
國 立 交 通 大 學

電子工程學系 電子研究所

博 士 論 文

適用於高畫質立體電視應用之視差估測設計研究

The Study of Disparity Estimation Design for High Definition 3DTV

Applications

研 究 生：曾宇晟

指導教授：張添烜 教授

中 華 民 國 一百 年 八 月

適用於高畫質立體電視應用之視差估測設計研究

The Study of Disparity Estimation Design for High Definition 3DTV

Applications

研 究 生：曾宇晟 Student：Yu-Cheng Tseng

指導教授：張添烜 Advisor：Tian-Sheuan Chang

國 立 交 通 大 學

電子工程學系 電子研究所

博 士 論 文

A Dissertation

Submitted to Department of Electronics Engineering and

Institute of Electronics

College of Electrical and Computer Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Electronics Engineering

August 2011

Hsinchu, Taiwan, Republic of China

中華民國一百年八月

i

適 用 於 高 畫 質 立 體 電 視 應 用 之 視 差 估 測 設 計 研 究

學生: 曾宇晟 指導教授: 張添烜

國立交通大學電子工程學系暨電子所博士班

摘要

隨著立體電視的問世，人們可以藉由立體視訊獲得新的視覺經驗。立體視訊可以立體攝影

機擷取，並經由影像處理技術運算後，可支援多視角與自由視點之立體電視應用。在立體視訊

的處理中，視差估測為最重要的技術之一。視差估測可產生拍攝場景之視差圖，可用於虛擬視

角視訊的合成。動態影像壓縮標準組織的立體視訊編碼團隊已提出目前最先進視差估測演算法。

其演算法可針對立體電視的應用產生高品質的視差圖，但因採用圖形切割演算法導致高運算複

雜度與低平行運算的問題。特別對於高畫質視訊，其問題更為嚴重。

為解決以上問題，本論文首先提出初階視差估測演算法，採用訊息傳遞演算法以提高視差

估測的運算平行度，並搭配聯合雙邊上取樣演算法以減少運算的畫面大小。其硬體設計面臨之

問題，可藉由所提出之硬體架構方法解決。以此初階演算法為基礎，我們進一步提出一高品質

視差估測演算法，可改善時間軸一致性與遮蔽之問題，並產生高品質的視差圖。針對高品質視

差演算法，我們提出適用於不同實作方法的二快速視差估測演算法。針對軟體程式設計，所提

出的稀疏運算之快速演算法可藉由時間軸與空間軸的分析選擇稀疏像素，僅針對稀疏像素更新

視差值，達到降低運算時間至 62.9%。另一方面，針對超大型積體電路設計，所提出的高硬體

效率之快速演算利用新的比對資訊擴散方法可降低運算時間至 57.2%，並大幅降低原演算的記

憶體成本至 0.00029%。客觀評比的結果顯示針對虛擬視角視訊合成之應用，我們所提出的演算

法可達到近於現今最先進演算法的高品質。

ii

最後，我們化簡高硬體效率之快速演算法，進而提出高輸出效能的架構設計。其硬體實作

結果顯示所提出的視差估測引擎可支援視差範圍 128，同時產生三視角 HD1080p 視差圖，並達

到每秒 95 畫面的輸出速度，也就是每秒 75.64G 像素視差。總言之，本論文所提出的視差估測

設計可滿足高畫質度立體電視應用的需求。

iii

The Study of Disparity Estimation Design for High Definition 3DTV

Applications

Student: Yu-Cheng Tseng Advisor: Dr. Tian-Sheuan Chang

Department of Electronics Engineering & Institute of Electronics

National Chiao Tung University

ABSTRACT

With emerging 3DTVs, human can have new visual experience from 3D videos that can be

captured by new stereo camera and further processed by image processing techniques for the 3DTV

applications of multi-view or free viewpoint. In the 3D video processing, one of the most important

techniques is the disparity estimation that could generate disparity maps for synthesizing virtual-view

videos. The state-of-the-art disparity estimation algorithm proposed by the MPEG 3D Video Coding

team could deliver high-quality disparity maps, but suffers from high computational complexity and

low parallelism due to its graph-cut algorithm, especially for high definition videos.

To address the problems, this dissertation first proposes the baseline disparity estimation

algorithm that adopts the belief propagation algorithm to increase the parallelism of disparity

estimation, and the joint bilateral upsampling algorithm to reduce the computational resolution. Their

design challenges could be solved by our proposed architectural design methods. Based on the

baseline algorithm, we further propose the high-quality algorithm that could well improve the

temporal consistency and occlusion problems, and deliver high performance disparity maps. To

accelerate the high-quality algorithm, we propose the two fast algorithms for different implementation

method. The sparse-computation fast algorithm could decrease the processed pixels in the spatial and

temporal domains to reduce the execution time to 62.9% for the software implementation. On the

iv

other hand, for the hardware implementation, we propose the hardware-efficient fast algorithm that

could reduce the execution time of high-quality algorithm to 57.2%, and decrease the memory cost of

belief propagation to 0.00029% by the proposed cost diffusion method. The objective evaluation

results show that our disparity quality is similar to the quality of state-of-the-art algorithm for view

synthesis applications.

Moreover, we further simplify the hardware-efficient algorithm and propose a high-throughput

architectural design. The implementation results shows that the proposed disparity estimation engine

could achieve the throughput of 95 frames/s for three view HD1080p disparity maps with 128

disparity levels (i.e. 75.64G pixel-disparities/s). It could satisfy the requirement of high definition

3DTV applications.

v

謝誌

從大學四年到研究所五年，交大給予我許多成長與回憶。在此，藉由博士論文的完成以感

謝所有的人。首要感謝的是指導老師張添烜教授，自大三的專題研究至博士班研讀，不論在研

究方法、論文撰寫與投稿皆給予我耐心的指導與建議。接著要感謝王聖智教授，在我大學四年

級時指導我和嘉賓進行色盲專題研究，更推薦我得以逕讀博士班，並擔任我的博士學位口試委

員。另外也感謝其他口試委員，包含楊家輝教授、李鎮宜教授、杭學鳴教授、蔣迪豪教授、蔡

宗漢教授及林嘉文教授，願意撥空給予指導。

工程四館 427 實驗室是我博士班在交大停留最久的地方，首要感謝的是張彥中學長，教導

我良好的研究方法與態度，並引領我進入博士論文的研究題目。也感謝作最久實驗室同學的國

龍，在實驗室的五年裡與我分享研究及生活，並一同朝著取得博士學位努力。接著要感謝實驗

室的學長們:佑昆、朝鐘、君偉、裕仁、錦木、國亘、旻奇、子筠、嘉俊、英澤、得瑋、秈璟，

傳授我硬體設計基本觀念，並營造實驗室和樂的氣氛。當然也感謝實驗室的同學:宗憲、景竹、

瑋呈、瑋城，因為有你們實驗室總是歡笑不斷。另外，感謝和我一起合作的實驗室學弟妹們:

之悠、博淵、政君、孟維、筱珊、博雄、奕君、瑩蓉、宥辰、元歆、英佑、克嘉、亮齊、孟勳。

最後要感謝我的家人和女友，從攻讀博士班的決定，資格考的準備，期刊論文審稿的等待，

到博士論文的撰寫與口試，一路上有你們的支持與陪伴使我能夠取得此學位。

此博士論文獻給以上所有感謝的人。

ii

Table of Contents

摘要 .. i

ABSTRACT .. iii

謝誌 ... v

List of Symbols .. xi

I Introduction ... 1

1.1 Background .. 1

1.2 Motivation ... 1

1.3 Contribution ... 2

1.4 Dissertation Organization .. 3

II Background .. 5

2.1 Disparity Estimation .. 5

2.1.1 Epipolar Geometry .. 5

2.1.2 General Algorithm Flow ... 7

2.2 View Synthesis .. 19

2.2.1 Warping ... 20

2.2.2 Blending .. 20

2.2.3 Hole Filling ... 21

2.3 Review of DERS Algorithm from 3DVC .. 22

2.3.1 Input and Output View Configuration .. 22

2.3.2 DERS Algorithm ... 23

2.3.3 Reference Software for 3-View Configuration ... 26

2.3.4 Evaluation Method for Disparity Quality ... 27

2.3.5 Design Challenges .. 31

2.4 Summary .. 33

III Baseline Disparity Estimation with Belief Propagation and Joint Bilateral Filter for High

Definition 3DTV Applications .. 34

3.1 Introduction ... 34

3.1.1 Baseline Belief Propagation ... 34

3.1.2 Joint Bilateral Upsampling ... 36

3.2 Analysis and Design of Baseline Belief Propagation .. 38

3.2.1 Analysis of Belief Propagation ... 38

3.2.2 Proposed Low Memory Cost Access Approach ... 41

3.2.3 Proposed Efficient PE ... 50

iii

3.2.4 Implementation Result ... 54

3.3 Analysis and Design of Joint Bilateral Filtering ... 58

3.3.1 Related Acceleration Approaches ... 58

3.3.2 Analysis of Integral Histogram Approach .. 62

3.3.3 Proposed Memory Reduction Methods .. 66

3.3.4 Proposed Architecture .. 69

3.3.5 Implementation Result ... 75

3.4 Baseline Disparity Estimation Algorithm .. 77

3.4.1 Baseline Algorithm ... 77

3.4.2 Comparison .. 79

3.5 Summary ... 84

IV Advanced Disparity Estimation Algorithms for High Definition 3DTV Applications 86

4.1 High-Quality Disparity Estimation Algorithm .. 86

4.1.1 Related Work .. 86

4.1.2 Observation in DERS and Baseline Algorithms ... 89

4.1.3 Proposed Algorithm Flow... 91

4.1.4 Downsampled Disparity Estimation for Full Range Disparity 93

4.1.5 Joint Bilateral Upsampling ... 98

4.1.6 Occlusion Handling .. 99

4.1.7 Temporal Consistency Enhancement.. 102

4.2 Sparse-Computation Disparity Estimation Algorithm .. 106

4.2.1 Related Work .. 107

4.2.2 Proposed Algorithm Flow... 107

4.2.3 Sparse Pixel Selection ... 111

4.2.4 Sparse-Computation Steps... 115

4.2.5 Computational Reduction .. 116

4.3 Hardware-Efficient Disparity Estimation Algorithm ... 117

4.3.1 Design Challenges in High-Quality Algorithm ... 118

4.3.2 Proposed Algorithm Flow... 121

4.3.3 Cost Diffusion Algorithm ... 122

4.3.4 Image Buffer Reduction Methods .. 126

4.3.5 Small Filter Window Size ... 127

4.3.6 Regular Occlusion Handling .. 128

4.3.7 Simple Region Detection .. 129

4.4 Summary ... 131

V Experimental Results .. 132

5.1 Experiment Setting .. 132

5.1.1 Test Sequences.. 132

iv

5.1.2 Input and Output Configuration .. 134

5.2 Comparison .. 136

5.2.1 Execution Time ... 136

5.2.2 Objective Quality Evaluation ... 138

5.3 Summary .. 159

VI Design of Disparity Estimation Engine for High Definition 3DTV Applications 161

6.1 Architectural Analysis ... 161

6.1.1 Analysis of Hardware-Efficient Disparity Estimation Algorithm..................... 161

6.1.2 Proposed Hardware-Based Algorithm .. 164

6.2 Overview of Disparity Estimation Engine ... 168

6.2.1 Proposed Three-Stage Pipelining Architecture ... 168

6.2.2 Schedule of Main Core ... 169

6.3 Detailed Architectural Design ... 170

6.3.1 Low-Resolution Disparity Estimation Stage .. 171

6.3.2 Occlusion Handling Stage .. 179

6.3.3 High-Resolution Disparity Estimation Stage .. 184

6.4 External Memory Access ... 189

6.4.1 Bandwidth Requirement ... 189

6.4.2 External Memory Architecture ... 191

6.4.3 Data Configuration in External Memory .. 192

6.4.4 External Memory Access Schedule .. 194

6.5 Implementation Result ... 195

6.5.1 Hardware Cost .. 195

6.5.2 Disparity Quality .. 199

6.6 Summary .. 203

VII Conclusion .. 204

7.1 Contribution ... 204

7.2 Future Work ... 205

Bibliography ... 206

作者簡歷 ... 215

v

List of Tables
Table II-1 Various match metrics for computing C0(x, y, d) .. 10

Table III-1 Comparison of memory cost in memory access approaches for the iteration count of 30 .. 55

Table III-2 Logic cost comparison of PE architectures ... 57

Table III-3 Implementation results of various BP-based algorithms ... 58

Table III-4 Comparison of BF acceleration approach in computational complexity and memory cost 59

Table III-5 Computational flow and analysis for a pixel in the integral histogram approach 63

Table III-6 Modified computational flow and analysis for a pixel in the integral histogram approach 70

Table III-7 Example implementation result of the proposed architecture ... 76

Table III-8 Comparison of hardware cost per frame ... 76

Table III-9 Previous VLSI implementations of bilateral filtering ... 77

Table III-10 Comparison of different implementations ... 77

Table IV-1 Simulation results with different sampling factors in Y-PSNR (dB) 94

Table IV-2 Comparison of execution time of HQ-DE and SC-DE algorithms 117

Table IV-3 Window sizes of filter-based processes in HQ-DE algorithm ... 120

Table IV-4 Comparison of memory requirement between BP-M and cost diffusion methods 124

Table IV-5 Window sizes of filter-based processes in HE-DE algorithm ... 128

Table V-1 Test sequences .. 134

Table V-2 Input and output views for 2-view configuration [71] .. 135

Table V-3 Input and out views for 3-view configuration [71] ... 135

Table V-4 Experiment setting in our evaluation .. 136

Table V-5 Average execution time of proposed algorithms on PC for one frame 137

Table V-6 Average execution time scaled to HD1080p resolution and disparity range of 128 137

Table V-7 Evaluation results of Y-PSNR for View0 .. 139

Table V-8 Evaluation results of Y-PSNR for View8 .. 139

Table V-9 Evaluation results of SSIM for View0 .. 140

Table V-10 Evaluation results of SSIM for View8 .. 141

Table V-11 Evaluation results of T_PSPNR (dB) for View0... 142

Table V-12 Evaluation results of T_PSPNR for View8 ... 142

Table VI-1 Estimated average external bandwidth for computing four disparity rows. 191

Table VI-2 Performance of the proposed disparity estimation engine .. 196

Table VI-3 Internal SRAM usage in the proposed disparity estimation engine 196

Table VI-4 Internal registers in the proposed disparity estimation engine .. 197

Table VI-5 Area of the computational logic .. 197

Table VI-6 Comparison of our design and previous implementation ... 198

Table VI-7 Evaluation results of Y-PSNR for View0 .. 200

Table VI-8 Evaluation results of Y-PSNR for View8 .. 200

Table VI-9 Evaluation results of SSIM for View0 .. 201

vi

Table VI-10 Evaluation results of SSIM for View8... 201

Table VI-11 Evaluation results of T_PSPNR (dB) for View0 ... 202

Table VI-12 Evaluation results of T_PSPNR (dB) for View8 ... 202

vii

List of Figures
Figure II-1 Epipolar geometry... 6

Figure II-2 Image planes with rectification ... 6

Figure II-3 Relation between disparity and depth for a pair of correspondences 7

Figure II-4 A general framework for disparity estimation algorithms .. 8

Figure II-5 Matching costs of a target pixel and its correspondence candidates 9

Figure II-6 Illustration of a cost cube .. 9

Figure II-7 Block-based matching cost with the block radius r .. 10

Figure II-8 Various cost aggregation approaches .. 12

Figure II-9 Concept of dynamic programming approach .. 14

Figure II-10 Graph model of graph-cut algorithm .. 15

Figure II-11 Graph model of belief propagation approach.. 16

Figure II-12 General flow of view synthesis ... 19

Figure II-13 Warping methods in view synthesis .. 20

Figure II-14 Blending step in view synthesis .. 21

Figure II-15 Input and output view configuration defined by the 3DVC .. 23

Figure II-16 Flow of the DERS algorithm .. 24

Figure II-17 Data flow for 3-view configuration .. 27

Figure II-18 Example of temporal noise changing successive frames [76] .. 30

Figure II-19 Example of block matching in the DERS algorithm... 32

Figure III-1 Illustrations of BP .. 35

Figure III-2 Configuration of the message passing PEs .. 40

Figure III-3 Traditional fixed memory access approach in a 1-D node line for node n3 computation . 43

Figure III-4 Proposed spinning-message approach ... 44

Figure III-5 Proposed spinning-message approach in a 2-D node plane for node n3 computation 45

Figure III-6 Comparison of memory access approaches in different node planes 45

Figure III-7 Sliding node plane in different directions .. 46

Figure III-8 Sliding node plane with the spinning-message approach .. 47

Figure III-9 Bipartite node plane with the spinning-message approach .. 48

Figure III-10 Proposed sliding-bipartite node plane ... 49

Figure III-11 Pseudo code of the message passing for calculating a new message 51

Figure III-12 Architecture of Park’s PE .. 51

Figure III-13 Proposed architecture .. 53

Figure III-14 Ratio of memory cost in different node planes with spinning-message approach 56

Figure III-15 Classification of BF acceleration approaches .. 59

Figure III-16 Concept of histogram-based approaches ... 61

Figure III-17 Concept of integral histogram approach .. 64

Figure III-18 Runtime updating method (RUM) ... 67

viii

Figure III-19 Stripe-based method (SBM) .. 68

Figure III-20 Sliding origin method (SOM) .. 69

Figure III-21 Proposed architecture of JBF. .. 71

Figure III-22 Schedule of the proposed architecture ... 72

Figure III-23 Selected-bin adder in the histogram calculation engines ... 73

Figure III-24 Proposed architectures of histogram calculation engines hic and hcc 73

Figure III-25 Proposed architecture of (a) convolution engine and (b) its table selection modules 75

Figure III-26 Flow of the proposed baseline disparity estimation algorithm .. 78

Figure III-27 Experimental results of the baseline algorithm and the DERS algorithm 80

Figure III-28 Center disparity maps and synthesized View8 of baseline algorithm at the 100th frame 82

Figure III-29 Center disparity maps and synthesized View8 of DERS algorithm at the 100th frame ... 84

Figure IV-1 Flow of the adaptive-BP algorithm [39] .. 87

Figure IV-2 Flow of the double-BP algorithm [40] ... 88

Figure IV-3 An example of flicker artifact of the baseline algorithm in BookArrival 90

Figure IV-4 An example of foreground copy artifact of the DERS algorithm in BookArrival 90

Figure IV-5 An example of occlusion problem at the 44th frame of BookArrival 91

Figure IV-6 Flow of the HQ-DE algorithm for a center-view disparity map .. 92

Figure IV-7 Flow of the HQ-DE algorithm for a side view disparity map .. 93

Figure IV-8 Comparison of different sampling factors in the average Y-PSNR of two frames 94

Figure IV-9 Simulation results using the sampling factors of 1/2×1/4 and 1/4×1/4 95

Figure IV-10 Illustration of downsampled disparity estimation for full disparity range 96

Figure IV-11 Comparison between the original regional vote [6] and the proposed window vote 99

Figure IV-12 Illustration of the proposed occlusion detection method ... 100

Figure IV-13 Results with and without the proposed occlusion handling method in BookArrival 102

Figure IV-14 Results of the HQ-DE algorithm in BookArrival compared to Figure IV-5 102

Figure IV-15 Concept of the proposed no-motion registration (NMR) method 104

Figure IV-16 Results of the proposed NMR method in BookArrival .. 105

Figure IV-17 Results of the proposed NMR method in the 32th, 34th, 36th, 38th frames 105

Figure IV-18 Results of the proposed SEP method in BookArrival .. 106

Figure IV-19 Profiling of the HQ-DE algorithm on PC .. 108

Figure IV-20 Flow of the SC-DE algorithm for center-view disparity map .. 109

Figure IV-21 Flow of the SC-DE algorithm for side-view disparity maps .. 111

Figure IV-22 Flow of region detection for sparse pixel selection ... 112

Figure IV-23 Example of edge maps in BookArrival .. 113

Figure IV-24 Example of occlusion maps in BookArrival .. 113

Figure IV-25 Example of motion maps in BookArrival .. 115

Figure IV-26 Concept of sparse SSAD and sparse ADSW methods ... 115

Figure IV-27 Concept of sparse BP-M method ... 116

Figure IV-28 Profiling of the SC-DE algorithm on PC ... 117

ix

Figure IV-29 Image buffer required by the SSAD and ADSW steps ... 119

Figure IV-30 Flow of the HE-DE algorithm for center view .. 122

Figure IV-31 Concept of BP-M computation .. 123

Figure IV-32 Concept of the proposed window-based SSAD method .. 127

Figure IV-33 Flow of proposed occlusion handling method in HE-DE algorithm 128

Figure IV-34 Flow of edge detection and motion detection in HE-DE algorithm 130

Figure V-1 Clips of test sequences in center view... 133

Figure V-2 Evaluation results of Y-PNSR ... 140

Figure V-3 Evaluation results of SSIM ... 141

Figure V-4 Evaluation results of T_PSPNR .. 143

Figure V-5 Disparity maps and view synthesized images in the 50
th
 frame of BookArrival 145

Figure V-6 Disparity maps and view synthesized images in the 50
th
 frame of LoveBird1 147

Figure V-7 Disparity maps and view synthesized images in the 100
th
 frame of Newspaper............... 149

Figure V-8 Disparity maps and view synthesized images in the 50
th
 frame of Café 149

Figure V-9 Disparity maps and view synthesized images in the 50
th
 frame of Kendo 150

Figure V-10 Disparity maps and view synthesized images in the 100
th
 frame of Balloons 151

Figure V-11 Disparity maps and view synthesized images in the 50
th
 frame of Champagne.............. 153

Figure V-12 Disparity maps and view synthesized images in the 50
th
 frame of Pantomime 155

Figure V-13 Disparity maps and view synthesized images in the 50
th
 frame of Hall1 156

Figure V-14 Disparity maps and view synthesized images in the 50
th
 frame of Hall2 157

Figure V-15 Disparity maps and view synthesized images in the 167
th
 frame of CarPark 158

Figure V-16 Disparity maps and view synthesized images in the 50
th
 frame of CarPark 159

Figure VI-1 Data dependency of the HE-DE algorithm .. 162

Figure VI-2 Required row buffers in filter-based processes for pipelining architecture 163

Figure VI-3 Memory buffers in the motion detection ... 164

Figure VI-4 Flow of the proposed HW-DE algorithm .. 165

Figure VI-5 Proposed motion detection in the HW-DE algorithm .. 167

Figure VI-6 Overview architecture of the proposed disparity estimation engine 169

Figure VI-7 Proposed computational schedule for main core ... 170

Figure VI-8 Architecture of the low-resolution disparity estimation stage ... 172

Figure VI-9 Data access of the motion detection module in the frame coordinate system 173

Figure VI-10 Architecture of the motion detection module .. 173

Figure VI-11 Input and required data in matching cost calculation for three target views 174

Figure VI-12 Architecture of the window-based SSAD and DPotts modules 175

Figure VI-13 Architecture of the temporal cost calculation module ... 176

Figure VI-14 Architecture of vertical cost diffusion module .. 177

Figure VI-15 Fully parallel architecture of the horizontal cost diffusion module 178

Figure VI-16 Architecture of the horizontal cost diffusion module .. 179

Figure VI-17 Architecture of the occlusion handling stage ... 180

x

Figure VI-18 Architecture of the disparity cross warping module .. 181

Figure VI-19 Architecture of the occlusion detection PE and the warp filling PE 182

Figure VI-20 Architecture of the good disparity detection module ... 183

Figure VI-21 Architecture of border filling and inside filling modules .. 184

Figure VI-22 Architecture of the high-resolution disparity estimation stage 185

Figure VI-23 Memory configuration in the high-resolution disparity estimation stage 186

Figure VI-24 Architecture of the joint bilateral upsampling module .. 187

Figure VI-25 Architecture of the window vote module ... 188

Figure VI-26 Architecture of the mask and vote PEs for the window vote module 188

Figure VI-27 Architecture of the still-edge preservation module .. 189

Figure VI-28 Rough schedule for external memory access ... 190

Figure VI-29 Architecture of external memory in our design ... 191

Figure VI-30 Read and write latency in the SDRAM model [110] ... 192

Figure VI-31 Data configuration in external memory ... 194

Figure VI-32 Schedule of external memory access for one HD1080p frame at 800MHz................... 195

Figure VI-33 Evaluation results of Y-PNSR .. 200

Figure VI-34 Evaluation results of SSIM .. 201

Figure VI-35 Evaluation results of T_PSPNR ... 202

xi

List of Symbols
Symbols Descriptions

H, W Frame height, frame width

DR Disparity range

IS0,S1
S2

 Image frame where

S0 could be H for high resolution, and L for low resolution,

S1 could be L for left view, C for center view, and R for right view, and

S2 could be t for current frame, and t-1 for previous frame

DS0,S1
S2

 Disparity map where

S0 could be H for high resolution, and L for low resolution,

S1 could be L for left view, C for center view, and R for right view, and

S2 could be t for current frame, and t-1 for previous frame

C0 Initial cost cube computed by the matching cost calculation step

Caggr Cost cube computed by the cost aggregation step

Cview Cost for inter-view consistency constraint

Ctemp Cost for temporal consistency enhancement

Cvert Cost for vertical diffusion method

Ctotal Final Cost for disparity optimization

T Iteration count in belief propagation

D(d) Data term in disparity optimization process

V(di,dj) Smoothness term in disparity optimization process

1

I Introduction

1.1 Background

With the prompt development of 3-D display techniques, people could obtain the new visual

experience from 3-D videos, which have multi-view videos for left and right eyes. Compared to

traditional 2-D videos, 3-D videos could make human have the distance feeling of scene with the

additional video processes: calibration and rectification, multi-view video coding, disparity estimation,

and virtual view synthesis. For these 3-D video processes, the Moving Picture Experts Group (MPEG)

3-D Video Coding (3DVC) has delivered a basic 3DTV framework that consists of the depth

estimation reference software (DERS) [63], view synthesis reference software (VSRS) [64], and

Multi-view Video Coding (MVC) standard [107]. They also provide the multi-view video sequences

[71] for the performance evaluation. The basic 3DTV framework can be extended to various systems

such as the stereoscopic TV for multiple viewers and the free-viewpoint TV for a larger viewing zone

[100], [101].

For the basic 3DTV framework, the previous VLSI implementation of VSRS and MVC decoder

[61], [62] can reach the real-time performance for high definition videos. On the other hand, the DERS

could deliver high quality disparity maps but suffers from high computational complexity due to its

graph-cut optimization, especially for high definition videos. Therefore, it is necessary to develop a

disparity estimation engine that could deliver high quality disparity maps and achieve the real-time

performance for high definition videos.

1.2 Motivation

Many disparity estimation algorithms have been developed in computer vision for different

applications, such as medical image analysis, augmenting reality, robot, 3DTV, and etc. The disparity

2

accuracy evaluation [72] shows that the graph-cut and the belief propagation approaches could

perform better than other kinds of approaches. Based on the graph-cut approach, the state-of-the-art

DERS algorithm delivered by MPEG 3DVC could generate high quality disparity maps for 3DTV

applications, but it still encounters the following problems. First, the temporal consistency problem is

not addressed well due to the foreground copy artifact. Second, its execution time will be dramatically

increased with the increasing video resolution and disparity range. For one HD1080p frame, it takes

more than 20 minutes in average on a personal computer. Third, the computation of graph-cut is

irregular and iterative, so that it is not suitable to be accelerated by the parallel computing PEs of VLSI

design or multi-core platform.

Motivated by the problems in the state-of-the-art disparity estimation algorithm, the goal of this

dissertation is to develop a new disparity estimation engine that could not only generate high quality

disparity maps, but also achieve the throughput of 60 frames/s for the HD1080p resolution to satisfy

the requirement of high definition 3DTV applications.

1.3 Contribution

To achieve the above goal, this dissertation develops a disparity estimation engine from algorithm

level to architectural design level. The main achievement of this dissertation includes a baseline and an

advanced disparity estimation algorithms, and two fast algorithms for the advanced one, and a high

throughput disparity estimation design.

The contributions in each achievement are as follows. First, the baseline disparity estimation

algorithm combines the belief propagation approach to increase the computational parallelism of

disparity estimation, and the joint bilateral upsampling approach to decrease the computational space.

In addition, we also solve their memory cost problems by architectural design techniques. Second,

based on the baseline algorithm, we propose the advanced disparity estimation algorithm that could

solve the temporal consistency and occlusion problems, and deliver better disparity maps than the

3

DERS algorithm. Third, we also propose two fast disparity estimation algorithms to accelerate the

high-quality algorithm by different strategies for different implementation methods. For the

processor-based platform, the sparse-computation algorithm could reduce the original execution time

to 62.9% by reducing the processed pixels from dense to sparse space. On the other hand, for the

hardware design, the hardware-efficient algorithm could reduce the original memory cost to 0.00029%

by replacing the belief propagation with the proposed cost diffusion method. Finally, we propose a

high throughput disparity estimation engine for the hardware-efficient algorithm with three-stage

row-based pipelining architecture. The dedicated design could achieve the throughput of 95 frames/s

for three HD1080p view disparity maps, using 1,645K gate counts and 59.4-Kbyte memory.

In the objective quality evaluation, the experimental results show that our proposed advanced

disparity estimation algorithm could perform better than the DERS algorithm, especially for the

temporal consistency. In addition, the proposed fast algorithms have similar performance to the

advanced algorithm, and the final hardware design has slight quality degradation because of its

simplification.

To sum up, the proposed disparity estimation design could deliver the disparity maps with the

high throughput and high quality to satisfy the requirement of high definition 3DTV applications.

1.4 Dissertation Organization

This dissertation is organized as follows. Chapter II introduces the general framework of a

disparity estimation algorithm, and the existing approaches of each step in the framework. Chapter III

analyzes the algorithm and architecture of the belief propagation and the joint bilateral upsampling,

and presents the baseline disparity estimation algorithm. To improve the quality and speed of baseline

algorithm, Chapter IV proposes the high-quality disparity estimation algorithm and its two fast

algorithms: sparse-computation and hardware-efficient. Then, Chapter V compares the disparity

results of our proposed algorithms with the 3DVC’s DERS algorithm by the objective evaluation

4

methods. With the hardware-efficient algorithm, Chapter VI proposes the architecture of disparity

estimation engine, and demonstrates our implementation results. Finally, Chapter VII concludes this

dissertation and future work.

5

II Background

In this chapter, the background of disparity estimation and its application to view synthesis are

introduced. This chapter is organized as follows. First, we present the concept of disparity estimation,

and review the existing disparity estimation algorithms. Then, we illustrate the view synthesis

technique, depth-image-based rendering (DIBR), which is our target application of disparity

estimation. Finally, we introduce the state-of-the-art disparity estimation algorithm [63] developed by

MPEG 3-D Video Coding (3DVC), and point out its quality and design problems.

2.1 Disparity Estimation

In 3DTV applications, the disparity estimation is to extract the disparity information from source

videos and generate a disparity map for each frame. The disparity map can describe the relative

distance of objects in scene, and be further used to generate virtual-view videos. For different number

of input video view, the disparity estimation has different approach. The 2-D to 3-D conversion

approach is for traditional single-view videos, while the stereo correspondence approach is for

two-view and multiple-view videos. The former one recognizes the disparity map from various

disparity cues, such as texture, defocus, vanish point, and etc. [102], [103], [104]. On the other hand,

the latter one finds the pairs of correspondences to compute disparity maps. The dissertation focuses

on the stereo correspondence approach.

2.1.1 Epipolar Geometry

The disparity estimation for multi-view videos could be constrained by the epipolar geometry to

reduce the correspondence search range from 2-D space to 1-D space. Figure II-1 shows the concept

of epipolar geometry with two-view configuration. In which, the object Pb is watched by the target

viewpoint C and projected into the 2-D image plane at the pixel p. For the reference viewpoint C’, the

6

correspondence candidates with p would be located on the ray from C to Pb, whose projected line in

the reference image plane is called epipolar line. In other words, the correspondence with p could be

searched on the epipolar line, and the search range is restricted in 1-D space.

Furthermore, the image planes could be rectified and translated into the new positions with

parallel epipolar lines as shown in Figure II-2. In which, the correspondence search range is on a

horizontal line, instead of an oblique line in the original image plane. In other words, the pair of

correspondences is at the identical y-coordinate in two views. Thus, the computation of disparity

estimation can be regular in the raster-scan order.

Figure II-1 Epipolar geometry

Figure II-2 Image planes with rectification

With the rectified image planes, Figure II-3 shows the relation between depth and disparity for a

pair of correspondences. In which, the two cameras at the viewpoints C and C’ capture the object point

Pb and project it to the pair of correspondences on the epipolar line. The correspondences are located

Pb

Pf

C

C’
p

e’
pf’

pb’

Target view
Reference view

Epipolar

line

Pb

C

C’
p

e
e’

pb’

Target view
Reference view

7

at the coordinates of X and -X’ based on their camera centers. Given the focal length f and the baseline

B of the cameras, if we could estimate the disparity X-X’, the object depth Z can be acquired by

 Z =
𝑓 × 𝐵

𝑋 − 𝑋′
 . (II-1)

Therefore, the disparity estimation is to find the pair of correspondences, and use their x-coordinates to

compute disparity value of depth value for each pixel.

Figure II-3 Relation between disparity and depth for a pair of correspondences

2.1.2 General Algorithm Flow

For disparity estimation algorithms, a general framework is proposed by Scharstien and Szeliski

[105] as shown in Figure II-4. In this framework, two images are captured and rectified as inputs, and

a disparity map is the target result. By this framework, disparity estimation algorithms can be

classified into the two categories: local approach and global approach [105], [106]. The local approach

only consists of the matching cost calculation and the cost aggregation, and the global approach

additionally performs the optimization process. The last disparity refinement step is an optional

process for computing fractional disparity and other post-processing. The existing approaches for each

step are reviewed as follows.

Z

X -X’

C C’

Pb

ff

B

Epipolar

Line

Object

Target View Reference View

8

Figure II-4 A general framework for disparity estimation algorithms

1. Matching Cost Calculation

Matching cost is a quantitative dissimilarity measure to find the best pair of correspondences.

Figure II-5 shows the concept of the matching cost calculation. In which, a target pixel has multiple

reference pixels as correspondence candidates, and each correspondence candidate has a matching cost.

The number of correspondence candidates is equal to the disparity range DR, which is related to the

nearest and farthest objects in scene. Hence, each target pixel has DR matching costs. To determine a

whole disparity map, the matching costs of all target pixels are calculated and form a disparity image

space (DSI), which is called cost cube in this dissertation. As shown In Figure II-6, a cost cube

contains the spatial dimensions X, Y and the disparity dimension d. The size of this cube for whole

frame is H×W×DR where H and W are the frame height and width. The initial values of the cost cube

are computed by the matching cost calculation.

Matching Cost Calculation

Cost Aggregation

Disparity Selection/Optimization

Disparity Refinement

Target View Reference View

Target-View

Disparity Map

9

Figure II-5 Matching costs of a target pixel and its correspondence candidates

Figure II-6 Illustration of a cost cube

To compute the initial cost cube C0, one of the various match metrics [105]-[3] could be adopted.

Table II-1 lists the commonly used match metrics, which can be classified into pixel base and block

base. For the pixel-based match metric, the absolute difference (AD) and the square difference (SD)

are computed using a target pixel and a reference pixel. The pixel dissimilarity measure (PDM)

additionally considers the half pixels to lessen the sampling sensitivity [1].

On the other hand, the block-based match metric is computed using a target block and a reference

block with support pixels as illustrated in Figure II-7. In Table II-1, the normalized cross correlation

(NCC) is a statistical method that uses the block mean and variance to reduce the sensitivity to

radiometric gain and bias. The Rank transforms the pixel color into the rank value, which is the

relative order of center pixel in the block, and computes the matching cost by the rank difference. On

the other hand, the Census transforms the pixel intensity into census bit stream, which consists of the

Target Pixel Reference Pixels

DR
 (x, y)(x, y)

……
Matching Costs

Target-view Frame Reference-view Frame

A Pair of Correspondences

d

x

y

d = DR-1

d = 0
d = 1
d = 2

W

H

DR

10

intensity comparison results between the center pixel and the support pixels. The matching cost of two

census bit streams is computed by the Hamming distance. Because the Rank and Census transform

original pixel from color to different domains, they could better resist the radiometric distortion

between views.

To sum up, the initial cost cube C0 is computed in this matching cost calculation step, and the

computational complexity of this step is O(H×W×DR).

Figure II-7 Block-based matching cost with the block radius r

Table II-1 Various match metrics for computing C0(x, y, d)

Pixel-based metric

Absolute Difference (AD) |𝐼𝑡𝑎𝑟(𝑥, 𝑦) − 𝐼𝑟𝑒𝑓(𝑥 − 𝑑, 𝑦)|

Square Difference (SD) [𝐼𝑡𝑎𝑟(𝑥, 𝑦) − 𝐼𝑟𝑒𝑓(𝑥 − 𝑑, 𝑦)]
2

Pixel Dissimilarity Measure (PDM) 𝑚𝑖𝑛{|𝐼𝑡𝑎𝑟(𝑥, 𝑦) − 𝐼𝑟𝑒𝑓(𝑥 − 𝑑, 𝑦)|, |𝐼𝑡𝑎𝑟(𝑥, 𝑦) − 𝐼𝑟𝑒𝑓
+ |, |𝐼𝑡𝑎𝑟(𝑥, 𝑦) − 𝐼𝑟𝑒𝑓

− |}

where 𝐼𝑟𝑒𝑓
+ and 𝐼𝑟𝑒𝑓

− are the neighboring half pixel of 𝐼𝑟𝑒𝑓(𝑥 − 𝑑, 𝑦)

Block-based metric

Normalized Cross Correlation

(NCC)
∑ ,𝐼𝑡𝑎𝑟(𝑢, 𝑣) − 𝐼�̅�𝑎𝑟-[𝐼𝑟𝑒𝑓(𝑢 − 𝑑, 𝑣) − 𝐼�̅�𝑟𝑒𝑓]|𝑥−𝑢|≤𝑟
|𝑦−𝑣|≤𝑟

√∑ ,𝐼𝑡𝑎𝑟(𝑢, 𝑣) − 𝐼�̅�𝑎𝑟-
2[𝐼𝑟𝑒𝑓(𝑢 − 𝑑, 𝑣) − 𝐼�̅�𝑟𝑒𝑓]

2
|𝑥−𝑢|≤𝑟
|𝑦−𝑣|≤𝑟

Rank |𝐼′𝑡𝑎𝑟(𝑥, 𝑦) − 𝐼′𝑟𝑒𝑓(𝑥 − 𝑑, 𝑦)|,

where 𝐼′(𝑚, 𝑛) = ∑ 𝐼(𝑚, 𝑛) > 𝐼(𝑢, 𝑣)|𝑚−𝑢|≤𝑟,|𝑛−𝑣|≤𝑟

Census 𝐻𝑎𝑚𝑚𝑖𝑛𝑔 .𝐼′𝑡𝑎𝑟(𝑥, 𝑦), 𝐼′𝑟𝑒𝑓(𝑥 − 𝑑, 𝑦)/,

where 𝐼′(𝑚, 𝑛) = 𝑏𝑖𝑡𝑠𝑡𝑟𝑒𝑎𝑚|𝑚−𝑢|≤𝑟,|𝑛−𝑣|≤𝑟(𝐼(𝑚, 𝑛) > 𝐼(𝑢, 𝑣))

2. Cost Aggregation

The main idea of cost aggregation step is to gather the costs of neighboring pixels to the center

pixel in a window. It implies that the neighboring pixels have the same disparity as the center pixel,

and gather the costs of neighbors could increase the reliability of matching cost. Thus, the cost

aggregation step accumulate the neighboring costs for the center pixel by the general equation,

Target Block Reference Block

 (x-d, y)(x, y)
(u, v)

Support

pixels

r

11

 𝐶𝑎𝑔𝑔𝑟(𝑥, 𝑦, 𝑑) =
∑ 𝐶0(𝑢, 𝑣, 𝑑) ∙ 𝑊𝑎𝑔𝑔𝑟(𝑢, 𝑣)(𝑢,𝑣)∈𝑤𝑖𝑛(𝑥,𝑦)

∑ 𝑊𝑎𝑔𝑔𝑟(𝑢, 𝑣)(𝑢,𝑣)∈𝑤𝑖𝑛(𝑥,𝑦)
 , (II-2)

where C0 is the initial cost cube, and Caggr is the aggregated cost cube. In this equation, each initial cost

C0(v, u, d) in an aggregation window with radius r is accumulated with the weight Waggr(u, v) for the

target cost Caggr(x, y, d). In addition, the accumulated value is normalized by the sum of weights. The

computational complexity of this step is O(H×W×DR×r
2
), which is proportional to the aggregation

window size.

Figure II-8 shows the various existing cost aggregation approaches with different weight

distributions. In Figure II-8 (a), the uniform weight has constant weight for each support pixels and the

fixed r. Its disparity map would be over-blurred for thin objects if r is too large, while it would be

incorrect for textureless regions if r is too small. Therefore, for better disparity quality, the radius of

uniform weight need to be adaptively adjusted according to image content as shown in Figure II-8 (b).

The other common-used is the Gaussian weight approach that makes the pixel near window center has

higher weight. However, these three approaches could not obtain accurate disparity due to their fixed

window shape, (i.e. square or circle).

To control the window shape, the adaptive polygon weight approach [4], [5] uses the 8-direction

or 4-direction configuration to fit the object shape as shown in Figure II-8 (d). Then, the cross-based

weight approach [6] uses multiple cross lines to fit the object shape as shown in Figure II-8 (e). In the

two approaches, a support region grows from the window center until its boundary touches a

dissimilar pixel. However, the two approaches could not perform well for the highly texture regions

because of their continuous support regions.

The adaptive support-weight (ADSW) approach [7] can avoid their problem, because all support

pixels are considered and their weight is determined by the kernels of bilateral filter. Its weight is

defined as

 𝑊𝑎𝑔𝑔𝑟(𝑢, 𝑣) = 𝑊𝑡𝑎𝑟(𝑢, 𝑣) ×𝑊𝑟𝑒𝑓(𝑢 − 𝑑, 𝑣) , (II-3)

12

where Wtar is the weight from target-view window, and Wref is the weight from reference-view window.

Both the weights Wtar and Wref are computed by the kernels of bilateral filter,

 𝑊(𝑢, 𝑣) = 𝑓(‖(𝑥, 𝑦) − (𝑢, 𝑣)‖)𝑔(‖𝐼(𝑥, 𝑦) − 𝐼(𝑢, 𝑣)‖) . (II-4)

where f is the spatial kernel with the position distance, and g is the range kernel with the color distance.

With the two kernels, the aggregation weight would be large if the support pixel is near the center

pixel or the support pixel is similar to center pixel. Figure II-8 (f) illustrates the adaptive

support-weight. In which, the aggregation weight could fit object shape better than the adaptive

polygon weight and cross-based weight approaches for highly texture regions. However, the main

disadvantage of ADSW approach is high computational complexity. Nevertheless, it can be addressed

by the integral histogram approach [8], the iterative aggregation with small window approach [9], and

the data reuse approach in VLSI design [10].

In summary, the aggregation cost step processes the initial cost cube C0 to a more reliable cost

cube Caggr by the well-define weights.

(a) (b) (c)

(d) (e) (f)

Figure II-8 Various cost aggregation approaches

(a) uniform weight, (b) uniform weight with adaptive window radius, (c) Gaussian weight, (d)

adaptive polygon weight, (e) cross-based weight, (f) adaptive support-weight.

3. Disparity Selection/Optimization

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1 1 1 1

0

0

0 0 0 0

0

0

0

0

0

0 0 0 0 0

1 1 1

1

1

1

1

1

1

1

2

2

3

3

5

2

3

1

2

3

2

5

3

8

5

5

3

3

2

1 2 3 2 1

0

0

0

0

0

0

0 0 0 0

01

1 1

11

1

1

1

1

1 1

1 1

1

0 1

0

0

0 0

0

1 1 1

0 0

1 1

1 1 1

1 1 1 1

1 1

1

1 8

8

5

8

3

5

2

3

1

2

3

2

8

3

8

8

5

8

3

5

8 8 3 8 8

13

With the aggregated cost cube Caggr, two optional methods can be applied to compute the

disparity map. One is the winner-take-all manner (WTA) which directly determines the disparity result

by selecting the reference pixel with minimum cost as the best correspondence for each target pixel.

The other one is the disparity optimization method which considers the aggregated costs of whole

frame to compute the disparity map by the energy minimization. The latter can acquire more accurate

disparity maps as shown in the evaluation results [72].

The common-used disparity optimization approaches are dynamic programming (DP), graph-cut

(GC), and belief propagation (BP). Their main concept is to convert the disparity estimation problem

into an energy minimization problem. The energy function is generally formulated by

 𝐸(𝒅) = 𝐸𝑑𝑎𝑡𝑎(𝒅) + 𝜆𝐸𝑠𝑚𝑜𝑜𝑡(𝒅) (II-5)

where Edata is data term to penalize the dissimilarity of a correspondence pair, and Esmooth is smoothness

term to penalize the disparity inconsistency of two neighboring pixels. In addition, d is a selected

disparity set for whole frame. The optimization approaches attempt to find a disparity set d by the way

of minimizing the total energy E.

The concept of the common-used optimization approaches are reviewed as follows.

(1) Dynamic Programming

The main idea of DP approach is to convert the disparity estimation to a finding shortest path

problem. The optimization process is performed row by row. Figure II-9 (a) shows the graph model for

finding shortest path problem. In which, the position of node is corresponding to the coordinate in the

x-d plane, and the shortest path will be from x of 0 to W-1. The path would suffer from matching

penalty on a node, and smoothness penalty on an edge. The DP approach is to find the path with

minimum penalty by the two steps: forward accumulating and backward tracing. In Figure II-9 (b),

first step accumulate the penalty in the forward direction to select the moving direction for each node.

In Figure II-9 (c), with the moving direction map, the second step trace the path with minimum

penalty in the backward direction.

14

However, the DP approach suffers from streak artifact in the disparity map because of its

row-by-row process. To address this problem, Ohta and Kanade [11] perform the DP in a 3-D space

that consists of the original intra-scanline space and the additional inter-scanline space. In addition, the

tree-based DP algorithms [12]-[14] use the tree structure to connect scanlines and remove the streak

artifacts.

(a)

(b)

(c)

Figure II-9 Concept of dynamic programming approach

(a) graph model in DP approach, (b) forward accumulating, (c) backward tracing

(2) Graph-Cut

The main idea of GC approach is to convert the disparity selection problem to the

min-cut/max-flow problem [15], and the associated optimization techniques could be adopted. The GC

approach can generate accurate disparity maps.

Figure II-10 shows the graph model of min-cut/max-flow for disparity estimation. In which, there

are H×W×DR nodes with 6-connected node grid. The matching cost and the smoothness cost are

well-defined on each edge, which can be regarded as pipes with different flow volumes due to

……
source target

W

D
R

d

x
(0, y, 0) (W-1, y, 0)

Forward

Accumulating

→
↑
→
↑
↑
↑

→
↓

→
→
→

Slice of cost cube

↑

→
→
→
→
↑
↑

↓
↓
↓

↓

d

x
(0, y, 0) (W-1, y, 0)

Backward

Tracing

15

different costs. In this graph model, water from the source node would flow to the sink node through

pipes. The min-cut means that a cut surface cross edges has the minimum flow, while the max-flow

means that the allowed maximum flow from the source to the sink. The min-cut and the max-flow are

equivalent problems. For the disparity estimation, the disparity map can be directly determined

according to the resultant cut surface.

Figure II-10 Graph model of graph-cut algorithm

For the min-cut/max-flow problem, the common-used optimization techniques are the

push-relabeling [16] and the augmenting path [17]. Their computational complexity is highly related

to the number of label candidate (i.e. disparity range DR in disparity estimation). However, the

optimization techniques suffer from extremely high computational complexity due to large disparity

range.

To reduce the computational complexity, Boykov proposed the swap method [18] and an efficient

augmenting path [19]. The swap method performs the optimization process disparity by disparity, and

only one new disparity is considered in an iteration. Based on the swap method, Chou et. al. [20]

proposed a fast algorithm to predict the disparities to skip the partial optimization process. On the

other hand, for the push-relabeling approach, the computational speed depends on the processing order

on nodes. Thus, Checkassky and Goldberg [21] proposed the highest-label order that is more efficient

than the typical FIFO order. In addition, Delong and Boykov [22] proposed a block-based graph cut

method to increase the parallelism of push-relabeling approach.

source sink

DR

W
H

6-connected node

Cut surface

16

To sum up, the GC approach can perform accurate disparity results but is not suitable to be

accelerated by GPU programming and VLSI design due to its irregular computation and low

parallelism.

(3) Belief Propagation

Sun et al. [24] first applied the BP approach to solve the disparity estimation problem, and

acquired accurate disparity maps. They perform the energy minimization on the graph model as shown

in Figure II-11. In which, each node is corresponding to a pixel, and all nodes are connected by

4-connection grid. In the optimization process, the matching costs of each node are diffused through

the messages to neighboring nodes iteration by iteration. This diffusion mechanism is called message

passing. After several iterations, the matching costs and messages of a node are aggregated to

determine the disparity result. Although the minimized energy could not definitely converge due to its

loopy optimization process, the disparity maps could approach to a steady state.

Figure II-11 Graph model of belief propagation approach

In the BP approach, the message passing suffers from the highest computational complexity,

O(H×W×DR
2
×T), where T is the iteration count. The term of DR

2
 results from the convolution, and the

iteration count T should be more than 10. To reduce the computation of message passing, Felzenswalb

and Huttenlocher [25] proposed the hierarchical BP (HBP) and the linear-time message passing. The

former could accelerate the disparity convergent speed, and the latter could reduce the complexity of

convolution from O(DR
2
) to O(DR). In addition, Szeliski et al. [26] proposed the max-product loopy

belief propagation, called BP-M, to reduce the iteration count by a scale. Because the computation of

matching cost

message

17

BP approach is highly parallel, the BP approach is suitable to be accelerated by the GPU programming

and VLSI design [27]-[33].

In addition, the BP approach also suffers from highly memory cost, 4HW×DR, for the matching

costs and messages of whole frame. To address it, the bipartite gird [25] and the sliding approach [34]

are proposed for the memory access, and the predictive coding scheme [35] could be applied for

message compression.

To sum up, the above disparity optimization algorithms have different pros and cons. The DP

approach could achieve real-time speed easier but has the streak artifacts. Its improvement methods

would result in additional irregular computation. For the 2-D optimization approaches, the GC

approach has high performance of disparity map, but its irregular computation limits the acceleration

of GPU programming and VLSI design. On the other hand, the BP approach can also deliver accurate

disparity maps and has highly parallelism. Therefore, this dissertation develops an efficient disparity

estimation algorithm based on the BP approach.

4. Disparity Refinement

The final step refines the disparity maps by the post-processing methods: occlusion handling,

object consistency enhancement, and temporal consistency enhancement. Their purpose and associated

algorithms are reviewed as follows.

(1) Occlusion Handling

The occlusion problem results from that the object point is visible in one view and invisible in the

other view. Thus, there is no correspondence pixel in the invisible view. Incorrect disparities would

appear in the occlusion regions, and further induce artifacts in the view synthesis.

To handle the occlusion problem, the general approach is to detect the occlusion first, and then

fill it by the background disparities. These two steps are called occlusion detection and occlusion

filling. The basic methods for occlusion detection are surveyed in [45]. Various methods have different

assumptions. The left-right check (LRC) assumes that a pair of correspondence should have identical

18

disparity, and the occlusion constraint (OCC) assumes that the disparity gap of two pixels would result

in occlusion region in the other view. In addition, the order constraint (ORD) assumes that the order of

two pixels should have the correspondences with the same order in the other view. In the above

occlusion detection methods, the LRC is the most commonly applied for the disparity refinement [6],

[40], and the OCC and the ORD are combined into the disparity optimization step [15], [24]. With the

detected occlusion pixels, the occlusion filling step can directly replace them by the reliable

background disparities.

(2) Object Consistency Enhancement

For an object, the disparities are usually identical or smooth changing. However, disparity

maps often suffer from incorrect disparities, especially in the textureless regions. To remove the

disparity noise, the plane fitting approach [46] is usually adopted by the high-performance disparity

estimation algorithms [63], [39], [40]. In the plane fitting approach, the segment information is first

computed by the watershed segmentation, mean-shift clustering, or K-mean clustering. According to

the segment information, the disparities in a segment are used to compute a new 3-D plane by the

linear regression method. Besides of the plane fitting method, the regional voting method [6] could

also refine the disparity maps well. The regional vote method is simpler than the plane fitting method

because the segment information is not required.

(3) Temporal Consistency Enhancement

Most of research develops their disparity estimation algorithms using the still image sequences

[72]. However, they would miss the temporal consistency issue, which is important in the view

synthesis application for video sequences. Without enhancing the temporal consistency, the disparity

maps would suffer from flicker artifact, because each disparity frame is independently generated, and

the disparities are unstable in the occlusion and textureless regions. This flicker artifact would further

propagate to the view synthesis results, and is easily observed.

To address the temporal consistency, the neighboring frames should be considered in the disparity

estimation. In the previous work [47]-[49], many disparity frames are buffered to construct a disparity

19

flow with the spatial and temporal dimensions, and different smooth approaches are performed in the

disparity flow. On the other hand, with two adjacent frames, the temporal BP algorithm [41] preforms

the BP optimization in a 6-connection grid graph, where the two additional connections link to the

previous and next frames. In addition, the 3DVC’s DERS algorithm [65]-[67] adds the temporal cost

to matching cost according to previous disparity.

In summary, the disparity refinement step could fix the inconsistent disparities well, and improve

the view synthesis quality for 3DTV applications.

2.2 View Synthesis

In 3DTV applications, view synthesis is one of the most important components to synthesize a

single or multiple virtual view videos for the stereoscopic TV or the free-viewpoint TV [101]. A

common approach for view synthesis is the depth-image-based rendering (DIBR) algorithm [51]-[57],

which can warp a video to another view according to disparity maps.

Figure II-12 General flow of view synthesis

A general DIBR algorithm could be divided into the three steps: warping, blending, and hole

filling, as depicted in Figure II-12. For different number of input view, the DIBR algorithm has

different challenges in its steps. With single-view input, the DIBR algorithm suffers from large

Texture

L

Texture

R

Warping

Warped

Texture

VL

Warped

Texture

VR

Disparity

DL

Disparity

DR

Left-view Right-viewCenter-view

Hole Map

HL

Hole Map

HR

Blending

Blended

Texture

V'

Hole Map

H'

Hole Filling

Resultant

Texture

V

20

occlusion holes in the hole filling step, while with multiple-view inputs, it suffers from inconsistent

warped pixels in the blending step. The concept and challenges of each step are presented in the

following.

2.2.1 Warping

In Figure II-12, the warping step loads the textures and disparities of reference side-views

generate the warped textures and hole maps of the target center-view. In the warping step, the

reference textures are shifted to the target view according the reference disparity maps.

The methods of warping step can be classified into the one-step warping and the two-step

warping as illustrated in Figure II-13. The one-step warping directly warps the reference textures to

the target view according to the warping position of disparities, while the two-step warping first warps

the target disparity and then uses it to synthesize the target texture. Rogmans et al. [58] and Morvan

[59] show that the two-step warping could perform better because its sampling precision is higher.

(a)

(b)

Figure II-13 Warping methods in view synthesis

(a) one-step warping, (b) two-step warping

2.2.2 Blending

Texture Texture

View 1

(reference)

View 3

(reference)

Disparity Disparity

Texture

View 2

(target)

position position

Texture Texture

View 1

(reference)

View 3

(reference)

Disparity Disparity

Texture

View 2

(target)

position position

Disparity

21

With the multi-view inputs, the warping step will generate multiple textures for the target view as

shown in Figure II-12. In other words, there are multiple warped pixels for a target position. However,

the colors of these warped pixels are not consistent due to different radiometric gain and bias at

different viewpoints. Therefore, the warped pixels should be blended by different methods for the

three cases: visible pixel, occluded pixel, and disoccluded pixel, according to the hole maps. For the

case of visible pixel, the pixel is labeled “non-hole” in hole maps, and could be seen at multiple

viewpoints. Thus, its color can be computed by averaging the warped pixels. For the case of occluded

pixel, the pixel is labeled “non-hole” in one hole map only, and could be seen at only one viewpoint.

Thus, its color can refer to the only warped pixel. For the final case, the disoccluded pixel is labeled

“hole” in all hole maps, and cannot be seen at any viewpoints. Thus, it should be handled in the next

step. In addition, the hole regions can be dilated before blending to avoid the ghost artifact as shown in

Figure II-14.

(a) (b)

Figure II-14 Blending step in view synthesis

(a) without hole dilation, (b) with hole dilation

2.2.3 Hole Filling

With multiple-view inputs, most holes can be easily recovered by other views. For the remaining

disoccluded holes, they can be filled by the advanced in-painting method [60]. On the other hand, with

single-view input, the DIBR algorithm suffers from large occluded holes due to lack of other views.

22

The occluded holes can be handled by the disparity smoothing methods [52]-[55] to reduce hole sizes,

and be filled by the interpolation method [53].

In summary, the 3DTV applications demand a view synthesis engine to generate virtual view

videos, and the DIBR algorithm could satisfy this requirement through the above steps. However, the

quality of view synthesis is highly dependent on the performance of disparity estimation. Therefore, it

is necessary to develop a high-performance disparity estimation algorithm for the 3-D video

production.

2.3 Review of DERS Algorithm from 3DVC

The 3D Video Coding (3DVC) team is organized in the Moving Picture Group Experts (MPEG)

to support the associated techniques for 3DTV applications. The associated techniques include the

disparity estimation, view synthesis, and multi-view video coding. The 3DVC team defines the

configuration of input and output views for the 3DTV system, and delivers the reference software for

disparity estimation [63] and view synthesis [64]. The algorithms in the reference software are

respectively called DERS algorithm and VSRS algorithm. They also create a test bed and quality

evaluation to assess the performance of 3-D videos. Furthermore, they combine the disparity

estimation and view synthesis with the multi-view video coding (MVC) [107] for data compression

and transmission. In this section, we introduce the 3DVC’s DERS algorithm and point out its design

challenges in the processing of high resolution videos. In addition, we present the 3DVC’s I/O

configuration and quality evaluation method, which are also adopted in this dissertation.

2.3.1 Input and Output View Configuration

The input and output setting is defined by the 3DVC [71] as shown in Figure II-15. In the 2-view

configuration, the disparity estimation and view synthesis engines loads the original left-view and

right-view videos to generate the virtual-view videos. Combining the synthesized video and one of the

original videos can support the stereoscopic display. Figure II-15 (b) and (c) shows the 3-view

23

configuration. In which, two view videos are synthesized for the stereoscopic display. For the 9-view

display, eight virtual-view videos need to be synthesized, and combined with the original center-view

video. Based on the above configurations, the disparity estimation and view synthesis engines can be

directly extended to support free viewpoint TV if more view videos are available.

(a) (b) (c)

Figure II-15 Input and output view configuration defined by the 3DVC

(a) 2-view configuration for stereoscopic display, (b) 3-view configuration for stereoscopic display, (c)

3-view configuration for 9-view display

2.3.2 DERS Algorithm

The depth estimation reference software (DERS) algorithm [63] delivered by the 3DVC is

illustrated in Figure II-16. The DERS algorithm uses the three view image frames to compute the

center-view disparity map. In addition, the previous image frame and disparity map are also involved

for the temporal consistency enhancement. Note that the DERS algorithm can support the input videos

without rectification. The steps in the DERS algorithm are introduced in the following.

DE and VS

OL OR

SROL

OL: original left-view OR: original right-view OC: original center-view SR: synthesize right-view

DE and VS

OL OROC

0 1

0 0.5

0 1 2

0.5 1.5

DE and VS

OL OROC

0 1 2

0.5 1.51

…… ……

View Position No.

24

Figure II-16 Flow of the DERS algorithm

1. Initialization

Initially, the side-view images are scaled up by the horizontal interpolation method, which has the

two options of half-pixel mode and quarter-pixel mode. The horizontal interpolation method includes

the linear filter, cubic filter, and 6-tap interpolation filter in H.264/AVC standard. In addition, the

homography matrix tables are calculated using the three-view camera parameters. With the

homography matrix H(d), for a center-view pixel (u, v), the positions of correspondence candidates

(u’, v’) can be directly computed by

 (𝑢′, 𝑣′, 1)𝑇 = 𝑯(𝑑)(𝑢, 𝑣, 1)𝑇, (II-6)

where

Left-view

Image IH,L
t

Center-view

Image IH,C
t

Right-view

Image IH,R
t

Horizontal

Interpolation

Horizontal

Interpolation

Block

Matching

Block

Matching

Segmentation

Graph-Cut

Plane Fitting

Temporal

Consistency

Enhancement

Homography

Calculation

Homography

Calculation
Homography

table

Cost Selection

Center-view

Image IH,L
t-1

Center-view

Disparity

DH,L
t-

Result

Disparity

DH,C
t

cost cube

Segment

map

Initial disparity Image frame

Disparity frame

Main step

Current Frames Previous Frames

Camera

Parameters

Homography

table

25

 𝑯(𝑑) = *

00(𝑑) 01(𝑑) 02(𝑑)
10(𝑑) 11(𝑑) 12(𝑑)
20(𝑑) 21(𝑑) 1

+ . (II-7)

2. Block Matching

In the block matching, the left-view image and the right-view image are regarded as the reference

views, and the center-view image is regarded as the target view. The block matching adopts the SAD

match metric defined as

 𝐶𝑆𝐴𝐷(𝑥, 𝑦, 𝑑) =∑ |𝐼𝑡𝑎𝑟(𝑢, 𝑣) − 𝐼𝑟𝑒𝑓(𝑢
′, 𝑣′)|

(𝑢,𝑣)∈𝑤𝑖𝑛(𝑥,𝑦)
 , (II-8)

where the window size can be 1×1 or 3×3, and the coordinates of the reference pixels can be computed

by (II-6). In addition, the adaptive support-weight (ADSW) aggregation method [7] could be applied,

and it is called soft-segmentation [68] in the DERS algorithm.

3. Temporal Consistency Enhancement

For the temporal consistency enhancement, the DERS algorithm [65], [66], [67] first detects the

16×16 motion block by the intensity difference of current and previous image frames. If the block

color difference is high than a defined threshold, this block is regarded as a motion block. With the

motion information, the temporal cost Ctemp is computed by

 𝐶𝑡𝑒𝑚𝑝(𝑥, 𝑦, 𝑑) = {
𝜏𝑡𝑒𝑚𝑝|𝑑 − 𝐷

𝑡−1(𝑥, 𝑦)| , 𝑛𝑜 − 𝑚𝑜𝑡𝑖𝑜𝑛 𝑏𝑙𝑜𝑐𝑘

0 , 𝑚𝑜𝑡𝑖𝑜𝑛 𝑏𝑙𝑜𝑐𝑘
 , (II-9)

where D
t-1

 is the previous disparity map, and τtemp is a constant for scaling. The temporal cost Ctemp is

added to the block matching cost CSAD by the equation,

 𝐶𝑡𝑜𝑡𝑎𝑙(𝑥, 𝑦, 𝑑) = 𝐶𝑆𝐴𝐷(𝑥, 𝑦, 𝑑) + 𝐶𝑡𝑒𝑚𝑝(𝑥, 𝑦, 𝑑) , (II-10)

With this temporal cost, the current disparity would be affected by the previous disparity.

4. Segmentation

The segmentation is performed only on the center-view image to assist the successive graph-cut

and plane fitting. In the DERS algorithm, the segmentation method has the three options: mean-shift

26

segmentation [69], pyramid segmentation, and K-mean clustering, which apply the OpenCV library

[70].

5. Graph cut

The DERS algorithm uses the fast GC approach [19], whose acceleration techniques include the

swap method and the efficient augmenting path. In addition, the segment information calculated in

previous step is also used to constrain the smoothness term in (II-5). In the DERS, the GC approach is

performed for two iterations to obtain higher disparity quality.

6. Plane Fitting

Finally, by the segment information, the plane fitting mentioned in Section 2.1.2 is also adopted

to refine the disparity map.

To sum up, by the general framework of disparity estimation, the DERS algorithm adopts the

absolute difference (AD) for matching cost, the uniform weight for cost aggregation, and the GC

approach for disparity optimization. Furthermore, it takes care of the temporal consistency and object

consistency for the disparity refinement. In the DERS, the optional methods of all steps can be

controlled by a configuration file. Note that the DERS algorithm can additionally support the

semi-auto disparity estimation that needs a user-defined foreground map to increase the disparity

quality. This approach is out of the dissertation scope.

2.3.3 Reference Software for 3-View Configuration

The functions of the DERS and VSRS algorithms are shown in Figure II-17 (a) where In is an

image frame at viewpoint n, and Dn is a disparity map at viewpoint n. The DERS algorithm requires

the three view image frames I0, I1, I2 to calculate the disparity map D1, while the VSRS algorithm

loads the two view image frames I0, I1 and disparity maps D0, D1 to synthesize the inter-view image

frame I0.5, which also can be another viewpoint between 0 and 1.

27

With the functions of DERS and VSRS, they have to be performed for several times for the

3-view configuration as shown in Figure II-17 (b). In which, five view image frames I-1 to I3 are

demanded for the DERS algorithm to compute the disparity maps D0, D1, D2. Then, the VSRS

algorithm could use the three image frames I0, I1, I2, and disparity maps D0, D1, D2 to generate the 9

view image frames. Compared to the original configuration in Figure II-15 (c), the DERS and VSRS

algorithms additionally require two side-view image frames I-1 and I3.

Therefore, to meet the required function of 3-view configuration with minimum input views, our

target disparity estimation engine would use only three view image frames to compute their

corresponding disparity maps as shown in Figure II-17 (c).

(a) (b)

(c)

Figure II-17 Data flow for 3-view configuration

(a) functions of DERS and VSRS algorithms, (b) DERS and VSRS algorithms for 3-view

configuration, (c) our target disparity estimation engine

2.3.4 Evaluation Method for Disparity Quality

To assess the disparity quality, the evaluation method in computer vision [72] is the disparity

error rate that is computed by the difference of the estimated disparity map and a ground truth

produced by the structured light method [73]. A disparity result would be considered as an error one if

I0 I1 I2

Depth Estimation

Reference Software

D1

View Synthesis

Reference Software

D0 D1

I0.5

I0 I1

I0 I1 I2

VSRS

D0 D1 D2

I0.5 I1.5……

I-1 I3

DERS DERS DERS

VSRS

I1 ……

I0 I1 I2

D0 D1 D2

Target Disparity Estimation Engine

28

the disparity difference is higher than a tolerance. However, different applications demand different

disparity quality and the proper corresponding evaluation method.

For 3DTV applications, the disparity quality could be evaluated through the quality of view

synthesis or the quality of multi-view video coding. This dissertation adopts the evaluation methods of

view synthesis corresponding to our target application. The various evaluation methods for view

synthesis analyze the frame difference between the synthesized and the really captured videos by

different ways. The common-used evaluation methods are the peak signal-to-noise ratio (PSNR), the

structural-similarity (SSIM) [74], and the peak signal-to-perceptible-noise ratio (PSPNR) [75], [76].

They are introduced as follows.

1. PSNR

The PSNR is commonly used in the video quality assessment, especially in video coding. The

PSNR for the frame n is computed by

 𝑃𝑆𝑁𝑅𝑛 = 10𝑙𝑜𝑔10 (
2552𝐻𝑊

∑ |𝑆𝑖,𝑛 − 𝑅𝑖,𝑛|
𝐻𝑊−1
𝑖=0

) , (II-11)

where S is the synthesized video, R is the reference video, and their subscripts (i, n) refers to the ith

pixel in the nth frame. In the PSNR, the frame difference is analyzed by the mean square error (MSE).

2. SSIM

The SSIM considers the image structure information into the analysis of frame difference,

because the human vision system is highly sensitive to the image structure. Thus, the SSIM analyze

the frame difference within local region by comparing their pixels with the luminance and contrast

normalization. The SSIM for the frame n is computed by

 𝑆𝑆𝐼𝑀𝑛 =
1

𝐻𝑊
∑

(2𝜇𝑆𝑖,𝑛𝜇𝑅𝑖,𝑛 + 𝐶1) × (2𝜎𝑆𝑖,𝑛𝑅𝑖,𝑛 + 𝐶2)

.𝜇𝑆𝑖,𝑛
2 + 𝜇𝑅𝑖,𝑛

2 + 𝐶1/ × .𝜎𝑆𝑖,𝑛
2 + 𝜎𝑅𝑖,𝑛

2 + 𝐶2/

𝐻𝑊−1

𝑖=0

 (II-12)

where 𝜇𝑆𝑖,𝑛 , 𝜇𝑅𝑖,𝑛 are the mean, 𝜎𝑆𝑖,𝑛 , 𝜎𝑅𝑖,𝑛 are the standard deviation, and 𝜎𝑆𝑖,𝑛𝑅𝑖,𝑛 is the

covariance. They are computed in an 11×11window by

29

 𝜇𝑆𝑖,𝑛 = ∑ 𝑤𝑗𝑆𝑗,𝑛𝑗∈𝑤𝑖𝑛𝑑𝑜𝑤(𝑖) , (II-13)

 𝜇𝑅𝑖,𝑛 = ∑ 𝑤𝑗𝑅𝑗,𝑛𝑗∈𝑤𝑖𝑛𝑑𝑜𝑤(𝑖) , (II-14)

 𝜎𝑆𝑖,𝑛 = (∑ 𝑤𝑗(𝑆𝑖,𝑛 − 𝜇𝑆𝑖,𝑛)𝑗∈𝑤𝑖𝑛𝑑𝑜𝑤(𝑖))
1/2
 , (II-15)

 𝜎𝑅𝑖,𝑛 = (∑ 𝑤𝑗(𝑅𝑖,𝑛 − 𝜇𝑅𝑖,𝑛)𝑗∈𝑤𝑖𝑛𝑑𝑜𝑤(𝑖))
1/2

 , (II-16)

 𝜎𝑆𝑖,𝑛𝑅𝑖,𝑛 = ∑ 𝑤𝑗(𝑆𝑖,𝑛 − 𝜇𝑆𝑖,𝑛)(𝑅𝑖,𝑛 − 𝜇𝑅𝑖,𝑛)𝑗∈𝑤𝑖𝑛𝑑𝑜𝑤(𝑖) , (II-17)

where the wj is the weighting function. In the implementation of SSIM [77], the weight function

adopts the Gaussian weight, and the constants C1, C2 in (II-12) are 6.5025 and 58.5225, respectively.

3. PSPNR

The PSPNR focuses on not only the spatial quality in the above methods but also the temporal

quality according to the human vision system. For the synthesized videos, the flicker artifact is the

most noticeable noise, even if the flickering region is small. Thus, the PSPNR attempts to model the

flicker artifact into the disparity quality evaluation. First, the spatial distortion (SD) is defined as

 𝑆𝐷𝑖,𝑛 = 𝑆𝑖,𝑛 − 𝑅𝑖,𝑛 , (II-18)

which is the frame difference between the synthesized image frame S and the reference image frame R.

Then, by considering the spatial distortion visibility of human, the SD is converted to the perceptual

spatial distortion (PSD) through the equation

 𝑃𝑆𝐷𝑖,𝑛 = {
𝐶𝑙𝑖𝑝(𝑆𝐷𝑖,𝑛 − 𝑉𝑇, 0, 𝑆𝑇 − 𝑉𝑇) , 𝑖𝑓𝑆𝐷𝑖,𝑛 ≥ 0

𝐶𝑙𝑖𝑝(𝑆𝐷𝑖,𝑛 + 𝑉𝑇,−(𝑆𝑇 − 𝑉𝑇), 0) , 𝑖𝑓𝑆𝐷𝑖,𝑛 < 0
 . (II-19)

where VT is the visibility threshold as a lower bound of SD, ST is the saturation threshold as a upper

bound of SD, and the function Clip is for range truncation. The spatial distortion SD under VT is not

perceptible in any background luminance, and the spatial distortion SD over ST is not distinguished by

human.

With the perceptual spatial distortion PSD, the temporal noise TN is separately calculated for the

motion regions and the static regions. For the static regions, there are four stages to describe a

30

temporal noise changing in successive frames as illustrated in Figure II-18. The temporal noise TNi,n,S

is computed by the equation,

 𝑇𝑁𝑖,𝑛,𝑆 =

{

0 , 𝑖𝑓 (𝑖, 𝑛) ∈ 𝑠𝑡𝑎𝑡𝑖𝑐 𝑠𝑡𝑎𝑔𝑒

𝑃𝑆𝑁𝑖,𝑛−𝑝 , 𝑖𝑓 (𝑖, 𝑛) ∈ 𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑡𝑎𝑔𝑒

𝑃𝑆𝑁𝑖,𝑛 , 𝑖𝑓 (𝑖, 𝑛) ∈ 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑠𝑡𝑎𝑔𝑒(𝑡𝑦𝑝𝑒1)

𝑃𝑆𝑁𝑖,𝑛 + 𝑃𝑆𝑁𝑖,𝑛−1 , 𝑖𝑓 (𝑖, 𝑛) ∈ 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑠𝑡𝑎𝑔𝑒(𝑡𝑦𝑝𝑒2)

𝑃𝑆𝑁𝑖,𝑛−1 , 𝑖𝑓 (𝑖, 𝑛) ∈ 𝑑𝑒𝑐𝑙𝑖𝑛𝑖𝑛𝑔 𝑠𝑡𝑎𝑔𝑒

 (II-20)

for the different stages.

Figure II-18 Example of temporal noise changing successive frames [76]

In the static stage, a noticeable flicker artifact does not appear, and SDi,n does not change more

than the specific level range CT, which has different values for different regions according to the

distortion sensitivity of human. The level range CT is defined as

 𝐶𝑇𝑖,𝑛 = ,

𝐶𝑇𝑏𝑎𝑠𝑒 𝑖𝑓(𝑖, 𝑛) ∈ 𝑝𝑙𝑎𝑖𝑛
𝐶𝑇𝑏𝑎𝑠𝑒𝐹𝑒𝑑𝑔𝑒 𝑖𝑓(𝑖, 𝑛) ∈ 𝑒𝑑𝑔𝑒

𝐶𝑇𝑏𝑎𝑠𝑒𝐹𝑡𝑒𝑥𝑡𝑢𝑟𝑒 𝑖𝑓(𝑖, 𝑛) ∈ 𝑡𝑒𝑥𝑡𝑢𝑟𝑒

 . (II-21)

In the increasing stage, a noticeable flicker artifact appears, and SDi,n changes more than CT. If

SDi,n has no polarization change, the temporal noise would increases with the increasing spatial

distortion, and it is equal to PSDi,n for the type 1. On the other hand, if the SDi,n also has polarization

change, the temporal noise should increase larger than spatial distortion, and also be larger than the

other stages. Thus, the temporal noise for the type 2 is the sum of PSDi,n and PSDi,n-1.

Spatial Distortion

(SDi,n)

Time
0

+

-

S
S

S

I1

I1
M

M
M

S S

D

D M M

I2
M

M
M

S S

D

S Static stage

I1

I2

M

D

Increasing stage (type1)

Increasing stage (type2)

Maintaining stage

Declining stage

Level range (-CT, CT)

Maintaining time MT

31

In the maintaining stage, the flicker artifact just disappears, and human still percepts the artifact

for maintaining time (MT). Thus, the temporal noise should be PSDi,n-p, which is propagated from the

previous frame p in the increasing stage or declining stage. The MT is defined as 1/4 sec according to

the study of human perception on flickers.

In the declining stage, the flicker artifact starts to disappear, but human suffers from the previous

spatial distortion. Thus, the temporal noise is equal to the previous frame PSDi,n-1.

On the other hand, for the motion regions, the temporal noise TNi,n,M is computed by

 𝑇𝑁𝑖,𝑛,𝑀 = {
𝑃𝑆𝐷𝑖,𝑛 , 𝑖𝑓|𝑃𝑆𝐷𝑖,𝑛| ≥ |𝑃𝑆𝐷𝑖,𝑛−1| − 𝐶𝑇𝑖,𝑛 𝑎𝑛𝑑 |𝑃𝑆𝐷𝑖,𝑛| > 𝐶𝑇𝑖,𝑛
0 , 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

 . (II-22)

The motion region natively has change between two successive frames. If the change is higher than

CT, it would be regarded as temporal noise. With the temporal noises TNi,n,S for static regions and

TNi,n,M for motion regions, the sum of temporal noise for a frame is computed by

 𝑆𝑇𝑁𝑛 =∑ 𝑇𝑁𝑖,𝑛
𝐻×𝑊−1

𝑖=0
 (II-23)

The final temporal peak signal-to-perceptible-noise ratio for whole synthesized videos is defined as

 𝑇_𝑃𝑆𝑃𝑁𝑅 = 10𝑙𝑜𝑔10 (
2552 × 𝐻 ×𝑊

∑ 𝑆𝑇𝑁𝑛
𝐹−1
𝑓=1 (𝐹 − 1)⁄

) . (II-24)

The implementation of PSPNR is attached in the DERS [63].

2.3.5 Design Challenges

The DERS algorithm can deliver high quality disparity maps to support the view synthesis for

3DTV applications. However, it suffers from the following design challenges, especially for the

requirement of high-definition videos.

1. Irregular Image Access in Block Matching

In the DERS algorithm, the block matching suffers from the irregular image access because the

input videos are not rectified. Figure II-19 shows an example of block matching performed in the

non-rectified images. In which, the epipolar lines in the target view are parallel, and they become

32

oblique ones in the reference view. The reference block would frequently result in memory row miss if

the input videos are configured by one image rows in one memory row. Therefore, it is necessary to

apply the rectification to the pre-processing, so that all the image accesses are regular by raster-scan

order in the disparity estimation and the view synthesis.

Figure II-19 Example of block matching in the DERS algorithm

2. Low Parallelism in Graph-Cut

The DERS algorithm adopts the fast GC approach [18], [19], which contains the swap method,

and the efficient augmenting path method. However, the GC approach need to process on a

tree-structural graph, and the connection of edges is frequently and irregularly changed. In addition, its

computation has high data dependency because the graph is sequentially processed node by node.

Therefore, the GC approach suffers from low parallelism in data access and computation

As mentioned in Section 2.1, the previous work [22] proposed the region-based

push-relabeling approach that could increase the parallelism and the data locality for the GC approach.

However, its computation and data access in a local region still suffers the same design challenges as

the original GC approach. In addition, the real-time scalable GC engine [23] is proposed but it only

supports a small graph with 16 nodes. To sum up, the GC approach is not suitable to be accelerated for

our target performance. We will develop another new disparity estimation algorithm based on the DP

or BP algorithm, which is natively high parallelism.

3. High Computational Complexity in Segmentation

T0

T3

T1

T4

T2

T5

T6 T7 T8

Target Block

Epipolar

lines

R0

R3

R1

R4

R2

R5

R6

R7 R8

Reference Block

EL0

EL1

EL2

EL0

EL1

EL2

Image rows

33

In the DERS algorithm, the segmentation is used in the plane-fitting to enhance the object

consistency, and in the GC approach to constrain the optimization process. In the previous work [50],

the K-mean clustering method was implemented by VLSI design to achieve the throughput of 1

Mpixels/s by 440K gate counts. However, the hardware cost would be dramatically increased to

support our required throughput of three view HD1080p videos in 60 frames/sec (i.e. 360 Mpixels/s).

2.4 Summary

In this chapter, we review the disparity estimation algorithms by a general framework, and

introduce the associated view synthesis technique. In addition, we also present the state-of-the-art

DERS algorithm delivered by the MPEG 3DVC. The DERS could produce high-quality disparity

maps for the view synthesis application, but it suffers from the three design challenges: irregular

image access in block matching, low parallelism in graph-cut, and high computational complexity in

segmentation. Thus, the DERS algorithm could not be accelerated to achieve our target throughput by

the VLSI design. Therefore, the goal of this dissertation is to develop a new high-quality and

hardware-efficient disparity estimation algorithm, and implement its dedicated VLSI design to reach

our target throughput, three view HD1080p disparity maps at 60 frames/sec.

34

III Baseline Disparity Estimation with Belief

Propagation and Joint Bilateral Filter for High

Definition 3DTV Applications

For the high definition 3DTV application, the disparity estimation natively suffers from high

computational complexity due to large frame size. To conquer it, our strategy is to calculate the

disparity map by a belief propagation-based algorithm in low resolution, and scale it to high resolution

disparity map by an upsampling algorithm. For the two steps, we adopt the baseline belief propagation

(BP) algorithm [24] and the joint bilateral upsampling (JBU) algorithm [79], [81]. The combination is

called baseline algorithm in this dissertation.

The chapter is organized as follows. First, we introduce the BP and JBU algorithms. Then, we

separately analyze their architecture, and design the key components to solve their major design

challenges. Finally, the experimental result of the baseline algorithms is demonstrated by software

implementation.

3.1 Introduction

3.1.1 Baseline Belief Propagation

The concept of the BP-based algorithm is illustrated in Figure III-1. In the BP-based algorithms,

an energy function is generally formulated as

 𝐸(𝒅) =∑𝐷(𝑑𝑖)

𝑖∈𝐼

+ ∑ 𝑉(𝑑𝑖, 𝑑𝑗)

𝑖∈𝐼,𝑗∈𝑁𝑒𝑖𝑔𝑏𝑜𝑟(𝑖)

 (III-1)

for a 2-D graph in Figure III-1 (a). In this energy function, D is the data cost for each node

corresponding to each pixel, V is the smoothness cost for each edge, and d of the energy E is a selected

disparity set for all nodes. The two costs can constrain selecting the disparity set d. The data cost D

35

enforces that the correspondences are similar, and the smoothness cost V enforces that the neighboring

nodes’ disparities are consistent. To minimize the energy function and acquire an appropriate disparity

set d, the BP-based algorithms perform an iterative process called message passing. However, the

shortage of the BP-based algorithms is that the energy function may not be convergent definitely.

Nevertheless, the disparity map could approach to a steady state after sufficient iterations.

(a) (b) (c)

Figure III-1 Illustrations of BP

(a) node plane; (b) message passing; (c) belief calculation.

For the requirement of real-time processing, the direct hardware implementation of BP-based

algorithms suffers from two design challenges: high computational complexity and storage in the

message passing. For the example of 640x480@30fps and the disparity range of 32, the computational

complexity is about 1,200 billion operations per second for the message passing, and the storage is

about 157Mbytes for messages.

To address above problems, various approaches have been proposed. Felzenszwalb and

Huttenlocher [25] proposed an efficient message passing to reduce computational complexity from

O(L
2
) to O(L), and the bipartite message approach to reduce 50% memory cost. Following their

approach, Yang et al. [27] implemented it on a high performance GPU, and Park et al. [28] also

designed an array processing architecture on two FPGA boards to achieve the performance of

320x240@30fps but with 880KB on-chip memory. Cheng et al. [29]-[33] proposed a tile-based BP

and a fully parallel architecture for each message passing processing element (PE) to reach real-time

i jh
Mt-1

h→i

Mt
i→j

Mt-1
g→i

Mt-1
k→i

D

g

k

i j

k

h

g

MT
h→i

MT
j→i

MT
g→i

MT
k→i

D

36

processing for the image size of 640x480. Nevertheless, all the implementation still suffers from high

memory cost.

In summary, though previous work used parallel PEs to conquer the high complexity, the resulted

logic still occupies too much area since each PE needs high area cost. In addition, all the work did not

solve the memory cost well due to their fixed memory access approach.

To solve the mentioned problems, we propose a hardware efficient architecture for various

BP-based algorithms through three techniques in Section 3.2. For the high memory cost, we propose a

spinning-message approach which rearranges the message configuration in an internal memory to save

50% memory cost. In addition, we propose a sliding-bipartite node plane that combines the advantages

of previous work to further reduce more memory cost. For the message passing PE, we propose a

buffer-free PE architecture which removes all the large buffers and shares common operators to reduce

logic cost without significant speed degradation. Both the proposed low memory access approaches

and the buffer-free PE architecture could be applied to various BP-based algorithms together to

significantly reduce their hardware cost as well as speed up to real-time processing without changing

their disparity accuracies.

3.1.2 Joint Bilateral Upsampling

The JBU algorithm [79] is proposed to scale up the various results of image processing, such as

tone mapping, colorization, photomontage, disparity map, and etc. The main idea of JBU is to apply a

high resolution image to guide the upsampling process. For upsampling a disparity map, given the

high resolution image IH and the low resolution disparity map DL, the high resolution disparity map DH

can be computed by

 𝐷𝐻(𝑐) =
1

𝜅
∑ 𝐷𝐿(𝑞𝐿) ∙ 𝑓(‖𝑐𝐿 − 𝑞𝐿‖) ∙ 𝑔(‖𝐼𝐻(𝑐) − 𝐼𝐻(𝑞)‖)

𝑞𝐿∈S

 , (III-2)

where f is the spatial kernel with the argument of spatial distance ||cL - qL|| in low resolution, and g is

the range kernel with the argument of color distance ||IH(c)– IH(q)|| in high resolution. Note that the

37

positions c, q are in the high resolution frame, and the positions cL, qL are their corresponding positions

in the low resolution frame. Both the two kernels are Gaussian weight function. In addition, κ is the

sum of weights for normalization, and S is the window of spatial kernel.

Based on the original JBU algorithm, various modified JBU algorithms are proposed with

different equation. Chan et al. [80] proposed the noise aware filter depth upsampling (NAFDU), which

adds the range kernel h for low resolution image to reduce the texture copy artifact. The equation of

NAFDU is defined as

𝐷𝐻(𝑐) =
1

𝜅
∑ 𝐷𝐿(𝑞𝐿)𝑓(‖𝑐𝐿 − 𝑞𝐿‖),𝛼𝑔(‖𝐼𝐻(𝑐) − 𝐼𝐻(𝑞)‖) + (1 − 𝛼)(‖𝐼𝐿(𝑐𝐿) − 𝐼𝐿(𝑞𝐿)‖)-

𝑞𝐿∈S

,

 (III-3)

where α is blending value related to the disparity variance. Using the additional h, the JBU algorithm

could resist the texture copy artifact due to its color distance in sampled frame. Thus, the effect of h is

increased for the region with low disparity variance. In contrast, the effect of g is increased for the

region with high disparity variance.

On the other hand, Riemens et al. [81] proposed the multi-step JBU algorithm that doubles the

resolution of disparity map in each iteration. This approach can reduce the computational complexity

by decreasing the window size of spatial kernel. In addition, the equation (III-2)is changed to

 𝐷𝐻(𝑐) =
1

𝜅
∑ 𝐷𝐿(𝑞𝐿) ∙ 𝑓(‖𝑐𝐿 − 𝑞𝐿‖) ∙ 𝑔(‖𝐼𝐿(𝑐𝐿) − 𝐼𝐻(𝑞)‖)

𝑞𝐿∈S

 , (III-4)

where the high resolution pixel IH(q) of (III-2) is replaced with the low resolution pixel IL(cL). The fast

multi-step JBU algorithm was implemented by a programmable DSP platform to achieve the

throughput of 720x576@50fps [82]. However, it is far from our target throughput due to the limited

resource in DSP platform.

For the above different JBU algorithms, their computational characteristics are the same as the

joint bilateral filtering (JBF), which is an extended version of bilateral filter (BF). The BF and the JBF

are respectively defined as

38

 𝐼′(𝑐) =
1

𝜅
∑𝐼(𝑞)𝑓(‖𝑐 − 𝑞‖)𝑔(‖𝐼(𝑐) − 𝐼(𝑞)‖)

𝑞∈𝑆

 (III-5)

and

 𝐽′(𝑐) =
1

𝜅
∑𝐽(𝑞)𝑓(‖𝑐 − 𝑞‖)𝑔(‖𝐼(𝑐) − 𝐼(𝑞)‖)

𝑞∈𝑆

 . (III-6)

Therefore, the existing acceleration approaches for JBF and BF could be applied to the JBU algorithm.

The state-of-the-art approaches proposed by Yang et al. [83] and Porikli [91] can achieve constant

time complexity. But they suffer from extremely high memory cost. This dissertation focuses on the

Porikli’s approach for JBF because we could take advantage of its computational characteristic of

single iterative raster-scan to reduce its memory cost.

The following two sections will analyze the computation of the baseline BP algorithm and the

JBF algorithm, and propose an architecture design for the key components to solve their design

challenges.

3.2 Analysis and Design of Baseline Belief Propagation

In this section, we first review the BP-based algorithms and points out their design challenges.

Then, we present the proposed low memory access approaches, and elaborate the buffer-free PE

architecture for message passing module, which is the most important component in BP-based

algorithm. Finally, the implementation results and comparisons are demonstrated.

3.2.1 Analysis of Belief Propagation

In this sub-section, we review various BP-based algorithms and then indicate the general design

problems in these algorithms.

1. Baseline BP

Sun et al. [24] first applied BP to disparity estimation. This baseline BP includes three steps: data

cost calculation, message passing, and disparity selection, which are performed in the graph of Figure

39

III-1 (a). In this dissertation, the graph is called node plane whose size equals to an image in the

baseline BP.

In the baseline BP, the first step is to calculate the data cost of each node, where the data cost is

identical to the matching cost in local approaches. According to the data cost, local approaches can

determine disparity maps using the winner-take-all scheme. In contrast, the baseline BP further

propagates it to neighboring nodes.

In the second step, the messages, which are the arrows in Figure III-1 (a), are added around all

nodes, and they propagate data cost to neighboring nodes. In the baseline BP, the propagating

mechanism is called message passing. Figure III-1 (b) illustrates the message passing for calculating a

new message, and its equation is as follows:

 𝑀𝑖→𝑗
𝑡 (𝑑𝑗) =

1

𝜅
min
𝑑𝑖
(𝑉(𝑑𝑗, 𝑑𝑖) + 𝐷(𝑑𝑖) + ∑ 𝑀𝑥→𝑖

𝑡−1(𝑑𝑖)

𝑥𝜖𝑁𝑒𝑖𝑔𝑏𝑜𝑟(𝑖)∖𝑗

) (III-7)

where M
t
i→j is a new message of the node j at the iteration t from the node i, and M

t-1
x→i is an old

message of the node i at the iteration t-1 from the nodes x which can be g, h, and k. In addition, V and

D are smoothness cost and data cost in (III-1), and κ is a normalization term. Note that the indexes di

and dj are respectively for the nodes i and j. To calculate the new message M
t
i→j, the three old

messages M
t-1
g→i, M

t-1
h→i, and M

t-1
k→i are summed up with D by the index di. Then the result is

convoluted with V by the cross indexes dj and di. For the message passing in BP-based algorithms, the

computation of (III-7) is performed on all four incoming messages of each node iteratively.

In the third step, the final incoming messages of each node are accumulated with its D to form a

belief. The belief is used to determine a disparity by the following equation, and its illustration is

shown in Figure III-1 (c).

 𝑑 = argmin
𝑖
(𝐷(𝑑𝑖) + ∑ 𝑀𝑥→𝑖

𝑇 (𝑑𝑖)

𝑥𝜖𝑁𝑒𝑖𝑔𝑏𝑜𝑟(𝑖)

) (III-8)

In summary, the baseline BP alternates the initial data cost with the belief deriving from the message

passing to deliver better disparity maps.

40

The major computational complexity of the baseline BP is in the message passing, and that is

O(4HWL
2
T), where H and W are the height and width of the node plane, L is the disparity range, and T

is the iteration count. The computation of the message passing can be undertaken by parallel PEs as

shown in Figure III-2. These PEs use the nodes’ data at the previous iteration to calculate new

messages for the next iteration. With sufficient parallel PEs, the baseline BP could achieve real-time

speed. However, that will result in high logic cost. In addition, high memory cost is also incurred since

all the messages in the node plane have to be stored.

Figure III-2 Configuration of the message passing PEs

2. Various BP-based Algorithms

Based on the baseline BP, various BP-based algorithms have been developed recently to address

the mentioned problems from the algorithm level.

To reduce the computational complexity, Felzenszwalb and Huttenlocher [25] proposed the

hierarchical BP that downsamples the node plane to multiple resolutions and then performs the

message passing from coarser levels to finer levels. Because the messages in the coarser levels could

propagate data cost to farther nodes and become initial messages for the next level, the disparity maps

could converge faster than the baseline BP. Therefore, the hierarchical BP could take less time and

deliver better disparity maps than the baseline BP.

To reduce the memory cost, our previously proposed block-based BP [36] partitions the node

plane into independent blocks. The memory cost is significantly reduced from image-scale to

block-scale, so that all data in the message passing can be placed in an internal memory, instead of an

…
…

iteration t
iteration t+1

Node plane

Node plane

PE PE PE PE……
T

H

W

41

external memory. However, its disparity maps would suffer from blocky artifact. Furthermore, Cheng

et al. [29] proposed the tile-based BP to improve the blocky artifact. In contrast with the independent

blocks, the tile-based BP preserves the boundary messages of each tile in an external memory to link

blocks.

For all the above algorithms, their computation shares the same feature: the message passing

performed in a rectangular node plane. For example, the node plane is image-scale in the baseline BP

and the hierarchical BP, and block-scale in the block-based BP and the tile-based BP. Therefore, in the

following we will show how to develop techniques for a rectangular node plane that can be applied to

various BP-based algorithms.

3.2.2 Proposed Low Memory Cost Access Approach

In a rectangular node plane, the memory cost is constituted of the messages and the data cost. In

this dissertation, we focus on the messages, which occupy the most of the cost. A straightforward

memory access approach for the messages is the ping-pong buffer approach, which needs a pair of

node planes and requires 8HWL memory. Unfortunately, this cost is too large to be on-chip. Even if the

messages are stored in an external memory, its required bandwidth is still impractical, especially for

the image-scale node planes.

1. Previous Work

To reduce the memory cost of messages, Yu et al. [35] compressed the messages by the envelope

point transform method that can achieve eight times compression without significant degradation of

disparity maps. However, this compression method needs the overheads of compression and

decompression.

On the other hand, much previous work focuses on the computing order of message passing on

the node plane to resize the node plane for memory cost reduction. Park et al. [34] proposed the fast

BP structure approach which resizes the pair of node planes from HW to TW, where T is usually

42

smaller than H. In our previous work [38], we proposed the in-place message update approach that

resizes one of the pair node planes from HW to 3W for buffering partial new messages temporally.

Felzenszwalb and Huttenlocher [25] delivered the bipartite scan which only needs one node plane, and

can also reduce computation to half. Different from above computing orders, Szeliski et al. [26]

proposed the BP-M scan which updates messages direction by direction for whole node plane to

accelerate convergence speed, and only needs one node plane. Although the BP-M scan can converge

faster than others, the memory cost of BP-M scan is still too high and could not be further reduced

because of its iterative directional process and overlapping data lifetime in all messages. Thus, the

BP-M scan is not discussed in this dissertation.

Excluding the BP-M scan, the memory access in the previous work belong to the fixed memory

access approach which binds messages at fixed memory positions, and thus would limit the possibility

to reduce memory cost. Figure III-3 shows the data dependency of the traditional fixed memory access

approach between successive iterations in a simplified 1-D node line, where each square represents a

memory position, the arrow inside the square represents a stored message, and the cross line linking

two messages (e.g. m3 at t1 to m2 at t2) represents that they have data dependency. In the traditional

approach, each node’s messages are stored at fixed memory positions. For example, the node n3’s

messages m3 are always located at the same memory position pos3 in all iterations. These messages

m3 are used to calculate the neighboring nodes n2’s and n4’s new messages m2 and m4 for next

iterations. However, the new messages cannot overwrite their old ones at the memory position pos2

and pos4 since their old ones are still needed for new messages computation at other nodes. Thus, an

access conflict would occur between the old and new messages of the neighboring nodes. To solve the

access conflict, a straightforward method is to allocate an additional memory to buffer the new

messages, but it will increase extra cost.

43

Figure III-3 Traditional fixed memory access approach in a 1-D node line for node n3 computation

2. Spinning-Message Approach

To address the access conflict and reduce memory cost, we propose the spinning-message

approach that frees the bind between the messages and the memory positions, and eliminates the extra

memory. In addition, the proposed approach could be applied to the reduction techniques mentioned in

previous sub-section to further save 50% memory cost.

Figure III-4 (a) shows the main idea of the proposed approach. The old messages of the center

node are used to calculate the new messages of the neighboring nodes, and their data life time is ended.

Therefore, the new messages of the neighboring nodes can overwrite the outdated messages without

access conflict, and are stored at the center memory positions instead of the neighboring memory

positions.

Based on the main idea, Figure III-4 (b) shows the details of the proposed spinning-message

approach by a 1-D node line for the node n3 as an example. Other nodes follow the same procedure.

At the iteration t1, the messages m3 are stored at the center memory position pos3 that is the

centralized mode. For the transition to the iteration t2, the messages m3 are used to calculate the new

messages m2 and m4 of the neighboring nodes n2 and n4. The old messages m3 can be replaced by the

new messages at the center memory position pos3 without the access conflict. After the calculation

n1 n2 n3 n4 n5

t1

t2

t3

t4

iteration

Node (memory position)

m4m2

m4m2

m4m2

m3m3

m3m3

m3m3

Old messages

of center node

Old messages

of neighboring nodes

New messages

of neighboring nodes

(pos1) (pos2) (pos3) (pos4) (pos5)

44

and replacement, the centralized mode changes to the distributed mode since every node’s messages

are distributed at its neighboring memory positions (e.g. m3 at pos2 and pos4) at the iteration t2. Then,

the distributed messages m3 are used to calculate the new messages m2 and m4, and the distributed

messages m3 can also be replaced by the new messages without the access conflict. With another

calculation and replacement, every node’s messages are returned to the centralized mode at the

iteration t3.

In summary, the messages are centralized at their own memory positions for odd iterations and

distributed at their neighboring memory positions for even iterations. With this approach, we can save

the memory while avoid the access conflict. Figure III-5 shows the proposed approach extended to a

2-D node plane.

(a)

(b)

Figure III-4 Proposed spinning-message approach

(a) main idea; (b) memory access in a 1-D node line for node n3 computation.

New messages

of neighboring nodes
Old messages

of center node

Overwriting

t1

t2

t3

t4

iteration

m3m3

m3m3 m4m2

m4m2

m3m3

m4m2

Old messages

of center node

New messages

of neighboring nodes

Centralized

mode

Distributed

mode

Centralized

mode

Distributed

mode

n1 n2 n3 n4 n5
Node

(memory position)
(pos1) (pos2) (pos3) (pos4) (pos5)

45

Figure III-5 Proposed spinning-message approach in a 2-D node plane for node n3 computation

3. Applications

The proposed spinning-message approach can be applied to different types of node plane to

further reduce their memory cost.

(a)

(b)

Figure III-6 Comparison of memory access approaches in different node planes

(a) proposed spinning-message approach, (b) traditional fixed memory access approach

n2 n4

t2→t3

Centralized

mode

n3n2 n4

t1→t2

n3n2 n4

Computating new
messages

Centralized

mode

Distributed

mode

n2 n4

Centralized

mode

n3 n3

t3→t4

Computating new
messages

t1 t2 t3 t4

Computating new
messages

T

H

W

H

T

H

W
Ping-pong buffer approach Sliding node plane Bipartite node plane

Fixed memory access

iteation

x

y

T

H

W

H

T

H

W

H

T
Proposed Sliding-bipartite node plane

Proposed spinning-message approach

Sliding node plane Bipartite node plane

46

(1) Sliding Node Plane

In the original BP, the messages in a node plane are iteratively updated by the space-first (x-y

plane) computing order, and the node plane moves along the iteration axis as shown in the ping-pong

buffer approach of Figure III-6 (a). In contrast, the sliding node plane moves orthogonal to the

iteration axis, and their messages are updated by the iteration-first computing order. The size of sliding

node plane is its projective area on the x-y plane, which is smaller than the original node plane.

Figure III-7 shows three sliding directions. In which, the sizes of node planes are WT for the

vertical sliding and HT for the horizontal sliding, and the diagonal sliding. The vertical sliding node

plane was proposed by the fast BP structure approach in [28]. However, its size is larger than the other

two because W is usually larger than H. Therefore, we recommend the horizontal sliding node plane,

which totally requires 8HTL memory for messages.

(a) (b) (c)

Figure III-7 Sliding node plane in different directions

(a) vertical sliding; (b) horizontal sliding; (c) diagonal sliding.

The memory cost can be further reduced to 4HTL by the proposed spinning-message approach as

shown in Figure III-6 (b). Figure III-8 shows the details of the spinning-message approach performing

on the horizontal sliding node plane. The initial state of the messages is shown in Figure III-8 (a),

where the front of the node plane arrives at the node n6. Then, in Figure III-8 (b), the new messages in

the node plane are computed from the node n7 to n2 step by step. With the spinning-message approach,

the new messages can overwrite the old messages at the same memory positions. After that, in Figure

III-8 (c), the front of node plane will slide to the node n7. According to the above flow, the

spinning-message approach could cooperate with the sliding node plane well to further save 50%

memory cost.

H

W

T

H

W

T
H

W

T

47

(a)

(b)

(c)

Figure III-8 Sliding node plane with the spinning-message approach

(a) the node plane slides to the node n6; (b) the computing order of the message passing; (c) the node

plane slides to the node n7.

t1

t2

t3

t4

iteration

t5

n1 n2 n3 n4 n5
node (memory position)

(pos1) (pos2) (pos3) (pos4) (pos5)
n6 n7

(pos6) (pos7)

t1

t2

t3

t4

iteration

t5

1

2

3

4

5
disparity

0

n1 n2 n3 n4 n5
node (memory position)

(pos1) (pos2) (pos3) (pos4) (pos5)
n6 n7

(pos6) (pos7)

t1

t2

t3

t4

iteration

t5

n1 n2 n3 n4 n5
node (memory position)

(pos1) (pos2) (pos3) (pos4) (pos5)
n6 n7

(pos6) (pos7)

48

(2) Bipartite Node Plane

The bipartite node plane was proposed in [25] that divides nodes into two parts, like a chessboard

as shown in Figure III-6 (a). In which, one part is computed at odd iterations, and the other is

computed at even iterations. Its memory cost is reduced from a pair of node planes in ping-pong buffer

approach to only one node plane of 4HWL.

Above memory cost can be further reduced to 2HWL by the proposed spinning-message as shown

in Figure III-6 (b). Figure III-9 shows the spinning-message approach performs on the bipartite node

plane at odd iterations and even iterations. At the odd iteration in Figure III-9 (a), the messages of the

white nodes are used to calculate the new messages of the black nodes, and these messages of the

black nodes can overwrite those of the white nodes. Then the state of node plane is transformed to

Figure III-9 (b). Similarly, the messages at the even iteration can be returned to the next odd iteration.

Thus by the spinning-message approach, only the white nodes need memory, and 50% memory cost

can be saved.

(a) (b)

Figure III-9 Bipartite node plane with the spinning-message approach

(a) message passing for white nodes at odd iterations; (b) message passing for black nodes at even

iterations.

(3) Proposed Sliding-Bipartite Node Plane

By combining the above sliding node plane and bipartite node plane, the memory cost can be

reduced to 4HTL. Furthermore, applying the proposed spinning-message approach, the memory cost

can be reduced to 2HTL as shown in Figure III-6 (b). Figure III-10 shows the spinning-message

approach performs on the sliding-bipartite node plane. In a similar way as the sliding node plane, the

front of the sliding-bipartite node plane can slide from the node n6 to n8 by the computing order in

49

Figure III-10 (b). Therefore, the proposed sliding-bipartite node plane takes advantages of the sliding

node plane and the bipartite node plane to reduce memory cost.

(a)

(b)

(c)

Figure III-10 Proposed sliding-bipartite node plane

(a) the node plane slides to the node n6; (b) the computing order of the message passing; (c) the node

plane slides to the node n8.

t1

t2

t3

t4

iteration

t5

n1 n2 n3 n4 n5
node (memory position)

(pos1) (pos2) (pos3) (pos4) (pos5)
n6 n7

(pos6) (pos7)
n8

(pos8)

t1

t2

t3

t4

iteration

t5

1

3

5
disparity

4

2

0

n1 n2 n3 n4 n5
node (memory position)

(pos1) (pos2) (pos3) (pos4) (pos5)
n6 n7

(pos6) (pos7)
n8

(pos8)

t1

t2

t3

t4

iteration

t5

n1 n2 n3 n4 n5
node (memory position)

(pos1) (pos2) (pos3) (pos4) (pos5)
n6 n7

(pos6) (pos7)
n8

(pos8)

50

3.2.3 Proposed Efficient PE

Following above proposed approaches for memory access, the message passing could be

performed by parallel PEs with the configuration in Figure III-13 (a). However, the logic of each PE

costs too much due to the high computational complexity of message passing. To conquer the high

logic cost, we propose the buffer-free PE architecture in this section.

1. Previous Work

In the message passing, both the computational complexity and logic cost are significantly

affected by the model of smoothness cost V. Kumar and Torr [37] took advantage of a truncated model

to propose a low-memory generalized BP. This reduction is effective if the convolution of (III-7) is

fully unrolled. On the other hand, Felzenszwalb and Huttenlocher [25] reduced the message passing

from O(L
2
) to O(L) by the benefit of a linear model. Figure III-11 presents the pseudo code of their

proposed message passing to calculate one new message. This code includes three loops: aggregation

and forward process, backward process, and normalization process. The latency of each loop is L

iterations.

Based on the above flow, Park et al. [34] directly designed a PE architecture as shown in Figure

III-12. In this architecture, the node plane additionally stores the data cost. By sequential computation,

four old incoming messages and data cost of a node are fetched, and four new messages of

neighboring nodes are produced. This architecture uses three pipeline stages corresponding to three

loops in Figure III-11. They are divided by the two large message buffers mf and mb with L message

entries, which dominate the hardware cost of this PE.

51

Figure III-11 Pseudo code of the message passing for calculating a new message

Figure III-12 Architecture of Park’s PE

2. Buffer-free PE Architecture

Because the message buffers are the major logic cost of the previous PE, the strategy in our

architecture is to remove all the message buffers of the previous PE. Figure III-13 (a) shows the overall

configuration of the parallel buffer-free PEs. The parallel PEs fetch and store data by the proposed low

memory access approaches, and each buffer-free PE can calculate four messages at the same time.

Aggregation and forward process

1 mf0(-1) = MAX

2 mini0 = MAX

3 Loop1:

4 for d=0 to L-1{

5 Ag0(d) = D(d) + M0
t-1(d) + M2

t-1(d) + M3
t-1(d)

6 mini0 = min{Ag0(d), mini0} + Kv

7 mf0(d) = min{Ag0(d), mf0(d-1)} + Cv

8 }

Backward process

9 mb0(-1) = -MAX

10 norm0 = 0

11 Loop2:

12 for d=L-1 to 0{

13 temp = min{mf0(d), temp + Cv}

14 mb0(d) = min{temp, mini0}

15 norm0 = norm0 + mb0(d)

16 }

Normalization process

17 norm0 = norm0 / L

18 Loop3:

19 for d=0 to L-1{

20 M0
t(d) = mb0(d) – norm0

21 }

Node plane Message passing PE

Ag1(d)

Ag2(d)

Ag3(d)

+

+

+

+

+

+

+

+

m
in

+

reg

mf0(d)

m
in

reg

Ag0(d)

Cv

+

Kv

mini0

mf0 m
in

+

reg

Cv

m
in

tem

p

+

reg

mb0(d)

mb0

norm0

-

mf0(L-1-d)

Aggregation circuit Forward circuit Backward circuit
Normalization

circuit

reg

reg

reg

reg

D(d)

D

M0
t-1

M1
t-1

M2
t-1

M3
t-1

Node plane

M0
t(d)

M1
t(d)

M2
t(d)

M3
t(d)

M0
t

M1
t

M2
t

M3
t

M3
t-1(d)

M2
t-1(d)

M0
t-1(d)

M1
t-1(d)

52

Figure III-13 (b) shows the detailed architecture of the buffer-free PE. Based on the pseudo code in

Figure III-11, we first propose the post-normalization approach that merges the computation of the

normalization on line 20 with the aggregation on line 5. The benefit of this merging is that the message

buffer mb could be eliminated, but the norm storing the normalization term should be changed to node

plane. It causes that the memory of each message in node plane is increased by one memory entry.

Second, we propose the convolution circuit that combines the forward process on lines 6 and 7 with the

backward process on lines 13 to 15. These two have identical computations, two adders and two

comparators, so that these computations can share the operators with additional multiplexers for

selecting data path. Thus we can remove the message buffer mf. Finally, we also add the pipelining

registers z0 and z1 to cut the critical path in this architecture.

The schedule of data access and computation in the proposed PE architecture are presented in

Figure III-13 (c). In the step (1), the normalization terms, the old messages and the data cost are read to

calculate the forward messages. In the step (2), the forward messages are stored in the node plane

sequentially. In the step (3), the forward messages are read to calculate the backward messages. Finally,

in the step (4), the backward messages and new normalization terms are stored in the node plane. The

memories of the node plane are implemented by two-port register files because the proposed PE read

and write them at the same time. Although the proposed PE takes about double latency of the Park’s PE,

the logic cost has been significantly reduced because all the message buffers are removed.

The proposed buffer-free PE can compute four messages of one node at the same time. It can

also compute one message of multiple nodes for different scan schemes by the following simple

modification. First, the post-normalized and aggregation circuit is modified to receive 3 messages.

Then, the convolution circuit is modified to be only one module. Finally, the accessed node plane

should be properly modified according to the specific scan scheme. This modification can make the

proposed PE work well for one message, but will slightly degrade the hardware efficiency due to no

sharing operators in the post-normalized and aggregation circuit.

53

(a)

(b)

(c)

Figure III-13 Proposed architecture

(a) configuration of parallel PEs on the sliding-bipartite node plane; (b) architecture of the buffer-free

PE; (c) schedule of the buffer-free PE.

H

T

iteation

x

y

Parallel buffer-free PEsSliding-bipartite node plane

…
…

PE

PE

PE

PE

 Buffer-free PE

-

-

-

-
+ +

+ +

+

+

+

+

reg

reg

reg

reg

Post-normalization &
aggregation circuit

m
in

+Cv

reg

reg
+

m
in

z0

z1

Kv

reg

mini0

mb0(d)

D(d)

M0
t-1(d)

M1
t-1(d)

M2
t-1(d)

M3
t-1(d)

mf0(L-1-d)

Ag1(d)

Ag0(d)

Ag2(d)

Ag3(d)

norm0

mf0(d)

mf1(L-1-d)
mf2(L-1-d)

mf3(L-1-d)

Convolution circuit

nor

m0nor

m1nor

m2nor

m3

Node plane

D M0
t-1

norm0

M1
t-1

norm1

M2
t-1

norm2

M3
t-1

norm3

D(d), M0
t-1(d), M1

t-1(d), M2
t-1(d), M3

t-1(d)

norm0,norm1,norm2,norm3

mf0(L-1-d), mf1(L-1-d), mf2(L-1-d),mf3(L-1-d)

mf0(d),mf1(d),mf2(d),mf3(d)

mb0(d),mb1(d),mb2(d),mb3(d)

norm0,norm1,norm2,norm3

(1) (2)

(3) (4)

temp

Node plane:

read

Buffer-free PE

Read D, M0
t-1, M1

t-1, M2
t-1, M3

t-1

1 10 20 30 40 50 60 70

Produce Agr0, Agr1, Agr2, Agr3

Write mf0, mf1, mf2, mf3

Produce mini0, mini1, mini2, mini3

Read mf0, mf1, mf2, mf3

Produce mb0, mb1, mb2, mb3Produce mf0, mf1, mf2, mf3

Write mb0, mb1, mb2, mb3

Write norm0, norm1, norm2, norm3

(cycle)

Read norm0, norm1, norm2, norm3

Node plane:

write

(1)

(2)

(3)

(4)

54

3.2.4 Implementation Result

1. Memory Cost Comparison

The memory cost is affected by the type of node plane and memory access approach. As

mentioned in Section III, the type of node plane would affect the computing order of PEs, and the

memory access approach would provide a data access order for node planes. Both of the type of node

plan and the memory access approach do not change the computational efficiency of the message

passing but the memory cost.

Table III-1 compares the memory cost used by various types of node plane adopting the

traditional fixed memory access approach and the proposed spinning-message approach. The size of

node plane is substituted with block-scale and image-scale magnitudes, and each entry of messages is

16-bit. Compared to the traditional approach, most types of the node planes can save 50% memory

cost in both the scales with the proposed spinning-message approach. The only exception is our

previous in-place message node plane that has less saving with our approach since its original memory

cost has been reduced to near 50%. In the comparison of overall hardware efficiency, the proposed

spinning-message approach is better than the traditional approach. The reasons are that the proposed

approach needs the same cycle counts as the traditional one while saving much memory cost. The only

overhead of the proposed approach is a simple address generator, which has similar complexity as that

in the traditional one.

55

Table III-1 Comparison of memory cost in memory access approaches for the iteration count of 30

Type of Node

Plane

Memory Access

Approach

Memory Cost

of Message

(16-bit)

Block-scale Image-scale

W=16,

H=16

(KB)

W=32,

H=32

(KB)

W=320,

H=240

(KB)

W=640,

H=480

(KB)

Ping-pong

buffer

Fixed 8HWL 131 524 39,321 157,286

Spinning-message 4HWL 65 262 19,660 78,643

In-place

Message [38]

Fixed 4(HW+3W)L 77 286 19,906 79,134

Spinning-message 4HWL 65 262 19,660 78,643

Vertical Sliding

[34]

Fixed 8TWL 131 491 4,915 9,830

Spinning-message 4TWL 65 245 2,457 4,915

Horizontal

Sliding

Fixed 8HTL 131 491 3,686 7,372

Spinning-message 4HTL 65 245 1,843 3,686

Bipartite

[25]

Fixed 4HWL 65 262 19,660 78,643

Spinning-message 2HWL 32 131 9,830 39,321

Sliding-Biparti

te

Fixed 4HTL 65 245 1,843 3,686

Spinning-message 2HTL 32 122 921 1,843

Figure III-14 compares the memory cost among different types of node plane using the same

proposed spinning-message approach for different sizes of node plane. In this figure, all the memory

cost ratios are relative to the ping-pong buffer with the traditional fixed memory access approach.

Compared to the sliding node planes, the bipartite node plane can save more memory cost in the

block-scale. On the contrary, the sliding node planes can reduce more in the image-scale. The

proposed sliding-bipartite node plane combines their benefits to reduce more memory cost in the

block-scale and image-scale. Its memory cost reduction can achieve 1.2% in the image-scale of

640x480 and 23.4% in the block-scale of 32x32. Note that the sliding-based node planes would

decrease its memory cost reduction when the iteration count T is larger than H or W.

56

Figure III-14 Ratio of memory cost in different node planes with spinning-message approach

2. Implementation

The proposed buffer-free PE architecture has been implemented by Verilog and synthesized by

the 90-nm CMOS technology process. To compare with the Park’s PE [34], we also implemented their

PE design since their original implementation is on two FPGA boards. In addition, the Cheng’s PE

[31] is implemented in the same design condition for a fair comparison since some details are not

disclosed in the dissertation. All the data widths are 16-bit in each implementation. Table III-2

compares the logic cost of the proposed buffer-free PE with the other PEs. In these PEs, the Cheng’s

PE takes the least latency to calculate a new message because of its fully parallel architecture. The

Park’s PE and the proposed buffer-free PE belong to sequential architecture that causes higher latency.

Although the proposed PE requires the most latency, its hardware efficiency is 3.6 times of the Park’s

PE and 1.4 times of the Cheng’s PE. That is because we remove all the message buffers and common

circuits to reduce logic cost, as well as add a pipeline stage on its critical path in the proposed

buffer-free PE.

Note that the hardware efficiency in our PE excludes the memory overhead by the

post-normalization approach, which is highly related to the size of node plan, instead of the number of

PE. Thus, our hardware efficiency will be still higher than Cheng's design when the size of node plan

25.0% 23.4%

2.3% 1.2%
0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

W=16,
H=16

W=32,
H=32

W=320,
H=240

W=640,
H=480

R
a

ti
o

Size of Node Plane

Ping-pong Buffer
with Fixed

In-place Message [38]
with spinning-message

Vertical Sliding [34]
with spinning-message

Horizontal Sliding
with spinning-message

Bipartite [25]
with spinning-message

Proposed Sliding-Bipartite
with Spinning-message

57

is smaller than 35 for one PE case. For the 32 PEs case as in Table 3, the proposed approach will still

have better hardware efficiency for node planes up to 35x32 (1,120) nodes. With this size, our

proposed PE is suitable for the block-scale BP algorithms, such as block-based BP and tile-based BP,

whose overall cost will be more practical than that in the image-scale BP.

Table III-2 Logic cost comparison of PE architectures

Cheng’s PE

[31]

Park’s PE

[34]

Proposed

buffer-free PE

Proposed

buffer-free PE

(32 PEs)

Operating Frequency

(MHz)
100 222 285 285

Disparity Range (L) 32 32 32 32

CMOS Tech. process UMC 90-nm UMC 90-nm UMC 90-nm UMC 90-nm

Gate Count 69.6K 50K 8.3K 256.6K

Latency (Cycle)
1

(1 msg)

32

(4 msg)

68

(4 msg)

68

(128 msg)

Throughput

(Node/Second)
25,000K 6,938K 4,191K 134,117K

Hardware Efficiency

(Throughput/Gate count)
359 139 505 505

The proposed low memory access approach and buffer-free PE architecture could be generally

applied to the various BP-based algorithms together. Table III-3 shows the implementation results of

four typical BP-based algorithms for the real-time constraint of 640x480 and the disparity range of 32.

In these BP-based algorithms, their algorithm flows and iteration counts affect the required

throughput. The message passing is performed for the baseline BP on a whole image, and for the

hierarchical BP on multiple resolution images with different iteration counts. Thus, their required

throughput is proportional to the image size and corresponding iteration count. For the block-based

and tile-based BP, the message passing is performed on each block (tile) in an image. In addition to the

iteration count for each block, the tile-based BP has the outer iteration count for re-processing the

image. Their required throughput is proportional to the total iteration count as well as the block’s count

and size. To satisfy the required throughput of these BP-based algorithms, we should use sufficient

parallel PEs. Note that the maximal number of PE is equal to H due to the configuration of parallel

58

PEs in the sliding-bipartite node plane. As a result, the block-based BP and tile-based BP designs just

approach to real-time speed. With the buffer-free PE architecture, the logic cost of all the BP-based

algorithms are less than the gate counts of 300K.

The memory cost of this table contains the messages and the data costs, which is proportional to

the size of sliding-bipartite node plane according to Table III-1. The total memory cost of the baseline

BP and hierarchical BP is larger than others because they allocate image-scale node planes. In contrast,

the block-based BP and tile-based BP are more suitable to be integrated into stereoscopic video

systems.

Table III-3 Implementation results of various BP-based algorithms

 Baseline BP

[24]

Hierarchical BP

[25]

Block-based BP

[36]

Tile-based BP

[29]

Iteration T 30 5, 5, 10, 5 30 inner=8, outer=2

Required Throughput

(Node/Frame)

4,608,000 1,212,000 4,608,000 4,915,200

Operating Frequency

(MHz)

285 285 285 285

Number of PE 33 9 32 32

Gate Count (K) 273.9 74.7 265.6 265.6

Size of Sliding-Bipartite

Node Plane

30x480

(image-scale)

5x480

(image-scale)

30x32

(block-scale)

8x32

(block-scale)

Memory Cost of Messages

and Data costs (KB)

2,793 465 186 49

FPS 30.01 31.12 29.11 27.29

frame size=640x480, disparity range=32

3.3 Analysis and Design of Joint Bilateral Filtering

In this section, we first review the previous acceleration approaches for BF and JBF. Then we

focus on the integral histogram approach and point out its design challenges. To solve it design

challenges, we propose three memory reduction methods, and a real-time architecture design for the

JBF, which is the most important component in JBU for disparity estimation.

3.3.1 Related Acceleration Approaches

Various acceleration approaches for BF have been proposed, and can be classified into two

categories: target-pixel-first approach and support-pixel-first approach, according to their

59

computational characteristics, as illustrated in Figure III-15. Most of the acceleration approaches could

be applied to the JBF.

The target-pixel-first approach is an aggregation process that focuses on a target pixel c and

accumulates its support pixels q. On the other hand, the support-pixel-first approach is a diffusion

process that regards a support pixel q as a center to diffuse for its target pixels c. With the

classification, the previous approaches are reviewed in this Section, and their computational

complexity and memory cost are compared in Table III-4. In which, R is the range domain from 0 to

255 for gray-level

(a) (b)

Figure III-15 Classification of BF acceleration approaches

Table III-4 Comparison of BF acceleration approach in computational complexity and memory cost

Approach Computational Complexity

(per pixel)

Memory Cost

(per frame)

 Brute-Force All O(|S|2) 0

Support

Pixel

First

Basic LUT Construction O(|R|)
4MN

2-D Conv. by FFT O(|S|log|S|)

Durand and Dorsey

[84]

Piecewise-linear

Subsampling

LUT Construction O(|R|/sr) 4MN/ss
2

2-D Conv. by FFT O(|S|/ss
2log(|S|/ss

2))

Yang et al.

[83]

Piecewise-linear LUT Construction O(|R|/sr)

4MN 2-D Conv. by Approx.

Gaussian

O(1)

Paris and Durand

[85]

Bilateral Grid LUT Construction O(|R|/sr) MN|R|/(srss
2)

3-D Conv. by FFT O(|S||R|/(srss
2)log(|S||R|/(srss

2)))

Target

Pixel

First

Pham and Vliet

[89]

Separable 1-D Aggre. for Col. O(|S|)
0

1-D Aggre. for Row O(|S|)

Basic Histogram Histogram Calculation O(|R||S|2)
0

1-D Conv. O(|R|)

Huang

[90]

Extended

Histogram

Histogram Calculation O(|R||S|)
|S+E|2|R|

1-D Conv. O(|R|)

Weiss

[92]

Distributed

Histogram

Histogram Calculation O(|R|log|S|)
|S+E|2|R|

1-D Conv. O(|R|)

Porikli

[91]

Integral

Histogram

Histogram Calculation O(|R|/sr) MN|R|/sr 1-D Conv. O(|R|/sr)

M: frame height, N: frame width, |S|: filter window width, |R|: intensity range

ss: quantization factor for S, sr: quantization factor for R, E: extension pixel count

c

S

q

Target-pixel-first

approach

q

S

c

Support-pixel-

first approach

60

1. Support-Pixel-First Approaches

The main idea of the support-pixel-first approaches is to convert the original nonlinear

convolution to linear convolution, so that the linear convolution can be accelerated by existing

algorithms, such as the Fast Fourier transform (FFT). To convert (III-5) to linear convolution, the

terms g(||I(c)-I(q)||)I(q) and g(||I(c)-I(q)||) are pre-calculated and stored in memories as look-up tables

(LUT). Hence, the approaches consist of two steps, LUT construction and linear convolution. For the

implementation issues, the former needs a large storage and the later needs an efficient computation.

Durand and Dorsey [84] first proposed the support-pixel-first approach that contains the

piecewise-linear scheme and the subsampling scheme to respectively quantize the range domain R and

spatial domain S. Both the memory cost and computational complexity can be reduced by the

quantization factors sr, ss
2
. Based on the piecewise-linear scheme, Yang et al. [83] adopted a

constant-time approximate Gaussian filtering for the convolution to achieve real-time processing by

the GPU programming.

Paris [85], [86] indicates that the piecewise-linear scheme would suffer from poor approximation

on texture’s discontinuity since it cannot exactly interpolate dense results. To address that, the bilateral

grid scheme was proposed to perform a 3-D convolution on S× R, instead of the typical 2-D

convolution only on S. However, its memory cost and computational complexity are scaled on the

dimension R. Following the bilateral grid scheme, Chen [87] implemented it by the GPU programming

to achieve real-time processing. In addition, Adams [88] adopts the Gaussian KD-tree to improve its

speed.

To sum up, the support-pixel-first approaches can convert BF and JBF to linear convolution but

suffer from high memory cost for LUTs. Unfortunately, the size of LUTs should be

frame-scale-magnitude since their algorithms iteratively performs on whole frame.

2. Target-Pixel-First Approaches

61

The main idea of the target-pixel-first approaches is to aggregate the support pixels with kernels,

which needs the computational complexity of O(|S|
2
). To accelerate it, Pham and Vliet [89] proposed

the separable BF that directly changes the original 2-D aggregation to two-step 1-D aggregation for

columns and a row. Thus it can reduce the computational complexity to O(|S|) but suffers from the

axis-aligned artifact.

On the other hand, the histogram-based approaches could reduce computation without significant

quality degradation. In the approaches, the space kernel f is simplified to a box filter with constant

coefficient, so that (III-5) is rewritten as

 𝐼′(𝑐) =
∑ 𝑔(‖𝐼(𝑐) − 𝐼(𝑞)‖)𝐼(𝑞)𝑞∈𝑆

∑ 𝑔(‖𝐼(𝑐) − 𝐼(𝑞)‖)𝑞∈𝑆
=
∑ 𝑔(‖𝐼(𝑐) − 𝑏‖)𝑐𝑐(𝑏)𝑏𝑏∈𝑅

∑ 𝑔(‖𝐼(𝑐) − 𝑏‖)𝑐𝑐(𝑏)𝑏∈𝑅
 , (III-9)

Before convoluting each support pixel I(q) with g, the support pixels in the filter window S are

classified into the pixel count histogram hcc, whose subscript refers to the target pixel c. Figure III-16

shows the concept of the classification. According the support pixel I(q), the corresponding bin b is

accumulated. For the exact result of gray-level, the number of bin Nb is set as 256. After classifying all

support pixels, the histogram bin value hcc(b) can refer to the number of support pixels with the

intensity b in S. Then, (III-9) can be finally calculated by 1-D convolution in the range domain R,

instead of the original space domain S. In summary, the histogram-based approaches include two parts:

histogram calculation and 1-D convolution. The key point of the histogram-based approaches is that

the convolution can be decreased from the larger |S|
2
 to |R|. However, the major computational

complexity is O(|R||S|
2
) in the histogram calculation that demands other acceleration techniques.

Figure III-16 Concept of histogram-based approaches

c

S

q

0 255

hcc(b)

b

…
…

Nb

62

To speed up the histogram calculation, Huang [90] proposed the extended histogram approach

that calculates multiple target pixels’ histograms and shares their partial histograms in run time. Its

computational complexity can be reduced to O(|R||S|), but it spends extra memory cost. Based on the

extended histogram approach, Weiss [92] proposed the distributed histogram approach that

reassembles the histogram calculation of each row, and reduces computational complexity to

O(|R|log|S|). Furthermore, Porikli [91] proposed the integral histogram approach to decrease

computational complexity to O(|R|/sr), which is independent of the filter window size. In addition, the

factor sr quantizes the support pixel’s intensity. The integral histogram approach can be faster than the

brute-force approach when |R|/sr is smaller than |S|
2
. That implies this approach is suitable to be

applied when BF has large filter window size. Based on the integral histogram approach, Ju [93]

modified (III-9) to

 𝐽′(𝑐) =
∑ 𝑔(‖𝐼(𝑐) − 𝐼(𝑞)‖)𝐽(𝑞)𝑞∈𝑆

∑ 𝑔(‖𝐼(𝑐) − 𝐼(𝑞)‖)𝑞∈𝑆
=
∑ 𝑔(‖𝐼(𝑐) − 𝑏‖)𝑖𝑐(𝑏)𝑏∈𝑅

∑ 𝑔(‖𝐼(𝑐) − 𝑏‖)𝑐𝑐(𝑏)𝑏∈𝑅
 , (III-10)

to further support JBF. Different from (III-9), the histogram in the numerator is the pixel intensity

histogram hic that accumulates the pixel intensity for each bin, instead of the pixel count in hcc.

In summary, the integral histogram approach is the state-of-the-art in target-pixel-first approaches,

but its memory cost is frame-scale-magnitude, like the support-pixel-first approaches. However, as

mentioned above, the memory cost of the support-pixel-first approach is hard to be reduced due to its

iterative computing, instead of progressive computing in the integral histogram approach. Thus, this

dissertation focuses on the integral histogram approach.

3.3.2 Analysis of Integral Histogram Approach

In this Section, we introduce the integral histogram approach in details, and then analyze the

design challenges of JBF, which can be applied to BF as well.

1. Integral Histogram Approach

63

Table III-5 presents the computational flow and computational analysis of the integral histogram

approach for JBF to calculate 1-pixel result, which consists of the integration, extraction, kernel

calculation, and convolution processes. In which, the former two are for the histogram calculation step,

and the latter two are for the 1-D convolution step.

For ease of explanation, we use the area view to show how this approach operates and the

memory view to show the memory usage, as illustrated in Figure III-17 (a). In the area view, IHO
X
 is a

histogram of the rectangular area stretched from the pixel O to X. Thus, the addition and subtraction of

IH can be regarded as area merging and cutting, respectively. In the memory view, the data of IHO
X
 are

stored at X, and the gray region represents occupied memory usage. With these representations, Figure

III-17 (b) and (c) illustrate the integration and extraction processes.

Table III-5 Computational flow and analysis for a pixel in the integral histogram approach

Process
Complexity

(operation)

BW for IH

(data)

BW for pixel

(data)

Integration process:

Pixel count histogram hcc

Loop b=0 to Nb-1

 IHcO
S
(b)=IHcO

Q
(b)+IHcO

R
(b)-IHcO

P
(b)

 IHcO
S
(IS) += 1

Pixel intensity histogram hic

Loop b=0 to Nb-1

 IHiO
S
(b)=IHiO

Q
(b)+IHiO

R
(b)-IHiO

P
(b)

 IHiO
S
(IS) += Js

ADD: 3Nb

ADD: 1

ADD: 3Nb

ADD: 1

4Nb

4Nb

2 pixels

Extraction process:

Pixel count histogram hcc

Loop b=0 to Nb-1

 hcc(b) = IHcO
D
(b)+IHcO

A
(b)-IHcO

B
(b)- IHcO

C
(b)

Pixel intensity histogram hic

Loop b=0 to Nb-1

 hic(b) = IHiO
D
(b)+IHiO

A
(b)-IHiO

B
(b)- IHiO

C
(b)

ADD: 3Nb

ADD: 3Nb

4Nb

4Nb

Kernel calculation process:

Loop b=0 to Nb-1

 G(b) = g(|Ic-b|)

ADD, LUT: Nb

1 pixel

Convolution process:

Nu=0, De=0

 Loop b=0 to Nb-1

 De += G(b) x hcc(b)

Nu += G(b) x hic(b)

 Result = Nu / De

MUL, ADD: Nb

MUL, ADD: Nb

DIV: 1

1 pixel

Total 17Nb+3 16Nb 4 pixels

64

(a) (b) (c)

Figure III-17 Concept of integral histogram approach

(a) representation of an integral histogram IHO
X
 for the region from O to X in area view and memory

view, (b) integration process performed by raster-scan order to compute the integral histogram IHO
S
, (c)

extraction process performed to extract the histogram HABCD of the rectangle ABCD.

First, the integration process progressively calculates the IH of each pixel using the equation,

 𝐼𝐻𝑂
𝑆 = 𝐼𝐻𝑂

𝑄
+ 𝐼𝐻𝑂

𝑅 − 𝐼𝐻𝑂
𝑃 + 𝐵𝑖𝑛(𝐼𝑆) . (III-11)

For the pixel count histogram hcc and the pixel intensity histogram hic, their IHs (i.e. IHc and IHi) are

computed separately as shown in Table III-5. For hcc, Bin(IS) is 1 for the corresponding bin and 0 for

others. On the other hand, for hic, this term is Js for the corresponding bin, and also 0 for others. After

this process, the IH of each pixel is produced and stored into memory.

Second, given the IHs, the extraction process can extract the histogram hcc or hic of the filter

window ABCD centered by the target pixel c using the equation,

 𝐻𝐴𝐵𝐶𝐷 = 𝐼𝐻𝑂
𝐷 + 𝐼𝐻𝑂

𝐴 − 𝐼𝐻𝑂
𝐵 − 𝐼𝐻𝑂

𝐶 . (III-12)

As shown in Figure III-17 (c), a histogram with arbitrary filter window size can be obtained by using

the IHs of four corners. With this property, the integral histogram approach can reduce computational

complexity to independent of filter window size.

IHO
X

X

Area view

Memory view

O

X

Integral histogram

(region from O to X)

Storing position

SR
Q

O

P

+IHO
R

−IHO
P

IHO
S

+Bin(Is)

SR
QP

Area view

Memory view

Integration process

+IHO
Q

Combining 3 integral

histograms and 1 bin

Reading positions P, Q, R

Writing position S

DC

B

O

A

D

BA

C

Area view

Memory view

Extraction process

HABCD

Combining 4

integral histograms

−IHO
C

+IHO
A

+IHO
D

−IHO
B

Reading positions A, B, C, D

65

Third, the kernel calculation process computes the range kernel by a range table, which includes

256 items for the 256 possible values of ||Ic-b||. Finally, given the range kernel g and the histograms hcc

and hic, the convolution process calculates the result of target pixel c by (III-10).

2. Design Challenges

Since the complexities listed in Table III-5 are pixel wise as well as bin number dependent, they

will grow quickly as resolution and bin number grow. The detailed design challenges are described

below.

(1) High Memory Cost for Integral Histogram

During the integration process, all the IHs of whole image are stored in memory. BF needs a

frame-scale-magnitude memory for hcc, and JBF additionally needs another one for hic. Therefore, the

total memory cost of JBF is

 𝑀𝑁 ⋅ 𝑁𝑏𝑤𝑏 +𝑀𝑁 ⋅ 𝑁𝑏(𝑤𝑏 + 8) , (III-13)

where the former term is for hcc, and the later term is for hic. M and N is the frame height and width,

Nb is the number of bin, and wb is the bit width of a bin. Note that wb is related to the maximal area of

integration, and its value equals log2(MN). In addition, the bit width of hic is more than hcc by 8 bits

because the intensity of a pixel requires 8 bits.

Above memory cost would be 829.4 Mbytes for the HD1080p resolution (i.e. N=1920, M=1080,

wb=21, Nb=64). For a VLSI design, these massive data could be configured into off-chip DRAM or

on-chip SRAM. However, the off-chip memory suffers from longer access latency and limited

bandwidth usage in a system. Hence, our strategy for the design challenge is to reduce the memory

requirement and enable data be stored in on-chip memory.

(2) High Computational Complexity in All Processes

According to the complexity in Table III-5, generating 1-pixel result needs 15Nb+2 additions, 2Nb

multiplications, and 1 division. If Nb is 64, the total complexity will be 2,262.3 million operations for

66

an HD1080p image. To meet above demands, a VLSI design with sufficient parallel operators is

necessary.

(3) High Bandwidth in Integration and Extraction

In Table III-5, the bandwidth for IH requires 16Nb for 1-pixel result, and that will reach 106.168

Gbits for an HD1080p image as shown in Table III-8. That is because the IHs are accessed frequently.

With the strategy for the memory cost problem, the IHs are stored in on-chip memory, and its data bus

should be increased to address the high bandwidth problem. However, it results in over-partitioned

memory and increased area. Thus, a method to reduce the bandwidth is needed.

(4) Large Range Table in Kernel Calculation

In the kernel calculation process, a range table with 256 items is needed. However, with the

parallel operations for the computational complexity problem, this table should be duplicated. Thus,

both the size and number of the range table results in large area.

In summary, the integral histogram approach can speed up JBF and BF well but suffers from

above design challenges. To address them, a VLSI design with suitable memory reduction and

architecture design techniques is necessary.

3.3.3 Proposed Memory Reduction Methods

To solve the high memory cost problem, we can takes advantage of the raster-scan computing

order to reduce the memory cost from a frame to a multiple rows by the runtime updating method

(RUM). The memory cost could be further reduced by the stripe-based method (SBM) to slice frame

into stripes. Finally, we propose the sliding origin method (SOM) that moves the origin of each IH

stripe progressively with the computing and can reduce the multiple row buffers to single row buffer.

With these memory methods, the memory cost can be reduced to 0.003%-0.020%. The details of the

proposed methods are described below.

1. Runtime Updating Method (RUM)

67

The concept of the RUM is to perform the integration process and the extraction process at the

same time, instead of two separate iterations in the original flow. Figure III-18 illustrates its memory

configuration in the memory view. In Figure III-18 (a), the integration process is from the pixel O to D,

and the extraction process can extract the histogram HABCD. From the data lifetime analysis, all the IHs

before the pixel A are unnecessary. Thus, only the IHs from A to D require memory space, so that the

memory cost is

 |𝑆|𝑁 ⋅ 𝑁𝑏𝑤𝑏 + |𝑆|𝑁 ⋅ 𝑁𝑏(𝑤𝑏 + 8) , (III-14)

where M in (III-13) is replaced by the filter window width |S|.

Figure III-18 (b) and (c) illustrate that the memory is updated when the two processes moves to

the next pixel S. In Figure III-18 (b), the integration process calculates the new IHO
S
 using IHO

D
, IHO

Dˊ
,

IHO
Sˊ

, and then the new IHO
S
 can overwrite the memory position of the discarded IHO

A
. In Figure

III-18 (c), the extraction process can extract HPQRS. With the proposed RUM, the memory cost could

be reduced from a full frame to a partial frame. This method can gain considerable reduction since |S|

is usually much smaller than M.

(a) (b) (c)

Figure III-18 Runtime updating method (RUM)

(a) extraction for HABCD, (b), integration to S, (c) extraction for HPQRS

2. Stripe-Based Method (SBM)

The main idea of the SBM is to slice the whole frame into many vertical stripes, and the

integration and extraction processes are performed stripe by stripe. Figure III-19 illustrates a whole

frame partitioned into stripes. Note that the integration process should additionally be carried out on

the extended region, which contains the surrounding support pixels for the target pixels on the stripe

boundary. Thus, the total memory cost of the SBM is

D

BA

C
|S |

N

O

Memory view

D

BA

C
S'D'
S

O

Memory view

D

BA

C
S'D'
S

O

P Q

R

Memory view

68

 𝑀(|𝑆| + 𝑤𝑠 − 1) ⋅ 𝑁𝑏𝑤𝑏 +𝑀(|𝑆| + 𝑤𝑠 − 1) ⋅ 𝑁𝑏(𝑤𝑏 + 8) , (III-15)

where ws is the stripe width, and wb equals log2[M(|S|+ws-1)]. Compared to the original cost in (III-13),

the SBM could reduce significant memory if (|S|+ws-1) is much smaller than N. The overhead of the

SBM is that the extended regions result in extra computation and bandwidth in the integration process

due to repeated performing on these regions.

Figure III-19 Stripe-based method (SBM)

3. Sliding Origin Method (SOM)

The concept of the SOM is to vertically slide the origin pixel O with the integration and

extraction processes to reduce memory cost from a plane to a line as shown in Figure III-20. With the

sliding origin pixel, the two processes can be simplified as described below.

For the extraction process in the area view of Figure III-20 (a), the original IHO
A
 and IHO

B
 are

zero because O is under A and B, and they cannot form meaningful histogram rectangles. Hence, the

equation (III-12) can be simplified to

 H𝐴𝐵𝐶𝐷 = 𝐼𝐻𝑂
𝐷 − 𝐼𝐻𝑂

𝐶 . (III-16)

For the integration process in Figure III-20 (b), the new IHO
S
 is computed by

 𝐼𝐻𝑂
𝑆 = 𝐼𝐻𝑂

𝐷 + 𝐼𝐻𝑂
𝑆′ − 𝐼𝐻𝑂

𝐷′ + 𝐵𝑖𝑛(𝐼𝑆) . (III-17)

However, the S΄ and Dˊ are on the previous row of S and D, and their corresponding origin should be

O’, instead of O. Therefore, the IHO
Sˊ

 and IHO
Dˊ

 in (III-17) should be changed to IHOˊ
Sˊ

 and IHO΄
Dˊ

 by

 𝐼𝐻𝑂
𝑆 = 𝐼𝐻𝑂

𝐷 + 𝐼𝐻𝑂′
𝑆′ −𝐵𝑖𝑛(𝐼𝑄) − 𝐼𝐻𝑂′

𝐷′ + 𝐵𝑖𝑛(𝐼𝑆) . (III-18)

|S|/2 |S|/2wS

Stripe

Extended region
Stripe boundary

M

Memory view

69

With above simplification, the required memory space could be reduced to

 𝑁 ⋅ 𝑁𝑏𝑤𝑏 +𝑁 ⋅ 𝑁𝑏(𝑤𝑏 + 8) , (III-19)

where wb equals log2(|S|N) since the maximal area of integration is |S|N. Compared to the original cost

in (III-13), the height dimension M is eliminated, and wb is much smaller.

(a) (b) (c)

Figure III-20 Sliding origin method (SOM)

(a) extraction process with sliding origin O, (b) integration process to next pixel S, (c) modified

integration process to next pixel S.

4. Combination

The proposed memory reduction methods could be simply combined as follows. First, the SBM

partitions a whole frame into stripes. Then, in each stripe, the RUM and SOM are performed row by

row. This combination can reduce the memory cost to

 (|𝑆| + 𝑤𝑠 − 1) ⋅ 𝑁𝑏𝑤𝑏 + (|𝑆| + 𝑤𝑠 − 1) ⋅ 𝑁𝑏(𝑤𝑏 + 8) , (III-20)

where wb equals log2[|S|(|S|+ws-1)]. Compared to the original cost in (III-13), M is decreased to 1 due

to the RUM and SOM, and N is decreased to (|S|+ws-1) due to SBM.

3.3.4 Proposed Architecture

DC

BA
O

DC

Area view

Memory view

+IHO
D−IHO

C

D

A
O

C
S'D'

P

R

B Q

O

SD
S'D'

O

Area view

Memory view

S

+IHO
D

−IHO
D’ +Bin(Is)+IHO

S’

SDC R
S'D'

B QA PO'

SD
S'D'

O
O'

O

Area view

Memory view

+IHO
S’= IHO’

S’−IHO’
B −Bin(IQ)

+IHO
D’= IHO’

D’ −IHO’
B

70

With above memory reduction methods, the computational flow of JBF in Table III-5 is changed

to that in Table III-6. The details of these design techniques are presented below.

Table III-6 Modified computational flow and analysis for a pixel in the integral histogram approach

Process
Complexity

(operation)

BW for IH

(data)

BW for pixel

(data)

Integration process:

Pixel count histogram hcc

Loop b=0 to Nb-1

 IHcO
S
(b)=IHcO

D
(b)+IHcO’

S’
(b)-IHcO’

D’
(b)

 IHcO
S
(IS) += 1, IHcO

S
(IQ) -= 1

Pixel intensity histogram hic

Loop b=0 to Nb-1

 IHiO
S
(b)=IHiO

D
(b)+IHiO’

S’
(b)-IHiO’

D’
(b)

 IHiO
S
(IS) += JS, IHiO

S
(IQ) -= JQ

ADD: 2Nb

ADD: 2

ADD: 2Nb

ADD: 2

4Nb

4Nb

4 pixels

Extraction process:

Pixel count histogram hcc

Loop b=0 to Nb-1

 hcc(b) = IHcO
S
(b) - IHcO

R
(b)

Pixel intensity histogram hic

Loop b=0 to Nb-1

 hic(b) = IHiO
S
(b) - IHiO

R
(b)

ADD: Nb

ADD: Nb

Nb

Nb

Kernel calculation process:

Loop b=0 to Nb-1

 G(b) = g(|Ic-b|)

ADD, LUT: Nb

1 pixel

Convolution process:

Nu=0, De=0

 Loop b=0 to Nb-1

 De += G(b) x hcc(b)

Nu += G(b) x hic(b)

 Result = Nu / De

MUL, ADD: Nb

MUL, ADD: Nb

DIV: 1

1 pixel

Total 11Nb+5 10Nb 6 pixels

1. Overall Architecture

Figure III-21 shows the overall architecture that contains two parts, interface and core. In this

architecture, the image pixels and the IHs are stored at the off-chip and on-chip memory, respectively.

The interface accesses pixels from the off-chip memory through a 64-bit bus, and the core performs

the computation of JBF.

In the interface, the access controller allocates the bus priority to the input and output

first-in-first-out (FIFO) buffers by round-robin policy. The size of each buffer is associated with

off-chip bandwidth. Large buffers can support data reuse schemes to reduce the off-chip bandwidth.

Because of sufficient bandwidth in this architecture, we do not apply any data reuse schemes here, and

71

set its size as 16-pixel to meet the bus width and support ping-pong mechanism for simultaneous

reading and writing.

The operations of the architecture are described below with the schedule in Figure III-22, which

is hierarchically sliced from a frame to pipeline tiles. The computation of one stripe row requires 90

cycles for the stripe width ws of 60 and the filter window width |S| of 31. Note that this architecture

takes 96 cycles for one stripe row, and the last 6-cycles are the bubble cycles for simplifying

controlling logic. For the process in a pipeline tile, the access controller in the interface fetches pixels

from the off-chip memory into the FIFO buffers. Then the two histogram calculation engines in the

core begin to compute hic and hcc, and the convolution engine consecutively produces 8 pixels to the

output FIFO buffer. Finally, the interface moves results from the buffer to the off-chip memory.

Figure III-21 Proposed architecture of JBF.

CoreOff-chip

memory

Interface

Histogram

Calculation

Engine hic

Convolution

EngineB
u

s

Guidance

I

Source

J

Result

O

FIFO IS

(16 pixels)

FIFO IQ

(16 pixels)

FIFO JS

(16 pixels)

FIFO JQ

(16 pixels)

FIFO Ic

(16 pixels)

FIFO Oc

(16 pixels)

Histogram

Calculation

Engine hcc

hic

hcc

On-chip Memory
(20bitx90 x64)

64 bit

On-chip Memory
(12bitx90 x64)

A
cc

es
s

C
o

n
tr

o
ll

er

64

64

64

64

64

64

8

8

8

8

8

8

20x64

12x64

20x6420x64 20x64

12x6412x64 12x64

Unit: bit

72

Figure III-22 Schedule of the proposed architecture

2. Architecture Components

In the core, the main components are two histogram calculation engines and one convolution

engine for the computation in Table III-6, which have high computational complexity as mentioned

above. Thus, the proposed R-parallelism method unrolls all computational loops in the range domain R.

The details of this method are described in each engine as follows.

(1) Histogram Calculation Engine

The histogram calculation engines perform the integration and extraction processes for hcc and hic

as shown in Table III-6. With the R-parallelism method, we design their architectures as shown in

Figure III-24, where the selected-bin adder (SBA) is depicted in Figure III-23. These two engines can

achieve the throughput of 1 histogram/cycle. Note that the difference of the two engines is that the

integral value of SBAs is the source pixel J in the engine hic, instead of the constant 1 in the engine hcc.

In addition, all bit widths of data in the engine hic are more than those in hcc by 8 bits.

5

8

Histogram Calculation

8

Convolution

1

Write Results

Pipelining

Read Pixels

96 96……
1st row

96

2nd row 1080th row

One stripe (1080 rows)

3,317,760

One frame (32 stripes)

One pipeline tile

Unit: Cycle

5

8
Histogram

Calculation

8

Convolution

1

Write Results

Read Pixels

73

Figure III-23 Selected-bin adder in the histogram calculation engines

(a) (b)

Figure III-24 Proposed architectures of histogram calculation engines hic and hcc

In above architectures, each engine needs to access the five IHs: IHOˊ
Sˊ

, IHOˊ
Dˊ

, IHO
S
, IHO

D
, and

IHO
R
, from on-chip memory in one cycle. To reduce the bandwidth problem, we propose the

delay-buffer method, which is presented as follows by data dependency of the associated IHs in two

successive cycles. Assume that the pixels S, Sˊ, D, and Dˊ shown in Figure III-20 (d) are located (x,y),

(x,y-1), (x-1,y), and (x-1,y-1) in the cycle t, respectively. Hence, their IHs can be notated by

+
…
…

…
…

Selected-bin adder (SBA)

Guide pixel
Input IH Output IH

Integral value

Histogram Calculation Engine

hic

On-chip Memory

JS

JQ

IS

IQ

hic

IHiOˊ
Sˊ

-IHiOˊ
Dˊ

IHiO
S

+
+
+

+

…

IHiO
R

IHiO
D

reg

SBA

SBA

+
+
+

+

…

read readwrite

reg

+
+
+

+

…

8

8

8

8 20x64

20x64 20x64

Unit: bit

Col. #2

…
Col. #4

20-bit x 64-bin

Col. #90

Col. #1

…
Col. #3

20-bit x 64-bin

Col. #89

20x64

reg

Histogram Calculation Engine

hcc

On-chip Memory

IS

IQ

hcc

IHcOˊ
Sˊ

-IHcOˊ
Dˊ

IHcO
S

+
+
+

+

…

IHcO
R

IHcO
D

reg

SBA

SBA

+
+
+

+

…

read readwrite

reg

+
+
+

+

…

8

8

12x64

12x64 12x64

Unit: bit

Col. #2

…
Col. #4

12-bit x 64-bin

Col. #90

Col. #1

…
Col. #3

12-bit x 64-bin

Col. #89

12x64

reg

1

1

74

 𝑆(𝑡): 𝐼𝐻𝑂
(𝑥,𝑦)

, 𝑆′(𝑡): 𝐼𝐻𝑂
(𝑥,𝑦−1)

, 𝐷(𝑡): 𝐼𝐻𝑂
(𝑥−1,𝑦)

, 𝐷′(𝑡): 𝐼𝐻𝑂
(𝑥−1,𝑦−1)

 . (III-21)

For the next cycle t+1, their x-coordinates are increased by 1 as follows,

 𝑆(𝑡+1): 𝐼𝐻𝑂
(𝑥+1,𝑦)

, 𝑆′(𝑡+1): 𝐼𝐻𝑂
(𝑥+1,𝑦−1)

, 𝐷(𝑡+1): 𝐼𝐻𝑂
(𝑥,𝑦)

, 𝐷′(𝑡+1): 𝐼𝐻𝑂
(𝑥,𝑦−1)

 . (III-22)

From the (III-21) and (III-22), we can find that D
(t+1)

 equals S
(t)

, and Dˊ
(t+1)

 equals Sˊ
(t)

. That means

IHOˊ
Dˊ

 and IHO
D
 can be obtained by delaying IHOˊ

Sˊ
 and IHO

S
 for one cycle, respectively. Therefore, we

can use two delay-buffers to avoid accessing IHOˊ
Dˊ

 and IHO
D

from the on-chip memory, and reduce

bandwidth from five IHs to three IHs.

(2) Convolution Engine

The convolution engine uses the histograms hcc and hic to further compute the result pixel by the

kernel calculation and convolution processes in Table III-6. Its architecture is shown in Figure III-25

(a). With the proposed R-parallelism method, the convolution process can achieve the throughput of 1

pixel/cycle. Higher throughput can be further attained by adding the registers at the available cut-lines

for pipelining in the figure, which can enable operating frequency be higher.

The R-parallelism method brings high throughput but suffers from large size and large number of

range table. For the large size, we take advantages of the symmetry and truncation property of

Gaussian function to decrease its size from 256 to 32. In addition, to avoid the large number of range

table, we share one table by the table selection module as shown in Figure III-25 (b), which reduces

the number of table to one. Note that the result of divisor would directly be in the range of 8-bit

because it is used to normalize the sum of pixels with weight (III-10).

75

(a) (b)

Figure III-25 Proposed architecture of (a) convolution engine and (b) its table selection modules

Furthermore, the histogram calculation engines and the convolution engine can be serially

connected to achieve the throughput of 1 pixel/cycle. More engines can be used to process multiple

cascaded pixels simultaneously for higher throughput. The proposed memory reduction methods could

be directly extended to support the processing of multiple pixels.

3.3.5 Implementation Result

Referring to the quality analysis in [91], we select 31 for |S| and 64 for Nb in our implementation.

The proposed architecture of JBF has been implemented by Verilog and synthesized under the 90-nm

CMOS technology process. Table III-7 lists the implementation result of the proposed architecture.

The hardware design could achieve the throughput of HD1080p 60 frames/s that is 124 Mpixels/s by

23K-byte memory cost and 356K gate counts.

Convolution Engine

Table

Selection

Gaussian function
(10x32)

g(0)
g(1)
g(2)
g(3)

g(31)

…

IC

X

…

X
X
X

X

…

X
X
X

++
+
+

+

+

+

++

+

+ +…

++
+
+

+

+

+

++

+

+ +…

/
OCreg

(8)

 hic

 hcc

g(IC-Ib)

Available Cut-line for Pipelining

Unit: bit

20x64

12x64

8

10

10

10

10

10

30x64

22x64

30

22

8

Reduced Range Table

10

10-stage

pipelined div

TS0
IC

g(0)
g(1)
g(2)

g(31)
0

g(IC-0)

0

1

2

31

others

TS1
IC

g(IC-4)

4

3,5

2,6

35

others

TS63
IC

g(IC-252)

252

253,251

254,250

221

others

…

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

g(0)
g(1)
g(2)

g(31)
0

g(0)
g(1)
g(2)

g(31)
0

76

Table III-7 Example implementation result of the proposed architecture

Technology Process UMC 90nm

Image Size MxN 1920x1080

Number of Bin Nb 64

Filter Window Size |S|
2
 31x31

Stripe Width ws 60

Clock Rate (Hz) 100M 200M

Frame Rate (Frame/s) 30 60

Logic Cost

Excluding Memories

(Equivalent Gate-Count)

Interface 9,578 9,917

Histogram Cal. 97,766 148,649

Convolution 168,333 197,351

Total 276,178 355,917

On-chip Memory (Byte) 23K 23K

Table III-8 compares the hardware costs between the proposed methods and the original integral

histogram in different resolutions. With the proposed memory reduction and architecture design

techniques, the complexity can be reduced to 0.15%, and the memory requirement can be reduced to

0.003%-0.02%. In addition, the bandwidth for IH (i.e. on-chip bandwidth) can be reduced to 32%-36%,

but the bandwidth for pixel (i.e. off-chip bandwidth) is increased to 20.3-132.7 Mbits. Nevertheless,

the off-chip bandwidth is affordable by the 64-bit bus processing at 200 MHz.

Table III-8 Comparison of hardware cost per frame

 Resolution
Complexity

(million operation)

Memory

Requirement

(Kbyte)

Bandwidth

for IH

(Mbit)

Bandwidth

for pixel

(Mbit)

Original VGA 335.1 (100%) 113,050 (100%) 14,470 (100%) 9.8 (100%)

HD720p 1,005.5 (100%) 353,894 (100%) 45,299 (100%) 29.5 (100%)

HD1080p 2,262.3 (100%) 829,440 (100%) 106,108 (100%) 66.4 (100%)

Mem. Reduction VGA 197.0 (59%) 23 (0.020%) 9,083 (63%) 20.3 (206%)

HD720p 591.1 (59%) 23 (0.007%) 27,250 (60%) 60.8 (206%)

HD1080p 1,289.7 (57%) 23 (0.003%) 59,454 (56%) 132.7 (200%)

Mem. Reduction

+

Archi. Design Tech.

VGA 5.1 (0.15%) 23 (0.020%) 5,191 (36%) 20.3 (206%)

HD720p 1.5 (0.15%) 23 (0.007%) 15,571 (34%) 60.8 (206%)

HD1080p 3.3 (0.15%) 23 (0.003%) 33,974 (32%) 132.7 (200%)

Table III-9 compares our proposed hardware design with the previous VLSI implementations.

The previous implementations [94], [97] could support large filtering window but low throughput,

while the implementations [95], [96] could reach high throughput for small filtering window only. Our

design can not only achieve high throughput but also support large filtering window. Table III-10

compares our design with the other previous GPU and CPU implementations. Comparing to other

77

design, the proposed architecture could efficiently utilize the hardware cost to achieve high

throughput.

Table III-9 Previous VLSI implementations of bilateral filtering

 [94] [95] [96] [97] Our Design

Supported Window Size 15x15 BF 3x3 BF-like 5x5 BF 11x11 BF 31x31 BF/JBF

Implementation Method Xilinx

Spartan-3

FPGA

Altera

Cyclone-II

FPGA

Xilinx

Vertex-5

FPGA

TSMC

0.18um

Tech. Proc.

UMC

90nm

Tech. Proc.

Throughput (pixel/s) 4.8M 124M 41.9M 11M 124M

Table III-10 Comparison of different implementations

Support-Pixel-First Target-Pixel-First

Durand and Dorsey

[84]

Chen et al.

[87]

Yang et al.

[83]

Adams et al.

[88]

Porikli

[91]
Proposed

Approach

Piecewise-linear

Subsampling
Bilateral Grid Piecewise-linear

Gaussian

KD-tree

Integral

Histogram

Integral

Histogram

(ss=24, sr=19) (ss=16, sr=10) (sr=32) (sr=4) (sr=4)

Implementa

tion

CPU

P4

2GHz

GPU

Geforce

8800GTX

GPU

Geforce

8800GTX

GPU

GeForce

GTX260

CPU

P4

3.2GHz

ASIC

Transistor

count

(Tech.

Process)

55M

(130nm)

681M

(90nm)

[98]

681M

(90nm)

[98][98]

1,400M

(TSMC 65nm)

[99]

55M

(130nm)

2.5M

(UMC 90nm)

Image Size

(Pixel)
10.4M 1.0M 1.0M 10M 1.0M 2.07M

Frame Rate

(Frame/sec)

0.16

(high dynamic range)
222 66 0.01-1 3.22 60

Throughput

(Pixel/sec)
1.6 M 222M 66M 0.1M-10M 3.22M 124M

Memory

(Byte)
- 625K 4M 1G-100M 96M 23K

3.4 Baseline Disparity Estimation Algorithm

In this section, we first present the baseline disparity estimation algorithm, which applies the

baseline BP and JBU algorithms. Then, we demonstrate the disparity quality comparison between the

proposed baseline algorithm and the DERS algorithm.

3.4.1 Baseline Algorithm

78

Figure III-26 shows the baseline disparity estimation algorithm that combines the baseline BP and

JBU algorithms. In the baseline algorithm, the sampling factor is set as 1/2, 1/4 for horizontal and

vertical direction. Note that the horizontal sampling factor could not further decrease since the detailed

disparity would be lost. In addition, all the steps in the algorithm flow are performed for three times

for calculating the three view disparity maps by the software implementation.

In the first step, the 3×3 SAD match metric is adopted to calculate the initial cost cube C0 using

the high resolution images IH,L, IH,C, IH,R. Note that the matching costs are computed only for the

sampled pixels but with the full disparity range. Thus, the size of C0 is (H/4)×(W/2)×DR. Then, the

5×7 ADSW cost aggregation method [3] and the baseline BP algorithm [24] are performed to compute

the low resolution disparity maps DL,L, DL,C, DL,R. In the baseline BP, we employ the Potts model to the

smoothness term and data term, and execute the baseline BP for 15 iterations. Finally, the low

resolution disparity maps are scaled up to the high resolution ones DH,L, DH,C, DH,R by the JBU

algorithm.

Figure III-26 Flow of the proposed baseline disparity estimation algorithm

3x3 SAD

Matching Cost

5x7 ADSW

Cost Aggregation

Baseline BP

2x4 JBU

Left-view

Image Frame

IH,L

Center-view

Image Frame

IH,C

Right-view

Image Frame

IH,R

Low Resolution

Left-view

Disparity Map

DH,L

Center-view

Disparity Map

DH,C

Right-view

Disparity Map

DH,R

IL,L, IL,C, IL,R

IL,L, IL,C, IL,R

IH,L, IH,C, IH,R

DL,L, DL,C, DL,R

79

3.4.2 Comparison

In the experiment, the disparity maps and the synthesized videos are computed by the baseline

algorithm and the DERS algorithm with the configuration of Figure II-17. Furthermore, the

synthesized videos are evaluated by the PSNR and PSPNR methods mentioned in the Section 2.3.4.

Figure III-27 shows the evaluation results of them. In the evaluation results, the “View0” and

“View8” refer to the most-left-view and the most-right-view videos in the output of 3-view

configuration for 9-view display. The results of the DERS algorithm are not available for the test

sequences Café, Kendo, and Balloons due to insufficient input views. The more details of the test

sequences are presented in Chapter V. For the Y-PSNR results, the baseline algorithm has the quality

changes from -1.78 dB to 4.51 dB, compared to the DERS algorithm. On the other hand, the

T_PSPNR results have large variance in the test sequences. The worst case has the large drop of 4.49

dB because of no temporal consistency enhancement method adopted in the baseline algorithm.

Figure III-28 and Figure III-29 shows the disparity maps and the synthesized images. Compared

to the DERS algorithm, the baseline algorithm additionally suffers from the incorrect disparities in the

textureless regions. Nevertheless, those incorrect disparities do not impact on the synthesized image of

baseline algorithm. In addition, the disparities at the object boundary are over blurred in the baseline

algorithm. That would result in the background distortion if the background has texture.

80

(a)

(b)

(c)

(d)

Figure III-27 Experimental results of the baseline algorithm and the DERS algorithm

20

25

30

35

40

BookArrival LoveBird1 Newspaper Café Kendo Balloons Champagne Pantomime

Y-PSNR for View0 (dB)

DERS

Baseline

20

25

30

35

40

BookArrival LoveBird1 Newspaper Café Kendo Balloons Champagne Pantomime

Y-PSNR for View8 (dB)

DERS

Baseline

30

35

40

45

50

55

60

BookArrival LoveBird1 Newspaper Café Kendo Balloons Champagne Pantomime

T_PSPNR for View0 (dB)

DERS

Baseline

30

35

40

45

50

55

BookArrival LoveBird1 Newspaper Café Kendo Balloons Champagne Pantomime

T_PSPNR for View8 (dB)

DERS

Baseline

81

(a)

(b)

(c)

82

(d)

(e)

Figure III-28 Center disparity maps and synthesized View8 of baseline algorithm at the 100th frame

(a) BookArrival, (b) LoveBird1, (c) Newspaper, (d) Champagne, (e) Pantomime

83

(a)

(b)

(c)

84

(d)

(e)

Figure III-29 Center disparity maps and synthesized View8 of DERS algorithm at the 100th frame

(a) BookArrival, (b) LoveBird1, (c) Newspaper, (d) Champagne, (e) Pantomime

3.5 Summary

For the high definition 3DTV applications, our strategy is to increase the computational

parallelism by the baseline BP algorithm, and reduce the processed frame size by the JBU algorithm.

The computational characteristics and design challenges of the two main algorithms are analyzed in

this chapter. To conquer their design challenges, we propose the low-memory-cost memory access

approaches, and the parallel computing architectures for their kernel components. In the experimental

results, the baseline algorithm could deliver comparable disparity quality to the DERS algorithm.

However, it still suffers from high computational complexity because of high iteration count in BP. In

85

addition, the disparity quality should be further improved, especially for the temporal consistency

problem.

86

IV Advanced Disparity Estimation Algorithms

for High Definition 3DTV Applications

Based on the previous baseline algorithm, we propose three new advanced disparity estimation

algorithms in this chapter. The first high-quality algorithm focuses on the disparity quality

improvement, including the temporal consistency enhancement and the occlusion handling. The

second sparse-computation algorithm could reduce the computation of high-quality algorithm by the

sparse-computation strategy, and it could be accelerated by the implementation of software

programming. The third hardware-efficient algorithm simplifies the massive computation in

high-quality algorithm, and reduces the high memory cost of BP optimization. The experimental

results and evaluation will be compared with the DERS algorithm in Chapter V, and the last

hardware-efficient algorithm will be further implemented by VLSI design in Chapter VI.

4.1 High-Quality Disparity Estimation Algorithm

The proposed high-quality disparity estimation (HQ-DE) algorithm is presented in this section.

This section first reviews the state-of-the-art disparity estimation algorithms, and then describes the

details of the proposed HQ-DE algorithm.

4.1.1 Related Work

The state-of-the-art disparity estimation algorithms are the 3DVC’s DERS algorithm [63] and the

top algorithms in the Middlebury rank [72]. The details of DERS algorithm has been described in

Section 2.3. For the algorithms in the Middlebury rank, we review the high-quality BP-based

algorithms including the adaptive-BP [39] and the double-BP [40]. In addition, we also introduce the

enhanced-BP [41], since it additionally takes the temporal consistency into consideration.

1. Adaptive-BP

87

Figure IV-1 shows the algorithm flow of adaptive-BP, whose main idea is to apply the BP

optimization to a segment-based graph, instead of the conventional pixel-based graph. In this

algorithm, the mean-shift segmentation [69] is first performed to obtain over-segment information.

Then the SAD match metric is applied to the pixel matching cost using for pixel intensity and gradient.

In the segment cost calculation, the plane fitting [46] is used to determine a disparity plane for each

segment, and the pixel costs of a disparity plane are summed up as the segment cost. According to the

disparity planes and segment costs, this step iteratively merges disparity planes and segments. Finally,

the segment-based BP is performed in a segment-based graph. The adaptive-BP could produce high

quality disparity results, but it suffers from irregular computation due to its complex connected

segment-based graph.

Figure IV-1 Flow of the adaptive-BP algorithm [39]

2. Double-BP

Figure IV-2 shows the algorithm flow of double-BP, which consists of the three main steps: initial

stereo, pixel classification, and iterative refinement. The initial stereo step computes the initial cost

cubes by the ADSW approach [7], and performs the hierarchical BP (HBP) [25] to obtain the initial

disparity maps for two views. With the initial disparity map and cost cubes, the pixel classification

step categorizes the pixels into occluded, stable, and unstable ones using the mutual consistency and

correlation confidence checks. Then the iterative refinement step performs the plane fitting and the

Mean-Shift Segmentation

Pixel Cost Calculation

Segment Cost Calculation

Segment-based BP

Left-view

Image

Right-view

Image

Disparity

Map

88

HBP for five iterations. In the iterative process, the disparity map and the cost cube are updated in

each iteration. The double-BP could deliver better disparity maps than the adaptive-BP because it has

different approaches to deal with the classified pixels.

Figure IV-2 Flow of the double-BP algorithm [40]

3. Enhanced-BP

The enhanced-BP [41] proposed three techniques to improve the conventional BP algorithm. The

first technique defines a new graph with 6-connected nodes, which have 4 original spatial neighbors

and 2 temporal neighbors, to enhance the temporal consistency. In BP optimization, the connection to

neighbors would be broken at the boundaries of color segment and motion regions. The second

technique is to deal with the occlusion problem by the plane fitting methods or the background

clustering method. The last technique is to accelerate the optimization process by inputting the

Left-view

Image

Right-view

Image

ADSW Cost Calculation

HBP HBP

Mutual

Consist. Check

Correlation

Confid. Check

Mean-Shift

Segmentation
Plane Fitting

Data Term

Hypothesis

Disparity

Hypothesis

HBP

stable unstableoccluded

E0

D0

Dt

Et

nonocc
Dt+1

Dpf
t

cost cube cost cube

Pixel ClassificationIterative Refinement

Initial Stereo

Disparity

Map

89

matching costs to the initial messages, and removing the matching costs from the computation of

message passing.

In summary, as the above mentioned state-of-the-art BP-based algorithms and the 3DVC’s DERS

algorithm, they could produce high quality disparity maps by the common steps: color-constrained

cost aggregation, disparity optimization, and segment-based refinement. The color-constrained cost

aggregation could be the ADSW method or the segment cost method, the disparity optimization could

be GC or BP approach, and the segment-based refinement is the common-used plane-fitting. Therefore,

our developed HQ-DE algorithm should include the above common steps.

4.1.2 Observation in DERS and Baseline Algorithms

Based on the baseline algorithm in Section 3.4.1, the HQ-DE algorithm adopts the BP for

disparity estimation, and the joint bilateral upsampling (JBU) algorithm to reduce the native

computation in high resolution frame. For the disparity quality improvement, we focus on the temporal

consistency and the occlusion problems.

At first, we observe the disparity results of the DERS and the baseline algorithms as follows.

Figure IV-3 shows the flicker artifact of the baseline algorithm. The stand of poster behind the chair

has a little change on its boundary in the continuous frames due to no temporal consistency

enhancement in the baseline algorithm. The slight change would result in the noticeable flicker artifact

for human. On the other hand, the DERS algorithm has the temporal consistency enhancement but

suffers from the foreground copy artifact as shown in Figure IV-4. In which, the door pivot is changed

after the man passed because the disparity of the man remains on the door pivot.

Figure IV-5 shows the occlusion problem in the DERS and the baseline algorithms. Compared to

the reference golden image in Figure IV-5 (a), the DERS and the baseline algorithms suffer from the

distortion of red sketch because its background disparities are incorrect.

90

Figure IV-3 An example of flicker artifact of the baseline algorithm in BookArrival

Synthesized videos from left to right are the 9th to 12th frames.

(a) (b) (c)

Figure IV-4 An example of foreground copy artifact of the DERS algorithm in BookArrival

Top to bottom are the synthesized frame, interested region of synthesized image and disparity map.

Left to right are (a) the 1st frame, (b) the 25th frame, (c) the 40th frame.

91

(a)

(b)

(c)

Figure IV-5 An example of occlusion problem at the 44th frame of BookArrival

(a) reference golden image, (b) the disparity maps of DERS algorithm and the synthesized image, (c)

disparity maps of baseline algorithm and synthesized image.

4.1.3 Proposed Algorithm Flow

With the above observation, the temporal consistency and the occlusion problems need to be

solved in the HQ-DE algorithm. The main flow of the proposed HQ-DE algorithm is shown in Figure

IV-6 for the center view and Figure IV-7 for the left and right views. In which, I and D refer to the

image frame and disparity map, respectively, and the superscript t and t-1 refer to the current frame

and the previous frame. Besides, the first subscript, L or H, means the low resolution or the

high-resolution frame, and the second subscript means the view point.

92

Figure IV-6 Flow of the HQ-DE algorithm for a center-view disparity map

In the main flow, the high-resolution image frames at target-view and reference-view are fetched

to compute an initial low-resolution disparity map DL
t
 by the steps of matching cost calculation, cost

aggregation, and BP optimization. Then, the low-resolution disparity map DL
t
 is scaled up to the

high-resolution disparity map DH
t
 by the JBU algorithm, and refined by the window vote method.

For the occlusion problems, the three view disparity maps are cross handled in the occlusion

handling step. On the other hand, for the temporal consistency problems, the proposed no-motion

registration (NMR) method and the still-edge preservation (SEP) method are attached into the main

flow to respectively deal with the foreground copy artifact and the flicker artifact. In addition, the

side-view algorithm flow additionally has the inter-view cost calculation step, which could constrain

the side-view disparity estimation using the more reliable center disparity map DL,C
t
. The details of

each step are described in the following sections.

IH,L
tIH,C

t IH,R
t

Sampling SAD

Matching Cost Cal.

ADSW Cost Aggregation

Temporal Cost Cal.

Target View Reference Views

No-Motion

Registration

IH,C
t-1DH,C

t-1

BP-M Optimization

Joint Bilateral Upsampling

DL,C
t-1

DL,C
t

Window Vote

Occlusion Handling

DH,L
t DH,R

tDH,C
t

Still-Edge Preservation

mflag

mflag

DH,C
t-1

DH,C
t

Previous Frame

Side-View

Process

Low Resolution

93

Figure IV-7 Flow of the HQ-DE algorithm for a side view disparity map

4.1.4 Downsampled Disparity Estimation for Full Range Disparity

The downsampled disparity estimation process consists of the matching cost, cost aggregation,

and the BP optimization steps, which are performed only for the downsampled pixels at the positions

as shown in Figure IV-10 (a). In which, the sampling factor is 1/2 for horizontal direction and 1/4 for

vertical direction according to the simulation results as listed in Table IV-1 and depicted in Figure

IV-8. The details of test sequences and evaluation method are elaborated in Chapter V. The selected

sampling factors could keep the view synthesis quality for all resolutions, especially for the smaller

size of 1024x768. Figure IV-9 compares the results of the sampling factors 1/2×1/4 and 1/4×1/4. The

latter one would suffer from more serious artifacts in the disparity map and synthesized image.

IH,L
tIH,L

t IH,C
t

Sampling SAD

Matching Cost Cal.

ADSW Cost Aggregation

Temporal Cost Cal.

Target View Reference Views

No-Motion

Registration

IH,L
t-1DH,L

t-1

BP-M Optimization

Joint Bilateral Upsampling

DL,L
t-1

DL,L
t

Window Vote

Occlusion Handling

DH,C
t DH,R

tDH,L
t

Still-Edge Preservation

mflag

mflag

DH,L
t-1

DH,L
t

Previous Frame

Center-View

Process
Inter-view Cost Cal. Right-View

Process

DL,C
t

Low Resolution

94

Table IV-1 Simulation results with different sampling factors in Y-PSNR (dB)

Hori.

Sampling

Factor

Vert.

Sampling

Factor

Book

Arrival

Love

Bird1
Newspaper Café Kendo Balloons Champagne Pantomime Avg.

1/2 1/2 36.40 30.72 30.77 N.A. 36.17 34.10 30.73 38.47 33.91

1/2 1/4 36.34 30.89 30.79 33.96 36.00 33.97 30.46 38.38 33.85

1/2 1/8 36.07 30.85 30.62 33.78 35.89 33.67 29.38 37.56 33.48

1/2 1/16 35.57 30.85 30.29 33.05 35.24 32.77 28.84 37.54 33.02

1/4 1/2 36.00 30.77 30.73 33.82 35.75 33.81 29.83 38.48 33.65

1/4 1/4 35.90 30.92 30.64 33.96 36.04 33.64 29.79 38.46 33.67

1/4 1/8 35.68 30.87 30.57 33.71 35.73 33.18 29.93 38.46 33.52

1/4 1/16 35.27 30.90 30.12 32.45 35.10 32.66 29.12 38.40 33.00

1/8 1/2 35.66 30.77 30.24 33.21 35.50 33.00 29.04 38.48 33.24

1/8 1/4 35.49 30.77 30.15 33.16 35.37 32.89 29.40 38.49 33.21

1/8 1/8 35.23 30.73 30.18 32.16 35.08 32.43 29.01 38.47 32.91

1/8 1/16 34.66 30.68 29.76 30.84 34.53 32.32 28.82 38.44 32.50

1/16 1/2 34.56 30.38 29.43 32.04 34.42 31.92 29.30 38.42 32.56

1/16 1/4 34.62 30.51 28.95 31.66 34.55 32.15 29.07 38.45 32.50

1/16 1/8 34.46 30.46 29.11 31.11 34.29 31.89 34.13 38.43 32.99

1/16 1/16 34.17 30.67 28.08 30.60 33.88 31.58 27.85 38.49 31.92

(a) (b)

Figure IV-8 Comparison of different sampling factors in the average Y-PSNR of two frames

2

4

8

16

2 4 8 16

Vertical

Sampling

Factor

Horizontal Sampling Factor

Average Y-PSNR for 1024x768 Sequences

(dB)

33.50 -34.00

33.00 -33.50

32.50 -33.00

32.00 -32.50

31.50 -32.00

31.00 -31.50

2

4

8

16

2 4 8 16

Vertical

Sampling

Factor

Horizontal Sampling Factor

Average Y-PSNR for All Sequences

(dB)

33.50 -34.00

33.00 -33.50

32.50 -33.00

32.00 -32.50

31.50 -32.00

31.00 -31.50

95

(a) (b)

(c) (d)

Figure IV-9 Simulation results using the sampling factors of 1/2×1/4 and 1/4×1/4

(a) and (b) are the center-view disparity map and the most left synthesized image with 1/2×1/4. (c) and

(d) are the center-view disparity map and the most left synthesized image with 1/4×1/4.

In the matching cost calculation step, we propose the sampling sum of absolute difference (SSAD)

match metric, which calculates the matching costs only for the downsampled pixel, and considers the

full disparity range to avoid the loss of disparity precision. Figure IV-10 (b) illustrates the SSAD

match metric. For the target downsampled pixel, the reference pixels in the full disparity range are

used to calculate matching costs by the 2×4 SAD match metric. Thus, the SSAD matching cost is

defined as

 𝑆𝑆𝐴𝐷𝑡𝑎𝑟−𝑟𝑒𝑓(𝑥, 𝑦, 𝑑) = ∑ |𝐼𝐻,𝑡𝑎𝑟(𝑢, 𝑣) − 𝐼𝐻,𝑟𝑒𝑓(𝑢 + 𝑑, 𝑣)|2𝑥≤𝑢<2(𝑥+1)
4𝑦≤𝑣<4(𝑦+1)

 , (IV-1)

where IH,tar is the high-resolution target-view image, IH,ref is the high-resolution reference-view image,

and SSADtar-ref is the low-resolution matching cost. By the SSAD match metric, the initial cost cubes

C0,C, C0,L, C0,R for the three input views are calculated by

96

 𝐶0,𝐶(𝑥, 𝑦, 𝑑) = min*𝑆𝑆𝐴𝐷𝐶−𝐿(𝑥, 𝑦, 𝑑), 𝑆𝑆𝐴𝐷𝐶−𝑅(𝑥, 𝑦, −𝑑)+ , (IV-2)

 𝐶0,𝐿(𝑥, 𝑦, 𝑑) = min*𝑆𝑆𝐴𝐷𝐿−𝐶(𝑥, 𝑦, −𝑑), 𝑆𝑆𝐴𝐷𝐿−𝑅(𝑥, 𝑦, −2𝑑)+ , (IV-3)

 𝐶0,𝑅(𝑥, 𝑦, 𝑑) = min*𝑆𝑆𝐴𝐷𝑅−𝐶(𝑥, 𝑦, 𝑑), 𝑆𝑆𝐴𝐷𝑅−𝐿(𝑥, 𝑦, 2𝑑)+ , (IV-4)

where the minimal SSAD from two reference views is selected for the initial cost cube. Note that the

disparity index in the SSAD match metric is associated with the relative position of target view and

reference view.

(a)

(b)

Figure IV-10 Illustration of downsampled disparity estimation for full disparity range

(a) positions of downsampled pixels in high-resolution frame, (b) example of the matching cost for the

center view

In the cost aggregation step, we adopt the simplified adaptive support-weight (ADSW) [10],

which is defined as

𝐶𝑎𝑔𝑔𝑟,𝐶(𝑥, 𝑦, 𝑑) =
1

𝜅
∑ 𝐶0,𝐶(𝑢, 𝑣, 𝑑)𝑓(‖(𝑥, 𝑦) − (𝑢, 𝑣)‖)𝑔(‖𝐼𝐿,𝐶(𝑥, 𝑦) − 𝐼𝐿,𝐶(𝑢, 𝑣)‖)

(𝑢,𝑣)∈𝑆

 (IV-5)

Positions of Downsampled Pixels

High-Resolution Frame

……

……

Low-Resolution Frame

0

0 1 2 3 4 5 6 7

4 3 2 16 5

……

……

High-resolution Center-view IH,C
t High-resolution Left-view IH,L

t

High-resolution Right-view IH,R
t

Target sampled pixel

Target Frame Reference Frames

Reference pixels

Reference pixels

2

4 DR

DR

97

for center view disparity estimation. In this equation, the initial matching costs C0,C in the aggregation

window S are accumulated with the Gaussian weights of spatial kernel f and range kernel g, and κ is

the normalized term. The size of the aggregation window |S| is set as 5×7 in the HQ-DE algorithm.

Compared to the original ADSW in [7], the simplified ADSW contains two simplification techniques.

First, only one support-weight referring to the target view image is used. Second, the computation of

spatial distance and color distance is simplified to the Manhattan color distance. The same

computation in (IV-5) could be applied to compute the left-view and right-view costs Caggr,L, Caggr,R.

With the three view aggregated cost cubes, the BP optimization is separately performed to

calculate the low resolution disparity maps DL,C, DL,L, DL,R. For the BP optimization, the baseline

algorithm adopts the baseline BP [24] but suffers from slow convergence due to one-pixel-distance

message passing in each iteration. In the BP-based algorithms, the hierarchical BP (HBP) [22] and the

max-product loopy BP (BP-M) [26] could address the slow convergence problem. The former

performs the message passing by the coarse-to-fine manner, while the later on performs the massage

passing separately in four directions. In the proposed HQ-DE algorithm, we adopt the BP-M with

single iteration. In addition, the Potts model is applied to the data and smoothness term. They are

defined as

 𝐷(𝑑𝑖) = min{𝐶𝑎𝑔𝑔𝑟(𝑥, 𝑦, 𝑑), 𝜏𝐷} ⋅ 𝜆𝐷 (IV-6)

 𝑉(𝑑𝑖 , 𝑑𝑗) = min{|𝑑𝑖 − 𝑑𝑗|, 𝜏𝑉} ⋅ 𝜆𝑉 (IV-7)

where τD, τV are for truncation, and λD, λV are for scaling.

In addition to the above three steps, the downsampled disparity estimation has the inter-view cost

calculation step for the side views as shown in Figure IV-7. The concept of inter-view cost Cview is that

the center-view disparity map is more reliable than other two because of its less occluded regions, and

it can be used to constrain the side-view disparity estimation. The inter-view costs for two side view

are computed by

 𝐶𝑣𝑖𝑒𝑤,𝐿(𝑥, 𝑦, 𝑑) = 𝜆𝑣𝑖𝑒𝑤|𝑑 − 𝐷𝐿,𝐶→𝐿(𝑥, 𝑦)| , (IV-8)

98

 𝐶𝑣𝑖𝑒𝑤,𝑅(𝑥, 𝑦, 𝑑) = 𝜆𝑣𝑖𝑒𝑤|𝑑 − 𝐷𝐿,𝐶→𝑅(𝑥, 𝑦)| , (IV-9)

where DL,C→L and DL,C→R are the left-view and right-view disparity maps warped from the center-view

one in low resolution, and λview is a constant for scaling. To compute the inter-view costs, the

center-view disparity map needs to be first computed by the BP optimization, and it is warped to the

side views by the method in Section 2.2.1. Then, we assume the side-view disparity maps will be

approximate to the warped one, and give a penalty for the inconsistency through the inter-view cost

Cview. Besides of the inter-view cost, the temporal cost Ctemp is also added to the cost cube by

 C𝑡𝑜𝑡𝑎𝑙(𝑥, 𝑦, 𝑑) = 𝐶𝑎𝑔𝑔𝑟(𝑥, 𝑦, 𝑑) + 𝐶𝑡𝑒𝑚𝑝(𝑥, 𝑦, 𝑑) + 𝐶𝑣𝑖𝑒𝑤(𝑥, 𝑦, 𝑑) . (IV-10)

Thus, the original cost cube Caggr is replaced by the cost cube Ctotal and is substituted into (IV-6) as the

data term for the BP-M optimization. The more details of the temporal cost are presented in Section

4.1.7.

4.1.5 Joint Bilateral Upsampling

The associated disparity upsampling techniques have been introduced in Section 3.1.2. In the

proposed HQ-DE algorithm, we adopt the same joint bilateral upsampling (JBU) algorithm [81] as that

in the baseline algorithm. Note that the JBU is performed by the single-step process, instead of the

original multi-step process. Thus, the single-step JBU is defined as

 𝐷𝐻
𝑡 (𝑖) =

1

𝜅
∑ 𝐷𝐿

𝑡(𝑗𝐿) ∙ 𝑓(‖𝑖𝐿 − 𝑗𝐿‖) ∙ 𝑔(‖𝐼𝐿
𝑡(𝑖𝐿) − 𝐼𝐻

𝑡 (𝑗)‖)

𝑗𝐿∈S

 (IV-11)

where the window S is in the low-resolution frame, and its size is set as 7×7 for the HQ-DE algorithm.

In addition, the upsampled disparity map DH
t
 is further refined by the proposed window vote

method that is modified from the regional vote method in [6]. The original regional vote method could

remove the disparity noise by taking the disparity with the most votes in a local region. The regional

vote method could approximate the purpose of plane fitting method, which is usually applied in the

state-of-the-art disparity estimation algorithms. However, the regional vote method does not perform

well for the highly textured region due to its continuous grown region and limited shape as shown in

99

Figure IV-11 (a). To address it, our proposed window vote method considers all the support disparities

in a window, and gives votes to the support pixels I(u, v) if their colors are consistent to the center

pixel I(x, y) for all color channels. The proposed window vote method is calculated by

 𝐷′𝐻
𝑡 (𝑥, 𝑦) = argmax

𝑑
*𝑣𝑜𝑡𝑒(𝑥, 𝑦, 𝑑)+ (IV-12)

where

 𝑣𝑜𝑡𝑒(𝑥, 𝑦, 𝑑) = ∑ (𝑑 = 𝐷𝐻
𝑡 (𝑢, 𝑣)) ∧ (|𝐼𝐻

𝑡 (𝑥, 𝑦) − 𝐼𝐻
𝑡 (𝑢, 𝑣)| < 𝜏𝑣𝑜𝑡𝑒)(𝑢,𝑣)∈𝑆 . (IV-13)

Figure IV-11 (b) shows that the proposed window vote could obtain the correct result for the case of

highly texture. In the HQ-DE algorithm, the window size |S| is 15×15.

(a)

(b)

Figure IV-11 Comparison between the original regional vote [6] and the proposed window vote

4.1.6 Occlusion Handling

As the concept of occlusion handling in Section 2.1.2, we proposed a new method for the

occlusion handling problem based the left-right check (LRC) method. The proposed occlusion

handling method consists of the occlusion detection and the occlusion filling steps. They are described

as follows.

1. Occlusion Detection

Guide ImageOriginal Disparity Resultant Disparity

Guide ImageOriginal Disparity Resultant Disparity

100

In the LRC method, the three view disparity maps DH,C
t
, DH,L

t
, DH,R

t
 are cross considered. For an

example of center view as the target, the disparities

 𝐷𝐻,𝐶
𝑡 (x, y), 𝐷𝐻,𝐿

𝑡 (x + 𝐷𝐻,𝐶
𝑡 (x, y), y), 𝐷𝐻,𝑅

𝑡 (x − 𝐷𝐻,𝐶
𝑡 (x, y), y) (IV-14)

are compared, and the occlusion map OH,C is determined by

 𝑂𝐻,𝐶(𝑥, 𝑦) = ,

𝑡𝑟𝑢𝑒 |𝐷𝐻,𝐶
𝑡 (x, y) − 𝐷𝐻,𝐿

𝑡 (x + 𝐷𝐻,𝐶
𝑡 (x, y), y)| > 𝜏𝑂𝐶𝐶

𝑡𝑟𝑢𝑒 |𝐷𝐻,𝐶
𝑡 (x, y) − 𝐷𝐻,𝑅

𝑡 (x − 𝐷𝐻,𝐶
𝑡 (x, y), y)| > 𝜏𝑂𝐶𝐶

𝑓𝑎𝑙𝑠𝑒 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

 (IV-15)

where τOCC is the threshold for disparity gap. If the disparity gap in inter views is more than τOCC, the

position would be regarded as an occlusion pixel.

With the occlusion map, we further refine the occlusion region to fit the object boundary by the

proposed occlusion extension method. In general, the foreground disparity has stronger confidence,

and would affect the neighboring weak background disparity. Thus, the proposed occlusion extension

method extends the foreground side of occlusion region according the image information, and dilates

the background side by one pixel as illustrated in Figure IV-12. Note that for the original occlusion

region detected by the LRC method, its foreground and background sides are determined by the

disparities on the boundary for the center view. In which, the boundary with larger disparity is

foreground side, and the other boundary with smaller disparity is background side. On the other hand,

for the side view, the foreground and background side is fixed. The left-hand-side boundary is

background side for the left-view occlusion map, and foreground side for the right-view occlusion

map.

Figure IV-12 Illustration of the proposed occlusion detection method

Occlusion region

X X X

Disparity map

Image
0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

X X X X X X X

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

Extended

foreground sidebackground side

101

2. Occlusion Filling

In this step, the occlusion regions are filled with the disparities of visible pixels. The visible

pixels could be obtained from the intra frame, inter frame, and inter-view frame. In the intra frame, we

could refer to the disparities of background pixels surrounding the occlusion region for occlusion

filling. In the inter frames, the occluded position would be seen at other time if the camera or the

foreground object moves. Thus, we could refer to the disparity at the non-occluded frame for occlusion

filling. In the inter-view frames, the occlusion regions might be visible in other two views. Thus, we

could refer to the disparity in other view for occlusion filling.

In the HQ-DE algorithm, we adopt the intra-frame approach and apply the modified window vote

method to fill occlusion regions. In addition to the color consistency constraint, the modified window

vote method gives votes to the non-occluded support pixels only. The window size for the occlusion

filling is 11×11. Figure IV-13 shows that the proposed occlusion handling methods could improve the

occluded regions in the disparity map and the synthesized image. Moreover, compared to the previous

results of DERS and baseline algorithms in Figure IV-5, the red sketch is clearer, and the HQ-DE

algorithm could perform better.

102

(a)

(b)

Figure IV-13 Results with and without the proposed occlusion handling method in BookArrival

(a) disparity map and synthesized image without occlusion handling, (b) occlusion map, disparity map,

and synthesized image with occlusion handling.

(a) (b) (c)

Figure IV-14 Results of the HQ-DE algorithm in BookArrival compared to Figure IV-5

(a) center-view disparity map, (b) right-view disparity map, (c) synthesized image

4.1.7 Temporal Consistency Enhancement

In previous work and the baseline algorithm, the temporal consistency problems include the

flicker artifact and foreground copy artifact due to no enhancement method and over enhancement

103

method, respectively. To address it, we propose the NMR method and the SEP method based on the

conventional method in the 3DVC’s DERS algorithm.

1. Conventional Method

First, we introduce the conventional temporal consistency enhancement method in the 3DTV’s

DERS algorithm, and point out its drawback. In the conventional method, the main idea is to

propagate previous disparity map to current one for no-motion regions by adding the temporal cost

Ctemp to cost cube. The conventional method first applies the bilateral filter to smooth the previous

frame and the current frame, and then partition the frames into 16×16 macroblocks for calculating the

motion absolute difference (MAD) by

 𝑀𝐴𝐷 =
1

16×16
∑ |𝐼𝐻

𝑡 (𝑢, 𝑣) − 𝐼𝐻
𝑡−1(𝑢, 𝑣)|(𝑢,𝑣)∈𝑚𝑎𝑐𝑟𝑜𝑏𝑙𝑜𝑐𝑘 . (IV-16)

If MAD is less than a defined threshold γemp, the block would be regarded as a no-motion block. Thus,

the temporal cost can be computed by

 𝐶𝑡𝑒𝑚𝑝(𝑥, 𝑦, 𝑑) = {
𝜆𝑡𝑒𝑚𝑝|𝑑 − 𝐷𝐻

𝑡−1(𝑥, 𝑦)| 𝑖𝑓 𝑀𝐴𝐷 < 𝛾𝑡𝑒𝑚𝑝
0 𝑒𝑙𝑠𝑒

, (IV-17)

where λtemp is a scaling term. In this equation, the no-motion block will suffer from the penalty if its

disparity is inconsistent to previous frame.

The conventional method can solve the flicker artifact, but incurs the foreground copy artifact

because the background object does not have enough time to update its disparity. On the hand, the

previous disparity upsampling step would result in the flicker artifact even if the conventional

temporal consistency enhancement is adopted in the HQ-DE algorithm. That is because the object

boundary suffers from mixed color of background and foreground, so that the disparity at the

boundary would be unstable after the disparity upsampling. To sum up, the HQ-DE algorithm has the

foreground copy artifact and the flicker artifact if the convention method is adopted. The following

proposed two methods could solve them.

2. No-Motion Registration Method

104

Figure IV-15 illustrates the concept of the proposed no-motion registration (NMR) method by a

common case. In which, the pixel is changed from a foreground pixel to a background pixel when a

foreground object passes. The conventional method in DERS algorithm propagates the previous

disparity to current one when the pixel is no-motion pixel, and takes short frame time to update the

disparity from foreground to background while the foreground object is moving out. That would result

in foreground copy artifact because of insufficient updating time. To address it, the proposed NMR

method extends the motion interval by τNMR frames to provide sufficient updating time. In other word,

the no-motion frame count NMC begins to be accumulated while the pixel becomes no-motion one. If

NMC is more than τNMR, the temporal cost Ctemp would be computed to propagate previous disparity to

current frame.

Figure IV-15 Concept of the proposed no-motion registration (NMR) method

Figure IV-16 shows the resultant disparity maps and the synthesized images of the proposed

NMR method. Compared to the conventional method in Figure IV-4, the door pivot could be

recovered well using the proposed method. In addition, Figure IV-17 shows the change of disparity

maps and synthesized images in the seccussive frames while the man is passing away. In Figure IV-17

(c), the door pivot is temporarily distorted as the same as that in Figure IV-4, because the background

disparity is still updating. Nevertheless, the distortion could disappear in Figure IV-17 (d).

Pixel

Time t

Previous DisparityCurrent DisparityPrevious Disparity

Conventional

Method

Previous DisparityCurrent DisparityPrevious Disparity

Proposed NMR

Method

no-motion no-motionmotion

τNMR

Foreground

object

Foreground object

is moving out.
Background Object

105

(a) (b) (c)

Figure IV-16 Results of the proposed NMR method in BookArrival

(a) the 1st frame, (b) the 25th frame, and (c) the 40th frame

(a) (b) (c) (d)

Figure IV-17 Results of the proposed NMR method in the 32th, 34th, 36th, 38th frames

3. Still-Edge Preservation Method

106

The main idea of the proposed SEP method is to preserve the previous disparity for the still-edge.

In the SEP method, we use the bilateral filter to de-noise image, and apply the Sobel filter with a

gradient threshold to detect edges. Combining with the above motion and no-motion information, we

could find the still edge, which is no-motion pixel and edge pixel. For the still edges, the current

disparity is directly propagated from the previous frame.

Figure IV-18 shows the synthesized result using the disparity maps of SEP method. Compared to

the results of baseline algorithm in Figure IV-3, the SEP method could address the flicker artifact on

the object boundary.

(a) (b) (c) (d)

Figure IV-18 Results of the proposed SEP method in BookArrival

(a) the 9th frame, (b) the 10th frame, (c) the 11th frame, (d) the 12th frame

To sum up, the proposed HQ-DE algorithm could address the temporal consistency and occlusion

problems to deliver better disparity maps than the previous work. Taking advantage of the disparity

upsampling technique and the fast convergent BP-M approach, the HQ-DE algorithm could also save

computation time for high definition disparity estimation. Note that the window sizes in the joint

bilateral upsampling and window vote methods are selected from several sampled sizes, and they

could be finely tuned to attain the higher quality. The associated objective quality evaluation of

HQ-DE algorithm will be presented in Chapter V.

4.2 Sparse-Computation Disparity Estimation Algorithm

107

This section proposes the sparse-computation disparity estimation (SC-DE) algorithm that

accelerates the HQ-DE algorithm by the strategy of sparse computation. In this section, we review the

related fast BP-based algorithms and summarize their reduction strategies. Then, we present our

proposed algorithm in details.

4.2.1 Related Work

In the previous disparity estimation, the hierarchical BP (HBP) [25] is commonly used to

accelerate the baseline BP by the coarse-to-fine order in the spatial domain. Based on the HBP, the

approximate BP [42] merges the outgoing messages between hierarchical blocks into one to reduce the

number of messages. In addition, the constant-space BP [43] additionally performs the hierarchical

computation in the disparity domain by the fine-to-coarse order, and can keep the memory usage

constant. Unlike the above acceleration approach with regular computation, the sparse BP [44] first

applies the adaptive mesh technique to select essential pixels, and then computes the disparities for the

sparse pixels by the baseline BP. Finally, a dense disparity map is recovered.

The acceleration strategies in above work are to perform BP optimization for the sparse points in

the spatial domain and disparity domain. Their selected sparse points are at the hierarchically regular

positions or the selected irregular positions. In the video processing, besides of the spatial and

disparity domains, the temporal domain can also be considered into the computational reduction.

4.2.2 Proposed Algorithm Flow

1. Profiling of HQ-DE Algorithm

First, we analyze the profiling of HQ-DE algorithm on PC platform by the Visual Studio 2010

Profiler Tool. Figure IV-19 shows the profiling result in the XGA sequence “BookArrival” and the

HD1080p sequence “Hall1”. The distributions of the two sequences are similar. The first part is

occupied by the BP-M optimization. The second part is the window vote and the no-motion

registration because they apply the median filter and bilateral filter to de-noise image frames.

108

In the computation of HQ-DE algorithm, the SSAD, ADSW steps are proportional to DR, and the

BP-M step is proportional to DR
2
. Nevertheless, the SSAD and ADSW do not suffer from heavy

computation, because they are performed in low resolution, and have small window sizes. On the other

hand, the window vote and no-motion registration use large window process, and are performed in

high resolution. Thus, they suffer from high computational complexity.

As the above mentioned analysis, in the SC-DE algorithm, we mainly focus on the acceleration of

BP-M optimization, and further try to introduce the idea of sparse computation into other steps.

(a) (b)

Figure IV-19 Profiling of the HQ-DE algorithm on PC

(a) BookArrival with 100 frames (1024×768), (b) Hall1 with 200 frames (1920×1088)

2. Proposed Sparse-Computation Disparity Estimation Algorithm

To reduce the computational complexity of HQ-DE algorithm, our strategy is to propagate the

disparity map and the cost cube of previous frame to current frame, and update partial of them to

compute the current disparity map. In the SC-DE algorithm, we perform the same processes in HQ-DE

algorithm for the first frame, and store both the computed disparity maps and the cost cubes for the

next frame. In the following frames, the SC-DE algorithm updates the cost cubes and applies the new

sparse BP-M method for the selected regions to calculate the disparity maps. The selected regions are

differently defined for center view and side views. In the video sequences, only the disparities in

motion regions are changed, and should be updated. Thus, for the center view, the disparities are

38.0%

17.9%

17.6%

8.7%

7.3%

3.8% 3.4% 3.3%

Profiling of HQ-DE algorithm in Hall1

BP-M

Window Vote

No-Motion Registration

Occlusion Handling

SSAD Matching Cost

Joint Bilateral Upsampling

Still-Edge Preservation

ADSW Cost Aggregation

35.7%

19.9%

18.1%

9.1%

6.6%

3.9%
3.5% 3.2%

Profiling of HQ-DE algorithm in BookArrival

BP-M

Window Vote

No-Motion Registration

Occlusion Handling

SSAD Matching Cost

Joint Bilateral Upsampling

Still-Edge Preservation

ADSW Cost Aggregation

109

re-computed in the motion regions. On the other hand, for the side views, most of disparities could be

warped from the center-view disparity map, and only the occlusion regions have different disparities.

Thus, only the disparities in the occlusion regions have to be recomputed for the side view.

With the above strategy, we proposed the flow of SC-DE algorithm in Figure IV-20 for center

view and Figure IV-21 for side views. In the SC-DE algorithm, the center-view disparity map should

be computed first, and then refers it to the other side-view disparity maps. In the proposed algorithm

flow, the motion map MH, edge map EH, and occlusion map OH are initially computed to determine the

sparse pixels. The details of their computation are described in the next sub-section.

Figure IV-20 Flow of the SC-DE algorithm for center-view disparity map

In Figure IV-20 for the center-view disparity estimation, the cost cube CL,C
t-1

 and the disparity

map DH,C
t-1

 in previous frame are updated by the sparse-computation steps: sparse SSAD, the sparse

Joint Bilateral Upsampling

Window Vote

Occlusion Handling

Still-Edge Preservation

IH,C
t IH,L

tIH,R
t

CL,C
t

CL,C
t-1

Sparse SSAD

Sparse ADSW

Sparse BP-M

Reference FramesTarget FramePrevious Cost Cube

Low-Resolution

Temporal Cost Cal.

DL,C
t

DH,C
t DH,L

t DH,R
t

DH,C
t

Side-View Process

ML,C

MH,C, EH,C

DH,C
t-1

Previous Frame

ML,C

ML,C

ML,C

DL,C
t-1

110

ADSW, temporal cost calculation, sparse BP-M. The sparse-computation steps are guided by the

sampled motion map ML,C, and they only process on the motion regions. With these four steps, the new

cost cube CL,C
t-1

 and the new low-resolution disparity map DL,C
t
 are produced.

With the low-resolution disparity map DL,C
t
, the JUB algorithm and the window vote methods are

adopted to scale up and refine the high-resolution disparity map DH,C
t
. The sparse-computation

approach could not be applied to the JUB and window vote steps because the new updated disparities

in motion regions are not consistent with those in the no-motion regions. The consistency would be

expended in following frames, and result in serious quality drop. Thus, the JBU and window vote steps

are still performed by dense-computation approach. Finally, the occlusion handling and the still-edge

preservation (SEP) steps are performed to deal with the occlusion and temporal consistency problems.

In Figure IV-21 for the side-view disparity estimation, the sparse-computation approach is also

applied to the SSAD, ADSW, temporal cost calculation, and BP-M steps. Although the side-view

disparity estimation needs to update the disparities only in occlusion regions, the cost cube still

requires to be updated for the motion regions. Thus, the former three steps, sparse SSAD, sparse

ADSW, and the temporal cost calculation, are guided by the motion map ML,L, while the later sparse

BP-M is guided by the occlusion map OL,L. The rest steps are the same as the center-view disparity

estimation.

111

Figure IV-21 Flow of the SC-DE algorithm for side-view disparity maps

4.2.3 Sparse Pixel Selection

The sparse pixel selection is to determine the sparse pixels which should be processed by the

sparse-computation steps as mentioned above. To find the sparse pixels, the edge detection, the

occlusion detection, and the motion detection are required. Their algorithm flow is shown in Figure

IV-22.

Joint Bilateral Upsampling

Window Vote

Occlusion Handling

Still-Edge Preservation

IH,L
t IH,L

tIH,C
t

CL,L
t

CL,L
t-1

Sparse SSAD

Sparse ADSW

Sparse BP-M

Reference FramesTarget FramePrevious Cost Cube

Low-Resolution

Temporal Cost Cal.

DL,L
t

DH,L
t DH,C

t DH,R
t

DH,L
t

MH,L, EH,L

DH,L
t-1

Previous Frame

ML,L

ML,L

ML,L

OL,L

Center-View

Process

Right-View

Process

DL,L
t-1

Inter-view Cost Cal.

112

(a) (b) (c)

Figure IV-22 Flow of region detection for sparse pixel selection

(a) edge detection, (b) occlusion detection, (c) motion detection

1. Edge Detection

Figure IV-22 (a) shows the flow of edge detection. First, the bilateral filter with the window size

of 9×9 is applied to de-noise the input frame. Then the Sobel filter is used to compute the gradients for

the horizontal and vertical directions. Finally, the edge decision step determines the edge pixel if the

gradient magnitude is higher than a threshold. The produced edge map EH is used in the motion

detection and the still-edge preservation steps in the SC-DE algorithm. Figure IV-23 shows an

example of edge maps in the sequence BookArrival.

IH
t

BF (9x9)

Sobel Filter

Edge Decision

EH

DH,C
t

Disparity Warping

OH,L

Dilation, Erosion (3x3)

OH,R

IH
t IH

t-1

BF (9x9) BF (9x9)

Pixel-based Difference

Dilation (3x3)

Block-based Motion Cal.

(32x32)

Pixel-based Motion Cal.

Dilation, Erosion (3x3)

pixel-based motion map

Motion Extension

MH

EH

block-based motion map

No-Motion Registration

113

(a) (b) (c)

Figure IV-23 Example of edge maps in BookArrival

(a) left-view frame IH,L, DH,L, (b) center-view frame IH,C, DH,C, (c) right-view frame IH,R, DH,R

2. Occlusion Detection

The occlusion region is detected using the center-view disparity map. In Figure IV-22 (b), the

center-view disparity map is warped to left view and right view. In the warped disparity maps, the

position without any disparity value is regarded as an occlusion pixel. Then, the occlusion map is

further processed by the dilation and erosion filter to remove the small occlusion regions, which are

considered as noise. Figure IV-24 shows an example of occlusion maps OH,L, OH,R generated using the

center-view disparity map DH,C
t
.

(a) (b) (c)

Figure IV-24 Example of occlusion maps in BookArrival

(a) center-view disparity map DH,C, (b) left-view occlusion map OH,L, (c) right-view disparity map OH,R

114

3. Motion Detection

The motion information in the SC-DE algorithm is used to not only the temporal consistency

enhancement, but also the sparse-computation guidance. The motion map should be more precise in

the SC-DE algorithm, because the quality of SC-DE algorithm depends on the selected sparse regions.

Thus, we modify the original motion detection method in HQ-DE algorithm to the new one as

described in Figure IV-22 (c). The new motion detection method is to first compute the block-based

motion map, and then refine it to pixel-based motion map.

In the motion detection method, the bilateral filter is first applied to de-noise the previous and the

current image frames, and the difference of the two frames are computed by the Manhattan distance

for each pixel. Then, the block-based motion map is calculated according the sum of frame difference

in a 32×32 block. If the sum of frame difference is high than a threshold, this block would be regarded

as a motion block. Note that the block-based motion map should be dilated by a 3×3 filter, because the

no-motion block neighboring motion one maybe contains a few motion pixels.

Finally, the block-based motion map is refined to be a pixel-based motion map. For the pixels in

motion blocks, the pixel would be considered as a motion pixel if its frame difference is high than a

threshold. Since there are some noising motion pixels, the dilation and erosion filter is adopted to

remove them.

Furthermore, the pixel-based motion map is processed by the motion extension step, which

extends the motion regions along the edge pixels. Finally, the no-motion registration (NMR) is

performed to handle the mentioned foreground copy artifact.

Figure IV-25 shows the example results of the motion map in the sequence BookArrival. Some

motion regions are over extended by the motion extension step, and it will result in more

computational complexity in the sparse-computation steps. Nevertheless, the over-extended motion

map could avoid missing the motion pixel, whose disparity is necessary to be updated.

115

(a) (b) (c)

Figure IV-25 Example of motion maps in BookArrival

(a) left-view motion map MH,L, (b) center-view motion map MH,C, (c) right-view motion map MH,R

4.2.4 Sparse-Computation Steps

The sparse-computation steps include the sparse SSAD, the sparse ADSW, and the sparse BP-M.

Their detailed flow is described as follows.

1. Sparse SSAD and ADSW for Cost Cube

The sparse SSAD and sparse ADSW steps are to update the previous cost cube CL
t-1

 and generate

the new cost cube CL
t
 for the current frame. Figure IV-26 illustrates the concept of the two

sparse-computation steps. The updated target pixels are the motion pixels. To compute the new costs

for these motion pixels, the matching costs of all the associated support pixels should be calculated by

the SSAD match metric. Using the matching costs of support pixels, the sparse ADSW then aggregates

them for the motion pixels. The sparse SSAD and the sparse ADSW could further reduce the

computational complexity of the original dense method in the HQ-DE algorithm.

Figure IV-26 Concept of sparse SSAD and sparse ADSW methods

2. Sparse BP-M Optimization

Motion Pixels

Support

Pixels

116

For the sparse BP-M optimization, the guide for sparse-computation is the motion map ML,C for

center view, and the occlusion maps OL,L, OL,R for the side views. Figure IV-27 illustrates the concept

of the sparse BP-M method. In which, the “updated region” is processed by the original BP-M

algorithm. To connect the “updated region” and “other regions”, the sparse BP-M method also passes

the message from the “other regions”. This connection could decrease the disparity incoherency

between the updated and other regions. The sparse BP-M method could significantly reduce the

original dense BP-M because the motion regions in center view and the occlusion regions in side

views are very small.

Figure IV-27 Concept of sparse BP-M method

4.2.5 Computational Reduction

This subsection compares the computational distribution of main steps between the HQ-DE

algorithm and the SC-DE algorithm. For the execution time and disparity quality, the associated

analysis is presented in Chapter V. Figure IV-28 shows the profiling of SC-DE algorithm in the

sequences BookArrival and Hall1. In which, the motion detection is added into the execution time of

no-motion registration step, and the edge detection is added into the still-edge detection step.

The percentage of BP-M is significantly decreased from 35.7% to 8.0% in BookArrival and from

38.0% to 9.0% in Hall1. Table IV-2 furthers lists the execution time of each step in the HQ-DE and

SC-DE algorithms. The computation of all the steps with sparse-computation approach is significantly

reduced. Compared to the HQ-DE algorithm, the major computation of BP-M is decreased to 13.4% in

Updated

Region

Other Regions

117

the SC-DE algorithm. In addition, the total execution time could be reduced to less than 60%. Note

that the execution time of still-edge preservation increases near twice because it replaces the original

median filter with the bilateral filter for better de-noising but incurs heavy computation.

(a) (b)

Figure IV-28 Profiling of the SC-DE algorithm on PC

(a) BookArrival with 100 frames (1024×768), (b) Hall1 with 200 frames (1920×1088)

Table IV-2 Comparison of execution time of HQ-DE and SC-DE algorithms

 HQ-DE SC-DE

 BookArrival Hall1 BookArrival Hall1

BP-M 358,361 2,127,407 47,833 285,861

Window Vote 199,819 1,000,995 199,042 1,001,075

No-Motion Registration 181,615 982,290 127,767 676,116

Occlusion Handling 90,877 487,167 90,346 486,272

SSAD Matching Cost 66,365 408,361 20,036 126,827

Joint Bilateral Upsampling 39,175 210,521 39,756 210,177

Still-Edge Preservation 35,558 189,802 64,614 343,325

ADSW Cost Aggregation 31,740 187,311 9,845 55,041

Total 1,003,510 5,593,854 599,239 3,184,694

Unit: Sampled time on PC

4.3 Hardware-Efficient Disparity Estimation Algorithm

The proposed SC-DE algorithm could significantly reduce the computation complexity of

HQ-DE algorithm, but is not suitable to be further accelerated by VLSI design due to its regular

computation and large storage for the information of previous frame. In this section, we proposed the

hardware-efficient disparity estimation (HE-DE) algorithm that could significantly reduce the

computation and memory cost of HQ-DE algorithm. In this section, we first point out the design

8.0%

33.2%

21.3%

15.1%

3.3%
6.6%

10.8%

1.6%

Profiling of SC-DE algorithm in BookArrival

BP-M

Window Vote

No-Motion Registration

Occlusion Handling

SSAD Matching Cost

Joint Bilateral Upsampling

Still-Edge Preservation

ADSW Cost Aggregation

9.0%

31.4%

21.2%

15.3%

4.0%

6.6%

10.8%

1.7%

Profiling of SC-DE algorithm in Hall1

BP-M

Window Vote

No-Motion Registration

Occlusion Handling

SSAD Matching Cost

Joint Bilateral Upsampling

Still-Edge Preservation

ADSW Cost Aggregation

118

challenges in the HQ-DE algorithm. Then, we present the main algorithm flow of our proposed

HE-DE algorithm.

4.3.1 Design Challenges in High-Quality Algorithm

In the HQ-DE algorithm, the main design challenge consists of the high memory cost and the

high computational complexity. They are explained as follows.

1. High Memory Cost in Belief Propagation

The problem of high memory is the fatal disadvantage of BP-based algorithm. The requirement in

BP-based algorithm includes the cost cube and the messages. Our low memory-cost approach in

Section 3.2.2 could significantly reduce the memory cost, but the memory cost is still proportional to

the disparity range DR, even if the block-based [36] or tile-based [29] method is adopted. For example,

if the block size is 32×32, DR is 128, and each data is 1-byte, the memory requirement would be

131Kbytes for the cost cube and 524Kbytes for the messages. The extremely high memory space

could not be affordable in the internal memory. If the massive data are configured in the external

memory, it would incur high bandwidth. Thus, to directly conquer the high memory cost problem, we

need to develop another new optimization algorithm that could not only have memory requirement

independent to disparity range, but also acquire approximate results to BP-M’s.

2. Large Image Buffers

Figure IV-29 Image buffer required by the SSAD and ADSW steps (a) shows that the required

pixels for computing a target aggregated cost. For the target aggregated cost, the ADSW cost

aggregation step aggregates the 5×7 matching costs in low resolution. These 5×7 matching costs is

computed by the SSAD matching cost step using the 10×28 pixels in high resolution. Therefore,

computing a target cost needs 1280 pixels in the target view image, and these pixels are cross 28

image rows.

119

(a)

(b)

Figure IV-29 Image buffer required by the SSAD and ADSW steps

(a) required pixels for computing a target aggregated cost, (b) image buffers for one matching cost row

For the above data dependency, all the 28 rows of three view images should be buffered into the

internal memory, so that the external bandwidth be minimized. However, such the multiple-row image

buffers are too large. For example of 1920×1080 sequences, the memory requirement for the image

buffers would be 1920×28×3 pixels (i.e. 483Kbytes for YUV444 format). On the other hand, if the

SSAD matching costs are stored for data reuse technique, the memory requirement is proportional to

disparity range DR, and would be 960×7×128 (i.e. 860Kbytes) for the DR of 128. In addition, if the

image pixels are accessed from external memory in run time, the image buffer could be reduced to the

“used pixels” region but the external bandwidth would be 1920×1080×7×3 pixels/frame (i.e.

130.6GBytes/frame for YUV444 format).

5

7

Target

aggregated

cost

High-Resolution Pixels for SSAD

Low-Resolution Matching

Costs for ADSW

2
8

10

Right-view image buffer

Center-view image buffer
Used

Pixels

Left-view image buffer Used Pixels

Used Pixels

10+127

10+127

2
8

10

2
8

2
8

120

To sum up, no matter what the data configuration method is applied, the required image data in

the SSAD and ADSW steps would incurs the large image buffer or high external bandwidth. Thus, we

should simplify the SSAD and ADSW steps in the HE-DE algorithm to reduce the image buffer.

3. High Computational Complexity in Filtering

In the HQ-DE algorithm, there are many filter-based processes, such as bilateral filter, joint

bilateral upsampling, window vote, and the ADSW cost aggregation. These filter-based processes

suffer from high computational complexity due to their larger window size. Table IV-3 lists all the

filter-based processes in the HQ-DE algorithm. In which, the bilateral filter (BF) computation suffers

from 11×11 for the high resolution in the NMR step. In addition, the WVote step requires the largest

window size of 15×15. Because of their large window sizes, they occupy the high percentage of

computation as analyzed in Figure IV-19. Thus, we decrease the window size of the filter-based

processes in the HE-DE algorithm under the condition of preserving the disparity quality.

Table IV-3 Window sizes of filter-based processes in HQ-DE algorithm

Step Computation
Frame

Resolution
Window Size

No-Motion Registration (NMR) BF High 11×11

Adaptive Support-Weight Cost Aggregation (ADSW) BF Low 7×5

Occlusion Handling (OCC) Vote High 9×9

Joint Bilateral Upsampling (JBU) JBF High 7×7

Window Vote (WVote) Vote High 15×15

Still-Edge Preservation (SEP) Median High 3×3

4. Irregular Computation in Occlusion Handling

The final design challenge is the irregular computation in the occlusion handling step. This step

first detects the occlusion region by left-right check (LRC) method, and then extends the occlusion

region for background and foreground. Finally it fills the occlusion regions by the modified window

vote method. The irregular computation is in the occlusion extension process, which needs to extend

the occlusion region until the foreground is touched. This irregular computation is not compatible to

all the other raster-scan computations, and is not suitable be implemented by high-throughput

121

pipelining architecture. Thus, we develop another new regular occlusion handling in the HE-DE

algorithm.

In summary, for the high memory cost, the BP-M needs a frame-scale-magnitude memory space

to store the cost cube and messages for whole frame, and cost cube calculation requires a large image

buffer in run-time. On the other hand, for the high computational complexity, the filter-based

computation is performed using too large window size, and the computation of proposed occlusion

handing is not regular for extending occlusion region. Therefore, the proposed HE-DE algorithm

focuses on these design challenges and conquers them.

4.3.2 Proposed Algorithm Flow

Figure IV-30 shows the main flow of the proposed HE-DE algorithm for center view. This

algorithm flow also could be applied to the process of side views. In this algorithm, for the cost cube

calculation, we propose the new window-based SSAD method to replace the block-based SSAD and

ADSW steps in the HQ-DE algorithm. The new method could reduce the image buffers from 28 image

rows to 5 image rows. For the temporal cost calculation, the same method in the HQ-DE algorithm is

adopted.

Note that this algorithm removes the inter-view cost calculation step in the HQ-DE algorithm for

high parallelism, because the step would result in the data dependency between the center view and

side views. In other words, with the inter-view cost calculation step, the center-view disparity map

should be computed first, and the side-view disparity maps are computed latter. Moreover, to support

the computing order, the three-view input data would be loaded for three times for matching cost

calculation. Therefore, we remove the inter-view cost calculation from our algorithm flow, and take

care of the inter-view consistency in the occlusion handling step.

With the computed cost cube, we propose the cost diffusion method to compute the

low-resolution disparity maps. The proposed cost diffusion method could replace the BP-M to reduce

the memory requirement to be independent to the disparity range.

122

Figure IV-30 Flow of the HE-DE algorithm for center view

For the occlusion handling step, the new regular method is performed in the low resolution, and it

also considers the inter-view consistency at the same time. Finally, the low-resolution disparity maps

are scaled and refined by the JBU, window vote, and still-edge preservation steps. To reduce the

computational complexity in filter-based processes, we decrease all the window size of filters to 5×5

under the condition of no observable quality degradation.

The mentioned design challenges in the HQ-DE algorithm are solved by the following method in

the proposed HE-DE algorithm.

4.3.3 Cost Diffusion Algorithm

In this subsection, we first discuss about the memory requirement of BP-M, and then propose the

low memory-cost cost diffusion method to replace the BP-M.

1. Memory Requirement in BP-M

IH,C
t IH,L

tIH,R
t

Reference FramesTarget Frame

DH,C
t-1

Previous Frame

Window-based SSAD (5x5)

Temporal Cost Cal.

Cost Diffusion

Low-Resol. Occ. Handling

JBU (5x5)

WVote (5x5)

Still-Edge Preservation

Low Resolution

DH,C
t

DL,L
t

Side-View Process

DL,R
tDL,C

t

DH,C
t

ML,C

EH,C, MH,C

123

The original BP-M updates the messages in four directions as illustrated in Figure IV-31 (a),

where the message passing is performed direction by direction. Figure IV-31 (b) shows the data

dependency of message passing in the node level. In which, the new message is computed for the

“updated message” using the “used messages”. First, the right message passing updates the left

incoming message of each node in the order of left-to-right and row-by-row. Then, the left message

passing is performed in inverse direction to update the right incoming message of each node. With the

same manner, the down message passing and the up message passing is performed column by column.

Note that the “used messages” in the right message passing and left message passing could be

removed, because their values are initially 0 and the horizontal message passing are performed for one

time in the single iterative BP-M.

(a)

(b)

Figure IV-31 Concept of BP-M computation

(a) Message passing in four directions, (b) data dependency of messages in four directions

With the data dependency of BP-M, all the messages of whole frame have to be stored in memory

until the up message passing and the final disparity selection is performed. Thus, the memory

requirement is 4H×W×DR for messages in the HQ-DE algorithm as listed in Table IV-4.

To reduce the memory cost in BP-M, we first propose the horizontal-only BP-M that only

performs the left message passing and the right message passing steps. The horizontal-only BP-M

Right Direction Left Direction Down Direction Up Direction

……

……

……

……

……

……

……

……

Right Message Passing Left Message Passing

Down Message Passing Up Message Passing

Updated MessageUsed MessageUnused Message

124

could reduce the memory cost from frame-scale-magnitude to row-scale-magnitude as shown in Table

IV-4. However, its memory cost still has the factor of disparity range DR. Thus, we further propose the

cost different method to completely address the high memory cost problem.

Table IV-4 Comparison of memory requirement between BP-M and cost diffusion methods

Method Memory Requirement
Operation Times

of Message Passing

Single iterative BP-M

(HQ-DE)

4H×W×DR

H×W×DR

(Message)

(Matching Cost)
4H×W

Horizontal-Only BP-M
W×DR

W×DR

(Message)

(Matching Cost)
2H×W

Cost Diffusion

(HE-DE)

W

W

(Matching Cost)

(Disparity Map)
2H×W

2. Proposed Cost Diffusion Method

The main idea of the proposed cost diffusion method is to diffuse the matching cost of current

pixel to its neighbor by the message passing mechanism, and immediately determine the best disparity

for the current pixel. The cost diffusion method includes the strong horizontal diffusion and the weak

vertical diffusion. That is because the human eyes weakly percept the vertical disparity and are

sensitive to the horizontal disparity [108], [109]. It implies the demand of vertical disparity is lower

than that of horizontal disparity. Therefore, the horizontal diffusion applies a complicated mechanism

and the vertical diffusion applies a simple one.

The horizontal diffusion method consists of the right cost diffusion process and the left cost

diffusion process. The two processes can generate two disparity rows, which will be merged into one

by our specific constraint. In the two processes, the disparities are computed immediately and the

diffused costs could be thrown at the same time. In the proposed cost diffusion method, only the best

disparity row and the corresponding minimal matching costs need to be stored. Its memory

requirement is listed in Table IV-4.

The details of the proposed cost diffusion method are described using the right cost diffusion

process as an example. In the right cost diffusion process, the final cost RCfinal is computed from left to

125

right, and it is combined with the original cost Ctotal to determine the disparity row. The final cost

RCfinal is computed by

 𝑅𝐶𝑓𝑖𝑛𝑎𝑙(𝑥, 𝑦, 𝑑) = 𝐶𝑡𝑜𝑡𝑎𝑙(𝑥, 𝑦, 𝑑) + 𝑅𝐷𝐶(𝑥 − 1, 𝑦, 𝑑) . (IV-18)

where the diffused cost RDC(x-1, y, d) at the left neighbor is defined as

 𝑅𝐷𝐶(𝑥 − 1, 𝑦, 𝑑) = min
𝑑𝑠

.𝑉(𝑑, 𝑑𝑠) + 𝑅𝐶𝑓𝑖𝑛𝑎𝑙(𝑥 − 1, 𝑦, 𝑑𝑠)/ − 𝜅 , (IV-19)

where V is the smoothness term in (IV-7), and κ is the average of RDC for normalization. This

equation is similar to the calculation of message passing in (III-7) but all the messages are removed.

Then, the previous diffused cost RDC is combined with the matching cost of current pixel by

for the current pixel (x, y). With the final cost RCfinal, the temporary best disparity RDbest could be

immediately calculated by the winner-take-all (WTA) manner, and the minimal cost RCmin is also

computed for the final disparity decision. They are calculated by

 𝑅𝐶𝑚𝑖𝑛(𝑥, 𝑦) = min
𝑑
𝑅𝐶𝑓𝑖𝑛𝑎𝑙(𝑥, 𝑦, 𝑑) (IV-20)

 𝑅𝐷𝑏𝑒𝑠𝑡(𝑥, 𝑦) = argmin
𝑑
𝑅𝐶𝑓𝑖𝑛𝑎𝑙(𝑥, 𝑦, 𝑑) . (IV-21)

By the above right cost diffusion process, we could obtain the temporary best disparity RDbest and the

minimal cost RCmin of one frame row. We also can acquire the LDbest and LCmin by the left cost

diffusion process. Finally, the two disparity row RDbest and LDbest are merged into one by the equation

 𝐷𝐿(𝑥, 𝑦) = {
𝑅𝐷𝑏𝑒𝑠𝑡(𝑥, 𝑦) 𝑖𝑓 𝑅𝐶𝑚𝑖𝑛(𝑥, 𝑦) < 𝐿𝐶𝑚𝑖𝑛(𝑥, 𝑦)

𝐿𝐷𝑏𝑒𝑠𝑡(𝑥, 𝑦) 𝑒𝑙𝑠𝑒
 . (IV-22)

according to the minimal costs RCmin and LCmin. In which, we take the disparity with minimal cost as

the final disparity.

On the other hand, the concept of vertical cost diffusion is to propagate the disparities of previous

row into the current row. Thus, we define another new vertical cost Cvert as

𝐶𝑣𝑒𝑟𝑡(𝑥, 𝑦, 𝑑) = 𝜆𝑣𝑒𝑟𝑡|𝑑 − 𝐷𝐿
𝑡(𝑥, 𝑦 − 1)| (IV-23)

where DL
t
(x, y-1) is the disparity in previous row, λvert is a scaling term. Note that this cost is

constrained by the color consistency between the current pixel IL
t
(x, y) and the previous row pixel IL

t
(x,

126

y-1). If the two pixels are inconsistent, the vertical cost Cvert would be 0. Thus, the total cost cube in

the HE-DE algorithm is defined as

 𝐶𝑡𝑜𝑡𝑎𝑙(𝑥, 𝑦, 𝑑) = 𝐶𝑎𝑔𝑔𝑟(𝑥, 𝑦, 𝑑) + 𝐶𝑡𝑒𝑚𝑝(𝑥, 𝑦, 𝑑) + 𝐶𝑣𝑒𝑟𝑡(𝑥, 𝑦, 𝑑) . (IV-24)

To minimize the memory requirement of cost diffusion method, we could perform the right cost

diffusion process first and the left cost diffusion process latter. Thus, only one disparity row and one

cost row required to be stored. Compared to the BP-M, the proposed cost diffusion method could

reduce the memory cost to 0.00029% for the HD1080p resolution and 128 disparity levels.

4.3.4 Image Buffer Reduction Methods

As mentioned in Section 4.3.1, the SSAD matching cost calculation and the ADSW cost

aggregation steps requires 28 image rows to minimize the external bandwidth. However, the memory

cost of such the image buffer is too high. Thus, in the HE-DE algorithm, we modify the cost cube

calculation method, and propose the window-based SSAD, which can reduce the requirement of image

buffer to 5 image rows. Figure IV-32 illustrates the concept of the proposed window-based SSAD. In

which, the pixels in a 5×5 window are fetched to compute a target aggregated cost by the 5×5 SAD

metric. Without the ADSW cost aggregation step, the disparity would have slight degradation,

compared to the HQ-DE algorithm. The comparison results are demonstrated in Chapter V. To

compute the matching costs for full disparity range, the “used pixels” are needed for the center-view

disparity estimation as shown in Figure IV-32 (b). We could use the image buffers with the size of five

image rows to increase the data reuse and minimize the external bandwidth usage. The memory

requirement of this configuration would be 1920×5×3 pixels (i.e. 86Kbytes for YUV444 format).

Compared to the original method in HQ-DE algorithm, the memory requirement is saved by 82%.

127

(a)

(b)

Figure IV-32 Concept of the proposed window-based SSAD method

(a) required pixels for computing a target aggregated cost, (b) image buffers for one matching cost row

4.3.5 Small Filter Window Size

The filter-based processes suffer from high computational complexity due to its large window

size as listed in Table IV-3. To reduce their computation, we decrease the window size of filter-based

processes while keeping the disparity quality without significant drop. Table IV-5 lists the window

sizes of filter-based processes in the HE-DE algorithm. In which, most of the processes are changed to

use 5×5 window. In addition, the ADSW cost aggregation step is removed in the HE-DE algorithm,

and the median filter in the SEP step is replaced by the 3×3 bilateral filter.

5

5

Target

aggregated

cost

High-Resolution Pixels for Window-based SSAD

Right-view image buffer

Center-view image buffer
Used

Pixels

Left-view image buffer Used Pixels

Used Pixels

5+127

5+127

5

5

5

5

128

Table IV-5 Window sizes of filter-based processes in HE-DE algorithm

Step Computation Resolution Window Size

No-Motion Registration (NMR) BF High 5×5

Adaptive Support-Weight Cost Aggregation (ADSW) - - -

Occlusion Handling (OCC) Vote High 3×3

Joint Bilateral Upsampling (JBU) JBF High 5×5

Window Vote (WVote) Vote High 5×5

Still-Edge Preservation (SEP) BF High 3×3

4.3.6 Regular Occlusion Handling

For the irregularity problem in the original occlusion handling, we propose a new occlusion

handling method that could be performed by raster-scan order, and take care of the inter-view

consistency at the same time. Figure IV-33 shows the flow of proposed new occlusion handling

method, which consists of the left-right check (LRC) to detect occlusion regions, and the inter-view

and the intra-view reference steps to fill the occlusion regions.

The inter-view reference step fills the target-view disparity map using the other two view

disparity maps. For example, the two view disparity maps DL,L
t
, DL,R

t
 are warped to the center view.

Only the non-occluded disparity pixels could be warped. If there are many disparities warped to the

same position, the highest disparity is selected. Then, the occlusion regions could be filled by the

warped disparity map. The inter-view reference step can not only recover most of the occlusion

regions, but also enhance the inter-view consistency because of its cross warping.

Figure IV-33 Flow of proposed occlusion handling method in HE-DE algorithm

DL,C
tDL,L

t DL,R
t IL,C

t IL,L
tIL,R

t

Median Filter (3x3)Left-Right Check (LRC)

Disparity Cross Warping

Good Disparity Detection

Inside Filling

DL,C
tDL,L

t DL,R
t

Inter-view reference

Intra-view reference

Border Filling

129

Then, the rest of occlusion regions are filled by the intra-view reference step, which consists of

the good disparity detection, the border filling, and the inside filling. The main idea of the intra-view

reference step is to fill the occlusion regions by the neighboring non-occlusion disparity pixel in intra

frame. To find the reliable non-occlusion disparity pixels, the good disparity detection applies the

double-LRC method to find the “good disparity”. The double-LRC method checks the disparity

consistency by referring to the other two views, instead one view in the original LRC method. The

“good disparity” passing the examination of double-LRC can be used to fill the rest of occlusion

regions. Finally, the filling process contains the border part and the inside part of frame. They also

adopt the modified window vote method proposed in Section 4.1.6, and the center pixel of vote

window should be a “good disparity”.

The computation of the proposed new occlusion handling method does not have the occlusion

extension process, which would result in irregular computation. All the computation in this method is

performed in raster-scan order. In addition, the inter-view consistency could be enhanced by the

inter-view reference step.

4.3.7 Simple Region Detection

In addition to the above methods to deal with the design challenges in the HQ-DE algorithm, the

edge detection and the motion detection are also simplified in the HE-DE algorithm. Figure IV-34

shows the flow of the simplified edge detection and motion detection. In which, the bilateral filter uses

the window size of 5×5, and the block size of the block-based motion calculation is reduced from

32×32 to 4×2 that is equal to the downsampling factor.

130

(a) (b)

Figure IV-34 Flow of edge detection and motion detection in HE-DE algorithm

(a) edge detection, (b) motion detection

To sum up, the proposed HE-DE algorithm could solve the high memory cost and high

computational complexity in HQ-DE algorithm by our simplification. For the high memory cost

problems, the proposed cost diffusion method could replace the BP-M optimization to reduce the

memory requirement to only one data row whose size is independent to the disparity range. In addition,

the proposed window-based SSAD could decrease the image buffers to the size of five image rows. On

the other hand, for the high computational complexity problems, the window size of filter-based

processes are decreased, and the original irregular occlusion handling method is improved. With these

simplifications, the HE-DE algorithm is suitable to be implemented by VLSI design. The architecture

design of HE-DE algorithm is presented in Chapter VI.

IH
t

BF (5x5)

Sobel Filter

Edge Decision

EH

IH
t IH

t-1

BF (5x5) BF (5x5)

Pixel-based Difference

Dilation (3x3)

Block-based Motion Cal.

(2x4)

Pixel-based Motion Cal.

Dilation, Erosion (3x3)

pixel-based motion map

Motion Extension

MH

EH

block-based motion map

No-Motion Registration

131

4.4 Summary

In this chapter, we propose the HQ-DE algorithm to improve the temporal consistency and the

occlusion problems in the baseline algorithm. In addition, the BP-M approach is also applied to

accelerate the BP optimization.

Based on the HQ-DE algorithm, we further propose two new fast disparity estimation algorithms

for different implementation methods. For the software-based implementation, we deliver the SC-DE

algorithm, which performs the matching cost calculation, cost aggregation, and BP-M on the sparse

pixels, and updates partial disparity map in seccussive frames. The sparse pixels are no-motion ones

for center-view disparity estimation, and occlusion ones for side-view disparity estimation. Compared

to the HQ-DE algorithm, the major computation in BP-M could be reduced to 13.4% in the SC-DE

algorithm. The SC-DE algorithm is suitable to be executed the software-based platform because of its

sparse computation.

On the other hand, for the VLSI implementation, we propose the HE-DE algorithm, which

improves the design challenges of high memory cost and computational complexity in the HQ-DE

algorithm. For the high memory cost problem, we propose the cost diffusion method and the

window-based SSAD to replace the original methods. The major memory cost in BP-M could be

reduced to 0.00029% by the proposed cost diffusion method. For the high computational complexity

problem, we decrease the filter size and propose a new occlusion handling method with regular

computation.

The above advanced disparity estimation algorithms are evaluated on the disparity quality and

execution time in the next chapter.

132

V Experimental Results

The previous chapter presents the proposed baseline disparity estimation (baseline) algorithm,

high-quality disparity estimation (HQ-DE) algorithm, sparse-computation disparity estimation (SC-DE)

algorithm, and hardware-efficient disparity estimation (HE-DE) algorithm using different strategies.

They have different improvement in the disparity quality or the computational speed. In this chapter,

we first introduce the experiment setting about the test sequences and the input/output configuration.

Then, we compare those algorithms by the execution time on PC and the objective quality evaluation

through the view synthesis results.

5.1 Experiment Setting

5.1.1 Test Sequences

Figure V-1 shows the test sequences adopted in the experiment, and Table V-1 lists their detailed

information. The test sequences are provided by different research institutes. The frame size includes

1024×768 (XGA), 1920×1080 (HD1080p), and 1280×960. In these sequences, the Kendo, Balloons,

Hall1, and Hall2 are captured by the moving cameras, and others are captured by fixed cameras. In

addition, all the sequences are rectified by the similar processes as described in [78]. In the processes,

the brightness, contrast, and gamma among views are adjusted to be consistent. Then, the lens

distortion and chromatic aberration are rectified in the normalization process. Finally, all the view

images are re-projected to the position with parallel optic axis. Because of the rectification processes,

the source videos could be directly used to disparity estimation without any pre-processing, and the

disparity range can be limited in 1-D space.

133

Figure V-1 Clips of test sequences in center view

(a) BookArrival, (b) LoveBird1, (c) Newspaper, (d) Café, (e) Kendo, (f) Balloons, (g) Champagne, (h)

Pantomime, (i) Hall1, (j) Hall2, (k) Street, (l) CarPark

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

134

Table V-1 Test sequences

Sequence

Name
Provider Frame Size

Frame

Rate

(frame/s)

Number of

Frame

Number of

View

Camera

Spacing

(cm)

Is

Moving

Camera

BookArrival HHI 1024×768 16.67 300 16 6.5 No

LoveBird1 ETRI 1024×768 30 300 12 3.5 No

Newspaper GIST 1024×768 30 300 9 6.5 No

Café GIST 1920×1080 30 200 5 5 No

Kendo Nagoya 1024×768 30 300 7 5 Yes

Balloons Nagoya 1024×768 30 300 7 5 Yes

Champagne Nagoya 1280×960 30 300 80 5 No

Pantomime Nagoya 1280×960 30 300 80 5 No

Hall1 Poznan 1920×1088 25 200 9 13.75 Yes

Hall2 Poznan 1920×1088 25 200 9 13.75 Yes

Street Poznan 1920×1088 25 250 9 13.75 No

CarPark Poznan 1920×1088 25 250 9 13.75 No
HHI: Fraunhofer Heinrich Hertz Institute, Germany

ERTI: Electronics and Telecommunications Research Institute, Korea

GIST: Gwangju Institute of Science and Technology, Korea
Nagaya: Nagoya University, Japan

Poznan: Poznan University of Technology, Poznan

5.1.2 Input and Output Configuration

As mentioned in Section 2.3.1, the MPEG 3DVC defines the 2-view configuration and the 3-view

configuration for different displays. Table V-2 lists the selected views of all the test sequences for

2-view configuration. The frame ranges of test sequences are also defined for the disparity quality

evaluation and the coding performance evaluation. This table only lists the frame range for disparity

estimation. On the other hand, Table V-3 shows the selected input and output views for the 3-view

configuration. In which, the output views for the stereoscopic display are located near the center-view

input IC. For the 9-view displays, the most left output is located at the middle of center-view input IC

and left-view input IL, while the most right output is located at the middle of center-view input IC and

right-view input IR. The wider spacing between the most left and right output, the higher performance

required in the view synthesis and disparity estimation algorithms. In this dissertation, we focus on the

3-view configuration for 9-view displays.

135

Table V-2 Input and output views for 2-view configuration [71]

Sequence Name
Input View No.

(IL-IR)

Synthesized Pair

(IL-VC or VC-IR)

Frame Range for

Disparity Estimation

BookArrival 10-8 10-9 0-99

LoveBird1 6-8 7-8 0-299

Newspaper 4-6 5-6 0-299

Café 1-3 2-3 0-299

Kendo 2-4 3-4 0-299

Balloons 2-4 3-4 0-299

Champagne 39-41 40-41 0-499

Pantomime 39-41 40-41 0-499

Hall1 2-1 2-1.5 0-199

Hall2 7-6 7-6.5 0-199

Street 4-3 4-3.5 150-349

CarPark 4-3 4-3.5 200-399

Table V-3 Input and out views for 3-view configuration [71]

Sequence Name
Input View No.

(IL-IC-IR)

Output for

Stereoscopic Display

Output for 9-view

Display

BookArrival 10-8-6 8.25-7.75 9 to 7

LoveBird1 4-6-8 5.75-6.25 5 to 7

Newspaper 2-4-6 3.75-4.25 3 to 5

Café 1-3-5 2.75-3.25 2 to 4

Kendo 1-3-5 2.75-3.25 2 to 4

Balloons 1-3-5 2.75-3.25 2 to 4

Champagne 37-39-41 37.75-39.25 38 to 40

Pantomime 37-39-41 37.75-39.25 38 to 40

Hall1 3-2-1 2.125-1.875 2.5 to 1.5

Hall2 7-6-5 6.125-5.875 6.5 to 5.5

Street 5-4-3 4.125-3.875 4.5 to 3.5

CarPark 5-4-3 4.125-3.875 4.5 to 3.5

Table V-4 summarizes the our experiment setting for the DERS algorithm and our proposed

algorithms. The target outputted views are the most left and the most right ones in the 3-view

configuration for 9-view display. The disparity ranges are dependent on the sequence content, and the

frame ranges are the same as those in Table V-2. For the inputted views, our proposed algorithm only

requires three views, and meets the defined configuration in Table V-3. However, the DERS algorithm

requires five views because of its functionality described in Section 2.3.1. It would result in that the

DERS algorithm could not produce complete three view disparity maps in the sequences, Kendo,

Balloons and Café, for view synthesis due to insufficient inputted views. For the three sequences, the

column “Avail.” is marked by “No” in Table V-4.

136

In addition, the sequences Hall1, Hall2, Street, and CarPark, cannot be evaluated by objective

method, because the common evaluation methods need the real captured videos to compare with the

synthesized videos. However, these sequences target outputs are at the fractional positions, that means

there are no real captured videos. Thus, the four sequences could not be used in the objective

evaluation, and their column “Eval.” is marked by “No”.

To sum up, the DERS algorithm could provide the results of sequences BookArrival, Pantomime,

Champange, LoveBird1, and Newspaper for the objective evaluation. On the other hand, our

algorithms could not provide only the results of sequences Hall1, Hall2, Street, and CarPark for the

objective evaluation.

Table V-4 Experiment setting in our evaluation

Sequence

Name

Output

No.

Frame Size Disparity

Range

Frame

Range

DERS Our algorithms

Input No. Avail. Eval. Input

No.

Avail. Eval.

BookArrival 9, 7 1024×768 70 0-99 12-10-8-6-4 Yes Yes 10-8-6 Yes Yes

LoveBird1 5, 7 1024×768 70 0-299 2-4-6-8-10 Yes Yes 4-6-8 Yes Yes

Newspaper 3, 5 1024×768 88 0-299 0-2-4-6-8 Yes Yes 2-4-6 Yes Yes

Café 2, 4 1920×1080 160 0-299 - No No 1-3-5 Yes Yes

Kendo 2, 4 1024×768 64 0-299 - No No 1-3-5 Yes Yes

Balloons 2, 4 1024×768 64 0-299 - No No 1-3-5 Yes Yes

Champagne 38, 40 1280×960 110 0-499 35-37-39-41-43 Yes Yes 37-39-41 Yes Yes

Pantomime 38, 40 1280×960 40 0-499 35-37-39-41-43 Yes Yes 37-39-41 Yes Yes

Hall1 2.5, 1.5 1920×1088 80 0-199 4-3-2-1-0 Yes No 3-2-1 Yes No

Hall2 6.5, 5.5 1920×1088 64 0-199 8-7-6-5-4 Yes No 7-6-5 Yes No

Street 4.5, 3.5 1920×1088 64 150-349 6-5-4-3-2 Yes No 5-4-3 Yes No

CarPark 4.5, 3.5 1920×1088 64 200-399 6-5-4-3-2 Yes No 5-4-3 Yes No

5.2 Comparison

5.2.1 Execution Time

For the comparison of execution time, all the algorithms are compiled by the Microsoft Visual

Studio 2010 with the optimization option of O2. The compiled programs are executed on the same PC

that has the 2.83-GHz Intel Core2 Quad CPU and the 4-Gbyte RAM with the operation system of

32-bit Windows 7. Table V-5 compares the average execution time of the proposed algorithms for one

frame. The execution time is measured in the calculation of 3 view disparity maps for the defined

137

frame range listed in Table V-4. Moreover, we scale the average execution time to the same resolution

of 1920×1080 and disparity range of 128 for our target specification. Table V-6 lists the scaled average

execution time. In which, the HQ-DE algorithm could take advantage of the single iterative BP-M to

speed up the baseline algorithm by 2.7 times in average. In addition, the HQ-DE algorithm is 9.3 times

faster than the DERS algorithm.

Compared to the HQ-DE algorithm, the SC-DE algorithm could reduce the execution time to

62.9% by the sparse computation method. On the other hand, the HE-DE algorithm employs the

proposed efficient cost diffusion method and the filter computation with decreased window size to

reduce the execution time to 57.2%.

Table V-5 Average execution time of proposed algorithms on PC for one frame

Sequence Name DERS Baseline HQ-DE SC-DE HE-DE

BookArrival 161,182 100,327 36,907 21,448 20,534

LoveBird1 248,399 73,460 31,990 20,020 18,620

Newspaper 281,858 138,565 42,376 22,627 25,121

Café N.A 1,011,112 206,917 N.A 131,773

Kendo N.A 73,755 31,854 21,999 17,890

Balloons N.A 72,604 31,640 22,531 17,880

Champagne 652,850 306,348 77,766 35,707 47,589

Pantomime 498,999 58,091 39,762 30,672 19,858

Hall1 286,225 297,946 100,916 57,361 59,135

Hall2 800,368 220,713 88,216 55,355 49,354

Street 1,187,748 184,441 83,457 53,340 47,269

CarPark 1,377,180 195,976 84,309 54,188 47,902

Unit: ms

Table V-6 Average execution time scaled to HD1080p resolution and disparity range of 128

Sequence Name DERS Baseline HQ-DE SC-DE HE-DE

BookArrival 777,129 483,719 177,944 103,410 99,003

LoveBird1 1,197,638 354,182 154,238 96,525 89,775

Newspaper 1,080,990 531,428 162,522 86,780 96,345

Café N.A 808,890 165,534 N.A 105,418

Kendo N.A 388,942 167,980 116,010 94,342

Balloons N.A 382,873 166,852 118,816 94,289

Champagne 1,281,961 601,556 152,704 70,116 93,447

Pantomime 2,694,595 313,691 214,715 165,629 107,233

Hall1 454,592 473,208 160,278 91,103 93,920

Hall2 1,588,966 438,180 175,135 109,896 97,982

Street 2,358,028 366,170 165,687 105,896 93,843

CarPark 2,734,108 389,070 167,378 107,579 95,100

Average 1,574,223 460,993 169,247 106,524 96,725

Compared to HQ-DE 930.1% 272.4% 100.0% 62.9% 57.2%

Unit: ms

138

5.2.2 Objective Quality Evaluation

The experiment setting follows the description in previous section. As mentioned in Section 2.3.4,

the common-used objective quality evaluation methods are PSNR, SSIM, and T_PSPNR. Their main

idea is to evaluate disparity quality by view synthesis results. Thus, they compare the difference

between the real captured videos and the synthesized videos, and then analyze the frame difference by

different methods. The PSNR and SSIM could be used to evaluate the spatial distortion, and the

T_PSPNR could be used to evaluate the temporal distortion. The associated software tools can be

obtained from [63], [77]. Note that the view synthesis algorithms are different for the DERS algorithm

and our proposed algorithms. The DERS algorithm cooperates with the VSRS algorithm [64], while

our proposed algorithms cooperates with the simplified VSRS algorithm [62] that adopts the Gaussian

filter for the hole filling and has approximate quality to the original VSRS algorithm.

1. PSNR Evaluation Results

Table V-7 and Table V-8 shows the PSNR evaluation results for luminance channel only, and

Figure V-2 plots the corresponding data by column diagram. Note that the “View0” and “View8 mean

the left most and the right most views for the 9-view displays. Note that the results of Café, Kendo,

and Balloons are not available in the DERS algorithm due to the reason described in previous section.

In addition, the proposed SC-DE algorithm could not generate disparity maps for the sequence Café

because of insufficient memory space on PC to support the extremely high resolution and large

disparity range. In this table, ∆PSNR is the PSNR difference of our algorithm and the DERS algorithm.

The positive ∆PSNR refers to our algorithm performs better than the DERS algorithm, and vice versa.

Compared to the DERS algorithm, the baseline algorithm could not perform better in most

sequences because the baseline algorithm only focuses on the computational reduction, instead of the

disparity quality improvement. With the temporal consistency and occlusion improvement methods,

the HQ-DE algorithm could has higher PSNR than the DERS algorithm in average.

139

The SC-DE algorithm is accelerated version of HQ-DE algorithm, and suffers from slight PSNR

drops. On the other hand, the HE-DE algorithm, the other accelerated version of HQ-DE algorithm,

has the slight quality drops in all sequences except the sequence Champagne, and the average PSNR is

higher than other algorithms. That implies the proposed cost diffusion method and the new irregular

occlusion handling method could deliver better disparity maps than the other proposed algorithms.

Table V-7 Evaluation results of Y-PSNR for View0

 DERS Baseline HQ-DE SC-DE HE-DE

PSNR PSNR ∆PSNR PSNR ∆PSNR PSNR ∆PSNR PSNR ∆PSNR

BookArrival 34.28 35.54 1.26 35.98 1.70 35.85 1.58 35.80 1.53

LoveBird1 32.45 32.07 -0.38 32.63 0.18 32.58 0.13 31.53 -0.92

Newspaper 29.53 29.27 -0.27 29.90 0.37 29.84 0.31 30.03 0.49

Café N.A. 32.83 - 33.30 - N.A. - 33.22 -

Kendo N.A. 34.66 - 34.84 - 34.82 - 34.88 -

Balloons N.A. 34.72 - 35.07 - 34.79 - 34.91 -

Champagne 25.32 28.27 2.95 27.63 2.31 24.99 -0.32 31.07 5.75

Pantomime 36.46 37.01 0.55 35.94 -0.52 35.58 -0.88 34.66 -1.80

Average 31.61 33.04 0.82 33.16 0.81 32.64 0.16 33.26 1.01

Unit: dB

Table V-8 Evaluation results of Y-PSNR for View8

 DERS Baseline HQ-DE SC-DE HE-DE

PSNR PSNR ∆PSNR PSNR ∆PSNR PSNR ∆PSNR PSNR ∆PSNR

BookArrival 35.87 35.68 -0.19 35.89 0.02 36.08 0.21 36.02 0.15

LoveBird1 29.31 27.53 -1.78 28.23 -1.08 28.22 -1.09 27.98 -1.33

Newspaper 31.86 31.29 -0.57 31.76 -0.10 31.65 -0.20 31.92 0.06

Café N.A. 32.87 - 33.01 - N.A. - 33.04 -

Kendo N.A. 35.75 - 36.24 - 36.12 - 36.36 -

Balloons N.A. 35.24 - 35.63 - 35.40 - 35.58 -

Champagne 24.20 28.72 4.52 28.11 3.91 27.46 3.26 29.73 5.53

Pantomime 34.65 35.85 1.20 36.00 1.35 36.13 1.48 35.61 0.96

Average 31.18 32.87 0.64 33.11 0.82 33.01 0.73 33.28 1.08

Unit: dB

140

(a)

(b)

Figure V-2 Evaluation results of Y-PNSR

2. SSIM Evaluation Results

In the SSIM evaluation, we calculate the average of the SSIMs in the three channels, R, G, and B

for each sequence. Table V-9 and Table V-10 list the SSIM evaluation results for the View0 and View8,

and Figure V-3 shows the corresponding column diagrams. With the SSIM evaluation results, all the

proposed algorithms could have the approximate quality to the DERS algorithm but suffer from slight

drops less than 0.02.

Table V-9 Evaluation results of SSIM for View0

 DERS Baseline HQ-DE SC-DE HE-DE

SSIM SSIM ∆SSIM SSIM ∆SSIM SSIM ∆SSIM SSIM ∆SSIM

BookArrival 0.98 0.95 -0.02 0.95 -0.02 0.95 -0.02 0.95 -0.02

LoveBird1 0.95 0.95 0.00 0.96 0.00 0.96 0.00 0.95 0.00

Newspaper 0.99 0.99 0.00 0.99 0.00 0.99 0.00 0.99 0.00

Café N.A. 0.99 - 0.99 - N.A - 0.99 -

Kendo N.A. 0.98 - 0.98 - 0.98 - 0.98 -

Balloons N.A. 0.97 - 0.98 - 0.98 - 0.97 -

Champagne 0.97 0.97 0.00 0.96 -0.01 0.95 -0.02 0.97 0.00

Pantomime 0.98 0.98 0.00 0.98 0.00 0.97 0.00 0.97 0.00

Average 0.97 0.97 -0.01 0.97 -0.01 0.85 -0.01 0.97 0.00

20

22

24

26

28

30

32

34

36

38

BookArrival LoveBird1 Newspaper Café Kendo Balloons Champagne Pantomime

Y-PSNR for View0 (dB)

DERS

Baseline

HQ-DE

SC-DE

HE-DE

20

22

24

26

28

30

32

34

36

38

BookArrival LoveBird1 Newspaper Café Kendo Balloons Champagne Pantomime

Y-PSNR for View8 (dB)

DERS

Baseline

HQ-DE

SC-DE

HE-DE

141

Table V-10 Evaluation results of SSIM for View8

 DERS Baseline HQ-DE SC-DE HE-DE

SSIM SSIM ∆SSIM SSIM ∆SSIM SSIM ∆SSIM SSIM ∆SSIM

BookArrival 0.97 0.95 -0.02 0.95 -0.02 0.95 -0.02 0.95 -0.02

LoveBird1 0.93 0.92 -0.01 0.92 -0.01 0.92 -0.01 0.92 -0.01

Newspaper 0.99 0.98 -0.01 0.99 0.00 0.99 0.00 0.99 0.00

Café N.A. 0.99 - 0.99 - N.A. - 0.99 -

Kendo N.A. 0.98 - 0.99 - 0.99 - 0.99 -

Balloons N.A. 0.98 - 0.98 - 0.99 - 0.98 -

Champagne 0.97 0.97 0.00 0.96 0.00 0.96 -0.01 0.97 0.00

Pantomime 0.97 0.97 0.00 0.97 0.00 0.97 0.00 0.97 0.00

Average 0.97 0.97 -0.01 0.97 -0.01 0.97 -0.01 0.97 -0.01

(a)

(b)

Figure V-3 Evaluation results of SSIM

3. PSPNR Evaluation Results

The PSPNR evaluation method [76] consists of the S_PSPNR for spatial distortion and the

T_PSPNR for temporal distortion. In this dissertation, we adopt the T_PSPNR to evaluate the

temporal consistency of disparity maps. Table V-11 and Table V-12 list the T_PSPNR evaluation

results, and Figure V-4 plots the corresponding column diagrams. Compared to the DERS algorithm,

the baseline algorithm has serious quality degradation due to no temporal consistency enhancement

applied. Taking advantage of the proposed temporal consistency enhancement methods, the HQ-DE

0.85

0.87

0.89

0.91

0.93

0.95

0.97

0.99

BookArrival LoveBird1 Newspaper Café Kendo Balloons Champagne Pantomime

SSIM for View0

DERS

Baseline

HQ-DE

SC-DE

HE-DE

0.85

0.87

0.89

0.91

0.93

0.95

0.97

0.99

BookArrival LoveBird1 Newspaper Café Kendo Balloons Champagne Pantomime

SSIM for View8

DERS

Baseline

HQ-DE

SC-DE

HE-DE

142

algorithm could have higher performance than the DERS algorithm. Such the high performance is

slightly decreased in the SC-DE and HE-DE algorithms in most sequences because of their

acceleration methods. Nevertheless, the two fast algorithms still perform better than the DERS in most

of the sequences.

Table V-11 Evaluation results of T_PSPNR (dB) for View0

 DERS Baseline HQ-DE SC-DE HE-DE

T_PSPNR T_PSPNR ∆T_PSPNR T_PSPNR ∆T_PSPNR T_PSPNR ∆T_PSPNR T_PSPNR ∆T_PSPNR

BookArrival 52.96 49.83 -3.13 53.60 0.64 54.10 1.14 52.94 -0.02

LoveBird1 45.30 43.08 -2.23 46.57 1.26 46.46 1.16 45.70 0.39

Newspaper 43.38 39.44 -3.94 44.09 0.71 44.19 0.82 43.65 0.27

Café N.A. 44.00 - 46.59 - N.A. - 47.83 -

Kendo N.A. 47.57 - 48.08 - 47.90 - 48.15 -

Balloons N.A. 48.25 - 49.99 - 48.25 - 49.93 -

Champagne 34.62 40.34 5.72 41.28 6.66 40.03 5.41 44.56 9.94

Pantomime 51.85 52.10 0.25 52.19 0.35 50.12 -1.72 50.95 -0.90

Average 45.62 45.57 -0.67 47.80 1.92 41.38 1.36 47.96 1.94

Unit dB

Table V-12 Evaluation results of T_PSPNR for View8

 DERS Baseline HQ-DE SC-DE HE-DE

T_PSPNR T_PSPNR ∆T_PSPNR T_PSPNR ∆T_PSPNR T_PSPNR ∆T_PSPNR T_PSPNR ∆T_PSPNR

BookArrival 51.82 50.34 -1.48 53.52 1.70 52.81 0.99 54.62 2.79

LoveBird1 43.33 41.21 -2.11 44.70 1.37 44.75 1.42 43.84 0.51

Newspaper 47.92 43.43 -4.49 47.96 0.04 47.24 -0.67 47.82 -0.09

Café N.A. 43.42 - 46.86 - N.A. - 46.85 -

Kendo N.A. 49.34 - 50.58 - 50.41 - 50.81 -

Balloons N.A. 47.69 - 49.76 - 48.03 - 49.90 -

Champagne 34.16 40.00 5.84 41.18 7.02 41.32 7.16 42.19 8.03

Pantomime 48.45 49.13 0.68 50.12 1.67 49.98 1.53 50.06 1.61

Average 45.14 45.57 -0.31 48.09 2.36 47.79 2.09 48.26 2.57

Unit dB

143

(a)

(b)

Figure V-4 Evaluation results of T_PSPNR

4. Disparity Maps and Synthesized Images

Finally, the disparity maps and view synthesis results are demonstrated in Figure V-5 to Figure

V-16. The HQ-DE algorithm could improve the disparity maps and synthesized images better than the

baseline algorithm, and has comparable results to the DERS algorithm. Compared to the HQ-DE

algorithm, the SC-DE and the HE-DE algorithms has disparity noising at the object boundaries due to

their simplified methods.

30

35

40

45

50

55

BookArrival LoveBird1 Newspaper Café Kendo Balloons Champagne Pantomime

T_PSPNR for View0 (dB)

DERS

Baseline

HQ-DE

SC-DE

HE-DE

30

35

40

45

50

55

BookArrival LoveBird1 Newspaper Café Kendo Balloons Champagne Pantomime

T_PSPNR for View8 (dB)

DERS

Baseline

HQ-DE

SC-DE

HE-DE

144

145

Figure V-5 Disparity maps and view synthesized images in the 50
th
 frame of BookArrival

Results from top to down are the produced by the DERS, baseline, HQ-DE, SC-DE, HE-DE

algorithms.

146

147

Figure V-6 Disparity maps and view synthesized images in the 50
th
 frame of LoveBird1

Results from top to down are the produced by the DERS, baseline, HQ-DE, SC-DE, HE-DE

algorithms.

148

149

Figure V-7 Disparity maps and view synthesized images in the 100
th
 frame of Newspaper

Results from top to down are the produced by the DERS, baseline, HQ-DE, SC-DE, HE-DE

algorithms.

Figure V-8 Disparity maps and view synthesized images in the 50
th
 frame of Café

Results from top to down are the produced by the baseline, HQ-DE, HE-DE algorithms.

150

Figure V-9 Disparity maps and view synthesized images in the 50
th
 frame of Kendo

Results from top to down are the produced by the baseline, HQ-DE, SC-DE, HE-DE algorithms.

151

Figure V-10 Disparity maps and view synthesized images in the 100
th
 frame of Balloons

Results from top to down are the produced by the baseline, HQ-DE, SC-DE, HE-DE algorithms.

152

153

Figure V-11 Disparity maps and view synthesized images in the 50
th
 frame of Champagne

Results from top to down are the produced by the DERS, baseline, HQ-DE, SC-DE, HE-DE

algorithms.

154

155

Figure V-12 Disparity maps and view synthesized images in the 50
th
 frame of Pantomime

Results from top to down are the produced by the DERS, baseline, HQ-DE, SC-DE, HE-DE

algorithms.

156

Figure V-13 Disparity maps and view synthesized images in the 50
th
 frame of Hall1

Results from top to down are by the DERS, baseline, HQ-DE, SC-DE, HE-DE algorithms.

157

Figure V-14 Disparity maps and view synthesized images in the 50
th
 frame of Hall2

Results from top to down are by the DERS, baseline, HQ-DE, SC-DE, HE-DE algorithms.

158

Figure V-15 Disparity maps and view synthesized images in the 167
th
 frame of CarPark

Results from top to down are by the DERS, baseline, HQ-DE, SC-DE, HE-DE algorithms.

159

Figure V-16 Disparity maps and view synthesized images in the 50
th
 frame of CarPark

Results from top to down are the produced by the baseline, HQ-DE, SC-DE, HE-DE algorithms.

5.3 Summary

The disparity quality and execution time of the proposed algorithms are examined using the test

bench for view synthesis application. Compared to the DERS algorithm, the proposed HQ-DE

160

algorithm has high disparity quality in the temporal PSPNR evaluation, and approximate disparity

quality in the spatial PSNR evaluation. For the computational comparison, our proposed HQ-DE

algorithm is more efficient than the DERS algorithm because our processing resolution is decreased by

the disparity upsampling technique. The computation of HQ-DE algorithm could be significantly

reduced by the proposed SC-DE and HE-DE algorithms with slight disparity quality change. Moreover,

according to their computational characteristics, the SC-DE algorithm could be further accelerated by

processor-based platforms, and the HE-DE algorithm could be accelerated by VLSI design. In the next

chapter, the HE-DE algorithm is implemented by VLSI design to achieve the required throughput of

high resolution 3DTV applications.

161

VI Design of Disparity Estimation Engine for

High Definition 3DTV Applications

The main target of this dissertation is to deliver a disparity estimation engine that can generate

three view HD1080p disparity maps in the throughput of 60 frames/s. To achieve this target, we

simplify the hardware-efficient disparity estimation (HE-DE) algorithm for lower hardware cost, and

propose a corresponding hardware design. The implementation result shows that the proposed

disparity estimation engine could achieve the target throughput, and outperform the previous

implementation.

This chapter is organized as follows. First, we analyze the data dependency of HE-DE algorithm,

and simplify it to reduce more hardware cost. Then, we present the proposed architecture for the

simplified HE-DE algorithm. The details of its computational modules and memory access schedule

are also described. Finally, the implementation result is demonstrated and compared with previous

work.

6.1 Architectural Analysis

6.1.1 Analysis of Hardware-Efficient Disparity Estimation Algorithm

The HE-DE algorithm could significantly reduce the memory cost and computational complexity

of HQ-DE algorithm by the proposed methods. However, the HE-DE algorithm still suffers from high

hardware cost while considering its detailed architecture. In Figure VI-1, we analyze the data

dependency of the HQ-DE algorithm that consists of the main process and the branch process in the

whole flow. The main process is from the window-based SSAD to the still-edge preservation steps for

the computation of cost cube, low-resolution disparity map, and high-resolution disparity map, while

the branch process includes the motion detection and the edge detection steps for the assistant

162

information of temporal consistency enhancement. Because of no feedback data path in this flow, we

could adopt the pipelining architecture to increase the throughput of HE-DE algorithm. With the

pipelining architecture, the hardware design of HE-DE algorithm has the high memory cost problem

due to the following reasons.

Figure VI-1 Data dependency of the HE-DE algorithm

1. Long Pipelining Stall for Branch Process

In the pipelining architecture, the size of pipelining buffer is related to the computational

characteristics of two steps and the stall cycles. The main process has the critical latency but no

pipelining stall since the produced data between each two steps can be immediately used. However,

the branch process suffers from long pipelining stall because the motion and edge maps are fetched by

CostDiffu

JBU

Still-Edge

Preserv.

Window

Vote

Edge

Detection

Occlusion

Handling

Win. SSAD

Temporal

Cost Cal.

Motion

Detection

IH,C
tIH,C

t-1

EH,C

IH,L
t IH,R

t

cost

MH,C

NMCH,CDH,C
t-1

DH,C
t

Previous

Disparity
Previous Image Target Image Reference Images

No-motion

Count

BF BF

MF

MF

Step required to be modified

Step without design problems

Disparity Map

Image

Main Process

Branch Process

163

the start and the end of main process. Therefore, the branch process requires large memory space to

store the data.

2. Filter-based Process

The HE-DE algorithm employs many filter-based processes, such as bilateral filter, median filter,

dilation, erosion, and etc. By decreasing their filter size, the computational complexity is significantly

reduced in the HE-DE algorithm. However, the filter-based processes still result in high memory cost

even if the filter size is minimized to 3×3. Figure VI-2 shows the required buffers for two continuous

filter processes. The step 1 performs a 3×3 filter, and its filter center has moved to the position (x, y).

With the calculated result of Step 1, the step 2 could perform the 5×5 filter for the center position (x-2,

y-2). The two steps in the pipelining architecture demand a 2-row buffer and a 4-row buffer, whose

total memory size is 1920×6 pixels (i.e. 34.5Kbytes for 3-channel pixel) for the HD1080p resolution.

To sum up, the filter-based process is expensive on the memory cost, and a filter with radius r needs a

buffer with 2r frame rows at least. Therefore, we should try to remove the filter-based processes in the

HE-DE algorithm under the condition of no observable impact on disparity quality.

Figure VI-2 Required row buffers in filter-based processes for pipelining architecture

3. Motion Detection with Sequential Steps

The motion detection in the HE-DE algorithm is to find the motion map for the temporal cost

calculation and the still-edge preservation. It mainly includes the frame difference computation and the

Centered for (x, y)

Centered for (x-2, y-2)

Step1: 3x3 filter

Step2: 5x5 filter

2-row Buffer

4-row Buffer

164

motion map extension as shown in Figure IV-34 (a). The motion detection method is simple but needs

many pipelining buffers between each two steps as shown in Figure VI-5. It results from that each step

in the motion detection is sequentially performed, and their required data are cross multiple rows. In

addition, the motion detection also suffers from the problems of filter-based processes due to the

dilation and erosion. Therefore, we should further simplify the motion detection with the consideration

of memory cost.

Figure VI-3 Memory buffers in the motion detection

To solve the above problems, we modify partial blocks of the HE-DE algorithm in Figure VI-1.

In which, we would merge the edge detection into the sill-edge preservation, remove all the bilateral

filters (BF) and the median filters (MF), and simplify the motion detection. The improved HE-DE

algorithm could be implemented by VLSI design, and is called hardware-based disparity estimation

(HW-DE) algorithm in this dissertation.

6.1.2 Proposed Hardware-Based Algorithm

IH,C
t (1 row) IH,C

t-1 (1 row)

Pixel-based Difference

Block-based Difference

(2x4)

Frame Difference (3 rows)

Dilation (3x3)

Motion Map (3 rows)

Pixel-based Motion Cal.

Frame Difference (3 rows)

Dilation (3x3)

Motion Map (3 rows)

Erosion (3x3)

Motion Map (3 rows)

No-Motion Registration

EH,C
t(2 rows)

Motion Extension

NMCH,C
t (1 row)

Motion Map (1 row)

Motion Map (1 row)

165

Figure VI-4 shows the flow of proposed HW-DE algorithm. In which, the window sizes are

minimized to 3×3 for the window-based SSAD and the window vote. In addition, all the bilateral and

median filters for de-noising images are removed in the HW-DE algorithm. But it would result in that

the image noise affects the disparity quality. Therefore, the cost diffusion, temporal cost and motion

detection are also improved in the HW-DE algorithm for keeping disparity quality and lower hardware

cost.

Figure VI-4 Flow of the proposed HW-DE algorithm

1. Improved Cost Diffusion

The original vertical cost in (IV-23) strongly propagates previous row disparity to current costs if

their corresponding pixels are consistent. However, the pixel consistency would be not accurate

because of the image noise. Therefore, we should modify the scaling term λvert and disparity difference

term for the vertical cost to decrease the dependency on the pixel consistency. The main idea of new

IH,C
t IH,L

tIH,R
t

Reference FramesTarget Frame

DH,C
t-1

Previous Frame

Window-based SSAD (3x3)

Temporal Cost Cal.

Cost Diffusion

Low-Resol. Occ. Handling

JBU (5x5)

WVote (3x3)

Still-Edge Preservation

Low Resolution

DH,C
t

DL,L
t

Side-View Process

DL,R
tDL,C

t

DH,C
t

MVL,C

Motion

Detection

ML,C

NMCH,C IH,C
t-1

No-motion Count

166

defined vertical cost is to introduce the Potts model into the scaling term and disparity difference, so

that the new vertical cost is defined as

 𝐶𝑣𝑒𝑟𝑡(𝑥, 𝑦, 𝑑) = 𝜆𝑣𝑒𝑟𝑡(∆𝐼𝐿
𝑡) × min*|𝑑 − 𝐷𝐿

𝑡(𝑥, 𝑦 − 1)|, 𝜏𝑣𝑒𝑟𝑡+ , (VI-1)

where τvert is for truncating the disparity difference, λvert is for scaling the cost value according to the

color distance of IL
t
(x, y) and IL

t
(x, y-1). The value of scaling function λvert should be increased while

the color distance is decreased. Thus, the scaling function λvert is defined as

𝜆𝑣𝑒𝑟𝑡(∆𝐼𝐿
𝑡) = 𝜆𝑣𝑒𝑟𝑡,𝑚𝑎𝑥 − 𝜆𝑣𝑒𝑟𝑡,𝑠𝑙𝑜𝑝𝑒min*∆𝐼𝐿

𝑡, 𝛾𝑣𝑒𝑟𝑡+ . (VI-2)

where γvert and λvert,slope are for truncation and scale in the Potts model. This new vertical cost could

tolerate the inaccurate pixel consistency, because its value is adaptive with the color consistency ∆IL
t
.

In addition, the disparity candidates far from previous row would not suffer from too much penalty by

the truncation term τvert.

2. Improved Motion Detection

Figure VI-5 shows the simplified motion detection for the HW-DE algorithm. Compared to the

original motion detection in Figure IV-34, the motion calculation steps are replaced by the motion

value calculation, and the dilation and erosion steps are removed. Without the separate pixel-based and

block-based motion calculation, the simplified motion detection directly computes the motion value to

decide the motion map, and passes the motion value to the temporal cost calculation. The motion value

for the low-resolution pixel at (x, y) is defined as

 𝑀𝑉𝐿
𝑡(x, y) =

1

3 × 3
∑ |𝐼𝐻

𝑡 (𝑢, 𝑣) − 𝐼𝐻
𝑡−1(𝑢, 𝑣)|

(𝑢,𝑣)∈𝑆
 , (VI-3)

where S is a 3×3 window centered for (2x, 4y) in the high-resolution frames. With the motion value

MVL
t
 and the old no-motion count NMCL

t-1
, the motion decision step determines the motion flag ML

t
 by

 𝑀𝐿
𝑡(𝑥, 𝑦) = {1 𝑖𝑓 𝑀𝑉𝐿

𝑡(𝑥, 𝑦) > 𝜏𝑀 𝑜𝑟 𝑁𝑀𝐶𝐿
𝑡−1(𝑥, 𝑦) < 𝜏𝑁𝑀𝐶

0 𝑒𝑙𝑠𝑒
 . (VI-4)

In addition, the no-motion registration step also updates the old no-motion count NMCL
t-1

 to the new

one NMCL
t
 by

167

 𝑁𝑀𝐶𝐿
𝑡(𝑥, 𝑦) = {𝑁𝑀𝐶𝐿

𝑡−1(𝑥, 𝑦) + 1 𝑖𝑓 𝑀𝑉𝐿
𝑡(𝑥, 𝑦) ≤ 𝜏𝑀

0 𝑒𝑙𝑠𝑒
. (VI-5)

Note that the edge information is not necessary in the improved motion detection. Therefore, the edge

map would not result in the high memory cost for long pipelining stall.

Figure VI-5 Proposed motion detection in the HW-DE algorithm

3. Improved Temporal Cost

With the simplified motion detection, the outputted binary motion map ML
t
 could well support the

still-edge preservation but the temporal cost calculation due to the performance of motion map is

affected by the image noise. Thus, using the same method in the modification of vertical cost, we

modify the original temporal cost calculation from (IV-17) to

 𝐶𝑡𝑒𝑚𝑝(𝑥, 𝑦, 𝑑) = 𝜆𝑡𝑒𝑚𝑝(𝑀𝑉𝐿
𝑡(𝑥, 𝑦)) ×min{|𝑑 − 𝐷𝐿

𝑡−1(𝑥, 𝑦)|, 𝜏𝑡𝑒𝑚𝑝} , (VI-6)

where λtemp is changed from a constant to the function of motion value MVL
t
. The function is λtemp

defined as

 𝜆𝑡𝑒𝑚𝑝(𝑀𝑉) = 𝜆𝑡𝑒𝑚𝑝,𝑚𝑎𝑥 − 𝜆𝑡𝑒𝑚𝑝,𝑠𝑙𝑜𝑝𝑒min{𝑀𝑉, 𝛾𝑡𝑒𝑚𝑝}. (VI-7)

With the improvement, the temporal cost is adapted according to the motion value, instead of only the

binary motion map contaminated by image noise. The lower motion value the more impact from

previous disparity.

The proposed HW-DE algorithm could reduce most of the memory cost that results from the long

pipelining stall in the edge detection, the filter-based processes, and the motion detection. In addition,

IH
t

Motion Value Cal.

Motion Decision

No-Motion

Registration

IH
t-1

ML
t MVL

t

NMCL
t-1

NMCL
t

168

the proposed improved vertical cost and temporal cost could tolerate the image noise, and keep the

disparity quality without significant degradation. The proposed algorithm is implemented by VLSI

design in the following sections, and its disparity quality is evaluated in Section 6.5.

6.2 Overview of Disparity Estimation Engine

The major design challenges of the disparity estimation engine have been addressed in the

algorithm level. In the architectural design level, how to meet the target throughput with less hardware

cost is the main task. To achieve the task, this section presents the proposed high-throughput

architecture and the initial schedule for the computational circuits that could meet the target

throughput.

6.2.1 Proposed Three-Stage Pipelining Architecture

Figure VI-6 shows the proposed architecture of disparity estimation engine and the associated

peripheral resource. The proposed architecture consists of the main core and the I/O interface. The I/O

interface accessed the required and resultant data from the external memory through a 128-bit bus, and

the main core uses the fetched data to calculate the disparity maps.

According to the computational characteristics in the proposed disparity estimation algorithm, we

propose the three-stage pipelining architecture for the main core. The first low-resolution disparity

estimation stage processes in low resolution frame, and produces the initial disparity maps and motion

information for the following stages. Then, the second stage deals with the occlusion problem in

different processing directions for the three views. Finally, the high-resolution disparity estimation

stage upsamples and refines the disparity maps in high resolution frame. Note that the pipelining

stages are row-based buffers, and the buffers between the second and third stages are the external

memory to decrease the internal memory cost.

On the other hand, in the I/O interface, the memory access controller serves all the requests from

main core to access the data in the external memory. To decrease the idle time of main core, we

169

propose an efficient memory access schedule for the memory access controller, and the corresponding

data configuration for the external memory in Section 6.4.

Figure VI-6 Overview architecture of the proposed disparity estimation engine

6.2.2 Schedule of Main Core

We assume the proposed disparity estimation engine could calculate one disparity for three views

in one cycle. This engine can achieve the throughput of 60 frames/s for three view HD0180p disparity

maps if the main core can work at the higher frequency than 125MHz. With this assumed throughput,

we propose the computational schedule of main core for calculating one disparity frame in Figure VI-7.

Note that the three view disparity maps are simultaneously produced. In this schedule, the computation

of one disparity frame requires 1920×1080 cycles, and a schedule tile has 1920×4 cycles for four

disparity rows. In a schedule tile, the former two stages produce one low-resolution disparity row, and

last stage uses it to further produce the corresponding four high-resolution disparity rows.

Motion Detection

Win. SSAD

Cost

Diffusion
Temporal Cost

Cal.

Occlusion

Handling

Joint Bilateral

Upsampling

Window Vote

Still-Edge

Preservation

MVL DL
t

Min Cost

IL
t

MLNMCLIH
t-1 IH

tDH
t DL

t DL
t

DH
t

IH
t DH

t-1 ML DH
t-1

DH
t

Low-Resolution DE Stage

Occlusion Handling

Stage High-Resolution DE Stage

Main

Core

I/O

Interface

Memory Access Controller

Bus

External

Memory
Source Videos Disparity Maps

No-Motion

Count

(NMC)

Low-Resol.

Disparity

Map

Motion

Map

XX Computing ModuleXX Internal Storage

XX Image Data in External Memory XX Disparity Data in External Memory XX Other Data in External Memory

128-bit

170

Figure VI-7 Proposed computational schedule for main core

In the low-resolution disparity estimation stage, the schedule is dominated by the forward and

backward cost diffusion. To cooperate with them, the required data should be calculated twice or once

with a data reuse technique. Considering the memory cost into the other computation, the motion

detection applies the once calculation with data reuse technique, and the window-based SSAD and

temporal cost calculation applies the twice calculation. Therefore, for the matching cost-related

calculation, we have 4 cycles to compute the costs of a pixel with full disparity range, and the

throughput of this stage would be 1/8 pixels/cycle. For the occlusion handling stage, we do not spread

their calculation to the whole slot because of no heavy computation. For the final high-resolution

disparity estimation stage, the required throughput is 1 pixel/cycle to meet the target performance.

Based on the computational schedule of main core, we could further design the architecture of

each computational module according to the above mentioned throughput. Note that the computational

schedule will be modified by considering the external memory access in Section 6.4.

6.3 Detailed Architectural Design

4 Rows: 1920x4 pixels

Motion Detection

Temporal Cost Calculation Temporal Cost Calculation

Joint Bilateral Upsampling

Window Vote

Still-Edge Preservation

Forward Cost Diffusion Backward Cost Diffusion

Window-Based SSAD Window-Based SSAD

Time

Low-Resol.

DE Stage

High-Resol.

DE Stage

Occlusion

Handling

Stage

1920

960x4 960x4

1

Low-Resolution

Disparity Row

1

Low-Resolution

Disparity Row

4

High-Resolution

Disparity Row

Good Disp. Detection

Disparity Cross Warping

Border Filling

Inside Filling

720

Joint Bilateral Upsampling

Window Vote

Still-Edge Preservation

1920

Joint Bilateral Upsampling

Window Vote

Still-Edge Preservation

1920

Joint Bilateral Upsampling

Window Vote

Still-Edge Preservation

1920

One Frame: 1920x1080 pixels

1920x1080

Unit: Cycle

171

In this section, we describe the details of computational modules in each pipelining stage by the

pipelining stage scope and the module scope. The pipelining stage scope focuses on the data flow

among modules and the internal memory configuration, while the module scope focuses on the

computational logic.

6.3.1 Low-Resolution Disparity Estimation Stage

Figure VI-8 shows the architecture of low-resolution disparity estimation stage. In which, all the

computational modules has three parallel PEs for three target views. The data from the external

memory are buffered in groups of registers to support the wide data access of main core. By the

schedule in Figure VI-7, the computation of this stage consists of the forward process and the

backward process. In the forward process, the motion detection module finishes all tasks, and stores

the motion value into the internal memory lo_mval for data reuse in the next process. In addition, the

updated no-motion count and motion flag are written to the external memory for the last pipelining

stage. At the same time, the modules from window-based SSAD to the horizontal diffusion are

performed in one frame row from left to right in the forward process. Their temporary minimal cost

and disparity rows are stored in the memory lo_min_cost and lo_cur_disp. Then, in the backward

process, they are performed in the opposite direction using the temporary data, and reuse the motion

values of the internal memory lo_mval. The produced disparity and downsampled image rows are

placed in the internal memory lo_cur_disp and lo_cur_img for the next pipelining stage.

172

Figure VI-8 Architecture of the low-resolution disparity estimation stage

The architecture of the computational modules is presented as follows.

1. Motion Detection

Figure VI-9 illustrates the input and output data in the frame coordinate system for the motion

detection module, and Figure VI-10 shows the architecture of motion detection module. In Figure VI-9,

the motion detection module uses the two 3×3 windows from the current frame IH
t
 and previous frame

IH
t-1

to compute the motion value MVL
t
 and motion flag ML

t
. In addition, the old no-motion count

NMCL
t-1

 is updated and used to extend motion map for the foreground copy artifact. The architecture

of motion detection module is directly implemented according to (VI-3), (VI-4), and (VI-5). However,

a divider is required for normalization in (VI-3). To remove the divider, all the associated values are

Motion Detection

NMCount

Buf.

Mflag

Buf.
NMCount

Buf.

Mflag

Buf.
lo_nmcount

14x3x2

lo_mflag

42x1

Motion DetectionMotion Detection

lo_mval

(960x1x8)

Temporal CostTemporal Cost

Memory Access Controller

Win. SSAD

(Center)

Win. SSAD

(Left)

Win. SSAD

(Right)

D Potts

Temporal Cost

D Potts D Potts

mval_tcost_fwd

mval_tcost_bwd

Temporal CostTemporal CostVertical Diffusion

CurI Row Buffer

(960x8x24)

Temporal CostTemporal CostHorizontal Diffusion

lo_pre_disp

(960x1x7)

CurI Row Buffer

(960x8x24)
lo_cur_img

(960x3x24)

lo_cur_disp

(960x2x7)

lo_min_cost

(960x1x11)

I/O Buffers

Internal Buffers

occ_vf_cur_img

occ_wf_cur_disp

mval

(8x3)

mflag

(1x3)

old

nmcount

(3x3)

Wire Route

L

(3x3)

R

(3x3)

C

(130x3)

C

(130x3)

L

(130x3)

R

(130x3)

C

(3x3)

pre_disp

(7x3)

mval

(8x3)

cur_disp_crow

(7x3)

cur_disp_crow

(7x3)

min_cost

(11x3)

min_cost

(11x3)

disp

(7x3)

cur_img

(9x24x3)

NMCount Buf.NMCount Buf.hi_pre_img

16x3x24

pre_img

(9x24x3)

new

nmcount

(3x3)

hi_pre_disp

hi_cur_img_l

(130+16)x3x24

hi_cur_img_c

(257+16)x3x24

hi_cur_img_r

(130+16)x3x24

cost

cost

cost

cur_img_crow

(24x3)

cur_img_prow

(24x3)

cur_img_crow

(24x3)

cur_disp_prow

(7x3)

Single-port SRAM

960x24

Single-port SRAM

960x33
Dual-port SRAM x2

(960x21)x2

Single-port SRAM

960x21

16x7x3

Single-port SRAM x3

(960x72)x3X SRAM or Register File X Computational Module X Registers

173

multiplied by 9. In addition, the pixel difference in (VI-3) adopts the Manhattan color distance for low

hardware cost. Note that the truncation of MVL
t
 in the temporal cost calculation is pre-performed here

to reduce the memory cost of motion value.

Figure VI-9 Data access of the motion detection module in the frame coordinate system

Figure VI-10 Architecture of the motion detection module

2. Matching Cost Calculation

For each target view, the original matching cost calculation uses the other two views as the

reference frames. In the disparity estimation engine, we simplify the side-view matching cost

calculation only using the center-view as reference frame to reduce the hardware cost. Figure VI-11

shows the input data and required data for computing the full matching costs of one pixel. For example

of the left-view matching cost calculation, the required data contains the 3×3 block of left-view input

Current Image IH
t

Previous Image IH
t-1

Old No-Motion Count NMCL
t-1

Centered for (x, y)

Centered for (x, y)

(x/2, y/4)

Motion Value MVL
t

(x/2, y/4)

Motion Flag ML
t

(x/2, y/4)

Old No-Motion Count NMCL
t

(x/2, y/4)

Input Data Output Data

pre_img IH
t-1

cur_img IH
t

-
-

ABS
ABS

- ABS

+ +

9 Parallel Color

Differences

+
9x24bit

9x24bit

CMP

Truncation to 9γtemp

≤9γtemp

>9γtemp9γtemp

9x10bit
+

8 8bit

mval MVL
t

CMP
>9τM

13bit

pre_nmcount

NMCL
t-1

1bit

mflag ML
t

3bit

cur_nmcount

NMCL
t

1

0+

1

3bit

0

CMP
<τNMC

Motion Detection Module

Motion pixel is.

Adder Tree

9-to-1

|IH
t(u, v)-IH

t-1(u, v)|

min{MVL
t,9γtemp}

MVL
t

174

data (i.e. block No. 2), and the (DR+2)×3 block of center-view input data (i.e. block No. 4 and 5). The

required data for the center-view and right-view matching cost calculation are also illustrated.

Figure VI-11 Input and required data in matching cost calculation for three target views

As mentioned in Section 6.2.2, the throughput of this module should be DR/4 costs/cycle, and it

is designed with the parallelism factor of 32 for the disparity range of 128. Figure VI-12 shows the

proposed architecture of this module for three views. Note that the center-view has double

32-parallel-SAD PEs because of two reference views. For each disparity, the minimum matching cost

is selected. Thus, the three-view matching costs are defined as

 𝐶0,𝐶
𝑡 (𝑥, 𝑦, 𝑑) = min*𝑆𝑆𝐴𝐷𝐶−𝐿(𝑥, 𝑦, +𝑑), 𝑆𝑆𝐴𝐷𝐶−𝑅(𝑥, 𝑦, −𝑑)+ (VI-8)

 𝐶0,𝐿
𝑡 (𝑥, 𝑦, 𝑑) = 𝑆𝑆𝐴𝐷𝐿−𝐶(𝑥, 𝑦, −𝑑) (VI-9)

 𝐶0,𝑅
𝑡 (𝑥, 𝑦, 𝑑) = 𝑆𝑆𝐴𝐷𝑅−𝐶(𝑥, 𝑦, +𝑑) (VI-10)

where the window-based SSAD is calculated by

 𝑆𝑆𝐴𝐷𝑡𝑎𝑟−𝑟𝑒𝑓(𝑥, 𝑦, 𝑑) = ∑ ‖𝐼𝐻,𝑡𝑎𝑟
𝑡 (𝑢, 𝑣) − 𝐼𝐻,𝑟𝑒𝑓

𝑡 (𝑢 + 𝑑, 𝑣)‖(𝑢,𝑣)∈𝑆 . (VI-11)

In which, S is a 3×3 window centered for (x, y), and the Manhattan difference is adopted for the color

difference. The initial matching costs are substituted into the DPotts model by

 𝐶𝐷
𝑡 (𝑥, 𝑦, 𝑑) = 𝜆𝐷min*𝐶0

𝑡(𝑥, 𝑦, 𝑑), 𝜏𝐷+ , (VI-12)

Left-view Current Image IH,L
t

Window center at (x, y)

Center-view Current Image IH,C
t

Window center at (x, y)

Right-view Current Image IH,R
t

Window center at (x, y)

1 2

3 4 5

6 7

2

4 5

1

4

2

6 7

6

3 4

Input Data
Data Required

in Matching Cost Calculation

Left-view Target C0,L
t

Center-view Target C0,C
t

Right-view Target C0,R
t

DR-1

DR-1 DR-1

DR-1

175

Finally, the produced CD
t
 is added with the temporal cost Ctemp

t
 and the vertical cost Cvert

t
 for the

horizontal cost diffusion to calculate the disparity maps. They are summed up by

 𝐶𝑡𝑜𝑡𝑎𝑙
𝑡 (𝑥, 𝑦, 𝑑) = 𝐶𝐷

𝑡 (𝑥, 𝑦, 𝑑) + 𝐶𝑡𝑒𝑚𝑝
𝑡 (𝑥, 𝑦, 𝑑) + 𝐶𝑣𝑒𝑟𝑡

𝑡 (𝑥, 𝑦, 𝑑) . (VI-13)

(a)

(b)

(c)

Figure VI-12 Architecture of the window-based SSAD and DPotts modules

(a) center view, (b) left view, (c) right view

Left-view image IH,L
t

Center-view image IH,C
t

Right-view image IH,R
t

9 SCD
32x9x24bit

9x24bit

9x24bit

9x24bit
+

9x10bit

Adder
Tree

9-to-1

32 Parallel SAD modules

32x9bit

+
+

32x8bit

32 Parallel SAD modules

32x9x24bit

9 SCD
9x24bit

9x24bit
+

9x10bit

Min.

Selection
MIN2
MIN2

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

32x13bit

32x13bit

+
+

32x10bit

-
-

ABS
ABS

- ABS

+ +

-
-

ABS
ABS

- ABS

+ +

MIN2
MIN2

…
…

Window-based SSAD D Potts

…
…

…
…

Adder
Tree

9-to-1

Pipelining

Ctemp,C
t

Cvert,C
t

Temporal

Cost

Vertical Cost

Diffusion

C0,C
t

10τD

Ctotal,C
tCD,C

t

Left-view image IH,L
t

Center-view image IH,C
t

9 SCD

32x9x24bit

9x24bit

9x24bit
+

9x10bit

32 Parallel SAD modules

…
…

…
…

…
…

…
…

32x13bit

-
-

ABS
ABS

- ABS

+ +9x24bit

32x9bit

+
+

32x7bit

+
+

32x11bit

MIN2
MIN2

…
…

Window-based SSAD D Potts

…
…

…
…

Adder
Tree

9-to-1

Pipelining Temporal

Cost

Vertical Cost

Diffusion

C0,L
t

10τD

Ctemp,L
t

Cvert,L
t

Ctotal,L
tCD,L

t

Left-view image IH,L
t

Right-view image IH,R
t

9 SCD
32x9x24bit 9x24bit

9x24bit
+

9x10bit

32 Parallel SAD modules

…
…

…
…

…
…

…
…

32x13bit

-
-

ABS
ABS

- ABS

+ +

9x24bit

32x6bit

+
+

32x7bit

+
+

32x11bit

MIN2
MIN2

…
…

Window-based SSAD D Potts

Temporal

Cost

Vertical Cost

Diffusion

…
…

…
…

Adder
Tree

9-to-1

Pipelining

10τD

C0,R
t

Ctemp,R
t

Cvert,R
t

Ctotal,R
tCD,R

t

176

With the above equations, the window-based SSAD and the DPotts modules could be directly

implemented. The two modules calculate the matching costs pixel by pixel from left to right in the

forward cost diffusion, and the opposite direction in the backward cost diffusion. Note that the

required images are loaded twice for the two direction steps, and the sliding image buffers are applied

to reduce the external memory access.

3. Temporal Cost Calculation and Vertical Cost Diffusion

The temporal cost calculation is to generate the full temporal costs Ctemp
t
 using the previous

disparity DH
t-1

(x, y) and the motion value MVL
t
(x, y) for four iterations. Figure VI-13 shows the

architecture of temporal cost calculation module that is implemented according to (VI-6) and (VI-7).

The 32 parallel disparity differences of |d-DH
t-1

(x, y)| is implemented by look-up table to reduce 32

subtractors, and the function λtemp is also implemented by look-up table to fit its curve. The truncation

and the multiplication in (VI-6) can be simplified to adders and shifters as shown in Figure VI-13 (b).

(a)

(b)

Figure VI-13 Architecture of the temporal cost calculation module

Disparity pixel

DL
t

32x8bit

Ctemp
t

Temporal Cost Calculation Module

32 ∆DL
t

Motion value

MVL
t

Slope Mul.
Slope Mul.

…
…

7bit

8bit
≤λtemp,slopeγtemp

≤2λtemp,slopeγtemp

≤3λtemp,slopeγtemp

≤4λtemp,slopeγtemp

≤5λtemp,slopeγtemp

others

10

8

4

2

1

0

Slope Table
λtemp

4bit

32x7bit

0

1

2

127

…
…

0, 1, 2, 3, ……, 127

1, 0, 1, 2, ……, 126

2, 1, 0, 1, ……, 125

127, 126, 125, ……, 0

DL
t ∆DL

t

…
…

Disparity Difference Table

MVL
t λtemp

0

1

2

3

iteration

10

8

4

2

1

0

+

∆DL
t

λtemp

Slope Multiplier (Temporal Cost)

Ctemp
t

7bit

8bit

CMP

Truncation to τtemp

≤τtemp

>τtempτtemp

4bit
0

DD

DD<<1

DD<<2

DD<<3

DD<<3
DD<<1

4bit

177

With the same simplification architecture, Figure VI-14 shows the architecture of vertical cost

diffusion module that calculates the full vertical costs Cvert for four iterations. Except for the similar

architecture of disparity difference table, slope table, and slope multipliers, the vertical cost diffusion

module needs to compute the pixel difference ∆IL
t
 by the Manhattan color distance. The computation

of pixel difference would result in critical path in this architecture. Thus, we install a pipelining stage

as shown in Figure VI-14 (a).

(a)

(b)

Figure VI-14 Architecture of vertical cost diffusion module

4. Horizontal Cost Diffusion

For the horizontal cost diffusion, we first propose a fully parallel architecture with the highest

throughput to analyze its computational characteristics, and then simplify the initial architecture to just

meet our target throughput with less hardware cost. Figure VI-15 shows the fully parallel architecture

that contains the convolution, normalization, addition, and winner-take-all (WTA) corresponding to

(IV-19) to (IV-21). The straightforward architecture can achieve the highest throughput of one best

Disparity pixel

DL
t

Previous row

IL
t(x, y-1)

CMP
CMP
CMP

<=γvert

24bit

24bit

-
-

ABS
ABS

- ABS

+ +

1

00

Current row

IL
t(x, y) 0

≤λvert,slope

≤2λvert,slope

≤3λvert,slope

≤4λvert,slope

≤5λvert,slope

others

6

5

4

3

2

1

0

Slope Table

Slope Mul.
Slope Mul.

λvert

…
…

3bit

10bit

Is row consistent?

Cvert
t

32x7bit

Vertical Cost Diffusion Module

0

1

2

127

…
…

0, 1, 2, 3, ……, 127

1, 0, 1, 2, ……, 126

2, 1, 0, 1, ……, 125

127, 126, 125, ……, 0

DL
t ∆DL

t

…
…

Disparity Difference Table

7bit 32 ∆DL
t

32x7bit

∆IL
t λvert

∆IL
t

0

1

2

3

iteration

Pipelining

6

5

4

3

2

1

0

DD<<2

DD<<2

DD<<2

DD<<1

DD<<1

DD

0

6

5

4

3

2

1

0

+DD<<1

+DD

+0

+DD

+0

+0

+0

+

∆DL
t

λvert

Slope Multiplier (Vertical Diffusion)

Cvert
t3bit

7bit

7bit

CMP

Truncation to 15

≤15

>1515

178

disparity RDbest and one minimum cost RCmin per cycle. Note that the labels of data are for the right

cost diffusion as an example. The left cost diffusion can also apply this module directly.

In this fully parallel architecture, we adopt the parallel architecture proposed in [33] to the

convolution PE. The hardware cost in the convolution PE depends on the truncation term τV in the

smoothness term V in (IV-19). To reduce the hardware cost of this PE, we change τV from the original

15 to 5 that could reduce the number of parallel adders from 3,728 to 1,338 but suffers from slight

disparity quality change as demonstrated in Section 6.5. On the other hand, in the normalization PE,

we change the normalization term κ in (IV-19) from the average of diffusion costs to the minimum to

avoid a high data-width adder tree for the average computation. Finally the addition and WTA are

directly implemented according to (IV-18) and (IV-20), (IV-21), respectively.

Figure VI-15 Fully parallel architecture of the horizontal cost diffusion module

However, the fully parallel architecture suffers from the two design problems: long critical path

and feedback data path, as shown in Figure VI-16 (a). The pipelining approach could only solve the

long critical path problems but it would violate the original functionality due to the feedback data path.

Thus, we propose the sequential architecture in Figure VI-16 (b) to simplify the fully parallel

architecture and meet our target throughput. In the sequential architecture, the four steps in the

horizontal cost diffusion are sequentially performed. The advantage of this architecture is that the four

steps could share the same registers and PE to further reduce the hardware cost.

128x11bit

MIN128 +

5S

[0] [1] [2] …… [15] [16] [17] ……

MIN17
MIN18
MIN19

11biy

11bit

+S +0 +S +2S+2S +5S……+5S ……

+0 +S +2S +5S……

+S +0 +S +2S +5S……

+S +0 +S +2S+2S +5S……

MIN32

…

…
…

128x11bit

-
-

…
…

MIN128

MIN2
MIN2

…

511

128

x9bit

Normalization

128-to-1
0

1

127

…

RCmin

RDbest

Disparity

Selector Tree

WTA

11bit

7bit

128

x11bit

Convolution

Current cost
Ctotal

t(x, y)

+
+

…
…

Addition

RCD

(x-1, y, d)

RCfnal

(x, y, d)

κ

RCfnal

(x-1, y, d)

179

(a)

(b)

Figure VI-16 Architecture of the horizontal cost diffusion module

(a) fully parallel architecture, (b) proposed sequential architecture

6.3.2 Occlusion Handling Stage

Figure VI-17 shows the proposed architecture for the occlusion handling pipelining stage. In

which, the disparity cross warping and the good disparity detection modules are performed in the first

iteration, and then the border filling and the inside filling modules are performed in the second and

third iterations. By the schedule in Figure VI-7, the disparity cross warping module progressively

fetches a disparity row from the previous pipelining stage. Then, it detects the occlusion map and

initially fills the partial occlusion pixels. At the same time, the good disparity detection module

receives the results of disparity cross warping module to find the good disparity map. The produced

disparity, occlusion, and good disparity rows are stored in the internal memories lo_warp_disp, lo_occ,

lo_good for the following two iterations.

min128 +

min32+

1
2

8
 co

sts

min128

- min2 min128

Convolution Normalization WTA

min_cost

best_disp
+

Addition

Cur Cost

Pre Cost

1
2

8
 co

sts

min128min

min32

+ +

min128min

min2

-

+

min128

min_cost

best_disp
Iteration 1

Iteration 2

Iteration 3

Iteration 4

Cur Cost Pre Cost

Convolution

WTA

Normalization

Addition

180

Figure VI-17 Architecture of the occlusion handling stage

In the second and third iterations, the border filling module and the inside filling module fix the

rest of occlusion by the window vote method. The required image data in the window vote are loaded

from the shared image buffers in the previous pipelining stage. With the required image data and the

other data in internal memories, the recovered disparity row is produced in the raster-scan order and

written to the external memory through the memory access controller. The detailed architecture of the

computational modules is presented as follows.

1. Disparity Cross Warping

Figure VI-18 shows the proposed architecture for the disparity cross warping. The computation of

this module is corresponding to the two steps of left-right check (LRC) and disparity cross warping in

Figure IV-33. It produces the disparity and occlusion rows pixel by pixel in the direction from left to

right. In this module, the input disparity from previous stage is pushed into the FIFO registers. With

occ_vf_cur_img

(3x24x3)

occ_wf_cur_disp

(7x3)

Disparity Cross Warping

65x7 129x7 65x7

CurI Row Buffer

(960x8x24bit)
CurI Row Buffer

(960x8x24bit)

lo_warp_disp

(960x3x7)
CurI Row Buffer

(960x8x24bit)
CurI Row Buffer

(960x8x24bit)

lo_occ

(960x3x1)

lo_good

(960x1x1bit)

warp_disp

(7x3)

occ

(1x3)

Good Disparity Detection

129x7 129x7 129x7

Forward

Vote Filling

Backward

Vote Filling

(Side-view)

Forward

Vote Filling

Backward

 Vote Filling

 (Center-view)
Border Filling Inside Filling

2nd

3rd

2nd 3rd

Processing on the 1st iteration

Processing on the 2nd and 3rd iterations

Memory Access Controller

occ

(3x1x3)

warp_disp

(3x7x3)

warp_disp

(7x3)

good

(1x3)

good

(1x3)

lo_disp

(7x3)

lo_img

(24x3)
9x24x3

ref_img_buf

ref_disp_buf warp_disp_buf

32x31x3lo_img_disp

Single-port SRAM x3

(960x3)x3

Single-port SRAM x3

(960x21)x3

Single-port SRAM

960x3

181

the buffered disparities, the occlusion detection PEs perform the LRC process to generate the

occlusion label OL, OC, OR for three views. Figure VI-19 (a) shows the architecture of the occlusion

detection PE that compares the target disparity and the corresponding disparity in reference view to

determine occlusion label. Both the target disparity and its correspondence are in the FIFO registers.

Furthermore, the produced occlusion labels are shifted into the occlusion buffers for the warp

filling PEs. According to the occlusion information, two warp filling PEs in each view warps the

non-occluded disparities from the other two views to fill its occlusion pixels. Figure VI-19 (b) shows

the architecture of the warp filling PE that uses the warped non-occlusion disparity to replace one of

the original disparities to form the new disparities.

Figure VI-18 Architecture of the disparity cross warping module

L disp

C disp

R disp

Occlusion

Detection

Occlusion

Detection

Occlusion

Detection

Occlusion

Detection

Warp

Filling

0-64 … -1 1 … 64

0-128 … -1

0 1 … 128

Warp

Filling

Warp

Filling

Warp

Filling

Warp

Filling

Warp

Filling

0 1 … 128

0 1 … 64

0

DC OC DR OR

DL OL DR OR

DC OC DL OL

OR

OL

OC

DL

DC

DR

OC

OR

OL

Wire

Route

!=0

=00

!=0

=0

!=0

=0

0

0

occ_l

disp_l

occ_c

disp_c

occ_r

disp_r

Disparity Cross Warping

0 1……64

0 1……64-1…-64

0-64…-1

DL

DC

DRDR [-64:-1]

DC [1:64]DC [-1:-64]

DL [1:64]

Wire

Route

DL

DC [-1:-64]

DC

DL [1:64]

DR [-64:-1]

DR

DC [1:64]

-128 … -1

-64 … -1

182

(a)

(b)

Figure VI-19 Architecture of the occlusion detection PE and the warp filling PE

2. Good Disparity Detection

With the disparity pixels generated by the disparity cross warping module, the good disparity

detection module is to further find the reliable disparities for the next border and inside filling. Figure

VI-20 shows the proposed architecture for the good disparity detection module. In which, the input

disparities are shifted into the FIFO registers, and the double-LRC method is applied to find the good

disparity. Unlike the single occlusion detection PE in the disparity cross warping module for side

views, this module has two PEs because the good disparity should pass the stricter left-right check.

Finally, the output good disparity labels are stored into the internal memory lo_good in Figure VI-17.

+1 >>1
ABS-

≥3
CMP

Ref. disp

Tar. disp

pos

disp

64 disp. candidates

64x7bit

7bit
occ

1bit

Occlusion Detection

Warp disp

Ori. disp ori_disp[pos]

occ

MAX2 1

0

New dispBind

Warp Filling

+1 >>1
pos

183

Figure VI-20 Architecture of the good disparity detection module

3. Border Filling and Inside Filling

The processing directions of occlusion filling are different in different views. For the left view,

the border filling module processes a disparity row in the right-to-left direction, and the inside filling

module processes the final disparity row in the left-to-right direction. For the right view, the two

modules are performed in opposite directions to the left view. In addition, the processing direction of

center view could follow the left view or right view.

Figure VI-21 (a) shows the architecture of border filling module that generates the new disparity

for occlusion by the disparity vote PE according to the good disparity and occlusion maps. The

disparity vote PE is identical to the window vote module in Figure VI-25. Its detailed architecture will

be presented in the next stage. On the other hand, Figure VI-21 (b) and (c) shows the architecture of

inside filling module for the center and side views. Their architecture is similar to the border filling

module, and only the constraints for filling occlusion are different. After the processing of border

filling and inside filling, the final low-resolution disparity rows are completed and written to the

external memory for the last pipelining stage.

L disp

C disp

R disp

0 1……64……128

0 1……64-64…-1

0-128……-64……-1

Occlusion

Detection

Occlusion

Detection

DL

DC [-1:-64]

DR [-128:-1]

GoodL

Occlusion

Detection

Occlusion

Detection

DC

DL [1:64]

DR [-64:-1]

GoodC

Occlusion

Detection

Occlusion

Detection

DR

DC [1:64]

DL [1:128]

GoodR

Wire

Route

DL

DC

DRDR [-128:-1]

DC [1:64]DC [-1:-64]

DL [1:128]

0

0

0

Good Disparity Detection

184

(a)

(b)

(c)

Figure VI-21 Architecture of border filling and inside filling modules

(a) border filling module, (b) inside filling module for center view, (c) inside filling module for side

views

6.3.3 High-Resolution Disparity Estimation Stage

In the last pipelining stage, the low-resolution disparity maps are upsampled to the

high-resolution ones by the joint bilateral upsampling, and refined by the window vote and the

Disp Vote
1

0

1

0

0

Row

beginning
good

Image pixels

Disparity

Good disp

occ 1

0
Disparity Row

Border Filling

1

0
Occlusion Row

0

Good disp!=0

&& occ

Occlusion

Pipelining Buffer

Disp Vote
1

0

1

0

0

Row

beginning
good

Image pixels

Disparity

Good disp

occ

1

0
Disparity Row

Inside Filling (Center-view)

1

0
Occlusion Row

0

Good disp!=0 &&

occ

&& Good_disp<disp

Occlusion

Pipelining Buffer

Occlusion

Disp Vote
0

1

Image pixels

Disparity

Good disp

1

0
Disparity Row

Inside Filling (Side-view)

Good disp

New disp

Previous disp

Pipelining Buffer

185

still-edge preservation. Figure VI-22 shows the proposed architecture for this high-resolution disparity

estimation pipelining stage, which consists of the data buffers and the three main modules. In which,

the joint bilateral upsampling module fetches the guide high-resolution image and the low-resolution

disparity from the external memory to calculate the high-resolution disparities. The new calculated

disparities are stored into the internal memory hi_cur_disp for further processes.

Figure VI-22 Architecture of the high-resolution disparity estimation stage

Then we consider the memory configuration in this stage as shown in Figure VI-23 The joint

bilateral upsampling module could calculate 2×4 high-resolution disparities using 1 low-resolution

disparity. At the same time, the window vote module refines the neighboring 2×4 disparities using the

4×6 disparities. Then, the still-edge preservation module masks the resultant 4×2 disparities for the

temporal consistency. In the temporary output disparities, only the data between the joint bilateral

upsampling and the window vote modules needs to be buffered, because the two modules are belong

to filter-based process. To minimize the buffer size, we install a register file memory for the two

disparity rows, and a 6×6 register array for the immediate accessed data. By the data configuration,

Memory Access Controller

hi_cur_disp

(1920x2x7bit)

hi_cur_img

(16+6)x6x24

lo_img_disp

(4+5)x5x31

Joint Bilateral

Upsampling
Joint Bilateral

Upsampling
Joint Bilateral

Upsampling

center_hi_disp

(7x3)

center_hi_img

(24x3)

Joint Bilateral

Upsampling
Joint Bilateral

UpsamplingWindow Vote

support_hi_img

(3x3x24x3)

hi_disp_buf

6x6x24

support_hi_disp

(3x3x7x3)

Joint Bilateral

Upsampling
Joint Bilateral

Upsampling
Still-Edge

Preservation

support_hi_img

(3x3x24x3)

center_disp

(7x3)

lo_mflag

42x2

hi_cur_disp

(16+16)x4x7 I/O Buffers

Internal Buffers

2x3

hi_pre_disp

(16+2)x4x7

support_lo_img_disp

(5x5x31x3)

Two-port Register File

(1920x21)x2

186

this pipelining stage could easy achieve the required throughput of 1 pixel/cycle with small internal

memory.

Figure VI-23 Memory configuration in the high-resolution disparity estimation stage

The detailed architecture of each module is introduced as follows.

1. Joint Bilateral Upsampling

The computation of the joint bilateral upsampling is defined in (IV-11). The architectural design

approach proposed in Section 3.3 is not applied because that approach is helpful for large filter size,

and the filter size in our algorithm is decreased to 5×5. Thus, we adopt the straightforward architecture

for the joint bilateral upsampling, and propose the low-hardware-cost multipliers for the range and

spatial kernels. Figure VI-24 (a) shows the proposed architecture for the joint bilateral upsampling

module, and Figure VI-24 (b) and (c) shows the proposed low-hardware-cost multipliers for the spatial

and range kernels. In Figure VI-24 (a), a 5×5 low-resolution disparity window is used to compute one

high-resolution disparity by considering a 5×5 low-resolution image window and a high-resolution

pixel. For the computation in (IV-11), the product of the spatial kernel f and disparity is calculated by

the proposed S_EXP multiplier in Figure VI-24 (b). The spatial kernel f is implemented by a S_EXP

Joint Bilateral Upsampling

Window Vote

hi_cur_disp
2x4

4x6

disp2x4

Still-Edge Preservation

x

x+1

x+2

x+3

x-1

x-2

x

x+1

x+2

x-1

2x4

Low-resol.
disp

187

table, and the multiplication is implemented by the adders and shifters. By the similar architecture, the

proposed C_EXP multiplier in Figure VI-24 (c) is for the range kernel g and its multiplication. In

addition, the summation and normalization in (IV-11) are implemented by adder-trees and the

pipelined divider as shown in Figure VI-24 (a). Note that the pipelining stages are installed for the cut

lines to break the critical paths.

(a)

(b)

(c)

Figure VI-24 Architecture of the joint bilateral upsampling module

Disparity (low)

Support image(low)

Center image (high)

25x24bit

24bit

C_EXP

Mul.

25x10bit

25x7bit +

+25x13bit

10bit

17bit 7bit

Adder Tree

(25-to-1)

Adder Tree

(25-to-1)

S_EXP

Mul.

C_EXP

Mul.

25x7bit

25x4bit

25x10bit

25 Sum of Color

Difference

!=0

=0Center disp.

-
-

ABS
ABS

- ABS

+ +

1 2 3 2 1

2 3

3 5

2 3

5 3 2

1 2

8 5 3

5 3 2

3 2 1

S_EXP Const.

Joint Bilateral Upsampling

divide_by_0

div

Cut Lines for Pipelining

1 2 3 2 1

2 3

3 5

2 3

5 3 2

1 2

8 5 3

5 3 2

3 2 1

S_EXP Table

(by position) X0

X1<<1

X2<<1

X3<<1

X4

…
X11<<2

X12<<3

…

+0

+0

+X2

+0

+0

…
+X11

+0

…

+
+

X0~X24

s_exp_prod

S_EXP Multiplier

+

PD0~PD24

c_exp_prod

C_EXP Multiplier

X<<3

X<<3

X<<2

X<<2

X<<2

X<<1

X<<1

X

0

0

-X

X<<1

X

0

X

0

0

0

X0~X24

25 parallel submodules

0

1~3

4, 5

6~8

9~12

13~17

18~25

26~41

others

0

1~3

4, 5

6~8

9~12

13~17

18~25

26~41

others

188

2. Window Vote

The window vote module is adopted in this stage for disparity refinement, and in the previous

stage for occlusion filling. The computation of window vote method is defined in (IV-12) and (IV-13),

and the corresponding architecture is shown in Figure VI-25. In which, the vote computation in

(IV-13) is performed by the mask PE and 9 parallel vote PEs. Their architecture is shown in Figure

VI-26. In the mask PE, each disparity in the 3×3 block is compared with other disparities. For the

same disparity, the corresponding vote bit will be 1. Then, the vote bits for each target disparity are

summed up by the vote PE. Finally, the disparity selection PE in Figure VI-25 chooses the disparity

with the maximum vote as the resultant disparity. The resultant disparity is directly passed to the next

still-edge preservation module.

Figure VI-25 Architecture of the window vote module

(a) (b)

Figure VI-26 Architecture of the mask and vote PEs for the window vote module

Image pixels

Disparity

CMP
CMP
CMP
<=5

-
-

ABS
ABS

- ABS

8 parallel modules

Center pixel

Side pixel

Mask

8bit

24bit

8x24bit

9x7bit
Vote
Vote

…
…

9 Vote

Disp.

Selection

(Max Vote)

disp vote

disp

9x4bit9x7bit 7bit

Result disp.

1

00
1

00
1

00
1

00

1

00
1

00
1

00
1

00

Mask

9x7bit

9x7bit

8bitMask Guide

Disp. block

d0

d1

d2

d3

d7

d8

d5

d6

d4

+

1

0

1

0

CMPd1
d0

1

0

1

0

d2

Adder tree

…
…

Vote (d0)

4bit

vote

8 components

=

CMP
=

189

3. Still-Edge Preservation

Figure VI-27 shows the architecture of still-edge preservation module, which replaces the current

disparity with the previous disparity for the still-edge according to the edge and motion flag. The

motion flag is fetched from the external memory, and the edge flag is computed by the Sobel filter in

this module. The horizontal gradient gx and vertical gradient gy computed by the Sobel filter are used

to decide the edge flag. If the pixel is no-motion and edge, the previous disparity would substitute the

current disparity to be sent to external memory.

Figure VI-27 Architecture of the still-edge preservation module

6.4 External Memory Access

The computational modules are presented in previous section, and their throughputs are designed

to fit the computational schedule in Figure VI-7. In this section, we additionally consider the external

memory access of each module into the schedule. This section is organized as follows. First, we

estimate the bandwidth requirement to determine the bus width. Then we present the external memory

architecture and its data configuration. Finally, we describe the proposed external memory access

schedule that could determine the required cycle count of our disparity estimation engine.

6.4.1 Bandwidth Requirement

-
-
-

+ +

<<2

+

3

>>2

+ CMP
>10x3

Parallelism for 3 chennals

6bit Edge flag

Current frame image

9x24bit

+

[0], [2]
[3], [5]
[6], [8]

[0], [6]
[1], [7]
[2], [8]

ABS gx

6bit

gy

CMP

Truncation to 15

≤15

>1515

-
-
-

+ +

<<2

+

3

>>2

Parallelism for 3 chennals

ABS
CMP

Truncation to 15

≤15

>1515

3x4bit

3x4bit

+

Ceiling

Ceiling

+

2
Ceiling

Sobel Filter

Motion flag
Still edge flag

Still-Edge Preservation

Current Disp

Previous Disp

1

0

Resultant Disp

1bit

7iit

7iit 7iit

190

First, we estimate the bandwidth requirement of the proposed disparity estimation engine. Figure

VI-28 (a) shows the data width of access ports to the external memory. Corresponding to the previous

computational schedule, Figure VI-28 shows an initial memory access schedule for computing 4

high-resolution disparity rows. In which, the peak of bandwidth usage would occur at the access of

occlusion stage. For this peak interval, the estimated average bandwidth is estimated in Table VI-1.

The total required bandwidth is 507 bits/cycle, and the budget bandwidth using 64-bit just satisfy the

requirement. However, the average required bandwidth is an ideal value without considering the

memory row miss. Thus, we choose the 128-bit for the system bus, and adopt the DDR3 SDRAM for

the external memory.

(a)

(b)

Figure VI-28 Rough schedule for external memory access

(a) input and output ports to external memory, (b) rough external memory access schedule

Low-Resolution Disparity Estimation Stage
Occlusion

Handling Stage
High-Resolution Disparity Estimation Stage

DDR3 DRAM 800MHz

Memory Access Controller

nmcount pre_img cur_imgmflag lo_disp lo_img hi_imglo_disp lo_img mflag hi_disp

3bit

x3

pre_disp

3bit

x3

1bit

x3

9x24bit

x3

512x3

x24bit

7bit

x3

24bi

t x3

7bit

x3

25x7bit

x3

25x24bit

x3

36x24bit

x3

2bit

x3

8x7bit

x3

3bit

x3

3bit

x3

1bit

x3

3x24bit

x3

3x24bit

x3

7bit

x3

24bit

x3

7bit

x3

5x7bit

x3

5x24bit

x3

6x24bit

x3

2bit

x3

8x7bit

x3

nmcount

pre_img
cur_img

mflag

lo_disp
lo_img

hi_img

lo_disp
lo_img

mflag
hi_disp

nmcount 3 data/4 cycles (R0)
3 bits/4 cycles (R0)

18 pixels/4 cycles (R1, R0, R-1)
18 pixels/4 cycles (R1, R0, R-1)

15 disp/8 cycles (R-12, R-16, R-20, R-24, R-28)
15 pixels/8 cycles (R-12, R-16, R-20, R-24, R-28)

36 pixels/8 cycles (R-17, R-18, R-19, R-20, R-21, R-22)
6 bits/8 cycles (R-16, R-20)

24 disp/8 cycles (R-18, R-19, R-20, R-21)

pre_disp 3 disp/4 cycles (R0)

Unit: Cycle

3 pixel/1 cycle (R-8)
3 disp/1 cycle (R-8)

Low-

Resol.

DE Stage

High-

Resol.

DE Stage

Occ.

Stage

1920 1920 1920 1920
3 data/4 cycles (R0)

191

Table VI-1 Estimated average external bandwidth for computing four disparity rows.

Accessed

Data

No. of

Column

No. of

Row

No. of

View

Data Width

(bit)

Iteration

Count

Required Time

(Cycle)

Bandwidth

(bit/cycle)

Low-Resolution

Disparity

Estimation Stage

pre_disp 1 1 3 7 1 4 5

pre_img 2 3 3 24 1 4 108

cur_img 2 3 3 24 1 4 108

mncount 1 1 3 3 2 4 5

mflag 1 1 3 1 1 4 1

Occlusion

Handling Stage

lo_disp 1 1 3 7 1 1 21

lo_img 1 1 3 24 1 1 72

High-Resolution

Disparity

Estimation Stage

lo_img 1 5 3 24 1 8 45

lo_disp 1 5 3 7 1 8 13

hi_img 2 6 3 24 1 8 108

mflag 1 2 3 1 1 8 1

hi_disp 2 4 3 7 1 8 21

Total Required Bandwidth 507

Budget Bandwidth (DDR3 SDRAM 800MHz, 64-bit bus) 512

Budget Bandwidth (DDR3 SDRAM 800MHz, 128-bit bus) 1024

6.4.2 External Memory Architecture

For the above estimated bandwidth requirement, Figure VI-29 shows the architecture of external

memory that consists of eight DDR3 SDRAMs [110] for 128-bit bus. One of the DDR3 SDRAMs has

8 banks, and one row has 1024 columns. In addition, the word width is 16-bit of each SDRAM module,

and the data width of the merged SDRAMs would be 128-bit. According to the latency information in

[110], the DDR3 SDRAMs could work at the highest frequency of 800 MHz. They could output data

at the positive and negative edges of clock signal, and there are two transfers in one cycle. Thus, the

external memory architecture can provide the bandwidth of 800M×128×2 bits (i.e. 25,600 Mbytes/s).

Figure VI-29 Architecture of external memory in our design

16 bits

Bank1
Bank0

Bank2
Bank1

Bank0
Bank2

Bank1
Bank0

1024 cols

8
1

9
2

 r
o

w
s

Bank1
Bank0

Bank2
Bank1

Bank0
Bank2

Bank1
Bank0

DDR3 SDRAM#1

8
ba

nk
s

16 bits

DDR3 SDRAM#0

……

……

128bit

Bank1
Bank0

Bank2
Bank1

Bank0
Bank2

Bank1
Bank0

DDR3 SDRAM#8

16 bits

192

Figure VI-30 summarizes the data access latency of the external memory at the clock frequency

of 800MHz. According to the associated latencies defined in [110], we could obtain the row miss

latencies for different access types, and apply them to arrange the external memory access schedule.

(a) (b)

(c) (d)

Figure VI-30 Read and write latency in the SDRAM model [110]

6.4.3 Data Configuration in External Memory

For the external memory, we propose the data configuration method as illustrated in Figure VI-31

to achieve efficient data access. The high-resolution videos and disparity maps are configured in the

bank0 to bank5, and each view placed in one bank. The high resolution is mainly used by the motion

detection, downsampled matching cost and the joint bilateral upsampling modules. Since their access

are in the raster-scan order and cross multiple rows, 16 continuous pixels and disparities are packed,

and neighboring pixel and disparity rows are in the same memory row to avoid frequent row miss.

For the low-resolution images and disparity maps are configured in the bank6, and their three

view data are packed together as shown in Figure VI-31 (c). The low-resolution data are mainly

accessed by the occlusion handling and the joint bilateral upsampling modules. Their access

characteristic is similar to the above high-resolution data, so that they are configured with the same

tRCD

AL CL
RL

Active Read

Data

11

11

21

10

Read new row: 22 cycles

tRCD

AL CWL
WL

Active Write

Data

11

810

18

……

Write new row: 19 cycles

tWR

Data

Last

written

data

tRP

Precharge Active

12 11

……

Row miss after write: 22 cycles

tRTP tRP

Read Precharge Active

AL
10 6 11

RL
21

Data ……

Row miss after read: 6 cycles at most

193

manner. In addition, the disparity is bound with the image pixel as the image-disparity pixel because

their accessed positions in image coordinate are identical. On the other hand, the low-resolution

motion information is configured in bank7 as illustrated in Figure VI-31 (d) and (e). They are accessed

by the motion detection and the still-edge preservation modules in the raster scan order without

crossing multiple rows. Therefore, we place each motion information row into the same memory row.

(a) (b)

(c)

Mem

Row

0

Mem

Row

1

Mem

Row

119

……

Mem

Row

2

Mem

Row

3

One Image Frame (480 memory rows)

1
0

8
0

 p
ix

el
s

1920 pixels

0
1
2

…
…

3
4
5
6

16 pix

R R R ……

R Channel

G G G …… B B B ……

16 pixels

(128 bits)

16 pixels

(128 bits)

16 pixels

(128 bits)

G Channel B Channel

3
2

0
 p

ix
el

s

One Memory Row

Mem

Row

0

Mem

Row

1

Mem

Row

39

……

Mem

Row

2

Mem

Row

3

1
0

8
0

 p
ix

el
s

One Disparity Frame (160 memory rows)

0
1
2

…
…

3
4
5
6

3
2

0
 p

ix
el

s

16 x 3 pixels

One Memory Row

1920 pixels

D D D D……

16 disparties

128 bits

0
1
2
3
4
5

6
7
8
9
10
11

12
13
14
15
16
17

6
 p

ix
el

s

960 x 3 pixels

Image-Disparity Frame with 3 Views

MemRow0 MemRow1 MemRow2 MemRow3 MemRow4

6
 p

ix
el

s

One Memory Row

(6 x 56 tiles)

224x3 pixels

R G B D R G B D R G B D R G B D R G B D R G B D R G B D R G B D R G B D R G B D R G B D R G B D

4 pixels (128 bits) 4 pixels (128 bits) 4 pixels (128 bits)

Left-view pixels Center-view pixels Right-view pixels

……

194

(d) (e)

Figure VI-31 Data configuration in external memory

(a) high-resolution videos in bank 0, 1, 2, (b) high-resolution disparity maps in bank 3, 4, 5, (c)

low-resolution image and disparity map in bank 6, (d) no-motion count in bank 7, (e) motion flag in

bank 7.

6.4.4 External Memory Access Schedule

With the above mentioned data configuration in the external memory, we could further plan the

external memory access schedule. Figure VI-32 shows the schedule of external memory access that is

a hierarchy schedule from one frame to an access tile. By the schedule of access tile, the memory

access controller can use a finite-state machine to read or write data for the main core computation.

The order of data access follows the numbers in this figure. Note that each access block only uses the

beginning cycles and preserves other cycles for row miss handling. Note that the available block at the

bank 6 is preserved for the occlusion handling stage. We do not schedule the access of occlusion

handling stage because its access period is very long and different from others. With the same reason,

the motion information at the bank 7 is also not scheduled.

With this proposed external memory access schedule, the required data for one-frame

computation could be completely accessed in 8.36Mcycles at the memory clock rate of 800MHz. In

other words, the data throughput from external memory could achieve 95.6 frames/s. For the previous

computational schedule, our main core could achieve 112.5 frames/s at the working frequency of 200

MHz. In other words, the performance bottleneck of our disparity estimation engine is the external

MemRow0

MemRow1

MemRow19

One nmcount Frame
2

7
0

 p
ix

el
s

960 pixels

1
4

 p
ix

69 x 14 pixels (966 pixels)

7069
0 1 2 3 …… 68

One Memory Row

L C R L C R L C R L C R……

126 bits 2

14 pixels for 3 Views3 33

2423
0 1 2 3 ……

8
 p

ix
el

s

23 x 42 pixels (966 pixels)

22

MemRow 0

One mflag Frame

L C R L C R L C R L C R……

126 bits 2

42 pixels for 3 Views1 11

195

data access, instead of the computational speed. Nevertheless, the proposed disparity estimation

engine could outperform our target throughput.

Figure VI-32 Schedule of external memory access for one HD1080p frame at 800MHz

6.5 Implementation Result

6.5.1 Hardware Cost

The proposed architecture of disparity estimation engine is implemented by the Verilog and

synthesized using the UMC90nm technology process. Table VI-2 lists the performance of our disparity

estimation engine. The proposed engine could use the three view HD1080p videos to calculate their

corresponding three view disparity maps. The support disparity range could be 128 pixels. The

required system memory is DDR3 SDRAM working at the clock frequency of 800MHz, and the

system bus is 128-bit with the same clock frequency. The core module could achieve the throughput of

hi_pre_img_l

hi_pre_img_c

hi_pre_img_r

hi_cur_img_l

hi_cur_img_c

hi_cur_img_r

lo_nmcount

lo_mflag

hi_pre_disp_l

hi_pre_disp_c

hi_pre_disp_r

hi_cur_disp_l

hi_cur_disp_c

hi_cur_disp_r

lo_img_disp_l

lo_img_disp_c

lo_img_disp_r

Bank0

Bank1

Bank2

Bank3

Bank4

Bank5

Bank6

Bank7

One Access Tile (256)

Occlusion

(lo_img_disp)

Occlusion

(lo_img_disp)

JBU
(hi_cur_img)

SAD cost
Motion

(hi_cur_img)

Still-Edge
Preservation
(hi_pre_disp)

JBU
(lo_img_disp)

JBU
(lo_img_disp)

Result
(hi_pre_disp)

SAD cost
Motion

(hi_cur_img)

256

128

1

2

3 4

5

6

8

7

9

Motion
Tcost

(hi_pre_img,
hi_pre_disp)

Motion
Tcost

(hi_pre_img,
hi_pre_disp)

120 Access Tiles
16x4

pixels
Preload

271 256

Four High-Resolution Rows (30,991)

270x4 High Resolution Rows

One Frame (8,367,570) Unit: Cycle

196

75.64G pixel-disparities/s by the logic cost of 1,645K gate counts and the memory cost of 59.4Kbytes.

In other words, our disparity estimation engine could deliver 95 frames/s for three view HD1080p

disparity maps.

Table VI-2 Performance of the proposed disparity estimation engine

I/O Function

Input Data 3 View HD1080p Videos

Disparity Range (Pixel) 128

Output Data 3 View HD1080p Disparity Maps

Frame Rate (Frame/s) 95

System
External Memory DDR3 SDRAM (800MHz)

Bus Width (Bit) 128 (800MHz)

Core

Technology Process UMC 90nm

Clock Frequency 200MHz

Gate-Count (Including Memory) 2,020K

Gate-Count (Excluding Memory) 1,645K

Internal Memory (Byte) 59.4K

Throughput (Pixel-Disparity/s) 75.64G

Table VI-3 lists the internal SRAM usage for each pipelining stage. In which, the most usage is

the low-resolution image buffers lo_cur_img, which is a shared buffer for the low-resolution disparity

estimation stage and the occlusion handling stage. In addition, the SRAM usage of the high-resolution

disparity estimation stage is also high due to the disparity row buffers for the joint bilateral

upsampling and the window vote modules. The total gate-count for these internal SRAMs is about

375.6K.

Table VI-3 Internal SRAM usage in the proposed disparity estimation engine

Memory Type Word Num. Word Width Count

Size

(Bit)

Low-Resol. DE Stage

lo_pre_disp single-port 960 21 1 20,160

lo_mval single-port 960 24 1 23,040

lo_min_cot single-port 960 33 1 31,680

lo_cur_disp dual-port 960 21 2 40,320

lo_cur_img single-port 960 72 3 207,360

Occlusion Handling Stage

lo_occ single-port 960 3 3 8,640

lo_warp_disp single-port 960 21 3 60,480

lo_good single-port 960 3 1 2,880

High-Resol. DE Stage hi_cur_disp two-port 1,920 21 2 80,640

Total

475,200

Table VI-4 lists the internal registers in each stage. Most of the registers are the access buffers in

the I/O interface module. Because the registers are accessed by the main core with high data width,

197

they are not implemented by SRAM. In this table, the most register usage is the image data for the

window-based SSAD in the low-resolution DE stage. It results from that the access to compute

parallel matching costs in one cycle. The total register usage is 73Kbits, which is about 396K

gate-counts.

Table VI-4 Internal registers in the proposed disparity estimation engine

Row Num. Word Num. Word Width Count

Size

(Bit)

Low-Resol. DE Stage

hi_pre_img 3 16 24 3 3,456

lo_nmcount 1 14 3 6 252

lo_mflag 1 42 1 3 126

hi_pre_disp 1 16 7 3 336

hi_cur_img_l 3 146 24 1 10,512

hi_cur_img_c 3 273 24 1 19,656

hi_cur_img_r 3 146 24 1 10,512

Occlusion Handling Stage

ref_disp_buf 1 259 7 1 1,813

warp_disp_buf 1 129 7 3 2,709

ref_img_buf 3 3 24 3 648

lo_img_disp 1 16 31 6 2,976

High-Resol. DE Stage

lo_img_disp 5 9 31 3 4,185

hi_cur_img 6 22 24 3 9,504

lo_mflag 2 42 1 3 252

hi_pre_disp 4 18 7 3 1,512

hi_cur_disp 4 32 7 3 2,688

hi_disp_buf 6 6 24 3 2,592

Total

73,729

Table VI-5 lists the area of each module by the unit of gate count. In which, the half hardware

cost is occupied by the window-based SSAD modules due to its parallel computation for matching

costs. On the other hand, the horizontal cost diffusion has 17.1% hardware cost of whole core. That is

because its convolution PE requires many parallel adders.

Table VI-5 Area of the computational logic

Module Gate Count Percentage

Low-Resol. DE Stage

Motion Detection 19,058 1.5%

Window-based SSAD, DPotts 616,725 49.4%

Temporal Cost, Vertical Diffusion(Center-View) 54,541 4.4%

Temporal Cost, Vertical Diffusion(Side-View) 102,077 8.2%

Horizontal Diffusion (Computation) 213,495 17.1%

Horizontal Diffusion (Registers) 4,794 0.4%

Occlusion Handling Stage

Warp Filling 31,688 2.5%

Good Disparity Detection 5,210 0.4%

Border and Inside Filling 36,174 2.9%

Occlusion Stage

Joint Bilateral Upsampling 125,457 10.0%

Window Vote 30,318 2.4%

Still-Edge Preservation 8,887 0.7%

Total

1,248,422 100%

198

Finally, Table VI-6 compares the previous implementation of real-time disparity estimation. For

the GPU implementation, the previous work [43], [33] could deliver accurate disparity maps by the

BP-based algorithm, but their throughputs are far from the requirement of real-time high-definition

process. For the hardware design, Diaz et al. [111] implemented a high-throughput disparity

estimation engine on FPGA but its disparity quality is not good enough for 3DTV applications due to

its local disparity estimation approach. On the other hand, the ASIC implementation [10] could

achieve real-time frame rate and requires low memory cost. But it supported frame resolution is only

CIF. The other AISC implementation [33] could reach high frame rate for the VGA resolution, but it

suffers from extremely high memory cost because of the BP algorithm. Compared to the related

implementation, our disparity estimation engine could have the highest throughput with less hardware

cost than the implementation [33] to satisfy the requirement of high definition 3DTV applications.

Table VI-6 Comparison of our design and previous implementation

 Yang [43] Liang [33] Diaz [111] Chang [10] Liang [33] Our Design

No. Input View 2 2 2 2 2 3

No. Output View

(Disparity Map)
1 1 1 1 1 3

Algorithm
Hierarchical

BP
Tile-based BP

Phase

Matching

Mini-Census

ADSW
Tile-based BP

Cost

Diffusion

JBU

Frame Size 800×600 450×375 1280×960 352×288 640×480 1920×1080

Frame Rate

(Frame/s)
0.67 1.68 52 42 58 95

Disparity Range

(Pixels)
300 60 29 64 64 128

Implementation

Method

GPU

Nvidia

Geforce

8800GTX

GPU

Nvidia

Geforce

8800GTS

FPGA

Xilinx

Vertex-II

ASIC

UMC 90nm

ASIC

UMC 90nm

ASIC

UMC 90nm

Frequency (MHz) - - 65 95 185 200

Logic Area

(Gate-Count)
- - - 562K 633K 1,645K

Memory Usage

(Gate-Count)

-

(9Mbtye)

- - -

(21.3Kbyte)

1,871K 375K

(59.4Kbyte)

Total Area - - - - 2,505K 2,020K

Throughput

(Pixel-Disparity/s)
96M 17M 1,885M 272M 1,146M 75,644M

199

6.5.2 Disparity Quality

In this subsection, we demonstrate the disparity quality of disparity estimation engine using the

same objective evaluation method in Chapter V. The first version of the algorithm for hardware design

is called HW-DE algorithm, while the final version is called modified HW-DE algorithm. The only

difference between the two algorithms is that the smoothness term in the cost diffusion process.

Because the parameter τV could impact on the hardware cost, we change its value in the modified

HW-DE algorithm to decrease hardware cost. In the following, we demonstrate the disparity quality

change between the two algorithms. In addition, the evaluation results of DERS, HQ-DE, and HE-DE

algorithms are also compared to the HW-DE algorithms.

Table VI-7 and Table VI-8 list the Y-PSNR evaluation results, and its corresponding column

diagram is shown in Figure VI-33. Compared to the HE-DE algorithm, the HW-DE algorithm has the

slight quality drop especially for the sequence LoveBird1. The disparity quality of modified HW-DE

algorithm is approximate to HW-DE in the spatial distortion. For the other spatial distortion evaluation

SSIM as shown in Table VI-9, Table VI-10, and Figure VI-34, the HW-DE and modified HW-DE

algorithms have similar quality to the HE-DE algorithm. Finally, Table VI-11 and Table VI-12 lists the

temporal distortion evaluation T_PSPNR, and its corresponding column diagram is shown in Figure

VI-35. The evaluation results show that the HW-DE and the modified HW-DE algorithms have the

same quality change, compared to the HE-DE algorithm. They suffer from quality degradation for the

sequences LoveBird1 and Newspaper.

200

Table VI-7 Evaluation results of Y-PSNR for View0

 DERS HQ-DE HE-DE HW-DE Modified HW-DE

PSNR PSNR PSNR PSNR ∆PSNR PSNR ∆PSNR PSNR ∆PSNR

BookArrival 34.28 35.98 1.70 35.80 1.53 35.64 1.36 35.46 1.19

LoveBird1 32.45 32.63 0.18 31.53 -0.92 31.32 -1.13 31.09 -1.36

Newspaper 29.53 29.90 0.37 30.03 0.49 29.93 0.40 29.91 0.38

Café N.A. 33.30 N.A. 33.22 N.A. 32.65 N.A. 32.52 N.A.

Kendo N.A. 34.84 N.A. 34.88 N.A. 34.78 N.A. 34.76 N.A.

Balloons N.A. 35.07 N.A. 34.91 N.A. 34.78 N.A. 34.83 N.A.

Champagne 25.32 27.63 2.31 31.07 5.75 30.74 5.42 30.63 5.31

Pantomime 36.46 35.94 -0.52 34.66 -1.80 36.54 0.08 36.64 0.18

Average 31.61 33.16 0.81 33.26 1.01 33.30 1.23 33.23 1.14

Unit: dB

Table VI-8 Evaluation results of Y-PSNR for View8

 DERS HQ-DE HE-DE HW-DE Modified HW-DE

PSNR PSNR PSNR ∆PSNR PSNR PSNR PSNR ∆PSNR ∆PSNR

BookArrival 35.87 35.68 -0.19 36.02 0.02 35.80 -0.07 35.62 -0.24

LoveBird1 29.31 27.53 -1.78 27.98 -1.08 27.67 -1.64 27.68 -1.63

Newspaper 31.86 31.29 -0.57 31.92 -0.10 31.75 -0.11 31.72 -0.14

Café N.A. 32.87 - 33.04 - 32.70 N.A. 32.48 N.A.

Kendo N.A. 35.75 - 36.36 - 36.15 N.A. 36.10 N.A.

Balloons N.A. 35.24 - 35.58 - 35.35 N.A. 35.38 N.A.

Champagne 24.20 28.72 4.52 29.73 3.91 29.78 5.58 29.51 5.31

Pantomime 34.65 35.85 1.20 35.61 1.35 35.66 1.01 35.65 1.00

Average 31.18 33.11 0.82 33.28 1.08 33.11 0.95 33.02 0.86

Unit: dB

(a)

 (b)

Figure VI-33 Evaluation results of Y-PNSR

20

22

24

26

28

30

32

34

36

38

BookArrival LoveBird1 Newspaper Café Kendo Balloons Champagne Pantomime

Y-PSNR for View0 (dB)

DERS

HQ-DE

HE-DE

HW-DE

Modified HW-DE

20

22

24

26

28

30

32

34

36

38

BookArrival LoveBird1 Newspaper Café Kendo Balloons Champagne Pantomime

Y-PSNR for View8 (dB)

DERS

HQ-DE

HE-DE

HW-DE

Modified HW-DE

201

Table VI-9 Evaluation results of SSIM for View0

 DERS HQ-DE HE-DE HW-DE Modified HW-DE

SSIM SSIM SSIM SSIM ∆SSIM SSIM ∆SSIM SSIM ∆SSIM

BookArrival 0.98 0.95 -0.02 0.95 -0.02 0.95 -0.02 0.95 -0.02

LoveBird1 0.95 0.95 0.00 0.95 0.00 0.95 0.00 0.95 -0.01

Newspaper 0.99 0.99 0.00 0.99 0.00 0.99 0.00 0.99 0.00

Café N.A. 0.99 - 0.99 - 0.99 N.A. 0.99 N.A.

Kendo N.A. 0.98 - 0.98 - 0.98 N.A. 0.98 N.A.

Balloons N.A. 0.97 - 0.97 - 0.97 N.A. 0.97 N.A.

Champagne 0.97 0.97 0.00 0.97 -0.01 0.97 0.00 0.97 0.00

Pantomime 0.98 0.98 0.00 0.97 0.00 0.98 0.00 0.98 0.00

Average 0.97 0.97 -0.01 0.97 0.00 0.97 0.00 0.97 0.00

Table VI-10 Evaluation results of SSIM for View8

 DERS HQ-DE HE-DE HW-DE Modified HW-DE

SSIM SSIM SSIM SSIM ∆SSIM SSIM ∆SSIM SSIM ∆SSIM

BookArrival 0.97 0.95 -0.02 0.95 -0.02 0.95 -0.02 0.95 -0.02

LoveBird1 0.93 0.92 -0.01 0.92 -0.01 0.92 -0.02 0.92 -0.02

Newspaper 0.99 0.98 -0.01 0.99 0.00 0.99 0.00 0.99 0.00

Café N.A. 0.99 - 0.99 - 0.99 N.A. 0.99 N.A.

Kendo N.A. 0.98 - 0.99 - 0.99 N.A. 0.99 N.A.

Balloons N.A. 0.98 - 0.98 - 0.98 N.A. 0.98 N.A.

Champagne 0.97 0.97 0.00 0.97 0.00 0.97 0.00 0.97 0.00

Pantomime 0.97 0.97 0.00 0.97 0.00 0.97 0.00 0.97 0.00

Average 0.97 0.97 -0.01 0.97 -0.01 0.97 -0.01 0.97 -0.01

(a)

(b)

Figure VI-34 Evaluation results of SSIM

0.85

0.87

0.89

0.91

0.93

0.95

0.97

0.99

BookArrival LoveBird1 Newspaper Café Kendo Balloons Champagne Pantomime

SSIM for View0

DERS

HQ-DE

HE-DE

HW-DE

Modified HW-DE

0.85

0.87

0.89

0.91

0.93

0.95

0.97

0.99

BookArrival LoveBird1 Newspaper Café Kendo Balloons Champagne Pantomime

SSIM for View8

DERS

HQ-DE

HE-DE

HW-DE

Modified HW-DE

202

Table VI-11 Evaluation results of T_PSPNR (dB) for View0

 DERS HQ-DE HE-DE HW-DE Modified HW-DE

T_PSPNR T_PSPNR T_PSPNR T_PSPNR ∆T_PSPNR T_PSPNR ∆T_PSPNR T_PSPNR ∆T_PSPNR

BookArrival 52.96 53.60 0.64 52.94 0.64 52.93 -0.03 52.65 -0.31

LoveBird1 45.30 46.57 1.26 45.70 1.26 45.65 0.35 45.37 0.07

Newspaper 43.38 44.09 0.71 43.65 0.71 43.51 0.13 43.37 -0.01

Café N.A. 46.59 - 47.83 - 46.38 N.A. 46.51 N.A.

Kendo N.A. 48.08 - 48.15 - 48.12 N.A. 48.02 N.A.

Balloons N.A. 49.99 - 49.93 - 49.87 N.A. 49.89 N.A.

Champagne 34.62 41.28 6.66 44.56 6.66 45.00 10.38 44.87 10.25

Pantomime 51.85 52.19 0.35 50.95 0.35 52.58 0.73 52.66 0.81

Average 45.62 47.80 1.92 47.96 1.94 48.01 2.31 47.92 2.16

Unit: dB

Table VI-12 Evaluation results of T_PSPNR (dB) for View8

 DERS HQ-DE HE-DE HW-DE Modified HW-DE

T_PSPNR T_PSPNR T_PSPNR T_PSPNR ∆T_PSPNR T_PSPNR ∆T_PSPNR T_PSPNR ∆T_PSPNR

BookArrival 51.82 53.52 1.70 54.62 1.70 53.70 1.88 53.87 2.05

LoveBird1 43.33 44.70 1.37 43.84 1.37 43.27 -0.06 42.82 -0.50

Newspaper 47.92 47.96 0.04 47.82 0.04 47.19 -0.73 47.01 -0.91

Café N.A. 46.86 - 46.85 - 45.96 N.A. 45.84 N.A.

Kendo N.A. 50.58 - 50.81 - 50.66 N.A. 50.50 N.A.

Balloons N.A. 49.76 - 49.90 - 49.85 N.A. 49.84 N.A.

Champagne 34.16 41.18 7.02 42.19 7.02 43.08 8.91 42.71 8.54

Pantomime 48.45 50.12 1.67 50.06 1.67 50.03 1.58 50.06 1.61

Average 45.14 48.09 2.36 48.26 2.57 47.97 2.32 47.83 2.16

Unit: dB

(a)

(b)

Figure VI-35 Evaluation results of T_PSPNR

30

35

40

45

50

55

BookArrival LoveBird1 Newspaper Café Kendo Balloons Champagne Pantomime

T_PSPNR for View0 (dB)

DERS

HQ-DE

HE-DE

HW-DE

Modified HW-DE

30

35

40

45

50

55

BookArrival LoveBird1 Newspaper Café Kendo Balloons Champagne Pantomime

T_PSPNR for View8 (dB)

DERS

HQ-DE

HE-DE

HW-DE

Modified HW-DE

203

6.6 Summary

In this chapter, we simplify the HE-DE algorithm by removing the de-noising filters, and improve

the motion detection by considering the hardware cost. According to the HW-DE algorithm, we

propose a high throughput disparity estimation engine using the three-pipelining-stage architecture and

well-defined external memory access schedule. The implementation result shows that the proposed

disparity estimation engine could achieve 95 frames/s for three view HD1080p disparity maps. The

final quality evaluation shows that the disparity estimation engine only has slight quality drop in

average.

204

VII Conclusion

7.1 Contribution

For the high definition 3DTV applications, the disparity estimation is one of the most important

processes to generate disparity maps for view synthesis. The state-of-the-art DERS algorithm could

provide high quality disparity maps but incurs high computational complexity. Because of its irregular

and non-parallel graph-cut algorithm, it could not be accelerated to meet the high throughput

requirement by software programming and hardware design.

To address the problem, this dissertation proposes the baseline disparity estimation algorithm that

combines the belief propagation with the joint bilateral upsampling. The former has highly parallel

computational characteristic, and the latter could reduce the computational resolution of disparity

estimation.

Based on the baseline algorithm, we further propose the high-quality disparity estimation

(HQ-DE) algorithm that could deal with the temporal consistency and occlusion problems to deliver

high quality disparity maps. To accelerate the HQ-DE algorithm, we propose two fast algorithms by

different strategies for different implementation. The first spare-computation disparity estimation

(SC-DE) algorithm is suitable to software programming. That could reduce the computation of dense

belief propagation to 13.4%, and the overall execution to 62.9%. The other hardware-efficient

disparity estimation (HE-DE) algorithm is suitable to VLSI design, and could reduce the memory cost

of original belief propagation to 0.00029% and achieve the approximate reduction of execution time to

SC-DE algorithm. The objective evaluation results show that the proposed HQ-DE algorithm could

deliver better disparity maps than the DERS algorithm, and the two fast algorithms has slight quality

drop compared to the HQ-DE algorithm.

Following the HE-DE algorithm, we further simplify its computation to reduce the hardware cost

in the algorithm level with slight quality drop, and deliver the hardware-based disparity estimation

205

(HW-DE) algorithm. By the architectural design techniques, we propose a disparity estimation engine

that applies the three-stage pipelining architecture and parallel PEs to increase its throughput. The

implementation result shows that our disparity estimation engine could achieve the throughput of 95

frames/s for the three view HD1080p disparity maps. Such the high throughput disparity estimation

engine could be applied to high definition 3DTV systems.

7.2 Future Work

In this dissertation, the occlusion handling method and the evaluation results could be improved

in the future work. For the occlusion problems, this dissertation fills the occlusion regions by the

reliable disparities from the spatial and the inter-view domains. However, the disoccluded regions,

which are visible only at one viewpoint, could not be filled well by the disparities from the two

domains. To address this special case, we could detect the reliable disparities from the temporal

domain. In other words, the reliable disparities would be at previous or next frames.

For the evaluation method, this dissertation adopts the common-used three objective evaluation

methods which are compares the real captured videos with the synthesized videos using the proposed

disparity maps. However, these evaluation methods are performed on 2-D videos, instead of 3-D

videos. For the 3-D videos, the subjective evaluation method needs to be applied. Therefore, both the

objective evaluation and the subjective evaluation methods should be used to assess the disparity

quality.

In addition, the disparity map for scene change should be considered, especially for the temporal

consistency and the sparse regions in the SC-DE algorithm. To deal with it, we could detect the frame

with scene change according the total difference of successive frames, and initialize the motion

information in the temporal consistency methods and the propagated cost cubes in the SC-DE

algorithm.

206

Bibliography

Local Approach for Disparity Estimation

[1] S. Birchfield and C. Tomasi, “A pixel dissimilarity measure that is insensitive to image sampling”

IEEE Trans. Pattern Anal. Mach. Intell.(TPAMI), no. 20, vol. 4, pp. 401-406, Apr. 1998.

[2] H. Hirschmuller and D. Scharstein, “Evaluation of cost functions for stereo matching,” in Proc.

IEEE Conf. on Comput. Vision Pattern Recognition (CVPR’07), Jun. 2007.

[3] N. Y.-C. Chang, Y.-C. Tseng, and T.-S. Chang, “Analysis of color space and similarity measure

impact on stereo block matching,” in Proc. IEEE Asia Pacific Conf. on Circuits and Syst.

(APCCAS’08), Dec. 2008, pp. 926-929.

[4] J. Lu, G. Lafruit, and F. Catthoor, “Anisotropic local high-confidence voting for accurate stereo

correspondence,” in Proc. SPIE Image Process.: Algorithm and Syst. VI, vol. 68120, Jan. 2008.

[5] K. Zhang, J. Lu, and G. Lafruit, “Scalable stereo matching with locally adaptive polygon

approximation,” in Proc. IEEE Int. Conf. on Image Process. (ICIP’08), Oct. 2008, pp. 313-316.

[6] K. Zhang, J. Lu, and G. Lafruit, “Cross-based local stereo matching using orthogonal integral

images,” IEEE Trans. Circuits Syst. Video Technol., no. 19, vol. 7, pp. 1073-1079, Jul. 2009.

[7] K.-J. Yoon and I.-S. Kweon, “Adaptive support-weight approach for correspondence search,”

IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 4, pp. 650-656, Apr. 2006.

[8] M.-H. Ju and H.-B. Kang, “Constant time stereo matching” in Proc. Int. Conf. on Machine Vision

and Image Process. (IMVIP’09), Step. 2009, pp. 13-17.

[9] W. Yu, T. Chen, F. Franchetti, and J. C. Hoe, “High performance stereo vision designed for

massively data parallel platforms,” IEEE Trans. Circuits Syst. Video Technol., vol. 20, no. 11, pp.

1509-1519, Nov. 2010.

[10] N. Y.-C. Chang, T.-H. Tsai, B.-H. Hsu, Y.-C. Chen, and T.-S. Chang, “Algorithm and architecture

of disparity estimation with mini-census adaptive support weight,” IEEE Trans. Circuits Syst.

Video Technol., vol. 20, no. 6, pp. 792-805, Jun. 2010.

Dynamic Programming

[11] Y. Ohta and T. Kanade, “Stereo by intra- and inter- scanline search using dynamic programming,”

IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI), no. 7, vol. 2, pp. 139-154, Mar. 1985.

207

[12] O. Veksler, “Stereo correspondence by dynamic programming on a tree,” in Proc. IEEE Conf. on

Comput. Vision Pattern Recognition (CVPR’05), 2005, pp. 384-390.

[13] Y .Deng and X. Lin, “A fast line segment based dense stereo algorithm using tree dynamic

programming,” in Proc. European Conf. on Comput. Vision (ECCV’06), 2006, pp. 201-210.

[14] C. Lei, J. Selzer, Y.-H. Yang, “Region-tree based stereo using dynamic programming

optimization,” in Proc. IEEE Conf. on Comput. Vision Pattern Recognition (CVPR’06), vol. 2,

2006, pp. 2378-2385.

Graph-cut

[15] V. Kolomogorov and R. Zabih, “Computing visual correspondence with occlusions using graph

cuts,” in Proc. IEEE Int. Conf. on Comput. Vision (ICCV’01), vol. 2, Jul. 2001, pp. 508-515.

[16] L. Ford and D. Fulkerson, Flows in networks, Princeton Univ. Press, 1962.

[17] A. V. Goldberg, “A new approach to the maximum flow problem,” J. of the ACM, vol. 35, pp.

921-940, 1988.

[18] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via graph cuts,”

IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI), vol. 23, no. 11, pp. 1222-1239, Nov. 2001.

[19] Y. Boykov and V. Kolmogorov, “An experimental comparison of min-cut/max-flow algorithms

for energy minimization in vision,” IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI), vol. 26, no.

9, pp. 1124-1137, Sep. 2004.

[20] C.-W. Chou, J.-J. Tsai, H.-M. Hang, and H.-C. Lin, “A fast graph cut algorithm for disparity

estimation,” in Proc. Picture Coding Symp. (PCS’10), Nagoya, Japan, Dec. 2010, pp. 326-329.

[21] B. V. Cherkassky and A. V. Goldberg, “On implementing the push-relabel method for the

maximum flow problem,” Algorithmica, New York Inc.: Spring-Verlag, 1997, vol. 19, pp.

390-410.

[22] A. Delong and Y. Boykov, “A scalable graph-cut algorithm for N-D grids,” in Proc. IEEE Conf.

on Comput. Vision Pattern Recognition (CVPR’08), Jun. 2008.

[23] N. Y.-C. Chang and T.-S. Chang, “A scalable graph-cut engine architecture for real-time vision,”

in Proc. VLSI design/CAD Symp., Hualien, Taiwan, 2007.

Belief Propagation

[24] J. Sun, N.-N. Zhang, and H.-Y. Shum, “Stereo matching using belief propagation,” IEEE Trans.

Pattern Anal. Mach. Intell. (TPAMI), vol. 25, no. 7, pp. 787-800, Jul. 2003.

208

[25] P. F. Felzenswalb and D. P. Huttenlocher, “Efficient belief propagation for early vision,” Int. J.

Comput. Vision (IJCV), vol. 70, no. 1, pp. 41-54, May 2006.

[26] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agarwala, M. Tappen, and C.

Rother, “A comparative study of energy minimization methods for Markov Random Fields with

smoothness-based priors,” IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI), vol. 30, no. 6, pp.

1060-1080, Jun. 2008.

[27] Q. Yang, L. Wang, R. Yang, S. Wang, M. Liao, and D. Nister, “Real-time global stereo matching

using hierarchical belief propagation,” in Proc. British Mach. Vision Conf. (BMVC), 2006.

[28] S. Park C. Chen, and H. Jeong, “VLSI architecture for MRF based stereo matching,” in Proc. Int.

Symp. on Syst., Architecture, Modeling and Simulation (SAMOS’07), Greece, Jul. 2007.

[29] C.-C. Cheng, C.-K. Liang, Y.-C. Lai, H. H. Chen, and L.-G. Chen, “Analysis of belief

propagation for hardware realization,” in Proc. IEEE Workshop on Signal Process. Syst.

(SiPS’08), Washington DC, USA, Oct. 2008, pp. 152-157.

[30] C.-C. Cheng, C.-K. Liang, Y.-C. Lai, H. H. Chen, and L.-G. Chen, “Fast belief propagation

process element for high-quality stereo estimation,” in Proc. IEEE Int. Conf. on Acoustics,

Speech, and Signal Process. (ICASSP’09), Taipei, Taiwan, Apr. 2009, pp. 745-748.

[31] C.-K. Liang, C.-C. Cheng, Y.-C. Lai, L.-G. Chen, and H. H. Chen, “Hardware-efficient belief

propagation,” in Proc. IEEE Conf. on Comput. Vision and Pattern Recognition (CVPR’09),

Florida, USA, Jun. 2009, pp. 80-87.

[32] C.-C. Cheng, C.-T. Li, C.-K. Liang, Y.-C. Lai, and L.-G. Chen, “Architecture design of stereo

matching using belief propagation,” in Proc. IEEE Int. Symp. Circuits and Syst. (ISCAS’10), Jun.

2010, pp. 4109-4112.

[33] C.-K. Liang, C.-C. Cheng, Y.-C. Li, L.-C. Chen, and H. H. Chen, “Hardware-efficient belief

propagation,” IEEE Trans. Circuits Syst. Video Technol. (TCSVT), vol. 21, no. 5, pp. 525-537,

May 2011.

[34] S. C. Park and H. Jeong, “Memory-efficient iterative process for two-dimensional first-order

regular graph,” Optics Letter, vol. 33, no. 1, pp. 74-76, Jan. 2008.

[35] T. Yu, R.-S. Lin, B. Super, B. Tang, “Efficient message representation for belief propagation,” in

Proc. IEEE Int. Conf. on Comput. Vision (ICCV’07), Oct. 2007.

[36] Y.-C. Tseng, N. Chang, and T.-S. Chang, “Low memory cost block-based belief propagation for

stereo correspondence,” in Proc. IEEE Int. Conf. on Multimedia and Expo (ICME), Beijing, China,

Jul. 2007, pp. 1415-1418.

209

[37] M. P. Kumar and P. H. S. Torr, “Fast memory-efficient generalized belief propagation,” in Proc.

European Conf. on Computer Vision (ECCV’06), vol. 3954, Austria, May 2006, pp. 451-463.

[38] Y.-C. Tseng, N. Y.-C. Chang, and T.-S. Chang, “Block-based belief propagation with in-place

message updating for stereo vision,” in Proc. IEEE Asia Pacific Conf. on Circuits and Syst.

(APCCAS’08), Macau, China, Dec. 2008, pp. 918-921.

[39] A. Klaus, M. Sormann, and K. Karner, “Segment-based stereo matching using belief propagation

and self-adapting dissimilarity measure,” in Proc. IEEE Int. Conf. on Pattern Recognition

(ICPR’06), Sep. 2006, pp. 15-18.

[40] Q. Yang, L. Wang, R. Yang, H. Stewenius, and D. Nister, “Stereo matching with color-weighted

correlation, hierarchical belief propagation and occlusion handling,” IEEE Trans. Pattern Anal.

Mach. Intell. (TPAMI), vol. 31, no. 3, pp. 1-13, Mar. 2009.

[41] E. S. Larsen, P. Mordohai, M. Pollefeys, and H. Fuchs, “Temporally consistent reconstruction

from multiple video streams using enhanced belief propagation,” in Proc. IEEE Int. Conf. on

Comput. Vision (ICCV’07), Rio de Janeiro, Brazil, Oct. 2007.

[42] K. Ogawara, “Approximate belief propagation by hierarchical averaging of outgoing messages,”

in Proc. IEEE Int. Conf. Pattern Recognition (ICPR’10), Istanbul, Aug. 2010, pp. 1368-1372.

[43] Q. Yang, L. Wang, and N. Ahuja, “A constant-space belief propagation algorithm for stereo

matching,” in Proc. IEEE Conf. on Comput. Vision and Pattern Recognition (CVPR’10), Jun.

2010, pp. 1458-1465.

[44] M. Sarkis and K. Diepold, “Sparse stereo matching using belief propagation,” in Proc. IEEE Int.

Conf. on Image Process. (ICIP’08), San Diego, CA, Oct. 2008, 1780-1783.

Disparity Refinement Algorithms

[45] G. Egnal and R. P Wildes, “Detecting binocular half-occlusions: empirical comparisons of five

approaches,” IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI), vol. 24, no. 8, pp. 1127-1133,

Aug. 2002.

[46] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fitting with

applications to analysis and automated cartography,” Commun. of the ACM, vol. 24, no. 6, pp.

381-395, 1981.

[47] M. Gong, “Enforcing temporal consistency in real-time stereo estimation,” in Proc. European

Conf. on Comput. Vision (ECCV’06), vol. 3953, 2006, pp. 564-577.

210

[48] D. Min, S. Yea, Z. Arican, and A. Vetro, “Disparity search range estimation: forcing temporal

consistency,” in Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Process. (ICASSP’10),

Dallas, Texas, May 2010, pp. 2366-2369.

[49] R. Khoshabeh, S. H. Chan, T. Q. Nyuyen, “Spatio-temporal consistency in video disparity

estimation,” in Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Process. (ICASSP’11),

Prague, Czech Republic, May 2011.

[50] T.-W. Chen and S.-Y. Chien, “Bandwidth adaptive hardware architecture of K-means clustering

for video analysis,” IEEE Trans. Very Large Scale Integr. Syst. (TVLSI), vol. 18, no. 6, pp.

957-966, Jun. 2010.

View Synthesis Algorithms and Implementation

[51] C. Fehn, “Depth-image-based rendering (DIBR), compression and transmission for a new

approach on 3D-TV, ” in Proc. SPIE Conf. on Stereoscopic Displays and Virtual Reality Systems,

vol. 5291, May 2004, pp. 93-104.

[52] C. Vázquez, W. J. Tam, and F. Speranza, “Stereoscopic imaging: filling disoccluded areas in

image-based rendering,” in Proc. SPIE Three-Dimensional TV, Video, and Display V, vol. 6392,

Oct. 2006, pp. 123-134.

[53] C.-M. Cheng, S.-J. Lin, S.-H. Lai and J.-C. Yang, “Improved novel view synthesis from depth

image with large baseline,” in Proc. IEEE Int. Conf. on Pattern Recognition (ICPR’08), Dec. 2008,

pp.1-4.

[54] L. Zhang and W. J. Tam, “Stereoscopic image generation based on depth images for 3D TV,” IEEE

Trans. Broadcast., vol. 51, no. 2, pp. 191-199, Jun. 2005.

[55] Y.-R. Horng, Y.-C. Tseng, and T.-S. Chang, “Stereoscopic image generation with directional

Gaussian filter,” in Proc. IEEE Int. Symp. Circuits and Syst. (ISCAS’10), May-Jun. 2010, pp.

2650-2653.

[56] W.-Y. Chen, Y.-L. Chang, S.-F. Lon, L.-F. Ding, and L.-G. Chen, “Efficient depth image based

rendering with edge dependent depth filter and interpolation,” in Proc. IEEE Int. Conf. on

Multimedia and Expo (ICME’07), Jul. 200, pp. 1314-1317.

[57] Y. K. Park, K. Jung, Y. Oh, S. Lee, J. K. Kim, G. Lee, H. Lee, K. Yun, N. Hur, and J. Kim,

“Depth-image-based rendering for 3DTV service over T-DMB,” Signal processing: Image

communication, vol. 24, no. 1-2, pp. 122-36, Jan. 2009.

[58] S. Rogmans, J.-B. Lu, P. Bekaert, and G. Lafruit, “Real-time stereo-based view synthesis

algorithms: a unified framework and evaluation on commodity GPUs,” Signal Processing: Image

communication, vol. 24, no. 1-2, pp. 49-64, Jan. 2009.

211

[59] Y. Morvan, “Acquisition, compression and rendering of depth and texture for multi-view video,”

Ph.D. thesis, Eindhoven University of Technology, Netherlands, Apr. 2009.

[60] A. Telea, “An image inpainting technique based on the fast marching method,” J. Graphics, GPU,

& Game Tools, vol. 9, no. 1, pp.25-36, 2004.

[61] P.-K. Tsung, P.-C. Lin, K.-Y. Chen, T.-D. Chuang, H.-J. Yang, S.-Y. Chien, L.-F. Ding, W.-Y.

Chen, C.-C. Cheng, T.-C. Chen, and L.-G. Chen, “A 216fps 4096x2160 3DTV set-top box SoC

for free-viewpoint 3DTV applications,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC’11),

San Francisco, CA, Feb. 2011, pp. 124-126.

[62] Y.-R. Horng, Y.-C. Tseng, and T.-S. Chang, “VLSI architecture for real time HD1080p view

synthesis engine,” to appear in IEEE Trans. Circuits Syst. Video Technol. (TCSVT), vol. 21, no. 9,

Sep. 2011.

Associated Algorithms to 3DVC

[63] Depth estimation reference software (DESR), version 4.0 [Online]. Available:

http://wg11.sc29.org/svn/repos/MPEG-4/test/tags/3D/depth_estimation/ DERS_4

[64] View Synthesis Reference Software (VSRS), version 3.5 [Online]. Available:

http://wg11.sc29.org/svn/repos/MPEG-4/test/tags/3D/view_synthesis/VSRS_3_5

[65] Enhancement of temporal consistency for multi-view depth map estimation, ISO/IEC

JTC1/SC29/WG11, M15594, Jul. 2008.

[66] Depth estimation improvement for depth discontinuity areas and temporal consistency preserving,

ISO/IEC JTC1/SC29/WG11, M16048, Feb. 2008.

[67] The consideration of the improved depth estimation algorithm: the depth estimation algorithm for

temporal consistency enhancement in non-moving background, ISO/IEC JTC1/SC29/WG11,

m16070, Jan. 2009.

[68] A soft-segmentation matching in Depth Estimation Reference Software (DERS) 5.0, ISO/IEC

JTC1/SC29/WG11, M17049, Xian, China, Oct. 2009.

[69] D. Comaniciu and P. Meer, “Mean-shift: a robust approach toward feature space analysis,” IEEE

Trans. Pattern Anal. Mach. Intell. (TPAMI), vo. 24, no. 5, pp. 603-619, May 2002.

[70] Open Source Computer Vision [Online]. Available: http://opencv.willowgarage.com/wiki/

Test Sequences and Evaluation Methods

[71] Description of exploration experiments in 3D video coding, ISO/IEC JTC1/SC29/WG11,

W11095, Kyoto, Japan, Jan. 2010.

212

[72] D. Scharstien and R. Szeliski, Middlebury Stereo Evaluation – Version 2 [Online]. Available:

http://vision.middlebury.edu/stereo/eval/

[73] D. Scharstien and R. Szeliski, “High-accuracy stereo depth maps using structured light,” in Proc.

IEEE Conf. on Comput. Vision and Pattern Recognition (CVPR’03), vol. 1, Jun. 2003, pp.

195-202.

[74] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error

visibility to structural similarity,” IEEE Trans. Image Process. (TIP), vol. 13, no. 4, pp. 600-612,

Apr. 2004.

[75] Peak signal-to-perceptible-noise ratio tool: PSPNR 1.0, ISO/IEC JTC1/SC29/WG11, M16584,

London, UK, Jul. 2009.

[76] PSPNR Tool 2.0, ISO/IEC JTC1/SC29/WG11, M16890, Xian, China, Oct. 2009.

[77] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, The SSIM Index for Image Quality

Assessment [Online]. Available: http://www.cns.nyu.edu/~lcv/ssim/

[78] HHI test materials for 3D video, ISO/IEC JTC1/SC29/WG11, M15413, Archamps, France, Apr.

2008.

Joint Bilateral Filter and Disparity Upsampling

[79] J. Kopf, M. F. Cohen, D. Lischinski, and M. Uyttendaele, “Joint bilateral upsampling,” ACM

Trans. on Graphics (TOG), vol. 26, no. 3, article 96, Jul. 2007.

[80] D. Chan, H. Buisman, C. Theobalt, and S. Thrun, “A noise-aware filter for real-time depth

upsampling,” in Proc. European Conf. on Comput. Vision Workshop on Multicamera and

Multimodal Sensor Function Algorithms and Applications, Oct. 2008, pp. 1-12.

[81] A. K. Riemens, O. O. Gangwal, B. Barenbrug, and R.-P. M. Berretty, “Multi-step joint bilateral

depth upsampling,” in Proc. SPIE Visual Commun. and Image Process., vol. 7257, Jan. 2009.

[82] O. P. Gangwal, E. Coezijn, and R.-P. Berretty, “Real-time implementation of depth map

post-processing for 3D-TV on a programmable DSP (TriMedia),” in Proc. IEEE Int. Conf. on

Consumer Electronics (ICCE’09), Jan. 2009.

[83] Q. Yang, K.-H. Tan, and N. Ahuja, “Real-time O(1) bilateral filtering,” in Proc. IEEE Conf. on

Comput. Vision and Pattern Recognition (CVPR’09), Aug. 2009, pp. 557-564.

[84] F. Durand and J. Dorsey, “Fast bilateral filtering for the display of high-dynamic-range images,”

ACM Trans. Graphics (TOG), vol. 21, no. 3, pp. 257-266, Jul. 2002.

213

[85] S. Paris and F. Durand, “A fast approximation of the bilateral filter using a signal processing

approach,” in Proc. European Conf. on Comput. Vision (ECCV’06), May 2006, pp. 568-580.

[86] S. Paris and F. Durand, “A fast approximation of the bilateral filter using a signal processing

approach,” Int. J. Comput. Vision, vol. 81, no. 1, pp. 24-52, Jan. 2009.

[87] J. Chen, S. Paris, and F. Durand, “Real-time edge-aware image processing with the bilateral grid,”

ACM Trans. Graphics (TOG), vol. 26, no. 3, article 103, pp. 1-9, Jul. 2007.

[88] A. Adams, N. Gelfand, J. Dolson, and M. Levoy, “Gaussian KD-trees for fast high dimensional

filtering,” ACM Trans. Graphics (TOG), vol. 28, no. 3, article 21, Aug. 2009.

[89] T. Q. Pham and L. J. van Vliet, “Separable bilateral filtering for fast video processing,” in Proc.

IEEE Int. Conf. on Multimedia and Expo (ICME’05), Jul. 2005.

[90] T.-S. Huang, “Two-dimensional digital signal processing II: transforms and median filters,”

Spring-Verlag, New York, 1981, pp. 209-211.

[91] F. Porikli, “Constant time O(1) bilateral filtering,” in Proc. IEEE Conf. on Comput. Vision and

Pattern Recognition (CVPR’09), Aug. 2008, pp. 1-8.

[92] B. Weiss, “Fast median and bilateral filtering,” ACM Trans. Graphics (TOG), vol. 25, no. 3, pp.

519-526, Jul. 2006.

[93] M.-H. Ju, and H.-B. Kang, “Constant time stereo matching,” in Proc. Int. Machine Vision and

Image Processing Conf., Sep. 2009, pp. 13-17.

[94] C. Charoensak and F. Satter, “FPGA design of a real-time implementation of dynamic range

compression for improving television picture,” in Proc. IEEE Int. Conf. on Information Commun.

and Signal Process. (ICICS’07), Dec. 2007.

[95] T. Q. Vinh, J. H. Park, Y.-C. Kim, and S. H. Hong, “FPGA implementation of real-time

edge-preserving filter for video noise reduction,” in Proc. IEEE Int. Conf. on Comput. and Elect.

Eng. (ICCEE’08), Dec. 2008, pp. 611-614.

[96] A. Gabiger, M. Kube, and R. Weigel, “A synchronous FPGA design of a bilateral filter for image

processing,” in Proc. IEEE Ind. Electron. Conf. (IECON’09), Nov. 2009, pp. 1990-1995.

[97] S.-K. Han, “An architecture for high-throughput and improved-quality stereo vision processor,”

M.S. thesis, Dept. of Electrical and Computer Engineering, Univ. of Maryland, 2010.

[98] A. Wong. NVIDIA GeForce 8800 GTX/GTS Tech Report [Online]. Available:

http://www.techarp.com/showarticle.aspx?artno=358&pgno=0

[99] A. L. Shimpi and D. Wilson. Nvidia’s 1.4 billion transistor GPU: GT200 arrives as the GeForce

GTX 280 & 260 [Online]. Available: http://www.anandtech.com/show/2549

214

Others

[100] M. Tanimoto, “Free-viewpoint television”, Image and Geometry Processing for 3-D

Cinematography, Springer-Verlag, vol. 5, part 1, 2010, pp. 52-76.

[101] M. Tanimoto, M. P. Tehrani, T. Fujii, and T. Yendo, “Free-viewpoint TV,” IEEE Signal

Processing Mag., vo. 28, no. 1, pp. 67-76, Jan. 2011.

[102] Q. Wei, “Converting 2D to 3D: a survey,” Inform. and Commun. Theory Group, Faculty Elect.

Eng., Math. and Comput. Sci., Delft Univ. of Technol., Netherlands, Research Assignment, Dec.

2005.

[103] D. Hoiem, A. Stein, A. A. Efros, and M. Hebert, “Recovering occlusion boundaries from a single

image,” in Proc. IEEE Int. Conf. on Comput. Vision (ICCV’07), Oct. 2007.

[104] D. Hoiem, A. Efros, and M. Hebert, “Recovering surface layout from an image,” Int. J. Comput.

Vision (IJCV), vol. 75, no. 1, pp. 151-172, Oct. 2007.

[105] D. Scharstien and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo

correspondence algorithm,” Int. J. Comput. Vision (IJCV), vol. 47, no. 1-3, pp. 7-42, May 2002.

[106] M. Z. Brown, D. Burschka, and G. D. Hager, “Advances in computational stereo,” IEEE Trans.

Pattern Anal. Mach. Intell. (TPAMI), vol. 25, no. 8, pp. 993-1008, Aug. 2003.

[107] Joint draft 6.0 on multiview video coding, ISO/IEC JTC1/SC29 and ITU-T SG16 Q.6 JVT-Z209,

Antalya, Turkey, Jan. 2008.

[108] N. Matthews, X. Meng, P. Xu, and N. Qian, “A physiological theory of depth perception from

vertical theory,” Vision Research, vol. 43, no. 1, pp. 85-99, Jan. 2003.

[109] J. C. A. Read and B. G Cumming, “Does depth perception require vertical-disparity detectors?”

J. of Vision, vol. 6, no. 12, pp. 1323-1355, Nov. 2006.

[110] Micron Inc. 1Gb DDR3 SDRAM: MT41J128M8JP-125 [Online]. Available:

http://www.micron.com/get-document/?documentId=425

[111] J. Diaz, E. Ros, R. Carrillo, and A. Prieto, “Real-time system for high-image resolution

disparity estimation,” IEEE Trans. Image Process. (TIP), vol. 16, no. 1, pp. 280-285, Jan. 2007.

	0_論文封面.pdf
	4_內文.pdf

