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適 用 於 高 畫 質 立 體 電 視 應 用 之 視 差 估 測 設 計 研 究 

 

學生: 曾宇晟 指導教授: 張添烜 

 

國立交通大學電子工程學系暨電子所博士班 

 

摘要 

隨著立體電視的問世，人們可以藉由立體視訊獲得新的視覺經驗。立體視訊可以立體攝影

機擷取，並經由影像處理技術運算後，可支援多視角與自由視點之立體電視應用。在立體視訊

的處理中，視差估測為最重要的技術之一。視差估測可產生拍攝場景之視差圖，可用於虛擬視

角視訊的合成。動態影像壓縮標準組織的立體視訊編碼團隊已提出目前最先進視差估測演算法。

其演算法可針對立體電視的應用產生高品質的視差圖，但因採用圖形切割演算法導致高運算複

雜度與低平行運算的問題。特別對於高畫質視訊，其問題更為嚴重。 

為解決以上問題，本論文首先提出初階視差估測演算法，採用訊息傳遞演算法以提高視差

估測的運算平行度，並搭配聯合雙邊上取樣演算法以減少運算的畫面大小。其硬體設計面臨之

問題，可藉由所提出之硬體架構方法解決。以此初階演算法為基礎，我們進一步提出一高品質

視差估測演算法，可改善時間軸一致性與遮蔽之問題，並產生高品質的視差圖。針對高品質視

差演算法，我們提出適用於不同實作方法的二快速視差估測演算法。針對軟體程式設計，所提

出的稀疏運算之快速演算法可藉由時間軸與空間軸的分析選擇稀疏像素，僅針對稀疏像素更新

視差值，達到降低運算時間至 62.9%。另一方面，針對超大型積體電路設計，所提出的高硬體

效率之快速演算利用新的比對資訊擴散方法可降低運算時間至 57.2%，並大幅降低原演算的記

憶體成本至 0.00029%。客觀評比的結果顯示針對虛擬視角視訊合成之應用，我們所提出的演算

法可達到近於現今最先進演算法的高品質。 
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最後，我們化簡高硬體效率之快速演算法，進而提出高輸出效能的架構設計。其硬體實作

結果顯示所提出的視差估測引擎可支援視差範圍 128，同時產生三視角 HD1080p 視差圖，並達

到每秒 95 畫面的輸出速度，也就是每秒 75.64G 像素視差。總言之，本論文所提出的視差估測

設計可滿足高畫質度立體電視應用的需求。 
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ABSTRACT 

With emerging 3DTVs, human can have new visual experience from 3D videos that can be 

captured by new stereo camera and further processed by image processing techniques for the 3DTV 

applications of multi-view or free viewpoint. In the 3D video processing, one of the most important 

techniques is the disparity estimation that could generate disparity maps for synthesizing virtual-view 

videos. The state-of-the-art disparity estimation algorithm proposed by the MPEG 3D Video Coding 

team could deliver high-quality disparity maps, but suffers from high computational complexity and 

low parallelism due to its graph-cut algorithm, especially for high definition videos.  

To address the problems, this dissertation first proposes the baseline disparity estimation 

algorithm that adopts the belief propagation algorithm to increase the parallelism of disparity 

estimation, and the joint bilateral upsampling algorithm to reduce the computational resolution. Their 

design challenges could be solved by our proposed architectural design methods. Based on the 

baseline algorithm, we further propose the high-quality algorithm that could well improve the 

temporal consistency and occlusion problems, and deliver high performance disparity maps. To 

accelerate the high-quality algorithm, we propose the two fast algorithms for different implementation 

method. The sparse-computation fast algorithm could decrease the processed pixels in the spatial and 

temporal domains to reduce the execution time to 62.9% for the software implementation. On the 
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other hand, for the hardware implementation, we propose the hardware-efficient fast algorithm that 

could reduce the execution time of high-quality algorithm to 57.2%, and decrease the memory cost of 

belief propagation to 0.00029% by the proposed cost diffusion method. The objective evaluation 

results show that our disparity quality is similar to the quality of state-of-the-art algorithm for view 

synthesis applications.  

Moreover, we further simplify the hardware-efficient algorithm and propose a high-throughput 

architectural design. The implementation results shows that the proposed disparity estimation engine 

could achieve the throughput of 95 frames/s for three view HD1080p disparity maps with 128 

disparity levels (i.e. 75.64G pixel-disparities/s). It could satisfy the requirement of high definition 

3DTV applications. 
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I Introduction 

1.1 Background 

With the prompt development of 3-D display techniques, people could obtain the new visual 

experience from 3-D videos, which have multi-view videos for left and right eyes. Compared to 

traditional 2-D videos, 3-D videos could make human have the distance feeling of scene with the 

additional video processes: calibration and rectification, multi-view video coding, disparity estimation, 

and virtual view synthesis. For these 3-D video processes, the Moving Picture Experts Group (MPEG) 

3-D Video Coding (3DVC) has delivered a basic 3DTV framework that consists of the depth 

estimation reference software (DERS) [63], view synthesis reference software (VSRS) [64], and 

Multi-view Video Coding (MVC) standard [107]. They also provide the multi-view video sequences 

[71] for the performance evaluation. The basic 3DTV framework can be extended to various systems 

such as the stereoscopic TV for multiple viewers and the free-viewpoint TV for a larger viewing zone 

[100], [101]. 

For the basic 3DTV framework, the previous VLSI implementation of VSRS and MVC decoder 

[61], [62] can reach the real-time performance for high definition videos. On the other hand, the DERS 

could deliver high quality disparity maps but suffers from high computational complexity due to its 

graph-cut optimization, especially for high definition videos. Therefore, it is necessary to develop a 

disparity estimation engine that could deliver high quality disparity maps and achieve the real-time 

performance for high definition videos. 

1.2 Motivation 

Many disparity estimation algorithms have been developed in computer vision for different 

applications, such as medical image analysis, augmenting reality, robot, 3DTV, and etc. The disparity 
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accuracy evaluation [72] shows that the graph-cut and the belief propagation approaches could 

perform better than other kinds of approaches. Based on the graph-cut approach, the state-of-the-art 

DERS algorithm delivered by MPEG 3DVC could generate high quality disparity maps for 3DTV 

applications, but it still encounters the following problems. First, the temporal consistency problem is 

not addressed well due to the foreground copy artifact. Second, its execution time will be dramatically 

increased with the increasing video resolution and disparity range. For one HD1080p frame, it takes 

more than 20 minutes in average on a personal computer. Third, the computation of graph-cut is 

irregular and iterative, so that it is not suitable to be accelerated by the parallel computing PEs of VLSI 

design or multi-core platform.  

Motivated by the problems in the state-of-the-art disparity estimation algorithm, the goal of this 

dissertation is to develop a new disparity estimation engine that could not only generate high quality 

disparity maps, but also achieve the throughput of 60 frames/s for the HD1080p resolution to satisfy 

the requirement of high definition 3DTV applications. 

1.3 Contribution 

To achieve the above goal, this dissertation develops a disparity estimation engine from algorithm 

level to architectural design level. The main achievement of this dissertation includes a baseline and an 

advanced disparity estimation algorithms, and two fast algorithms for the advanced one, and a high 

throughput disparity estimation design.  

The contributions in each achievement are as follows. First, the baseline disparity estimation 

algorithm combines the belief propagation approach to increase the computational parallelism of 

disparity estimation, and the joint bilateral upsampling approach to decrease the computational space. 

In addition, we also solve their memory cost problems by architectural design techniques. Second, 

based on the baseline algorithm, we propose the advanced disparity estimation algorithm that could 

solve the temporal consistency and occlusion problems, and deliver better disparity maps than the 
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DERS algorithm. Third, we also propose two fast disparity estimation algorithms to accelerate the 

high-quality algorithm by different strategies for different implementation methods. For the 

processor-based platform, the sparse-computation algorithm could reduce the original execution time 

to 62.9% by reducing the processed pixels from dense to sparse space. On the other hand, for the 

hardware design, the hardware-efficient algorithm could reduce the original memory cost to 0.00029% 

by replacing the belief propagation with the proposed cost diffusion method. Finally, we propose a 

high throughput disparity estimation engine for the hardware-efficient algorithm with three-stage 

row-based pipelining architecture. The dedicated design could achieve the throughput of 95 frames/s 

for three HD1080p view disparity maps, using 1,645K gate counts and 59.4-Kbyte memory. 

In the objective quality evaluation, the experimental results show that our proposed advanced 

disparity estimation algorithm could perform better than the DERS algorithm, especially for the 

temporal consistency. In addition, the proposed fast algorithms have similar performance to the 

advanced algorithm, and the final hardware design has slight quality degradation because of its 

simplification. 

To sum up, the proposed disparity estimation design could deliver the disparity maps with the 

high throughput and high quality to satisfy the requirement of high definition 3DTV applications. 

1.4 Dissertation Organization 

This dissertation is organized as follows. Chapter II introduces the general framework of a 

disparity estimation algorithm, and the existing approaches of each step in the framework. Chapter III 

analyzes the algorithm and architecture of the belief propagation and the joint bilateral upsampling, 

and presents the baseline disparity estimation algorithm. To improve the quality and speed of baseline 

algorithm, Chapter IV proposes the high-quality disparity estimation algorithm and its two fast 

algorithms: sparse-computation and hardware-efficient. Then, Chapter V compares the disparity 

results of our proposed algorithms with the 3DVC’s DERS algorithm by the objective evaluation 
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methods. With the hardware-efficient algorithm, Chapter VI proposes the architecture of disparity 

estimation engine, and demonstrates our implementation results. Finally, Chapter VII concludes this 

dissertation and future work. 
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II Background 

In this chapter, the background of disparity estimation and its application to view synthesis are 

introduced. This chapter is organized as follows. First, we present the concept of disparity estimation, 

and review the existing disparity estimation algorithms. Then, we illustrate the view synthesis 

technique, depth-image-based rendering (DIBR), which is our target application of disparity 

estimation. Finally, we introduce the state-of-the-art disparity estimation algorithm [63] developed by 

MPEG 3-D Video Coding (3DVC), and point out its quality and design problems. 

2.1 Disparity Estimation 

In 3DTV applications, the disparity estimation is to extract the disparity information from source 

videos and generate a disparity map for each frame. The disparity map can describe the relative 

distance of objects in scene, and be further used to generate virtual-view videos. For different number 

of input video view, the disparity estimation has different approach. The 2-D to 3-D conversion 

approach is for traditional single-view videos, while the stereo correspondence approach is for 

two-view and multiple-view videos. The former one recognizes the disparity map from various 

disparity cues, such as texture, defocus, vanish point, and etc. [102], [103], [104]. On the other hand, 

the latter one finds the pairs of correspondences to compute disparity maps. The dissertation focuses 

on the stereo correspondence approach. 

2.1.1 Epipolar Geometry 

The disparity estimation for multi-view videos could be constrained by the epipolar geometry to 

reduce the correspondence search range from 2-D space to 1-D space. Figure II-1 shows the concept 

of epipolar geometry with two-view configuration. In which, the object Pb is watched by the target 

viewpoint C and projected into the 2-D image plane at the pixel p. For the reference viewpoint C’, the 
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correspondence candidates with p would be located on the ray from C to Pb, whose projected line in 

the reference image plane is called epipolar line. In other words, the correspondence with p could be 

searched on the epipolar line, and the search range is restricted in 1-D space. 

Furthermore, the image planes could be rectified and translated into the new positions with 

parallel epipolar lines as shown in Figure II-2. In which, the correspondence search range is on a 

horizontal line, instead of an oblique line in the original image plane. In other words, the pair of 

correspondences is at the identical y-coordinate in two views. Thus, the computation of disparity 

estimation can be regular in the raster-scan order. 

 

Figure II-1 Epipolar geometry 

 

Figure II-2 Image planes with rectification 

 

With the rectified image planes, Figure II-3 shows the relation between depth and disparity for a 

pair of correspondences. In which, the two cameras at the viewpoints C and C’ capture the object point 

Pb and project it to the pair of correspondences on the epipolar line. The correspondences are located 
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at the coordinates of X and -X’ based on their camera centers. Given the focal length f and the baseline 

B of the cameras, if we could estimate the disparity X-X’, the object depth Z can be acquired by  

 Z =
𝑓 × 𝐵

𝑋 − 𝑋′
  . (II-1) 

Therefore, the disparity estimation is to find the pair of correspondences, and use their x-coordinates to 

compute disparity value of depth value for each pixel. 

 

Figure II-3 Relation between disparity and depth for a pair of correspondences 

2.1.2 General Algorithm Flow 

For disparity estimation algorithms, a general framework is proposed by Scharstien and Szeliski 

[105] as shown in Figure II-4. In this framework, two images are captured and rectified as inputs, and 

a disparity map is the target result. By this framework, disparity estimation algorithms can be 

classified into the two categories: local approach and global approach [105], [106]. The local approach 

only consists of the matching cost calculation and the cost aggregation, and the global approach 

additionally performs the optimization process. The last disparity refinement step is an optional 

process for computing fractional disparity and other post-processing. The existing approaches for each 

step are reviewed as follows. 
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Figure II-4 A general framework for disparity estimation algorithms 

1. Matching Cost Calculation 

Matching cost is a quantitative dissimilarity measure to find the best pair of correspondences. 

Figure II-5 shows the concept of the matching cost calculation. In which, a target pixel has multiple 

reference pixels as correspondence candidates, and each correspondence candidate has a matching cost. 

The number of correspondence candidates is equal to the disparity range DR, which is related to the 

nearest and farthest objects in scene. Hence, each target pixel has DR matching costs. To determine a 

whole disparity map, the matching costs of all target pixels are calculated and form a disparity image 

space (DSI), which is called cost cube in this dissertation. As shown In Figure II-6, a cost cube 

contains the spatial dimensions X, Y and the disparity dimension d. The size of this cube for whole 

frame is H×W×DR where H and W are the frame height and width. The initial values of the cost cube 

are computed by the matching cost calculation. 
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Figure II-5 Matching costs of a target pixel and its correspondence candidates 

 

Figure II-6 Illustration of a cost cube 

To compute the initial cost cube C0, one of the various match metrics [105]-[3] could be adopted. 

Table II-1 lists the commonly used match metrics, which can be classified into pixel base and block 

base. For the pixel-based match metric, the absolute difference (AD) and the square difference (SD) 

are computed using a target pixel and a reference pixel. The pixel dissimilarity measure (PDM) 

additionally considers the half pixels to lessen the sampling sensitivity [1].  

On the other hand, the block-based match metric is computed using a target block and a reference 

block with support pixels as illustrated in Figure II-7. In Table II-1, the normalized cross correlation 

(NCC) is a statistical method that uses the block mean and variance to reduce the sensitivity to 

radiometric gain and bias. The Rank transforms the pixel color into the rank value, which is the 

relative order of center pixel in the block, and computes the matching cost by the rank difference. On 

the other hand, the Census transforms the pixel intensity into census bit stream, which consists of the 
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intensity comparison results between the center pixel and the support pixels. The matching cost of two 

census bit streams is computed by the Hamming distance. Because the Rank and Census transform 

original pixel from color to different domains, they could better resist the radiometric distortion 

between views.  

To sum up, the initial cost cube C0 is computed in this matching cost calculation step, and the 

computational complexity of this step is O(H×W×DR). 

 

Figure II-7 Block-based matching cost with the block radius r 

 

Table II-1 Various match metrics for computing C0(x, y, d) 

Pixel-based metric 

Absolute Difference (AD) |𝐼𝑡𝑎𝑟(𝑥, 𝑦) − 𝐼𝑟𝑒𝑓(𝑥 − 𝑑, 𝑦)| 

Square Difference (SD) [𝐼𝑡𝑎𝑟(𝑥, 𝑦) − 𝐼𝑟𝑒𝑓(𝑥 − 𝑑, 𝑦)]
2
 

Pixel Dissimilarity Measure (PDM) 𝑚𝑖𝑛{|𝐼𝑡𝑎𝑟(𝑥, 𝑦) − 𝐼𝑟𝑒𝑓(𝑥 − 𝑑, 𝑦)|, |𝐼𝑡𝑎𝑟(𝑥, 𝑦) − 𝐼𝑟𝑒𝑓
+ |, |𝐼𝑡𝑎𝑟(𝑥, 𝑦) − 𝐼𝑟𝑒𝑓

− |} 

where 𝐼𝑟𝑒𝑓
+  and 𝐼𝑟𝑒𝑓

−  are the neighboring half pixel of 𝐼𝑟𝑒𝑓(𝑥 − 𝑑, 𝑦) 

Block-based metric 

Normalized Cross Correlation 

(NCC) 
∑ ,𝐼𝑡𝑎𝑟(𝑢, 𝑣) − 𝐼�̅�𝑎𝑟-[𝐼𝑟𝑒𝑓(𝑢 − 𝑑, 𝑣) − 𝐼�̅�𝑟𝑒𝑓]|𝑥−𝑢|≤𝑟
|𝑦−𝑣|≤𝑟 

√∑ ,𝐼𝑡𝑎𝑟(𝑢, 𝑣) − 𝐼�̅�𝑎𝑟-
2[𝐼𝑟𝑒𝑓(𝑢 − 𝑑, 𝑣) − 𝐼�̅�𝑟𝑒𝑓]

2
|𝑥−𝑢|≤𝑟
|𝑦−𝑣|≤𝑟 

 

Rank |𝐼′𝑡𝑎𝑟(𝑥, 𝑦) − 𝐼′𝑟𝑒𝑓(𝑥 − 𝑑, 𝑦)|,  

where 𝐼′(𝑚, 𝑛) = ∑ 𝐼(𝑚, 𝑛) > 𝐼(𝑢, 𝑣)|𝑚−𝑢|≤𝑟,|𝑛−𝑣|≤𝑟  

Census 𝐻𝑎𝑚𝑚𝑖𝑛𝑔 .𝐼′𝑡𝑎𝑟(𝑥, 𝑦), 𝐼′𝑟𝑒𝑓(𝑥 − 𝑑, 𝑦)/, 

where 𝐼′(𝑚, 𝑛) = 𝑏𝑖𝑡𝑠𝑡𝑟𝑒𝑎𝑚|𝑚−𝑢|≤𝑟,|𝑛−𝑣|≤𝑟(𝐼(𝑚, 𝑛) > 𝐼(𝑢, 𝑣)) 

 

2. Cost Aggregation 

The main idea of cost aggregation step is to gather the costs of neighboring pixels to the center 

pixel in a window. It implies that the neighboring pixels have the same disparity as the center pixel, 

and gather the costs of neighbors could increase the reliability of matching cost. Thus, the cost 

aggregation step accumulate the neighboring costs for the center pixel by the general equation, 

Target Block Reference Block

 (x-d, y)(x, y)
(u, v)

Support 

pixels

r
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 𝐶𝑎𝑔𝑔𝑟(𝑥, 𝑦, 𝑑) =
∑ 𝐶0(𝑢, 𝑣, 𝑑) ∙ 𝑊𝑎𝑔𝑔𝑟(𝑢, 𝑣)(𝑢,𝑣)∈𝑤𝑖𝑛(𝑥,𝑦)

∑ 𝑊𝑎𝑔𝑔𝑟(𝑢, 𝑣)(𝑢,𝑣)∈𝑤𝑖𝑛(𝑥,𝑦)
  , (II-2) 

where C0 is the initial cost cube, and Caggr is the aggregated cost cube. In this equation, each initial cost 

C0(v, u, d) in an aggregation window with radius r is accumulated with the weight Waggr(u, v) for the 

target cost Caggr(x, y, d). In addition, the accumulated value is normalized by the sum of weights. The 

computational complexity of this step is O(H×W×DR×r
2
), which is proportional to the aggregation 

window size. 

Figure II-8 shows the various existing cost aggregation approaches with different weight 

distributions. In Figure II-8 (a), the uniform weight has constant weight for each support pixels and the 

fixed r. Its disparity map would be over-blurred for thin objects if r is too large, while it would be 

incorrect for textureless regions if r is too small. Therefore, for better disparity quality, the radius of 

uniform weight need to be adaptively adjusted according to image content as shown in Figure II-8 (b). 

The other common-used is the Gaussian weight approach that makes the pixel near window center has 

higher weight. However, these three approaches could not obtain accurate disparity due to their fixed 

window shape, (i.e. square or circle).  

To control the window shape, the adaptive polygon weight approach [4], [5] uses the 8-direction 

or 4-direction configuration to fit the object shape as shown in Figure II-8 (d). Then, the cross-based 

weight approach [6] uses multiple cross lines to fit the object shape as shown in Figure II-8 (e). In the 

two approaches, a support region grows from the window center until its boundary touches a 

dissimilar pixel. However, the two approaches could not perform well for the highly texture regions 

because of their continuous support regions.  

The adaptive support-weight (ADSW) approach [7] can avoid their problem, because all support 

pixels are considered and their weight is determined by the kernels of bilateral filter. Its weight is 

defined as 

 𝑊𝑎𝑔𝑔𝑟(𝑢, 𝑣) = 𝑊𝑡𝑎𝑟(𝑢, 𝑣) ×𝑊𝑟𝑒𝑓(𝑢 − 𝑑, 𝑣)  , (II-3) 
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where Wtar is the weight from target-view window, and Wref is the weight from reference-view window. 

Both the weights Wtar and Wref are computed by the kernels of bilateral filter, 

 𝑊(𝑢, 𝑣) = 𝑓(‖(𝑥, 𝑦) − (𝑢, 𝑣)‖)𝑔(‖𝐼(𝑥, 𝑦) − 𝐼(𝑢, 𝑣)‖)  . (II-4) 

where f is the spatial kernel with the position distance, and g is the range kernel with the color distance. 

With the two kernels, the aggregation weight would be large if the support pixel is near the center 

pixel or the support pixel is similar to center pixel. Figure II-8 (f) illustrates the adaptive 

support-weight. In which, the aggregation weight could fit object shape better than the adaptive 

polygon weight and cross-based weight approaches for highly texture regions. However, the main 

disadvantage of ADSW approach is high computational complexity. Nevertheless, it can be addressed 

by the integral histogram approach [8], the iterative aggregation with small window approach [9], and 

the data reuse approach in VLSI design [10].  

In summary, the aggregation cost step processes the initial cost cube C0 to a more reliable cost 

cube Caggr by the well-define weights. 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure II-8 Various cost aggregation approaches 

(a) uniform weight, (b) uniform weight with adaptive window radius, (c) Gaussian weight, (d) 

adaptive polygon weight, (e) cross-based weight, (f) adaptive support-weight. 
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With the aggregated cost cube Caggr, two optional methods can be applied to compute the 

disparity map. One is the winner-take-all manner (WTA) which directly determines the disparity result 

by selecting the reference pixel with minimum cost as the best correspondence for each target pixel. 

The other one is the disparity optimization method which considers the aggregated costs of whole 

frame to compute the disparity map by the energy minimization. The latter can acquire more accurate 

disparity maps as shown in the evaluation results [72].  

The common-used disparity optimization approaches are dynamic programming (DP), graph-cut 

(GC), and belief propagation (BP). Their main concept is to convert the disparity estimation problem 

into an energy minimization problem. The energy function is generally formulated by 

 𝐸(𝒅) = 𝐸𝑑𝑎𝑡𝑎(𝒅) + 𝜆𝐸𝑠𝑚𝑜𝑜𝑡(𝒅) (II-5) 

where Edata is data term to penalize the dissimilarity of a correspondence pair, and Esmooth is smoothness 

term to penalize the disparity inconsistency of two neighboring pixels. In addition, d is a selected 

disparity set for whole frame. The optimization approaches attempt to find a disparity set d by the way 

of minimizing the total energy E. 

The concept of the common-used optimization approaches are reviewed as follows. 

(1) Dynamic Programming 

The main idea of DP approach is to convert the disparity estimation to a finding shortest path 

problem. The optimization process is performed row by row. Figure II-9 (a) shows the graph model for 

finding shortest path problem. In which, the position of node is corresponding to the coordinate in the 

x-d plane, and the shortest path will be from x of 0 to W-1. The path would suffer from matching 

penalty on a node, and smoothness penalty on an edge. The DP approach is to find the path with 

minimum penalty by the two steps: forward accumulating and backward tracing. In Figure II-9 (b), 

first step accumulate the penalty in the forward direction to select the moving direction for each node. 

In Figure II-9 (c), with the moving direction map, the second step trace the path with minimum 

penalty in the backward direction. 
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However, the DP approach suffers from streak artifact in the disparity map because of its 

row-by-row process. To address this problem, Ohta and Kanade [11] perform the DP in a 3-D space 

that consists of the original intra-scanline space and the additional inter-scanline space. In addition, the 

tree-based DP algorithms [12]-[14] use the tree structure to connect scanlines and remove the streak 

artifacts. 

 

 
(a) 

 
(b) 

 
(c) 

Figure II-9 Concept of dynamic programming approach 

(a) graph model in DP approach, (b) forward accumulating, (c) backward tracing 

 

(2) Graph-Cut 

The main idea of GC approach is to convert the disparity selection problem to the 

min-cut/max-flow problem [15], and the associated optimization techniques could be adopted. The GC 

approach can generate accurate disparity maps.  

Figure II-10 shows the graph model of min-cut/max-flow for disparity estimation. In which, there 

are H×W×DR nodes with 6-connected node grid. The matching cost and the smoothness cost are 

well-defined on each edge, which can be regarded as pipes with different flow volumes due to 
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different costs. In this graph model, water from the source node would flow to the sink node through 

pipes. The min-cut means that a cut surface cross edges has the minimum flow, while the max-flow 

means that the allowed maximum flow from the source to the sink. The min-cut and the max-flow are 

equivalent problems. For the disparity estimation, the disparity map can be directly determined 

according to the resultant cut surface. 

 

Figure II-10 Graph model of graph-cut algorithm 

 

For the min-cut/max-flow problem, the common-used optimization techniques are the 

push-relabeling [16] and the augmenting path [17]. Their computational complexity is highly related 

to the number of label candidate (i.e. disparity range DR in disparity estimation). However, the 

optimization techniques suffer from extremely high computational complexity due to large disparity 

range.  

To reduce the computational complexity, Boykov proposed the swap method [18] and an efficient 

augmenting path [19]. The swap method performs the optimization process disparity by disparity, and 

only one new disparity is considered in an iteration. Based on the swap method, Chou et. al. [20] 

proposed a fast algorithm to predict the disparities to skip the partial optimization process. On the 

other hand, for the push-relabeling approach, the computational speed depends on the processing order 

on nodes. Thus, Checkassky and Goldberg [21] proposed the highest-label order that is more efficient 

than the typical FIFO order. In addition, Delong and Boykov [22] proposed a block-based graph cut 

method to increase the parallelism of push-relabeling approach.  
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To sum up, the GC approach can perform accurate disparity results but is not suitable to be 

accelerated by GPU programming and VLSI design due to its irregular computation and low 

parallelism. 

(3) Belief Propagation 

Sun et al. [24] first applied the BP approach to solve the disparity estimation problem, and 

acquired accurate disparity maps. They perform the energy minimization on the graph model as shown 

in Figure II-11. In which, each node is corresponding to a pixel, and all nodes are connected by 

4-connection grid. In the optimization process, the matching costs of each node are diffused through 

the messages to neighboring nodes iteration by iteration. This diffusion mechanism is called message 

passing. After several iterations, the matching costs and messages of a node are aggregated to 

determine the disparity result. Although the minimized energy could not definitely converge due to its 

loopy optimization process, the disparity maps could approach to a steady state. 

 

Figure II-11 Graph model of belief propagation approach 

 

In the BP approach, the message passing suffers from the highest computational complexity, 

O(H×W×DR
2
×T), where T is the iteration count. The term of DR

2
 results from the convolution, and the 

iteration count T should be more than 10. To reduce the computation of message passing, Felzenswalb 

and Huttenlocher [25] proposed the hierarchical BP (HBP) and the linear-time message passing. The 

former could accelerate the disparity convergent speed, and the latter could reduce the complexity of 

convolution from O(DR
2
) to O(DR). In addition, Szeliski et al. [26] proposed the max-product loopy 

belief propagation, called BP-M, to reduce the iteration count by a scale. Because the computation of 

matching cost

message
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BP approach is highly parallel, the BP approach is suitable to be accelerated by the GPU programming 

and VLSI design [27]-[33].  

In addition, the BP approach also suffers from highly memory cost, 4HW×DR, for the matching 

costs and messages of whole frame. To address it, the bipartite gird [25] and the sliding approach [34] 

are proposed for the memory access, and the predictive coding scheme [35] could be applied for 

message compression. 

To sum up, the above disparity optimization algorithms have different pros and cons. The DP 

approach could achieve real-time speed easier but has the streak artifacts. Its improvement methods 

would result in additional irregular computation. For the 2-D optimization approaches, the GC 

approach has high performance of disparity map, but its irregular computation limits the acceleration 

of GPU programming and VLSI design. On the other hand, the BP approach can also deliver accurate 

disparity maps and has highly parallelism. Therefore, this dissertation develops an efficient disparity 

estimation algorithm based on the BP approach. 

4. Disparity Refinement 

The final step refines the disparity maps by the post-processing methods: occlusion handling, 

object consistency enhancement, and temporal consistency enhancement. Their purpose and associated 

algorithms are reviewed as follows. 

(1) Occlusion Handling 

The occlusion problem results from that the object point is visible in one view and invisible in the 

other view. Thus, there is no correspondence pixel in the invisible view. Incorrect disparities would 

appear in the occlusion regions, and further induce artifacts in the view synthesis.  

To handle the occlusion problem, the general approach is to detect the occlusion first, and then 

fill it by the background disparities. These two steps are called occlusion detection and occlusion 

filling. The basic methods for occlusion detection are surveyed in [45]. Various methods have different 

assumptions. The left-right check (LRC) assumes that a pair of correspondence should have identical 
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disparity, and the occlusion constraint (OCC) assumes that the disparity gap of two pixels would result 

in occlusion region in the other view. In addition, the order constraint (ORD) assumes that the order of 

two pixels should have the correspondences with the same order in the other view. In the above 

occlusion detection methods, the LRC is the most commonly applied for the disparity refinement [6], 

[40], and the OCC and the ORD are combined into the disparity optimization step [15], [24]. With the 

detected occlusion pixels, the occlusion filling step can directly replace them by the reliable 

background disparities. 

(2) Object Consistency Enhancement 

For an object, the disparities are usually identical or smooth changing. However, disparity 

maps often suffer from incorrect disparities, especially in the textureless regions. To remove the 

disparity noise, the plane fitting approach [46] is usually adopted by the high-performance disparity 

estimation algorithms [63], [39], [40]. In the plane fitting approach, the segment information is first 

computed by the watershed segmentation, mean-shift clustering, or K-mean clustering. According to 

the segment information, the disparities in a segment are used to compute a new 3-D plane by the 

linear regression method. Besides of the plane fitting method, the regional voting method [6] could 

also refine the disparity maps well. The regional vote method is simpler than the plane fitting method 

because the segment information is not required. 

(3) Temporal Consistency Enhancement 

Most of research develops their disparity estimation algorithms using the still image sequences 

[72]. However, they would miss the temporal consistency issue, which is important in the view 

synthesis application for video sequences. Without enhancing the temporal consistency, the disparity 

maps would suffer from flicker artifact, because each disparity frame is independently generated, and 

the disparities are unstable in the occlusion and textureless regions. This flicker artifact would further 

propagate to the view synthesis results, and is easily observed. 

To address the temporal consistency, the neighboring frames should be considered in the disparity 

estimation. In the previous work [47]-[49], many disparity frames are buffered to construct a disparity 
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flow with the spatial and temporal dimensions, and different smooth approaches are performed in the 

disparity flow. On the other hand, with two adjacent frames, the temporal BP algorithm [41] preforms 

the BP optimization in a 6-connection grid graph, where the two additional connections link to the 

previous and next frames. In addition, the 3DVC’s DERS algorithm [65]-[67] adds the temporal cost 

to matching cost according to previous disparity. 

In summary, the disparity refinement step could fix the inconsistent disparities well, and improve 

the view synthesis quality for 3DTV applications. 

2.2 View Synthesis 

In 3DTV applications, view synthesis is one of the most important components to synthesize a 

single or multiple virtual view videos for the stereoscopic TV or the free-viewpoint TV [101]. A 

common approach for view synthesis is the depth-image-based rendering (DIBR) algorithm [51]-[57], 

which can warp a video to another view according to disparity maps.  

  

Figure II-12 General flow of view synthesis 

A general DIBR algorithm could be divided into the three steps: warping, blending, and hole 

filling, as depicted in Figure II-12. For different number of input view, the DIBR algorithm has 

different challenges in its steps. With single-view input, the DIBR algorithm suffers from large 
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occlusion holes in the hole filling step, while with multiple-view inputs, it suffers from inconsistent 

warped pixels in the blending step. The concept and challenges of each step are presented in the 

following. 

2.2.1 Warping 

In Figure II-12, the warping step loads the textures and disparities of reference side-views 

generate the warped textures and hole maps of the target center-view. In the warping step, the 

reference textures are shifted to the target view according the reference disparity maps.  

The methods of warping step can be classified into the one-step warping and the two-step 

warping as illustrated in Figure II-13. The one-step warping directly warps the reference textures to 

the target view according to the warping position of disparities, while the two-step warping first warps 

the target disparity and then uses it to synthesize the target texture. Rogmans et al. [58] and Morvan 

[59] show that the two-step warping could perform better because its sampling precision is higher.  

  
(a) 

  
(b) 

Figure II-13 Warping methods in view synthesis 

(a) one-step warping, (b) two-step warping 
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With the multi-view inputs, the warping step will generate multiple textures for the target view as 

shown in Figure II-12. In other words, there are multiple warped pixels for a target position. However, 

the colors of these warped pixels are not consistent due to different radiometric gain and bias at 

different viewpoints. Therefore, the warped pixels should be blended by different methods for the 

three cases: visible pixel, occluded pixel, and disoccluded pixel, according to the hole maps. For the 

case of visible pixel, the pixel is labeled “non-hole” in hole maps, and could be seen at multiple 

viewpoints. Thus, its color can be computed by averaging the warped pixels. For the case of occluded 

pixel, the pixel is labeled “non-hole” in one hole map only, and could be seen at only one viewpoint. 

Thus, its color can refer to the only warped pixel. For the final case, the disoccluded pixel is labeled 

“hole” in all hole maps, and cannot be seen at any viewpoints. Thus, it should be handled in the next 

step. In addition, the hole regions can be dilated before blending to avoid the ghost artifact as shown in 

Figure II-14. 

  

  
(a) (b) 

Figure II-14 Blending step in view synthesis 

(a) without hole dilation, (b) with hole dilation 

2.2.3 Hole Filling 

With multiple-view inputs, most holes can be easily recovered by other views. For the remaining 

disoccluded holes, they can be filled by the advanced in-painting method [60]. On the other hand, with 

single-view input, the DIBR algorithm suffers from large occluded holes due to lack of other views. 
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The occluded holes can be handled by the disparity smoothing methods [52]-[55] to reduce hole sizes, 

and be filled by the interpolation method [53]. 

In summary, the 3DTV applications demand a view synthesis engine to generate virtual view 

videos, and the DIBR algorithm could satisfy this requirement through the above steps. However, the 

quality of view synthesis is highly dependent on the performance of disparity estimation. Therefore, it 

is necessary to develop a high-performance disparity estimation algorithm for the 3-D video 

production. 

2.3 Review of DERS Algorithm from 3DVC 

The 3D Video Coding (3DVC) team is organized in the Moving Picture Group Experts (MPEG) 

to support the associated techniques for 3DTV applications. The associated techniques include the 

disparity estimation, view synthesis, and multi-view video coding. The 3DVC team defines the 

configuration of input and output views for the 3DTV system, and delivers the reference software for 

disparity estimation [63] and view synthesis [64]. The algorithms in the reference software are 

respectively called DERS algorithm and VSRS algorithm. They also create a test bed and quality 

evaluation to assess the performance of 3-D videos. Furthermore, they combine the disparity 

estimation and view synthesis with the multi-view video coding (MVC) [107] for data compression 

and transmission. In this section, we introduce the 3DVC’s DERS algorithm and point out its design 

challenges in the processing of high resolution videos. In addition, we present the 3DVC’s I/O 

configuration and quality evaluation method, which are also adopted in this dissertation. 

2.3.1 Input and Output View Configuration 

The input and output setting is defined by the 3DVC [71] as shown in Figure II-15. In the 2-view 

configuration, the disparity estimation and view synthesis engines loads the original left-view and 

right-view videos to generate the virtual-view videos. Combining the synthesized video and one of the 

original videos can support the stereoscopic display. Figure II-15 (b) and (c) shows the 3-view 
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configuration. In which, two view videos are synthesized for the stereoscopic display. For the 9-view 

display, eight virtual-view videos need to be synthesized, and combined with the original center-view 

video. Based on the above configurations, the disparity estimation and view synthesis engines can be 

directly extended to support free viewpoint TV if more view videos are available. 

 
(a) (b) (c) 

Figure II-15 Input and output view configuration defined by the 3DVC 

(a) 2-view configuration for stereoscopic display, (b) 3-view configuration for stereoscopic display, (c) 

3-view configuration for 9-view display 

2.3.2 DERS Algorithm 

The depth estimation reference software (DERS) algorithm [63] delivered by the 3DVC is 

illustrated in Figure II-16. The DERS algorithm uses the three view image frames to compute the 

center-view disparity map. In addition, the previous image frame and disparity map are also involved 

for the temporal consistency enhancement. Note that the DERS algorithm can support the input videos 

without rectification. The steps in the DERS algorithm are introduced in the following. 
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Figure II-16 Flow of the DERS algorithm 

1. Initialization 

Initially, the side-view images are scaled up by the horizontal interpolation method, which has the 

two options of half-pixel mode and quarter-pixel mode. The horizontal interpolation method includes 

the linear filter, cubic filter, and 6-tap interpolation filter in H.264/AVC standard. In addition, the 

homography matrix tables are calculated using the three-view camera parameters. With the 

homography matrix H(d), for a center-view pixel (u, v), the positions of correspondence candidates  

(u’, v’) can be directly computed by 

 (𝑢′, 𝑣′, 1)𝑇 = 𝑯(𝑑)(𝑢, 𝑣, 1)𝑇, (II-6) 
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 𝑯(𝑑) = *

00(𝑑) 01(𝑑) 02(𝑑)
10(𝑑) 11(𝑑) 12(𝑑)
20(𝑑) 21(𝑑) 1

+  . (II-7) 

2. Block Matching 

In the block matching, the left-view image and the right-view image are regarded as the reference 

views, and the center-view image is regarded as the target view. The block matching adopts the SAD 

match metric defined as 

 𝐶𝑆𝐴𝐷(𝑥, 𝑦, 𝑑) =∑ |𝐼𝑡𝑎𝑟(𝑢, 𝑣) − 𝐼𝑟𝑒𝑓(𝑢
′, 𝑣′)|

(𝑢,𝑣)∈𝑤𝑖𝑛(𝑥,𝑦)
  , (II-8) 

where the window size can be 1×1 or 3×3, and the coordinates of the reference pixels can be computed 

by (II-6). In addition, the adaptive support-weight (ADSW) aggregation method [7] could be applied, 

and it is called soft-segmentation [68] in the DERS algorithm. 

3. Temporal Consistency Enhancement 

For the temporal consistency enhancement, the DERS algorithm [65], [66], [67] first detects the 

16×16 motion block by the intensity difference of current and previous image frames. If the block 

color difference is high than a defined threshold, this block is regarded as a motion block. With the 

motion information, the temporal cost Ctemp is computed by 

 𝐶𝑡𝑒𝑚𝑝(𝑥, 𝑦, 𝑑) = {
𝜏𝑡𝑒𝑚𝑝|𝑑 − 𝐷

𝑡−1(𝑥, 𝑦)| , 𝑛𝑜 − 𝑚𝑜𝑡𝑖𝑜𝑛 𝑏𝑙𝑜𝑐𝑘

0 ,         𝑚𝑜𝑡𝑖𝑜𝑛 𝑏𝑙𝑜𝑐𝑘
 , (II-9) 

where D
t-1

 is the previous disparity map, and τtemp is a constant for scaling. The temporal cost Ctemp is 

added to the block matching cost CSAD by the equation, 

 𝐶𝑡𝑜𝑡𝑎𝑙(𝑥, 𝑦, 𝑑) = 𝐶𝑆𝐴𝐷(𝑥, 𝑦, 𝑑) + 𝐶𝑡𝑒𝑚𝑝(𝑥, 𝑦, 𝑑) , (II-10) 

With this temporal cost, the current disparity would be affected by the previous disparity. 

4. Segmentation 

The segmentation is performed only on the center-view image to assist the successive graph-cut 

and plane fitting. In the DERS algorithm, the segmentation method has the three options: mean-shift 
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segmentation [69], pyramid segmentation, and K-mean clustering, which apply the OpenCV library 

[70]. 

5. Graph cut 

The DERS algorithm uses the fast GC approach [19], whose acceleration techniques include the 

swap method and the efficient augmenting path. In addition, the segment information calculated in 

previous step is also used to constrain the smoothness term in (II-5). In the DERS, the GC approach is 

performed for two iterations to obtain higher disparity quality. 

6. Plane Fitting 

Finally, by the segment information, the plane fitting mentioned in Section 2.1.2 is also adopted 

to refine the disparity map. 

To sum up, by the general framework of disparity estimation, the DERS algorithm adopts the 

absolute difference (AD) for matching cost, the uniform weight for cost aggregation, and the GC 

approach for disparity optimization. Furthermore, it takes care of the temporal consistency and object 

consistency for the disparity refinement. In the DERS, the optional methods of all steps can be 

controlled by a configuration file. Note that the DERS algorithm can additionally support the 

semi-auto disparity estimation that needs a user-defined foreground map to increase the disparity 

quality. This approach is out of the dissertation scope. 

2.3.3 Reference Software for 3-View Configuration 

The functions of the DERS and VSRS algorithms are shown in Figure II-17 (a) where In is an 

image frame at viewpoint n, and Dn is a disparity map at viewpoint n. The DERS algorithm requires 

the three view image frames I0, I1, I2 to calculate the disparity map D1, while the VSRS algorithm 

loads the two view image frames I0, I1 and disparity maps D0, D1 to synthesize the inter-view image 

frame I0.5, which also can be another viewpoint between 0 and 1.  
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With the functions of DERS and VSRS, they have to be performed for several times for the 

3-view configuration as shown in Figure II-17 (b). In which, five view image frames I-1 to I3 are 

demanded for the DERS algorithm to compute the disparity maps D0, D1, D2. Then, the VSRS 

algorithm could use the three image frames I0, I1, I2, and disparity maps D0, D1, D2 to generate the 9 

view image frames. Compared to the original configuration in Figure II-15 (c), the DERS and VSRS 

algorithms additionally require two side-view image frames I-1 and I3. 

Therefore, to meet the required function of 3-view configuration with minimum input views, our 

target disparity estimation engine would use only three view image frames to compute their 

corresponding disparity maps as shown in Figure II-17 (c). 

 

 
(a) (b) 

 

 

(c)  

Figure II-17 Data flow for 3-view configuration 

(a) functions of DERS and VSRS algorithms, (b) DERS and VSRS algorithms for 3-view 

configuration, (c) our target disparity estimation engine 

2.3.4 Evaluation Method for Disparity Quality 

To assess the disparity quality, the evaluation method in computer vision [72] is the disparity 

error rate that is computed by the difference of the estimated disparity map and a ground truth 

produced by the structured light method [73]. A disparity result would be considered as an error one if 
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the disparity difference is higher than a tolerance. However, different applications demand different 

disparity quality and the proper corresponding evaluation method. 

For 3DTV applications, the disparity quality could be evaluated through the quality of view 

synthesis or the quality of multi-view video coding. This dissertation adopts the evaluation methods of 

view synthesis corresponding to our target application. The various evaluation methods for view 

synthesis analyze the frame difference between the synthesized and the really captured videos by 

different ways. The common-used evaluation methods are the peak signal-to-noise ratio (PSNR), the 

structural-similarity (SSIM) [74], and the peak signal-to-perceptible-noise ratio (PSPNR) [75], [76]. 

They are introduced as follows. 

1. PSNR 

The PSNR is commonly used in the video quality assessment, especially in video coding. The 

PSNR for the frame n is computed by 

 𝑃𝑆𝑁𝑅𝑛 = 10𝑙𝑜𝑔10 (
2552𝐻𝑊

∑ |𝑆𝑖,𝑛 − 𝑅𝑖,𝑛|
𝐻𝑊−1
𝑖=0

)  , (II-11) 

where S is the synthesized video, R is the reference video, and their subscripts (i, n) refers to the ith 

pixel in the nth frame. In the PSNR, the frame difference is analyzed by the mean square error (MSE). 

2. SSIM 

The SSIM considers the image structure information into the analysis of frame difference, 

because the human vision system is highly sensitive to the image structure. Thus, the SSIM analyze 

the frame difference within local region by comparing their pixels with the luminance and contrast 

normalization. The SSIM for the frame n is computed by 

 𝑆𝑆𝐼𝑀𝑛 =
1

𝐻𝑊
∑

(2𝜇𝑆𝑖,𝑛𝜇𝑅𝑖,𝑛 + 𝐶1) × (2𝜎𝑆𝑖,𝑛𝑅𝑖,𝑛 + 𝐶2)

.𝜇𝑆𝑖,𝑛
2 + 𝜇𝑅𝑖,𝑛

2 + 𝐶1/ × .𝜎𝑆𝑖,𝑛
2 + 𝜎𝑅𝑖,𝑛

2 + 𝐶2/

𝐻𝑊−1

𝑖=0

 (II-12) 

where 𝜇𝑆𝑖,𝑛 , 𝜇𝑅𝑖,𝑛  are the mean, 𝜎𝑆𝑖,𝑛 , 𝜎𝑅𝑖,𝑛  are the standard deviation, and 𝜎𝑆𝑖,𝑛𝑅𝑖,𝑛  is the 

covariance. They are computed in an 11×11window by 
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 𝜇𝑆𝑖,𝑛 = ∑ 𝑤𝑗𝑆𝑗,𝑛𝑗∈𝑤𝑖𝑛𝑑𝑜𝑤(𝑖)  , (II-13) 

 𝜇𝑅𝑖,𝑛 = ∑ 𝑤𝑗𝑅𝑗,𝑛𝑗∈𝑤𝑖𝑛𝑑𝑜𝑤(𝑖)  , (II-14) 

 𝜎𝑆𝑖,𝑛 = (∑ 𝑤𝑗(𝑆𝑖,𝑛 − 𝜇𝑆𝑖,𝑛)𝑗∈𝑤𝑖𝑛𝑑𝑜𝑤(𝑖) )
1/2
  , (II-15) 

 𝜎𝑅𝑖,𝑛 = (∑ 𝑤𝑗(𝑅𝑖,𝑛 − 𝜇𝑅𝑖,𝑛)𝑗∈𝑤𝑖𝑛𝑑𝑜𝑤(𝑖) )
1/2

  , (II-16) 

 𝜎𝑆𝑖,𝑛𝑅𝑖,𝑛 = ∑ 𝑤𝑗(𝑆𝑖,𝑛 − 𝜇𝑆𝑖,𝑛)(𝑅𝑖,𝑛 − 𝜇𝑅𝑖,𝑛)𝑗∈𝑤𝑖𝑛𝑑𝑜𝑤(𝑖)   , (II-17) 

where the wj is the weighting function. In the implementation of SSIM [77], the weight function 

adopts the Gaussian weight, and the constants C1, C2 in (II-12) are 6.5025 and 58.5225, respectively. 

3. PSPNR 

The PSPNR focuses on not only the spatial quality in the above methods but also the temporal 

quality according to the human vision system. For the synthesized videos, the flicker artifact is the 

most noticeable noise, even if the flickering region is small. Thus, the PSPNR attempts to model the 

flicker artifact into the disparity quality evaluation. First, the spatial distortion (SD) is defined as 

 𝑆𝐷𝑖,𝑛 = 𝑆𝑖,𝑛 − 𝑅𝑖,𝑛  , (II-18) 

which is the frame difference between the synthesized image frame S and the reference image frame R. 

Then, by considering the spatial distortion visibility of human, the SD is converted to the perceptual 

spatial distortion (PSD) through the equation 

 𝑃𝑆𝐷𝑖,𝑛 = {
𝐶𝑙𝑖𝑝(𝑆𝐷𝑖,𝑛 − 𝑉𝑇, 0, 𝑆𝑇 − 𝑉𝑇) ,   𝑖𝑓𝑆𝐷𝑖,𝑛 ≥ 0

𝐶𝑙𝑖𝑝(𝑆𝐷𝑖,𝑛 + 𝑉𝑇,−(𝑆𝑇 − 𝑉𝑇), 0) ,   𝑖𝑓𝑆𝐷𝑖,𝑛 < 0
  . (II-19) 

where VT is the visibility threshold as a lower bound of SD, ST is the saturation threshold as a upper 

bound of SD, and the function Clip is for range truncation. The spatial distortion SD under VT is not 

perceptible in any background luminance, and the spatial distortion SD over ST is not distinguished by 

human. 

With the perceptual spatial distortion PSD, the temporal noise TN is separately calculated for the 

motion regions and the static regions. For the static regions, there are four stages to describe a 
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temporal noise changing in successive frames as illustrated in Figure II-18. The temporal noise TNi,n,S 

is computed by the equation,  

 𝑇𝑁𝑖,𝑛,𝑆 =

{
 
 

 
 

0 , 𝑖𝑓 (𝑖, 𝑛) ∈ 𝑠𝑡𝑎𝑡𝑖𝑐 𝑠𝑡𝑎𝑔𝑒

𝑃𝑆𝑁𝑖,𝑛−𝑝 , 𝑖𝑓 (𝑖, 𝑛) ∈ 𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑡𝑎𝑔𝑒

𝑃𝑆𝑁𝑖,𝑛 , 𝑖𝑓 (𝑖, 𝑛) ∈ 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑠𝑡𝑎𝑔𝑒(𝑡𝑦𝑝𝑒1)

𝑃𝑆𝑁𝑖,𝑛 + 𝑃𝑆𝑁𝑖,𝑛−1 , 𝑖𝑓 (𝑖, 𝑛) ∈ 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑠𝑡𝑎𝑔𝑒(𝑡𝑦𝑝𝑒2)

𝑃𝑆𝑁𝑖,𝑛−1 , 𝑖𝑓 (𝑖, 𝑛) ∈ 𝑑𝑒𝑐𝑙𝑖𝑛𝑖𝑛𝑔 𝑠𝑡𝑎𝑔𝑒

 (II-20) 

for the different stages.  

 

Figure II-18 Example of temporal noise changing successive frames [76] 

In the static stage, a noticeable flicker artifact does not appear, and SDi,n does not change more 

than the specific level range CT, which has different values for different regions according to the 

distortion sensitivity of human. The level range CT is defined as 

 𝐶𝑇𝑖,𝑛 = ,

𝐶𝑇𝑏𝑎𝑠𝑒 𝑖𝑓(𝑖, 𝑛) ∈ 𝑝𝑙𝑎𝑖𝑛
𝐶𝑇𝑏𝑎𝑠𝑒𝐹𝑒𝑑𝑔𝑒 𝑖𝑓(𝑖, 𝑛) ∈ 𝑒𝑑𝑔𝑒

𝐶𝑇𝑏𝑎𝑠𝑒𝐹𝑡𝑒𝑥𝑡𝑢𝑟𝑒 𝑖𝑓(𝑖, 𝑛) ∈ 𝑡𝑒𝑥𝑡𝑢𝑟𝑒

 . (II-21) 

In the increasing stage, a noticeable flicker artifact appears, and SDi,n changes more than CT. If 

SDi,n has no polarization change, the temporal noise would increases with the increasing spatial 

distortion, and it is equal to PSDi,n for the type 1. On the other hand, if the SDi,n also has polarization 

change, the temporal noise should increase larger than spatial distortion, and also be larger than the 

other stages. Thus, the temporal noise for the type 2 is the sum of PSDi,n and PSDi,n-1. 
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In the maintaining stage, the flicker artifact just disappears, and human still percepts the artifact 

for maintaining time (MT). Thus, the temporal noise should be PSDi,n-p, which is propagated from the 

previous frame p in the increasing stage or declining stage. The MT is defined as 1/4 sec according to 

the study of human perception on flickers. 

In the declining stage, the flicker artifact starts to disappear, but human suffers from the previous 

spatial distortion. Thus, the temporal noise is equal to the previous frame PSDi,n-1. 

On the other hand, for the motion regions, the temporal noise TNi,n,M is computed by  

 𝑇𝑁𝑖,𝑛,𝑀 = {
𝑃𝑆𝐷𝑖,𝑛 , 𝑖𝑓|𝑃𝑆𝐷𝑖,𝑛| ≥ |𝑃𝑆𝐷𝑖,𝑛−1| − 𝐶𝑇𝑖,𝑛 𝑎𝑛𝑑 |𝑃𝑆𝐷𝑖,𝑛| > 𝐶𝑇𝑖,𝑛
0 , 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

 . (II-22) 

The motion region natively has change between two successive frames. If the change is higher than 

CT, it would be regarded as temporal noise. With the temporal noises TNi,n,S for static regions and 

TNi,n,M for motion regions, the sum of temporal noise for a frame is computed by 

 𝑆𝑇𝑁𝑛 =∑ 𝑇𝑁𝑖,𝑛
𝐻×𝑊−1

𝑖=0
 (II-23) 

The final temporal peak signal-to-perceptible-noise ratio for whole synthesized videos is defined as 

 𝑇_𝑃𝑆𝑃𝑁𝑅 = 10𝑙𝑜𝑔10 (
2552 × 𝐻 ×𝑊

∑ 𝑆𝑇𝑁𝑛
𝐹−1
𝑓=1 (𝐹 − 1)⁄

)  . (II-24) 

The implementation of PSPNR is attached in the DERS [63]. 

2.3.5 Design Challenges 

The DERS algorithm can deliver high quality disparity maps to support the view synthesis for 

3DTV applications. However, it suffers from the following design challenges, especially for the 

requirement of high-definition videos. 

1. Irregular Image Access in Block Matching 

In the DERS algorithm, the block matching suffers from the irregular image access because the 

input videos are not rectified. Figure II-19 shows an example of block matching performed in the 

non-rectified images. In which, the epipolar lines in the target view are parallel, and they become 
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oblique ones in the reference view. The reference block would frequently result in memory row miss if 

the input videos are configured by one image rows in one memory row. Therefore, it is necessary to 

apply the rectification to the pre-processing, so that all the image accesses are regular by raster-scan 

order in the disparity estimation and the view synthesis. 

 

Figure II-19 Example of block matching in the DERS algorithm 

2. Low Parallelism in Graph-Cut 

The DERS algorithm adopts the fast GC approach [18], [19], which contains the swap method, 

and the efficient augmenting path method. However, the GC approach need to process on a 

tree-structural graph, and the connection of edges is frequently and irregularly changed. In addition, its 

computation has high data dependency because the graph is sequentially processed node by node. 

Therefore, the GC approach suffers from low parallelism in data access and computation 

As mentioned in Section 2.1, the previous work [22] proposed the region-based 

push-relabeling approach that could increase the parallelism and the data locality for the GC approach. 

However, its computation and data access in a local region still suffers the same design challenges as 

the original GC approach. In addition, the real-time scalable GC engine [23] is proposed but it only 

supports a small graph with 16 nodes. To sum up, the GC approach is not suitable to be accelerated for 

our target performance. We will develop another new disparity estimation algorithm based on the DP 

or BP algorithm, which is natively high parallelism. 

3. High Computational Complexity in Segmentation 
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In the DERS algorithm, the segmentation is used in the plane-fitting to enhance the object 

consistency, and in the GC approach to constrain the optimization process. In the previous work [50], 

the K-mean clustering method was implemented by VLSI design to achieve the throughput of 1 

Mpixels/s by 440K gate counts. However, the hardware cost would be dramatically increased to 

support our required throughput of three view HD1080p videos in 60 frames/sec (i.e. 360 Mpixels/s). 

2.4 Summary 

In this chapter, we review the disparity estimation algorithms by a general framework, and 

introduce the associated view synthesis technique. In addition, we also present the state-of-the-art 

DERS algorithm delivered by the MPEG 3DVC. The DERS could produce high-quality disparity 

maps for the view synthesis application, but it suffers from the three design challenges: irregular 

image access in block matching, low parallelism in graph-cut, and high computational complexity in 

segmentation. Thus, the DERS algorithm could not be accelerated to achieve our target throughput by 

the VLSI design. Therefore, the goal of this dissertation is to develop a new high-quality and 

hardware-efficient disparity estimation algorithm, and implement its dedicated VLSI design to reach 

our target throughput, three view HD1080p disparity maps at 60 frames/sec. 



34 

 

III Baseline Disparity Estimation with Belief 

Propagation and Joint Bilateral Filter for High 

Definition 3DTV Applications 

For the high definition 3DTV application, the disparity estimation natively suffers from high 

computational complexity due to large frame size. To conquer it, our strategy is to calculate the 

disparity map by a belief propagation-based algorithm in low resolution, and scale it to high resolution 

disparity map by an upsampling algorithm. For the two steps, we adopt the baseline belief propagation 

(BP) algorithm [24] and the joint bilateral upsampling (JBU) algorithm [79], [81]. The combination is 

called baseline algorithm in this dissertation.  

The chapter is organized as follows. First, we introduce the BP and JBU algorithms. Then, we 

separately analyze their architecture, and design the key components to solve their major design 

challenges. Finally, the experimental result of the baseline algorithms is demonstrated by software 

implementation. 

3.1 Introduction 

3.1.1 Baseline Belief Propagation 

The concept of the BP-based algorithm is illustrated in Figure III-1. In the BP-based algorithms, 

an energy function is generally formulated as 

 𝐸(𝒅) =∑𝐷(𝑑𝑖)

𝑖∈𝐼

+ ∑ 𝑉(𝑑𝑖, 𝑑𝑗)

𝑖∈𝐼,𝑗∈𝑁𝑒𝑖𝑔𝑏𝑜𝑟(𝑖)

 (III-1) 

for a 2-D graph in Figure III-1 (a). In this energy function, D is the data cost for each node 

corresponding to each pixel, V is the smoothness cost for each edge, and d of the energy E is a selected 

disparity set for all nodes. The two costs can constrain selecting the disparity set d. The data cost D 
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enforces that the correspondences are similar, and the smoothness cost V enforces that the neighboring 

nodes’ disparities are consistent. To minimize the energy function and acquire an appropriate disparity 

set d, the BP-based algorithms perform an iterative process called message passing. However, the 

shortage of the BP-based algorithms is that the energy function may not be convergent definitely. 

Nevertheless, the disparity map could approach to a steady state after sufficient iterations. 

 

   
(a) (b) (c) 

Figure III-1 Illustrations of BP 

(a) node plane; (b) message passing; (c) belief calculation. 

 

For the requirement of real-time processing, the direct hardware implementation of BP-based 

algorithms suffers from two design challenges: high computational complexity and storage in the 

message passing. For the example of 640x480@30fps and the disparity range of 32, the computational 

complexity is about 1,200 billion operations per second for the message passing, and the storage is 

about 157Mbytes for messages. 

To address above problems, various approaches have been proposed. Felzenszwalb and 

Huttenlocher [25] proposed an efficient message passing to reduce computational complexity from 

O(L
2
) to O(L), and the bipartite message approach to reduce 50% memory cost. Following their 

approach, Yang et al. [27] implemented it on a high performance GPU, and Park et al. [28] also 

designed an array processing architecture on two FPGA boards to achieve the performance of 

320x240@30fps but with 880KB on-chip memory. Cheng et al. [29]-[33] proposed a tile-based BP 

and a fully parallel architecture for each message passing processing element (PE) to reach real-time 

i jh
Mt-1

h→i

Mt
i→j

Mt-1
g→i

Mt-1
k→i

D

g

k

i j

k

h

g

MT
h→i

MT
j→i

MT
g→i

MT
k→i

D



36 

 

processing for the image size of 640x480. Nevertheless, all the implementation still suffers from high 

memory cost.  

In summary, though previous work used parallel PEs to conquer the high complexity, the resulted 

logic still occupies too much area since each PE needs high area cost. In addition, all the work did not 

solve the memory cost well due to their fixed memory access approach. 

To solve the mentioned problems, we propose a hardware efficient architecture for various 

BP-based algorithms through three techniques in Section 3.2. For the high memory cost, we propose a 

spinning-message approach which rearranges the message configuration in an internal memory to save 

50% memory cost. In addition, we propose a sliding-bipartite node plane that combines the advantages 

of previous work to further reduce more memory cost. For the message passing PE, we propose a 

buffer-free PE architecture which removes all the large buffers and shares common operators to reduce 

logic cost without significant speed degradation. Both the proposed low memory access approaches 

and the buffer-free PE architecture could be applied to various BP-based algorithms together to 

significantly reduce their hardware cost as well as speed up to real-time processing without changing 

their disparity accuracies. 

3.1.2 Joint Bilateral Upsampling 

The JBU algorithm [79] is proposed to scale up the various results of image processing, such as 

tone mapping, colorization, photomontage, disparity map, and etc. The main idea of JBU is to apply a 

high resolution image to guide the upsampling process. For upsampling a disparity map, given the 

high resolution image IH and the low resolution disparity map DL, the high resolution disparity map DH 

can be computed by 

 𝐷𝐻(𝑐) =
1

𝜅
∑ 𝐷𝐿(𝑞𝐿) ∙ 𝑓(‖𝑐𝐿 − 𝑞𝐿‖) ∙ 𝑔(‖𝐼𝐻(𝑐) − 𝐼𝐻(𝑞)‖)

𝑞𝐿∈S

  , (III-2) 

where f is the spatial kernel with the argument of spatial distance ||cL - qL|| in low resolution, and g is 

the range kernel with the argument of color distance ||IH(c)– IH(q)|| in high resolution. Note that the 
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positions c, q are in the high resolution frame, and the positions cL, qL are their corresponding positions 

in the low resolution frame. Both the two kernels are Gaussian weight function. In addition, κ is the 

sum of weights for normalization, and S is the window of spatial kernel. 

Based on the original JBU algorithm, various modified JBU algorithms are proposed with 

different equation. Chan et al. [80] proposed the noise aware filter depth upsampling (NAFDU), which 

adds the range kernel h for low resolution image to reduce the texture copy artifact. The equation of 

NAFDU is defined as 

𝐷𝐻(𝑐) =
1

𝜅
∑ 𝐷𝐿(𝑞𝐿)𝑓(‖𝑐𝐿 − 𝑞𝐿‖),𝛼𝑔(‖𝐼𝐻(𝑐) − 𝐼𝐻(𝑞)‖) + (1 − 𝛼)(‖𝐼𝐿(𝑐𝐿) − 𝐼𝐿(𝑞𝐿)‖)-

𝑞𝐿∈S

, 

  (III-3) 

where α is blending value related to the disparity variance. Using the additional h, the JBU algorithm 

could resist the texture copy artifact due to its color distance in sampled frame. Thus, the effect of h is 

increased for the region with low disparity variance. In contrast, the effect of g is increased for the 

region with high disparity variance.  

On the other hand, Riemens et al. [81] proposed the multi-step JBU algorithm that doubles the 

resolution of disparity map in each iteration. This approach can reduce the computational complexity 

by decreasing the window size of spatial kernel. In addition, the equation (III-2)is changed to 

 𝐷𝐻(𝑐) =
1

𝜅
∑ 𝐷𝐿(𝑞𝐿) ∙ 𝑓(‖𝑐𝐿 − 𝑞𝐿‖) ∙ 𝑔(‖𝐼𝐿(𝑐𝐿) − 𝐼𝐻(𝑞)‖)

𝑞𝐿∈S

  , (III-4) 

where the high resolution pixel IH(q) of (III-2) is replaced with the low resolution pixel IL(cL). The fast 

multi-step JBU algorithm was implemented by a programmable DSP platform to achieve the 

throughput of 720x576@50fps [82]. However, it is far from our target throughput due to the limited 

resource in DSP platform.  

For the above different JBU algorithms, their computational characteristics are the same as the 

joint bilateral filtering (JBF), which is an extended version of bilateral filter (BF). The BF and the JBF 

are respectively defined as  
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 𝐼′(𝑐) =
1

𝜅
∑𝐼(𝑞)𝑓(‖𝑐 − 𝑞‖)𝑔(‖𝐼(𝑐) − 𝐼(𝑞)‖)

𝑞∈𝑆

 (III-5) 

and 

 𝐽′(𝑐) =
1

𝜅
∑𝐽(𝑞)𝑓(‖𝑐 − 𝑞‖)𝑔(‖𝐼(𝑐) − 𝐼(𝑞)‖)

𝑞∈𝑆

  . (III-6) 

Therefore, the existing acceleration approaches for JBF and BF could be applied to the JBU algorithm. 

The state-of-the-art approaches proposed by Yang et al. [83] and Porikli [91] can achieve constant 

time complexity. But they suffer from extremely high memory cost. This dissertation focuses on the 

Porikli’s approach for JBF because we could take advantage of its computational characteristic of 

single iterative raster-scan to reduce its memory cost. 

The following two sections will analyze the computation of the baseline BP algorithm and the 

JBF algorithm, and propose an architecture design for the key components to solve their design 

challenges. 

3.2 Analysis and Design of Baseline Belief Propagation 

In this section, we first review the BP-based algorithms and points out their design challenges. 

Then, we present the proposed low memory access approaches, and elaborate the buffer-free PE 

architecture for message passing module, which is the most important component in BP-based 

algorithm. Finally, the implementation results and comparisons are demonstrated. 

3.2.1 Analysis of Belief Propagation 

In this sub-section, we review various BP-based algorithms and then indicate the general design 

problems in these algorithms. 

1. Baseline BP 

Sun et al. [24] first applied BP to disparity estimation. This baseline BP includes three steps: data 

cost calculation, message passing, and disparity selection, which are performed in the graph of Figure 



39 

 

III-1 (a). In this dissertation, the graph is called node plane whose size equals to an image in the 

baseline BP.  

In the baseline BP, the first step is to calculate the data cost of each node, where the data cost is 

identical to the matching cost in local approaches. According to the data cost, local approaches can 

determine disparity maps using the winner-take-all scheme. In contrast, the baseline BP further 

propagates it to neighboring nodes. 

In the second step, the messages, which are the arrows in Figure III-1 (a), are added around all 

nodes, and they propagate data cost to neighboring nodes. In the baseline BP, the propagating 

mechanism is called message passing. Figure III-1 (b) illustrates the message passing for calculating a 

new message, and its equation is as follows: 

 𝑀𝑖→𝑗
𝑡 (𝑑𝑗) =

1

𝜅
min
𝑑𝑖
(𝑉(𝑑𝑗, 𝑑𝑖) + 𝐷(𝑑𝑖) + ∑ 𝑀𝑥→𝑖

𝑡−1(𝑑𝑖)

𝑥𝜖𝑁𝑒𝑖𝑔𝑏𝑜𝑟(𝑖)∖𝑗

) (III-7) 

where M 
t
i→j is a new message of the node j at the iteration t from the node i, and M 

t-1
x→i is an old 

message of the node i at the iteration t-1 from the nodes x which can be g, h, and k. In addition, V and 

D are smoothness cost and data cost in (III-1), and κ is a normalization term. Note that the indexes di 

and dj are respectively for the nodes i and j. To calculate the new message M 
t
i→j, the three old 

messages M 
t-1
g→i, M 

t-1
h→i, and M 

t-1
k→i are summed up with D by the index di. Then the result is 

convoluted with V by the cross indexes dj and di. For the message passing in BP-based algorithms, the 

computation of (III-7) is performed on all four incoming messages of each node iteratively. 

In the third step, the final incoming messages of each node are accumulated with its D to form a 

belief. The belief is used to determine a disparity by the following equation, and its illustration is 

shown in Figure III-1 (c). 

 𝑑 = argmin
𝑖
(𝐷(𝑑𝑖) + ∑ 𝑀𝑥→𝑖

𝑇 (𝑑𝑖)

𝑥𝜖𝑁𝑒𝑖𝑔𝑏𝑜𝑟(𝑖)

) (III-8) 

In summary, the baseline BP alternates the initial data cost with the belief deriving from the message 

passing to deliver better disparity maps. 
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The major computational complexity of the baseline BP is in the message passing, and that is 

O(4HWL
2
T), where H and W are the height and width of the node plane, L is the disparity range, and T 

is the iteration count. The computation of the message passing can be undertaken by parallel PEs as 

shown in Figure III-2. These PEs use the nodes’ data at the previous iteration to calculate new 

messages for the next iteration. With sufficient parallel PEs, the baseline BP could achieve real-time 

speed. However, that will result in high logic cost. In addition, high memory cost is also incurred since 

all the messages in the node plane have to be stored. 

 

Figure III-2 Configuration of the message passing PEs 

2. Various BP-based Algorithms 

Based on the baseline BP, various BP-based algorithms have been developed recently to address 

the mentioned problems from the algorithm level. 

To reduce the computational complexity, Felzenszwalb and Huttenlocher [25] proposed the 

hierarchical BP that downsamples the node plane to multiple resolutions and then performs the 

message passing from coarser levels to finer levels. Because the messages in the coarser levels could 

propagate data cost to farther nodes and become initial messages for the next level, the disparity maps 

could converge faster than the baseline BP. Therefore, the hierarchical BP could take less time and 

deliver better disparity maps than the baseline BP. 

To reduce the memory cost, our previously proposed block-based BP [36] partitions the node 

plane into independent blocks. The memory cost is significantly reduced from image-scale to 

block-scale, so that all data in the message passing can be placed in an internal memory, instead of an 
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external memory. However, its disparity maps would suffer from blocky artifact. Furthermore, Cheng 

et al. [29] proposed the tile-based BP to improve the blocky artifact. In contrast with the independent 

blocks, the tile-based BP preserves the boundary messages of each tile in an external memory to link 

blocks. 

For all the above algorithms, their computation shares the same feature: the message passing 

performed in a rectangular node plane. For example, the node plane is image-scale in the baseline BP 

and the hierarchical BP, and block-scale in the block-based BP and the tile-based BP. Therefore, in the 

following we will show how to develop techniques for a rectangular node plane that can be applied to 

various BP-based algorithms. 

3.2.2 Proposed Low Memory Cost Access Approach 

In a rectangular node plane, the memory cost is constituted of the messages and the data cost. In 

this dissertation, we focus on the messages, which occupy the most of the cost. A straightforward 

memory access approach for the messages is the ping-pong buffer approach, which needs a pair of 

node planes and requires 8HWL memory. Unfortunately, this cost is too large to be on-chip. Even if the 

messages are stored in an external memory, its required bandwidth is still impractical, especially for 

the image-scale node planes. 

1. Previous Work 

To reduce the memory cost of messages, Yu et al. [35] compressed the messages by the envelope 

point transform method that can achieve eight times compression without significant degradation of 

disparity maps. However, this compression method needs the overheads of compression and 

decompression. 

On the other hand, much previous work focuses on the computing order of message passing on 

the node plane to resize the node plane for memory cost reduction. Park et al. [34] proposed the fast 

BP structure approach which resizes the pair of node planes from HW to TW, where T is usually 
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smaller than H. In our previous work [38], we proposed the in-place message update approach that 

resizes one of the pair node planes from HW to 3W for buffering partial new messages temporally. 

Felzenszwalb and Huttenlocher [25] delivered the bipartite scan which only needs one node plane, and 

can also reduce computation to half. Different from above computing orders, Szeliski et al. [26] 

proposed the BP-M scan which updates messages direction by direction for whole node plane to 

accelerate convergence speed, and only needs one node plane. Although the BP-M scan can converge 

faster than others, the memory cost of BP-M scan is still too high and could not be further reduced 

because of its iterative directional process and overlapping data lifetime in all messages. Thus, the 

BP-M scan is not discussed in this dissertation. 

Excluding the BP-M scan, the memory access in the previous work belong to the fixed memory 

access approach which binds messages at fixed memory positions, and thus would limit the possibility 

to reduce memory cost. Figure III-3 shows the data dependency of the traditional fixed memory access 

approach between successive iterations in a simplified 1-D node line, where each square represents a 

memory position, the arrow inside the square represents a stored message, and the cross line linking 

two messages (e.g. m3 at t1 to m2 at t2) represents that they have data dependency. In the traditional 

approach, each node’s messages are stored at fixed memory positions. For example, the node n3’s 

messages m3 are always located at the same memory position pos3 in all iterations. These messages 

m3 are used to calculate the neighboring nodes n2’s and n4’s new messages m2 and m4 for next 

iterations. However, the new messages cannot overwrite their old ones at the memory position pos2 

and pos4 since their old ones are still needed for new messages computation at other nodes. Thus, an 

access conflict would occur between the old and new messages of the neighboring nodes. To solve the 

access conflict, a straightforward method is to allocate an additional memory to buffer the new 

messages, but it will increase extra cost. 
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Figure III-3 Traditional fixed memory access approach in a 1-D node line for node n3 computation 

2. Spinning-Message Approach 

To address the access conflict and reduce memory cost, we propose the spinning-message 

approach that frees the bind between the messages and the memory positions, and eliminates the extra 

memory. In addition, the proposed approach could be applied to the reduction techniques mentioned in 

previous sub-section to further save 50% memory cost.  

Figure III-4 (a) shows the main idea of the proposed approach. The old messages of the center 

node are used to calculate the new messages of the neighboring nodes, and their data life time is ended. 

Therefore, the new messages of the neighboring nodes can overwrite the outdated messages without 

access conflict, and are stored at the center memory positions instead of the neighboring memory 

positions.  

Based on the main idea, Figure III-4 (b) shows the details of the proposed spinning-message 

approach by a 1-D node line for the node n3 as an example. Other nodes follow the same procedure. 

At the iteration t1, the messages m3 are stored at the center memory position pos3 that is the 

centralized mode. For the transition to the iteration t2, the messages m3 are used to calculate the new 

messages m2 and m4 of the neighboring nodes n2 and n4. The old messages m3 can be replaced by the 

new messages at the center memory position pos3 without the access conflict. After the calculation 
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and replacement, the centralized mode changes to the distributed mode since every node’s messages 

are distributed at its neighboring memory positions (e.g. m3 at pos2 and pos4) at the iteration t2. Then, 

the distributed messages m3 are used to calculate the new messages m2 and m4, and the distributed 

messages m3 can also be replaced by the new messages without the access conflict. With another 

calculation and replacement, every node’s messages are returned to the centralized mode at the 

iteration t3.  

In summary, the messages are centralized at their own memory positions for odd iterations and 

distributed at their neighboring memory positions for even iterations. With this approach, we can save 

the memory while avoid the access conflict. Figure III-5 shows the proposed approach extended to a 

2-D node plane. 

 
(a) 

 
(b) 

Figure III-4 Proposed spinning-message approach  

(a) main idea; (b) memory access in a 1-D node line for node n3 computation. 
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Figure III-5 Proposed spinning-message approach in a 2-D node plane for node n3 computation 

3. Applications 

The proposed spinning-message approach can be applied to different types of node plane to 

further reduce their memory cost. 

 
(a) 

 
(b) 

Figure III-6 Comparison of memory access approaches in different node planes 

(a) proposed spinning-message approach, (b) traditional fixed memory access approach 
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(1) Sliding Node Plane 

In the original BP, the messages in a node plane are iteratively updated by the space-first (x-y 

plane) computing order, and the node plane moves along the iteration axis as shown in the ping-pong 

buffer approach of Figure III-6 (a). In contrast, the sliding node plane moves orthogonal to the 

iteration axis, and their messages are updated by the iteration-first computing order. The size of sliding 

node plane is its projective area on the x-y plane, which is smaller than the original node plane. 

Figure III-7 shows three sliding directions. In which, the sizes of node planes are WT for the 

vertical sliding and HT for the horizontal sliding, and the diagonal sliding. The vertical sliding node 

plane was proposed by the fast BP structure approach in [28]. However, its size is larger than the other 

two because W is usually larger than H. Therefore, we recommend the horizontal sliding node plane, 

which totally requires 8HTL memory for messages. 

 
   

(a) (b) (c) 

Figure III-7 Sliding node plane in different directions  

(a) vertical sliding; (b) horizontal sliding; (c) diagonal sliding. 

The memory cost can be further reduced to 4HTL by the proposed spinning-message approach as 

shown in Figure III-6 (b). Figure III-8 shows the details of the spinning-message approach performing 

on the horizontal sliding node plane. The initial state of the messages is shown in Figure III-8 (a), 

where the front of the node plane arrives at the node n6. Then, in Figure III-8 (b), the new messages in 

the node plane are computed from the node n7 to n2 step by step. With the spinning-message approach, 

the new messages can overwrite the old messages at the same memory positions. After that, in Figure 

III-8 (c), the front of node plane will slide to the node n7. According to the above flow, the 

spinning-message approach could cooperate with the sliding node plane well to further save 50% 

memory cost. 
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(a) 

 
(b) 

 
(c) 

Figure III-8 Sliding node plane with the spinning-message approach 

(a) the node plane slides to the node n6; (b) the computing order of the message passing; (c) the node 

plane slides to the node n7. 
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(2) Bipartite Node Plane 

The bipartite node plane was proposed in [25] that divides nodes into two parts, like a chessboard 

as shown in Figure III-6 (a). In which, one part is computed at odd iterations, and the other is 

computed at even iterations. Its memory cost is reduced from a pair of node planes in ping-pong buffer 

approach to only one node plane of 4HWL. 

Above memory cost can be further reduced to 2HWL by the proposed spinning-message as shown 

in Figure III-6 (b). Figure III-9 shows the spinning-message approach performs on the bipartite node 

plane at odd iterations and even iterations. At the odd iteration in Figure III-9 (a), the messages of the 

white nodes are used to calculate the new messages of the black nodes, and these messages of the 

black nodes can overwrite those of the white nodes. Then the state of node plane is transformed to 

Figure III-9 (b). Similarly, the messages at the even iteration can be returned to the next odd iteration. 

Thus by the spinning-message approach, only the white nodes need memory, and 50% memory cost 

can be saved. 

  
(a) (b) 

Figure III-9 Bipartite node plane with the spinning-message approach  

(a) message passing for white nodes at odd iterations; (b) message passing for black nodes at even 

iterations. 

(3) Proposed Sliding-Bipartite Node Plane 

By combining the above sliding node plane and bipartite node plane, the memory cost can be 

reduced to 4HTL. Furthermore, applying the proposed spinning-message approach, the memory cost 

can be reduced to 2HTL as shown in Figure III-6 (b). Figure III-10 shows the spinning-message 

approach performs on the sliding-bipartite node plane. In a similar way as the sliding node plane, the 

front of the sliding-bipartite node plane can slide from the node n6 to n8 by the computing order in 
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Figure III-10 (b). Therefore, the proposed sliding-bipartite node plane takes advantages of the sliding 

node plane and the bipartite node plane to reduce memory cost. 

 
(a) 

 
(b) 

 
(c) 

Figure III-10 Proposed sliding-bipartite node plane  

(a) the node plane slides to the node n6; (b) the computing order of the message passing; (c) the node 

plane slides to the node n8. 
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3.2.3 Proposed Efficient PE 

Following above proposed approaches for memory access, the message passing could be 

performed by parallel PEs with the configuration in Figure III-13 (a). However, the logic of each PE 

costs too much due to the high computational complexity of message passing. To conquer the high 

logic cost, we propose the buffer-free PE architecture in this section. 

1. Previous Work 

In the message passing, both the computational complexity and logic cost are significantly 

affected by the model of smoothness cost V. Kumar and Torr [37] took advantage of a truncated model 

to propose a low-memory generalized BP. This reduction is effective if the convolution of (III-7) is 

fully unrolled. On the other hand, Felzenszwalb and Huttenlocher [25] reduced the message passing 

from O(L
2
) to O(L) by the benefit of a linear model. Figure III-11 presents the pseudo code of their 

proposed message passing to calculate one new message. This code includes three loops: aggregation 

and forward process, backward process, and normalization process. The latency of each loop is L 

iterations. 

Based on the above flow, Park et al. [34] directly designed a PE architecture as shown in Figure 

III-12. In this architecture, the node plane additionally stores the data cost. By sequential computation, 

four old incoming messages and data cost of a node are fetched, and four new messages of 

neighboring nodes are produced. This architecture uses three pipeline stages corresponding to three 

loops in Figure III-11. They are divided by the two large message buffers mf and mb with L message 

entries, which dominate the hardware cost of this PE. 
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Figure III-11 Pseudo code of the message passing for calculating a new message 

 

 

Figure III-12 Architecture of Park’s PE 

2. Buffer-free PE Architecture 

Because the message buffers are the major logic cost of the previous PE, the strategy in our 

architecture is to remove all the message buffers of the previous PE. Figure III-13 (a) shows the overall 

configuration of the parallel buffer-free PEs. The parallel PEs fetch and store data by the proposed low 

memory access approaches, and each buffer-free PE can calculate four messages at the same time.  
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Figure III-13 (b) shows the detailed architecture of the buffer-free PE. Based on the pseudo code in 

Figure III-11, we first propose the post-normalization approach that merges the computation of the 

normalization on line 20 with the aggregation on line 5. The benefit of this merging is that the message 

buffer mb could be eliminated, but the norm storing the normalization term should be changed to node 

plane. It causes that the memory of each message in node plane is increased by one memory entry. 

Second, we propose the convolution circuit that combines the forward process on lines 6 and 7 with the 

backward process on lines 13 to 15. These two have identical computations, two adders and two 

comparators, so that these computations can share the operators with additional multiplexers for 

selecting data path. Thus we can remove the message buffer mf. Finally, we also add the pipelining 

registers z0 and z1 to cut the critical path in this architecture. 

The schedule of data access and computation in the proposed PE architecture are presented in 

Figure III-13 (c). In the step (1), the normalization terms, the old messages and the data cost are read to 

calculate the forward messages. In the step (2), the forward messages are stored in the node plane 

sequentially. In the step (3), the forward messages are read to calculate the backward messages. Finally, 

in the step (4), the backward messages and new normalization terms are stored in the node plane. The 

memories of the node plane are implemented by two-port register files because the proposed PE read 

and write them at the same time. Although the proposed PE takes about double latency of the Park’s PE, 

the logic cost has been significantly reduced because all the message buffers are removed. 

The proposed buffer-free PE can compute four messages of one node at the same time. It can 

also compute one message of multiple nodes for different scan schemes by the following simple 

modification. First, the post-normalized and aggregation circuit is modified to receive 3 messages. 

Then, the convolution circuit is modified to be only one module. Finally, the accessed node plane 

should be properly modified according to the specific scan scheme. This modification can make the 

proposed PE work well for one message, but will slightly degrade the hardware efficiency due to no 

sharing operators in the post-normalized and aggregation circuit. 
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(a) 

 

(b) 

 

(c) 

Figure III-13 Proposed architecture  

(a) configuration of parallel PEs on the sliding-bipartite node plane; (b) architecture of the buffer-free 

PE; (c) schedule of the buffer-free PE. 
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3.2.4 Implementation Result 

1. Memory Cost Comparison 

The memory cost is affected by the type of node plane and memory access approach. As 

mentioned in Section III, the type of node plane would affect the computing order of PEs, and the 

memory access approach would provide a data access order for node planes. Both of the type of node 

plan and the memory access approach do not change the computational efficiency of the message 

passing but the memory cost.  

Table III-1 compares the memory cost used by various types of node plane adopting the 

traditional fixed memory access approach and the proposed spinning-message approach. The size of 

node plane is substituted with block-scale and image-scale magnitudes, and each entry of messages is 

16-bit. Compared to the traditional approach, most types of the node planes can save 50% memory 

cost in both the scales with the proposed spinning-message approach. The only exception is our 

previous in-place message node plane that has less saving with our approach since its original memory 

cost has been reduced to near 50%. In the comparison of overall hardware efficiency, the proposed 

spinning-message approach is better than the traditional approach. The reasons are that the proposed 

approach needs the same cycle counts as the traditional one while saving much memory cost. The only 

overhead of the proposed approach is a simple address generator, which has similar complexity as that 

in the traditional one. 
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Table III-1 Comparison of memory cost in memory access approaches for the iteration count of 30 

Type of Node 

Plane 

Memory Access 

Approach 

Memory Cost 

of Message 

(16-bit) 

Block-scale Image-scale 

W=16, 

H=16 

(KB) 

W=32, 

H=32 

(KB) 

W=320, 

H=240 

(KB) 

W=640, 

H=480 

(KB) 

Ping-pong 

buffer 

Fixed 8HWL 131 524 39,321 157,286 

Spinning-message 4HWL 65 262 19,660 78,643 

In-place 

Message [38] 

Fixed 4(HW+3W)L 77 286 19,906 79,134 

Spinning-message 4HWL 65 262 19,660 78,643 

Vertical Sliding 

[34] 

Fixed 8TWL 131 491 4,915 9,830 

Spinning-message 4TWL 65 245 2,457 4,915 

Horizontal 

Sliding 

Fixed 8HTL 131 491 3,686 7,372 

Spinning-message 4HTL 65 245 1,843 3,686 

Bipartite 

[25] 

Fixed 4HWL 65 262 19,660 78,643 

Spinning-message 2HWL 32 131 9,830 39,321 

Sliding-Biparti

te 

Fixed 4HTL 65 245 1,843 3,686 

Spinning-message 2HTL 32 122 921 1,843 

 

Figure III-14 compares the memory cost among different types of node plane using the same 

proposed spinning-message approach for different sizes of node plane. In this figure, all the memory 

cost ratios are relative to the ping-pong buffer with the traditional fixed memory access approach. 

Compared to the sliding node planes, the bipartite node plane can save more memory cost in the 

block-scale. On the contrary, the sliding node planes can reduce more in the image-scale. The 

proposed sliding-bipartite node plane combines their benefits to reduce more memory cost in the 

block-scale and image-scale. Its memory cost reduction can achieve 1.2% in the image-scale of 

640x480 and 23.4% in the block-scale of 32x32. Note that the sliding-based node planes would 

decrease its memory cost reduction when the iteration count T is larger than H or W. 
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Figure III-14 Ratio of memory cost in different node planes with spinning-message approach 

2. Implementation 

The proposed buffer-free PE architecture has been implemented by Verilog and synthesized by 

the 90-nm CMOS technology process. To compare with the Park’s PE [34], we also implemented their 

PE design since their original implementation is on two FPGA boards. In addition, the Cheng’s PE 

[31] is implemented in the same design condition for a fair comparison since some details are not 

disclosed in the dissertation. All the data widths are 16-bit in each implementation. Table III-2 

compares the logic cost of the proposed buffer-free PE with the other PEs. In these PEs, the Cheng’s 

PE takes the least latency to calculate a new message because of its fully parallel architecture. The 

Park’s PE and the proposed buffer-free PE belong to sequential architecture that causes higher latency. 

Although the proposed PE requires the most latency, its hardware efficiency is 3.6 times of the Park’s 

PE and 1.4 times of the Cheng’s PE. That is because we remove all the message buffers and common 

circuits to reduce logic cost, as well as add a pipeline stage on its critical path in the proposed 

buffer-free PE. 

Note that the hardware efficiency in our PE excludes the memory overhead by the 

post-normalization approach, which is highly related to the size of node plan, instead of the number of 

PE. Thus, our hardware efficiency will be still higher than Cheng's design when the size of node plan 
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is smaller than 35 for one PE case. For the 32 PEs case as in Table 3, the proposed approach will still 

have better hardware efficiency for node planes up to 35x32 (1,120) nodes. With this size, our 

proposed PE is suitable for the block-scale BP algorithms, such as block-based BP and tile-based BP, 

whose overall cost will be more practical than that in the image-scale BP. 

 

Table III-2 Logic cost comparison of PE architectures 

 
Cheng’s PE 

[31] 

Park’s PE 

[34] 

Proposed 

buffer-free PE 

Proposed 

buffer-free PE 

(32 PEs) 

Operating Frequency 

(MHz) 
100 222 285 285 

Disparity Range (L) 32 32 32 32 

CMOS Tech. process UMC 90-nm UMC 90-nm UMC 90-nm UMC 90-nm 

Gate Count 69.6K 50K 8.3K 256.6K 

Latency (Cycle) 
1 

(1 msg) 

32 

(4 msg) 

68 

(4 msg) 

68 

(128 msg) 

Throughput 

(Node/Second) 
25,000K 6,938K 4,191K 134,117K 

Hardware Efficiency 

(Throughput/Gate count) 
359 139 505 505 

 

The proposed low memory access approach and buffer-free PE architecture could be generally 

applied to the various BP-based algorithms together. Table III-3 shows the implementation results of 

four typical BP-based algorithms for the real-time constraint of 640x480 and the disparity range of 32.  

In these BP-based algorithms, their algorithm flows and iteration counts affect the required 

throughput. The message passing is performed for the baseline BP on a whole image, and for the 

hierarchical BP on multiple resolution images with different iteration counts. Thus, their required 

throughput is proportional to the image size and corresponding iteration count. For the block-based 

and tile-based BP, the message passing is performed on each block (tile) in an image. In addition to the 

iteration count for each block, the tile-based BP has the outer iteration count for re-processing the 

image. Their required throughput is proportional to the total iteration count as well as the block’s count 

and size. To satisfy the required throughput of these BP-based algorithms, we should use sufficient 

parallel PEs. Note that the maximal number of PE is equal to H due to the configuration of parallel 



58 

 

PEs in the sliding-bipartite node plane. As a result, the block-based BP and tile-based BP designs just 

approach to real-time speed. With the buffer-free PE architecture, the logic cost of all the BP-based 

algorithms are less than the gate counts of 300K.  

The memory cost of this table contains the messages and the data costs, which is proportional to 

the size of sliding-bipartite node plane according to Table III-1. The total memory cost of the baseline 

BP and hierarchical BP is larger than others because they allocate image-scale node planes. In contrast, 

the block-based BP and tile-based BP are more suitable to be integrated into stereoscopic video 

systems. 

Table III-3 Implementation results of various BP-based algorithms 

 Baseline BP 

[24] 

Hierarchical BP 

[25] 

Block-based BP 

[36] 

Tile-based BP 

[29] 

Iteration T 30 5, 5, 10, 5 30 inner=8, outer=2 

Required Throughput 

(Node/Frame) 

4,608,000 1,212,000 4,608,000 4,915,200 

Operating Frequency 

(MHz) 

285 285 285 285 

Number of PE 33 9 32 32 

Gate Count (K) 273.9 74.7 265.6 265.6 

Size of Sliding-Bipartite 

Node Plane 

30x480 

(image-scale) 

5x480 

(image-scale) 

30x32 

(block-scale) 

8x32 

(block-scale) 

Memory Cost of Messages 

and Data costs (KB) 

2,793 465 186  49 

FPS 30.01  31.12  29.11  27.29  

frame size=640x480, disparity range=32 

3.3 Analysis and Design of Joint Bilateral Filtering 

In this section, we first review the previous acceleration approaches for BF and JBF. Then we 

focus on the integral histogram approach and point out its design challenges. To solve it design 

challenges, we propose three memory reduction methods, and a real-time architecture design for the 

JBF, which is the most important component in JBU for disparity estimation. 

3.3.1 Related Acceleration Approaches 

Various acceleration approaches for BF have been proposed, and can be classified into two 

categories: target-pixel-first approach and support-pixel-first approach, according to their 
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computational characteristics, as illustrated in Figure III-15. Most of the acceleration approaches could 

be applied to the JBF.  

The target-pixel-first approach is an aggregation process that focuses on a target pixel c and 

accumulates its support pixels q. On the other hand, the support-pixel-first approach is a diffusion 

process that regards a support pixel q as a center to diffuse for its target pixels c. With the 

classification, the previous approaches are reviewed in this Section, and their computational 

complexity and memory cost are compared in Table III-4. In which, R is the range domain from 0 to 

255 for gray-level 

  
(a) (b) 

Figure III-15 Classification of BF acceleration approaches 

 

Table III-4 Comparison of BF acceleration approach in computational complexity and memory cost 

Approach Computational Complexity 

(per pixel) 

Memory Cost 

(per frame) 

 Brute-Force  All O(|S|2) 0 

Support 

Pixel 

First 

Basic  LUT Construction O(|R|) 
4MN 

2-D Conv. by FFT O(|S|log|S|) 

Durand and Dorsey 

[84] 

Piecewise-linear 

Subsampling 

LUT Construction O(|R|/sr) 4MN/ss
2 

2-D Conv. by FFT O(|S|/ss
2log(|S|/ss

2)) 

Yang et al. 

[83] 

Piecewise-linear LUT Construction O(|R|/sr) 

4MN 2-D Conv. by Approx. 

Gaussian 

O(1) 

Paris and Durand 

[85] 

Bilateral Grid LUT Construction O(|R|/sr) MN|R|/(srss
2) 

3-D Conv. by FFT O(|S||R|/(srss
2)log(|S||R|/(srss

2))) 

Target 

Pixel 

First 

Pham and Vliet 

[89] 

Separable 1-D Aggre. for Col. O(|S|) 
0 

1-D Aggre. for Row O(|S|) 

Basic Histogram Histogram Calculation O(|R||S|2) 
0 

1-D Conv. O(|R|) 

Huang  

[90] 

Extended 

Histogram 

Histogram Calculation O(|R||S|) 
|S+E|2|R| 

1-D Conv. O(|R|) 

Weiss  

[92] 

Distributed 

Histogram 

Histogram Calculation O(|R|log|S|) 
|S+E|2|R| 

1-D Conv. O(|R|) 

Porikli 

[91] 

Integral 

Histogram 

Histogram Calculation O(|R|/sr) MN|R|/sr 1-D Conv. O(|R|/sr) 

M: frame height, N: frame width, |S|: filter window width, |R|: intensity range 

ss: quantization factor for S, sr: quantization factor for R, E: extension pixel count 

c

S

q

Target-pixel-first 

approach

q

S

c

Support-pixel-

first approach
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1. Support-Pixel-First Approaches 

The main idea of the support-pixel-first approaches is to convert the original nonlinear 

convolution to linear convolution, so that the linear convolution can be accelerated by existing 

algorithms, such as the Fast Fourier transform (FFT). To convert (III-5) to linear convolution, the 

terms g(||I(c)-I(q)||)I(q) and g(||I(c)-I(q)||) are pre-calculated and stored in memories as look-up tables 

(LUT). Hence, the approaches consist of two steps, LUT construction and linear convolution. For the 

implementation issues, the former needs a large storage and the later needs an efficient computation. 

Durand and Dorsey [84] first proposed the support-pixel-first approach that contains the 

piecewise-linear scheme and the subsampling scheme to respectively quantize the range domain R and 

spatial domain S. Both the memory cost and computational complexity can be reduced by the 

quantization factors sr, ss
2
. Based on the piecewise-linear scheme, Yang et al. [83] adopted a 

constant-time approximate Gaussian filtering for the convolution to achieve real-time processing by 

the GPU programming. 

Paris [85], [86] indicates that the piecewise-linear scheme would suffer from poor approximation 

on texture’s discontinuity since it cannot exactly interpolate dense results. To address that, the bilateral 

grid scheme was proposed to perform a 3-D convolution on S× R, instead of the typical 2-D 

convolution only on S. However, its memory cost and computational complexity are scaled on the 

dimension R. Following the bilateral grid scheme, Chen [87] implemented it by the GPU programming 

to achieve real-time processing. In addition, Adams [88] adopts the Gaussian KD-tree to improve its 

speed. 

To sum up, the support-pixel-first approaches can convert BF and JBF to linear convolution but 

suffer from high memory cost for LUTs. Unfortunately, the size of LUTs should be 

frame-scale-magnitude since their algorithms iteratively performs on whole frame. 

2. Target-Pixel-First Approaches 
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The main idea of the target-pixel-first approaches is to aggregate the support pixels with kernels, 

which needs the computational complexity of O(|S|
2
). To accelerate it, Pham and Vliet [89] proposed 

the separable BF that directly changes the original 2-D aggregation to two-step 1-D aggregation for 

columns and a row. Thus it can reduce the computational complexity to O(|S|) but suffers from the 

axis-aligned artifact.  

On the other hand, the histogram-based approaches could reduce computation without significant 

quality degradation. In the approaches, the space kernel f is simplified to a box filter with constant 

coefficient, so that (III-5) is rewritten as 

 𝐼′(𝑐) =
∑ 𝑔(‖𝐼(𝑐) − 𝐼(𝑞)‖)𝐼(𝑞)𝑞∈𝑆

∑ 𝑔(‖𝐼(𝑐) − 𝐼(𝑞)‖)𝑞∈𝑆
=
∑ 𝑔(‖𝐼(𝑐) − 𝑏‖)𝑐𝑐(𝑏)𝑏𝑏∈𝑅

∑ 𝑔(‖𝐼(𝑐) − 𝑏‖)𝑐𝑐(𝑏)𝑏∈𝑅
   , (III-9) 

Before convoluting each support pixel I(q) with g, the support pixels in the filter window S are 

classified into the pixel count histogram hcc, whose subscript refers to the target pixel c. Figure III-16 

shows the concept of the classification. According the support pixel I(q), the corresponding bin b is 

accumulated. For the exact result of gray-level, the number of bin Nb is set as 256. After classifying all 

support pixels, the histogram bin value hcc(b) can refer to the number of support pixels with the 

intensity b in S. Then, (III-9) can be finally calculated by 1-D convolution in the range domain R, 

instead of the original space domain S. In summary, the histogram-based approaches include two parts: 

histogram calculation and 1-D convolution. The key point of the histogram-based approaches is that 

the convolution can be decreased from the larger |S|
2
 to |R|. However, the major computational 

complexity is O(|R||S|
2
) in the histogram calculation that demands other acceleration techniques. 

 

Figure III-16 Concept of histogram-based approaches 

 

c

S

q

0 255
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To speed up the histogram calculation, Huang [90] proposed the extended histogram approach 

that calculates multiple target pixels’ histograms and shares their partial histograms in run time. Its 

computational complexity can be reduced to O(|R||S|), but it spends extra memory cost. Based on the 

extended histogram approach, Weiss [92] proposed the distributed histogram approach that 

reassembles the histogram calculation of each row, and reduces computational complexity to 

O(|R|log|S|). Furthermore, Porikli [91] proposed the integral histogram approach to decrease 

computational complexity to O(|R|/sr), which is independent of the filter window size. In addition, the 

factor sr quantizes the support pixel’s intensity. The integral histogram approach can be faster than the 

brute-force approach when |R|/sr is smaller than |S|
2
. That implies this approach is suitable to be 

applied when BF has large filter window size. Based on the integral histogram approach, Ju [93] 

modified (III-9) to 

 𝐽′(𝑐) =
∑ 𝑔(‖𝐼(𝑐) − 𝐼(𝑞)‖)𝐽(𝑞)𝑞∈𝑆

∑ 𝑔(‖𝐼(𝑐) − 𝐼(𝑞)‖)𝑞∈𝑆
=
∑ 𝑔(‖𝐼(𝑐) − 𝑏‖)𝑖𝑐(𝑏)𝑏∈𝑅

∑ 𝑔(‖𝐼(𝑐) − 𝑏‖)𝑐𝑐(𝑏)𝑏∈𝑅
   , (III-10) 

to further support JBF. Different from (III-9), the histogram in the numerator is the pixel intensity 

histogram hic that accumulates the pixel intensity for each bin, instead of the pixel count in hcc. 

In summary, the integral histogram approach is the state-of-the-art in target-pixel-first approaches, 

but its memory cost is frame-scale-magnitude, like the support-pixel-first approaches. However, as 

mentioned above, the memory cost of the support-pixel-first approach is hard to be reduced due to its 

iterative computing, instead of progressive computing in the integral histogram approach. Thus, this 

dissertation focuses on the integral histogram approach. 

3.3.2 Analysis of Integral Histogram Approach 

In this Section, we introduce the integral histogram approach in details, and then analyze the 

design challenges of JBF, which can be applied to BF as well. 

1. Integral Histogram Approach 
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Table III-5 presents the computational flow and computational analysis of the integral histogram 

approach for JBF to calculate 1-pixel result, which consists of the integration, extraction, kernel 

calculation, and convolution processes. In which, the former two are for the histogram calculation step, 

and the latter two are for the 1-D convolution step. 

For ease of explanation, we use the area view to show how this approach operates and the 

memory view to show the memory usage, as illustrated in Figure III-17 (a). In the area view, IHO
X
 is a 

histogram of the rectangular area stretched from the pixel O to X. Thus, the addition and subtraction of 

IH can be regarded as area merging and cutting, respectively. In the memory view, the data of IHO
X
 are 

stored at X, and the gray region represents occupied memory usage. With these representations, Figure 

III-17 (b) and (c) illustrate the integration and extraction processes. 

 

Table III-5 Computational flow and analysis for a pixel in the integral histogram approach 

Process 
Complexity 

(operation) 

BW for IH 

(data) 

BW for pixel 

(data) 

Integration process: 

Pixel count histogram hcc 

Loop b=0 to Nb-1 

    IHcO
S
(b)=IHcO

Q
(b)+IHcO

R
(b)-IHcO

P
(b) 

  IHcO
S
(IS) += 1 

Pixel intensity histogram hic 

Loop b=0 to Nb-1 

    IHiO
S
(b)=IHiO

Q
(b)+IHiO

R
(b)-IHiO

P
(b) 

  IHiO
S
(IS) += Js 

 

 

 

ADD: 3Nb 

ADD: 1 

 

 

ADD: 3Nb 

ADD: 1 

 

 

 

4Nb 

 

 

 

4Nb 

 

 

 

 

 

 

 

 

2 pixels 

Extraction process: 

Pixel count histogram hcc 

Loop b=0 to Nb-1 

    hcc(b) = IHcO
D
(b)+IHcO

A
(b)-IHcO

B
(b)- IHcO

C
(b) 

Pixel intensity histogram hic 

Loop b=0 to Nb-1 

    hic(b) = IHiO
D
(b)+IHiO

A
(b)-IHiO

B
(b)- IHiO

C
(b) 

 

 

 

ADD: 3Nb 

 

 

ADD: 3Nb 

 

 

 

4Nb 

 

 

4Nb 

 

Kernel calculation process: 

Loop b=0 to Nb-1 

  G(b) = g(|Ic-b|) 

 

 

ADD, LUT: Nb 

 

 

 

1 pixel 

Convolution process: 

Nu=0, De=0 

  Loop b=0 to Nb-1 

    De += G(b) x hcc(b) 

Nu += G(b) x hic(b) 

  Result = Nu / De 

 

 

 

MUL, ADD: Nb 

MUL, ADD: Nb 

DIV: 1 

 

 

 

 

 

 

1 pixel 

Total 17Nb+3 16Nb 4 pixels 
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(a) (b) (c) 

Figure III-17 Concept of integral histogram approach 

(a) representation of an integral histogram IHO
X
 for the region from O to X in area view and memory 

view, (b) integration process performed by raster-scan order to compute the integral histogram IHO
S
, (c) 

extraction process performed to extract the histogram HABCD of the rectangle ABCD. 

 

First, the integration process progressively calculates the IH of each pixel using the equation, 

 𝐼𝐻𝑂
𝑆 = 𝐼𝐻𝑂

𝑄
+ 𝐼𝐻𝑂

𝑅 − 𝐼𝐻𝑂
𝑃 + 𝐵𝑖𝑛(𝐼𝑆)  . (III-11) 

For the pixel count histogram hcc and the pixel intensity histogram hic, their IHs (i.e. IHc and IHi) are 

computed separately as shown in Table III-5. For hcc, Bin(IS) is 1 for the corresponding bin and 0 for 

others. On the other hand, for hic, this term is Js for the corresponding bin, and also 0 for others. After 

this process, the IH of each pixel is produced and stored into memory. 

Second, given the IHs, the extraction process can extract the histogram hcc or hic of the filter 

window ABCD centered by the target pixel c using the equation, 

 𝐻𝐴𝐵𝐶𝐷 = 𝐼𝐻𝑂
𝐷 + 𝐼𝐻𝑂

𝐴 − 𝐼𝐻𝑂
𝐵 − 𝐼𝐻𝑂

𝐶  . (III-12) 

As shown in Figure III-17 (c), a histogram with arbitrary filter window size can be obtained by using 

the IHs of four corners. With this property, the integral histogram approach can reduce computational 

complexity to independent of filter window size. 
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Third, the kernel calculation process computes the range kernel by a range table, which includes 

256 items for the 256 possible values of ||Ic-b||. Finally, given the range kernel g and the histograms hcc 

and hic, the convolution process calculates the result of target pixel c by (III-10). 

2. Design Challenges 

Since the complexities listed in Table III-5 are pixel wise as well as bin number dependent, they 

will grow quickly as resolution and bin number grow. The detailed design challenges are described 

below. 

(1) High Memory Cost for Integral Histogram 

During the integration process, all the IHs of whole image are stored in memory. BF needs a 

frame-scale-magnitude memory for hcc, and JBF additionally needs another one for hic. Therefore, the 

total memory cost of JBF is 

 𝑀𝑁 ⋅ 𝑁𝑏𝑤𝑏 +𝑀𝑁 ⋅ 𝑁𝑏(𝑤𝑏 + 8)   , (III-13) 

where the former term is for hcc, and the later term is for hic. M and N is the frame height and width, 

Nb is the number of bin, and wb is the bit width of a bin. Note that wb is related to the maximal area of 

integration, and its value equals log2(MN). In addition, the bit width of hic is more than hcc by 8 bits 

because the intensity of a pixel requires 8 bits. 

Above memory cost would be 829.4 Mbytes for the HD1080p resolution (i.e. N=1920, M=1080, 

wb=21, Nb=64). For a VLSI design, these massive data could be configured into off-chip DRAM or 

on-chip SRAM. However, the off-chip memory suffers from longer access latency and limited 

bandwidth usage in a system. Hence, our strategy for the design challenge is to reduce the memory 

requirement and enable data be stored in on-chip memory. 

(2) High Computational Complexity in All Processes 

According to the complexity in Table III-5, generating 1-pixel result needs 15Nb+2 additions, 2Nb 

multiplications, and 1 division. If Nb is 64, the total complexity will be 2,262.3 million operations for 
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an HD1080p image. To meet above demands, a VLSI design with sufficient parallel operators is 

necessary. 

(3) High Bandwidth in Integration and Extraction 

In Table III-5, the bandwidth for IH requires 16Nb for 1-pixel result, and that will reach 106.168 

Gbits for an HD1080p image as shown in Table III-8. That is because the IHs are accessed frequently. 

With the strategy for the memory cost problem, the IHs are stored in on-chip memory, and its data bus 

should be increased to address the high bandwidth problem. However, it results in over-partitioned 

memory and increased area. Thus, a method to reduce the bandwidth is needed. 

(4) Large Range Table in Kernel Calculation 

In the kernel calculation process, a range table with 256 items is needed. However, with the 

parallel operations for the computational complexity problem, this table should be duplicated. Thus, 

both the size and number of the range table results in large area. 

In summary, the integral histogram approach can speed up JBF and BF well but suffers from 

above design challenges. To address them, a VLSI design with suitable memory reduction and 

architecture design techniques is necessary. 

3.3.3 Proposed Memory Reduction Methods 

To solve the high memory cost problem, we can takes advantage of the raster-scan computing 

order to reduce the memory cost from a frame to a multiple rows by the runtime updating method 

(RUM). The memory cost could be further reduced by the stripe-based method (SBM) to slice frame 

into stripes. Finally, we propose the sliding origin method (SOM) that moves the origin of each IH 

stripe progressively with the computing and can reduce the multiple row buffers to single row buffer. 

With these memory methods, the memory cost can be reduced to 0.003%-0.020%. The details of the 

proposed methods are described below. 

1. Runtime Updating Method (RUM) 
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The concept of the RUM is to perform the integration process and the extraction process at the 

same time, instead of two separate iterations in the original flow. Figure III-18 illustrates its memory 

configuration in the memory view. In Figure III-18 (a), the integration process is from the pixel O to D, 

and the extraction process can extract the histogram HABCD. From the data lifetime analysis, all the IHs 

before the pixel A are unnecessary. Thus, only the IHs from A to D require memory space, so that the 

memory cost is 

 |𝑆|𝑁 ⋅ 𝑁𝑏𝑤𝑏 + |𝑆|𝑁 ⋅ 𝑁𝑏(𝑤𝑏 + 8)  , (III-14) 

where M in (III-13) is replaced by the filter window width |S|.  

Figure III-18 (b) and (c) illustrate that the memory is updated when the two processes moves to 

the next pixel S. In Figure III-18 (b), the integration process calculates the new IHO
S
 using IHO

D
, IHO

Dˊ
, 

IHO
Sˊ

, and then the new IHO
S
 can overwrite the memory position of the discarded IHO

A
. In Figure 

III-18 (c), the extraction process can extract HPQRS. With the proposed RUM, the memory cost could 

be reduced from a full frame to a partial frame. This method can gain considerable reduction since |S| 

is usually much smaller than M. 

   
(a) (b) (c) 

Figure III-18 Runtime updating method (RUM) 

(a) extraction for HABCD, (b), integration to S, (c) extraction for HPQRS 

2. Stripe-Based Method (SBM) 

The main idea of the SBM is to slice the whole frame into many vertical stripes, and the 

integration and extraction processes are performed stripe by stripe. Figure III-19 illustrates a whole 

frame partitioned into stripes. Note that the integration process should additionally be carried out on 

the extended region, which contains the surrounding support pixels for the target pixels on the stripe 

boundary. Thus, the total memory cost of the SBM is 
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 𝑀(|𝑆| + 𝑤𝑠 − 1) ⋅ 𝑁𝑏𝑤𝑏 +𝑀(|𝑆| + 𝑤𝑠 − 1) ⋅ 𝑁𝑏(𝑤𝑏 + 8)   , (III-15) 

where ws is the stripe width, and wb equals log2[M(|S|+ws-1)]. Compared to the original cost in (III-13), 

the SBM could reduce significant memory if (|S|+ws-1) is much smaller than N. The overhead of the 

SBM is that the extended regions result in extra computation and bandwidth in the integration process 

due to repeated performing on these regions. 

 

Figure III-19 Stripe-based method (SBM) 

3. Sliding Origin Method (SOM) 

The concept of the SOM is to vertically slide the origin pixel O with the integration and 

extraction processes to reduce memory cost from a plane to a line as shown in Figure III-20. With the 

sliding origin pixel, the two processes can be simplified as described below. 

For the extraction process in the area view of Figure III-20 (a), the original IHO
A
 and IHO

B
 are 

zero because O is under A and B, and they cannot form meaningful histogram rectangles. Hence, the 

equation (III-12) can be simplified to 

 H𝐴𝐵𝐶𝐷 = 𝐼𝐻𝑂
𝐷 − 𝐼𝐻𝑂

𝐶 . (III-16) 

For the integration process in Figure III-20 (b), the new IHO
S
 is computed by 

 𝐼𝐻𝑂
𝑆 = 𝐼𝐻𝑂

𝐷 + 𝐼𝐻𝑂
𝑆′ − 𝐼𝐻𝑂

𝐷′ + 𝐵𝑖𝑛(𝐼𝑆)  . (III-17) 

However, the S΄ and Dˊ are on the previous row of S and D, and their corresponding origin should be 

O’, instead of O. Therefore, the IHO
Sˊ

 and IHO
Dˊ

 in (III-17) should be changed to IHOˊ
Sˊ

 and IHO΄
Dˊ

 by 

 𝐼𝐻𝑂
𝑆 = 𝐼𝐻𝑂

𝐷 + 𝐼𝐻𝑂′
𝑆′ −𝐵𝑖𝑛(𝐼𝑄) − 𝐼𝐻𝑂′

𝐷′ + 𝐵𝑖𝑛(𝐼𝑆)  . (III-18) 
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With above simplification, the required memory space could be reduced to  

 𝑁 ⋅ 𝑁𝑏𝑤𝑏 +𝑁 ⋅ 𝑁𝑏(𝑤𝑏 + 8)  , (III-19) 

where wb equals log2(|S|N) since the maximal area of integration is |S|N. Compared to the original cost 

in (III-13), the height dimension M is eliminated, and wb is much smaller. 

   
(a) (b) (c) 

Figure III-20 Sliding origin method (SOM) 

(a) extraction process with sliding origin O, (b) integration process to next pixel S, (c) modified 

integration process to next pixel S. 

4. Combination 

The proposed memory reduction methods could be simply combined as follows. First, the SBM 

partitions a whole frame into stripes. Then, in each stripe, the RUM and SOM are performed row by 

row. This combination can reduce the memory cost to 

 (|𝑆| + 𝑤𝑠 − 1) ⋅ 𝑁𝑏𝑤𝑏 + (|𝑆| + 𝑤𝑠 − 1) ⋅ 𝑁𝑏(𝑤𝑏 + 8)  , (III-20) 

where wb equals log2[|S|(|S|+ws-1)]. Compared to the original cost in (III-13), M is decreased to 1 due 

to the RUM and SOM, and N is decreased to (|S|+ws-1) due to SBM. 

3.3.4 Proposed Architecture 
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With above memory reduction methods, the computational flow of JBF in Table III-5 is changed 

to that in Table III-6. The details of these design techniques are presented below. 

 

Table III-6 Modified computational flow and analysis for a pixel in the integral histogram approach 

Process 
Complexity 

(operation) 

BW for IH 

(data) 

BW for pixel 

(data) 

Integration process: 

Pixel count histogram hcc 

Loop b=0 to Nb-1 

    IHcO
S
(b)=IHcO

D
(b)+IHcO’

S’
(b)-IHcO’

D’
(b) 

  IHcO
S
(IS) += 1,  IHcO

S
(IQ) -= 1 

Pixel intensity histogram hic 

Loop b=0 to Nb-1 

    IHiO
S
(b)=IHiO

D
(b)+IHiO’

S’
(b)-IHiO’

D’
(b) 

  IHiO
S
(IS) += JS,  IHiO

S
(IQ) -= JQ 

 

 

 

ADD: 2Nb 

ADD: 2 

 

 

ADD: 2Nb 

ADD: 2 

 

 

 

4Nb 

 

 

 

4Nb 

 

 

 

 

 

 

 

 

 

4 pixels 

Extraction process: 

Pixel count histogram hcc 

Loop b=0 to Nb-1 

    hcc(b) = IHcO
S
(b) - IHcO

R
(b) 

Pixel intensity histogram hic 

Loop b=0 to Nb-1 

    hic(b) = IHiO
S
(b) - IHiO

R
(b) 

 

 

 

ADD: Nb 

 

 

ADD: Nb 

 

 

 

Nb 

 

 

Nb 

 

Kernel calculation process: 

Loop b=0 to Nb-1 

  G(b) = g(|Ic-b|) 

 

 

ADD, LUT: Nb 

 

 

 

1 pixel 

Convolution process: 

Nu=0, De=0 

  Loop b=0 to Nb-1 

    De += G(b) x hcc(b) 

Nu += G(b) x hic(b) 

  Result = Nu / De 

 

 

 

MUL, ADD: Nb 

MUL, ADD: Nb 

DIV: 1 

 

 

 

 

 

 

1 pixel 

Total 11Nb+5 10Nb 6 pixels 

 

1. Overall Architecture 

Figure III-21 shows the overall architecture that contains two parts, interface and core. In this 

architecture, the image pixels and the IHs are stored at the off-chip and on-chip memory, respectively. 

The interface accesses pixels from the off-chip memory through a 64-bit bus, and the core performs 

the computation of JBF. 

In the interface, the access controller allocates the bus priority to the input and output 

first-in-first-out (FIFO) buffers by round-robin policy. The size of each buffer is associated with 

off-chip bandwidth. Large buffers can support data reuse schemes to reduce the off-chip bandwidth. 

Because of sufficient bandwidth in this architecture, we do not apply any data reuse schemes here, and 
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set its size as 16-pixel to meet the bus width and support ping-pong mechanism for simultaneous 

reading and writing. 

The operations of the architecture are described below with the schedule in Figure III-22, which 

is hierarchically sliced from a frame to pipeline tiles. The computation of one stripe row requires 90 

cycles for the stripe width ws of 60 and the filter window width |S| of 31. Note that this architecture 

takes 96 cycles for one stripe row, and the last 6-cycles are the bubble cycles for simplifying 

controlling logic. For the process in a pipeline tile, the access controller in the interface fetches pixels 

from the off-chip memory into the FIFO buffers. Then the two histogram calculation engines in the 

core begin to compute hic and hcc, and the convolution engine consecutively produces 8 pixels to the 

output FIFO buffer. Finally, the interface moves results from the buffer to the off-chip memory. 

 

Figure III-21 Proposed architecture of JBF.  
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Figure III-22 Schedule of the proposed architecture 

2. Architecture Components 

In the core, the main components are two histogram calculation engines and one convolution 

engine for the computation in Table III-6, which have high computational complexity as mentioned 

above. Thus, the proposed R-parallelism method unrolls all computational loops in the range domain R. 

The details of this method are described in each engine as follows. 

(1) Histogram Calculation Engine 

The histogram calculation engines perform the integration and extraction processes for hcc and hic 

as shown in Table III-6. With the R-parallelism method, we design their architectures as shown in 

Figure III-24, where the selected-bin adder (SBA) is depicted in Figure III-23. These two engines can 

achieve the throughput of 1 histogram/cycle. Note that the difference of the two engines is that the 

integral value of SBAs is the source pixel J in the engine hic, instead of the constant 1 in the engine hcc. 

In addition, all bit widths of data in the engine hic are more than those in hcc by 8 bits. 

5

8

Histogram Calculation

8

Convolution

1

Write Results

Pipelining

Read Pixels

96 96……
1st row

96

2nd row 1080th row

One stripe (1080 rows)

3,317,760

One frame (32 stripes)

One pipeline tile

Unit: Cycle

5

8
Histogram 

Calculation

8

Convolution

1

Write Results

Read Pixels



73 

 

 

Figure III-23 Selected-bin adder in the histogram calculation engines 

 

  
(a) (b) 

Figure III-24 Proposed architectures of histogram calculation engines hic and hcc 
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 𝑆(𝑡): 𝐼𝐻𝑂
(𝑥,𝑦)

, 𝑆′(𝑡): 𝐼𝐻𝑂
(𝑥,𝑦−1)

, 𝐷(𝑡): 𝐼𝐻𝑂
(𝑥−1,𝑦)

, 𝐷′(𝑡): 𝐼𝐻𝑂
(𝑥−1,𝑦−1)

  . (III-21) 

For the next cycle t+1, their x-coordinates are increased by 1 as follows, 

 𝑆(𝑡+1): 𝐼𝐻𝑂
(𝑥+1,𝑦)

, 𝑆′(𝑡+1): 𝐼𝐻𝑂
(𝑥+1,𝑦−1)

, 𝐷(𝑡+1): 𝐼𝐻𝑂
(𝑥,𝑦)

, 𝐷′(𝑡+1): 𝐼𝐻𝑂
(𝑥,𝑦−1)

  .  (III-22) 

From the (III-21) and (III-22), we can find that D
(t+1)

 equals S
(t)

, and Dˊ
(t+1)

 equals Sˊ
(t)

. That means 

IHOˊ
Dˊ

 and IHO
D
 can be obtained by delaying IHOˊ

Sˊ
 and IHO

S
 for one cycle, respectively. Therefore, we 

can use two delay-buffers to avoid accessing IHOˊ
Dˊ

 and IHO
D 

from the on-chip memory, and reduce 

bandwidth from five IHs to three IHs. 

(2) Convolution Engine 

The convolution engine uses the histograms hcc and hic to further compute the result pixel by the 

kernel calculation and convolution processes in Table III-6. Its architecture is shown in Figure III-25 

(a). With the proposed R-parallelism method, the convolution process can achieve the throughput of 1 

pixel/cycle. Higher throughput can be further attained by adding the registers at the available cut-lines 

for pipelining in the figure, which can enable operating frequency be higher. 

The R-parallelism method brings high throughput but suffers from large size and large number of 

range table. For the large size, we take advantages of the symmetry and truncation property of 

Gaussian function to decrease its size from 256 to 32. In addition, to avoid the large number of range 

table, we share one table by the table selection module as shown in Figure III-25 (b), which reduces 

the number of table to one. Note that the result of divisor would directly be in the range of 8-bit 

because it is used to normalize the sum of pixels with weight (III-10). 
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(a) (b) 

Figure III-25 Proposed architecture of (a) convolution engine and (b) its table selection modules 
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3.3.5 Implementation Result 
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The proposed architecture of JBF has been implemented by Verilog and synthesized under the 90-nm 

CMOS technology process. Table III-7 lists the implementation result of the proposed architecture. 
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Table III-7 Example implementation result of the proposed architecture 

Technology Process UMC 90nm 

Image Size MxN 1920x1080 

Number of Bin Nb 64 

Filter Window Size |S|
2
 31x31 

Stripe Width ws 60 

Clock Rate (Hz) 100M 200M 

Frame Rate (Frame/s) 30 60 

Logic Cost 

Excluding Memories 

(Equivalent Gate-Count) 

Interface 9,578 9,917 

Histogram Cal. 97,766 148,649 

Convolution 168,333 197,351 

Total 276,178 355,917 

On-chip Memory (Byte) 23K 23K 

 

Table III-8 compares the hardware costs between the proposed methods and the original integral 

histogram in different resolutions. With the proposed memory reduction and architecture design 

techniques, the complexity can be reduced to 0.15%, and the memory requirement can be reduced to 

0.003%-0.02%. In addition, the bandwidth for IH (i.e. on-chip bandwidth) can be reduced to 32%-36%, 

but the bandwidth for pixel (i.e. off-chip bandwidth) is increased to 20.3-132.7 Mbits. Nevertheless, 

the off-chip bandwidth is affordable by the 64-bit bus processing at 200 MHz. 

Table III-8 Comparison of hardware cost per frame 

 Resolution 
Complexity 

(million operation) 

Memory  

Requirement 

(Kbyte) 

Bandwidth  

for IH 

(Mbit) 

Bandwidth  

for pixel 

(Mbit) 

Original VGA 335.1  (100%) 113,050  (100%) 14,470 (100%) 9.8  (100%) 

HD720p 1,005.5  (100%) 353,894  (100%) 45,299  (100%) 29.5  (100%) 

HD1080p 2,262.3  (100%) 829,440  (100%) 106,108  (100%) 66.4  (100%) 

Mem. Reduction  VGA 197.0  (59%) 23  (0.020%) 9,083  (63%) 20.3  (206%) 

HD720p 591.1  (59%) 23  (0.007%) 27,250  (60%) 60.8  (206%) 

HD1080p 1,289.7  (57%) 23  (0.003%) 59,454 (56%) 132.7  (200%) 

Mem. Reduction  

+ 

Archi. Design Tech. 

VGA 5.1  (0.15%) 23  (0.020%) 5,191  (36%) 20.3  (206%) 

HD720p 1.5  (0.15%) 23  (0.007%) 15,571  (34%) 60.8  (206%) 

HD1080p 3.3  (0.15%) 23  (0.003%) 33,974  (32%) 132.7  (200%) 

 

Table III-9 compares our proposed hardware design with the previous VLSI implementations. 

The previous implementations [94], [97] could support large filtering window but low throughput, 

while the implementations [95], [96] could reach high throughput for small filtering window only. Our 

design can not only achieve high throughput but also support large filtering window. Table III-10 

compares our design with the other previous GPU and CPU implementations. Comparing to other 
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design, the proposed architecture could efficiently utilize the hardware cost to achieve high 

throughput. 

Table III-9 Previous VLSI implementations of bilateral filtering 

 [94] [95] [96] [97] Our Design 

Supported Window Size 15x15 BF 3x3 BF-like 5x5 BF 11x11 BF 31x31 BF/JBF 

Implementation Method Xilinx  

Spartan-3  

FPGA 

Altera  

Cyclone-II  

FPGA 

Xilinx  

Vertex-5  

FPGA 

TSMC  

0.18um 

Tech. Proc. 

UMC 

90nm 

Tech. Proc. 

Throughput (pixel/s) 4.8M 124M 41.9M 11M 124M 

 

Table III-10 Comparison of different implementations 

 

Support-Pixel-First Target-Pixel-First 

Durand and Dorsey 

[84] 

Chen et al. 

[87] 

Yang et al. 

[83] 

Adams et al. 

[88] 

Porikli 

[91] 
Proposed 

Approach 

Piecewise-linear 

Subsampling 
Bilateral Grid Piecewise-linear 

Gaussian 

KD-tree 

Integral 

Histogram 

Integral 

Histogram 

(ss=24, sr=19) (ss=16, sr=10) (sr=32)  (sr=4) (sr=4) 

Implementa

tion 

CPU 

P4  

2GHz 

GPU 

Geforce 

8800GTX 

GPU 

Geforce 

8800GTX 

GPU 

GeForce 

GTX260 

CPU 

P4 

3.2GHz 

ASIC 

Transistor 

count 

(Tech. 

Process) 

55M 

(130nm) 

 

681M 

(90nm) 

[98] 

681M 

(90nm) 

[98][98] 

1,400M 

(TSMC 65nm) 

[99] 

55M 

(130nm) 

 

2.5M 

(UMC 90nm) 

 

Image Size 

(Pixel) 
10.4M 1.0M 1.0M 10M 1.0M 2.07M 

Frame Rate 

(Frame/sec) 

0.16 

(high dynamic range) 
222 66 0.01-1 3.22 60 

Throughput 

(Pixel/sec) 
1.6 M 222M 66M 0.1M-10M 3.22M 124M 

Memory 

(Byte) 
- 625K 4M 1G-100M 96M 23K 

 

3.4 Baseline Disparity Estimation Algorithm 

In this section, we first present the baseline disparity estimation algorithm, which applies the 

baseline BP and JBU algorithms. Then, we demonstrate the disparity quality comparison between the 

proposed baseline algorithm and the DERS algorithm. 

3.4.1 Baseline Algorithm 
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Figure III-26 shows the baseline disparity estimation algorithm that combines the baseline BP and 

JBU algorithms. In the baseline algorithm, the sampling factor is set as 1/2, 1/4 for horizontal and 

vertical direction. Note that the horizontal sampling factor could not further decrease since the detailed 

disparity would be lost. In addition, all the steps in the algorithm flow are performed for three times 

for calculating the three view disparity maps by the software implementation. 

In the first step, the 3×3 SAD match metric is adopted to calculate the initial cost cube C0 using 

the high resolution images IH,L, IH,C, IH,R. Note that the matching costs are computed only for the 

sampled pixels but with the full disparity range. Thus, the size of C0 is (H/4)×(W/2)×DR. Then, the 

5×7 ADSW cost aggregation method [3] and the baseline BP algorithm [24] are performed to compute 

the low resolution disparity maps DL,L, DL,C, DL,R. In the baseline BP, we employ the Potts model to the 

smoothness term and data term, and execute the baseline BP for 15 iterations. Finally, the low 

resolution disparity maps are scaled up to the high resolution ones DH,L, DH,C, DH,R by the JBU 

algorithm. 

 

Figure III-26 Flow of the proposed baseline disparity estimation algorithm 
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3.4.2 Comparison 

In the experiment, the disparity maps and the synthesized videos are computed by the baseline 

algorithm and the DERS algorithm with the configuration of Figure II-17. Furthermore, the 

synthesized videos are evaluated by the PSNR and PSPNR methods mentioned in the Section 2.3.4. 

Figure III-27 shows the evaluation results of them. In the evaluation results, the “View0” and 

“View8” refer to the most-left-view and the most-right-view videos in the output of 3-view 

configuration for 9-view display. The results of the DERS algorithm are not available for the test 

sequences Café, Kendo, and Balloons due to insufficient input views. The more details of the test 

sequences are presented in Chapter V. For the Y-PSNR results, the baseline algorithm has the quality 

changes from -1.78 dB to 4.51 dB, compared to the DERS algorithm. On the other hand, the 

T_PSPNR results have large variance in the test sequences. The worst case has the large drop of 4.49 

dB because of no temporal consistency enhancement method adopted in the baseline algorithm. 

Figure III-28 and Figure III-29 shows the disparity maps and the synthesized images. Compared 

to the DERS algorithm, the baseline algorithm additionally suffers from the incorrect disparities in the 

textureless regions. Nevertheless, those incorrect disparities do not impact on the synthesized image of 

baseline algorithm. In addition, the disparities at the object boundary are over blurred in the baseline 

algorithm. That would result in the background distortion if the background has texture. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure III-27 Experimental results of the baseline algorithm and the DERS algorithm 
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(a) 
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(c) 
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(d) 

  
(e) 

Figure III-28 Center disparity maps and synthesized View8 of baseline algorithm at the 100th frame 

(a) BookArrival, (b) LoveBird1, (c) Newspaper, (d) Champagne, (e) Pantomime 
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(c) 



84 

 

  
(d) 

  
(e) 

Figure III-29 Center disparity maps and synthesized View8 of DERS algorithm at the 100th frame 

(a) BookArrival, (b) LoveBird1, (c) Newspaper, (d) Champagne, (e) Pantomime 

3.5 Summary 

For the high definition 3DTV applications, our strategy is to increase the computational 

parallelism by the baseline BP algorithm, and reduce the processed frame size by the JBU algorithm. 

The computational characteristics and design challenges of the two main algorithms are analyzed in 

this chapter. To conquer their design challenges, we propose the low-memory-cost memory access 

approaches, and the parallel computing architectures for their kernel components. In the experimental 

results, the baseline algorithm could deliver comparable disparity quality to the DERS algorithm. 

However, it still suffers from high computational complexity because of high iteration count in BP. In 
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addition, the disparity quality should be further improved, especially for the temporal consistency 

problem. 
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IV Advanced Disparity Estimation Algorithms 

for High Definition 3DTV Applications 

Based on the previous baseline algorithm, we propose three new advanced disparity estimation 

algorithms in this chapter. The first high-quality algorithm focuses on the disparity quality 

improvement, including the temporal consistency enhancement and the occlusion handling. The 

second sparse-computation algorithm could reduce the computation of high-quality algorithm by the 

sparse-computation strategy, and it could be accelerated by the implementation of software 

programming. The third hardware-efficient algorithm simplifies the massive computation in 

high-quality algorithm, and reduces the high memory cost of BP optimization. The experimental 

results and evaluation will be compared with the DERS algorithm in Chapter V, and the last 

hardware-efficient algorithm will be further implemented by VLSI design in Chapter VI. 

4.1 High-Quality Disparity Estimation Algorithm 

The proposed high-quality disparity estimation (HQ-DE) algorithm is presented in this section. 

This section first reviews the state-of-the-art disparity estimation algorithms, and then describes the 

details of the proposed HQ-DE algorithm. 

4.1.1 Related Work 

The state-of-the-art disparity estimation algorithms are the 3DVC’s DERS algorithm [63] and the 

top algorithms in the Middlebury rank [72]. The details of DERS algorithm has been described in 

Section 2.3. For the algorithms in the Middlebury rank, we review the high-quality BP-based 

algorithms including the adaptive-BP [39] and the double-BP [40]. In addition, we also introduce the 

enhanced-BP [41], since it additionally takes the temporal consistency into consideration.  

1. Adaptive-BP 
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Figure IV-1 shows the algorithm flow of adaptive-BP, whose main idea is to apply the BP 

optimization to a segment-based graph, instead of the conventional pixel-based graph. In this 

algorithm, the mean-shift segmentation [69] is first performed to obtain over-segment information. 

Then the SAD match metric is applied to the pixel matching cost using for pixel intensity and gradient. 

In the segment cost calculation, the plane fitting [46] is used to determine a disparity plane for each 

segment, and the pixel costs of a disparity plane are summed up as the segment cost. According to the 

disparity planes and segment costs, this step iteratively merges disparity planes and segments. Finally, 

the segment-based BP is performed in a segment-based graph. The adaptive-BP could produce high 

quality disparity results, but it suffers from irregular computation due to its complex connected 

segment-based graph. 

 

Figure IV-1 Flow of the adaptive-BP algorithm [39] 

2. Double-BP 

Figure IV-2 shows the algorithm flow of double-BP, which consists of the three main steps: initial 

stereo, pixel classification, and iterative refinement. The initial stereo step computes the initial cost 

cubes by the ADSW approach [7], and performs the hierarchical BP (HBP) [25] to obtain the initial 

disparity maps for two views. With the initial disparity map and cost cubes, the pixel classification 

step categorizes the pixels into occluded, stable, and unstable ones using the mutual consistency and 

correlation confidence checks. Then the iterative refinement step performs the plane fitting and the 
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HBP for five iterations. In the iterative process, the disparity map and the cost cube are updated in 

each iteration. The double-BP could deliver better disparity maps than the adaptive-BP because it has 

different approaches to deal with the classified pixels. 

 

Figure IV-2 Flow of the double-BP algorithm [40] 

3. Enhanced-BP 

The enhanced-BP [41] proposed three techniques to improve the conventional BP algorithm. The 

first technique defines a new graph with 6-connected nodes, which have 4 original spatial neighbors 

and 2 temporal neighbors, to enhance the temporal consistency. In BP optimization, the connection to 

neighbors would be broken at the boundaries of color segment and motion regions. The second 

technique is to deal with the occlusion problem by the plane fitting methods or the background 

clustering method. The last technique is to accelerate the optimization process by inputting the 
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matching costs to the initial messages, and removing the matching costs from the computation of 

message passing. 

In summary, as the above mentioned state-of-the-art BP-based algorithms and the 3DVC’s DERS 

algorithm, they could produce high quality disparity maps by the common steps: color-constrained 

cost aggregation, disparity optimization, and segment-based refinement. The color-constrained cost 

aggregation could be the ADSW method or the segment cost method, the disparity optimization could 

be GC or BP approach, and the segment-based refinement is the common-used plane-fitting. Therefore, 

our developed HQ-DE algorithm should include the above common steps. 

4.1.2 Observation in DERS and Baseline Algorithms 

Based on the baseline algorithm in Section 3.4.1, the HQ-DE algorithm adopts the BP for 

disparity estimation, and the joint bilateral upsampling (JBU) algorithm to reduce the native 

computation in high resolution frame. For the disparity quality improvement, we focus on the temporal 

consistency and the occlusion problems.  

At first, we observe the disparity results of the DERS and the baseline algorithms as follows. 

Figure IV-3 shows the flicker artifact of the baseline algorithm. The stand of poster behind the chair 

has a little change on its boundary in the continuous frames due to no temporal consistency 

enhancement in the baseline algorithm. The slight change would result in the noticeable flicker artifact 

for human. On the other hand, the DERS algorithm has the temporal consistency enhancement but 

suffers from the foreground copy artifact as shown in Figure IV-4. In which, the door pivot is changed 

after the man passed because the disparity of the man remains on the door pivot. 

Figure IV-5 shows the occlusion problem in the DERS and the baseline algorithms. Compared to 

the reference golden image in Figure IV-5 (a), the DERS and the baseline algorithms suffer from the 

distortion of red sketch because its background disparities are incorrect. 
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Figure IV-3 An example of flicker artifact of the baseline algorithm in BookArrival 

Synthesized videos from left to right are the 9th to 12th frames. 

 

   

   

   

(a) (b) (c) 

Figure IV-4 An example of foreground copy artifact of the DERS algorithm in BookArrival 

Top to bottom are the synthesized frame, interested region of synthesized image and disparity map. 

Left to right are (a) the 1st frame, (b) the 25th frame, (c) the 40th frame. 
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(a) 

   
(b) 

   
(c) 

Figure IV-5 An example of occlusion problem at the 44th frame of BookArrival 

(a) reference golden image, (b) the disparity maps of DERS algorithm and the synthesized image, (c) 

disparity maps of baseline algorithm and synthesized image. 

4.1.3 Proposed Algorithm Flow 

With the above observation, the temporal consistency and the occlusion problems need to be 

solved in the HQ-DE algorithm. The main flow of the proposed HQ-DE algorithm is shown in Figure 

IV-6 for the center view and Figure IV-7 for the left and right views. In which, I and D refer to the 

image frame and disparity map, respectively, and the superscript t and t-1 refer to the current frame 

and the previous frame. Besides, the first subscript, L or H, means the low resolution or the 

high-resolution frame, and the second subscript means the view point. 
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Figure IV-6 Flow of the HQ-DE algorithm for a center-view disparity map 

 

In the main flow, the high-resolution image frames at target-view and reference-view are fetched 

to compute an initial low-resolution disparity map DL
t
 by the steps of matching cost calculation, cost 

aggregation, and BP optimization. Then, the low-resolution disparity map DL
t
 is scaled up to the 

high-resolution disparity map DH
t
 by the JBU algorithm, and refined by the window vote method.  

For the occlusion problems, the three view disparity maps are cross handled in the occlusion 

handling step. On the other hand, for the temporal consistency problems, the proposed no-motion 

registration (NMR) method and the still-edge preservation (SEP) method are attached into the main 

flow to respectively deal with the foreground copy artifact and the flicker artifact. In addition, the 

side-view algorithm flow additionally has the inter-view cost calculation step, which could constrain 

the side-view disparity estimation using the more reliable center disparity map DL,C
t
. The details of 

each step are described in the following sections. 
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Figure IV-7 Flow of the HQ-DE algorithm for a side view disparity map 

4.1.4 Downsampled Disparity Estimation for Full Range Disparity 

The downsampled disparity estimation process consists of the matching cost, cost aggregation, 

and the BP optimization steps, which are performed only for the downsampled pixels at the positions 

as shown in Figure IV-10 (a). In which, the sampling factor is 1/2 for horizontal direction and 1/4 for 

vertical direction according to the simulation results as listed in Table IV-1 and depicted in Figure 

IV-8. The details of test sequences and evaluation method are elaborated in Chapter V. The selected 

sampling factors could keep the view synthesis quality for all resolutions, especially for the smaller 

size of 1024x768. Figure IV-9 compares the results of the sampling factors 1/2×1/4 and 1/4×1/4. The 

latter one would suffer from more serious artifacts in the disparity map and synthesized image. 
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Table IV-1 Simulation results with different sampling factors in Y-PSNR (dB) 

Hori. 

Sampling 

Factor 

Vert. 

Sampling 

Factor 

Book 

Arrival 

Love 

Bird1 
Newspaper Café Kendo Balloons Champagne Pantomime Avg. 

1/2 1/2 36.40 30.72 30.77 N.A. 36.17 34.10 30.73 38.47 33.91 

1/2 1/4 36.34 30.89 30.79 33.96 36.00 33.97 30.46 38.38 33.85 

1/2 1/8 36.07 30.85 30.62 33.78 35.89 33.67 29.38 37.56 33.48 

1/2 1/16 35.57 30.85 30.29 33.05 35.24 32.77 28.84 37.54 33.02 

1/4 1/2 36.00 30.77 30.73 33.82 35.75 33.81 29.83 38.48 33.65 

1/4 1/4 35.90 30.92 30.64 33.96 36.04 33.64 29.79 38.46 33.67 

1/4 1/8 35.68 30.87 30.57 33.71 35.73 33.18 29.93 38.46 33.52 

1/4 1/16 35.27 30.90 30.12 32.45 35.10 32.66 29.12 38.40 33.00 

1/8 1/2 35.66 30.77 30.24 33.21 35.50 33.00 29.04 38.48 33.24 

1/8 1/4 35.49 30.77 30.15 33.16 35.37 32.89 29.40 38.49 33.21 

1/8 1/8 35.23 30.73 30.18 32.16 35.08 32.43 29.01 38.47 32.91 

1/8 1/16 34.66 30.68 29.76 30.84 34.53 32.32 28.82 38.44 32.50 

1/16 1/2 34.56 30.38 29.43 32.04 34.42 31.92 29.30 38.42 32.56 

1/16 1/4 34.62 30.51 28.95 31.66 34.55 32.15 29.07 38.45 32.50 

1/16 1/8 34.46 30.46 29.11 31.11 34.29 31.89 34.13 38.43 32.99 

1/16 1/16 34.17 30.67 28.08 30.60 33.88 31.58 27.85 38.49 31.92 

 

  
(a) (b) 

Figure IV-8 Comparison of different sampling factors in the average Y-PSNR of two frames 
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(a) (b) 

  
(c) (d) 

Figure IV-9 Simulation results using the sampling factors of 1/2×1/4 and 1/4×1/4 

(a) and (b) are the center-view disparity map and the most left synthesized image with 1/2×1/4. (c) and 

(d) are the center-view disparity map and the most left synthesized image with 1/4×1/4. 

 

In the matching cost calculation step, we propose the sampling sum of absolute difference (SSAD) 

match metric, which calculates the matching costs only for the downsampled pixel, and considers the 

full disparity range to avoid the loss of disparity precision. Figure IV-10 (b) illustrates the SSAD 

match metric. For the target downsampled pixel, the reference pixels in the full disparity range are 

used to calculate matching costs by the 2×4 SAD match metric. Thus, the SSAD matching cost is 

defined as 

 𝑆𝑆𝐴𝐷𝑡𝑎𝑟−𝑟𝑒𝑓(𝑥, 𝑦, 𝑑) = ∑ |𝐼𝐻,𝑡𝑎𝑟(𝑢, 𝑣) − 𝐼𝐻,𝑟𝑒𝑓(𝑢 + 𝑑, 𝑣)|2𝑥≤𝑢<2(𝑥+1)
4𝑦≤𝑣<4(𝑦+1)

 , (IV-1) 

where IH,tar is the high-resolution target-view image, IH,ref is the high-resolution reference-view image, 

and SSADtar-ref is the low-resolution matching cost. By the SSAD match metric, the initial cost cubes 

C0,C, C0,L, C0,R for the three input views are calculated by  
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 𝐶0,𝐶(𝑥, 𝑦, 𝑑) = min*𝑆𝑆𝐴𝐷𝐶−𝐿(𝑥, 𝑦, 𝑑), 𝑆𝑆𝐴𝐷𝐶−𝑅(𝑥, 𝑦, −𝑑)+ , (IV-2) 

 𝐶0,𝐿(𝑥, 𝑦, 𝑑) = min*𝑆𝑆𝐴𝐷𝐿−𝐶(𝑥, 𝑦, −𝑑), 𝑆𝑆𝐴𝐷𝐿−𝑅(𝑥, 𝑦, −2𝑑)+ , (IV-3) 

 𝐶0,𝑅(𝑥, 𝑦, 𝑑) = min*𝑆𝑆𝐴𝐷𝑅−𝐶(𝑥, 𝑦, 𝑑), 𝑆𝑆𝐴𝐷𝑅−𝐿(𝑥, 𝑦, 2𝑑)+ , (IV-4) 

where the minimal SSAD from two reference views is selected for the initial cost cube. Note that the 

disparity index in the SSAD match metric is associated with the relative position of target view and 

reference view. 

 
(a) 

 
(b) 

Figure IV-10 Illustration of downsampled disparity estimation for full disparity range 

(a) positions of downsampled pixels in high-resolution frame, (b) example of the matching cost for the 

center view 

 

In the cost aggregation step, we adopt the simplified adaptive support-weight (ADSW) [10], 

which is defined as  

𝐶𝑎𝑔𝑔𝑟,𝐶(𝑥, 𝑦, 𝑑) =
1

𝜅
∑ 𝐶0,𝐶(𝑢, 𝑣, 𝑑)𝑓(‖(𝑥, 𝑦) − (𝑢, 𝑣)‖)𝑔(‖𝐼𝐿,𝐶(𝑥, 𝑦) − 𝐼𝐿,𝐶(𝑢, 𝑣)‖)

(𝑢,𝑣)∈𝑆

 (IV-5) 
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for center view disparity estimation. In this equation, the initial matching costs C0,C in the aggregation 

window S are accumulated with the Gaussian weights of spatial kernel f and range kernel g, and κ is 

the normalized term. The size of the aggregation window |S| is set as 5×7 in the HQ-DE algorithm. 

Compared to the original ADSW in [7], the simplified ADSW contains two simplification techniques. 

First, only one support-weight referring to the target view image is used. Second, the computation of 

spatial distance and color distance is simplified to the Manhattan color distance. The same 

computation in (IV-5) could be applied to compute the left-view and right-view costs Caggr,L, Caggr,R. 

With the three view aggregated cost cubes, the BP optimization is separately performed to 

calculate the low resolution disparity maps DL,C, DL,L, DL,R. For the BP optimization, the baseline 

algorithm adopts the baseline BP [24] but suffers from slow convergence due to one-pixel-distance 

message passing in each iteration. In the BP-based algorithms, the hierarchical BP (HBP) [22] and the 

max-product loopy BP (BP-M) [26] could address the slow convergence problem. The former 

performs the message passing by the coarse-to-fine manner, while the later on performs the massage 

passing separately in four directions. In the proposed HQ-DE algorithm, we adopt the BP-M with 

single iteration. In addition, the Potts model is applied to the data and smoothness term. They are 

defined as 

 𝐷(𝑑𝑖) = min{𝐶𝑎𝑔𝑔𝑟(𝑥, 𝑦, 𝑑), 𝜏𝐷} ⋅ 𝜆𝐷 (IV-6) 

 𝑉(𝑑𝑖 , 𝑑𝑗) = min{|𝑑𝑖 − 𝑑𝑗|, 𝜏𝑉} ⋅ 𝜆𝑉 (IV-7) 

where τD, τV are for truncation, and λD, λV are for scaling. 

In addition to the above three steps, the downsampled disparity estimation has the inter-view cost 

calculation step for the side views as shown in Figure IV-7. The concept of inter-view cost Cview is that 

the center-view disparity map is more reliable than other two because of its less occluded regions, and 

it can be used to constrain the side-view disparity estimation. The inter-view costs for two side view 

are computed by  

 𝐶𝑣𝑖𝑒𝑤,𝐿(𝑥, 𝑦, 𝑑) = 𝜆𝑣𝑖𝑒𝑤|𝑑 − 𝐷𝐿,𝐶→𝐿(𝑥, 𝑦)| , (IV-8) 
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 𝐶𝑣𝑖𝑒𝑤,𝑅(𝑥, 𝑦, 𝑑) = 𝜆𝑣𝑖𝑒𝑤|𝑑 − 𝐷𝐿,𝐶→𝑅(𝑥, 𝑦)| , (IV-9) 

where DL,C→L and DL,C→R are the left-view and right-view disparity maps warped from the center-view 

one in low resolution, and λview is a constant for scaling. To compute the inter-view costs, the 

center-view disparity map needs to be first computed by the BP optimization, and it is warped to the 

side views by the method in Section 2.2.1. Then, we assume the side-view disparity maps will be 

approximate to the warped one, and give a penalty for the inconsistency through the inter-view cost 

Cview. Besides of the inter-view cost, the temporal cost Ctemp is also added to the cost cube by 

 C𝑡𝑜𝑡𝑎𝑙(𝑥, 𝑦, 𝑑) = 𝐶𝑎𝑔𝑔𝑟(𝑥, 𝑦, 𝑑) + 𝐶𝑡𝑒𝑚𝑝(𝑥, 𝑦, 𝑑) + 𝐶𝑣𝑖𝑒𝑤(𝑥, 𝑦, 𝑑) . (IV-10) 

Thus, the original cost cube Caggr is replaced by the cost cube Ctotal and is substituted into (IV-6) as the 

data term for the BP-M optimization. The more details of the temporal cost are presented in Section 

4.1.7. 

4.1.5 Joint Bilateral Upsampling 

The associated disparity upsampling techniques have been introduced in Section 3.1.2. In the 

proposed HQ-DE algorithm, we adopt the same joint bilateral upsampling (JBU) algorithm [81] as that 

in the baseline algorithm. Note that the JBU is performed by the single-step process, instead of the 

original multi-step process. Thus, the single-step JBU is defined as 

 𝐷𝐻
𝑡 (𝑖) =

1

𝜅
∑ 𝐷𝐿

𝑡(𝑗𝐿) ∙ 𝑓(‖𝑖𝐿 − 𝑗𝐿‖) ∙ 𝑔(‖𝐼𝐿
𝑡(𝑖𝐿) − 𝐼𝐻

𝑡 (𝑗)‖)

𝑗𝐿∈S

 (IV-11) 

where the window S is in the low-resolution frame, and its size is set as 7×7 for the HQ-DE algorithm. 

In addition, the upsampled disparity map DH
t
 is further refined by the proposed window vote 

method that is modified from the regional vote method in [6]. The original regional vote method could 

remove the disparity noise by taking the disparity with the most votes in a local region. The regional 

vote method could approximate the purpose of plane fitting method, which is usually applied in the 

state-of-the-art disparity estimation algorithms. However, the regional vote method does not perform 

well for the highly textured region due to its continuous grown region and limited shape as shown in 
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Figure IV-11 (a). To address it, our proposed window vote method considers all the support disparities 

in a window, and gives votes to the support pixels I(u, v) if their colors are consistent to the center 

pixel I(x, y) for all color channels. The proposed window vote method is calculated by 

 𝐷′𝐻
𝑡 (𝑥, 𝑦) = argmax

𝑑
*𝑣𝑜𝑡𝑒(𝑥, 𝑦, 𝑑)+ (IV-12) 

where 

 𝑣𝑜𝑡𝑒(𝑥, 𝑦, 𝑑) = ∑ (𝑑 = 𝐷𝐻
𝑡 (𝑢, 𝑣)) ∧ (|𝐼𝐻

𝑡 (𝑥, 𝑦) − 𝐼𝐻
𝑡 (𝑢, 𝑣)| < 𝜏𝑣𝑜𝑡𝑒)(𝑢,𝑣)∈𝑆 . (IV-13) 

Figure IV-11 (b) shows that the proposed window vote could obtain the correct result for the case of 

highly texture. In the HQ-DE algorithm, the window size |S| is 15×15. 

 
(a) 

 
(b) 

Figure IV-11 Comparison between the original regional vote [6] and the proposed window vote 

4.1.6 Occlusion Handling 

As the concept of occlusion handling in Section 2.1.2, we proposed a new method for the 

occlusion handling problem based the left-right check (LRC) method. The proposed occlusion 

handling method consists of the occlusion detection and the occlusion filling steps. They are described 

as follows. 

1. Occlusion Detection 

Guide ImageOriginal Disparity Resultant Disparity

Guide ImageOriginal Disparity Resultant Disparity
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In the LRC method, the three view disparity maps DH,C
t
, DH,L

t
, DH,R

t
 are cross considered. For an 

example of center view as the target, the disparities 

 𝐷𝐻,𝐶
𝑡 (x, y),   𝐷𝐻,𝐿

𝑡 (x + 𝐷𝐻,𝐶
𝑡 (x, y), y),  𝐷𝐻,𝑅

𝑡 (x − 𝐷𝐻,𝐶
𝑡 (x, y), y) (IV-14) 

are compared, and the occlusion map OH,C is determined by 

 𝑂𝐻,𝐶(𝑥, 𝑦) = ,

𝑡𝑟𝑢𝑒 |𝐷𝐻,𝐶
𝑡 (x, y) −  𝐷𝐻,𝐿

𝑡 (x + 𝐷𝐻,𝐶
𝑡 (x, y), y)| > 𝜏𝑂𝐶𝐶

𝑡𝑟𝑢𝑒 |𝐷𝐻,𝐶
𝑡 (x, y) −  𝐷𝐻,𝑅

𝑡 (x − 𝐷𝐻,𝐶
𝑡 (x, y), y)| > 𝜏𝑂𝐶𝐶   

𝑓𝑎𝑙𝑠𝑒 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

 (IV-15) 

where τOCC is the threshold for disparity gap. If the disparity gap in inter views is more than τOCC, the 

position would be regarded as an occlusion pixel. 

With the occlusion map, we further refine the occlusion region to fit the object boundary by the 

proposed occlusion extension method. In general, the foreground disparity has stronger confidence, 

and would affect the neighboring weak background disparity. Thus, the proposed occlusion extension 

method extends the foreground side of occlusion region according the image information, and dilates 

the background side by one pixel as illustrated in Figure IV-12. Note that for the original occlusion 

region detected by the LRC method, its foreground and background sides are determined by the 

disparities on the boundary for the center view. In which, the boundary with larger disparity is 

foreground side, and the other boundary with smaller disparity is background side. On the other hand, 

for the side view, the foreground and background side is fixed. The left-hand-side boundary is 

background side for the left-view occlusion map, and foreground side for the right-view occlusion 

map. 

 

Figure IV-12 Illustration of the proposed occlusion detection method 
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2. Occlusion Filling 

In this step, the occlusion regions are filled with the disparities of visible pixels. The visible 

pixels could be obtained from the intra frame, inter frame, and inter-view frame. In the intra frame, we 

could refer to the disparities of background pixels surrounding the occlusion region for occlusion 

filling. In the inter frames, the occluded position would be seen at other time if the camera or the 

foreground object moves. Thus, we could refer to the disparity at the non-occluded frame for occlusion 

filling. In the inter-view frames, the occlusion regions might be visible in other two views. Thus, we 

could refer to the disparity in other view for occlusion filling. 

In the HQ-DE algorithm, we adopt the intra-frame approach and apply the modified window vote 

method to fill occlusion regions. In addition to the color consistency constraint, the modified window 

vote method gives votes to the non-occluded support pixels only. The window size for the occlusion 

filling is 11×11. Figure IV-13 shows that the proposed occlusion handling methods could improve the 

occluded regions in the disparity map and the synthesized image. Moreover, compared to the previous 

results of DERS and baseline algorithms in Figure IV-5, the red sketch is clearer, and the HQ-DE 

algorithm could perform better. 
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(a) 

   
(b) 

Figure IV-13 Results with and without the proposed occlusion handling method in BookArrival 

(a) disparity map and synthesized image without occlusion handling, (b) occlusion map, disparity map, 

and synthesized image with occlusion handling. 

 

   
(a) (b) (c) 

Figure IV-14 Results of the HQ-DE algorithm in BookArrival compared to Figure IV-5 

(a) center-view disparity map, (b) right-view disparity map, (c) synthesized image 

4.1.7 Temporal Consistency Enhancement 

In previous work and the baseline algorithm, the temporal consistency problems include the 

flicker artifact and foreground copy artifact due to no enhancement method and over enhancement 
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method, respectively. To address it, we propose the NMR method and the SEP method based on the 

conventional method in the 3DVC’s DERS algorithm. 

1. Conventional Method 

First, we introduce the conventional temporal consistency enhancement method in the 3DTV’s 

DERS algorithm, and point out its drawback. In the conventional method, the main idea is to 

propagate previous disparity map to current one for no-motion regions by adding the temporal cost 

Ctemp to cost cube. The conventional method first applies the bilateral filter to smooth the previous 

frame and the current frame, and then partition the frames into 16×16 macroblocks for calculating the 

motion absolute difference (MAD) by  

 𝑀𝐴𝐷 =
1

16×16
∑ |𝐼𝐻

𝑡 (𝑢, 𝑣) − 𝐼𝐻
𝑡−1(𝑢, 𝑣)|(𝑢,𝑣)∈𝑚𝑎𝑐𝑟𝑜𝑏𝑙𝑜𝑐𝑘  . (IV-16) 

If MAD is less than a defined threshold γemp, the block would be regarded as a no-motion block. Thus, 

the temporal cost can be computed by 

 𝐶𝑡𝑒𝑚𝑝(𝑥, 𝑦, 𝑑) = {
𝜆𝑡𝑒𝑚𝑝|𝑑 − 𝐷𝐻

𝑡−1(𝑥, 𝑦)| 𝑖𝑓 𝑀𝐴𝐷 < 𝛾𝑡𝑒𝑚𝑝
0 𝑒𝑙𝑠𝑒

, (IV-17) 

where λtemp is a scaling term. In this equation, the no-motion block will suffer from the penalty if its 

disparity is inconsistent to previous frame. 

The conventional method can solve the flicker artifact, but incurs the foreground copy artifact 

because the background object does not have enough time to update its disparity. On the hand, the 

previous disparity upsampling step would result in the flicker artifact even if the conventional 

temporal consistency enhancement is adopted in the HQ-DE algorithm. That is because the object 

boundary suffers from mixed color of background and foreground, so that the disparity at the 

boundary would be unstable after the disparity upsampling. To sum up, the HQ-DE algorithm has the 

foreground copy artifact and the flicker artifact if the convention method is adopted. The following 

proposed two methods could solve them. 

2. No-Motion Registration Method 
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Figure IV-15 illustrates the concept of the proposed no-motion registration (NMR) method by a 

common case. In which, the pixel is changed from a foreground pixel to a background pixel when a 

foreground object passes. The conventional method in DERS algorithm propagates the previous 

disparity to current one when the pixel is no-motion pixel, and takes short frame time to update the 

disparity from foreground to background while the foreground object is moving out. That would result 

in foreground copy artifact because of insufficient updating time. To address it, the proposed NMR 

method extends the motion interval by τNMR frames to provide sufficient updating time. In other word, 

the no-motion frame count NMC begins to be accumulated while the pixel becomes no-motion one. If 

NMC is more than τNMR, the temporal cost Ctemp would be computed to propagate previous disparity to 

current frame. 

 

Figure IV-15 Concept of the proposed no-motion registration (NMR) method 

 

Figure IV-16 shows the resultant disparity maps and the synthesized images of the proposed 

NMR method. Compared to the conventional method in Figure IV-4, the door pivot could be 

recovered well using the proposed method. In addition, Figure IV-17 shows the change of disparity 

maps and synthesized images in the seccussive frames while the man is passing away. In Figure IV-17 

(c), the door pivot is temporarily distorted as the same as that in Figure IV-4, because the background 

disparity is still updating. Nevertheless, the distortion could disappear in Figure IV-17 (d). 
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(a) (b) (c) 

Figure IV-16 Results of the proposed NMR method in BookArrival 

(a) the 1st frame, (b) the 25th frame, and (c) the 40th frame 

 

    

    

(a) (b) (c) (d) 

Figure IV-17 Results of the proposed NMR method in the 32th, 34th, 36th, 38th frames 

3. Still-Edge Preservation Method 
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The main idea of the proposed SEP method is to preserve the previous disparity for the still-edge. 

In the SEP method, we use the bilateral filter to de-noise image, and apply the Sobel filter with a 

gradient threshold to detect edges. Combining with the above motion and no-motion information, we 

could find the still edge, which is no-motion pixel and edge pixel. For the still edges, the current 

disparity is directly propagated from the previous frame. 

Figure IV-18 shows the synthesized result using the disparity maps of SEP method. Compared to 

the results of baseline algorithm in Figure IV-3, the SEP method could address the flicker artifact on 

the object boundary. 

 

    
(a) (b) (c) (d) 

Figure IV-18 Results of the proposed SEP method in BookArrival 

(a) the 9th frame, (b) the 10th frame, (c) the 11th frame, (d) the 12th frame  

 

To sum up, the proposed HQ-DE algorithm could address the temporal consistency and occlusion 

problems to deliver better disparity maps than the previous work. Taking advantage of the disparity 

upsampling technique and the fast convergent BP-M approach, the HQ-DE algorithm could also save 

computation time for high definition disparity estimation. Note that the window sizes in the joint 

bilateral upsampling and window vote methods are selected from several sampled sizes, and they 

could be finely tuned to attain the higher quality. The associated objective quality evaluation of 

HQ-DE algorithm will be presented in Chapter V. 

4.2 Sparse-Computation Disparity Estimation Algorithm 
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This section proposes the sparse-computation disparity estimation (SC-DE) algorithm that 

accelerates the HQ-DE algorithm by the strategy of sparse computation. In this section, we review the 

related fast BP-based algorithms and summarize their reduction strategies. Then, we present our 

proposed algorithm in details. 

4.2.1 Related Work 

In the previous disparity estimation, the hierarchical BP (HBP) [25] is commonly used to 

accelerate the baseline BP by the coarse-to-fine order in the spatial domain. Based on the HBP, the 

approximate BP [42] merges the outgoing messages between hierarchical blocks into one to reduce the 

number of messages. In addition, the constant-space BP [43] additionally performs the hierarchical 

computation in the disparity domain by the fine-to-coarse order, and can keep the memory usage 

constant. Unlike the above acceleration approach with regular computation, the sparse BP [44] first 

applies the adaptive mesh technique to select essential pixels, and then computes the disparities for the 

sparse pixels by the baseline BP. Finally, a dense disparity map is recovered. 

The acceleration strategies in above work are to perform BP optimization for the sparse points in 

the spatial domain and disparity domain. Their selected sparse points are at the hierarchically regular 

positions or the selected irregular positions. In the video processing, besides of the spatial and 

disparity domains, the temporal domain can also be considered into the computational reduction. 

4.2.2 Proposed Algorithm Flow 

1. Profiling of HQ-DE Algorithm 

First, we analyze the profiling of HQ-DE algorithm on PC platform by the Visual Studio 2010 

Profiler Tool. Figure IV-19 shows the profiling result in the XGA sequence “BookArrival” and the 

HD1080p sequence “Hall1”. The distributions of the two sequences are similar. The first part is 

occupied by the BP-M optimization. The second part is the window vote and the no-motion 

registration because they apply the median filter and bilateral filter to de-noise image frames.  
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In the computation of HQ-DE algorithm, the SSAD, ADSW steps are proportional to DR, and the 

BP-M step is proportional to DR
2
. Nevertheless, the SSAD and ADSW do not suffer from heavy 

computation, because they are performed in low resolution, and have small window sizes. On the other 

hand, the window vote and no-motion registration use large window process, and are performed in 

high resolution. Thus, they suffer from high computational complexity. 

As the above mentioned analysis, in the SC-DE algorithm, we mainly focus on the acceleration of 

BP-M optimization, and further try to introduce the idea of sparse computation into other steps. 

 

  
(a) (b) 

Figure IV-19 Profiling of the HQ-DE algorithm on PC 

(a) BookArrival with 100 frames (1024×768), (b) Hall1 with 200 frames (1920×1088) 

 

2. Proposed Sparse-Computation Disparity Estimation Algorithm 

To reduce the computational complexity of HQ-DE algorithm, our strategy is to propagate the 

disparity map and the cost cube of previous frame to current frame, and update partial of them to 

compute the current disparity map. In the SC-DE algorithm, we perform the same processes in HQ-DE 

algorithm for the first frame, and store both the computed disparity maps and the cost cubes for the 

next frame. In the following frames, the SC-DE algorithm updates the cost cubes and applies the new 

sparse BP-M method for the selected regions to calculate the disparity maps. The selected regions are 

differently defined for center view and side views. In the video sequences, only the disparities in 

motion regions are changed, and should be updated. Thus, for the center view, the disparities are 
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re-computed in the motion regions. On the other hand, for the side views, most of disparities could be 

warped from the center-view disparity map, and only the occlusion regions have different disparities. 

Thus, only the disparities in the occlusion regions have to be recomputed for the side view. 

With the above strategy, we proposed the flow of SC-DE algorithm in Figure IV-20 for center 

view and Figure IV-21 for side views. In the SC-DE algorithm, the center-view disparity map should 

be computed first, and then refers it to the other side-view disparity maps. In the proposed algorithm 

flow, the motion map MH, edge map EH, and occlusion map OH are initially computed to determine the 

sparse pixels. The details of their computation are described in the next sub-section.  

 

Figure IV-20 Flow of the SC-DE algorithm for center-view disparity map 

 

In Figure IV-20 for the center-view disparity estimation, the cost cube CL,C
t-1

 and the disparity 

map DH,C
t-1

 in previous frame are updated by the sparse-computation steps: sparse SSAD, the sparse 
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ADSW, temporal cost calculation, sparse BP-M. The sparse-computation steps are guided by the 

sampled motion map ML,C, and they only process on the motion regions. With these four steps, the new 

cost cube CL,C
t-1

 and the new low-resolution disparity map DL,C
t
 are produced.  

With the low-resolution disparity map DL,C
t
, the JUB algorithm and the window vote methods are 

adopted to scale up and refine the high-resolution disparity map DH,C
t
. The sparse-computation 

approach could not be applied to the JUB and window vote steps because the new updated disparities 

in motion regions are not consistent with those in the no-motion regions. The consistency would be 

expended in following frames, and result in serious quality drop. Thus, the JBU and window vote steps 

are still performed by dense-computation approach. Finally, the occlusion handling and the still-edge 

preservation (SEP) steps are performed to deal with the occlusion and temporal consistency problems. 

In Figure IV-21 for the side-view disparity estimation, the sparse-computation approach is also 

applied to the SSAD, ADSW, temporal cost calculation, and BP-M steps. Although the side-view 

disparity estimation needs to update the disparities only in occlusion regions, the cost cube still 

requires to be updated for the motion regions. Thus, the former three steps, sparse SSAD, sparse 

ADSW, and the temporal cost calculation, are guided by the motion map ML,L, while the later sparse 

BP-M is guided by the occlusion map OL,L. The rest steps are the same as the center-view disparity 

estimation. 
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Figure IV-21 Flow of the SC-DE algorithm for side-view disparity maps 

4.2.3 Sparse Pixel Selection 

The sparse pixel selection is to determine the sparse pixels which should be processed by the 

sparse-computation steps as mentioned above. To find the sparse pixels, the edge detection, the 

occlusion detection, and the motion detection are required. Their algorithm flow is shown in Figure 

IV-22. 
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(a) (b) (c) 

Figure IV-22 Flow of region detection for sparse pixel selection 

(a) edge detection, (b) occlusion detection, (c) motion detection 

1. Edge Detection 

Figure IV-22 (a) shows the flow of edge detection. First, the bilateral filter with the window size 

of 9×9 is applied to de-noise the input frame. Then the Sobel filter is used to compute the gradients for 

the horizontal and vertical directions. Finally, the edge decision step determines the edge pixel if the 

gradient magnitude is higher than a threshold. The produced edge map EH is used in the motion 

detection and the still-edge preservation steps in the SC-DE algorithm. Figure IV-23 shows an 

example of edge maps in the sequence BookArrival. 
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(a) (b) (c) 

Figure IV-23 Example of edge maps in BookArrival 

(a) left-view frame IH,L, DH,L, (b) center-view frame IH,C, DH,C, (c) right-view frame IH,R, DH,R 

 

2. Occlusion Detection 

The occlusion region is detected using the center-view disparity map. In Figure IV-22 (b), the 

center-view disparity map is warped to left view and right view. In the warped disparity maps, the 

position without any disparity value is regarded as an occlusion pixel. Then, the occlusion map is 

further processed by the dilation and erosion filter to remove the small occlusion regions, which are 

considered as noise. Figure IV-24 shows an example of occlusion maps OH,L, OH,R generated using the 

center-view disparity map DH,C
t
. 

   
(a) (b) (c) 

Figure IV-24 Example of occlusion maps in BookArrival 

(a) center-view disparity map DH,C, (b) left-view occlusion map OH,L, (c) right-view disparity map OH,R 
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3. Motion Detection 

The motion information in the SC-DE algorithm is used to not only the temporal consistency 

enhancement, but also the sparse-computation guidance. The motion map should be more precise in 

the SC-DE algorithm, because the quality of SC-DE algorithm depends on the selected sparse regions. 

Thus, we modify the original motion detection method in HQ-DE algorithm to the new one as 

described in Figure IV-22 (c). The new motion detection method is to first compute the block-based 

motion map, and then refine it to pixel-based motion map. 

In the motion detection method, the bilateral filter is first applied to de-noise the previous and the 

current image frames, and the difference of the two frames are computed by the Manhattan distance 

for each pixel. Then, the block-based motion map is calculated according the sum of frame difference 

in a 32×32 block. If the sum of frame difference is high than a threshold, this block would be regarded 

as a motion block. Note that the block-based motion map should be dilated by a 3×3 filter, because the 

no-motion block neighboring motion one maybe contains a few motion pixels. 

Finally, the block-based motion map is refined to be a pixel-based motion map. For the pixels in 

motion blocks, the pixel would be considered as a motion pixel if its frame difference is high than a 

threshold. Since there are some noising motion pixels, the dilation and erosion filter is adopted to 

remove them. 

Furthermore, the pixel-based motion map is processed by the motion extension step, which 

extends the motion regions along the edge pixels. Finally, the no-motion registration (NMR) is 

performed to handle the mentioned foreground copy artifact. 

Figure IV-25 shows the example results of the motion map in the sequence BookArrival. Some 

motion regions are over extended by the motion extension step, and it will result in more 

computational complexity in the sparse-computation steps. Nevertheless, the over-extended motion 

map could avoid missing the motion pixel, whose disparity is necessary to be updated. 
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(a) (b) (c) 

Figure IV-25 Example of motion maps in BookArrival 

(a) left-view motion map MH,L, (b) center-view motion map MH,C, (c) right-view motion map MH,R 

4.2.4 Sparse-Computation Steps 

The sparse-computation steps include the sparse SSAD, the sparse ADSW, and the sparse BP-M. 

Their detailed flow is described as follows. 

1. Sparse SSAD and ADSW for Cost Cube 

The sparse SSAD and sparse ADSW steps are to update the previous cost cube CL
t-1

 and generate 

the new cost cube CL
t
 for the current frame. Figure IV-26 illustrates the concept of the two 

sparse-computation steps. The updated target pixels are the motion pixels. To compute the new costs 

for these motion pixels, the matching costs of all the associated support pixels should be calculated by 

the SSAD match metric. Using the matching costs of support pixels, the sparse ADSW then aggregates 

them for the motion pixels. The sparse SSAD and the sparse ADSW could further reduce the 

computational complexity of the original dense method in the HQ-DE algorithm. 

 

Figure IV-26 Concept of sparse SSAD and sparse ADSW methods 

2. Sparse BP-M Optimization 

Motion Pixels

Support 

Pixels
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For the sparse BP-M optimization, the guide for sparse-computation is the motion map ML,C for 

center view, and the occlusion maps OL,L, OL,R for the side views. Figure IV-27 illustrates the concept 

of the sparse BP-M method. In which, the “updated region” is processed by the original BP-M 

algorithm. To connect the “updated region” and “other regions”, the sparse BP-M method also passes 

the message from the “other regions”. This connection could decrease the disparity incoherency 

between the updated and other regions. The sparse BP-M method could significantly reduce the 

original dense BP-M because the motion regions in center view and the occlusion regions in side 

views are very small. 

 

Figure IV-27 Concept of sparse BP-M method 

4.2.5 Computational Reduction 

This subsection compares the computational distribution of main steps between the HQ-DE 

algorithm and the SC-DE algorithm. For the execution time and disparity quality, the associated 

analysis is presented in Chapter V. Figure IV-28 shows the profiling of SC-DE algorithm in the 

sequences BookArrival and Hall1. In which, the motion detection is added into the execution time of 

no-motion registration step, and the edge detection is added into the still-edge detection step.  

The percentage of BP-M is significantly decreased from 35.7% to 8.0% in BookArrival and from 

38.0% to 9.0% in Hall1. Table IV-2 furthers lists the execution time of each step in the HQ-DE and 

SC-DE algorithms. The computation of all the steps with sparse-computation approach is significantly 

reduced. Compared to the HQ-DE algorithm, the major computation of BP-M is decreased to 13.4% in 
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the SC-DE algorithm. In addition, the total execution time could be reduced to less than 60%. Note 

that the execution time of still-edge preservation increases near twice because it replaces the original 

median filter with the bilateral filter for better de-noising but incurs heavy computation. 

  
(a) (b) 

Figure IV-28 Profiling of the SC-DE algorithm on PC 

(a) BookArrival with 100 frames (1024×768), (b) Hall1 with 200 frames (1920×1088) 

 

Table IV-2 Comparison of execution time of HQ-DE and SC-DE algorithms 

 HQ-DE SC-DE 

 BookArrival Hall1 BookArrival Hall1 

BP-M 358,361 2,127,407  47,833 285,861 

Window Vote 199,819 1,000,995  199,042 1,001,075 

No-Motion Registration 181,615 982,290  127,767 676,116 

Occlusion Handling 90,877 487,167  90,346 486,272 

SSAD Matching Cost 66,365 408,361  20,036 126,827 

Joint Bilateral Upsampling 39,175 210,521  39,756 210,177 

Still-Edge Preservation 35,558 189,802  64,614 343,325 

ADSW Cost Aggregation 31,740 187,311  9,845 55,041 

Total 1,003,510 5,593,854 599,239 3,184,694 

Unit: Sampled time on PC          

             

4.3 Hardware-Efficient Disparity Estimation Algorithm 

The proposed SC-DE algorithm could significantly reduce the computation complexity of 

HQ-DE algorithm, but is not suitable to be further accelerated by VLSI design due to its regular 

computation and large storage for the information of previous frame. In this section, we proposed the 

hardware-efficient disparity estimation (HE-DE) algorithm that could significantly reduce the 

computation and memory cost of HQ-DE algorithm. In this section, we first point out the design 
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challenges in the HQ-DE algorithm. Then, we present the main algorithm flow of our proposed 

HE-DE algorithm. 

4.3.1 Design Challenges in High-Quality Algorithm 

In the HQ-DE algorithm, the main design challenge consists of the high memory cost and the 

high computational complexity. They are explained as follows. 

1. High Memory Cost in Belief Propagation 

The problem of high memory is the fatal disadvantage of BP-based algorithm. The requirement in 

BP-based algorithm includes the cost cube and the messages. Our low memory-cost approach in 

Section 3.2.2 could significantly reduce the memory cost, but the memory cost is still proportional to 

the disparity range DR, even if the block-based [36] or tile-based [29] method is adopted. For example, 

if the block size is 32×32, DR is 128, and each data is 1-byte, the memory requirement would be 

131Kbytes for the cost cube and 524Kbytes for the messages. The extremely high memory space 

could not be affordable in the internal memory. If the massive data are configured in the external 

memory, it would incur high bandwidth. Thus, to directly conquer the high memory cost problem, we 

need to develop another new optimization algorithm that could not only have memory requirement 

independent to disparity range, but also acquire approximate results to BP-M’s. 

2. Large Image Buffers 

Figure IV-29 Image buffer required by the SSAD and ADSW steps (a) shows that the required 

pixels for computing a target aggregated cost. For the target aggregated cost, the ADSW cost 

aggregation step aggregates the 5×7 matching costs in low resolution. These 5×7 matching costs is 

computed by the SSAD matching cost step using the 10×28 pixels in high resolution. Therefore, 

computing a target cost needs 1280 pixels in the target view image, and these pixels are cross 28 

image rows.  
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(a) 

 
(b) 

Figure IV-29 Image buffer required by the SSAD and ADSW steps 

(a) required pixels for computing a target aggregated cost, (b) image buffers for one matching cost row 

 

For the above data dependency, all the 28 rows of three view images should be buffered into the 

internal memory, so that the external bandwidth be minimized. However, such the multiple-row image 

buffers are too large. For example of 1920×1080 sequences, the memory requirement for the image 

buffers would be 1920×28×3 pixels (i.e. 483Kbytes for YUV444 format). On the other hand, if the 

SSAD matching costs are stored for data reuse technique, the memory requirement is proportional to 

disparity range DR, and would be 960×7×128 (i.e. 860Kbytes) for the DR of 128. In addition, if the 

image pixels are accessed from external memory in run time, the image buffer could be reduced to the 

“used pixels” region but the external bandwidth would be 1920×1080×7×3 pixels/frame (i.e. 

130.6GBytes/frame for YUV444 format).  
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To sum up, no matter what the data configuration method is applied, the required image data in 

the SSAD and ADSW steps would incurs the large image buffer or high external bandwidth. Thus, we 

should simplify the SSAD and ADSW steps in the HE-DE algorithm to reduce the image buffer. 

3. High Computational Complexity in Filtering 

In the HQ-DE algorithm, there are many filter-based processes, such as bilateral filter, joint 

bilateral upsampling, window vote, and the ADSW cost aggregation. These filter-based processes 

suffer from high computational complexity due to their larger window size.  Table IV-3 lists all the 

filter-based processes in the HQ-DE algorithm. In which, the bilateral filter (BF) computation suffers 

from 11×11 for the high resolution in the NMR step. In addition, the WVote step requires the largest 

window size of 15×15. Because of their large window sizes, they occupy the high percentage of 

computation as analyzed in Figure IV-19. Thus, we decrease the window size of the filter-based 

processes in the HE-DE algorithm under the condition of preserving the disparity quality. 

Table IV-3 Window sizes of filter-based processes in HQ-DE algorithm 

Step Computation 
Frame 

Resolution 
Window Size 

No-Motion Registration (NMR) BF High 11×11 

Adaptive Support-Weight Cost Aggregation (ADSW) BF Low 7×5 

Occlusion Handling (OCC) Vote High 9×9 

Joint Bilateral Upsampling (JBU) JBF High 7×7 

Window Vote (WVote) Vote High 15×15 

Still-Edge Preservation (SEP) Median High 3×3 

 

4. Irregular Computation in Occlusion Handling 

The final design challenge is the irregular computation in the occlusion handling step. This step 

first detects the occlusion region by left-right check (LRC) method, and then extends the occlusion 

region for background and foreground. Finally it fills the occlusion regions by the modified window 

vote method. The irregular computation is in the occlusion extension process, which needs to extend 

the occlusion region until the foreground is touched. This irregular computation is not compatible to 

all the other raster-scan computations, and is not suitable be implemented by high-throughput 
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pipelining architecture. Thus, we develop another new regular occlusion handling in the HE-DE 

algorithm. 

In summary, for the high memory cost, the BP-M needs a frame-scale-magnitude memory space 

to store the cost cube and messages for whole frame, and cost cube calculation requires a large image 

buffer in run-time. On the other hand, for the high computational complexity, the filter-based 

computation is performed using too large window size, and the computation of proposed occlusion 

handing is not regular for extending occlusion region. Therefore, the proposed HE-DE algorithm 

focuses on these design challenges and conquers them. 

4.3.2 Proposed Algorithm Flow 

Figure IV-30 shows the main flow of the proposed HE-DE algorithm for center view. This 

algorithm flow also could be applied to the process of side views. In this algorithm, for the cost cube 

calculation, we propose the new window-based SSAD method to replace the block-based SSAD and 

ADSW steps in the HQ-DE algorithm. The new method could reduce the image buffers from 28 image 

rows to 5 image rows. For the temporal cost calculation, the same method in the HQ-DE algorithm is 

adopted.  

Note that this algorithm removes the inter-view cost calculation step in the HQ-DE algorithm for 

high parallelism, because the step would result in the data dependency between the center view and 

side views. In other words, with the inter-view cost calculation step, the center-view disparity map 

should be computed first, and the side-view disparity maps are computed latter. Moreover, to support 

the computing order, the three-view input data would be loaded for three times for matching cost 

calculation. Therefore, we remove the inter-view cost calculation from our algorithm flow, and take 

care of the inter-view consistency in the occlusion handling step. 

With the computed cost cube, we propose the cost diffusion method to compute the 

low-resolution disparity maps. The proposed cost diffusion method could replace the BP-M to reduce 

the memory requirement to be independent to the disparity range. 
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Figure IV-30 Flow of the HE-DE algorithm for center view 

 

For the occlusion handling step, the new regular method is performed in the low resolution, and it 

also considers the inter-view consistency at the same time. Finally, the low-resolution disparity maps 

are scaled and refined by the JBU, window vote, and still-edge preservation steps. To reduce the 

computational complexity in filter-based processes, we decrease all the window size of filters to 5×5 

under the condition of no observable quality degradation. 

The mentioned design challenges in the HQ-DE algorithm are solved by the following method in 

the proposed HE-DE algorithm. 

4.3.3 Cost Diffusion Algorithm 

In this subsection, we first discuss about the memory requirement of BP-M, and then propose the 

low memory-cost cost diffusion method to replace the BP-M. 

1. Memory Requirement in BP-M 
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The original BP-M updates the messages in four directions as illustrated in Figure IV-31 (a), 

where the message passing is performed direction by direction. Figure IV-31 (b) shows the data 

dependency of message passing in the node level. In which, the new message is computed for the 

“updated message” using the “used messages”. First, the right message passing updates the left 

incoming message of each node in the order of left-to-right and row-by-row. Then, the left message 

passing is performed in inverse direction to update the right incoming message of each node. With the 

same manner, the down message passing and the up message passing is performed column by column. 

Note that the “used messages” in the right message passing and left message passing could be 

removed, because their values are initially 0 and the horizontal message passing are performed for one 

time in the single iterative BP-M. 

 
(a) 

 
(b) 

Figure IV-31 Concept of BP-M computation 

(a) Message passing in four directions, (b) data dependency of messages in four directions 

 

With the data dependency of BP-M, all the messages of whole frame have to be stored in memory 

until the up message passing and the final disparity selection is performed. Thus, the memory 

requirement is 4H×W×DR for messages in the HQ-DE algorithm as listed in Table IV-4. 

To reduce the memory cost in BP-M, we first propose the horizontal-only BP-M that only 

performs the left message passing and the right message passing steps. The horizontal-only BP-M 
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could reduce the memory cost from frame-scale-magnitude to row-scale-magnitude as shown in Table 

IV-4. However, its memory cost still has the factor of disparity range DR. Thus, we further propose the 

cost different method to completely address the high memory cost problem. 

 

Table IV-4 Comparison of memory requirement between BP-M and cost diffusion methods 

Method Memory Requirement 
Operation Times 

of Message Passing 

Single iterative BP-M 

(HQ-DE) 

4H×W×DR 

H×W×DR 

(Message) 

(Matching Cost) 
4H×W 

Horizontal-Only BP-M 
W×DR 

W×DR 

(Message) 

(Matching Cost) 
2H×W 

Cost Diffusion 

(HE-DE) 

W 

W 

(Matching Cost) 

(Disparity Map) 
2H×W 

 

2. Proposed Cost Diffusion Method 

The main idea of the proposed cost diffusion method is to diffuse the matching cost of current 

pixel to its neighbor by the message passing mechanism, and immediately determine the best disparity 

for the current pixel. The cost diffusion method includes the strong horizontal diffusion and the weak 

vertical diffusion. That is because the human eyes weakly percept the vertical disparity and are 

sensitive to the horizontal disparity [108], [109]. It implies the demand of vertical disparity is lower 

than that of horizontal disparity. Therefore, the horizontal diffusion applies a complicated mechanism 

and the vertical diffusion applies a simple one. 

The horizontal diffusion method consists of the right cost diffusion process and the left cost 

diffusion process. The two processes can generate two disparity rows, which will be merged into one 

by our specific constraint. In the two processes, the disparities are computed immediately and the 

diffused costs could be thrown at the same time. In the proposed cost diffusion method, only the best 

disparity row and the corresponding minimal matching costs need to be stored. Its memory 

requirement is listed in Table IV-4.  

The details of the proposed cost diffusion method are described using the right cost diffusion 

process as an example. In the right cost diffusion process, the final cost RCfinal is computed from left to 
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right, and it is combined with the original cost Ctotal to determine the disparity row. The final cost 

RCfinal is computed by 

 𝑅𝐶𝑓𝑖𝑛𝑎𝑙(𝑥, 𝑦, 𝑑) = 𝐶𝑡𝑜𝑡𝑎𝑙(𝑥, 𝑦, 𝑑) + 𝑅𝐷𝐶(𝑥 − 1, 𝑦, 𝑑)  . (IV-18) 

where the diffused cost RDC(x-1, y, d) at the left neighbor is defined as 

 𝑅𝐷𝐶(𝑥 − 1, 𝑦, 𝑑) = min
𝑑𝑠

.𝑉(𝑑, 𝑑𝑠) + 𝑅𝐶𝑓𝑖𝑛𝑎𝑙(𝑥 − 1, 𝑦, 𝑑𝑠)/ − 𝜅  , (IV-19) 

where V is the smoothness term in (IV-7), and κ is the average of RDC for normalization. This 

equation is similar to the calculation of message passing in (III-7) but all the messages are removed.  

Then, the previous diffused cost RDC is combined with the matching cost of current pixel by 

for the current pixel (x, y). With the final cost RCfinal, the temporary best disparity RDbest could be 

immediately calculated by the winner-take-all (WTA) manner, and the minimal cost RCmin is also 

computed for the final disparity decision. They are calculated by 

 𝑅𝐶𝑚𝑖𝑛(𝑥, 𝑦) = min
𝑑
𝑅𝐶𝑓𝑖𝑛𝑎𝑙(𝑥, 𝑦, 𝑑) (IV-20) 

 𝑅𝐷𝑏𝑒𝑠𝑡(𝑥, 𝑦) = argmin
𝑑
𝑅𝐶𝑓𝑖𝑛𝑎𝑙(𝑥, 𝑦, 𝑑)  . (IV-21) 

By the above right cost diffusion process, we could obtain the temporary best disparity RDbest and the 

minimal cost RCmin of one frame row. We also can acquire the LDbest and LCmin by the left cost 

diffusion process. Finally, the two disparity row RDbest and LDbest are merged into one by the equation 

 𝐷𝐿(𝑥, 𝑦) = {
𝑅𝐷𝑏𝑒𝑠𝑡(𝑥, 𝑦) 𝑖𝑓 𝑅𝐶𝑚𝑖𝑛(𝑥, 𝑦) < 𝐿𝐶𝑚𝑖𝑛(𝑥, 𝑦)

𝐿𝐷𝑏𝑒𝑠𝑡(𝑥, 𝑦) 𝑒𝑙𝑠𝑒
  . (IV-22) 

according to the minimal costs RCmin and LCmin. In which, we take the disparity with minimal cost as 

the final disparity. 

On the other hand, the concept of vertical cost diffusion is to propagate the disparities of previous 

row into the current row. Thus, we define another new vertical cost Cvert as 

𝐶𝑣𝑒𝑟𝑡(𝑥, 𝑦, 𝑑) = 𝜆𝑣𝑒𝑟𝑡|𝑑 − 𝐷𝐿
𝑡(𝑥, 𝑦 − 1)| (IV-23) 

where DL
t
(x, y-1) is the disparity in previous row, λvert is a scaling term. Note that this cost is 

constrained by the color consistency between the current pixel IL
t
(x, y) and the previous row pixel IL

t
(x, 
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y-1). If the two pixels are inconsistent, the vertical cost Cvert would be 0. Thus, the total cost cube in 

the HE-DE algorithm is defined as 

 𝐶𝑡𝑜𝑡𝑎𝑙(𝑥, 𝑦, 𝑑) = 𝐶𝑎𝑔𝑔𝑟(𝑥, 𝑦, 𝑑) + 𝐶𝑡𝑒𝑚𝑝(𝑥, 𝑦, 𝑑) + 𝐶𝑣𝑒𝑟𝑡(𝑥, 𝑦, 𝑑) . (IV-24) 

To minimize the memory requirement of cost diffusion method, we could perform the right cost 

diffusion process first and the left cost diffusion process latter. Thus, only one disparity row and one 

cost row required to be stored. Compared to the BP-M, the proposed cost diffusion method could 

reduce the memory cost to 0.00029% for the HD1080p resolution and 128 disparity levels. 

4.3.4 Image Buffer Reduction Methods 

As mentioned in Section 4.3.1, the SSAD matching cost calculation and the ADSW cost 

aggregation steps requires 28 image rows to minimize the external bandwidth. However, the memory 

cost of such the image buffer is too high. Thus, in the HE-DE algorithm, we modify the cost cube 

calculation method, and propose the window-based SSAD, which can reduce the requirement of image 

buffer to 5 image rows. Figure IV-32 illustrates the concept of the proposed window-based SSAD. In 

which, the pixels in a 5×5 window are fetched to compute a target aggregated cost by the 5×5 SAD 

metric. Without the ADSW cost aggregation step, the disparity would have slight degradation, 

compared to the HQ-DE algorithm. The comparison results are demonstrated in Chapter V. To 

compute the matching costs for full disparity range, the “used pixels” are needed for the center-view 

disparity estimation as shown in Figure IV-32 (b). We could use the image buffers with the size of five 

image rows to increase the data reuse and minimize the external bandwidth usage. The memory 

requirement of this configuration would be 1920×5×3 pixels (i.e. 86Kbytes for YUV444 format). 

Compared to the original method in HQ-DE algorithm, the memory requirement is saved by 82%. 
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(a) 

 
(b) 

Figure IV-32 Concept of the proposed window-based SSAD method 

(a) required pixels for computing a target aggregated cost, (b) image buffers for one matching cost row 

4.3.5 Small Filter Window Size 

The filter-based processes suffer from high computational complexity due to its large window 

size as listed in Table IV-3. To reduce their computation, we decrease the window size of filter-based 

processes while keeping the disparity quality without significant drop. Table IV-5 lists the window 

sizes of filter-based processes in the HE-DE algorithm. In which, most of the processes are changed to 

use 5×5 window. In addition, the ADSW cost aggregation step is removed in the HE-DE algorithm, 

and the median filter in the SEP step is replaced by the 3×3 bilateral filter. 
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Table IV-5 Window sizes of filter-based processes in HE-DE algorithm 

Step Computation Resolution Window Size 

No-Motion Registration (NMR) BF High 5×5 

Adaptive Support-Weight Cost Aggregation (ADSW) - - - 

Occlusion Handling (OCC) Vote High 3×3 

Joint Bilateral Upsampling (JBU) JBF High 5×5 

Window Vote (WVote) Vote High 5×5 

Still-Edge Preservation (SEP) BF High 3×3 

4.3.6 Regular Occlusion Handling 

For the irregularity problem in the original occlusion handling, we propose a new occlusion 

handling method that could be performed by raster-scan order, and take care of the inter-view 

consistency at the same time. Figure IV-33 shows the flow of proposed new occlusion handling 

method, which consists of the left-right check (LRC) to detect occlusion regions, and the inter-view 

and the intra-view reference steps to fill the occlusion regions.  

The inter-view reference step fills the target-view disparity map using the other two view 

disparity maps. For example, the two view disparity maps DL,L
t
, DL,R

t
 are warped to the center view. 

Only the non-occluded disparity pixels could be warped. If there are many disparities warped to the 

same position, the highest disparity is selected. Then, the occlusion regions could be filled by the 

warped disparity map. The inter-view reference step can not only recover most of the occlusion 

regions, but also enhance the inter-view consistency because of its cross warping. 

 

Figure IV-33 Flow of proposed occlusion handling method in HE-DE algorithm 
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Then, the rest of occlusion regions are filled by the intra-view reference step, which consists of 

the good disparity detection, the border filling, and the inside filling. The main idea of the intra-view 

reference step is to fill the occlusion regions by the neighboring non-occlusion disparity pixel in intra 

frame. To find the reliable non-occlusion disparity pixels, the good disparity detection applies the 

double-LRC method to find the “good disparity”. The double-LRC method checks the disparity 

consistency by referring to the other two views, instead one view in the original LRC method. The 

“good disparity” passing the examination of double-LRC can be used to fill the rest of occlusion 

regions. Finally, the filling process contains the border part and the inside part of frame. They also 

adopt the modified window vote method proposed in Section 4.1.6, and the center pixel of vote 

window should be a “good disparity”. 

The computation of the proposed new occlusion handling method does not have the occlusion 

extension process, which would result in irregular computation. All the computation in this method is 

performed in raster-scan order. In addition, the inter-view consistency could be enhanced by the 

inter-view reference step. 

4.3.7 Simple Region Detection 

In addition to the above methods to deal with the design challenges in the HQ-DE algorithm, the 

edge detection and the motion detection are also simplified in the HE-DE algorithm. Figure IV-34 

shows the flow of the simplified edge detection and motion detection. In which, the bilateral filter uses 

the window size of 5×5, and the block size of the block-based motion calculation is reduced from 

32×32 to 4×2 that is equal to the downsampling factor. 
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(a) (b) 

Figure IV-34 Flow of edge detection and motion detection in HE-DE algorithm 

(a) edge detection, (b) motion detection 

 

To sum up, the proposed HE-DE algorithm could solve the high memory cost and high 

computational complexity in HQ-DE algorithm by our simplification. For the high memory cost 

problems, the proposed cost diffusion method could replace the BP-M optimization to reduce the 

memory requirement to only one data row whose size is independent to the disparity range. In addition, 

the proposed window-based SSAD could decrease the image buffers to the size of five image rows. On 

the other hand, for the high computational complexity problems, the window size of filter-based 

processes are decreased, and the original irregular occlusion handling method is improved. With these 

simplifications, the HE-DE algorithm is suitable to be implemented by VLSI design. The architecture 

design of HE-DE algorithm is presented in Chapter VI. 
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4.4 Summary 

In this chapter, we propose the HQ-DE algorithm to improve the temporal consistency and the 

occlusion problems in the baseline algorithm. In addition, the BP-M approach is also applied to 

accelerate the BP optimization.  

Based on the HQ-DE algorithm, we further propose two new fast disparity estimation algorithms 

for different implementation methods. For the software-based implementation, we deliver the SC-DE 

algorithm, which performs the matching cost calculation, cost aggregation, and BP-M on the sparse 

pixels, and updates partial disparity map in seccussive frames. The sparse pixels are no-motion ones 

for center-view disparity estimation, and occlusion ones for side-view disparity estimation. Compared 

to the HQ-DE algorithm, the major computation in BP-M could be reduced to 13.4% in the SC-DE 

algorithm. The SC-DE algorithm is suitable to be executed the software-based platform because of its 

sparse computation.  

On the other hand, for the VLSI implementation, we propose the HE-DE algorithm, which 

improves the design challenges of high memory cost and computational complexity in the HQ-DE 

algorithm. For the high memory cost problem, we propose the cost diffusion method and the 

window-based SSAD to replace the original methods. The major memory cost in BP-M could be 

reduced to 0.00029% by the proposed cost diffusion method. For the high computational complexity 

problem, we decrease the filter size and propose a new occlusion handling method with regular 

computation.  

The above advanced disparity estimation algorithms are evaluated on the disparity quality and 

execution time in the next chapter. 
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V Experimental Results 

The previous chapter presents the proposed baseline disparity estimation (baseline) algorithm, 

high-quality disparity estimation (HQ-DE) algorithm, sparse-computation disparity estimation (SC-DE) 

algorithm, and hardware-efficient disparity estimation (HE-DE) algorithm using different strategies. 

They have different improvement in the disparity quality or the computational speed. In this chapter, 

we first introduce the experiment setting about the test sequences and the input/output configuration. 

Then, we compare those algorithms by the execution time on PC and the objective quality evaluation 

through the view synthesis results. 

5.1 Experiment Setting 

5.1.1 Test Sequences 

Figure V-1 shows the test sequences adopted in the experiment, and Table V-1 lists their detailed 

information. The test sequences are provided by different research institutes. The frame size includes 

1024×768 (XGA), 1920×1080 (HD1080p), and 1280×960. In these sequences, the Kendo, Balloons, 

Hall1, and Hall2 are captured by the moving cameras, and others are captured by fixed cameras. In 

addition, all the sequences are rectified by the similar processes as described in [78]. In the processes, 

the brightness, contrast, and gamma among views are adjusted to be consistent. Then, the lens 

distortion and chromatic aberration are rectified in the normalization process. Finally, all the view 

images are re-projected to the position with parallel optic axis. Because of the rectification processes, 

the source videos could be directly used to disparity estimation without any pre-processing, and the 

disparity range can be limited in 1-D space. 
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Figure V-1 Clips of test sequences in center view 

(a) BookArrival, (b) LoveBird1, (c) Newspaper, (d) Café, (e) Kendo, (f) Balloons, (g) Champagne, (h) 

Pantomime, (i) Hall1, (j) Hall2, (k) Street, (l) CarPark 

 

   
(a) (b) (c) 

 

  
(d) (e) (f) 

  

 

(g) (h) (i) 

   
(j) (k) (l) 
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Table V-1 Test sequences 

Sequence 

Name 
Provider Frame Size 

Frame 

Rate 

(frame/s) 

Number of 

Frame 

Number of 

View 

Camera 

Spacing 

(cm) 

Is 

Moving 

Camera 

BookArrival HHI 1024×768 16.67 300 16 6.5 No 

LoveBird1 ETRI 1024×768 30 300 12 3.5 No 

Newspaper GIST 1024×768 30 300 9 6.5 No 

Café GIST 1920×1080 30 200 5 5 No 

Kendo Nagoya 1024×768 30 300 7 5 Yes 

Balloons Nagoya 1024×768 30 300 7 5 Yes 

Champagne Nagoya 1280×960 30 300 80 5 No 

Pantomime Nagoya 1280×960 30 300 80 5 No 

Hall1 Poznan 1920×1088 25 200 9 13.75 Yes 

Hall2 Poznan 1920×1088 25 200 9 13.75 Yes 

Street Poznan 1920×1088 25 250 9 13.75 No 

CarPark Poznan 1920×1088 25 250 9 13.75 No 
HHI: Fraunhofer Heinrich Hertz Institute, Germany 

ERTI: Electronics and Telecommunications Research Institute, Korea 

GIST: Gwangju Institute of Science and Technology, Korea 
Nagaya: Nagoya University, Japan 

Poznan: Poznan University of Technology, Poznan 

5.1.2 Input and Output Configuration 

As mentioned in Section 2.3.1, the MPEG 3DVC defines the 2-view configuration and the 3-view 

configuration for different displays. Table V-2 lists the selected views of all the test sequences for 

2-view configuration. The frame ranges of test sequences are also defined for the disparity quality 

evaluation and the coding performance evaluation. This table only lists the frame range for disparity 

estimation. On the other hand, Table V-3 shows the selected input and output views for the 3-view 

configuration. In which, the output views for the stereoscopic display are located near the center-view 

input IC. For the 9-view displays, the most left output is located at the middle of center-view input IC 

and left-view input IL, while the most right output is located at the middle of center-view input IC and 

right-view input IR. The wider spacing between the most left and right output, the higher performance 

required in the view synthesis and disparity estimation algorithms. In this dissertation, we focus on the 

3-view configuration for 9-view displays. 
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Table V-2 Input and output views for 2-view configuration [71] 

Sequence Name 
Input View No. 

(IL-IR) 

Synthesized Pair 

(IL-VC or VC-IR) 

Frame Range for 

Disparity Estimation 

BookArrival 10-8 10-9 0-99 

LoveBird1 6-8 7-8 0-299 

Newspaper 4-6 5-6 0-299 

Café 1-3 2-3 0-299 

Kendo 2-4 3-4 0-299 

Balloons 2-4 3-4 0-299 

Champagne 39-41 40-41 0-499 

Pantomime 39-41 40-41 0-499 

Hall1 2-1 2-1.5 0-199 

Hall2 7-6 7-6.5 0-199 

Street 4-3 4-3.5 150-349 

CarPark 4-3 4-3.5 200-399 

 

Table V-3 Input and out views for 3-view configuration [71] 

Sequence Name 
Input View No. 

(IL-IC-IR) 

Output for 

Stereoscopic Display 

Output for 9-view 

Display 

BookArrival 10-8-6 8.25-7.75 9 to 7 

LoveBird1 4-6-8 5.75-6.25 5 to 7 

Newspaper 2-4-6 3.75-4.25 3 to 5 

Café 1-3-5 2.75-3.25 2 to 4 

Kendo 1-3-5 2.75-3.25 2 to 4 

Balloons 1-3-5 2.75-3.25 2 to 4 

Champagne 37-39-41 37.75-39.25 38 to 40 

Pantomime 37-39-41 37.75-39.25 38 to 40 

Hall1 3-2-1 2.125-1.875 2.5 to 1.5 

Hall2 7-6-5 6.125-5.875 6.5 to 5.5 

Street 5-4-3 4.125-3.875 4.5 to 3.5 

CarPark 5-4-3 4.125-3.875 4.5 to 3.5 

 

Table V-4 summarizes the our experiment setting for the DERS algorithm and our proposed 

algorithms. The target outputted views are the most left and the most right ones in the 3-view 

configuration for 9-view display. The disparity ranges are dependent on the sequence content, and the 

frame ranges are the same as those in Table V-2. For the inputted views, our proposed algorithm only 

requires three views, and meets the defined configuration in Table V-3. However, the DERS algorithm 

requires five views because of its functionality described in Section 2.3.1. It would result in that the 

DERS algorithm could not produce complete three view disparity maps in the sequences, Kendo, 

Balloons and Café, for view synthesis due to insufficient inputted views. For the three sequences, the 

column “Avail.” is marked by “No” in Table V-4. 



136 

 

In addition, the sequences Hall1, Hall2, Street, and CarPark, cannot be evaluated by objective 

method, because the common evaluation methods need the real captured videos to compare with the 

synthesized videos. However, these sequences target outputs are at the fractional positions, that means 

there are no real captured videos. Thus, the four sequences could not be used in the objective 

evaluation, and their column “Eval.” is marked by “No”. 

To sum up, the DERS algorithm could provide the results of sequences BookArrival, Pantomime, 

Champange, LoveBird1, and Newspaper for the objective evaluation. On the other hand, our 

algorithms could not provide only the results of sequences Hall1, Hall2, Street, and CarPark for the 

objective evaluation. 

Table V-4 Experiment setting in our evaluation 

Sequence 

Name 

Output 

No. 

Frame Size Disparity  

Range 

Frame 

Range 

DERS Our algorithms 

Input No. Avail. Eval. Input 

No. 

Avail. Eval. 

BookArrival 9, 7 1024×768 70 0-99 12-10-8-6-4 Yes Yes 10-8-6 Yes Yes 

LoveBird1 5, 7 1024×768 70 0-299 2-4-6-8-10 Yes Yes 4-6-8 Yes Yes 

Newspaper 3, 5 1024×768 88 0-299 0-2-4-6-8 Yes Yes 2-4-6 Yes Yes 

Café 2, 4 1920×1080 160 0-299 - No No 1-3-5 Yes Yes 

Kendo 2, 4 1024×768 64 0-299 - No No 1-3-5 Yes Yes 

Balloons 2, 4 1024×768 64 0-299 - No No 1-3-5 Yes Yes 

Champagne 38, 40 1280×960 110 0-499 35-37-39-41-43 Yes Yes 37-39-41 Yes Yes 

Pantomime 38, 40 1280×960 40 0-499 35-37-39-41-43 Yes Yes 37-39-41 Yes Yes 

Hall1 2.5, 1.5 1920×1088 80 0-199 4-3-2-1-0 Yes No 3-2-1 Yes No 

Hall2 6.5, 5.5 1920×1088 64 0-199 8-7-6-5-4 Yes No 7-6-5 Yes No 

Street 4.5, 3.5 1920×1088 64 150-349 6-5-4-3-2 Yes No 5-4-3 Yes No 

CarPark 4.5, 3.5 1920×1088 64 200-399 6-5-4-3-2 Yes No 5-4-3 Yes No 

5.2 Comparison 

5.2.1 Execution Time 

For the comparison of execution time, all the algorithms are compiled by the Microsoft Visual 

Studio 2010 with the optimization option of O2. The compiled programs are executed on the same PC 

that has the 2.83-GHz Intel Core2 Quad CPU and the 4-Gbyte RAM with the operation system of 

32-bit Windows 7. Table V-5 compares the average execution time of the proposed algorithms for one 

frame. The execution time is measured in the calculation of 3 view disparity maps for the defined 
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frame range listed in Table V-4. Moreover, we scale the average execution time to the same resolution 

of 1920×1080 and disparity range of 128 for our target specification. Table V-6 lists the scaled average 

execution time. In which, the HQ-DE algorithm could take advantage of the single iterative BP-M to 

speed up the baseline algorithm by 2.7 times in average. In addition, the HQ-DE algorithm is 9.3 times 

faster than the DERS algorithm. 

Compared to the HQ-DE algorithm, the SC-DE algorithm could reduce the execution time to 

62.9% by the sparse computation method. On the other hand, the HE-DE algorithm employs the 

proposed efficient cost diffusion method and the filter computation with decreased window size to 

reduce the execution time to 57.2%. 

Table V-5 Average execution time of proposed algorithms on PC for one frame 

Sequence Name DERS Baseline HQ-DE SC-DE HE-DE 

BookArrival 161,182 100,327 36,907 21,448 20,534 

LoveBird1 248,399 73,460 31,990 20,020 18,620 

Newspaper 281,858 138,565 42,376 22,627 25,121 

Café N.A 1,011,112 206,917 N.A 131,773 

Kendo N.A 73,755 31,854 21,999 17,890 

Balloons N.A 72,604 31,640 22,531 17,880 

Champagne 652,850 306,348 77,766 35,707 47,589 

Pantomime 498,999 58,091 39,762 30,672 19,858 

Hall1 286,225 297,946 100,916 57,361 59,135 

Hall2 800,368 220,713 88,216 55,355 49,354 

Street 1,187,748 184,441 83,457 53,340 47,269 

CarPark 1,377,180 195,976 84,309 54,188 47,902 

Unit: ms 

 

Table V-6 Average execution time scaled to HD1080p resolution and disparity range of 128 

Sequence Name DERS Baseline HQ-DE SC-DE HE-DE 

BookArrival 777,129  483,719  177,944  103,410  99,003  

LoveBird1 1,197,638  354,182  154,238  96,525  89,775  

Newspaper 1,080,990  531,428  162,522  86,780  96,345  

Café N.A 808,890  165,534  N.A 105,418  

Kendo N.A 388,942  167,980  116,010  94,342  

Balloons N.A 382,873  166,852  118,816  94,289  

Champagne 1,281,961  601,556  152,704  70,116  93,447  

Pantomime 2,694,595  313,691  214,715  165,629  107,233  

Hall1 454,592  473,208  160,278  91,103  93,920  

Hall2 1,588,966  438,180  175,135  109,896  97,982  

Street 2,358,028  366,170  165,687  105,896  93,843  

CarPark 2,734,108  389,070  167,378  107,579  95,100  

Average 1,574,223  460,993  169,247  106,524  96,725  

Compared to HQ-DE 930.1% 272.4% 100.0% 62.9% 57.2% 

Unit: ms 
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5.2.2 Objective Quality Evaluation 

The experiment setting follows the description in previous section. As mentioned in Section 2.3.4, 

the common-used objective quality evaluation methods are PSNR, SSIM, and T_PSPNR. Their main 

idea is to evaluate disparity quality by view synthesis results. Thus, they compare the difference 

between the real captured videos and the synthesized videos, and then analyze the frame difference by 

different methods. The PSNR and SSIM could be used to evaluate the spatial distortion, and the 

T_PSPNR could be used to evaluate the temporal distortion. The associated software tools can be 

obtained from [63], [77]. Note that the view synthesis algorithms are different for the DERS algorithm 

and our proposed algorithms. The DERS algorithm cooperates with the VSRS algorithm [64], while 

our proposed algorithms cooperates with the simplified VSRS algorithm [62] that adopts the Gaussian 

filter for the hole filling and has approximate quality to the original VSRS algorithm. 

1. PSNR Evaluation Results 

Table V-7 and Table V-8 shows the PSNR evaluation results for luminance channel only, and 

Figure V-2 plots the corresponding data by column diagram. Note that the “View0” and “View8 mean 

the left most and the right most views for the 9-view displays. Note that the results of Café, Kendo, 

and Balloons are not available in the DERS algorithm due to the reason described in previous section. 

In addition, the proposed SC-DE algorithm could not generate disparity maps for the sequence Café 

because of insufficient memory space on PC to support the extremely high resolution and large 

disparity range. In this table, ∆PSNR is the PSNR difference of our algorithm and the DERS algorithm. 

The positive ∆PSNR refers to our algorithm performs better than the DERS algorithm, and vice versa. 

Compared to the DERS algorithm, the baseline algorithm could not perform better in most 

sequences because the baseline algorithm only focuses on the computational reduction, instead of the 

disparity quality improvement. With the temporal consistency and occlusion improvement methods, 

the HQ-DE algorithm could has higher PSNR than the DERS algorithm in average.  
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The SC-DE algorithm is accelerated version of HQ-DE algorithm, and suffers from slight PSNR 

drops. On the other hand, the HE-DE algorithm, the other accelerated version of HQ-DE algorithm, 

has the slight quality drops in all sequences except the sequence Champagne, and the average PSNR is 

higher than other algorithms. That implies the proposed cost diffusion method and the new irregular 

occlusion handling method could deliver better disparity maps than the other proposed algorithms. 

Table V-7 Evaluation results of Y-PSNR for View0 

 DERS Baseline HQ-DE SC-DE HE-DE 

 
PSNR PSNR ∆PSNR PSNR ∆PSNR PSNR ∆PSNR PSNR ∆PSNR 

BookArrival 34.28 35.54 1.26 35.98 1.70 35.85 1.58 35.80 1.53 

LoveBird1 32.45 32.07 -0.38 32.63 0.18 32.58 0.13 31.53 -0.92 

Newspaper 29.53 29.27 -0.27 29.90 0.37 29.84 0.31 30.03 0.49 

Café N.A. 32.83 - 33.30 - N.A. - 33.22 - 

Kendo N.A. 34.66 - 34.84 - 34.82 - 34.88 - 

Balloons N.A. 34.72 - 35.07 - 34.79 - 34.91 - 

Champagne 25.32 28.27 2.95 27.63 2.31 24.99 -0.32 31.07 5.75 

Pantomime 36.46 37.01 0.55 35.94 -0.52 35.58 -0.88 34.66 -1.80 

Average 31.61 33.04 0.82 33.16 0.81 32.64 0.16 33.26 1.01 

Unit: dB 

Table V-8 Evaluation results of Y-PSNR for View8 

 DERS Baseline HQ-DE SC-DE HE-DE 

 
PSNR PSNR ∆PSNR PSNR ∆PSNR PSNR ∆PSNR PSNR ∆PSNR 

BookArrival 35.87 35.68 -0.19 35.89 0.02 36.08 0.21 36.02 0.15 

LoveBird1 29.31 27.53 -1.78 28.23 -1.08 28.22 -1.09 27.98 -1.33 

Newspaper 31.86 31.29 -0.57 31.76 -0.10 31.65 -0.20 31.92 0.06 

Café N.A. 32.87 - 33.01 - N.A. - 33.04 - 

Kendo N.A. 35.75 - 36.24 - 36.12 - 36.36 - 

Balloons N.A. 35.24 - 35.63 - 35.40 - 35.58 - 

Champagne 24.20 28.72 4.52 28.11 3.91 27.46 3.26 29.73 5.53 

Pantomime 34.65 35.85 1.20 36.00 1.35 36.13 1.48 35.61 0.96 

Average 31.18 32.87 0.64 33.11 0.82 33.01 0.73 33.28 1.08 

Unit: dB 
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(a) 

 
(b) 

Figure V-2 Evaluation results of Y-PNSR 

2. SSIM Evaluation Results 

In the SSIM evaluation, we calculate the average of the SSIMs in the three channels, R, G, and B 

for each sequence. Table V-9 and Table V-10 list the SSIM evaluation results for the View0 and View8, 

and Figure V-3 shows the corresponding column diagrams. With the SSIM evaluation results, all the 

proposed algorithms could have the approximate quality to the DERS algorithm but suffer from slight 

drops less than 0.02. 

Table V-9 Evaluation results of SSIM for View0 

 DERS Baseline HQ-DE SC-DE HE-DE 

 
SSIM SSIM ∆SSIM SSIM ∆SSIM SSIM ∆SSIM SSIM ∆SSIM 

BookArrival 0.98 0.95 -0.02 0.95 -0.02 0.95 -0.02 0.95 -0.02 

LoveBird1 0.95 0.95 0.00 0.96 0.00 0.96 0.00 0.95 0.00 

Newspaper 0.99 0.99 0.00 0.99 0.00 0.99 0.00 0.99 0.00 

Café N.A. 0.99 - 0.99 - N.A - 0.99 - 

Kendo N.A. 0.98 - 0.98 - 0.98 - 0.98 - 

Balloons N.A. 0.97 - 0.98 - 0.98 - 0.97 - 

Champagne 0.97 0.97 0.00 0.96 -0.01 0.95 -0.02 0.97 0.00 

Pantomime 0.98 0.98 0.00 0.98 0.00 0.97 0.00 0.97 0.00 

Average 0.97 0.97 -0.01 0.97 -0.01 0.85 -0.01 0.97 0.00 
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Table V-10 Evaluation results of SSIM for View8 

 DERS Baseline HQ-DE SC-DE HE-DE 

 
SSIM SSIM ∆SSIM SSIM ∆SSIM SSIM ∆SSIM SSIM ∆SSIM 

BookArrival 0.97 0.95 -0.02 0.95 -0.02 0.95 -0.02 0.95 -0.02 

LoveBird1 0.93 0.92 -0.01 0.92 -0.01 0.92 -0.01 0.92 -0.01 

Newspaper 0.99 0.98 -0.01 0.99 0.00 0.99 0.00 0.99 0.00 

Café N.A. 0.99 - 0.99 - N.A. - 0.99 - 

Kendo N.A. 0.98 - 0.99 - 0.99 - 0.99 - 

Balloons N.A. 0.98 - 0.98 - 0.99 - 0.98 - 

Champagne 0.97 0.97 0.00 0.96 0.00 0.96 -0.01 0.97 0.00 

Pantomime 0.97 0.97 0.00 0.97 0.00 0.97 0.00 0.97 0.00 

Average 0.97 0.97 -0.01 0.97 -0.01 0.97 -0.01 0.97 -0.01 

 

 
(a) 

 
(b) 

Figure V-3 Evaluation results of SSIM 

3. PSPNR Evaluation Results 

The PSPNR evaluation method [76] consists of the S_PSPNR for spatial distortion and the 

T_PSPNR for temporal distortion. In this dissertation, we adopt the T_PSPNR to evaluate the 

temporal consistency of disparity maps. Table V-11 and Table V-12 list the T_PSPNR evaluation 

results, and Figure V-4 plots the corresponding column diagrams. Compared to the DERS algorithm, 

the baseline algorithm has serious quality degradation due to no temporal consistency enhancement 

applied. Taking advantage of the proposed temporal consistency enhancement methods, the HQ-DE 
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algorithm could have higher performance than the DERS algorithm. Such the high performance is 

slightly decreased in the SC-DE and HE-DE algorithms in most sequences because of their 

acceleration methods. Nevertheless, the two fast algorithms still perform better than the DERS in most 

of the sequences. 

Table V-11 Evaluation results of T_PSPNR (dB) for View0 

 DERS Baseline HQ-DE SC-DE HE-DE 

 
T_PSPNR T_PSPNR ∆T_PSPNR T_PSPNR ∆T_PSPNR T_PSPNR ∆T_PSPNR T_PSPNR ∆T_PSPNR 

BookArrival 52.96 49.83 -3.13 53.60 0.64 54.10 1.14 52.94 -0.02 

LoveBird1 45.30 43.08 -2.23 46.57 1.26 46.46 1.16 45.70 0.39 

Newspaper 43.38 39.44 -3.94 44.09 0.71 44.19 0.82 43.65 0.27 

Café N.A. 44.00 - 46.59 - N.A. - 47.83 - 

Kendo N.A. 47.57 - 48.08 - 47.90 - 48.15 - 

Balloons N.A. 48.25 - 49.99 - 48.25 - 49.93 - 

Champagne 34.62 40.34 5.72 41.28 6.66 40.03 5.41 44.56 9.94 

Pantomime 51.85 52.10 0.25 52.19 0.35 50.12 -1.72 50.95 -0.90 

Average 45.62 45.57 -0.67 47.80 1.92 41.38 1.36 47.96 1.94 

Unit dB 

Table V-12 Evaluation results of T_PSPNR for View8 

 DERS Baseline HQ-DE SC-DE HE-DE 

 
T_PSPNR T_PSPNR ∆T_PSPNR T_PSPNR ∆T_PSPNR T_PSPNR ∆T_PSPNR T_PSPNR ∆T_PSPNR 

BookArrival 51.82 50.34 -1.48 53.52 1.70 52.81 0.99 54.62 2.79 

LoveBird1 43.33 41.21 -2.11 44.70 1.37 44.75 1.42 43.84 0.51 

Newspaper 47.92 43.43 -4.49 47.96 0.04 47.24 -0.67 47.82 -0.09 

Café N.A. 43.42 - 46.86 - N.A. - 46.85 - 

Kendo N.A. 49.34 - 50.58 - 50.41 - 50.81 - 

Balloons N.A. 47.69 - 49.76 - 48.03 - 49.90 - 

Champagne 34.16 40.00 5.84 41.18 7.02 41.32 7.16 42.19 8.03 

Pantomime 48.45 49.13 0.68 50.12 1.67 49.98 1.53 50.06 1.61 

Average 45.14 45.57 -0.31 48.09 2.36 47.79 2.09 48.26 2.57 

Unit dB 
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(a) 

 
(b) 

Figure V-4 Evaluation results of T_PSPNR 

4. Disparity Maps and Synthesized Images 

Finally, the disparity maps and view synthesis results are demonstrated in Figure V-5 to Figure 

V-16. The HQ-DE algorithm could improve the disparity maps and synthesized images better than the 

baseline algorithm, and has comparable results to the DERS algorithm. Compared to the HQ-DE 

algorithm, the SC-DE and the HE-DE algorithms has disparity noising at the object boundaries due to 

their simplified methods. 
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Figure V-5 Disparity maps and view synthesized images in the 50
th
 frame of BookArrival 

Results from top to down are the produced by the DERS, baseline, HQ-DE, SC-DE, HE-DE 

algorithms. 
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Figure V-6 Disparity maps and view synthesized images in the 50
th
 frame of LoveBird1 

Results from top to down are the produced by the DERS, baseline, HQ-DE, SC-DE, HE-DE 

algorithms. 
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Figure V-7 Disparity maps and view synthesized images in the 100
th
 frame of Newspaper 

Results from top to down are the produced by the DERS, baseline, HQ-DE, SC-DE, HE-DE 

algorithms. 

 

  

  

  

Figure V-8 Disparity maps and view synthesized images in the 50
th
 frame of Café 

Results from top to down are the produced by the baseline, HQ-DE, HE-DE algorithms. 
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Figure V-9 Disparity maps and view synthesized images in the 50
th
 frame of Kendo 

Results from top to down are the produced by the baseline, HQ-DE, SC-DE, HE-DE algorithms. 
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Figure V-10 Disparity maps and view synthesized images in the 100
th
 frame of Balloons 

Results from top to down are the produced by the baseline, HQ-DE, SC-DE, HE-DE algorithms. 
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Figure V-11 Disparity maps and view synthesized images in the 50
th
 frame of Champagne 

Results from top to down are the produced by the DERS, baseline, HQ-DE, SC-DE, HE-DE 

algorithms. 
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Figure V-12 Disparity maps and view synthesized images in the 50
th
 frame of Pantomime 

Results from top to down are the produced by the DERS, baseline, HQ-DE, SC-DE, HE-DE 

algorithms. 
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Figure V-13 Disparity maps and view synthesized images in the 50
th
 frame of Hall1 

Results from top to down are by the DERS, baseline, HQ-DE, SC-DE, HE-DE algorithms. 
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Figure V-14 Disparity maps and view synthesized images in the 50
th
 frame of Hall2 

Results from top to down are by the DERS, baseline, HQ-DE, SC-DE, HE-DE algorithms. 
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Figure V-15 Disparity maps and view synthesized images in the 167
th
 frame of CarPark 

Results from top to down are by the DERS, baseline, HQ-DE, SC-DE, HE-DE algorithms. 
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Figure V-16 Disparity maps and view synthesized images in the 50
th
 frame of CarPark 

Results from top to down are the produced by the baseline, HQ-DE, SC-DE, HE-DE algorithms. 

 

5.3 Summary 

The disparity quality and execution time of the proposed algorithms are examined using the test 

bench for view synthesis application. Compared to the DERS algorithm, the proposed HQ-DE 
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algorithm has high disparity quality in the temporal PSPNR evaluation, and approximate disparity 

quality in the spatial PSNR evaluation. For the computational comparison, our proposed HQ-DE 

algorithm is more efficient than the DERS algorithm because our processing resolution is decreased by 

the disparity upsampling technique. The computation of HQ-DE algorithm could be significantly 

reduced by the proposed SC-DE and HE-DE algorithms with slight disparity quality change. Moreover, 

according to their computational characteristics, the SC-DE algorithm could be further accelerated by 

processor-based platforms, and the HE-DE algorithm could be accelerated by VLSI design. In the next 

chapter, the HE-DE algorithm is implemented by VLSI design to achieve the required throughput of 

high resolution 3DTV applications. 
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VI Design of Disparity Estimation Engine for 

High Definition 3DTV Applications 

The main target of this dissertation is to deliver a disparity estimation engine that can generate 

three view HD1080p disparity maps in the throughput of 60 frames/s. To achieve this target, we 

simplify the hardware-efficient disparity estimation (HE-DE) algorithm for lower hardware cost, and 

propose a corresponding hardware design. The implementation result shows that the proposed 

disparity estimation engine could achieve the target throughput, and outperform the previous 

implementation.  

This chapter is organized as follows. First, we analyze the data dependency of HE-DE algorithm, 

and simplify it to reduce more hardware cost. Then, we present the proposed architecture for the 

simplified HE-DE algorithm. The details of its computational modules and memory access schedule 

are also described. Finally, the implementation result is demonstrated and compared with previous 

work. 

6.1 Architectural Analysis 

6.1.1 Analysis of Hardware-Efficient Disparity Estimation Algorithm 

The HE-DE algorithm could significantly reduce the memory cost and computational complexity 

of HQ-DE algorithm by the proposed methods. However, the HE-DE algorithm still suffers from high 

hardware cost while considering its detailed architecture. In Figure VI-1, we analyze the data 

dependency of the HQ-DE algorithm that consists of the main process and the branch process in the 

whole flow. The main process is from the window-based SSAD to the still-edge preservation steps for 

the computation of cost cube, low-resolution disparity map, and high-resolution disparity map, while 

the branch process includes the motion detection and the edge detection steps for the assistant 
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information of temporal consistency enhancement. Because of no feedback data path in this flow, we 

could adopt the pipelining architecture to increase the throughput of HE-DE algorithm. With the 

pipelining architecture, the hardware design of HE-DE algorithm has the high memory cost problem 

due to the following reasons. 

 

Figure VI-1 Data dependency of the HE-DE algorithm 

1. Long Pipelining Stall for Branch Process 

In the pipelining architecture, the size of pipelining buffer is related to the computational 

characteristics of two steps and the stall cycles. The main process has the critical latency but no 

pipelining stall since the produced data between each two steps can be immediately used. However, 

the branch process suffers from long pipelining stall because the motion and edge maps are fetched by 
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the start and the end of main process. Therefore, the branch process requires large memory space to 

store the data. 

2. Filter-based Process 

The HE-DE algorithm employs many filter-based processes, such as bilateral filter, median filter, 

dilation, erosion, and etc. By decreasing their filter size, the computational complexity is significantly 

reduced in the HE-DE algorithm. However, the filter-based processes still result in high memory cost 

even if the filter size is minimized to 3×3. Figure VI-2 shows the required buffers for two continuous 

filter processes. The step 1 performs a 3×3 filter, and its filter center has moved to the position (x, y). 

With the calculated result of Step 1, the step 2 could perform the 5×5 filter for the center position (x-2, 

y-2). The two steps in the pipelining architecture demand a 2-row buffer and a 4-row buffer, whose 

total memory size is 1920×6 pixels (i.e. 34.5Kbytes for 3-channel pixel) for the HD1080p resolution. 

To sum up, the filter-based process is expensive on the memory cost, and a filter with radius r needs a 

buffer with 2r frame rows at least. Therefore, we should try to remove the filter-based processes in the 

HE-DE algorithm under the condition of no observable impact on disparity quality. 

 

Figure VI-2 Required row buffers in filter-based processes for pipelining architecture 

3. Motion Detection with Sequential Steps 

The motion detection in the HE-DE algorithm is to find the motion map for the temporal cost 

calculation and the still-edge preservation. It mainly includes the frame difference computation and the 
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motion map extension as shown in Figure IV-34 (a). The motion detection method is simple but needs 

many pipelining buffers between each two steps as shown in Figure VI-5. It results from that each step 

in the motion detection is sequentially performed, and their required data are cross multiple rows. In 

addition, the motion detection also suffers from the problems of filter-based processes due to the 

dilation and erosion. Therefore, we should further simplify the motion detection with the consideration 

of memory cost. 

 

Figure VI-3 Memory buffers in the motion detection 

 

To solve the above problems, we modify partial blocks of the HE-DE algorithm in Figure VI-1. 

In which, we would merge the edge detection into the sill-edge preservation, remove all the bilateral 

filters (BF) and the median filters (MF), and simplify the motion detection. The improved HE-DE 

algorithm could be implemented by VLSI design, and is called hardware-based disparity estimation 

(HW-DE) algorithm in this dissertation. 

6.1.2 Proposed Hardware-Based Algorithm 
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Figure VI-4 shows the flow of proposed HW-DE algorithm. In which, the window sizes are 

minimized to 3×3 for the window-based SSAD and the window vote. In addition, all the bilateral and 

median filters for de-noising images are removed in the HW-DE algorithm. But it would result in that 

the image noise affects the disparity quality. Therefore, the cost diffusion, temporal cost and motion 

detection are also improved in the HW-DE algorithm for keeping disparity quality and lower hardware 

cost. 

 

Figure VI-4 Flow of the proposed HW-DE algorithm 

1. Improved Cost Diffusion 

The original vertical cost in (IV-23) strongly propagates previous row disparity to current costs if 

their corresponding pixels are consistent. However, the pixel consistency would be not accurate 

because of the image noise. Therefore, we should modify the scaling term λvert and disparity difference 

term for the vertical cost to decrease the dependency on the pixel consistency. The main idea of new 
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defined vertical cost is to introduce the Potts model into the scaling term and disparity difference, so 

that the new vertical cost is defined as 

 𝐶𝑣𝑒𝑟𝑡(𝑥, 𝑦, 𝑑) = 𝜆𝑣𝑒𝑟𝑡(∆𝐼𝐿
𝑡) × min*|𝑑 − 𝐷𝐿

𝑡(𝑥, 𝑦 − 1)|, 𝜏𝑣𝑒𝑟𝑡+ , (VI-1) 

where τvert is for truncating the disparity difference, λvert is for scaling the cost value according to the 

color distance of IL
t
(x, y) and IL

t
(x, y-1). The value of scaling function λvert should be increased while 

the color distance is decreased. Thus, the scaling function λvert is defined as 

𝜆𝑣𝑒𝑟𝑡(∆𝐼𝐿
𝑡) = 𝜆𝑣𝑒𝑟𝑡,𝑚𝑎𝑥 − 𝜆𝑣𝑒𝑟𝑡,𝑠𝑙𝑜𝑝𝑒min*∆𝐼𝐿

𝑡, 𝛾𝑣𝑒𝑟𝑡+ . (VI-2) 

where γvert and λvert,slope are for truncation and scale in the Potts model. This new vertical cost could 

tolerate the inaccurate pixel consistency, because its value is adaptive with the color consistency ∆IL
t
. 

In addition, the disparity candidates far from previous row would not suffer from too much penalty by 

the truncation term τvert. 

2. Improved Motion Detection 

Figure VI-5 shows the simplified motion detection for the HW-DE algorithm. Compared to the 

original motion detection in Figure IV-34, the motion calculation steps are replaced by the motion 

value calculation, and the dilation and erosion steps are removed. Without the separate pixel-based and 

block-based motion calculation, the simplified motion detection directly computes the motion value to 

decide the motion map, and passes the motion value to the temporal cost calculation. The motion value 

for the low-resolution pixel at (x, y) is defined as 

 𝑀𝑉𝐿
𝑡(x, y) =

1

3 × 3
∑ |𝐼𝐻

𝑡 (𝑢, 𝑣) − 𝐼𝐻
𝑡−1(𝑢, 𝑣)|

(𝑢,𝑣)∈𝑆
  , (VI-3) 

where S is a 3×3 window centered for (2x, 4y) in the high-resolution frames. With the motion value 

MVL
t
 and the old no-motion count NMCL

t-1
, the motion decision step determines the motion flag ML

t
 by 

 𝑀𝐿
𝑡(𝑥, 𝑦) = {1 𝑖𝑓 𝑀𝑉𝐿

𝑡(𝑥, 𝑦) > 𝜏𝑀 𝑜𝑟 𝑁𝑀𝐶𝐿
𝑡−1(𝑥, 𝑦) < 𝜏𝑁𝑀𝐶

0 𝑒𝑙𝑠𝑒
 . (VI-4) 

In addition, the no-motion registration step also updates the old no-motion count NMCL
t-1

 to the new 

one NMCL
t
 by 
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 𝑁𝑀𝐶𝐿
𝑡(𝑥, 𝑦) = {𝑁𝑀𝐶𝐿

𝑡−1(𝑥, 𝑦) + 1 𝑖𝑓 𝑀𝑉𝐿
𝑡(𝑥, 𝑦) ≤ 𝜏𝑀

0 𝑒𝑙𝑠𝑒
. (VI-5) 

Note that the edge information is not necessary in the improved motion detection. Therefore, the edge 

map would not result in the high memory cost for long pipelining stall. 

 

Figure VI-5 Proposed motion detection in the HW-DE algorithm 

3. Improved Temporal Cost 

With the simplified motion detection, the outputted binary motion map ML
t
 could well support the 

still-edge preservation but the temporal cost calculation due to the performance of motion map is 

affected by the image noise. Thus, using the same method in the modification of vertical cost, we 

modify the original temporal cost calculation from (IV-17) to  

 𝐶𝑡𝑒𝑚𝑝(𝑥, 𝑦, 𝑑) = 𝜆𝑡𝑒𝑚𝑝(𝑀𝑉𝐿
𝑡(𝑥, 𝑦)) ×min{|𝑑 − 𝐷𝐿

𝑡−1(𝑥, 𝑦)|, 𝜏𝑡𝑒𝑚𝑝}  , (VI-6) 

where λtemp is changed from a constant to the function of motion value MVL
t
. The function is λtemp 

defined as 

 𝜆𝑡𝑒𝑚𝑝(𝑀𝑉) = 𝜆𝑡𝑒𝑚𝑝,𝑚𝑎𝑥 − 𝜆𝑡𝑒𝑚𝑝,𝑠𝑙𝑜𝑝𝑒min{𝑀𝑉, 𝛾𝑡𝑒𝑚𝑝}. (VI-7) 

With the improvement, the temporal cost is adapted according to the motion value, instead of only the 

binary motion map contaminated by image noise. The lower motion value the more impact from 

previous disparity. 

The proposed HW-DE algorithm could reduce most of the memory cost that results from the long 

pipelining stall in the edge detection, the filter-based processes, and the motion detection. In addition, 

IH
t

Motion Value Cal.

Motion Decision

No-Motion 

Registration

IH
t-1

ML
t MVL

t

NMCL
t-1

NMCL
t



168 

 

the proposed improved vertical cost and temporal cost could tolerate the image noise, and keep the 

disparity quality without significant degradation. The proposed algorithm is implemented by VLSI 

design in the following sections, and its disparity quality is evaluated in Section 6.5. 

6.2 Overview of Disparity Estimation Engine 

The major design challenges of the disparity estimation engine have been addressed in the 

algorithm level. In the architectural design level, how to meet the target throughput with less hardware 

cost is the main task. To achieve the task, this section presents the proposed high-throughput 

architecture and the initial schedule for the computational circuits that could meet the target 

throughput. 

6.2.1 Proposed Three-Stage Pipelining Architecture 

Figure VI-6 shows the proposed architecture of disparity estimation engine and the associated 

peripheral resource. The proposed architecture consists of the main core and the I/O interface. The I/O 

interface accessed the required and resultant data from the external memory through a 128-bit bus, and 

the main core uses the fetched data to calculate the disparity maps.  

According to the computational characteristics in the proposed disparity estimation algorithm, we 

propose the three-stage pipelining architecture for the main core. The first low-resolution disparity 

estimation stage processes in low resolution frame, and produces the initial disparity maps and motion 

information for the following stages. Then, the second stage deals with the occlusion problem in 

different processing directions for the three views. Finally, the high-resolution disparity estimation 

stage upsamples and refines the disparity maps in high resolution frame. Note that the pipelining 

stages are row-based buffers, and the buffers between the second and third stages are the external 

memory to decrease the internal memory cost. 

On the other hand, in the I/O interface, the memory access controller serves all the requests from 

main core to access the data in the external memory. To decrease the idle time of main core, we 
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propose an efficient memory access schedule for the memory access controller, and the corresponding 

data configuration for the external memory in Section 6.4. 

 

 

Figure VI-6 Overview architecture of the proposed disparity estimation engine 

6.2.2 Schedule of Main Core 

We assume the proposed disparity estimation engine could calculate one disparity for three views 

in one cycle. This engine can achieve the throughput of 60 frames/s for three view HD0180p disparity 

maps if the main core can work at the higher frequency than 125MHz. With this assumed throughput, 

we propose the computational schedule of main core for calculating one disparity frame in Figure VI-7. 

Note that the three view disparity maps are simultaneously produced. In this schedule, the computation 

of one disparity frame requires 1920×1080 cycles, and a schedule tile has 1920×4 cycles for four 

disparity rows. In a schedule tile, the former two stages produce one low-resolution disparity row, and 

last stage uses it to further produce the corresponding four high-resolution disparity rows. 
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Figure VI-7 Proposed computational schedule for main core 

 

In the low-resolution disparity estimation stage, the schedule is dominated by the forward and 

backward cost diffusion. To cooperate with them, the required data should be calculated twice or once 

with a data reuse technique. Considering the memory cost into the other computation, the motion 

detection applies the once calculation with data reuse technique, and the window-based SSAD and 

temporal cost calculation applies the twice calculation. Therefore, for the matching cost-related 

calculation, we have 4 cycles to compute the costs of a pixel with full disparity range, and the 

throughput of this stage would be 1/8 pixels/cycle. For the occlusion handling stage, we do not spread 

their calculation to the whole slot because of no heavy computation. For the final high-resolution 

disparity estimation stage, the required throughput is 1 pixel/cycle to meet the target performance. 

Based on the computational schedule of main core, we could further design the architecture of 

each computational module according to the above mentioned throughput. Note that the computational 

schedule will be modified by considering the external memory access in Section 6.4. 

6.3 Detailed Architectural Design 
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In this section, we describe the details of computational modules in each pipelining stage by the 

pipelining stage scope and the module scope. The pipelining stage scope focuses on the data flow 

among modules and the internal memory configuration, while the module scope focuses on the 

computational logic. 

6.3.1 Low-Resolution Disparity Estimation Stage 

Figure VI-8 shows the architecture of low-resolution disparity estimation stage. In which, all the 

computational modules has three parallel PEs for three target views. The data from the external 

memory are buffered in groups of registers to support the wide data access of main core. By the 

schedule in Figure VI-7, the computation of this stage consists of the forward process and the 

backward process. In the forward process, the motion detection module finishes all tasks, and stores 

the motion value into the internal memory lo_mval for data reuse in the next process. In addition, the 

updated no-motion count and motion flag are written to the external memory for the last pipelining 

stage. At the same time, the modules from window-based SSAD to the horizontal diffusion are 

performed in one frame row from left to right in the forward process. Their temporary minimal cost 

and disparity rows are stored in the memory lo_min_cost and lo_cur_disp. Then, in the backward 

process, they are performed in the opposite direction using the temporary data, and reuse the motion 

values of the internal memory lo_mval. The produced disparity and downsampled image rows are 

placed in the internal memory lo_cur_disp and lo_cur_img for the next pipelining stage. 
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Figure VI-8 Architecture of the low-resolution disparity estimation stage 

 

The architecture of the computational modules is presented as follows. 

1. Motion Detection 

Figure VI-9 illustrates the input and output data in the frame coordinate system for the motion 

detection module, and Figure VI-10 shows the architecture of motion detection module. In Figure VI-9, 

the motion detection module uses the two 3×3 windows from the current frame IH
t
 and previous frame 

IH
t-1

to compute the motion value MVL
t
 and motion flag ML

t
. In addition, the old no-motion count 

NMCL
t-1

 is updated and used to extend motion map for the foreground copy artifact. The architecture 

of motion detection module is directly implemented according to (VI-3), (VI-4), and (VI-5). However, 

a divider is required for normalization in (VI-3). To remove the divider, all the associated values are 
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multiplied by 9. In addition, the pixel difference in (VI-3) adopts the Manhattan color distance for low 

hardware cost. Note that the truncation of MVL
t
 in the temporal cost calculation is pre-performed here 

to reduce the memory cost of motion value. 

 

Figure VI-9 Data access of the motion detection module in the frame coordinate system 

 

Figure VI-10 Architecture of the motion detection module 

2. Matching Cost Calculation 

For each target view, the original matching cost calculation uses the other two views as the 

reference frames. In the disparity estimation engine, we simplify the side-view matching cost 

calculation only using the center-view as reference frame to reduce the hardware cost. Figure VI-11 

shows the input data and required data for computing the full matching costs of one pixel. For example 

of the left-view matching cost calculation, the required data contains the 3×3 block of left-view input 
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data (i.e. block No. 2), and the (DR+2)×3 block of center-view input data (i.e. block No. 4 and 5). The 

required data for the center-view and right-view matching cost calculation are also illustrated. 

 

Figure VI-11 Input and required data in matching cost calculation for three target views 

 

As mentioned in Section 6.2.2, the throughput of this module should be DR/4 costs/cycle, and it 

is designed with the parallelism factor of 32 for the disparity range of 128. Figure VI-12 shows the 

proposed architecture of this module for three views. Note that the center-view has double 

32-parallel-SAD PEs because of two reference views. For each disparity, the minimum matching cost 

is selected. Thus, the three-view matching costs are defined as 

 𝐶0,𝐶
𝑡 (𝑥, 𝑦, 𝑑) = min*𝑆𝑆𝐴𝐷𝐶−𝐿(𝑥, 𝑦, +𝑑), 𝑆𝑆𝐴𝐷𝐶−𝑅(𝑥, 𝑦, −𝑑)+ (VI-8) 

 𝐶0,𝐿
𝑡 (𝑥, 𝑦, 𝑑) = 𝑆𝑆𝐴𝐷𝐿−𝐶(𝑥, 𝑦, −𝑑) (VI-9) 

 𝐶0,𝑅
𝑡 (𝑥, 𝑦, 𝑑) = 𝑆𝑆𝐴𝐷𝑅−𝐶(𝑥, 𝑦, +𝑑) (VI-10) 

where the window-based SSAD is calculated by  

 𝑆𝑆𝐴𝐷𝑡𝑎𝑟−𝑟𝑒𝑓(𝑥, 𝑦, 𝑑) = ∑ ‖𝐼𝐻,𝑡𝑎𝑟
𝑡 (𝑢, 𝑣) − 𝐼𝐻,𝑟𝑒𝑓

𝑡 (𝑢 + 𝑑, 𝑣)‖(𝑢,𝑣)∈𝑆   . (VI-11) 

In which, S is a 3×3 window centered for (x, y), and the Manhattan difference is adopted for the color 

difference. The initial matching costs are substituted into the DPotts model by 

 𝐶𝐷
𝑡 (𝑥, 𝑦, 𝑑) = 𝜆𝐷min*𝐶0

𝑡(𝑥, 𝑦, 𝑑), 𝜏𝐷+ , (VI-12) 
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Finally, the produced CD
t
 is added with the temporal cost Ctemp

t
 and the vertical cost Cvert

t
 for the 

horizontal cost diffusion to calculate the disparity maps. They are summed up by  

 𝐶𝑡𝑜𝑡𝑎𝑙
𝑡 (𝑥, 𝑦, 𝑑) = 𝐶𝐷

𝑡 (𝑥, 𝑦, 𝑑) + 𝐶𝑡𝑒𝑚𝑝
𝑡 (𝑥, 𝑦, 𝑑) + 𝐶𝑣𝑒𝑟𝑡

𝑡 (𝑥, 𝑦, 𝑑)  . (VI-13) 
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(b) 

 
(c) 

Figure VI-12 Architecture of the window-based SSAD and DPotts modules 

(a) center view, (b) left view, (c) right view 
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With the above equations, the window-based SSAD and the DPotts modules could be directly 

implemented. The two modules calculate the matching costs pixel by pixel from left to right in the 

forward cost diffusion, and the opposite direction in the backward cost diffusion. Note that the 

required images are loaded twice for the two direction steps, and the sliding image buffers are applied 

to reduce the external memory access. 

3. Temporal Cost Calculation and Vertical Cost Diffusion 

The temporal cost calculation is to generate the full temporal costs Ctemp
t
 using the previous 

disparity DH
t-1

(x, y) and the motion value MVL
t
(x, y) for four iterations. Figure VI-13 shows the 

architecture of temporal cost calculation module that is implemented according to (VI-6) and (VI-7). 

The 32 parallel disparity differences of |d-DH
t-1

(x, y)| is implemented by look-up table to reduce 32 

subtractors, and the function λtemp is also implemented by look-up table to fit its curve. The truncation 

and the multiplication in (VI-6) can be simplified to adders and shifters as shown in Figure VI-13 (b). 

 
(a) 

 
(b) 

Figure VI-13 Architecture of the temporal cost calculation module 
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With the same simplification architecture, Figure VI-14 shows the architecture of vertical cost 

diffusion module that calculates the full vertical costs Cvert for four iterations. Except for the similar 

architecture of disparity difference table, slope table, and slope multipliers, the vertical cost diffusion 

module needs to compute the pixel difference ∆IL
t
 by the Manhattan color distance. The computation 

of pixel difference would result in critical path in this architecture. Thus, we install a pipelining stage 

as shown in Figure VI-14 (a). 

 
(a) 

 
(b) 

Figure VI-14 Architecture of vertical cost diffusion module 
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disparity RDbest and one minimum cost RCmin per cycle. Note that the labels of data are for the right 

cost diffusion as an example. The left cost diffusion can also apply this module directly. 

In this fully parallel architecture, we adopt the parallel architecture proposed in [33] to the 

convolution PE. The hardware cost in the convolution PE depends on the truncation term τV in the 

smoothness term V in (IV-19). To reduce the hardware cost of this PE, we change τV from the original 

15 to 5 that could reduce the number of parallel adders from 3,728 to 1,338 but suffers from slight 

disparity quality change as demonstrated in Section 6.5. On the other hand, in the normalization PE, 

we change the normalization term κ in (IV-19) from the average of diffusion costs to the minimum to 

avoid a high data-width adder tree for the average computation. Finally the addition and WTA are 

directly implemented according to (IV-18) and (IV-20), (IV-21), respectively. 

 

Figure VI-15 Fully parallel architecture of the horizontal cost diffusion module 

 

However, the fully parallel architecture suffers from the two design problems: long critical path 

and feedback data path, as shown in Figure VI-16 (a). The pipelining approach could only solve the 

long critical path problems but it would violate the original functionality due to the feedback data path. 

Thus, we propose the sequential architecture in Figure VI-16 (b) to simplify the fully parallel 

architecture and meet our target throughput. In the sequential architecture, the four steps in the 

horizontal cost diffusion are sequentially performed. The advantage of this architecture is that the four 

steps could share the same registers and PE to further reduce the hardware cost. 

128x11bit

MIN128 +

5S

[0]    [1]    [2]   ……     [15]   [16]  [17]  ……

MIN17
MIN18
MIN19

11biy

11bit

+S +0 +S +2S+2S +5S……+5S ……

+0 +S +2S +5S……

+S +0 +S +2S +5S……

+S +0 +S +2S+2S +5S……

MIN32

…

…
…

128x11bit

-
-

…
…

MIN128

MIN2
MIN2

…

511

128

x9bit

Normalization

128-to-1
0

1

127

…

RCmin

RDbest

Disparity 

Selector Tree

WTA

11bit

7bit

128

x11bit

Convolution

Current cost
Ctotal

t(x, y)

+
+

…
…

Addition

RCD

(x-1, y, d)

RCfnal

(x, y, d)

κ

RCfnal

(x-1, y, d)



179 

 

 
(a) 

 
(b) 

Figure VI-16 Architecture of the horizontal cost diffusion module 

(a) fully parallel architecture, (b) proposed sequential architecture 
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Figure VI-17 Architecture of the occlusion handling stage 
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the buffered disparities, the occlusion detection PEs perform the LRC process to generate the 

occlusion label OL, OC, OR for three views. Figure VI-19 (a) shows the architecture of the occlusion 

detection PE that compares the target disparity and the corresponding disparity in reference view to 

determine occlusion label. Both the target disparity and its correspondence are in the FIFO registers. 

Furthermore, the produced occlusion labels are shifted into the occlusion buffers for the warp 

filling PEs. According to the occlusion information, two warp filling PEs in each view warps the 

non-occluded disparities from the other two views to fill its occlusion pixels. Figure VI-19 (b) shows 

the architecture of the warp filling PE that uses the warped non-occlusion disparity to replace one of 

the original disparities to form the new disparities. 

 

Figure VI-18 Architecture of the disparity cross warping module 
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(a) 

 
(b) 

Figure VI-19 Architecture of the occlusion detection PE and the warp filling PE 
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Figure VI-20 Architecture of the good disparity detection module 
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(a) 

 
(b) 

 
(c) 

Figure VI-21 Architecture of border filling and inside filling modules 

(a) border filling module, (b) inside filling module for center view, (c) inside filling module for side 

views 
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still-edge preservation. Figure VI-22 shows the proposed architecture for this high-resolution disparity 

estimation pipelining stage, which consists of the data buffers and the three main modules. In which, 

the joint bilateral upsampling module fetches the guide high-resolution image and the low-resolution 

disparity from the external memory to calculate the high-resolution disparities. The new calculated 

disparities are stored into the internal memory hi_cur_disp for further processes. 

 

Figure VI-22 Architecture of the high-resolution disparity estimation stage 
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this pipelining stage could easy achieve the required throughput of 1 pixel/cycle with small internal 

memory. 

 

Figure VI-23 Memory configuration in the high-resolution disparity estimation stage 
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table, and the multiplication is implemented by the adders and shifters. By the similar architecture, the 

proposed C_EXP multiplier in Figure VI-24 (c) is for the range kernel g and its multiplication. In 

addition, the summation and normalization in (IV-11) are implemented by adder-trees and the 

pipelined divider as shown in Figure VI-24 (a). Note that the pipelining stages are installed for the cut 

lines to break the critical paths. 

 
(a) 

 
(b) 

 
(c) 

Figure VI-24 Architecture of the joint bilateral upsampling module 
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2. Window Vote 

The window vote module is adopted in this stage for disparity refinement, and in the previous 

stage for occlusion filling. The computation of window vote method is defined in (IV-12) and (IV-13), 

and the corresponding architecture is shown in Figure VI-25. In which, the vote computation in 

(IV-13) is performed by the mask PE and 9 parallel vote PEs. Their architecture is shown in Figure 

VI-26. In the mask PE, each disparity in the 3×3 block is compared with other disparities. For the 

same disparity, the corresponding vote bit will be 1. Then, the vote bits for each target disparity are 

summed up by the vote PE. Finally, the disparity selection PE in Figure VI-25 chooses the disparity 

with the maximum vote as the resultant disparity. The resultant disparity is directly passed to the next 

still-edge preservation module. 

 

 

Figure VI-25 Architecture of the window vote module 
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Figure VI-26 Architecture of the mask and vote PEs for the window vote module 
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3. Still-Edge Preservation 

Figure VI-27 shows the architecture of still-edge preservation module, which replaces the current 

disparity with the previous disparity for the still-edge according to the edge and motion flag. The 

motion flag is fetched from the external memory, and the edge flag is computed by the Sobel filter in 

this module. The horizontal gradient gx and vertical gradient gy computed by the Sobel filter are used 

to decide the edge flag. If the pixel is no-motion and edge, the previous disparity would substitute the 

current disparity to be sent to external memory. 

 

Figure VI-27 Architecture of the still-edge preservation module 
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First, we estimate the bandwidth requirement of the proposed disparity estimation engine. Figure 

VI-28 (a) shows the data width of access ports to the external memory. Corresponding to the previous 

computational schedule, Figure VI-28 shows an initial memory access schedule for computing 4 

high-resolution disparity rows. In which, the peak of bandwidth usage would occur at the access of 

occlusion stage. For this peak interval, the estimated average bandwidth is estimated in Table VI-1. 

The total required bandwidth is 507 bits/cycle, and the budget bandwidth using 64-bit just satisfy the 

requirement. However, the average required bandwidth is an ideal value without considering the 

memory row miss. Thus, we choose the 128-bit for the system bus, and adopt the DDR3 SDRAM for 

the external memory. 

 
(a) 

 
(b) 

Figure VI-28 Rough schedule for external memory access 

(a) input and output ports to external memory, (b) rough external memory access schedule 
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Table VI-1 Estimated average external bandwidth for computing four disparity rows. 

 

Accessed 

Data 

No. of 

Column 

No. of 

Row 

No. of 

View 

Data Width 

(bit) 

Iteration 

Count 

Required Time 

(Cycle) 

Bandwidth 

(bit/cycle) 

Low-Resolution 

Disparity 

Estimation Stage 

pre_disp 1 1 3 7 1 4 5  

pre_img 2 3 3 24 1 4 108  

cur_img 2 3 3 24 1 4 108  

mncount 1 1 3 3 2 4 5  

mflag 1 1 3 1 1 4 1  

Occlusion 

Handling Stage 

lo_disp 1 1 3 7 1 1 21  

lo_img 1 1 3 24 1 1 72  

High-Resolution 

Disparity 

Estimation Stage 

lo_img 1 5 3 24 1 8 45  

lo_disp 1 5 3 7 1 8 13  

hi_img 2 6 3 24 1 8 108  

mflag 1 2 3 1 1 8 1  

hi_disp 2 4 3 7 1 8 21  

Total Required Bandwidth 507  

Budget Bandwidth (DDR3 SDRAM 800MHz, 64-bit bus) 512 

Budget Bandwidth (DDR3 SDRAM 800MHz, 128-bit bus) 1024 

6.4.2 External Memory Architecture 

For the above estimated bandwidth requirement, Figure VI-29 shows the architecture of external 

memory that consists of eight DDR3 SDRAMs [110] for 128-bit bus. One of the DDR3 SDRAMs has 

8 banks, and one row has 1024 columns. In addition, the word width is 16-bit of each SDRAM module, 

and the data width of the merged SDRAMs would be 128-bit. According to the latency information in 

[110], the DDR3 SDRAMs could work at the highest frequency of 800 MHz. They could output data 

at the positive and negative edges of clock signal, and there are two transfers in one cycle. Thus, the 

external memory architecture can provide the bandwidth of 800M×128×2 bits (i.e. 25,600 Mbytes/s). 

 

Figure VI-29 Architecture of external memory in our design 
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Figure VI-30 summarizes the data access latency of the external memory at the clock frequency 

of 800MHz. According to the associated latencies defined in [110], we could obtain the row miss 

latencies for different access types, and apply them to arrange the external memory access schedule. 

 

  
(a) (b) 

  
(c) (d) 

Figure VI-30 Read and write latency in the SDRAM model [110] 
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manner. In addition, the disparity is bound with the image pixel as the image-disparity pixel because 

their accessed positions in image coordinate are identical. On the other hand, the low-resolution 

motion information is configured in bank7 as illustrated in Figure VI-31 (d) and (e). They are accessed 

by the motion detection and the still-edge preservation modules in the raster scan order without 

crossing multiple rows. Therefore, we place each motion information row into the same memory row. 
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(d) (e) 

Figure VI-31 Data configuration in external memory 

(a) high-resolution videos in bank 0, 1, 2, (b) high-resolution disparity maps in bank 3, 4, 5, (c) 

low-resolution image and disparity map in bank 6, (d) no-motion count in bank 7, (e) motion flag in 

bank 7. 

6.4.4 External Memory Access Schedule 
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data access, instead of the computational speed. Nevertheless, the proposed disparity estimation 

engine could outperform our target throughput. 

 

Figure VI-32 Schedule of external memory access for one HD1080p frame at 800MHz 

6.5 Implementation Result 

6.5.1 Hardware Cost 

The proposed architecture of disparity estimation engine is implemented by the Verilog and 

synthesized using the UMC90nm technology process. Table VI-2 lists the performance of our disparity 

estimation engine. The proposed engine could use the three view HD1080p videos to calculate their 

corresponding three view disparity maps. The support disparity range could be 128 pixels. The 

required system memory is DDR3 SDRAM working at the clock frequency of 800MHz, and the 

system bus is 128-bit with the same clock frequency. The core module could achieve the throughput of 

hi_pre_img_l

hi_pre_img_c

hi_pre_img_r

hi_cur_img_l

hi_cur_img_c

hi_cur_img_r

lo_nmcount

lo_mflag

hi_pre_disp_l

hi_pre_disp_c

hi_pre_disp_r

hi_cur_disp_l

hi_cur_disp_c

hi_cur_disp_r

lo_img_disp_l

lo_img_disp_c

lo_img_disp_r

Bank0

Bank1

Bank2

Bank3

Bank4

Bank5

Bank6

Bank7

One Access Tile (256)

Occlusion

(lo_img_disp)

Occlusion

(lo_img_disp)

JBU
(hi_cur_img)

SAD cost
Motion

(hi_cur_img)

Still-Edge 
Preservation
(hi_pre_disp)

JBU
(lo_img_disp)

JBU
(lo_img_disp)

Result
(hi_pre_disp)

SAD cost
Motion

(hi_cur_img)

256

128

1

2

3 4

5

6

8

7

9

Motion
Tcost

(hi_pre_img, 
hi_pre_disp)

Motion
Tcost

(hi_pre_img, 
hi_pre_disp)

120 Access Tiles
16x4 

pixels
Preload

271 256

Four High-Resolution Rows (30,991)

270x4 High Resolution Rows

One Frame (8,367,570) Unit: Cycle



196 

 

75.64G pixel-disparities/s by the logic cost of 1,645K gate counts and the memory cost of 59.4Kbytes. 

In other words, our disparity estimation engine could deliver 95 frames/s for three view HD1080p 

disparity maps. 

Table VI-2 Performance of the proposed disparity estimation engine 

I/O Function 

Input Data 3 View HD1080p Videos 

Disparity Range (Pixel) 128 

Output Data 3 View HD1080p Disparity Maps 

Frame Rate (Frame/s) 95 

System 
External Memory DDR3 SDRAM (800MHz) 

Bus Width (Bit) 128 (800MHz) 

Core 

Technology Process UMC 90nm 

Clock Frequency 200MHz 

Gate-Count (Including Memory) 2,020K 

Gate-Count (Excluding Memory) 1,645K 

Internal Memory (Byte) 59.4K 

Throughput (Pixel-Disparity/s) 75.64G 

 

Table VI-3 lists the internal SRAM usage for each pipelining stage. In which, the most usage is 

the low-resolution image buffers lo_cur_img, which is a shared buffer for the low-resolution disparity 

estimation stage and the occlusion handling stage. In addition, the SRAM usage of the high-resolution 

disparity estimation stage is also high due to the disparity row buffers for the joint bilateral 

upsampling and the window vote modules. The total gate-count for these internal SRAMs is about 

375.6K. 

Table VI-3 Internal SRAM usage in the proposed disparity estimation engine 

  
Memory Type Word Num. Word Width Count 

Size  

(Bit) 

Low-Resol. DE Stage 

lo_pre_disp single-port 960 21 1 20,160 

lo_mval single-port 960 24 1 23,040 

lo_min_cot single-port 960 33 1 31,680 

lo_cur_disp dual-port 960 21 2 40,320 

lo_cur_img single-port 960 72 3 207,360 

Occlusion Handling Stage 

lo_occ single-port 960 3 3 8,640 

lo_warp_disp single-port 960 21 3 60,480 

lo_good single-port 960 3 1 2,880 

High-Resol. DE Stage hi_cur_disp two-port 1,920 21 2 80,640 

Total 
     

475,200 

 

Table VI-4 lists the internal registers in each stage. Most of the registers are the access buffers in 

the I/O interface module. Because the registers are accessed by the main core with high data width, 



197 

 

they are not implemented by SRAM. In this table, the most register usage is the image data for the 

window-based SSAD in the low-resolution DE stage. It results from that the access to compute 

parallel matching costs in one cycle. The total register usage is 73Kbits, which is about 396K 

gate-counts. 

Table VI-4 Internal registers in the proposed disparity estimation engine 

  
Row Num. Word Num. Word Width Count 

Size  

(Bit) 

Low-Resol. DE Stage 

hi_pre_img 3 16 24 3 3,456 

lo_nmcount 1 14 3 6 252 

lo_mflag 1 42 1 3 126 

hi_pre_disp 1 16 7 3 336 

hi_cur_img_l 3 146 24 1 10,512 

hi_cur_img_c 3 273 24 1 19,656 

hi_cur_img_r 3 146 24 1 10,512 

Occlusion Handling Stage 

ref_disp_buf 1 259 7 1 1,813 

warp_disp_buf 1 129 7 3 2,709 

ref_img_buf 3 3 24 3 648 

lo_img_disp 1 16 31 6 2,976 

High-Resol. DE Stage 

lo_img_disp 5 9 31 3 4,185 

hi_cur_img 6 22 24 3 9,504 

lo_mflag 2 42 1 3 252 

hi_pre_disp 4 18 7 3 1,512 

hi_cur_disp 4 32 7 3 2,688 

hi_disp_buf 6 6 24 3 2,592 

Total 
     

73,729 

 

Table VI-5 lists the area of each module by the unit of gate count. In which, the half hardware 

cost is occupied by the window-based SSAD modules due to its parallel computation for matching 

costs. On the other hand, the horizontal cost diffusion has 17.1% hardware cost of whole core. That is 

because its convolution PE requires many parallel adders. 

Table VI-5 Area of the computational logic 

 
Module Gate Count Percentage 

Low-Resol. DE Stage 

Motion Detection 19,058  1.5% 

Window-based SSAD, DPotts 616,725  49.4% 

Temporal Cost, Vertical Diffusion(Center-View) 54,541  4.4% 

Temporal Cost, Vertical Diffusion(Side-View) 102,077  8.2% 

Horizontal Diffusion (Computation) 213,495  17.1% 

Horizontal Diffusion (Registers) 4,794  0.4% 

Occlusion Handling Stage 

Warp Filling 31,688  2.5% 

Good Disparity Detection 5,210  0.4% 

Border and Inside Filling 36,174  2.9% 

Occlusion Stage 

Joint Bilateral Upsampling 125,457  10.0% 

Window Vote 30,318  2.4% 

Still-Edge Preservation 8,887  0.7% 

Total 
 

1,248,422  100% 
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Finally, Table VI-6 compares the previous implementation of real-time disparity estimation. For 

the GPU implementation, the previous work [43], [33] could deliver accurate disparity maps by the 

BP-based algorithm, but their throughputs are far from the requirement of real-time high-definition 

process. For the hardware design, Diaz et al. [111] implemented a high-throughput disparity 

estimation engine on FPGA but its disparity quality is not good enough for 3DTV applications due to 

its local disparity estimation approach. On the other hand, the ASIC implementation [10] could 

achieve real-time frame rate and requires low memory cost. But it supported frame resolution is only 

CIF. The other AISC implementation [33] could reach high frame rate for the VGA resolution, but it 

suffers from extremely high memory cost because of the BP algorithm. Compared to the related 

implementation, our disparity estimation engine could have the highest throughput with less hardware 

cost than the implementation [33] to satisfy the requirement of high definition 3DTV applications. 

 

Table VI-6 Comparison of our design and previous implementation 

 Yang [43] Liang [33] Diaz [111] Chang [10] Liang [33]  Our Design 

No. Input View 2 2 2 2 2 3 

No. Output View 

(Disparity Map) 
1 1 1 1 1 3 

Algorithm 
Hierarchical 

BP 
Tile-based BP 

Phase 

Matching 

Mini-Census 

ADSW 
Tile-based BP 

Cost 

Diffusion 

JBU 

Frame Size 800×600 450×375 1280×960 352×288 640×480 1920×1080 

Frame Rate 

(Frame/s) 
0.67 1.68 52 42 58 95 

Disparity Range 

(Pixels) 
300 60 29 64 64 128 

Implementation 

Method 

GPU 

Nvidia 

Geforce 

8800GTX 

GPU 

Nvidia 

Geforce 

8800GTS 

FPGA 

Xilinx 

Vertex-II 

ASIC 

UMC 90nm 

ASIC 

UMC 90nm 

ASIC 

UMC 90nm 

Frequency (MHz) - - 65 95 185 200 

Logic Area 

(Gate-Count) 
- - - 562K 633K 1,645K 

Memory Usage 

(Gate-Count) 

- 

(9Mbtye) 

- - - 

(21.3Kbyte) 

1,871K 375K 

(59.4Kbyte) 

Total Area - - - - 2,505K 2,020K 

Throughput 

(Pixel-Disparity/s) 
96M 17M 1,885M 272M 1,146M 75,644M 
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6.5.2 Disparity Quality 

In this subsection, we demonstrate the disparity quality of disparity estimation engine using the 

same objective evaluation method in Chapter V. The first version of the algorithm for hardware design 

is called HW-DE algorithm, while the final version is called modified HW-DE algorithm. The only 

difference between the two algorithms is that the smoothness term in the cost diffusion process. 

Because the parameter τV could impact on the hardware cost, we change its value in the modified 

HW-DE algorithm to decrease hardware cost. In the following, we demonstrate the disparity quality 

change between the two algorithms. In addition, the evaluation results of DERS, HQ-DE, and HE-DE 

algorithms are also compared to the HW-DE algorithms. 

Table VI-7 and Table VI-8 list the Y-PSNR evaluation results, and its corresponding column 

diagram is shown in Figure VI-33. Compared to the HE-DE algorithm, the HW-DE algorithm has the 

slight quality drop especially for the sequence LoveBird1. The disparity quality of modified HW-DE 

algorithm is approximate to HW-DE in the spatial distortion. For the other spatial distortion evaluation 

SSIM as shown in Table VI-9, Table VI-10, and Figure VI-34, the HW-DE and modified HW-DE 

algorithms have similar quality to the HE-DE algorithm. Finally, Table VI-11 and Table VI-12 lists the 

temporal distortion evaluation T_PSPNR, and its corresponding column diagram is shown in Figure 

VI-35. The evaluation results show that the HW-DE and the modified HW-DE algorithms have the 

same quality change, compared to the HE-DE algorithm. They suffer from quality degradation for the 

sequences LoveBird1 and Newspaper. 
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Table VI-7 Evaluation results of Y-PSNR for View0 

 DERS HQ-DE HE-DE HW-DE Modified HW-DE 

 
PSNR PSNR PSNR PSNR ∆PSNR PSNR ∆PSNR PSNR ∆PSNR 

BookArrival 34.28 35.98 1.70 35.80 1.53 35.64  1.36  35.46  1.19  

LoveBird1 32.45 32.63 0.18 31.53 -0.92 31.32  -1.13  31.09  -1.36  

Newspaper 29.53 29.90 0.37 30.03 0.49 29.93  0.40  29.91  0.38  

Café N.A. 33.30 N.A. 33.22 N.A. 32.65  N.A. 32.52  N.A. 

Kendo N.A. 34.84 N.A. 34.88 N.A. 34.78  N.A. 34.76  N.A. 

Balloons N.A. 35.07 N.A. 34.91 N.A. 34.78  N.A. 34.83  N.A. 

Champagne 25.32 27.63 2.31 31.07 5.75 30.74  5.42  30.63  5.31  

Pantomime 36.46 35.94 -0.52 34.66 -1.80 36.54  0.08  36.64  0.18  

Average 31.61 33.16 0.81 33.26 1.01 33.30  1.23  33.23  1.14  

Unit: dB 

Table VI-8 Evaluation results of Y-PSNR for View8 

 DERS HQ-DE HE-DE HW-DE Modified HW-DE 

 
PSNR PSNR PSNR ∆PSNR PSNR PSNR PSNR ∆PSNR ∆PSNR 

BookArrival 35.87 35.68 -0.19 36.02 0.02 35.80  -0.07  35.62  -0.24  

LoveBird1 29.31 27.53 -1.78 27.98 -1.08 27.67  -1.64  27.68  -1.63  

Newspaper 31.86 31.29 -0.57 31.92 -0.10 31.75  -0.11  31.72  -0.14  

Café N.A. 32.87 - 33.04 - 32.70  N.A. 32.48  N.A. 

Kendo N.A. 35.75 - 36.36 - 36.15  N.A. 36.10  N.A. 

Balloons N.A. 35.24 - 35.58 - 35.35  N.A. 35.38  N.A. 

Champagne 24.20 28.72 4.52 29.73 3.91 29.78  5.58  29.51  5.31  

Pantomime 34.65 35.85 1.20 35.61 1.35 35.66  1.01  35.65  1.00  

Average 31.18 33.11 0.82 33.28 1.08 33.11  0.95  33.02  0.86  

Unit: dB 

 

 
(a) 

 
 (b)  

Figure VI-33 Evaluation results of Y-PNSR 
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Table VI-9 Evaluation results of SSIM for View0 

 DERS HQ-DE HE-DE HW-DE Modified HW-DE 

 
SSIM SSIM SSIM SSIM ∆SSIM SSIM ∆SSIM SSIM ∆SSIM 

BookArrival 0.98 0.95 -0.02 0.95 -0.02 0.95  -0.02  0.95  -0.02  

LoveBird1 0.95 0.95 0.00 0.95 0.00 0.95  0.00  0.95  -0.01  

Newspaper 0.99 0.99 0.00 0.99 0.00 0.99  0.00  0.99  0.00  

Café N.A. 0.99 - 0.99 - 0.99  N.A. 0.99  N.A. 

Kendo N.A. 0.98 - 0.98 - 0.98  N.A. 0.98  N.A. 

Balloons N.A. 0.97 - 0.97 - 0.97  N.A. 0.97  N.A. 

Champagne 0.97 0.97 0.00 0.97 -0.01 0.97  0.00  0.97  0.00  

Pantomime 0.98 0.98 0.00 0.97 0.00 0.98  0.00  0.98  0.00  

Average 0.97 0.97 -0.01 0.97 0.00 0.97  0.00  0.97  0.00  

 

Table VI-10 Evaluation results of SSIM for View8 

 DERS HQ-DE HE-DE HW-DE Modified HW-DE 

 
SSIM SSIM SSIM SSIM ∆SSIM SSIM ∆SSIM SSIM ∆SSIM 

BookArrival 0.97 0.95 -0.02 0.95 -0.02 0.95  -0.02  0.95  -0.02  

LoveBird1 0.93 0.92 -0.01 0.92 -0.01 0.92  -0.02  0.92  -0.02  

Newspaper 0.99 0.98 -0.01 0.99 0.00 0.99  0.00  0.99  0.00  

Café N.A. 0.99 - 0.99 - 0.99  N.A. 0.99  N.A. 

Kendo N.A. 0.98 - 0.99 - 0.99  N.A. 0.99  N.A. 

Balloons N.A. 0.98 - 0.98 - 0.98  N.A. 0.98  N.A. 

Champagne 0.97 0.97 0.00 0.97 0.00 0.97  0.00  0.97  0.00  

Pantomime 0.97 0.97 0.00 0.97 0.00 0.97  0.00  0.97  0.00  

Average 0.97 0.97 -0.01 0.97 -0.01 0.97  -0.01  0.97  -0.01  

 

 
(a) 

 
(b) 

Figure VI-34 Evaluation results of SSIM 
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Table VI-11 Evaluation results of T_PSPNR (dB) for View0 

 DERS HQ-DE HE-DE HW-DE Modified HW-DE 

 
T_PSPNR T_PSPNR T_PSPNR T_PSPNR ∆T_PSPNR T_PSPNR ∆T_PSPNR T_PSPNR ∆T_PSPNR 

BookArrival 52.96 53.60 0.64 52.94 0.64 52.93  -0.03  52.65  -0.31  

LoveBird1 45.30 46.57 1.26 45.70 1.26 45.65  0.35  45.37  0.07  

Newspaper 43.38 44.09 0.71 43.65 0.71 43.51  0.13  43.37  -0.01  

Café N.A. 46.59 - 47.83 - 46.38  N.A. 46.51  N.A. 

Kendo N.A. 48.08 - 48.15 - 48.12  N.A. 48.02  N.A. 

Balloons N.A. 49.99 - 49.93 - 49.87  N.A. 49.89  N.A. 

Champagne 34.62 41.28 6.66 44.56 6.66 45.00  10.38  44.87  10.25  

Pantomime 51.85 52.19 0.35 50.95 0.35 52.58  0.73  52.66  0.81  

Average 45.62 47.80 1.92 47.96 1.94 48.01  2.31  47.92  2.16  

Unit: dB 

Table VI-12 Evaluation results of T_PSPNR (dB) for View8 

 DERS HQ-DE HE-DE HW-DE Modified HW-DE 

 
T_PSPNR T_PSPNR T_PSPNR T_PSPNR ∆T_PSPNR T_PSPNR ∆T_PSPNR T_PSPNR ∆T_PSPNR 

BookArrival 51.82 53.52 1.70 54.62 1.70 53.70  1.88  53.87  2.05  

LoveBird1 43.33 44.70 1.37 43.84 1.37 43.27  -0.06  42.82  -0.50  

Newspaper 47.92 47.96 0.04 47.82 0.04 47.19  -0.73  47.01  -0.91  

Café N.A. 46.86 - 46.85 - 45.96  N.A. 45.84  N.A. 

Kendo N.A. 50.58 - 50.81 - 50.66  N.A. 50.50  N.A. 

Balloons N.A. 49.76 - 49.90 - 49.85  N.A. 49.84  N.A. 

Champagne 34.16 41.18 7.02 42.19 7.02 43.08  8.91  42.71  8.54  

Pantomime 48.45 50.12 1.67 50.06 1.67 50.03  1.58  50.06  1.61  

Average 45.14 48.09 2.36 48.26 2.57 47.97  2.32  47.83  2.16  

Unit: dB 
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6.6 Summary 

In this chapter, we simplify the HE-DE algorithm by removing the de-noising filters, and improve 

the motion detection by considering the hardware cost. According to the HW-DE algorithm, we 

propose a high throughput disparity estimation engine using the three-pipelining-stage architecture and 

well-defined external memory access schedule. The implementation result shows that the proposed 

disparity estimation engine could achieve 95 frames/s for three view HD1080p disparity maps. The 

final quality evaluation shows that the disparity estimation engine only has slight quality drop in 

average. 
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VII Conclusion 

7.1 Contribution 

For the high definition 3DTV applications, the disparity estimation is one of the most important 

processes to generate disparity maps for view synthesis. The state-of-the-art DERS algorithm could 

provide high quality disparity maps but incurs high computational complexity. Because of its irregular 

and non-parallel graph-cut algorithm, it could not be accelerated to meet the high throughput 

requirement by software programming and hardware design. 

To address the problem, this dissertation proposes the baseline disparity estimation algorithm that 

combines the belief propagation with the joint bilateral upsampling. The former has highly parallel 

computational characteristic, and the latter could reduce the computational resolution of disparity 

estimation. 

Based on the baseline algorithm, we further propose the high-quality disparity estimation 

(HQ-DE) algorithm that could deal with the temporal consistency and occlusion problems to deliver 

high quality disparity maps. To accelerate the HQ-DE algorithm, we propose two fast algorithms by 

different strategies for different implementation. The first spare-computation disparity estimation 

(SC-DE) algorithm is suitable to software programming. That could reduce the computation of dense 

belief propagation to 13.4%, and the overall execution to 62.9%. The other hardware-efficient 

disparity estimation (HE-DE) algorithm is suitable to VLSI design, and could reduce the memory cost 

of original belief propagation to 0.00029% and achieve the approximate reduction of execution time to 

SC-DE algorithm. The objective evaluation results show that the proposed HQ-DE algorithm could 

deliver better disparity maps than the DERS algorithm, and the two fast algorithms has slight quality 

drop compared to the HQ-DE algorithm. 

Following the HE-DE algorithm, we further simplify its computation to reduce the hardware cost 

in the algorithm level with slight quality drop, and deliver the hardware-based disparity estimation 
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(HW-DE) algorithm. By the architectural design techniques, we propose a disparity estimation engine 

that applies the three-stage pipelining architecture and parallel PEs to increase its throughput. The 

implementation result shows that our disparity estimation engine could achieve the throughput of 95 

frames/s for the three view HD1080p disparity maps. Such the high throughput disparity estimation 

engine could be applied to high definition 3DTV systems. 

7.2 Future Work 

In this dissertation, the occlusion handling method and the evaluation results could be improved 

in the future work. For the occlusion problems, this dissertation fills the occlusion regions by the 

reliable disparities from the spatial and the inter-view domains. However, the disoccluded regions, 

which are visible only at one viewpoint, could not be filled well by the disparities from the two 

domains. To address this special case, we could detect the reliable disparities from the temporal 

domain. In other words, the reliable disparities would be at previous or next frames. 

For the evaluation method, this dissertation adopts the common-used three objective evaluation 

methods which are compares the real captured videos with the synthesized videos using the proposed 

disparity maps. However, these evaluation methods are performed on 2-D videos, instead of 3-D 

videos. For the 3-D videos, the subjective evaluation method needs to be applied. Therefore, both the 

objective evaluation and the subjective evaluation methods should be used to assess the disparity 

quality. 

In addition, the disparity map for scene change should be considered, especially for the temporal 

consistency and the sparse regions in the SC-DE algorithm. To deal with it, we could detect the frame 

with scene change according the total difference of successive frames, and initialize the motion 

information in the temporal consistency methods and the propagated cost cubes in the SC-DE 

algorithm. 
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