to initiate the S-Box then generate the key
sequence. The first step is called “RC4 Seeding”. In this step, the RC4 PRNG engine uses
the incoming seed to stir the order of number in S-Box.

The algorithm of the “RC4 Seeding” is defined in following Figure 2.7:

Defined:
Key_Length = (bit number of valid Seed) / 8
Key[x]=Seed[x*8+7:x]; where0 X 15

S[y]isthe octets in the S-Box at addressy; where 0 y 255

RC4 Seeding:
For(1=0;1<256;1=1+1)
S[1]=1;
For(1=J=0;1<256;1=1+1)
{

J=J+S[I]+Key[(] modulo Key Length)];

SWAP(S[I1],S[J1]);

Figure 2.7.. RC4 Seeding equation

The second step is “Generate Key Sequence”. The RC4 PRNG engine continuously
generates 8-bit key sequence of pseudorandom octets equal in length to the number of data
octets that are to be transmitted plus 4. In the encipherment process, WEP combines key
sequence with plaintext using bitwise XOR to generate ciphertext. In the decipherment
process, the plaintext is recovered from the same key sequence and incoming ciphertext.

When an octet key sequence is generated, the RC4 PRNG engine stirs the order of
number in S-Box again.

The algorithm of the “RC4 Generate Key-stream” is defined in following Figure 2.8:

10

RC4 Generate Key Sequence :
I =(1+1)modulo 256;
J=(J+S[1]) modulo 256;
SWAP (S[I1],S[J31);

Key Sequence [7:0]=S[(S[I]+S[J]) modulo 256];

Figure 2.8 RC4 Generate Key Sequence equation

2.2 Designing a Reusable WEP IP

In the second part of Chapter 2, our target is to design a reusable WEP IP based on

IEEE 802.11 standard and RC4 algorithm described in the early part of this chapter.

2.2.1 Design Flow

Before to deign a “Build-In"Self-Test.(BIST)’* €ircuit for WEP IP, we must design a
reusable WEP IP based on standards. To finish'a reusable WEP IP, there are some major
steps of design shown in Figure 2.9. In this figure, the EDA tools used for developing the
WEP IP are also shown beside the blocks of steps with blue text [5, 6, 7, 8].

The first step is “specification definition”. Every design needs a target specification to
point out the features and the applications. The detail specification of WEP IP is defined in
Section 2.2.2.

The second step is “RTL coding of WEP IP”. In this step, the architecture and the
block diagram of “WEP IP” are depicted. Because the WEP IP is a synchronous and
synthesizable design, we create the “Register Transfer Level” (denoted by RTL) code in the
“Verilog Hardware Description Language (HDL)”.

The third step is “RTL simulation of WEP IP”. There are two simulation cases to

11

verify the correctness of the WEP encipherment and the decipherment. These simulation

environments and patterns are also created in Verilog HDL. If there are any mismatch or

incorrectness, we will return to step 2 to modify the RTL code and to fix the issue. Please

refer to Section 2.2.4 for the waveforms of simulations.

After all simulations are passed successfully, the RTL code will be synthesized to gate

level netlist with a target process. We use the tsmc 0.35um process in this paper. In this

step, we also do the timing and area optimization with synthesis EDA tools. Please refer to

Section 2.2.5 for the synthesis constraints and results.

]]
]]
]]
i WEP IP i Cadence Verilog XL +
i | Specification i Novas Debussy
: | No
= S ¢
J— a
! .]
i WEP IP ” WRE.FLI P i_| WEP BIST > WEFI:T?_IST
' | RTL Coding | . : i | RTL Coding [: .
: - Simulation ! - Simulation

]
]]
E j=mmmmmmTTmem T 4 Y
! 1
: y i Simulation
: | Waveform
i y i Netlist
! H \i \i
bommmomoooooooo- : Fault Fault Target

‘S.‘y nopsys Coverage Coverage L o ‘% 1?
Design Compiler Analysis
Syntest
TurboFault v1.7

Figure 2.9 The Design Flow of the WEP IP with BIST

When the gate level netlist of WEP IP is ready, we begin to design a BIST circuit for

this IP. The same design flows described below are also followed, for us to create the BIST

module for the WEP IP. Please refer to Chapter 4 for the detail description of the BIST

12

design for the WEP IP.

1. Define the architecture and create the RTL code of BIST.

2.

3.

Pass the simulations of the full IP including WEP IP and BIST.

Synthesize and transfer all RTL codes to gate level netlist.

Simulate and verify the “Fault Coverage” of WEP IP with the gate level netlist
and simulation patterns. The BIST module has to be re-structured and re-deigned

until we get an approved “Fault Coverage”.

2.2.2 Specification

This “WEP IP” is a reusable intellectual proprietary (IP) for IEEE 802.11a/b wireless

network decrypting and encrypting function. Because of the embedded PRNG and CRC-32,

this module can be a platform for “Design for Test” verification of NCTU VLSI Testing

Lab.

The features of this WEP IPare described.in-below:

® A reusable independent“Wired Equivalent Privacy (WEP) decryption and

encryption module for IEEE 802.11 a/b.

Fully compatible IEEE 802.11 a/b WEP specification.

B Embedded RC4 decrypt and encrypt algorithm.

B Supply both 64 and 128 secret keys.

B Built-in one 256 bytes synchronous SRAM for S-Box.

A half-duplex module. Only decrypt mode or encrypt mode can be enabled at a
time.

The maximal operating frequency is 125MHz with 0.35um processing.

The maximal latency to encrypt or decrypt is 6 system clocks. In other words, the
maximal through rate is 166.67 Mbps.

Provide a high performance Built-in Self Test module in this IP.

13

In order to verify this IP with a single chip, we specify a few pin count assignment as
defined in Table 2.1. The last three pins, “BIST_Mode”, “BIST_Good”, and “BIST_End”

are defined for BIST mode. Please refer to chapter 4 for BIST mode.

Name |I/O Function Description
Clock I |System Clock, The maximal working frequency is 125MHz.
Reset I System Reset, Active High, The active width must larger than two clock
periods.
Mode_Sel | I |Mode select signal; 1 : Encrypt Mode, 0 : Decrypt Mode
In decrypt mode, Din[7:0] are the secret key, ciphertext, and the
Din[7:0] | I |encrypted ICV data bus input. In encrypt mode, Din[7:0] are the secret
key, and plaintext input.
Din_STB | | [Input data (Din[7:0]) valid strobe pulse. Active High
Key Sel | I (When “Key_Sel” is active, the “Din[7:0]” is secret key input.
Data Sel | | When “Data_Sel” is.active, the “Din[7:0]” is ciphertext input in decrypt
- mode or plaintextinput imenerypt-mode.
eV sel |1 This signal is only active in decrypt-mode when the ICV data is valid on
- Din[7:0].
Dout[7:0] | O In decrypt mo.de, Dout[70]- are -plaintext output. In encrypt mode,
Dout[7:0] are ciphertext and the encrypted ICV output.
Dout_ STB | O |Output data (Dout[7:0]) valid strobe pulse.
This signal is active when the RC4 seeding is done and the S-Box is
SBox_RDY| O
- ready to generate the key sequence.
In decrypt mode, “WEP_ICV0” is the flag to show the ICV comparing
WEP_ICVo | O |result. In encrypt mode, the Dout[7:0] are the encrypted ICV output when
“WEP_ICVO” is active.
This signal is active when the WEP procedure is stopped with any error.
WEP_ERR | O _ _ . . :
The signal will be cleared automatically while the procedure is restarted.
BIST_Mode| | |Set “BIST_Mode” to enable the BIST mode.
BIST_Good| O |The BIST result, “1” is passed and “0” is failed.
BIST_End | O |The BIST procedure is done when this signal is set.

Table 2.1 The pin description of WEP IP

14

2.2.3 Architecture

Referring to Figure 2.10 “The Block Diagram of WEP IP”, the top level is named
“WEP_IP”. All input signals are at the left side, and all output signals are at the right
side.

There are two major blocks in “WEP_IP”. The green block is a synchronous SRAM
256 X 8. This is an unsynthesisable behavioral model. Being the S-Box of WEP, this
module stores the secret keystream for WEP encryption or decryption. The behavior model
is only for simulation. This module is impossible to be synthesized by the synthesis tools,
such as “Synopsys Design Compiler” at the present stage. In the real chip implementation,
we can use the “Memory Compiler” EDA tools provided by foundries or custom design

circuit and layout to generate this memory macro.

WE P_I P Sync. SRAM 256X8
S-Box
WEP_CORE +
ﬁ Dout[7:0]
Din[7:0] # # WEP_PRNG i L "+ Dout STB
. : » SBox_RDY
Din_STB . ;
Mode_Sel —=—~\wep Rx {}
Key_Sel e] WEP_Icv
Data_Sel - :
: {1~ WEP_ICVo
ICV_Sel s WEP_CRC : -
t 1~ WEP_ERR

Figure 2.10 The Block Diagram of WEP IP

In “WEP_IP”, the yellow block is called “WEP_CORE”. This module is the top level

15

of all synthesizable logic circuits. All input and output signals are also connected with this

module.

We divide “WEP_CORE” into three sub-modules by functions. The first one is named

“WEP_RX”. “WEP_RX” is entrance module of “WEP_CORE”. It manages three major

functions described as follows:

“WEP_RX” synchronizes all external input signals with the internal clock and

transfers them to other sub-modules to avoid all unexpected timing violation in

RTL design, such as metastability violation.

“WEP_RX” also collects the 64/128 bits secret key from the Din[7:0] bus. It will

set a “secret key ready” signal to inform “WEP_PRNG” when received a correct

secret key set.

In “WEP_RX?”, in order to split up the Din[7:0] stream into the key stream, data

stream, a FSM (finite state.machine).is defined in following Figure 2.11.

-

synKeyEn

- synDataEn

Yellow Blocks : Key Stream Input

Green Blocks :

synKeyEn
Kevl |_synKeyEn | KevDI | delay | SetK J
eyin falling eyvly 1cycle EtKey
synDataEn ‘
: [cVENO
Dataln | !synbataEne| \WaitCRC - rxModeSel—» BY=ln —
~IcvEn3
rxlcvSel &
! rxModeSel
prngBusy falling
A
- rxModeSel ? prngBusy
Waitlev | ievsel= PktEnd 77 e oy = ENADIly —
delay 1 cycle
Blue Blocks : Data Stream Input
ICV Stream Input White Blocks : Control Block

Figure 2.11 The FSM of WEP_RX

16

The second sub-module in “WEP_CORE” is named “WEP_PRNG”. As implied in the
name, “WEP_PRNG” is the kernel to generate a pseudo-random number with the RC4
algorithm as defined in Section 2.1.4.

The main FSM of “WEP_PRNG” is defined in Figure 2.12 below.

’—! btMem & &cntl—¢ ¢7
delay 8 : | btMem :.4| MBistFlag : |
m oycles ™ NIt gaent " MEMBIst —" 7> WaitKey —rkeyrdy» ReadSI | s
L!mBistFIag &&cntlJ delay 1
elay
e L cycle

Calc] —1cycle— ReadSJ —1cycle—| WriteSJ —1cycle— WriteSI —

&cntl or btFast

Yellow Block : Green Block : SRAMBIST "7+, Blue Block : @

for (1=0;1<256;1++) for (1=0;1<256;1++) { o for (1=3=0;1<256;1++) {
Si=1; siI=10 =], 3= J+S[1]+Key[1%Key_Length];
Read and-compare; } = =/ . SWAP (S[1], S[II); }
for (1=0;1<286l++) { = 1=3=0;
S[1] =256~ I; o e

1896

Read and_.g:qmpére;"f}"'

L& 1Lk

&entl
or btFast
1 cycle»| 1 cycle»|

dataRdy————»
!

dataRdy 6 cycles = Encrypt/Decrypt Latency 1 cycle

WaitData = else <1 cycle

prngErr or rXEndFlag

1 cycle

Red Block :

I = (1+1) % 256;

J = (3+S[1]) % 256;

SWAP (S[11,S[3]);

Key = S[(S[I] + S[J]) % 256];

Figure 2.12 The FSM of WEP_PRNG

17

The comment text on Figure 2.12 is the equation of the RC4 PRNG algorithm.

In the general function, “WEP_PRNG” will find out the secret key from the S-Box
and generate the encrypted or decrypted data with the input data. For this reason, the other
duty of “WEP_PRNG” is to control the S-Box (a Sync. SRAM 256x8).

The third sub-module in “WEP_CORE” is named “WEP_ICV”. In the decryption
mode (Mode_Sel = 0), the “WEP_ICV” checks the 32 bits ICV input data decrypted from
the “WEP_PRNG” module and set the “WEP_ICV0” signal when the ICV check is
successful.

In the encryption mode (Mode_Sel = 1), the “WEP_ICV” transfers the CRC-32 output
data to “WEP_RX” module. Then, “WEP_RX” transfers this CRC-32 data to

“WEP_PRNG” module to generate the encrypted ICV output data.

2.2.4 Simulation Results
Referring to Figure 2.13, the flowchart in. the-left side is the procedure of WEP

encryption and the comments in the Tight side are conditions of this procedure.

Y
Reset & Encrypt Mode Mode Sel =1
y
Secret Key Input _ . . _
(64/12¢8 bits) Key Sel =1 with Din_STB =1
Wait RC4 Seeding wait SBox_RDY =1
v
. . Data_Sel =1 with Din_STB =1,
Plaintext j Ciphertext Ciphertext ready when Dout_STB
ICV output Icv_Sel =1 with WEP_ICVo, ICV
P data ready when Dout_STB

Figure 2.13 The WEP encrypt procedure

18

As soon as “WEP_RX” receives the complete secret key from the external application
circuit, “WEP_PRNG” processes the “RC4 Seeding” until the “Sbox_RDY” signal is set.
This process takes 1536 cycle time. Setting “Sbox_RDY” means that the process of “RC4
Seeding” is finished and the “S-Box” is ready for encipherment or decipherment process.
For the red blocks in Figure 2.12 “The FSM of WEP_PRNG”, there are six steps to
transfer an incoming plaintext to a ciphertext. For this reason, the latency delay to encrypt
or decrypt a byte is six cycles time. We can find out the encryption procedure and the
timing relationship on Figure 2.14 “The encrypt chart” and Figure 2.15 “The simulation

waveform of encipherment”.

A

Mode_Sel Erorypt Vb

Key Sel

Dot S T e >=2cycles » & |

Din[7:0] [Secret Key Stream | | Plaintext Data Input Stream |

Din STB JLIQII !!IIIIISSIIIIL!L
SBox RDY =200k *lzgjc]g;l =t oo L
Dout{7:0] [Ciphertext Data Output Stream | | ICV Data
Dout STE LI g TITTTTT 1T
WEP ICVo

Figure 2.14 The encryption chart

19

B2 15632 14340 Q&M By [f -+ x 1ns

TR

I LA @ =2

din[7:0]

‘AL
dinfith

TUURHRHRHRHRURLRH AR

LT

| !

B O T L VRO

Figure 2.15 The simulation waveform of encipherment

Like the encipherment procedure, the decipherment procedure uses the secret key to
processes the “RC4 Seeding” until the “S-Box™ is ready. Then WEP decrypts the incoming

ciphertext with the keystream. Please refer to Figure 2.16 “The WEP decrypt procedure”.

Reset & D:crypt Mode Mode _Sel =0
Seggj}f%gyb: Psg’“t Key Sel = 1 with Din_STB
Wait RC4 Seeding wait SBox_RDY =1
o i | S8~ ST
e 10V ItV check corrctl,

Figure 2.16 The WEP decrypt procedure

20

Figure 2.17 shows the decryption chart in an ideal case. Figure 2.18 shows the

simulation waveforms of decipherment

Reset

Mode_Sel Decrypt Mode
Key_Sel
Data_Sel - >=2cycles |
ICV_Sel l—l—
Din[7:0] Secret Key Stream [Ciphertext Data Input Stream [1cV Data |
Din_STB
in_ Ll L1 LLL LIl g DL LIl
S ling - -
>= 2 cycles 1281~1536 >=6 cycles
SBox_RDY < cycles >]
Dout[7:0] [Plaintext Data Output Stream [1cv Data |
Dout_STB
- LI TPyl
WEP_ICVo M
Figure2.17 Thedecryption chart
55 &5 0 Q&YW By|f ~/+>» x1ns

din[7:0]

dinith

dout[7:0]

doutith

weplC¥a

[T T

AR

TP Tl I

| i
|

|
R R SRR U T (TR

Figure 2.18 The simulation waveform of decipherment

21

2.25 Synthesis Results
After passed all simulations in RTL design, we synthesis this WEP IP from Verilog
RTL code to the tsmc 0.35um process standard cell netlist with the Synopsys EDA tool

“Design Compiler”. The synthesis results are described in Table 2.2 below.

Process: tsmc 0.35 standard cell library (cb3505142)

Area: Logic = 4139 gate count (1 gate = 1 2-input NAND cell)
Marco = The synchronous SRAM 256x8

The maximal operating frequency = 125MHz in the worst case

The critical path is the path from SRAM data output to “WEP_PRNG” sub-module.

Table 2.2 The synthesis results of the WEP IP

2.3 Summary

In order to implement our ‘BIST method in a general digital design, we follow the
reuse methodology of VLSI IP to.finish an optimal WEP IP based on the IEEE 802.11
standard. In this chapter, we have described the detail specification, pin assignment,
architecture and the FSM of each sub-module in our WEP IP design. We also go through
simulations and the synthesis to create the WEP IP as a platform for BIST design in our

later thesis.

22

Chapter 3 Traditional Testing Methods for WEP IP

For design or product engineers, how to verify the function and guarantee the quality
of chips is an important topic. There are many theories and methods which such as
functional testing, and scan chain testing can help engineers to verify or test their chips. In
this chapter, we will describe how to use these two traditional testing methods to test the

WERP IP.

3.1 Functional Testing

The first traditional testing method for the WEP IP is “functional test”. A functional
test is used to verify that the model or logic.behavior as it was intended in specifications. A
functional test is application of functionalyoperational, or behavioral vectors to the circuit
under test. If the vectors are not evaluated for their structural coverage, then the vectors are
generally referred to as ‘“design. verification” wvectors. Section 3.1.1 describes the
generating flow of the WEP IP’s functional patterns.

Many designers still rely on functional vectors to accomplish the manufacturing, or
product test. A functional test could be a good choice if the device is small or if the
majority of the functional vectors exist from a previous but similar design. However, there
are several problems with the use of functional vectors for any kind of manufacturing test
on the modern VLSI design.

First, functional vectors are very good for determining behavior, but are not especially
good or efficient for structural verification.

Second, functional vectors must be evaluated to verify the structural fault coverage.
This is an extra and difficult task. In most cases, the fault coverage of functional vectors is

very difficult to achieve the required quality level.

23

Third, functional vector are designed to verify circuit behavior, and they are not as
efficient as “deterministic” structural vectors. In modern SoC and VLSI designs, the test
data volume is becoming a critical issue of the test cost. More test time and on-board
memories are requested to achieve the expected quality [9].

Finally, the tester’s working frequency limits the maximal operating frequency of the
functional vectors. In some cases, an engineer needs more expensive tester to verify his

chips at-speed.

3.1.1 Flow of Function Pattern Generation

As in the description in Chapter 2, the WEP IP is an independent reusable privacy
module and its logic behavior is intended in specifications. Both encryption and decryption
processes were verified in the design stage. We. can transfer the behavioral function

patterns into function vectors. Figure 3.1 shows the total function vectors of the WEP IP.

Q&Y by [T sl «»

Toral Test Cycles = 1274073

Teul Slalus
Signal

Figure 3.1 The WEP IP simulation waveform of functional vectors

24

The first stage of the functional test vector is “Memory BIST” to verify the embedded
256-bytes SRAM. We use some design skills to reduce the extra gate count for the memory
BIST logic. Please refer to Section 3.1.2 for more detailed description.

The second and the third stages are “Encrypt 1” and “Decrypt 1” to verify the
encryption and decryption function with a 64-bits secret key.

In order to achieve the expected quality, the extra “Encrypt 2” and “Decrypt 2” stages
are added into the procedure. Both these two processes are verified with a 128-bits secret
key.

At the last stage “Test Status Signal”, we try to trigger all status output signals with
some expected conditions and function patterns to verify these ports.

Finally, we must collect and transfer these function patterns into the test vectors that
base on the types of test mechanisms. In order to reduce the length of test vectors, the data

compression such as RZI and NRZL.is also necessary.-Figure 3.2 shows an example of test

vectors without compression.

crbdddddddddmkd 1dddddddddwwsm
ksMnnnnnnnnndytvuuuuuuuuuppom
ee01234567SeSaStttttttttEIXE
tm tSeSe01234567SrCRr
belel trvdr
11 b oy

1110000000001000LLLLLLLLLLLLH
1011001000111100LLLLLLLLLLLLH
1011001000101100LLLLLLLLLLLLH
1011110011001100LLLLLLLLLLLLH
1011110011011100HLLHLLLHLLLLL
1011110011001100LLLLLLLLLLLLL
1010000000001100HLLLLLLLLLLLL
1010000000011100HLLLLLLLLLLLL
1010000000001100HHLLLHLLLLLLL
1011001000101100HLHLLLHLLLLLL
1011001000111100HLHLLLHLLLLLL
1011001000101100HHHLLHHLLLLLL
1011110011001100HLLHLLLHLLLLL
1011110011011100HLLHLLLHLLLLL
1011110011001100LLLLLLLLLLLLL

1011000000001100HLHLLLHLLLLLL
1011000000011100HLHLLLHLLLLLL
1011000000001100HHHLLHHLLLLLL
1010000000001100HLLHLLLHLLLLL
1010000000011100HLLHLLLHLLLLL
1010000000001100LLLLLLLLLLLLL
1010000000001000LLLLHHHLLLLLL
1010000000001000HLLLHHHLLLLLL
1010000000001000LHLLHHHLLLLLL
1010000000001000HHLLHHHLLLLLL
1010000000001000LLHLHHHLLLLLL
1010000000001000HLHLHHHLLLLLL
1010000000001000LHHLHHHLLLLLL
1010000000001000HHHLHHHLLLLLL
1010000000001000LLLHHHHLLLLLL
1010000000001000HLLHHHHLLLLLL
1010000000001000LHLHHHHLLLLLL
1010000000001000HHLHHHHLLLLLL
1010000000001000LHHHHHHLLLLLL
1010000000001000HHHHHHHLLLLLL
1010000000001000LLLLLLLHLLLLL
1010000000001000HLLLLLLHLLLLL
1010000000001000LHLLLLLHLLLLL

Figure 3.2 A test vector example without compression.

25

In Figure 3.2, “1”, “0”, or “Z” are the symbols for the inputs when they are “high”,
“low” or “high-impedance” respectively and “H”, “L” or “X” are the symbols for the

outputs when they are “high”, “low” or “unknown” respectively.

3.1.2 Testing for Embedded Memory

In the WEP IP, there is an embedded memory. This section describes how to use the
traditional testing method to verify the embedded 256-bytes SRAM.

In the modern SoC design, the topic of memory testing is not limited to just testing the
embedded memory by using a tester. Three common test methods can be applied to verify
the embedded memory. These test method options are: Embedded Microprocessor Access;
Direct Memory Access by Tester; and Memory Built-in Self Test (MBIST). Each of these
methods has trade-offs that involve:'cost-of-test, chip area, chip pin requirements,
chip-level timing and chip power:requirements [9].

In our design, we implement an MBIST into the WEP IP to verify the embedded
SRAM. Considering the extra area’overhead, we prefer the “MATS” [10] algorithm and try
to combine the MBIST controller with the original logic.

As everyone knows, the “MATS” is the simplest algorithm to verify a memory. The

“MATS” algorithm is described as follows:

{TWO: TRO,WI1; TR} 5)

Every cell of the memory is written both value “0” and “1” and is read and verified. So
the “MATS” can verify all stuck-at faults (SAF) in memory cells and some address decode
faults (AF). The complexity of “MATS” is 4n. In our design, we need extra 1024 cycles to
test the embedded 256-bytes SRAM with the “MATS” algorithm.

In order to reduce the extra area and test time in MBIST, we try to combine this
“MATS” algorithm with the original logic. First, we review the formula for RC4 described
in Section 2.1.4. The first step of “RC4 Seeding” is defined as follows:

26

For(1=0;1<256;1=1+1)
S[I]=1, (6)

We can transfer equation (6) above into equation (7) below.
{ © (W(Address)) } (7

If we hope to combine the “MATS” and “RC4 Seeding” algorithm to reduce the extra

gate-count and test time, we must add equation (8) below into our MBIST procedure.
[T W({Address)) ;) ®)

Because the address range of the WEP IP’s embedded 256-bytes SRAM is from 00h to
FFh, we can use the same 8-bit address counter to generate both address and data for the
test algorithm. Then, we can re-define'the “MATS” MBIST algorithm as the following

equation (9).

{1 (W (Address)); 1(R (Address)); T (W (Address)); 1 (R (Address)); } (9)

T
Eq. (7)

In equation (9) above, we can find equation (7) that is described in the red text. So, we
can merge the “MATS” and the FSM of RC4 PRNG to save test time of equation (7). By
the way, we can reuse the same address counter that originally existed in “WEP_PRNG”
module to generate the test address and data for the “MATS”. As shown in Figure 2.12, the
“Memory BIST” state is inserted between the “Initial” and “Wait Secret Key” state. In
order to avoid the redundant MBIST process, we also create a status signal “mBistFlag” to
record the MBIST procedure. If this status signal is set, the FSM will bypass the “Memory
BIST” state to guarantee that only one MBIST cycle will be done.

In summary, this MBIST algorithm is good to save extra gate-count and test time.

There are only 284 gates extra to build up this “MATS”-comparable MBIST in the WEP IP.

27

However the low fault coverage of the “MATS” algorithm is its drawback. We will
re-design a “14N MARCH C+” MBIST into our WEP BIST that will be described in

Section 4.2.4.

3.1.3 Fault Coverage Results

As described in Figure 2.9 “Design Flow of WEP IP with BIST”, we used the EDA
tool “Syntest TurboFault” [8] to fault simulate the WEP IP with the patterns described in
Section 3.1.1 to evaluate the fault coverage. The fault coverage report for those functional

test vectors are shown in Table 3.1.

Item Number Percentage
Optimal Fault Coverage -- 92.69 %
Total Faults 13042 100.00 %
Hard Detected Faults 11106 85.16 %
Probably Detected Faults 983 7.54 %
Undetected Faults 950 7.28%

Table 3.1 WEP IP fault coverage report with functional test vectors

The total testing time is 12203 clock cycles. In other words, if the tester operating
frequency is 10MHz, it will take about 1.22 ms to finish the procedure. The total gate count
IS 4454 gates. To compare the gate count with the WEP IP gate count described in Table
2.2, the area overhead is 315 gates, almost 7.07 %. The extra gate count was caused of the
MBIST controller described in the last section.

In order to improve the fault coverage, additional functional patterns such as “Encrypt

2” and “Decrypt 2” must be included.

28

3.2 Test Method by Scan-Chain

Because “higher frequency”, “higher pin-count”, “higher levels of integration”, and
“higher complexity” drive up the cost of the test platforms required to test modern chips,
the scan-based testing is famous in modern SoC design. Today, there are many EDA tools,
which can help designers to insert scan-chains and generate effective vectors for their chips.
So we use the Syntest’s EDA tool “TurboScan” [11] to generate the scan-chain in our WEP
IP and discuss the advantages and disadvantages in different design styles.

For an embedded module or IP in a SoC design, there are many testing problems,
which must be solved when a scan-chain is to be inserted into this IP.

1. If the IP is a black-box and hard-macro, end-users can not directly control and

observe the internal nets of the embedded module. It is impossible to verify this
IP with scan-chains to getits fault.coverage report.

2. If the IP is a firm=macro, 1.e.-a pure gate-level netlist, end-users cannot

re-synthesize and insert the scan-chains because of the timing issues.

In next sections, we will describe and" analyze the three scan-chain methods

implemented in the WEP IP.

3.21 ATPG with a WEP Hard-Macro

What is a hard-macro? A hard-macro is a black-box in VLSI design that end-users can
not control and observe its internal nets and can not insert the scan-chain into these
unknown logic. The IP provider can provide a hard-macro IP with local scan-chain. But
there are many uncontrollable parallel inputs (Pl) and unobservable parallel outputs (PO)
in the hard-macro IP, as described in Figure 3.3 below. Unfortunately, these uncertain Pl

and PO will cause low fault coverage as shown in Table 3.2.

29

SI [1] —

=

SI [2] —

Test Mode —»

Scan_Enable —»

-
Pioe
-

Local
1Scan-Chain

-~

A SoC Design with Scan-Chains

» SO [1]

> SO [2]

WEP Core

NS
~
~
Ss
~

UG

Embedded 256x8 SRAM

Figure 3.3 Local Scan-Chain in a Hard-Macro IP

—~—aa==="

Fault Coverage 79.49 %
Total Gate-Count 4836
Area Overhead 14.41 %

Test Patterns 66
Chain Length 305
Estimated Cycles 20632

Table 3.2 Fault coverage report of the Hard-Macro WEP IP

30

3.2.2 ATPG on WEP IP without Memory Wrapper

If we provide the WEP IP RTL code or the gate-level netlist to end-users, the end-user

can implement his scan-chains into all logic including “WEP_CORE”. Because the WEP

IP includes an embedded memory array, the memory looks like a large “blocked area”

within a scan logic test area. Everything in the downstream of the memory may experience

a loss of controllability because the output from the memory array is unknown.

SI[1] —

=

SI [2] —

Test_Mode —» |

Scan_Enable —»

()

>|

1

A SoC Design with Scan-Chains

» SO [1]

) o

SI [3]

4=

WEP Core

» SO [2]

» SO [3]

> o

Figure 3.4 ATPG on WEP IP without Memory Wrapper

31

Please refer to Figure 3.4 above, we can find that all signals connected with the
embedded SRAM are uncontrollable and unobservable. If we leave this large “blocked

area” in the WEP IP, the low quality fault detection is expected as Table 3.3.

Fault Coverage 90.22 % Test Patterns 87
Total Gate-Count 4836 Chain Length 305
Area Overhead 14.41 % Estimated Cycles 27100

Table 3.3 Fault coverage report of the WEP IP without Memory Wrapper

3.2.3 ATPG on WEP IP with Memory Wrapper

In order to get as much coverage of the area between the scan architecture and the
memory test architecture, several methods are used-for the interaction of a memory with a
general chip scan logic. The most general method is to insert a memory wrapper to isolate

the “blocked area” from scan-chains, as-illustrated in Figure 3.5 [9].

L Scan Out

| DatalIn — Din
/|

[v}-

™ Dout ata Ou
r Memory
[_Ad Iress — '\ Addr Array
™ L In
I ATPG

[Control — RD/WR
; /|

Scan In —]

Figure 3.5 Memory Wrapper in ATPG

32

In modern digital design methods, most ATPG EDA tools have the ability to handle
memory interaction automatically. In our WEP IP, we try to insert the memory wrapper by
designing some extra circuit to string the inputs and outputs of the embedded SRAM as
described in Figure 3.5. There are totally 25 flip-flops and 25 multiplexers for the memory
wrapper. In order to isolate the memory macro from the scan-chain, these unavoidable
wrapper cells are the extra area overhead. The fault coverage report of the ATPG with the

memory wrapper is described in Table 3.4.

Fault Coverage 98.91 % Test Patterns 101
Total Gate-Count 5124 Chain Length 330
Area Overhead 19.22 % Estimated Cycles 33962

Table 3.4 Fault coverage:report of the WEP IP with Memory Wrapper

We get an exhilarating fault coverage-report with this ATPG method. The area
overhead is 19.22% because the total gate-counts of the WEP without MBIST are only
4139. If we only consider the area overhead of the scan-chain and memory wrapper in this
design, the original gate-count of the “WEP with MATS MBIST” is 4423. So, the pure area
overhead of the scan-chain with memory wrapper is almost 14%. In summary, for a small

design, the ATPG area overhead is appreciable.

3.3 Summary

Usually, designers do not pay much attention to take care the testing issues during the
design phase. They always try to finish their design on specification and on schedule then
leave these testing problems to functional vectors or ATPG EDA tools. Undoubtedly, most

ATPG EDA tools can handle the full-chip scan smartly and effectively. Here scan vectors

33

are more efficient than functional vectors, and a higher fault coverage report can be
obtained.

However, the full scan still has some disadvantages and limitations as follows.

1. The scan method cannot reach an embedded “blocked area”, such as embedded
memories and a hard-macro IP.

2. A designer must handle the clock skew issue on the scan clocks when the scan
clocks string many different clock domains. An extra effort and extra area
overhead should be paid to fix these timing violations caused by these different
clock delays.

3. In order to reach the quality level fault coverage, the number of ATPG patterns
and the testing cycles are appreciable. For an IP design, it is impossible to prepare
a larger of memory to store:these test vecters in the built-in self test circuit. This is

why we try to design a BIST module in the WEP IP without any memory storage.

34

Chapter 4 A Built-In Self Test Design for WEP IP

Because there are many disadvantages and limitations when implementing an effective
testing method into the independent IP, we would like to design a BIST circuit to qualify

the WEP IP.

4.1 Features

Refer to the disadvantages and the advantages of the traditional testing methods
described in Chapter 3, we work out the features of the BIST module as follows.

1. This BIST module can provide the high fault coverage for our WEP IP. The
target fault coverage value is 99%.

2. It provides an at-speed testing method.to detect delay faults in circuit. The target
operating frequency is:125MHz in.0.35um process.

3. Only a few of extra pin-must be provided for the BIST module. In other words, a
friendly interface is necessary:

4. The BIST module will generate the testing patterns and check the correctness
automatically. There is no extra memory to store the vectors.

5. Use the least pattern to meet these features above.

6. Use the least extra gate-count to create this BIST module.

4.2 Description of the BIST for WEP IP

In this section, we describe the general idea and the method of the BIST design.
4.2.1 Architecture
Referring to Figure 4.1 below, the general idea of the testing method is to design an

extra external BIST module to generate and multiplex the input signals that are transferred

35

to the WEP IP. The BIST module not only generates and feed the testing vectors into the
WEP IP, it also collects and calculates the output signals from the WEP IP to verify the
checksum value. If the calculated value matches with the golden pattern that was stored in
the BIST module, the “BIST_Good” signal will be set to show the result.

In Figure 4.1, the top module is named “weptop”. The “weptop” includes three
sub-modules, the “WEP_IP” (wepip), the “WEP_BIST” (wepbist), and the “WEP BIST
Clock Controller” (wepbtclk). The WEP IP was introduced in Chapter 2. In the next section,
we will give a detailed description about the “WEP BIST” design. The major function of
the “WEP BIST Clock Controller” is to disable the clock source to save the power in the

normal mode. We will describe this module in Section 4.3.1.

Output Signals

A weptop
bist Mode ~ wepbtclk wepip Sync. SRAM | |
: 256 x8 | |
Y V¥V i iE i
wepbist § wepcore i
wepcrel6 i wepprng wepicv '
__Golden Pattern H !
Input Signals #‘ # i
b J i wepcrc i
istEnd = - — weprx !
wephc | P ;
bist Good - i i

Figure4.1 The block diagram of the WEP IP with the BIST module

Figure 4.2 describes the data flow of the “WEP_IP” in the normal operation mode
(bist_mode = 0). “WEP_BIST” bypasses the input data and does not cause any influence

on the WEP_IP’s function during the normal operation mode.

36

bist_mode =0 ——»{ wepbtclk

SSRAM256x8
1 1 0

; btR|eset bt(|:Ik bistE|nabIe E @
B,

|
| |
Normal Data In | : > :
|
|
¥ wepcore

]
]
]
|
]
]
bist_End =0 <—i—— wepbc:{>
]
]
]
]
]
]
]

R — —
bist_Good = 0 «—1—— wepcrcl6 < X |] > Normal Data Out

Figure 4.2 The WEP IP data flow in the normal operation mode

Figure 4.3 describes the data flow of “WEP IP” in BIST mode (bist_ mode = 1).
“WEP_BIST” generates all inputs of “WEP _IP”-and compares the outputs from

“WEP_IP” with a golden checksum which is stored in “WEP_BIST”.

! R [
i wepip
bist_mode =1 ——+» wepbtclk | P
! |
i o LA 1 : SSRAM256x8 : i
N ’ i
|) H .
: btReset btClk bistEnable : : :
N T 2 B : o
] 1] ' "]
P ! o
Normal Data In | ! ! i
] 1 H]
] 1 H]
i wepcore oy
. |
! 1
bist_End = 0 -> 1 <—i—:— | i
! |
i o
! o
]

bist_Good = 0 -> 1 «—1—— wepcrcl6 Normal Data Out

Figure 4.3 The WEP IP data flow in BIST operation mode

37

4.2.2 Testing Method

In this section, we focus on the function description of the WEP BIST method. The
general idea of the BIST module is to design an automatic functional patterns generator to
feed the WEP IP with some expected vectors. At the same time, this BIST module checks
the output signals from the WEP IP then exports the testing result. In order to generate the
testing vectors and ensure the normal functions, we design many multiplexers to select the
WEP IP’s input data between the normal signals and the BIST vectors. Please refer to
Figure 4.4 below. While the “BIST_Mode” signal, described in Table 2.1, is set, the “WEP
BIST Clock Controller (wepbtclk)” sets the “bist_Enable” signal to active the select signal
of the multiplexers in “WEP_BIST” module. The WEP_IP’s input signals will be switched

from the normal input signals to the functional vectors that are generated by “WEP_BIST”

module.
< din[70] | :>
modeSel > > btDin[7:0]
keySel >
External . dataSel > 0 » btModeSel
Controller ! icvSel >
| dinStb > » btKeySel
bist_End <« bcDin[7:0] > » btDataSel
.. bist_Good —bcModeSel> | » btlcvSel
IS —bcKeySel—»
VEIB‘eIFS)E?C —nbcDataSel— » btDinStb !
Controllen)| DIV WEP_IP
——bcDinStb—»|
| bist_Enable—» > btMask
i = » btMem
Wepb'[C|ki bt Clk » btFast
BIST Clock - «—— prngBtMemErr
Controller ! Y
i bt Reset —» 4 —)
RN Wepcrc16 dOUt[70] I
(BIST CRC'16) \,7 debugBus[7:0] i
WEP_BIST

Figure 4.4

The multiplexers of the WEP BIST

38

In Figure 4.4, there are two sub-modules. The first one is hamed “wepcrcl6”. This
sub-module collects and compares the signals from “WEP_IP”. In order to reduce the
length of the golden patterns, a CRC-16 algorithm is implemented in this design. The
initial value of this CRC-16 is “4ABAh”. Equation (10) is the polynomial of this CRC-16
algorithm.

G(x)=X"®+ X2+ X>+1 (10)

For more detail descriptions and aliasing analysis of the CRC-16, please refer to
Section 4.2.5 below.

The other sub-module in “WEP_BIST” is “wepbc”. The “wepbc” is abbreviated from
“WEP BIST Controller”. This sub-module controls and generates the functional vectors to
feed “WEP_IP”. How does the “WEP BIST Controller” generate the expected function
vectors to achieve the quality fault coverage? Because there are many finial state machines
(FSM) in the module under test-“WEP_IP”, we must generate some valid vectors in the
correct sequence to trigger and-go through-these FSMs to obtain the comfortable fault
coverage. For this reason, we design a.complicated FSM in the “WEP BIST Controller”
sub-module to generate the expected control signals for “WEP_IP”. There are total 34
states in this FSM and the functional testing covers the encipherment, decipherment and
the error signal testing. We will describe the FSM in Section 4.2.3.

About the input data for the “Din[7:0]” bus of “WEP IP”, we reuse the 8-bit counter
that is to count the bytes number of patterns to generate the “Din[7:0]” input vectors. In
order to verify both the stuck-at-one faults and the stuck-at-zero faults in the CUT, we use
the complementary patterns in the encipherment and decipherment testing modes. In other
words, the “Din[7:0]” is from “00h” to “FFh” in the encipherment mode and from “FFh” to
“00h” in the decipherment mode. With this method, we can reduce the extra area of

“WEP_BIST” and obtain the acceptable fault coverage.

39

4.2.3 Testing Flow
In this section, we will describe the testing flow of “WEP_BIST” and the main FSM
of the “WEP BIST Controller”. First, please refer to Figure 4.5 below. This is the

simulation waveform of the full chip during the BIST mode.

as o8 | B BE70) 0 2 W By f v+ ® 1nig

Total Simulation Cycles = 3870

Hlatuz Signal
Testing

Memory BIST March-C 14N

I . 6 @)
Deciypl Mode
Encrypt Mode

Figure 4.5 The WEP IP simulation waveform during BIST mode

Although there are 34 states in the FSM of the “WEP BIST Controller”, we can
classify them into four major procedures, “Memory BIST Mode”, “Encrypt Mode”,
“Decrypt Mode”, and “Status Signals Testing Mode” as illustrated in the Figure 4.5. In
order to create the valid waveform to trigger the FSMs of “WEP IP” sequentially, we
design a complex FSM in the BIST controller. Figure 4.6 shows this FSM on the next
page.

The first procedure is the “Memory BIST” state. In this procedure, “WEP_IP” enters
the MBIST mode and verifies the embedded 256-bytes SRAM with “14N MARCH C+

MBIST” algorithm. About this MBIST module, it will be described in next section.

40

=

BIST Mode =1
3 v
Memory BIST il

ﬁpass
2.

Encrypt Mode

l fail
3.

Decrypt Mode (BIST Pass)
.

Status Signals
Testing

CRC-16 Check pass

Figure 4.6 The Major FSM of the WEP BIST Controller

The second procedure is the “Encrypt Mode”. The “WEP BIST Controller” generates
the valid control signals and data by the sub-FSM that illustrated in Figure 4.7(a.) below.
These signals test all circuits and FSMs that are related to encryption process in
“WEP_IP”.

The third procedure is the “Decrypt Mode”. Like “Encrypt Mode”, the “WEP BIST
Controller” generates the valid signals and data to trigger all related circuits in “WEP_IP”.
The sub-FSM of “Decrypt Mode” is illustrated in Figure 4.7(b.). There are some different
points, which must be highlighted in the “Decrypt Mode”. First, the input patterns on the

41

“Din[7:0]” bus between the “Encrypt Mode” and “Decrypt Mode” are complementary.
Second, we insert a control signal to speed up the procedure in “Decrypt Mode”. This

“speed up mode” will be described in Section 4.3.2.

Memory BIST Mode

Encrypt Mode

128-bits secret key ¥ 128-hits secret key
) FO, E1, D2, C3, B4, A5, 96, 87,
= Enerypt Key OF, 1E, 2D, 3C, 4B, 5A, 69, 78, | Decnt Key e e an B J 0 0
No 87, 96, A5, B4, C3, D2, E1, FO No T T mm e
16 Bytes 16 Bytes "btFast" shorten the test time of
"RC4 Seeding"
Test Patterns :
> Encrypt Data OF, 1€, 2D, 3C, 48, 5A, ... EL F0 | [>| Decrypt Data st Patterns -
No Total 128 Bytes No FO, E1, D2, C3, B4, 69, 5A
128 Bytes 124 Bytes Total 124 Bytes
. Enable "btFast" speed up the)
™ Wait ICV test time in Decrypt Mode. ™ Sent ICV Expected ICV : AE, 76, 4F, C7
No No
<Wait R
v v
Decrypt Mode Status Signal Test
(a.) (b.)

Figure 4.7 The sub-FSM of Encrypt Mode (a.) and Decrypt Mode (b.)

The last procedure is the “Status Signals Testing Mode”. There are many status
signals to inform the end-users in “WEP_IP”, such as “WEP_ERR” output. The “WEP
BIST Controller” generates some specific conditions to active these status signals. The
purpose of this procedure is to enhance the fault coverage by verifying some corner cases
in “WEP_IP”.

The following Figure 4.8 shows the relationship between the FSM of WEP BIST
Controller and WEP RX described in Section 2.2.3. In Figure 4.8, the first line (blue line)
is the data path of the “Encrypt Mode”, the second one (red line) is the “Decrypt Mode”,
and the last line (green line) is the “Status Signals Testing Mode” in the FSM of

“WEP_RX”. We can find that all states of the WEP_RX’s FSM are verified by the three

42

procedures.

v
JI'J—KeyTn—' —___ " ReyDly ——— SetHy
| L | | I
| |
Y,
> Dat!i'rn ——— > WalfCRC » IcvEnO ~IcvEn3
I —‘
Y h
Wticy (== PKET ——— —=‘EndDIy'T
Encrypt Mode
Decrypt Mode —_——_——-

Status Signal Test

Figure 4.8 WEP BIST Controller’s FSM vs. WEP RX’s FSM

4.2.4 Embedded 14N March €+ for-Embedded Memory

In “WEP_IP”, there is an embedded memory macro, a synchronous 256-bytes SRAM.

The die area of this 256-bytes SRAM is almost equal to the die area dedicated to the logic.

Therefore, the memory array is more sensitive to defects. There is a higher probability that

the random defect content will land on and will have a deleterious effect on the memory

array rather than the general logic.

In Section 3.1.2, we described the special “MATS” MBIST algorithm that used in the

traditional memory test. This special “MATS” algorithm can be combined with the original

FSM of “WEP_PRNG” to reduce the extra gate-count and testing time, but its low fault

coverage, only all stuck-at faults (SAF) in memory cells and some address decode fault

(AF), is its deadly disadvantage. In order to get a quality level MBIST in our WEP IP, we

replace the “MATS” with the “14N MARCH C+” MBIST algorithm.

43

The “14N MARCH C+” MBIST algorithm is defined as follows [9]:

{1t (w0); T (rO,wl, r1); T (rl,w0,r0);

L (ro,wl,rl); ¢ (ri,w0,r0); ¢ (r0); 1} (11)

This “14N MARCH C+” algorithm can detect stuck-at faults, bridging faults, address
decode faults, data decode faults, transition faults, and access time faults. Its test
complexity is 14n. In our WEP IP, it takes extra 3584 cycles to test the embedded
256-bytes SRAM. It occupies almost 40% of all BIST cycles (8870).

What is the area overhead of this “14N MARCH C+” in the WEP IP? In order to
reduce the extra gate-count to implement this MBIST, we do our best to combine the
MBIST logic with the original circuit. Because the WEP function is halted during the
MBIST mode, we can reuse the 8-bits:countersin the “WEP BIST Controller” module to
generate the address and data to-test the memory. The extra area overhead are one FSM
with 16 states to manage the procedure of the “14N MARCH C+” and some multiplexers
to arbitrate the data and address bus between the MBIST and the normal mode. The extra
gate-count is about 180 gates.

Compared with the “MATS” algorithm described in Section 3.1.2, the “14N MARCH
C+” has a higher performance to test this embedded SRAM. For this reason, we modify the

architecture and replace the “MATS” with “14N MARCH C+” in our WEP BIST design.

4.2.5 The Golden Checksum by CRC-16

Reviewing Figure 1.2 illustrated in Section 1.2, we find that the BIST architecture
includes the output response analyzer (ORA) to collect and check the output responses of
the circuit under test (CUT) into some type of Pass/Fail flag. It is impossible to compare
the outputs of CUT bit-by-bit with the golden patterns that are stored in a huge memory. In

our design, we try to compact all outputs from CUT with a well-known algorithm,

44

“CRC-16". The CRC-16 generator polynomial is described as follows:
G(X)=X"®+ X2+ X>+1 (10)

The initial seed of this CRC-16 algorithm is “4ABAh”. We can reduce the length of
the golden pattern to 16 bits with this method.

How the 16-bits golden pattern is generated? First, the “WEP BIST Controller”
collects all output signals and some internal signals of “WEP_IP” and compacts them into
16 bits with XOR algorithm. Second, the CRC-16 module in “WEP_BIST” calculates with
every 16-bits pattern and updates the checksum in every clock period. After going through
the all test flow described in Section 4.2.3, we can get the golden value at the last
simulation cycle with Verilog_XL. Then, we program this golden value into our circuit. In
the general BIST mode, “WEP_BIST” compares the checksum that is generated by the
CRC-16 module with the golden pattern that is stored in the circuit to indicate a Pass/Fail
output.

Is there any risk in the CRC-16 compression? The answer is “Yes”. Unfortunately, it is
possible that a signature of a bad machine may.match the good machine signature, which is
called aliasing. In such cases, a failing circuit will pass the testing process. Aliasing is
always a problem with compaction because information is lost. For now, we try to analyze

the aliasing probability with two experiments and simulations.

1. Aliasing Analysis with C Language:

We create a CRC-16 behavioral model in C language and generate a lot of testing
vector sets randomly. The length of each testing vector set is equal to the pattern length of
the WEP BIST design. Then, the CRC-16 behavioral model will generate the checksums
with these testing vector sets. We can compare these checksums with the golden pattern to
calculate the aliasing probability. The aliasing probability of the experiment is
34/2,500,000 (1.36 X 10-°).

45

2. Aliasing Analysis with Verilog Simulation

Like the method above, we create a test bench to analyze the aliasing probability of the
CRC-16 in Verilog language. This test bench generates many testing vector sets randomly
into the CRC-16 module to calculate and check the checksum. The aliasing probability of
this case is 17/1,310,720 (1.30 X 10).

In these experiments, we find that the aliasing probability is unconcerned with the
length of test vectors. The aliasing probability is less than 2° (1.52 X 10°), the aliasing of

LFSR-16.

4.3 Other Special Skills

To consider how to design a high performance BIST module with high quality level,
low power consumption, low area overhead; less testing time, and the self-test structure,
there are many special skills that-are implemented in our WEP BIST design. The following

sections will describe these skillsthat are used-in our-design.

4.3.1 Power Down Mode

In general, the BIST module is only operated during manufacturing, not in the normal
operation. But, the power consumption of these extra cells for BIST is usually unavoidable
even in the normal operation mode. In order to reduce the dynamic power consumption in
the normal operation mode, we design a clock controller to mute the clock source and
activate the reset signal of those BIST cells.

In order to avoid the clock glitch when the operation mode switched, we also take care
of the gating clock circuit. Figure 4.9 shows the diagram of the gating clock circuit and the

waveform in the “WEP BIST Clock Controller (wepbtclk)”.

46

bistEnable

btReset

bistMode «t

I

i?ﬁ

btClk
clk
bistMode ___ | |
a | L
btReset | —
biClk B e e B e

Figure 4.9 WEP BIST Clock Controller circuit and waveform

Finally, the WEP Clock Controller will generate a reset pulse to initiate all FSM and

all flip-flops in “WEP_IP”” while-the BIST procedure is done.

4.3.2 Speed Up Mode

In the general functional testing, to design a speed up function to reduce the testing
time is very popular. Review the WEP’s RC4 PRNG algorithm described in Section 2.1.4,
the “RC4 Seeding” process always takes 1536 cycles to stir the order of number in S-Box
whether it is in encryption or decryption. Because this “RC4 Seeding” is a routine
procedure to access the embedded 256-bytes SRAM, we try to reduce this process with a
speed up mode.

We design a speed up flag in the “WEP BIST Controller” to achieve this purpose. In
the FSM of the “WEP BIST Controller”, this speed up flag will be set while the encryption
process is done to declare the “Speed Up Mode”. In the next procedure, decryption process,
its test cycle of “RC4 Seeding” will be shortened into 273 cycles. Reviewing the “WEP
simulation waveform in BIST Mode” illustrated in Figure 4.5 above, we can find the

47

influence of the speed up mode.

Does the speed up mode influence the fault coverage? The answer is “Yes”. Only a
few nodes cannot be detected while the speed mode is implemented. The influence on fault

coverage is less than 0.2% in our project.

4.3.3 Internal Multiplexers

The test patterns that are generated from the FSM of the “WEP BIST Controller” are
similar to the functional testing vectors, not the structural vectors. It is difficult to improve
the fault coverage into 100% by modifying the FSM. After check the fault coverage
analysis report, we find that most undetectable faults are in the deep internal nodes. For
example, in Figure 4.10 below, there are many signals that are through the “flip-flop 1” or
the “flip-flop 27, and these internal.nodes are usually difficult to be observed at output pins.
The fault coverage is hardly to-be_improved.because the testing vectors are difficult to

propagate these internal signals to the dimited.output pins.

R B R S P
1| % 2 |4

-
.

Difficult to observe these faults on outputs

Figure 4.10 The internal faults on a normal design

For the reason, we design some internal multiplexers into the WEP IP to extract and

propagate these hard detectable signals to the output pins, as illustrated in Figure 4.11

below.

48

|n|out1=..2=..3_L

Output

Jaxapdniny
[eusa1u]

Time Slot Selectorr in Test Mode

Figure 411 The circuit with the internal multiplexer

In order to observe more internal signals during the BIST period, we separate the BIST
period into several time slots. In the method, we can trace the best node point at the best
time point.

These internal multiplexers improve the ‘fault coverage, unfortunately, but increase

some extra gate-count. This is a trade-off depended on the specification and requirement.

4.3.4 Self-Test of BIST for WEP IP

We usually are questioned, “how to verify your BIST circuit?” The BIST of a BIST is
always a problem to perplex the testing engineers and circuit designers. We are troubled
with the same problem. In this section, we try to claim some solutions about the self-test of
the WEP BIST module.

1. Unavoidably, any defect in the WEP BIST module will cause the BIST process
to fail except the stuck-at one fault at the “BIST_Good” output signal.

2. In order to verify the stuck-at one fault at the “BIST_Good” output signal, the
WEP BIST Controller will drive zero at this output when both the “Reset” and
“BIST_Mode” inputs are active. Under this condition, all FSMs in our design
will be disabled and end-users can check the “BIST_Good” stuck-at one fault

on their application circuits.

49

Another problem is on the “BIST_End” output. If there were a stuck-at zero
fault at this output, end-users would never know when the BIST procedure is
done? To solve this problem, we suggest end-users to implement an extra
watchdog timer on their system or the ATEs to monitor the BIST procedure. If
the “BIST_End” was not active for an overcounted period, the BIST would be
aborted because of a stuck-at zero fault at “BIST_End” output.

The last issue is how to verify the input ports in the BIST mode? In the BIST
mode, normal input signals will be blocked by the BIST pattern as illustrated in

Figure 4.12. We are unable to detect the stuck-at faults on these inputs.

“ND
e
/

Inputs [

> Outputs

o
7
_|
<
o
Q
3]
n
N

Figure 4.12 The undetectable faults on normal input ports

In order to verify these input ports, we try to create a bypass mode to propagate
the status of all inputs to the output ports. Please refer to Figure 4.13 below. First,
we create a bypass signal from “Reset” and “BIST_Mode”. During this bypass
mode, (both “Reset” and “BIST_Mode” are active), end-users can propagate the
status from all inputs to all outputs. Table 4.1 lists the mapping table of the all

inputs versus all outputs under the bypass mode.

50

N
Reset=1 —l—— |
BIST Mode=1—7—— / |
|
| |
| I
I Outputs
Inputs | ,
: # WEP :
. | WEP IP |
| | BIST |
I BIST Mode = 1
|
| |
| I
| I
Figure 4.13 The data flow in the bypass mode
Inputs Outputs
Din [7:0] Dout [7:0]
Din_STB Dout STB
Data_Sel WEP_ERR
ICV_Sel WEP_ICVo
Key Sel Shox_RDY
Mode_Sel BIST_Good
BIST _Mode BIST End

Table 4.1 The inputs vs. outputs mapping table in the bypass mode.

Note: Please refer to Table 2.1 for the detail pin descriptions.

51

4.4 Experiment Reports

We had presented the design flow and the experiment environment in Section 2.2.1.
This section describes the simulation results of the “WEP IP with BIST”.

4.4.1 Synthesis Results

We synthesize the “WEP IP with BIST” from Verilog RTL code to the tsmc 0.35um
process standard cell netlist with the Synopsys EDA tool “Design Compiler”. The

synthesis result is described in Table 4.2,

Process: tsmc 0.35 standard cell library (cb350s142)
Area: Total Logic = 5293 gate count (1 gate = 1 2-input NAND cell)
Where: WEP_Core = 4651 gate count
WEP_BIST = 642 gate count
WEP_MBIST = 346 gate count
Marco = One synchronous SRAM 256x8

The max. operating frequency = 125MHz in the worst case.

Table 4.2 The synthesis result of the WEP IP with BIST

If we calculate the area overhead directly, the value is equal to 12.13%.

642/ (4651 + 642) X 100 % = 12.13 % (12)

Comparing the logic gate-count of the WEP IP with the value in Table 2.2, we find
that the increased area of the WEP IP is due to the internal multiplexers and the “14N
MARCH C+” MBIST circuit. So we recount the area overhead in the worst case. The area
overhead is equal to 21.8 % where the value “4139” is the original logic gate-count of the
WEP IP that was presented in Table 2.2.

(5293 — 4139) /5293 X 100 % = 21.8 % (13)

52

4.4.2 Fault Coverage Results

As described in Figure 4.1, “WEP_BIST” generates some test vectors to verify

“WEP_IP”. Because the embedded synchronous SRAM is a macro and can be verified by

the “14N MARCH C+” MBIST, we only calculate the fault coverage of “WEP_CORE”

with Syntest’s EDA tool “TurboFault”.

The fault coverage report of “WEP_CORE” is described as follows.

Item Number Percentage
Optimal Fault Coverage -- 95.97 %
Total Faults 14336 100.00 %
Hard Detected Faults 12715 88.69 %
Probably Detected Faults 1043 7.28 %
Undetected Faults 575 4.01 %

Table 4.3 The fault coveragereport of WEP IP with BIST

The total testing time is 8870 clock cycles. It is less than the testing time of the

functional vectors (12203) and the ATPG patterns (33962). If the operating frequency of

this “WEP_IP” is 125MHz, it will take only 70.96us to finish the BIST and the “14N

MARCH C+” MBIST procedures. Meanwhile, the at-speed testing can verify all delay

faults in the WEP IP design.

53

45 Analysis and Discussion of BIST for WEP IP

In this section, we will analyze the fault coverage reports of the all sub-modules in the
WEP IP and discuss the improvement history of the fault coverage reports in order to find

out the limitation of our WEP BIST design.

45.1 The fault coverage of sub-modules

Unfortunately, the finial fault coverage is only about 96% that fails to meet our target
fault coverage, 99%. We try to find out some solutions by analyzing the fault coverage of
each sub-module. With this method, we can improve the worst sub-module by upgrading
the test patterns in the WEP BIST design and then propagate those signals to the output
ports of the WEP IP with some internal multiplexers.

The following Table 4.4 lists the sfault=coverage and gate count reports of all

sub-modules in the “WEP_CORE”.

Fault Coverage | Gate Count |Area Percentage
WEP_RX 93.85 % 1585 34.08 %
WEP_PRNG 98.22 % 1763 37.90 %
WEP_ICV 98.11 % 957 20.58 %
WEP_MBIST 94.95 % 346 7.44 %
WEP_CORE 95.97 % 4651 100 %

Table 4.4 Fault coverage and area report of sub-modules

From Table 4.4, we can find that the bottleneck of the total fault coverage lies at
“WEP_RX”. We find that there are some problems to improve the fault coverage after

tracing the undetectable faults in this sub-module.

54

First, “WEP_RX” is the entrance module of “WEP_CORE”. The signals in
“WEP_RX” are more difficult to be observed in the output ports than other sub-modules.

Second, there is a 128-bits shift register to store the WEP secret key. There are many
internal nodes and faults in these flip-flops. The faults on these shift registers are difficult
to be verified with the FSM of “WEP_BIST”.

In fact, we had upgraded and improved the FSM of “WEP_BIST” several times to
enhance the fault coverage. And we also tried many digital design skills to improve the
results and save the testing time. These skills ware described in Section 4.3. We will

describe the history of the fault coverage improvements in following section.

4.5.2 Improvements of the Fault Coverage

Reviewing the history, we mark five milestones in the procedure of the WEP BIST
improving. The descriptions of these milestones are as-follows.

1. Create a WEP BIST module to generate.the test vectors for the WEP IP directly.

2. Insert a “MATS” MBIST “medule_into-the WEP BIST design to verify the
embedded SRAM. We also add the “status signal testing” procedure to verify the
internal status registers.

3. Add the “Speed-Up” mode to reduce the testing time.

4. Insert some internal multiplexers into the WEP IP to improve the fault coverage.

5. Replace the “MATS” MBIST module with the “14N MARCH C+” algorithm to
guarantee the quality level of test for the embedded memory.

Undoubtedly, every change makes many differences in fault coverage, gate count, and
testing time, etc. We summarize these reports in Table 4.5 and the diagrams below. The
total fault coverage had improved from 82.70% to 95.97% in our experiment. The fault
coverage “96%” is the saturated value in our BIST design because there are some hard
controllable and hard observable internal signals in the WEP IP. If we tried to control or

55

observe them by inserting more internal multiplexers into the WEP IP, we would create

more unpredictable faults in the circuit. With this method, we only increase the extra gate

count and testing time, while not improving the total fault coverage.

Milestone 1 2 3 4 5
Fault Coverage 82.70% 87.40% 90.37% 05.76% 95.97%
Total Gate Count 4600 4735 5148 5262 5293
Total Fault Number 11090 12935 13302 14005 14336
Area Overhead 10.02% 12.59% 19.60% 20.32% 21.80%
Testing Time (Cycle) 3150 4926 4032 4530 8870
MBIST No MATS 4N | MATS 4N | MATS 4N | March C+
Table 4.5 Improvements of the fault coverage
Fault Coverage vs. Total Gate Count and Test Cycles
98.00% 9000
96.00% ‘&7
1 soor
94.00% | /ﬁ =/ Fault
Coverage
o 9200% | 1 700
S —e— Gate
= 00t Count
(@) 1 600
= 8800% | —— Test
i —e Cycles

86.00% [

84.00% [

82.00% [

7

1 500

4 4000

3000

80.00%

Figure 4.14 Fault Coverage vs. Gate Count and Testing Time

56

98.00%

Fault Coverage vs. BIST Area Overhead

96.00% [

94.00% [

92.00% -

90.00% [

_—

Fault Coverage

88.00%
86.00% | //7
84.00%

82.00% [

80.00%

o

1

2

3

4

5

23.00%

1 21.00%

1 19.00%

1 17.00%

1 15.00%

1 13.00%

1 11.00%

9.00%

=/ Fault
Coverage

—&— Area
Overhead

Area Overhead

Figure 4.15 Fault Coverage vs. BIST Area Overhead

4.6 BIST vs. Traditional Testing Methods for WEP IP

Summarizing the experiment reports .of the WEP BIST design above and the

traditional testing methods that spresented-in Chapter-3, we obtain Table 4.6 and Figures

4.16 and 4.17.

WEP BIST ATPG + Wrappers |Functional Testing

Fault Coverage 95.97 % 95.76 % 98.91 % 92.69 %
Area Overhead 21.80 % 20.32 % 19.22 % 7.07 %
Total Gate Count 5293 5262 5124 4454
Total Testing Cycles 8870 4530 33962 12203
Ext. Memory Storage Small Small Large Large
MBIST Algorithm |MARCH C+| MATS MATS MATS

ATE Needed No No Yes Yes

Table 4.6 WEP BIST vs. ATPG vs. Functional Testing

57

100.00%

90.00% | QBIST
80.00%

70.00% [B ATPG +
60.00% Wrapper
28883 i O Functional
30:000/2 - FMATS
20.00% |

10.00% |- _._\

0.00%

Fault Coverage Area Overhead

Figure 4.16 Comparing diagrams of the fault coverage and the area overhead

35000
OBIST
30000 [
25000 [B ATPG +
20000 F Wrapper
15000 | O Functional
+ MATS
10000 |
0
Gate Count Test Cycles

Figure 4.17 Comparing diagrams of the total gate count and the test cycles

From the table and figures, we can see that the functional testing has the least area
overhead but it is very difficult to get a comfortable fault coverage result. Although the
fault coverage of the scan-chain in the WEP IP is very exhilarating, we also pay a large of
memory storage and a long testing time to achieve the object.

In our design, the WEP BIST module only generates a few test vectors to verify the

58

WEP IP efficiently. And all these patterns are executed at-speed to detect the delay faults in

the CUT. The least memory storage is another advantage. In summary, the overall

performance of the WEP BIST module is heartening.

4.7 Summary

This chapter has covered all design methods and all experiment reports in our WEP

BIST design. We summarize the methods and skills of the WEP BIST design as the

following lists:

1.

We use an extra small module (WEP_BIST) to generate some expected and
valid patterns to test the CUT (WEP_IP).

In order to trigger and go through the complex FSMs in the CUT, we insert
another complex FSM+into the BIST module to generate all necessary
waveforms to meet the protocol.

In order to reduce the.extra.areéa overhead, we use some present circuits, such as
a 8-bits counter, to generate the test.vectors for “Din[7:0]” inputs.

We design a standard CRC-16 module to be the output response analyzer (ORA)
and the compressor to reduce the length of the golden pattern. Its aliasing
probability is less than 27%° (1.52 X 107).

There is a “14N MARCH C+” MBIST circuit to verify the embedded SRAM to
meet the quality-level of test.

Insert a power saving mode to disable the clock source of BIST modules.

Insert a speed up mode to reduce the testing time.

In order to improve the fault coverage, we insert some internal multiplexers to
propagate the internal signals.

We also create some self-test methods to test the BIST module, such as the
bypass mode.

59

With these methods above, we can create a high performance WEP BIST module to
test our WEP IP at-speed without the large vector storage. Because of the at-speed tester,
the testing time is less than other testing methods and almost all delay faults in the CUT
are detected. However, the high area overhead (21.8%) and limited fault coverage (96%) is
its disadvantage. For a designer, the extra design schedule and design effort for this BIST

module is unavoidable.

60

Chapter 5 Conclusion

In this thesis, we have designed a reusable WEP IP based on the IEEE 802.11 standard.
In order to guarantee the validity of function and the quality of manufacturing, we have
qualified the WEP IP with several testing methods.

First, we have used the traditional functional patterns to test the WEP IP. For a
designer, the functional testing pattern is very easy to be implemented, and these patterns
can verify the behavior of his circuit with less extra design effort. However, the low fault
coverage and the limited operating frequency are its disadvantages.

Second, we have used the Syntest’s EDA tool “TurboScan” to generate the scan-chain
and ATPG in our WEP IP. It is easy to gain a high quality pattern with these EDA tools, if
you knew how to operate these tools. But the extra area of these scan-cells, the memory
wrapper, and the external memory._ storage for the ATPG vectors are unavoidable. Like
functional testing, the operating frequency is-determined by the ATE.

Finally, we have proposed and demonstrated-designing a WEP BIST module for this
WEP IP. Although the WEP BIST has taken more area overhead and its fault coverage
values is less than the scan-chain, the BIST still has many exhilarating advantages. First,
this BIST module generates the at-speed patterns to test the WEP IP automatically. And
these at-speed vectors can verify the delay faults in CUT, and is independent of the
operation frequency of the ATE. Second, the simple interface is very friendly to an
end-user. Finally, the large extra memory storage for test vectors is not necessary.

In modern SoC design, it is impossible to finish a multimillion-gate design from only
a few designers. Being a sub-module designer or an IP provider, how to qualify his design
is a major task. In our thesis, we propose that a designer should pay more attention to insert
some BIST circuit for some basic verification in an IP. These simple BIST circuits can save
the testing time, the memory storage and reduce the complexity of the full-chip testing and

61

detect some delay faults with the at-speed testing.

At the end of this thesis, we bring up two future works. First, we hope that the “WEP
IP with BIST” can be implemented in some SoC designs to verify the function of the WEP
and to qualify the BIST circuit. Second, we wish that this thesis is an example and a

reference for more future and BIST research and practice.

62

[1]

[2]

[3]

[4]

[5]
[6]
[7]
[8]
[9]

[10]

[11]

References

Michael Keating and Pierre Bricaud, “Reuse Methodology Manual for
System-on-a-Chip Design”, Kluwer Academic Publishing, 1998, pp. 1-100

Charles E. Stroud, “A Designer’s Guide to Built-In Self-Test”, Kluwer Academic
Publishing, 2002, pp. 1-14

L. M. S. C. of the IEEE Computer Society. “Wireless LAN medium access control
(MAC) and physical layer (PHY) specifications.” IEEE Standard 802.11, First
Edition, 1999, pp. 9-67

R. L. Rivest, “The RC4 Encryption Algorithm”, RSA Data Security, Inc., Mar
1992.

“Verilog-XL User Guide”, Cadence Design Systems, Inc, 1998.

“Debussy User Guide and Tutorial”, NOVAS Software, Inc., July 2003

“Synopsys Online Documentation”, Synopsys,-Inc. October 1999.

“TurboFault User’s Guide”, SynTest Teechnologies, Inc., December 1999.

Alfred L. Crouch, “Design-for-Test for Digital 1C’s and Embedded Core Systems”,
Prentice-Hall, Inc., 1999, pp.1-240

Michael L. Bushnell and Vishwani D. Agrawal, “Essentials of Electronic Testing
for Digital, Memory and Mixed-Signal VLSI Circuits”, Kluwer Academic
Publishing, 2000, pp. 253-308

“TurboScan User’s Guide” and “Full-Scan Tutorial”, SynTest Technologies, Inc.,

August 2002.

63

e ol FRRAR

e
£
ug

4 P ARALEZ- L op

B OF o dmuoem

n
g

s gt FomHArs MEE240 % 1551 #
£ fc SRE{GES T IAFE{ Lz EN
M xRS T3 LT ERMLFT
A L4 ES AR LA
i BT IEE
& FF T AR4 Lo &Sk

RN F LI

AN

—=

ARLFES P IARL S ED)
ARLEMLFF LDP
AL AER D FREALL EL
SRR S S I I A
BT L FORRRMEKFE N 2 ARREATT] RE RS R 2

A Case Study on DFT and BIST Design for a Wired Equivalent Privacy
IP

64

	Name
	Dout [7:0]
	Din_STB
	WEP_ERR
	Table 4.2 The synthesis result of the WEP IP with BIST
	MARCH C+
	No

