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The Study of Disparity Estimation Design for High Definition 3DTV
Applications

Student: Yu-Cheng Tseng Advisor: Dr. Tian-Sheuan Chang

Department of Electronics Engineering & Institute of Electronics
National Chiao Tung University

ABSTRACT

With emerging 3DTVs, human can have new visual experience from 3D videos that can be
captured by new stereo camera and further processed by image processing techniques for the 3DTV
applications of multi-view or free viewpoint.'In'the 3D video processing, one of the most important
techniques is the disparity estimation that could generate disparity maps for synthesizing virtual-view
videos. The state-of-the-art disparity estimation algorithm proposed by the MPEG 3D Video Coding
team could deliver high-quality disparity maps, but suffers from high computational complexity and

low parallelism due to its graph-cut algorithm, especially for high definition videos.

To address the problems, this dissertation first proposes the baseline disparity estimation
algorithm that adopts the belief propagation algorithm to increase the parallelism of disparity
estimation, and the joint bilateral upsampling algorithm to reduce the computational resolution. Their
design challenges could be solved by our proposed architectural design methods. Based on the
baseline algorithm, we further propose the high-quality algorithm that could well improve the
temporal consistency and occlusion problems, and deliver high performance disparity maps. To
accelerate the high-quality algorithm, we propose the two fast algorithms for different implementation
method. The sparse-computation fast algorithm could decrease the processed pixels in the spatial and

temporal domains to reduce the execution time to 62.9% for the software implementation. On the



other hand, for the hardware implementation, we propose the hardware-efficient fast algorithm that
could reduce the execution time of high-quality algorithm to 57.2%, and decrease the memory cost of
belief propagation to 0.00029% by the proposed cost diffusion method. The objective evaluation
results show that our disparity quality is similar to the quality of state-of-the-art algorithm for view

synthesis applications.

Moreover, we further simplify the hardware-efficient algorithm and propose a high-throughput
architectural design. The implementation results shows that the proposed disparity estimation engine
could achieve the throughput of 95 frames/s for three view HD1080p disparity maps with 128
disparity levels (i.e. 75.64G pixel-disparities/s). It could satisfy the requirement of high definition

3DTYV applications.
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| Introduction

1.1 Background

With the prompt development of 3-D display techniques, people could obtain the new visual
experience from 3-D videos, which have multi-view videos for left and right eyes. Compared to
traditional 2-D videos, 3-D videos could make human have the distance feeling of scene with the
additional video processes: calibration and rectification, multi-view video coding, disparity estimation,
and virtual view synthesis. For these 3-D video processes, the Moving Picture Experts Group (MPEG)
3-D Video Coding (3DVC) has delivered a basic 3DTV framework that consists of the depth
estimation reference software (DERS) [63], view synthesis reference software (VSRS) [64], and
Multi-view Video Coding (MVC) standard [107].:They also provide the multi-view video sequences
[71] for the performance evaluation. The basic 3DTV framework can be extended to various systems
such as the stereoscopic TV for multiple viewers-and the free-viewpoint TV for a larger viewing zone

[100], [101].

For the basic 3DTV framework, the previous VLSI implementation of VSRS and MVC decoder
[61], [62] can reach the real-time performance for high definition videos. On the other hand, the DERS
could deliver high quality disparity maps but suffers from high computational complexity due to its
graph-cut optimization, especially for high definition videos. Therefore, it is necessary to develop a
disparity estimation engine that could deliver high quality disparity maps and achieve the real-time

performance for high definition videos.

1.2 Motivation

Many disparity estimation algorithms have been developed in computer vision for different

applications, such as medical image analysis, augmenting reality, robot, 3DTV, and etc. The disparity



accuracy evaluation [72] shows that the graph-cut and the belief propagation approaches could
perform better than other kinds of approaches. Based on the graph-cut approach, the state-of-the-art
DERS algorithm delivered by MPEG 3DVC could generate high quality disparity maps for 3DTV
applications, but it still encounters the following problems. First, the temporal consistency problem is
not addressed well due to the foreground copy artifact. Second, its execution time will be dramatically
increased with the increasing video resolution and disparity range. For one HD1080p frame, it takes
more than 20 minutes in average on a personal computer. Third, the computation of graph-cut is
irregular and iterative, so that it is not suitable to be accelerated by the parallel computing PEs of VLSI

design or multi-core platform.

Motivated by the problems in the state-of-the-art disparity estimation algorithm, the goal of this
dissertation is to develop a new disparity estimation engine that could not only generate high quality
disparity maps, but also achieve the throughput of 60 frames/s for the HD1080p resolution to satisfy

the requirement of high definition 3DTV applications.

1.3 Contribution

To achieve the above goal, this dissertation develops a disparity estimation engine from algorithm
level to architectural design level. The main achievement of this dissertation includes a baseline and an
advanced disparity estimation algorithms, and two fast algorithms for the advanced one, and a high

throughput disparity estimation design.

The contributions in each achievement are as follows. First, the baseline disparity estimation
algorithm combines the belief propagation approach to increase the computational parallelism of
disparity estimation, and the joint bilateral upsampling approach to decrease the computational space.
In addition, we also solve their memory cost problems by architectural design techniques. Second,
based on the baseline algorithm, we propose the advanced disparity estimation algorithm that could

solve the temporal consistency and occlusion problems, and deliver better disparity maps than the
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DERS algorithm. Third, we also propose two fast disparity estimation algorithms to accelerate the
high-quality algorithm by different strategies for different implementation methods. For the
processor-based platform, the sparse-computation algorithm could reduce the original execution time
to 62.9% by reducing the processed pixels from dense to sparse space. On the other hand, for the
hardware design, the hardware-efficient algorithm could reduce the original memory cost to 0.00029%
by replacing the belief propagation with the proposed cost diffusion method. Finally, we propose a
high throughput disparity estimation engine for the hardware-efficient algorithm with three-stage
row-based pipelining architecture. The dedicated design could achieve the throughput of 95 frames/s

for three HD1080p view disparity maps, using 1,645K gate counts and 59.4-Kbyte memory.

In the objective quality evaluation, the experimental results show that our proposed advanced
disparity estimation algorithm could perform better than the DERS algorithm, especially for the
temporal consistency. In addition, the proposed fast algorithms have similar performance to the
advanced algorithm, and the final hardware design has slight quality degradation because of its

simplification.

To sum up, the proposed disparity estimation design could deliver the disparity maps with the

high throughput and high quality to satisfy the requirement of high definition 3DTV applications.

1.4 Dissertation Organization

This dissertation is organized as follows. Chapter Il introduces the general framework of a
disparity estimation algorithm, and the existing approaches of each step in the framework. Chapter 11l
analyzes the algorithm and architecture of the belief propagation and the joint bilateral upsampling,
and presents the baseline disparity estimation algorithm. To improve the quality and speed of baseline
algorithm, Chapter IV proposes the high-quality disparity estimation algorithm and its two fast
algorithms: sparse-computation and hardware-efficient. Then, Chapter V compares the disparity

results of our proposed algorithms with the 3DVC’s DERS algorithm by the objective evaluation
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methods. With the hardware-efficient algorithm, Chapter VI proposes the architecture of disparity
estimation engine, and demonstrates our implementation results. Finally, Chapter VII concludes this

dissertation and future work.



11 Background

In this chapter, the background of disparity estimation and its application to view synthesis are
introduced. This chapter is organized as follows. First, we present the concept of disparity estimation,
and review the existing disparity estimation algorithms. Then, we illustrate the view synthesis
technique, depth-image-based rendering (DIBR), which is our target application of disparity
estimation. Finally, we introduce the state-of-the-art disparity estimation algorithm [63] developed by

MPEG 3-D Video Coding (3DVC), and point out its quality and design problems.

2.1 Disparity Estimation

In 3DTV applications, the disparity estimation is to extract the disparity information from source
videos and generate a disparity map for each frame.-The disparity map can describe the relative
distance of objects in scene, and be further used to generate virtual-view videos. For different number
of input video view, the disparity estimation-has different approach. The 2-D to 3-D conversion
approach is for traditional single-view videos, while the stereo correspondence approach is for
two-view and multiple-view videos. The former one recognizes the disparity map from various
disparity cues, such as texture, defocus, vanish point, and etc. [102], [103], [104]. On the other hand,
the latter one finds the pairs of correspondences to compute disparity maps. The dissertation focuses

on the stereo correspondence approach.

2.1.1 Epipolar Geometry

The disparity estimation for multi-view videos could be constrained by the epipolar geometry to
reduce the correspondence search range from 2-D space to 1-D space. Figure 11-1 shows the concept
of epipolar geometry with two-view configuration. In which, the object Pb is watched by the target

viewpoint C and projected into the 2-D image plane at the pixel p. For the reference viewpoint C’, the



correspondence candidates with p would be located on the ray from C to Pb, whose projected line in
the reference image plane is called epipolar line. In other words, the correspondence with p could be
searched on the epipolar line, and the search range is restricted in 1-D space.

Furthermore, the image planes could be rectified and translated into the new positions with
parallel epipolar lines as shown in Figure 11-2. In which, the correspondence search range is on a
horizontal line, instead of an oblique line in the original image plane. In other words, the pair of
correspondences is at the identical y-coordinate in two views. Thus, the computation of disparity

estimation can be regular in the raster-scan order.

Epipolar
line

Reference view
Target view

Figure 11-1 Epipolar geometry
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Figure 11-2 Image planes with rectification

With the rectified image planes, Figure 11-3 shows the relation between depth and disparity for a
pair of correspondences. In which, the two cameras at the viewpoints C and C’ capture the object point

Pb and project it to the pair of correspondences on the epipolar line. The correspondences are located



at the coordinates of X and -X’ based on their camera centers. Given the focal length f and the baseline

B of the cameras, if we could estimate the disparity X-X", the object depth Z can be acquired by

X B
Z_f

= (11-1)

Therefore, the disparity estimation is to find the pair of correspondences, and use their x-coordinates to

compute disparity value of depth value for each pixel.

Object Pb

C B c’

Target View Reference View

Figure 11-3 Relation between disparity-and depth for a pair of correspondences

2.1.2 General Algorithm Flow

For disparity estimation algorithms, a general framework is proposed by Scharstien and Szeliski
[105] as shown in Figure I1-4. In this framework, two images are captured and rectified as inputs, and
a disparity map is the target result. By this framework, disparity estimation algorithms can be
classified into the two categories: local approach and global approach [105], [106]. The local approach
only consists of the matching cost calculation and the cost aggregation, and the global approach
additionally performs the optimization process. The last disparity refinement step is an optional
process for computing fractional disparity and other post-processing. The existing approaches for each

step are reviewed as follows.
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Figure 11-4 A general framework for disparity estimation algorithms

1. Matching Cost Calculation

Matching cost is a quantitative dissimilarity measure to find the best pair of correspondences.
Figure 11-5 shows the concept of the matching cost calculation. In which, a target pixel has multiple
reference pixels as correspondence candidates, and each correspondence candidate has a matching cost.
The number of correspondence candidates is equal to the disparity range DR, which is related to the
nearest and farthest objects in scene. Hence, each target pixel has DR matching costs. To determine a
whole disparity map, the matching costs of all target pixels are calculated and form a disparity image
space (DSI), which is called cost cube in this dissertation. As shown In Figure 11-6, a cost cube
contains the spatial dimensions X, Y and the disparity dimension d. The size of this cube for whole
frame is HXWxDR where H and W are the frame height and width. The initial values of the cost cube

are computed by the matching cost calculation.
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Figure 11-5 Matching costs of a target pixel and its correspondence candidates

d

Figure 11-6 Hlustration of a cost cube

To compute the initial cost cube C,, one of the various match metrics [105]-[3] could be adopted.
Table 11-1 lists the commonly used match metrics, which can be classified into pixel base and block
base. For the pixel-based match metric, the absolute difference (AD) and the square difference (SD)
are computed using a target pixel and a reference pixel. The pixel dissimilarity measure (PDM)
additionally considers the half pixels to lessen the sampling sensitivity [1].

On the other hand, the block-based match metric is computed using a target block and a reference
block with support pixels as illustrated in Figure 11-7. In Table 1I-1, the normalized cross correlation
(NCC) is a statistical method that uses the block mean and variance to reduce the sensitivity to
radiometric gain and bias. The Rank transforms the pixel color into the rank value, which is the
relative order of center pixel in the block, and computes the matching cost by the rank difference. On

the other hand, the Census transforms the pixel intensity into census bit stream, which consists of the



intensity comparison results between the center pixel and the support pixels. The matching cost of two
census bit streams is computed by the Hamming distance. Because the Rank and Census transform
original pixel from color to different domains, they could better resist the radiometric distortion
between views.

To sum up, the initial cost cube C, is computed in this matching cost calculation step, and the

computational complexity of this step is O(HxWxDR).

Target Block Reference Block
Support | OJ [l
pixels " (x,y)  (edy)
vy Lo i
>

Figure 11-7 Block-based matching cost with the block radius r

Table 11-1 Various match.metrics for-computing Co(X, y, d)

Pixel-based metric
Absolute Difference (AD) [Tear (0, ) =Trep (x = d, )|
Square Difference (SD) [ear (6, y) = Lrop(x = d,y)]z
Pixel Dissimilarity Measure (PDM) min{|l,, (x,y) = o=, )|, [lrar (6. ¥) = Liof | [ear G, ¥) — Iref |}
where Ir*ef and I, are the neighboring half pixel of L.;(x —d,y)
Block-based metric

Normalized Cross Correlation Y ix-ulzr Hear W, ) = Lgr[Lrep (4 — d, ) = Iper |
(NCC) |ly—v|sr
— — 2
Z|X—H|ST Uear (W, v) = Iiqr]? [Iref(u —-d,v) — Itref]
ly—-v|sr
Rank |I’tar(x:3/)_I’ref(x_d:ynv
where I'(m,n) = Zlm—ulsr,ln—vlsr I(m,n) > I(u,v)
Census Hamming (I'sar (6, 7). I'vey (x = d,3)),

where I'(m,n) = bitstream <y jn-vj<r {(m,n) > 1(u,v))

2. Cost Aggregation
The main idea of cost aggregation step is to gather the costs of neighboring pixels to the center
pixel in a window. It implies that the neighboring pixels have the same disparity as the center pixel,
and gather the costs of neighbors could increase the reliability of matching cost. Thus, the cost

aggregation step accumulate the neighboring costs for the center pixel by the general equation,
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Z(u,v)Ewin(x,y) Co(u,v,d) - Waggr (u,v)
Z(u,v)EWin(x,y) Waggr (ur U)

Caggr(x: y,d) = ) (11-2)

where C, is the initial cost cube, and C,y is the aggregated cost cube. In this equation, each initial cost
Co(v, u, d) in an aggregation window with radius r is accumulated with the weight W (u, V) for the
target cost Cuger(X, Y, d). In addition, the accumulated value is normalized by the sum of weights. The
computational complexity of this step is O(HxWxDRxr?), which is proportional to the aggregation
window size.

Figure 11-8 shows the various existing cost aggregation approaches with different weight
distributions. In Figure 11-8 (a), the uniform weight has constant weight for each support pixels and the
fixed r. Its disparity map would be over-blurred for thin objects if r is too large, while it would be
incorrect for textureless regions if r is too small. Therefore, for better disparity quality, the radius of
uniform weight need to be adaptively adjusted according to image content as shown in Figure 11-8 (b).
The other common-used is the Gaussian weight approach that makes the pixel near window center has
higher weight. However, these three approaches could not obtain accurate disparity due to their fixed
window shape, (i.e. square or circle).

To control the window shape, the adaptive polygon weight approach [4], [5] uses the 8-direction
or 4-direction configuration to fit the object shape as shown in Figure 11-8 (d). Then, the cross-based
weight approach [6] uses multiple cross lines to fit the object shape as shown in Figure 11-8 (e). In the
two approaches, a support region grows from the window center until its boundary touches a
dissimilar pixel. However, the two approaches could not perform well for the highly texture regions
because of their continuous support regions.

The adaptive support-weight (ADSW) approach [7] can avoid their problem, because all support
pixels are considered and their weight is determined by the kernels of bilateral filter. Its weight is
defined as

Waggr(u: V) = Wear(w,v) X Wref(u -d,v) (11-3)
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where W, is the weight from target-view window, and W is the weight from reference-view window.
Both the weights W, and W,s are computed by the kernels of bilateral filter,

W, v) = fll&xy) = wv)IDg(lICx,y) =1, (11-4)
where f is the spatial kernel with the position distance, and g is the range kernel with the color distance.
With the two kernels, the aggregation weight would be large if the support pixel is near the center
pixel or the support pixel is similar to center pixel. Figure 11-8 (f) illustrates the adaptive
support-weight. In which, the aggregation weight could fit object shape better than the adaptive
polygon weight and cross-based weight approaches for highly texture regions. However, the main
disadvantage of ADSW approach is high computational complexity. Nevertheless, it can be addressed
by the integral histogram approach [8], the iterative aggregation with small window approach [9], and
the data reuse approach in VVLSI design [10].

In summary, the aggregation cost step processes the initial cost cube C, to a more reliable cost

cube Cqqq by the well-define weights.

1]1]1]1]1
1]1]1]1]1
1]1)1]1]1
1]1]1]1]1
1]1(1]1]1
(@) (b)
1 1]1]1]1]
N 1
1 13 1
1
11]1]1
(d) (e) ()

Figure 11-8 Various cost aggregation approaches
(@) uniform weight, (b) uniform weight with adaptive window radius, (c) Gaussian weight, (d)

adaptive polygon weight, (e) cross-based weight, (f) adaptive support-weight.

3. Disparity Selection/Optimization
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With the aggregated cost cube C,gy, two optional methods can be applied to compute the
disparity map. One is the winner-take-all manner (WTA) which directly determines the disparity result
by selecting the reference pixel with minimum cost as the best correspondence for each target pixel.
The other one is the disparity optimization method which considers the aggregated costs of whole
frame to compute the disparity map by the energy minimization. The latter can acquire more accurate
disparity maps as shown in the evaluation results [72].

The common-used disparity optimization approaches are dynamic programming (DP), graph-cut
(GC), and belief propagation (BP). Their main concept is to convert the disparity estimation problem
into an energy minimization problem. The energy function is generally formulated by

E(d) = Eqqta(d) + AEsmootn (d) (11-5)
where Eq., is data term to penalize the dissimilarity of a correspondence pair, and Egnoom iS SMOOthness
term to penalize the disparity inconsistency.of ‘two neighboring pixels. In addition, d is a selected
disparity set for whole frame. The optimization-approaches attempt to find a disparity set d by the way
of minimizing the total energy E.

The concept of the common-used optimization approaches are reviewed as follows.

(1) Dynamic Programming

The main idea of DP approach is to convert the disparity estimation to a finding shortest path
problem. The optimization process is performed row by row. Figure 11-9 (a) shows the graph model for
finding shortest path problem. In which, the position of node is corresponding to the coordinate in the
x-d plane, and the shortest path will be from x of 0 to W-1. The path would suffer from matching
penalty on a node, and smoothness penalty on an edge. The DP approach is to find the path with
minimum penalty by the two steps: forward accumulating and backward tracing. In Figure 11-9 (b),
first step accumulate the penalty in the forward direction to select the moving direction for each node.
In Figure 11-9 (c), with the moving direction map, the second step trace the path with minimum

penalty in the backward direction.
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However, the DP approach suffers from streak artifact in the disparity map because of its
row-by-row process. To address this problem, Ohta and Kanade [11] perform the DP in a 3-D space
that consists of the original intra-scanline space and the additional inter-scanline space. In addition, the

tree-based DP algorithms [12]-[14] use the tree structure to connect scanlines and remove the streak

artifacts.
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Figure 11-9 Concept of dynamic programming approach
(@) graph model in DP approach, (b) forward accumulating, (c) backward tracing

(2) Graph-Cut
The main idea of GC approach is to convert the disparity selection problem to the
min-cut/max-flow problem [15], and the associated optimization techniques could be adopted. The GC
approach can generate accurate disparity maps.
Figure 11-10 shows the graph model of min-cut/max-flow for disparity estimation. In which, there
are HxWxDR nodes with 6-connected node grid. The matching cost and the smoothness cost are
well-defined on each edge, which can be regarded as pipes with different flow volumes due to
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different costs. In this graph model, water from the source node would flow to the sink node through
pipes. The min-cut means that a cut surface cross edges has the minimum flow, while the max-flow
means that the allowed maximum flow from the source to the sink. The min-cut and the max-flow are
equivalent problems. For the disparity estimation, the disparity map can be directly determined

according to the resultant cut surface.

6-connected node

Cut surface

source

Figure 11-10 Graph model of graph-cut algorithm

For the min-cut/max-flow problem, the common-used optimization techniques are the
push-relabeling [16] and the augmenting path [17]. Their computational complexity is highly related
to the number of label candidate (i.e. disparity range DR in disparity estimation). However, the
optimization techniques suffer from extremely high computational complexity due to large disparity
range.

To reduce the computational complexity, Boykov proposed the swap method [18] and an efficient
augmenting path [19]. The swap method performs the optimization process disparity by disparity, and
only one new disparity is considered in an iteration. Based on the swap method, Chou et. al. [20]
proposed a fast algorithm to predict the disparities to skip the partial optimization process. On the
other hand, for the push-relabeling approach, the computational speed depends on the processing order
on nodes. Thus, Checkassky and Goldberg [21] proposed the highest-label order that is more efficient
than the typical FIFO order. In addition, Delong and Boykov [22] proposed a block-based graph cut

method to increase the parallelism of push-relabeling approach.
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To sum up, the GC approach can perform accurate disparity results but is not suitable to be
accelerated by GPU programming and VLSI design due to its irregular computation and low
parallelism.

(3) Belief Propagation

Sun et al. [24] first applied the BP approach to solve the disparity estimation problem, and
acquired accurate disparity maps. They perform the energy minimization on the graph model as shown
in Figure 11-11. In which, each node is corresponding to a pixel, and all nodes are connected by
4-connection grid. In the optimization process, the matching costs of each node are diffused through
the messages to neighboring nodes iteration by iteration. This diffusion mechanism is called message
passing. After several iterations, the matching costs and messages of a node are aggregated to
determine the disparity result. Although the minimized energy could not definitely converge due to its

loopy optimization process, the disparity maps could approach to a steady state.

l l matching cost

Ve Y%
ey
. 5 o message

Figure 11-11 Graph model of belief propagation approach

In the BP approach, the message passing suffers from the highest computational complexity,
O(HxWx DRZxT), where T is the iteration count. The term of DR? results from the convolution, and the
iteration count T should be more than 10. To reduce the computation of message passing, Felzenswalb
and Huttenlocher [25] proposed the hierarchical BP (HBP) and the linear-time message passing. The
former could accelerate the disparity convergent speed, and the latter could reduce the complexity of
convolution from O(DR?) to O(DR). In addition, Szeliski et al. [26] proposed the max-product loopy

belief propagation, called BP-M, to reduce the iteration count by a scale. Because the computation of
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BP approach is highly parallel, the BP approach is suitable to be accelerated by the GPU programming
and VLSI design [27]-[33].

In addition, the BP approach also suffers from highly memory cost, 4HWxDR, for the matching
costs and messages of whole frame. To address it, the bipartite gird [25] and the sliding approach [34]
are proposed for the memory access, and the predictive coding scheme [35] could be applied for
message compression.

To sum up, the above disparity optimization algorithms have different pros and cons. The DP
approach could achieve real-time speed easier but has the streak artifacts. Its improvement methods
would result in additional irregular computation. For the 2-D optimization approaches, the GC
approach has high performance of disparity map, but its irregular computation limits the acceleration
of GPU programming and VLSI design. On the other hand, the BP approach can also deliver accurate
disparity maps and has highly parallelism.. Therefore, this dissertation develops an efficient disparity

estimation algorithm based on the BP approach.

4. Disparity Refinement

The final step refines the disparity maps by the post-processing methods: occlusion handling,
object consistency enhancement, and temporal consistency enhancement. Their purpose and associated
algorithms are reviewed as follows.

(1) Occlusion Handling

The occlusion problem results from that the object point is visible in one view and invisible in the
other view. Thus, there is no correspondence pixel in the invisible view. Incorrect disparities would
appear in the occlusion regions, and further induce artifacts in the view synthesis.

To handle the occlusion problem, the general approach is to detect the occlusion first, and then
fill it by the background disparities. These two steps are called occlusion detection and occlusion
filling. The basic methods for occlusion detection are surveyed in [45]. Various methods have different

assumptions. The left-right check (LRC) assumes that a pair of correspondence should have identical
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disparity, and the occlusion constraint (OCC) assumes that the disparity gap of two pixels would result
in occlusion region in the other view. In addition, the order constraint (ORD) assumes that the order of
two pixels should have the correspondences with the same order in the other view. In the above
occlusion detection methods, the LRC is the most commonly applied for the disparity refinement [6],
[40], and the OCC and the ORD are combined into the disparity optimization step [15], [24]. With the
detected occlusion pixels, the occlusion filling step can directly replace them by the reliable
background disparities.
(2) Object Consistency Enhancement
For an object, the disparities are usually identical or smooth changing. However, disparity
maps often suffer from incorrect disparities, especially in the textureless regions. To remove the
disparity noise, the plane fitting approach [46] is usually adopted by the high-performance disparity
estimation algorithms [63], [39], [40]. In the plane fitting, approach, the segment information is first
computed by the watershed segmentation, mean-shift clustering, or K-mean clustering. According to
the segment information, the disparities in a-segment are used to compute a new 3-D plane by the
linear regression method. Besides of the plane fitting method, the regional voting method [6] could
also refine the disparity maps well. The regional vote method is simpler than the plane fitting method
because the segment information is not required.
(3) Temporal Consistency Enhancement

Most of research develops their disparity estimation algorithms using the still image sequences
[72]. However, they would miss the temporal consistency issue, which is important in the view
synthesis application for video sequences. Without enhancing the temporal consistency, the disparity
maps would suffer from flicker artifact, because each disparity frame is independently generated, and
the disparities are unstable in the occlusion and textureless regions. This flicker artifact would further
propagate to the view synthesis results, and is easily observed.

To address the temporal consistency, the neighboring frames should be considered in the disparity

estimation. In the previous work [47]-[49], many disparity frames are buffered to construct a disparity
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flow with the spatial and temporal dimensions, and different smooth approaches are performed in the
disparity flow. On the other hand, with two adjacent frames, the temporal BP algorithm [41] preforms
the BP optimization in a 6-connection grid graph, where the two additional connections link to the
previous and next frames. In addition, the 3DVC’s DERS algorithm [65]-[67] adds the temporal cost
to matching cost according to previous disparity.

In summary, the disparity refinement step could fix the inconsistent disparities well, and improve

the view synthesis quality for 3DTV applications.

2.2 View Synthesis

In 3DTV applications, view synthesis is one of the most important components to synthesize a
single or multiple virtual view videos for the stereoscopic TV or the free-viewpoint TV [101]. A
common approach for view synthesis is the depth=image-based rendering (DIBR) algorithm [51]-[57],

which can warp a video to another view according to-disparity maps.
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Figure 11-12 General flow of view synthesis
A general DIBR algorithm could be divided into the three steps: warping, blending, and hole
filling, as depicted in Figure 11-12. For different number of input view, the DIBR algorithm has

different challenges in its steps. With single-view input, the DIBR algorithm suffers from large
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occlusion holes in the hole filling step, while with multiple-view inputs, it suffers from inconsistent
warped pixels in the blending step. The concept and challenges of each step are presented in the

following.

2.2.1 Warping

In Figure 11-12, the warping step loads the textures and disparities of reference side-views
generate the warped textures and hole maps of the target center-view. In the warping step, the
reference textures are shifted to the target view according the reference disparity maps.

The methods of warping step can be classified into the one-step warping and the two-step
warping as illustrated in Figure 11-13. The one-step warping directly warps the reference textures to
the target view according to the warping position of disparities, while the two-step warping first warps
the target disparity and then uses it to synthesize. the target texture. Rogmans et al. [58] and Morvan

[59] show that the two-step warping could perform better because its sampling precision is higher.

View 1 View-2 View 3
(reference) (target) (reference)
Texture > Texture - Texture
Disparity position position Disparity
()

View 1 View 2 View 3
(reference) (target) (reference)
Texture »> Texture Texture
position position
Disparity »  Disparity Disparity
(b)

Figure 11-13 Warping methods in view synthesis

(a) one-step warping, (b) two-step warping

2.2.2 Blending
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With the multi-view inputs, the warping step will generate multiple textures for the target view as
shown in Figure 11-12. In other words, there are multiple warped pixels for a target position. However,
the colors of these warped pixels are not consistent due to different radiometric gain and bias at
different viewpoints. Therefore, the warped pixels should be blended by different methods for the
three cases: visible pixel, occluded pixel, and disoccluded pixel, according to the hole maps. For the
case of visible pixel, the pixel is labeled “non-hole” in hole maps, and could be seen at multiple
viewpoints. Thus, its color can be computed by averaging the warped pixels. For the case of occluded
pixel, the pixel is labeled “non-hole” in one hole map only, and could be seen at only one viewpoint.
Thus, its color can refer to the only warped pixel. For the final case, the disoccluded pixel is labeled
“hole” in all hole maps, and cannot be seen at any viewpoints. Thus, it should be handled in the next
step. In addition, the hole regions can be dilated before blending to avoid the ghost artifact as shown in

Figure 11-14.

(b)

Figure 11-14 Blending step in view synthesis
(a) without hole dilation, (b) with hole dilation

2.2.3 Hole Filling

With multiple-view inputs, most holes can be easily recovered by other views. For the remaining
disoccluded holes, they can be filled by the advanced in-painting method [60]. On the other hand, with

single-view input, the DIBR algorithm suffers from large occluded holes due to lack of other views.
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The occluded holes can be handled by the disparity smoothing methods [52]-[55] to reduce hole sizes,
and be filled by the interpolation method [53].

In summary, the 3DTV applications demand a view synthesis engine to generate virtual view
videos, and the DIBR algorithm could satisfy this requirement through the above steps. However, the
guality of view synthesis is highly dependent on the performance of disparity estimation. Therefore, it
is necessary to develop a high-performance disparity estimation algorithm for the 3-D video

production.

2.3 Review of DERS Algorithm from 3DVC

The 3D Video Coding (3DVC) team is organized in the Moving Picture Group Experts (MPEG)
to support the associated techniques for 3DTV applications. The associated techniques include the
disparity estimation, view synthesis, and multi-view video coding. The 3DVC team defines the
configuration of input and output views for the 3DTV system, and delivers the reference software for
disparity estimation [63] and view synthesis. [64]. The algorithms in the reference software are
respectively called DERS algorithm and VSRS algorithm. They also create a test bed and quality
evaluation to assess the performance of 3-D videos. Furthermore, they combine the disparity
estimation and view synthesis with the multi-view video coding (MVC) [107] for data compression
and transmission. In this section, we introduce the 3DVC’s DERS algorithm and point out its design
challenges in the processing of high resolution videos. In addition, we present the 3DVC’s 1/0

configuration and quality evaluation method, which are also adopted in this dissertation.

2.3.1 Input and Output View Configuration

The input and output setting is defined by the 3DVC [71] as shown in Figure 11-15. In the 2-view
configuration, the disparity estimation and view synthesis engines loads the original left-view and
right-view videos to generate the virtual-view videos. Combining the synthesized video and one of the

original videos can support the stereoscopic display. Figure 11-15 (b) and (c) shows the 3-view
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configuration. In which, two view videos are synthesized for the stereoscopic display. For the 9-view
display, eight virtual-view videos need to be synthesized, and combined with the original center-view
video. Based on the above configurations, the disparity estimation and view synthesis engines can be

directly extended to support free viewpoint TV if more view videos are available.

View Position No.

0 1 0 1 2 0 1 2
oL OR oL oC OR oL oC OR

/ Y y y 4 4 Y

DE and VS DE and VS DE and VS
Y A4 Y \J / A \
oL SR ] e ] e
0 0.5 0.5 15 0.5 1 15
OL.: original left-view OR: original right-view OC: original center-view SR: synthesize right-view
(a) (b) (©

Figure 11-15 Input and output view configuration defined by the 3DVC
(a) 2-view configuration for stereoscopic display, (b) 3-view configuration for stereoscopic display, (c)
3-view configuration for 9-view display

2.3.2 DERS Algorithm

The depth estimation reference software (DERS) algorithm [63] delivered by the 3DVC is
illustrated in Figure 11-16. The DERS algorithm uses the three view image frames to compute the
center-view disparity map. In addition, the previous image frame and disparity map are also involved
for the temporal consistency enhancement. Note that the DERS algorithm can support the input videos

without rectification. The steps in the DERS algorithm are introduced in the following.
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Figure 11-16 Flow of the DERS algorithm

1. Initialization
Initially, the side-view images are scaled up by the horizontal interpolation method, which has the
two options of half-pixel mode and quarter-pixel mode. The horizontal interpolation method includes
the linear filter, cubic filter, and 6-tap interpolation filter in H.264/AVC standard. In addition, the
homography matrix tables are calculated using the three-view camera parameters. With the
homography matrix H(d), for a center-view pixel (u, v), the positions of correspondence candidates
(u’, v") can be directly computed by

@, v, DT = H(d)(u,v, 1), (11-6)

where
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hoo(d)  ho1(d)  ho2(d)
H(d) = |hio(d) hy1(d) hip(d)] . (1-7)
hoo(d) hai(d) 1

2. Block Matching
In the block matching, the left-view image and the right-view image are regarded as the reference
views, and the center-view image is regarded as the target view. The block matching adopts the SAD

match metric defined as

Csap(x,y,d) = Z [Tear (u,v) — Iref(u,'v,)l ) (1-8)

(u,v)ewin(x,y)

where the window size can be 1x1 or 3x3, and the coordinates of the reference pixels can be computed
by (11-6). In addition, the adaptive support-weight (ADSW) aggregation method [7] could be applied,

and it is called soft-segmentation [68] in the DERS algorithm.

3. Temporal Consistency Enhancement
For the temporal consistency enhancement, the: DERS algorithm [65], [66], [67] first detects the
16x16 motion block by the intensity difference of current and previous image frames. If the block
color difference is high than a defined threshold, this block is regarded as a motion block. With the

motion information, the temporal cost Ciemp is computed by

Ttempld - Dt_l(x; Y)l ,no — motion block

Cemp(x,y,d ={
temp (%, Y, @) 0 ,  motion block

, (11-9)
where D' is the previous disparity map, and Temp 1S @ constant for scaling. The temporal cost Ciepp IS
added to the block matching cost Csap by the equation,

Cotar(%,y,d) = Csap(x,¥,d) + Cremp(x,y,d) (11-10)

With this temporal cost, the current disparity would be affected by the previous disparity.

4. Segmentation
The segmentation is performed only on the center-view image to assist the successive graph-cut

and plane fitting. In the DERS algorithm, the segmentation method has the three options: mean-shift
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segmentation [69], pyramid segmentation, and K-mean clustering, which apply the OpenCV library

[70].

5. Graph cut
The DERS algorithm uses the fast GC approach [19], whose acceleration techniques include the
swap method and the efficient augmenting path. In addition, the segment information calculated in
previous step is also used to constrain the smoothness term in (I1-5). In the DERS, the GC approach is

performed for two iterations to obtain higher disparity quality.

6. Plane Fitting

Finally, by the segment information, the plane fitting mentioned in Section 2.1.2 is also adopted
to refine the disparity map.

To sum up, by the general framework of disparity estimation, the DERS algorithm adopts the
absolute difference (AD) for matching cost, the-uniform. weight for cost aggregation, and the GC
approach for disparity optimization. Furthermore, it takes.care of the temporal consistency and object
consistency for the disparity refinement. In the DERS; the optional methods of all steps can be
controlled by a configuration file. Note that the DERS algorithm can additionally support the
semi-auto disparity estimation that needs a user-defined foreground map to increase the disparity

quality. This approach is out of the dissertation scope.

2.3.3 Reference Software for 3-View Configuration

The functions of the DERS and VSRS algorithms are shown in Figure 11-17 (a) where I, is an
image frame at viewpoint n, and D, is a disparity map at viewpoint n. The DERS algorithm requires
the three view image frames lo, I, I, to calculate the disparity map D;, while the VSRS algorithm
loads the two view image frames |y, 1; and disparity maps Dy, D; to synthesize the inter-view image

frame ly 5, which also can be another viewpoint between 0 and 1.
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With the functions of DERS and VSRS, they have to be performed for several times for the
3-view configuration as shown in Figure 11-17 (b). In which, five view image frames 1, to I; are
demanded for the DERS algorithm to compute the disparity maps Do, D;, D,. Then, the VSRS
algorithm could use the three image frames lo, 11, 15, and disparity maps Dy, D;, D, to generate the 9
view image frames. Compared to the original configuration in Figure 11-15 (c), the DERS and VSRS
algorithms additionally require two side-view image frames I_; and I.

Therefore, to meet the required function of 3-view configuration with minimum input views, our
target disparity estimation engine would use only three view image frames to compute their

corresponding disparity maps as shown in Figure 11-17 (c).
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Figure 11-17 Data flow for 3-view configuration
(@) functions of DERS and VSRS algorithms, (b) DERS and VSRS algorithms for 3-view

configuration, (c) our target disparity estimation engine

2.3.4 Evaluation Method for Disparity Quality

To assess the disparity quality, the evaluation method in computer vision [72] is the disparity
error rate that is computed by the difference of the estimated disparity map and a ground truth

produced by the structured light method [73]. A disparity result would be considered as an error one if
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the disparity difference is higher than a tolerance. However, different applications demand different
disparity quality and the proper corresponding evaluation method.

For 3DTV applications, the disparity quality could be evaluated through the quality of view
synthesis or the quality of multi-view video coding. This dissertation adopts the evaluation methods of
view synthesis corresponding to our target application. The various evaluation methods for view
synthesis analyze the frame difference between the synthesized and the really captured videos by
different ways. The common-used evaluation methods are the peak signal-to-noise ratio (PSNR), the
structural-similarity (SSIM) [74], and the peak signal-to-perceptible-noise ratio (PSPNR) [75], [76].

They are introduced as follows.

1. PSNR
The PSNR is commonly used in the video quality assessment, especially in video coding. The

PSNR for the frame n is computed by

2552HW
, (11-11)

PSNR, = 1010g10( =
" ZfI:MS 1|Si,n - Ri,n|

where S is the synthesized video, R is the reference-video, and their subscripts (i, n) refers to the ith

pixel in the nth frame. In the PSNR, the frame difference is analyzed by the mean square error (MSE).

2. SSIM
The SSIM considers the image structure information into the analysis of frame difference,
because the human vision system is highly sensitive to the image structure. Thus, the SSIM analyze
the frame difference within local region by comparing their pixels with the luminance and contrast

normalization. The SSIM for the frame n is computed by

Kol (2'usi,n'uRi,n + Cl) X (zo-si,nRi,n + Cz)

SSIM,, = oW ; (#gi,n n 'ulz?i,n + C1) X (0'521,’“ + Gﬁi_n + Cz)

(11-12)

where s+ MR;, are the mean, O5;n1 OR;, are the standard deviation, and OSinRip 19 the

covariance. They are computed in an 11x11window by
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ts;, = Ljewindow(®) WiSin - (11-13)

KR, = Zjewindow(d) WiRjn (11-14)

s, = (X jewindow(o Wi (Sin — llsi,n))l/z : (11-15)

Trin = (Zjewindow( Wj(Rin = MRLn))l/Z , (11-16)
OSinRin = Zjewindow(i) Wj (Sin — .uSi‘n)(Ri,n — .URLn) , (11-17)

where the w; is the weighting function. In the implementation of SSIM [77], the weight function

adopts the Gaussian weight, and the constants C;, C, in (I1-12) are 6.5025 and 58.5225, respectively.

3. PSPNR

The PSPNR focuses on not only the spatial quality in the above methods but also the temporal
quality according to the human vision system. For the synthesized videos, the flicker artifact is the
most noticeable noise, even if the flickering region is small. Thus, the PSPNR attempts to model the

flicker artifact into the disparity quality-evaluation. First;, the spatial distortion (SD) is defined as
SDin =Sin—Rin » (11-18)
which is the frame difference between the synthesized image frame S and the reference image frame R.
Then, by considering the spatial distortion visibility of human, the SD is converted to the perceptual

spatial distortion (PSD) through the equation

Clip(SDyn — VT, 0, ST—=VT) , ifSD;, 20

PSDin = {czip(sni,n +VT,—(ST = VT),0) , ifSD;y <0

(11-19)

where VT is the visibility threshold as a lower bound of SD, ST is the saturation threshold as a upper
bound of SD, and the function Clip is for range truncation. The spatial distortion SD under VT is not
perceptible in any background luminance, and the spatial distortion SD over ST is not distinguished by
human.

With the perceptual spatial distortion PSD, the temporal noise TN is separately calculated for the

motion regions and the static regions. For the static regions, there are four stages to describe a
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temporal noise changing in successive frames as illustrated in Figure 11-18. The temporal noise TN s

is computed by the equation,

0 ,if (i,n) € static stage
PSN; p_p ,if (i,n) € maintaining stage
TN;ps = PSN; ,if (i,n) € increasing stage(typel) (11-20)
| PSN; , + PSN; 1, if (i,n) € increasing stage(type2)
PSN; -1 ,if (i,n) € declining stage
for the different stages.
Spatial Distortion (S) static stage

(SDin) (D) Increasing stage (typel)

(12 Increasing stage (type2)
(M Maintaining stage

% ag®s e (D) Declining stage

] Level range (-CT, CT)
% — Maintaining time MT
0 ® o Time
_ % e ® g g %

Figure 11-18 Example of temporal noise-changing successive frames [76]

In the static stage, a noticeable flicker artifact does not appear, and SD;, does not change more
than the specific level range CT, which has different values for different regions according to the
distortion sensitivity of human. The level range CT is defined as

CTpase if (i,n) € plain
CTin =9 CTpaseFeage if(i,n) Eedge . (11-21)
CTyaseFiexture if(i,n) € texture

In the increasing stage, a noticeable flicker artifact appears, and SD;, changes more than CT. If
SDi,, has no polarization change, the temporal noise would increases with the increasing spatial
distortion, and it is equal to PSD;, for the type 1. On the other hand, if the SD; , also has polarization

change, the temporal noise should increase larger than spatial distortion, and also be larger than the

other stages. Thus, the temporal noise for the type 2 is the sum of PSD;, and PSD; , ;.
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In the maintaining stage, the flicker artifact just disappears, and human still percepts the artifact
for maintaining time (MT). Thus, the temporal noise should be PSD;.,, which is propagated from the
previous frame p in the increasing stage or declining stage. The MT is defined as 1/4 sec according to
the study of human perception on flickers.

In the declining stage, the flicker artifact starts to disappear, but human suffers from the previous
spatial distortion. Thus, the temporal noise is equal to the previous frame PSD; ;.

On the other hand, for the motion regions, the temporal noise TN;, v is computed by

PSD;, ,if|PSD;n| = |PSD;p—1| — CT;n and |PSD; | > CT;

, (1-22)
0 ,otherwise

TN = {
The motion region natively has change between two successive frames. If the change is higher than
CT, it would be regarded as temporal noise. With the temporal noises TN;,s for static regions and

TNinm for motion regions, the sum of temporal noise for a frame is computed by

HXW-1
STN, = Z TN, (11-23)
i=0

The final temporal peak signal-to-perceptible-noise ratio for whole synthesized videos is defined as

(11-24)

2552 x Hx W
T_PSPNR =10logyy .

SIZISTN,/(F — 1)

The implementation of PSPNR is attached in the DERS [63].

2.3.5 Design Challenges

The DERS algorithm can deliver high quality disparity maps to support the view synthesis for
3DTV applications. However, it suffers from the following design challenges, especially for the

requirement of high-definition videos.

1. Irregular Image Access in Block Matching
In the DERS algorithm, the block matching suffers from the irregular image access because the
input videos are not rectified. Figure 11-19 shows an example of block matching performed in the

non-rectified images. In which, the epipolar lines in the target view are parallel, and they become
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oblique ones in the reference view. The reference block would frequently result in memory row miss if
the input videos are configured by one image rows in one memory row. Therefore, it is necessary to
apply the rectification to the pre-processing, so that all the image accesses are regular by raster-scan

order in the disparity estimation and the view synthesis.

Reference Block
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Target Block R2 /

______ TO| T1| T2 [ ELO - RO | R1 -
e s T [m[msl——eu

—_ 76| T7 | T8 ——— EL2 — __|R6

“““““““““ R7 | Re T—————— EL2

Image rows

Figure 11-19 Example of block matching in the DERS algorithm

2. Low Parallelism in Graph-Cut

The DERS algorithm adopts the fast GC approach.[18], [19], which contains the swap method,
and the efficient augmenting path method. However, the -GC approach need to process on a
tree-structural graph, and the connection of edges is frequently-and irregularly changed. In addition, its
computation has high data dependency because the graph is sequentially processed node by node.

Therefore, the GC approach suffers from low parallelism in data access and computation
As mentioned in Section 2.1, the previous work [22] proposed the region-based
push-relabeling approach that could increase the parallelism and the data locality for the GC approach.
However, its computation and data access in a local region still suffers the same design challenges as
the original GC approach. In addition, the real-time scalable GC engine [23] is proposed but it only
supports a small graph with 16 nodes. To sum up, the GC approach is not suitable to be accelerated for
our target performance. We will develop another new disparity estimation algorithm based on the DP

or BP algorithm, which is natively high parallelism.

3. High Computational Complexity in Segmentation
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In the DERS algorithm, the segmentation is used in the plane-fitting to enhance the object
consistency, and in the GC approach to constrain the optimization process. In the previous work [50],
the K-mean clustering method was implemented by VLSI design to achieve the throughput of 1
Mpixels/s by 440K gate counts. However, the hardware cost would be dramatically increased to

support our required throughput of three view HD1080p videos in 60 frames/sec (i.e. 360 Mpixels/s).

2.4 Summary

In this chapter, we review the disparity estimation algorithms by a general framework, and
introduce the associated view synthesis technique. In addition, we also present the state-of-the-art
DERS algorithm delivered by the MPEG 3DVC. The DERS could produce high-quality disparity
maps for the view synthesis application, but it suffers from the three design challenges: irregular
image access in block matching, low parallelism’in graph-cut, and high computational complexity in
segmentation. Thus, the DERS algorithm could not be accelerated to achieve our target throughput by
the VLSI design. Therefore, the goal of this dissertation is to develop a new high-quality and
hardware-efficient disparity estimation algorithm, and implement its dedicated VLSI design to reach

our target throughput, three view HD1080p disparity maps at 60 frames/sec.
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11 Baseline Disparity Estimation with Belief
Propagation and Joint Bilateral Filter for High
Definition 3DTV Applications

For the high definition 3DTV application, the disparity estimation natively suffers from high
computational complexity due to large frame size. To conquer it, our strategy is to calculate the
disparity map by a belief propagation-based algorithm in low resolution, and scale it to high resolution
disparity map by an upsampling algorithm. For the two steps, we adopt the baseline belief propagation
(BP) algorithm [24] and the joint bilateral upsampling (JBU) algorithm [79], [81]. The combination is
called baseline algorithm in this dissertation.

The chapter is organized as follows. First, we'introduce the BP and JBU algorithms. Then, we
separately analyze their architecture, and design the key components to solve their major design
challenges. Finally, the experimental result of. the baseline ;algorithms is demonstrated by software

implementation.

3.1 Introduction

3.1.1 Baseline Belief Propagation

The concept of the BP-based algorithm is illustrated in Figure 1l1-1. In the BP-based algorithms,

an energy function is generally formulated as

Ed=) D)+ . V(dd) (111-1)

i€l i€l,jeNeighbor (i)

for a 2-D graph in Figure IllI-1 (a). In this energy function, D is the data cost for each node
corresponding to each pixel, V is the smoothness cost for each edge, and d of the energy E is a selected

disparity set for all nodes. The two costs can constrain selecting the disparity set d. The data cost D
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enforces that the correspondences are similar, and the smoothness cost V enforces that the neighboring
nodes’ disparities are consistent. To minimize the energy function and acquire an appropriate disparity
set d, the BP-based algorithms perform an iterative process called message passing. However, the
shortage of the BP-based algorithms is that the energy function may not be convergent definitely.

Nevertheless, the disparity map could approach to a steady state after sufficient iterations.

(b) (©)
Figure 111-1 Hlustrations of BP

() node plane; (b) message passing; (c) belief calculation.

For the requirement of real-time processing, the direct hardware implementation of BP-based
algorithms suffers from two design challenges: high computational complexity and storage in the
message passing. For the example of 640x480@30fps and the disparity range of 32, the computational
complexity is about 1,200 billion operations per second for the message passing, and the storage is
about 157Mbytes for messages.

To address above problems, various approaches have been proposed. Felzenszwalb and
Huttenlocher [25] proposed an efficient message passing to reduce computational complexity from
O(L? to O(L), and the bipartite message approach to reduce 50% memory cost. Following their
approach, Yang et al. [27] implemented it on a high performance GPU, and Park et al. [28] also
designed an array processing architecture on two FPGA boards to achieve the performance of
320x240@30fps but with 880KB on-chip memory. Cheng et al. [29]-[33] proposed a tile-based BP

and a fully parallel architecture for each message passing processing element (PE) to reach real-time
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processing for the image size of 640x480. Nevertheless, all the implementation still suffers from high
memory cost.

In summary, though previous work used parallel PEs to conquer the high complexity, the resulted
logic still occupies too much area since each PE needs high area cost. In addition, all the work did not
solve the memory cost well due to their fixed memory access approach.

To solve the mentioned problems, we propose a hardware efficient architecture for various
BP-based algorithms through three techniques in Section 3.2. For the high memory cost, we propose a
spinning-message approach which rearranges the message configuration in an internal memory to save
50% memory cost. In addition, we propose a sliding-bipartite node plane that combines the advantages
of previous work to further reduce more memory cost. For the message passing PE, we propose a
buffer-free PE architecture which removes all the large buffers and shares common operators to reduce
logic cost without significant speed degradation.. Both' the proposed low memory access approaches
and the buffer-free PE architecture could be applied-to-various BP-based algorithms together to
significantly reduce their hardware cost as well as speed up to real-time processing without changing

their disparity accuracies.

3.1.2 Joint Bilateral Upsampling

The JBU algorithm [79] is proposed to scale up the various results of image processing, such as
tone mapping, colorization, photomontage, disparity map, and etc. The main idea of JBU is to apply a
high resolution image to guide the upsampling process. For upsampling a disparity map, given the
high resolution image Iy and the low resolution disparity map Dy, the high resolution disparity map Dy

can be computed by

1
Dy(c) = © Z Dy(qr) - fller = qilD - g(l1u(c) = In(@ID) . (In-2)

qLES

where f is the spatial kernel with the argument of spatial distance ||c. - g.|| in low resolution, and g is

the range kernel with the argument of color distance ||Is(c)— 1,(q)|| in high resolution. Note that the
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positions c, g are in the high resolution frame, and the positions ¢, g, are their corresponding positions
in the low resolution frame. Both the two kernels are Gaussian weight function. In addition, « is the
sum of weights for normalization, and S is the window of spatial kernel.

Based on the original JBU algorithm, various modified JBU algorithms are proposed with
different equation. Chan et al. [80] proposed the noise aware filter depth upsampling (NAFDU), which
adds the range kernel h for low resolution image to reduce the texture copy artifact. The equation of

NAFDU is defined as

1
Du(c) == Z Di(an)f Uley = qulDlag iy () = In(@ID) + (1 — )l (cr) — 1.(qL)ID],

qLES

(111-3)
where a is blending value related to the disparity variance. Using the additional h, the JBU algorithm
could resist the texture copy artifact due to its color distance in sampled frame. Thus, the effect of h is
increased for the region with low disparity variance. In contrast, the effect of g is increased for the
region with high disparity variance.

On the other hand, Riemens et al.“[81] proposed the multi-step JBU algorithm that doubles the
resolution of disparity map in each iteration. This approach can reduce the computational complexity

by decreasing the window size of spatial kernel. In addition, the equation (111-2)is changed to

1
D@ =% > Du(@)- fllles = @l - g(lls () = Ly @I (11-4)

qLES

where the high resolution pixel 1,4q) of (111-2) is replaced with the low resolution pixel 1.(c.). The fast
multi-step JBU algorithm was implemented by a programmable DSP platform to achieve the
throughput of 720x576@50fps [82]. However, it is far from our target throughput due to the limited
resource in DSP platform.

For the above different JBU algorithms, their computational characteristics are the same as the
joint bilateral filtering (JBF), which is an extended version of bilateral filter (BF). The BF and the JBF

are respectively defined as
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1
I'(c) = ;Z I(@)f (e = qlDg(llI(c) — I(@)ID) (111-5)

qes

and

, 1
J'(e) = EZJ(Q)f(IIC = qlbg(lli(e) = (DI - (111-6)

qES

Therefore, the existing acceleration approaches for JBF and BF could be applied to the JBU algorithm.
The state-of-the-art approaches proposed by Yang et al. [83] and Porikli [91] can achieve constant
time complexity. But they suffer from extremely high memory cost. This dissertation focuses on the
Porikli’s approach for JBF because we could take advantage of its computational characteristic of
single iterative raster-scan to reduce its memory cost.

The following two sections will analyze the computation of the baseline BP algorithm and the
JBF algorithm, and propose an architecture design for the key components to solve their design

challenges.

3.2 Analysis and Design of Baseline Belief Propagation

In this section, we first review the BP-based algorithms and points out their design challenges.
Then, we present the proposed low memory access approaches, and elaborate the buffer-free PE
architecture for message passing module, which is the most important component in BP-based

algorithm. Finally, the implementation results and comparisons are demonstrated.

3.2.1 Analysis of Belief Propagation

In this sub-section, we review various BP-based algorithms and then indicate the general design

problems in these algorithms.

1. Baseline BP
Sun et al. [24] first applied BP to disparity estimation. This baseline BP includes three steps: data

cost calculation, message passing, and disparity selection, which are performed in the graph of Figure
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[11-1 (a). In this dissertation, the graph is called node plane whose size equals to an image in the
baseline BP.

In the baseline BP, the first step is to calculate the data cost of each node, where the data cost is
identical to the matching cost in local approaches. According to the data cost, local approaches can
determine disparity maps using the winner-take-all scheme. In contrast, the baseline BP further
propagates it to neighboring nodes.

In the second step, the messages, which are the arrows in Figure 111-1 (a), are added around all
nodes, and they propagate data cost to neighboring nodes. In the baseline BP, the propagating
mechanism is called message passing. Figure I11-1 (b) illustrates the message passing for calculating a
new message, and its equation is as follows:

ML (d;) = ~min V(d;, ;) + D(dp) + Z ME=2(d) (11-7)
ke ! xeNeighbor()\j

where M ';_; is a new message of the node j at the iteration t from the node i, and M **,_; is an old
message of the node i at the iteration t-1 from the nodes-X which can be g, h, and k. In addition, V and
D are smoothness cost and data cost in (I11-1), and « is a normalization term. Note that the indexes d;
and d; are respectively for the nodes i and j. To calculate the new message M ‘., the three old
messages M "', M "%, and M "%, are summed up with D by the index d;. Then the result is
convoluted with V by the cross indexes d; and d;. For the message passing in BP-based algorithms, the
computation of (I111-7) is performed on all four incoming messages of each node iteratively.

In the third step, the final incoming messages of each node are accumulated with its D to form a
belief. The belief is used to determine a disparity by the following equation, and its illustration is
shown in Figure I11-1 (c).

d = argmin| D(dy) + Z M (d;) (111-8)
xeNeighbor (i)
In summary, the baseline BP alternates the initial data cost with the belief deriving from the message

passing to deliver better disparity maps.
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The major computational complexity of the baseline BP is in the message passing, and that is
O(4HWL?T), where H and W are the height and width of the node plane, L is the disparity range, and T
is the iteration count. The computation of the message passing can be undertaken by parallel PEs as
shown in Figure 1l1-2. These PEs use the nodes’ data at the previous iteration to calculate new
messages for the next iteration. With sufficient parallel PEs, the baseline BP could achieve real-time
speed. However, that will result in high logic cost. In addition, high memory cost is also incurred since

all the messages in the node plane have to be stored.

Node plane
/& iteration t
iteration t+1 Qéwém%ﬁ Q%)a
- - - ...... F’E

T
o--u--u--o e
L

Figure 111-2 Configuration of the message passing PEs

2. Various BP-based Algorithms

Based on the baseline BP, various BP-based algorithms have been developed recently to address
the mentioned problems from the algorithm level.

To reduce the computational complexity, Felzenszwalb and Huttenlocher [25] proposed the
hierarchical BP that downsamples the node plane to multiple resolutions and then performs the
message passing from coarser levels to finer levels. Because the messages in the coarser levels could
propagate data cost to farther nodes and become initial messages for the next level, the disparity maps
could converge faster than the baseline BP. Therefore, the hierarchical BP could take less time and
deliver better disparity maps than the baseline BP.

To reduce the memory cost, our previously proposed block-based BP [36] partitions the node
plane into independent blocks. The memory cost is significantly reduced from image-scale to

block-scale, so that all data in the message passing can be placed in an internal memory, instead of an
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external memory. However, its disparity maps would suffer from blocky artifact. Furthermore, Cheng
et al. [29] proposed the tile-based BP to improve the blocky artifact. In contrast with the independent
blocks, the tile-based BP preserves the boundary messages of each tile in an external memory to link
blocks.

For all the above algorithms, their computation shares the same feature: the message passing
performed in a rectangular node plane. For example, the node plane is image-scale in the baseline BP
and the hierarchical BP, and block-scale in the block-based BP and the tile-based BP. Therefore, in the
following we will show how to develop techniques for a rectangular node plane that can be applied to

various BP-based algorithms.

3.2.2 Proposed Low Memory Cost Access Approach

In a rectangular node plane, the memory: cost:is constituted of the messages and the data cost. In
this dissertation, we focus on the messages, which-occupy the most of the cost. A straightforward
memory access approach for the messages is the ping-pong buffer approach, which needs a pair of
node planes and requires 8HWL memory. Unfortunately, this cost is too large to be on-chip. Even if the
messages are stored in an external memory, its required bandwidth is still impractical, especially for

the image-scale node planes.

1. Previous Work
To reduce the memory cost of messages, Yu et al. [35] compressed the messages by the envelope
point transform method that can achieve eight times compression without significant degradation of
disparity maps. However, this compression method needs the overheads of compression and
decompression.
On the other hand, much previous work focuses on the computing order of message passing on
the node plane to resize the node plane for memory cost reduction. Park et al. [34] proposed the fast

BP structure approach which resizes the pair of node planes from HW to TW, where T is usually
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smaller than H. In our previous work [38], we proposed the in-place message update approach that
resizes one of the pair node planes from HW to 3W for buffering partial new messages temporally.
Felzenszwalb and Huttenlocher [25] delivered the bipartite scan which only needs one node plane, and
can also reduce computation to half. Different from above computing orders, Szeliski et al. [26]
proposed the BP-M scan which updates messages direction by direction for whole node plane to
accelerate convergence speed, and only needs one node plane. Although the BP-M scan can converge
faster than others, the memory cost of BP-M scan is still too high and could not be further reduced
because of its iterative directional process and overlapping data lifetime in all messages. Thus, the
BP-M scan is not discussed in this dissertation.

Excluding the BP-M scan, the memory access in the previous work belong to the fixed memory
access approach which binds messages at fixed memory positions, and thus would limit the possibility
to reduce memory cost. Figure 111-3 shows the data dependency of the traditional fixed memory access
approach between successive iterations in a simplified 1-D node line, where each square represents a
memory position, the arrow inside the square represents a stored message, and the cross line linking
two messages (e.g. m3 at t1 to m2 at t2) represents that they have data dependency. In the traditional
approach, each node’s messages are stored at fixed memory positions. For example, the node n3’s
messages m3 are always located at the same memory position pos3 in all iterations. These messages
m3 are used to calculate the neighboring nodes n2’s and n4’s new messages m2 and m4 for next
iterations. However, the new messages cannot overwrite their old ones at the memory position pos2
and pos4 since their old ones are still needed for new messages computation at other nodes. Thus, an
access conflict would occur between the old and new messages of the neighboring nodes. To solve the
access conflict, a straightforward method is to allocate an additional memory to buffer the new

messages, but it will increase extra cost.
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Figure 111-3 Traditional fixed memory access approach in a 1-D node line for node n3 computation

2. Spinning-Message Approach

To address the access conflict and reduce:memory cost, we propose the spinning-message
approach that frees the bind between the messages.and the memory positions, and eliminates the extra
memory. In addition, the proposed approach could be applied to the reduction techniques mentioned in
previous sub-section to further save 50% memory cost.

Figure 111-4 (a) shows the main idea of the proposed approach. The old messages of the center
node are used to calculate the new messages of the neighboring nodes, and their data life time is ended.
Therefore, the new messages of the neighboring nodes can overwrite the outdated messages without
access conflict, and are stored at the center memory positions instead of the neighboring memory
positions.

Based on the main idea, Figure I11-4 (b) shows the details of the proposed spinning-message
approach by a 1-D node line for the node n3 as an example. Other nodes follow the same procedure.
At the iteration t1, the messages m3 are stored at the center memory position pos3 that is the
centralized mode. For the transition to the iteration t2, the messages m3 are used to calculate the new
messages m2 and m4 of the neighboring nodes n2 and n4. The old messages m3 can be replaced by the

new messages at the center memory position pos3 without the access conflict. After the calculation
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and replacement, the centralized mode changes to the distributed mode since every node’s messages
are distributed at its neighboring memory positions (e.g. m3 at pos2 and pos4) at the iteration t2. Then,
the distributed messages m3 are used to calculate the new messages m2 and m4, and the distributed
messages m3 can also be replaced by the new messages without the access conflict. With another
calculation and replacement, every node’s messages are returned to the centralized mode at the
iteration t3.

In summary, the messages are centralized at their own memory positions for odd iterations and
distributed at their neighboring memory positions for even iterations. With this approach, we can save
the memory while avoid the access conflict. Figure 111-5 shows the proposed approach extended to a

2-D node plane.
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Figure 111-4 Proposed spinning-message approach
(a) main idea; (b) memory access in a 1-D node line for node n3 computation.
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Figure 111-5 Proposed spinning-message approach in a 2-D node plane for node n3 computation

3. Applications
The proposed spinning-message approach can be applied to different types of node plane to

further reduce their memory cost.
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Figure 111-6 Comparison of memory access approaches in different node planes
(a) proposed spinning-message approach, (b) traditional fixed memory access approach
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(1) Sliding Node Plane

In the original BP, the messages in a node plane are iteratively updated by the space-first (x-y
plane) computing order, and the node plane moves along the iteration axis as shown in the ping-pong
buffer approach of Figure Il1-6 (a). In contrast, the sliding node plane moves orthogonal to the
iteration axis, and their messages are updated by the iteration-first computing order. The size of sliding
node plane is its projective area on the x-y plane, which is smaller than the original node plane.

Figure 111-7 shows three sliding directions. In which, the sizes of node planes are WT for the
vertical sliding and HT for the horizontal sliding, and the diagonal sliding. The vertical sliding node
plane was proposed by the fast BP structure approach in [28]. However, its size is larger than the other
two because W is usually larger than H. Therefore, we recommend the horizontal sliding node plane,

which totally requires 8HTL memory for messages.

W W W
A T
; d
H ) H < H
P
(@) (b) (©)

Figure I11-7 Sliding node plane in different directions
(a) vertical sliding; (b) horizontal sliding; (c) diagonal sliding.

The memory cost can be further reduced to 4HTL by the proposed spinning-message approach as
shown in Figure 111-6 (b). Figure 111-8 shows the details of the spinning-message approach performing
on the horizontal sliding node plane. The initial state of the messages is shown in Figure I11-8 (a),
where the front of the node plane arrives at the node n6. Then, in Figure 111-8 (b), the new messages in
the node plane are computed from the node n7 to n2 step by step. With the spinning-message approach,
the new messages can overwrite the old messages at the same memory positions. After that, in Figure
I11-8 (c), the front of node plane will slide to the node n7. According to the above flow, the
spinning-message approach could cooperate with the sliding node plane well to further save 50%
memory cost.
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Figure 111-8 Sliding node plane with the spinning-message approach
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(a) the node plane slides to the node n6; (b) the computing order of the message passing; (c) the node
plane slides to the node n7.
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(2) Bipartite Node Plane

The bipartite node plane was proposed in [25] that divides nodes into two parts, like a chessboard
as shown in Figure 111-6 (a). In which, one part is computed at odd iterations, and the other is
computed at even iterations. Its memory cost is reduced from a pair of node planes in ping-pong buffer
approach to only one node plane of 4HWL.

Above memory cost can be further reduced to 2HWL by the proposed spinning-message as shown
in Figure 111-6 (b). Figure 111-9 shows the spinning-message approach performs on the bipartite node
plane at odd iterations and even iterations. At the odd iteration in Figure 111-9 (a), the messages of the
white nodes are used to calculate the new messages of the black nodes, and these messages of the
black nodes can overwrite those of the white nodes. Then the state of node plane is transformed to
Figure 111-9 (b). Similarly, the messages at the even iteration can be returned to the next odd iteration.
Thus by the spinning-message approach, only the,white:nodes need memory, and 50% memory cost

can be saved.

(b)

Figure 111-9 Bipartite node plane with the spinning-message approach

(a) message passing for white nodes at odd iterations; (b) message passing for black nodes at even
iterations.

(3) Proposed Sliding-Bipartite Node Plane
By combining the above sliding node plane and bipartite node plane, the memory cost can be
reduced to 4HTL. Furthermore, applying the proposed spinning-message approach, the memory cost
can be reduced to 2HTL as shown in Figure I11-6 (b). Figure I11-10 shows the spinning-message
approach performs on the sliding-bipartite node plane. In a similar way as the sliding node plane, the

front of the sliding-bipartite node plane can slide from the node n6 to n8 by the computing order in
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Figure 111-10 (b). Therefore, the proposed sliding-bipartite node plane takes advantages of the sliding

node plane and the bipartite node plane to reduce memory cost.
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Figure 111-10 Proposed sliding-bipartite node plane

(a) the node plane slides to the node n6; (b) the computing order of the message passing; (c) the node
plane slides to the node n8.
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3.2.3 Proposed Efficient PE

Following above proposed approaches for memory access, the message passing could be
performed by parallel PEs with the configuration in Figure 111-13 (a). However, the logic of each PE
costs too much due to the high computational complexity of message passing. To conquer the high

logic cost, we propose the buffer-free PE architecture in this section.

1. Previous Work

In the message passing, both the computational complexity and logic cost are significantly
affected by the model of smoothness cost V. Kumar and Torr [37] took advantage of a truncated model
to propose a low-memory generalized BP. This reduction is effective if the convolution of (111-7) is
fully unrolled. On the other hand, Felzenszwalb and Huttenlocher [25] reduced the message passing
from O(L? to O(L) by the benefit of a linear model. Figure 111-11 presents the pseudo code of their
proposed message passing to calculate one new 'message. This. code includes three loops: aggregation
and forward process, backward process, and normalization process. The latency of each loop is L
iterations.

Based on the above flow, Park et al. [34] directly designed a PE architecture as shown in Figure
I11-12. In this architecture, the node plane additionally stores the data cost. By sequential computation,
four old incoming messages and data cost of a node are fetched, and four new messages of
neighboring nodes are produced. This architecture uses three pipeline stages corresponding to three
loops in Figure 111-11. They are divided by the two large message buffers mf and mb with L message

entries, which dominate the hardware cost of this PE.

50



Aggregation and forward process

mfo(-1) = MAX
minip = MAX
Loopl:

for d=0 to L-1{
Ago(d) = D(d) + Mo"(d) + M2"(d) + Ms"(d)
minio = min{Ago(d), minig} + Kv
mfo(d) = min{Ago(d), mfo(d-1)} + Cv

}

o ~NOo OB WN P

Backward process
9 mby(-1) =-MAX
10 normp=0
11 Loop2:
12 ford=L-1to 0{
13 temp = min{mfy(d), temp + Cv}
14 mbg(d) = min{temp, minio}
15  normg = normg + mbo(d)
16 }

Normalization process
17 normo =normg/ L
18 Loop3:
19 ford=0to L-1{
20 Mo'(d) = mbg(d) —normo
21 }

Figure 111-11 Pseudo code of the message passing for calculating a new message

Message passing PE Node plane

r% e
L mfo(L-1-d) tem
) P B mbo(d)i—
reg

M)
i i ﬁ
S +

HHEVAT)
Mo'(d)— >
reg
Aggregation circuit Forward circuit Backward circuit Norg;eriéluzi?uon

Node plane

o-[H
O reg 1
o-[=H
O reg

Figure 111-12 Architecture of Park’s PE

2. Buffer-free PE Architecture
Because the message buffers are the major logic cost of the previous PE, the strategy in our

architecture is to remove all the message buffers of the previous PE. Figure I11-13 (a) shows the overall
configuration of the parallel buffer-free PEs. The parallel PEs fetch and store data by the proposed low

memory access approaches, and each buffer-free PE can calculate four messages at the same time.
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Figure 111-13 (b) shows the detailed architecture of the buffer-free PE. Based on the pseudo code in
Figure I11-11, we first propose the post-normalization approach that merges the computation of the
normalization on line 20 with the aggregation on line 5. The benefit of this merging is that the message
buffer mb could be eliminated, but the norm storing the normalization term should be changed to node
plane. It causes that the memory of each message in node plane is increased by one memory entry.
Second, we propose the convolution circuit that combines the forward process on lines 6 and 7 with the
backward process on lines 13 to 15. These two have identical computations, two adders and two
comparators, so that these computations can share the operators with additional multiplexers for
selecting data path. Thus we can remove the message buffer mf. Finally, we also add the pipelining
registers z0 and z1 to cut the critical path in this architecture.

The schedule of data access and computation in the proposed PE architecture are presented in
Figure 111-13 (c). In the step (1), the normalization terms, the old messages and the data cost are read to
calculate the forward messages. In the step (2), the:forward messages are stored in the node plane
sequentially. In the step (3), the forward messages are read to calculate the backward messages. Finally,
in the step (4), the backward messages and new normalization terms are stored in the node plane. The
memories of the node plane are implemented by two-port register files because the proposed PE read
and write them at the same time. Although the proposed PE takes about double latency of the Park’s PE,
the logic cost has been significantly reduced because all the message buffers are removed.

The proposed buffer-free PE can compute four messages of one node at the same time. It can
also compute one message of multiple nodes for different scan schemes by the following simple
modification. First, the post-normalized and aggregation circuit is modified to receive 3 messages.
Then, the convolution circuit is modified to be only one module. Finally, the accessed node plane
should be properly modified according to the specific scan scheme. This modification can make the
proposed PE work well for one message, but will slightly degrade the hardware efficiency due to no

sharing operators in the post-normalized and aggregation circuit.
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Figure 111-13 Proposed architecture
(a) configuration of parallel PEs on the sliding-bipartite node plane; (b) architecture of the buffer-free
PE; (c) schedule of the buffer-free PE.
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3.2.4 Implementation Result

1. Memory Cost Comparison

The memory cost is affected by the type of node plane and memory access approach. As
mentioned in Section 11, the type of node plane would affect the computing order of PEs, and the
memory access approach would provide a data access order for node planes. Both of the type of node
plan and the memory access approach do not change the computational efficiency of the message
passing but the memory cost.

Table I111-1 compares the memory cost used by various types of node plane adopting the
traditional fixed memory access approach and the proposed spinning-message approach. The size of
node plane is substituted with block-scale and image-scale magnitudes, and each entry of messages is
16-bit. Compared to the traditional approach, most types of the node planes can save 50% memory
cost in both the scales with the proposed spinning-message approach. The only exception is our
previous in-place message node plane that has less saving with our approach since its original memory
cost has been reduced to near 50%. In the comparison of overall hardware efficiency, the proposed
spinning-message approach is better than the traditional approach. The reasons are that the proposed
approach needs the same cycle counts as the traditional one while saving much memory cost. The only
overhead of the proposed approach is a simple address generator, which has similar complexity as that

in the traditional one.
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Table 111-1 Comparison of memory cost in memory access approaches for the iteration count of 30

Type of Node Memory Access  Memory Cost Block-scale Image-scale
Plane Approach of Message  W=16, W=32, W=320, W=640,
(16-bit) H=16  H=32 H=240 H=480
(KB) (KB) (KB) (KB)

Ping-pong Fixed 8HWL 131 524 39,321 157,286
buffer Spinning-message 4HWL 65 262 19,660 78,643
In-place Fixed 4(HW+3W)L 77 286 19,906 79,134
Message [38]  Spinning-message 4HWL 65 262 19,660 78,643
Vertical Sliding Fixed 8TWL 131 491 4,915 9,830
[34] Spinning-message 4TWL 65 245 2,457 4,915
Horizontal Fixed 8HTL 131 491 3,686 7,372
Sliding Spinning-message 4HTL 65 245 1,843 3,686
Bipartite Fixed 4HWL 65 262 19,660 78,643
[25] Spinning-message 2HWL 32 131 9,830 39,321
Sliding-Biparti Fixed 4HTL 65 245 1,843 3,686
te Spinning-message 2HTL 32 122 921 1,843

Figure 111-14 compares the memory cost among different types of node plane using the same

proposed spinning-message approach for different:sizes of node plane. In this figure, all the memory

cost ratios are relative to the ping-pong buffer with the traditional fixed memory access approach.

Compared to the sliding node planes,-the bipartite: node plane can save more memory cost in the

block-scale. On the contrary, the sliding node ‘planes can reduce more in the image-scale. The

proposed sliding-bipartite node plane combines their benefits to reduce more memory cost in the

block-scale and image-scale. Its memory cost reduction can achieve 1.2% in the image-scale of

640x480 and 23.4% in the block-scale of 32x32. Note that the sliding-based node planes would

decrease its memory cost reduction when the iteration count T is larger than H or W.
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Size of Node Plane

Figure 111-14 Ratio of memory cost in different node planes with spinning-message approach

2. Implementation

The proposed buffer-free PE architecture has been implemented by Verilog and synthesized by
the 90-nm CMOS technology process. To compare with the Park’s PE [34], we also implemented their
PE design since their original implementation is on two FPGA boards. In addition, the Cheng’s PE
[31] is implemented in the same design condition for a fair comparison since some details are not
disclosed in the dissertation. All the data widths are 16-bit in each implementation. Table Il1I-2
compares the logic cost of the proposed buffer-free PE with the other PEs. In these PEs, the Cheng’s
PE takes the least latency to calculate a new message because of its fully parallel architecture. The
Park’s PE and the proposed buffer-free PE belong to sequential architecture that causes higher latency.
Although the proposed PE requires the most latency, its hardware efficiency is 3.6 times of the Park’s
PE and 1.4 times of the Cheng’s PE. That is because we remove all the message buffers and common
circuits to reduce logic cost, as well as add a pipeline stage on its critical path in the proposed
buffer-free PE.

Note that the hardware efficiency in our PE excludes the memory overhead by the
post-normalization approach, which is highly related to the size of node plan, instead of the number of

PE. Thus, our hardware efficiency will be still higher than Cheng's design when the size of node plan
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is smaller than 35 for one PE case. For the 32 PEs case as in Table 3, the proposed approach will still
have better hardware efficiency for node planes up to 35x32 (1,120) nodes. With this size, our
proposed PE is suitable for the block-scale BP algorithms, such as block-based BP and tile-based BP,

whose overall cost will be more practical than that in the image-scale BP.

Table 111-2 Logic cost comparison of PE architectures

Cheng’s PE Park’s PE Proposed Proposed
[31] [34] buffer-free pg  PuTfer-free PE
(32 PEs)
Operating Frequency
(MH2) 100 222 285 285
Disparity Range (L) 32 32 32 32
CMOS Tech. process UMC 90-nm UMC 90-nm UMC 90-nm UMC 90-nm
Gate Count 69.6K 50K 8.3K 256.6K
1 32 68 68
Latency (Cycle) (1 msg) (4 msg) (4 msg) (128 msg)
Throughput
(Node/Second) 25,000K 6,938K 4,191K 134,117K
Hardware Efficiency 359 139 505 505

(Throughput/Gate count)

The proposed low memory access approach and buffer-free PE architecture could be generally
applied to the various BP-based algorithms together. Table I11-3 shows the implementation results of
four typical BP-based algorithms for the real-time constraint of 640x480 and the disparity range of 32.

In these BP-based algorithms, their algorithm flows and iteration counts affect the required
throughput. The message passing is performed for the baseline BP on a whole image, and for the
hierarchical BP on multiple resolution images with different iteration counts. Thus, their required
throughput is proportional to the image size and corresponding iteration count. For the block-based
and tile-based BP, the message passing is performed on each block (tile) in an image. In addition to the
iteration count for each block, the tile-based BP has the outer iteration count for re-processing the
image. Their required throughput is proportional to the total iteration count as well as the block’s count
and size. To satisfy the required throughput of these BP-based algorithms, we should use sufficient

parallel PEs. Note that the maximal number of PE is equal to H due to the configuration of parallel
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PEs in the sliding-bipartite node plane. As a result, the block-based BP and tile-based BP designs just
approach to real-time speed. With the buffer-free PE architecture, the logic cost of all the BP-based
algorithms are less than the gate counts of 300K.

The memory cost of this table contains the messages and the data costs, which is proportional to
the size of sliding-bipartite node plane according to Table 111-1. The total memory cost of the baseline
BP and hierarchical BP is larger than others because they allocate image-scale node planes. In contrast,

the block-based BP and tile-based BP are more suitable to be integrated into stereoscopic video

systems.
Table I11-3 Implementation results of various BP-based algorithms
Baseline BP Hierarchical BP Block-based BP Tile-based BP
[24] [25] [36] [29]
Iteration T 30 5,5,10,5 30 inner=8, outer=2
Required Throughput 4,608,000 1,212,000 4,608,000 4,915,200
(Node/Frame)
Operating Frequency 285 285 285 285
(MHz)
Number of PE 33 9 32 32
Gate Count (K) 273.9 74.7 265.6 265.6
Size of Sliding-Bipartite 30x480 5%480 30x32 8x32
Node Plane (image-scale) (image-scale) (block-scale) (block-scale)
Memory Cost of Messages 2,793 465 186 49
and Data costs (KB)
FPS 30.01 31.12 29.11 27.29

frame size=640x480, disparity range=32

3.3 Analysis and Design of Joint Bilateral Filtering

In this section, we first review the previous acceleration approaches for BF and JBF. Then we
focus on the integral histogram approach and point out its design challenges. To solve it design
challenges, we propose three memory reduction methods, and a real-time architecture design for the

JBF, which is the most important component in JBU for disparity estimation.

3.3.1 Related Acceleration Approaches

Various acceleration approaches for BF have been proposed, and can be classified into two
categories: target-pixel-first approach and support-pixel-first approach, according to their
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computational characteristics, as illustrated in Figure 111-15. Most of the acceleration approaches could
be applied to the JBF.

The target-pixel-first approach is an aggregation process that focuses on a target pixel ¢ and
accumulates its support pixels g. On the other hand, the support-pixel-first approach is a diffusion
process that regards a support pixel q as a center to diffuse for its target pixels c. With the
classification, the previous approaches are reviewed in this Section, and their computational
complexity and memory cost are compared in Table I11-4. In which, R is the range domain from 0 to

255 for gray-level

Target-pixel-first Support-pixel-

approach first approach
NP RN
— — — @ —
/ T \q / l \c
S S
(@) (b)

Figure 111-15 Classification of BF acceleration approaches

Table 111-4 Comparison of BF acceleration approach in computational complexity and memory cost

Approach Computational Complexity Memory Cost
(per pixel) (per frame)
Brute-Force All O(IS|%) 0
Support Basic LUT Construction O(IR]) AMN
Pixel 2-D Conv. by FFT O(|S|log|S]|)
First  [Durand and Dorsey Piecewise-linear LUT Construction O(|R|/sy) AMN/s2
[84] Subsampling  2-D Conv. by FFT 0(S)/s”log(]S|/sA) %
Yang et al. Piecewise-linear LUT Construction O(|R|/sy)
[83] 2-D Conv. by Approx. O(1) 4MN
Gaussian
Paris and Durand Bilateral Grid  LUT Construction O(|R|/sy) MN[R}/(5:52)
[85] 3-D Conv. by FFT  O(|S|IRI/(5:5s)10g(ISIIRI/(5:55))) s
Target | Phamand Vliet Separable 1-D Aggre. for Col.  O(|S|) 0
Pixel [89] 1-D Aggre. for Row  O(|S|)
First Basic Histogram Histogram Calculation O(|R||S|?) 0
1-D Conv. O(IR])
Huang Extended Histogram Calculation O(|R||S]) IS+E[?R)
[90] Histogram 1-D Conv. O(IR])
Weiss Distributed Histogram Calculation O(|R|log|S|) IS+EPR|
[92] Histogram 1-D Conv. O(|R|)
Porikli Integral Histogram Calculation O(|R|/s,) MN|R[/s
[91] Histogram 1-D Conv. O(|R|/s)) '

M: frame height, N: frame width, |S|: filter window width, |R]: intensity range
Ss: quantization factor for S, s,: quantization factor for R, E: extension pixel count
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1. Support-Pixel-First Approaches

The main idea of the support-pixel-first approaches is to convert the original nonlinear
convolution to linear convolution, so that the linear convolution can be accelerated by existing
algorithms, such as the Fast Fourier transform (FFT). To convert (I11-5) to linear convolution, the
terms g(|[1(c)-1(a)|N1(a) and g(|[I(c)-1(q)||) are pre-calculated and stored in memories as look-up tables
(LUT). Hence, the approaches consist of two steps, LUT construction and linear convolution. For the
implementation issues, the former needs a large storage and the later needs an efficient computation.

Durand and Dorsey [84] first proposed the support-pixel-first approach that contains the
piecewise-linear scheme and the subsampling scheme to respectively quantize the range domain R and
spatial domain S. Both the memory cost and computational complexity can be reduced by the
quantization factors s,, s . Based on the piecewise-linear scheme, Yang et al. [83] adopted a
constant-time approximate Gaussian filtering for. the convolution to achieve real-time processing by
the GPU programming.

Paris [85], [86] indicates that the piecewise-linear scheme would suffer from poor approximation
on texture’s discontinuity since it cannot exactly interpolate dense results. To address that, the bilateral
grid scheme was proposed to perform a 3-D convolution on SxR, instead of the typical 2-D
convolution only on S. However, its memory cost and computational complexity are scaled on the
dimension R. Following the bilateral grid scheme, Chen [87] implemented it by the GPU programming
to achieve real-time processing. In addition, Adams [88] adopts the Gaussian KD-tree to improve its
speed.

To sum up, the support-pixel-first approaches can convert BF and JBF to linear convolution but
suffer from high memory cost for LUTS. Unfortunately, the size of LUTs should be

frame-scale-magnitude since their algorithms iteratively performs on whole frame.

2. Target-Pixel-First Approaches
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The main idea of the target-pixel-first approaches is to aggregate the support pixels with kernels,
which needs the computational complexity of O(|S|?). To accelerate it, Pham and Vliet [89] proposed
the separable BF that directly changes the original 2-D aggregation to two-step 1-D aggregation for
columns and a row. Thus it can reduce the computational complexity to O(|S]) but suffers from the
axis-aligned artifact.

On the other hand, the histogram-based approaches could reduce computation without significant
quality degradation. In the approaches, the space kernel f is simplified to a box filter with constant

coefficient, so that (111-5) is rewritten as

I = Zqes 9(11(e) — I(@IDI(q) _ Xper gUlI(c) — bl)hec(b)b
Laes gUlI(c) = I(@ID Yrer g1 (c) = bIDhec(b)

Before convoluting each support pixel 1(q) with g, the support pixels in the filter window S are

(11-9)

classified into the pixel count histogram hc,, whose subscript refers to the target pixel c. Figure I11-16
shows the concept of the classification. According the support pixel 1(g), the corresponding bin b is
accumulated. For the exact result of gray-level, the number of bin N, is set as 256. After classifying all
support pixels, the histogram bin value hc.(b) can refer to the number of support pixels with the
intensity b in S. Then, (I11-9) can be finally calculated by 1-D convolution in the range domain R,
instead of the original space domain S. In summary, the histogram-based approaches include two parts:
histogram calculation and 1-D convolution. The key point of the histogram-based approaches is that
the convolution can be decreased from the larger |S]° to |R|. However, the major computational

complexity is O(|R||S|?) in the histogram calculation that demands other acceleration techniques.

hce(b)

Figure 111-16 Concept of histogram-based approaches
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To speed up the histogram calculation, Huang [90] proposed the extended histogram approach
that calculates multiple target pixels’ histograms and shares their partial histograms in run time. Its
computational complexity can be reduced to O(|R||S|), but it spends extra memory cost. Based on the
extended histogram approach, Weiss [92] proposed the distributed histogram approach that
reassembles the histogram calculation of each row, and reduces computational complexity to
O(|R]log|S]). Furthermore, Porikli [91] proposed the integral histogram approach to decrease
computational complexity to O(|R}/s;), which is independent of the filter window size. In addition, the
factor s, quantizes the support pixel’s intensity. The integral histogram approach can be faster than the
brute-force approach when |R|/s; is smaller than |S|°>. That implies this approach is suitable to be
applied when BF has large filter window size. Based on the integral histogram approach, Ju [93]
modified (111-9) to

@ = Lqes 9I1(e) — I(@IDJ (@) 1 Xper 9 (Il (c) — bIDhic ()
LaesgI(©) = I@W)  Xper g1 (c) — bIDhe (b)

to further support JBF. Different from (111-9), the histogram in the numerator is the pixel intensity

(111-10)

histogram hi, that accumulates the pixel intensity.for each bin, instead of the pixel count in hc..

In summary, the integral histogram approach is the state-of-the-art in target-pixel-first approaches,
but its memory cost is frame-scale-magnitude, like the support-pixel-first approaches. However, as
mentioned above, the memory cost of the support-pixel-first approach is hard to be reduced due to its
iterative computing, instead of progressive computing in the integral histogram approach. Thus, this

dissertation focuses on the integral histogram approach.

3.3.2 Analysis of Integral Histogram Approach

In this Section, we introduce the integral histogram approach in details, and then analyze the

design challenges of JBF, which can be applied to BF as well.

1. Integral Histogram Approach
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Table 111-5 presents the computational flow and computational analysis of the integral histogram
approach for JBF to calculate 1-pixel result, which consists of the integration, extraction, kernel
calculation, and convolution processes. In which, the former two are for the histogram calculation step,
and the latter two are for the 1-D convolution step.

For ease of explanation, we use the area view to show how this approach operates and the
memory view to show the memory usage, as illustrated in Figure 111-17 (a). In the area view, IHo" is a
histogram of the rectangular area stretched from the pixel O to X. Thus, the addition and subtraction of
IH can be regarded as area merging and cutting, respectively. In the memory view, the data of IHo" are
stored at X, and the gray region represents occupied memory usage. With these representations, Figure

I11-17 (b) and (c) illustrate the integration and extraction processes.

Table 111-5 Computational flow and analysis for a pixel in the integral histogram approach
Complexity BW for IH BW for pixel

Process (operation) (data) (data)
Integration process:

Pixel count histogram hc,
Loop b=0 to Np-1

IHco®(b)=IHco (b)+IHcoR(b)-1Hes (b) ADD: 3N, AN
IHco(ls) += 1 ADD: 1 b
Pixel intensity histogram hi.
Loop b=0 to Np-1

IHio(b)=IHic (b)+IHio (b)-IHic" (b) ADD: 3N, AN
IHio*(ls) += Js ADD: 1 b 2 pixels

Extraction process:
Pixel count histogram hc,
Loop b=0 to N,-1
hce(b) = IHcoP(b)+I1Hco (b)-1Hco®(b)- IHeo (b) ADD: 3N, 4N,
Pixel intensity histogram hi
Loop b=0 to Ny-1
hig(b) = IHio°(b)+IHio"(b)-IHic®(b)- IHix“(b) ADD: 3N, 4N,
Kernel calculation process:
Loop b=0 to Np-1

G(b) = g(ll¢-b]) ADD, LUT: N, 1 pixel
Convolution process:
Nu=0, De=0
Loop b=0 to Np-1
De += G(b) x hc,(b) MUL, ADD: N,
Nu += G(b) x hi(b) MUL, ADD: N,
Result = Nu / De DIV: 1 1 pixel
Total 17Ny+3 16Ny 4 pixels
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Figure 111-17 Concept of integral histogram approach

(a) representation of an integral histogram IHo* for the region from O to X in area view and memory
view, (b) integration process performed by raster-scan order to compute the integral histogram IHo®, (c)
extraction process performed to extract the histogram Hascp 0f the rectangle ABCD.

First, the integration process progressively calculates the IH of each pixel using the equation,
IHS = IHZ + IHE — IH] + Bin(l5) . (111-11)

For the pixel count histogram hc. and the pixel intensity histogram hi, their IHs (i.e. IHc and IHi) are
computed separately as shown in Table I11-5. For hc,, Bin(ls) is 1 for the corresponding bin and 0 for
others. On the other hand, for hic, this term is Js for the corresponding bin, and also 0 for others. After
this process, the IH of each pixel is produced and stored into memory.

Second, given the IHs, the extraction process can extract the histogram hc, or hi. of the filter
window ABCD centered by the target pixel ¢ using the equation,

Hupcp = IHY + IH4 — IHE — 1HS (111-12)

As shown in Figure I11-17 (c), a histogram with arbitrary filter window size can be obtained by using

the IHs of four corners. With this property, the integral histogram approach can reduce computational

complexity to independent of filter window size.
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Third, the kernel calculation process computes the range kernel by a range table, which includes
256 items for the 256 possible values of ||I.-b||. Finally, given the range kernel g and the histograms hc,

and hi, the convolution process calculates the result of target pixel ¢ by (111-10).

2. Design Challenges

Since the complexities listed in Table 111-5 are pixel wise as well as bin number dependent, they
will grow quickly as resolution and bin number grow. The detailed design challenges are described
below.

(1) High Memory Cost for Integral Histogram

During the integration process, all the IHs of whole image are stored in memory. BF needs a
frame-scale-magnitude memory for hc., and JBF additionally needs another one for hi.. Therefore, the
total memory cost of JBF is

MN <Nywj,, + MN.- N,(wp, +8) , (111-13)
where the former term is for hc,, and the later term'is for hi.. M and N is the frame height and width,
Ny is the number of bin, and w; is the bit width of a hin. Note that w, is related to the maximal area of
integration, and its value equals log,(MN). In addition, the bit width of hi. is more than hc. by 8 bits
because the intensity of a pixel requires 8 bits.

Above memory cost would be 829.4 Mbytes for the HD1080p resolution (i.e. N=1920, M=1080,
w,=21, N,=64). For a VLSI design, these massive data could be configured into off-chip DRAM or
on-chip SRAM. However, the off-chip memory suffers from longer access latency and limited
bandwidth usage in a system. Hence, our strategy for the design challenge is to reduce the memory
requirement and enable data be stored in on-chip memory.

(2) High Computational Complexity in All Processes
According to the complexity in Table 111-5, generating 1-pixel result needs 15Ny+2 additions, 2N,

multiplications, and 1 division. If N, is 64, the total complexity will be 2,262.3 million operations for
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an HD1080p image. To meet above demands, a VLSI design with sufficient parallel operators is
necessary.
(3) High Bandwidth in Integration and Extraction
In Table 111-5, the bandwidth for IH requires 16Ny, for 1-pixel result, and that will reach 106.168
Gbits for an HD1080p image as shown in Table 111-8. That is because the IHs are accessed frequently.
With the strategy for the memory cost problem, the IHs are stored in on-chip memory, and its data bus
should be increased to address the high bandwidth problem. However, it results in over-partitioned
memory and increased area. Thus, a method to reduce the bandwidth is needed.
(4) Large Range Table in Kernel Calculation
In the kernel calculation process, a range table with 256 items is needed. However, with the
parallel operations for the computational complexity problem, this table should be duplicated. Thus,
both the size and number of the range table results in large area.
In summary, the integral histogram approach-can-speed-up JBF and BF well but suffers from
above design challenges. To address them, a VLSI design with suitable memory reduction and

architecture design techniques is necessary.

3.3.3 Proposed Memory Reduction Methods

To solve the high memory cost problem, we can takes advantage of the raster-scan computing
order to reduce the memory cost from a frame to a multiple rows by the runtime updating method
(RUM). The memory cost could be further reduced by the stripe-based method (SBM) to slice frame
into stripes. Finally, we propose the sliding origin method (SOM) that moves the origin of each IH
stripe progressively with the computing and can reduce the multiple row buffers to single row buffer.
With these memory methods, the memory cost can be reduced to 0.003%-0.020%. The details of the

proposed methods are described below.

1. Runtime Updating Method (RUM)
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The concept of the RUM is to perform the integration process and the extraction process at the
same time, instead of two separate iterations in the original flow. Figure 111-18 illustrates its memory
configuration in the memory view. In Figure 111-18 (a), the integration process is from the pixel O to D,
and the extraction process can extract the histogram Hagcp. From the data lifetime analysis, all the IHs
before the pixel A are unnecessary. Thus, only the IHs from A to D require memory space, so that the
memory cost is

|SIN - Nywy, + |S|N - Ny(wy, +8) , (11-14)
where M in (111-13) is replaced by the filter window width |S].

Figure 111-18 (b) and (c) illustrate that the memory is updated when the two processes moves to
the next pixel S. In Figure 111-18 (b), the integration process calculates the new 1Ho® using IHoP, 1Ho”,
IHo®, and then the new IHo® can overwrite the memory position of the discarded IHo". In Figure
[11-18 (c), the extraction process can extract:Hpgrs: With the proposed RUM, the memory cost could
be reduced from a full frame to a partial frame. This-method can gain considerable reduction since |S]

is usually much smaller than M.

(0] (0] (0]
\ [P]_[B]Q]
1Sl g
l O g B B
N
Memory view Memory view Memory view
(a) (b) (c)

Figure 111-18 Runtime updating method (RUM)
(a) extraction for Hagcp, (D), integration to S, (c) extraction for Hpgrs

2. Stripe-Based Method (SBM)

The main idea of the SBM is to slice the whole frame into many vertical stripes, and the
integration and extraction processes are performed stripe by stripe. Figure I11-19 illustrates a whole
frame partitioned into stripes. Note that the integration process should additionally be carried out on
the extended region, which contains the surrounding support pixels for the target pixels on the stripe

boundary. Thus, the total memory cost of the SBM is
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M(|S|+wg —1) - Nywp, + M(|S| +wg — 1) - Ny(wy, +8) , (111-15)
where w; is the stripe width, and w, equals log,[M(|S|+ws-1)]. Compared to the original cost in (111-13),
the SBM could reduce significant memory if (|S|+w;-1) is much smaller than N. The overhead of the
SBM is that the extended regions result in extra computation and bandwidth in the integration process

due to repeated performing on these regions.
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Memgqry view
I

IS72" ws jSIr2
Figure 111-19 Stripe-based method (SBM)

3. Sliding Origin Method (SOM)

The concept of the SOM is to vertically slide the origin pixel O with the integration and
extraction processes to reduce memory cost from a plane to a line as shown in Figure 111-20. With the
sliding origin pixel, the two processes can be simplified as described below.

For the extraction process in the area view of Figure 111-20 (a), the original IHo" and I1Ho® are
zero because O is under A and B, and they cannot form meaningful histogram rectangles. Hence, the
equation (111-12) can be simplified to

Hupcp = IHS — IHS. (111-16)

For the integration process in Figure 111-20 (b), the new IHo® is computed by

IHS = IHR + IHS' — IHD' + Bin(lg) . (IN-17)
However, the S” and D" are on the previous row of S and D, and their corresponding origin should be
O, instead of O. Therefore, the IHo® and IHo” in (111-17) should be changed to IH,* and IH," by

IHS = IHB + IH3, — Bin(ly) — IHZ + Bin(Is) . (11-18)

68



With above simplification, the required memory space could be reduced to
NNbWb+NNb(Wb+8) ) (I“'lg)
where wy, equals 10g,(|S|N) since the maximal area of integration is |S|N. Compared to the original cost

in (111-13), the height dimension M is eliminated, and w, is much smaller.
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—1Ho® +1Ho" —IHo® +IHo® +IHo® +Bin(ly) +IHo* = IHo 5" —1Ho- -Bin(lo)
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- o -
(0] 0
D DIS]
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Memory view Memory view Memory view
(a) (b) (c)

Figure 111-20 Sliding origin method (SOM)
(a) extraction process with sliding origin O, (b) integration process to next pixel S, (¢) modified

integration process to next pixel S.

4. Combination
The proposed memory reduction methods could be simply combined as follows. First, the SBM
partitions a whole frame into stripes. Then, in each stripe, the RUM and SOM are performed row by
row. This combination can reduce the memory cost to
(IS] +ws —1) - Nywy, + (|S| +wg — 1) - Np(wy, +8) , (1-20)
where wy equals log,[|S|(]S|+ws-1)]. Compared to the original cost in (111-13), M is decreased to 1 due

to the RUM and SOM, and N is decreased to (|S|+w;-1) due to SBM.

3.3.4 Proposed Architecture
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With above memory reduction methods, the computational flow of JBF in Table I11-5 is changed

to that in Table 111-6. The details of these design techniques are presented below.

Table 111-6 Modified computational flow and analysis for a pixel in the integral histogram approach

Process

Complexity BW for IH BW for pixel
(operation) (data) (data)

Integration process:
Pixel count histogram hc,
Loop b=0 to Ny-1

IHco (b)=IHcoP(b)+1Hco * (b)-1Hco ° (b) ADD: 2N, 4N,

IHeo(Is) += 1, IHco (Ig) =1
Pixel intensity histogram hic
Loop b=0 to Ny-1

ADD: 2

IHio (b)=1Hic°(b)+IHio ° (b)-1Hio P (b) ADD: 2N, 4N,

IHio (Is) += Js,  IHig (lo) -= Jo ADD: 2 4 pixels
Extraction process:
Pixel count histogram hc,
Loop b=0 to Ny-1
hee(b) = IHco (b) - IHcoR(b) ADD: N, Np
Pixel intensity histogram hi,
Loop b=0 to Ny-1
hic(b) = IHio>(b) - IHic"(b) ADD: Ny Ny
Kernel calculation process:
Loop b=0 to Ny-1
G(b) = g(|l¢-b]) ADD, LUT: N, 1 pixel
Convolution process:
Nu=0, De=0
Loop b=0 to Np-1
De += G(b) x hc,(b) MUL,ADD: Ny
Nu += G(b) x hi(b) MUL, ADD: Ny
Result = Nu / De DIV: 1 1 pixel
Total 11N,+5 10N, 6 pixels

1. Overall Architecture

Figure 111-21 shows the overall architecture that contains two parts, interface and core. In this

architecture, the image pixels and the IHs are stored at the off-chip and on-chip memory, respectively.

The interface accesses pixels from the off-chip memory through a 64-bit bus, and the core performs

the computation of JBF.

In the interface, the access controller allocates the bus priority to the input and output

first-in-first-out (FIFO) buffers by round-robin policy. The size of each buffer is associated with

off-chip bandwidth. Large buffers can support data reuse schemes to reduce the off-chip bandwidth.

Because of sufficient bandwidth in this architecture, we do not apply any data reuse schemes here, and



set its size as 16-pixel to meet the bus width and support ping-pong mechanism for simultaneous
reading and writing.

The operations of the architecture are described below with the schedule in Figure 111-22, which
is hierarchically sliced from a frame to pipeline tiles. The computation of one stripe row requires 90
cycles for the stripe width ws of 60 and the filter window width |S| of 31. Note that this architecture
takes 96 cycles for one stripe row, and the last 6-cycles are the bubble cycles for simplifying
controlling logic. For the process in a pipeline tile, the access controller in the interface fetches pixels
from the off-chip memory into the FIFO buffers. Then the two histogram calculation engines in the
core begin to compute hi. and hc,, and the convolution engine consecutively produces 8 pixels to the

output FIFO buffer. Finally, the interface moves results from the buffer to the off-chip memory.

. Unit: bit
Off-chip| 64bit| Interface Core
memory o FIFOI -
64 | (16 pixels) g - o
_[FIFO 3 .| Histogram .
Source o | (16 pixels) 3 . hi,
» Calculation
J [ » F”:Q JQ » . . 20x64
S |7 |6pels) 75 17 Engine hi
. © | FIFO Is
Gu'dance E 647 (16 pixe|s) g I 20x64 2 20x64 E 20x64
I p| FIFOI On-chip Memor i
o S [ G preld) T 75 (20bi€<90 i y Convol'utlon
Result = ﬁ Engine
o &‘3 Histogram he
* Calculation =
“»  Engine hc,
2 12x64 2 12x64 2 12x64
On-chip Memory
[ FIFO O, (12bitx90 x64)
U (16 pixels) - 8

Figure 111-21 Proposed architecture of JBF.
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Figure 111-22 Schedule of the proposed architecture

2. Architecture Components

In the core, the main components are two histogram calculation engines and one convolution
engine for the computation in Table I11-6, which have ‘high computational complexity as mentioned
above. Thus, the proposed R-parallelism method unrolls-all.computational loops in the range domain R.
The details of this method are described in each engine as follows.

(1) Histogram Calculation Engine

The histogram calculation engines perform the integration and extraction processes for hc, and hi.
as shown in Table 111-6. With the R-parallelism method, we design their architectures as shown in
Figure 111-24, where the selected-bin adder (SBA) is depicted in Figure 111-23. These two engines can
achieve the throughput of 1 histogram/cycle. Note that the difference of the two engines is that the
integral value of SBAs is the source pixel J in the engine hi,, instead of the constant 1 in the engine hc..

In addition, all bit widths of data in the engine hi. are more than those in hc. by 8 bits.
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Figure 111-23 Selected-bin adder in the histogram calculation engines
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Figure 111-24 Proposed architectures of histogram calculation engines hi. and hc,

In above architectures, each engine needs to access the five IHs: IHo*, IHo”', IHo®, IHoP, and
IHo", from on-chip memory in one cycle. To reduce the bandwidth problem, we propose the
delay-buffer method, which is presented as follows by data dependency of the associated IHs in two
successive cycles. Assume that the pixels S, S’, D, and D" shown in Figure 111-20 (d) are located (X,y),

(x,y-1), (x-1,y), and (x-1,y-1) in the cycle t, respectively. Hence, their IHs can be notated by
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SO JHEY) 51, (gD p®: & pr®, [goTtyY (IN-21)

For the next cycle t+1, their x-coordinates are increased by 1 as follows,

SN JSHY) gy, gty plean), g o9, prie+n), g §er=n (111-22)
From the (111-21) and (111-22), we can find that D equals S®, and D" equals $"®. That means
IHo” and IHo" can be obtained by delaying IH,* and IHo® for one cycle, respectively. Therefore, we
can use two delay-buffers to avoid accessing IHo” and IHo® from the on-chip memory, and reduce
bandwidth from five IHs to three IHs.

(2) Convolution Engine

The convolution engine uses the histograms hc, and hi, to further compute the result pixel by the
kernel calculation and convolution processes in Table I11-6. Its architecture is shown in Figure 111-25
(a). With the proposed R-parallelism method, the convolution process can achieve the throughput of 1
pixel/cycle. Higher throughput can be further attained by adding the registers at the available cut-lines
for pipelining in the figure, which can enable operating frequency be higher.

The R-parallelism method brings high throughput but suffers from large size and large number of
range table. For the large size, we take advantages of the symmetry and truncation property of
Gaussian function to decrease its size from 256 to 32. In addition, to avoid the large number of range
table, we share one table by the table selection module as shown in Figure 111-25 (b), which reduces
the number of table to one. Note that the result of divisor would directly be in the range of 8-bit

because it is used to normalize the sum of pixels with weight (111-10).
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Figure 111-25 Proposed architecture of (a) convolution engine and (b) its table selection modules

Furthermore, the histogram calculation engines and the convolution engine can be serially
connected to achieve the throughput of 1 pixel/cycle. More engines can be used to process multiple
cascaded pixels simultaneously for higher throughput. The proposed memory reduction methods could

be directly extended to support the processing of multiple pixels.

3.3.5 Implementation Result

Referring to the quality analysis in [91], we select 31 for |S| and 64 for N, in our implementation.
The proposed architecture of JBF has been implemented by Verilog and synthesized under the 90-nm
CMOS technology process. Table I11-7 lists the implementation result of the proposed architecture.
The hardware design could achieve the throughput of HD1080p 60 frames/s that is 124 Mpixels/s by

23K-byte memory cost and 356K gate counts.
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Table I11-7 Example implementation result of the proposed architecture

Technology Process UMC 90nm
Image Size MxN 1920x1080
Number of Bin Ny, 64
Filter Window Size |S|? 31x31
Stripe Width w; 60
Clock Rate (Hz) 100M  200M
Frame Rate (Frame/s) 30 60
Logic Cost Interface 9,578 9,917
Excluding Memories Histogram Cal. 97,766 148,649
(Equivalent Gate-Count)  Convolution 168,333 197,351
Total 276,178 355,917
On-chip Memory (Byte) 23K 23K

Table 111-8 compares the hardware costs between the proposed methods and the original integral
histogram in different resolutions. With the proposed memory reduction and architecture design
techniques, the complexity can be reduced to 0.15%, and the memory requirement can be reduced to
0.003%-0.02%. In addition, the bandwidth for IH (i.e. on-chip bandwidth) can be reduced to 32%-36%,
but the bandwidth for pixel (i.e. off-chip bandwidth).is increased to 20.3-132.7 Mbits. Nevertheless,
the off-chip bandwidth is affordable by the 64-bit bus processing at 200 MHz.

Table 111-8 Comparison:of hardware cost per frame

_ Complexity Me_mory Bandwidth BandV\_/idth

Resolution (million operation) Requirement for IH for pixel

(Kbyte) (Mbit) (Mbit)
Original VGA 335.1 (100%) {113,050 (100%) | 14,470 (100%)| 9.8 (100%)
HD720p 1,005.5 (100%) |353,894 (100%) | 45,299 (100%)| 29.5 (100%)
HD1080p 2,262.3 (100%) (829,440 (100%) |106,108 (100%)| 66.4 (100%)
Mem. Reduction VGA 197.0 (59%) 23 (0.020%)| 9,083 (63%) | 20.3 (206%)
HD720p 591.1 (59%) 23 (0.007%)| 27,250 (60%) | 60.8 (206%)
HD1080p 1,289.7 (57%) 23 (0.003%)| 59,454 (56%) |132.7 (200%)
Mem. Reduction VGA 5.1 (0.15%) 23 (0.020%)| 5,191 (36%) | 20.3 (206%)
+ HD720p 1.5 (0.15%) 23 (0.007%)| 15,571 (34%) | 60.8 (206%)
Archi. Design Tech. HD1080p 3.3 (0.15%) 23 (0.003%)| 33,974 (32%) |132.7 (200%)

Table 111-9 compares our proposed hardware design with the previous VLSI implementations.
The previous implementations [94], [97] could support large filtering window but low throughput,
while the implementations [95], [96] could reach high throughput for small filtering window only. Our
design can not only achieve high throughput but also support large filtering window. Table 111-10

compares our design with the other previous GPU and CPU implementations. Comparing to other
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design, the proposed architecture could efficiently utilize the hardware cost to achieve high

throughput.
Table I11-9 Previous VLSI implementations of bilateral filtering
[94] [95] [96] [97] Our Design
Supported Window Size 15x15 BF 3x3 BF-like 5x5BF 11x11 BF 31x31 BF/JBF
Implementation Method  Xilinx Altera Xilinx TSMC umMcC
Spartan-3 Cyclone-1l Vertex-5 0.18um 90nm
FPGA FPGA FPGA Tech. Proc. Tech. Proc.
Throughput (pixel/s) 4.8M 124M 41.9M 11M 124M
Table 111-10 Comparison of different implementations
Support-Pixel-First Target-Pixel-First
Durand and Dorsey ~ Chen et al. Yang et al. Adams et al. Porikli Proposed
[84] [87] [83] [88] [91] P
Piecewise-linear Bilateral Grid  Piecewise-linear Gaussian Integral Integral
Approach Subsampling KD-tree Histogram  Histogram
(ss=24,5=19) (5:=16, 5,=10) (s=32) (s=4) (s,=4)
CPU GPU GPU GPU CPU
Impitiag;]enta P4 Geforce Geforce GeForce P4 ASIC
2GHz 8800GTX 8800GTX GTX260 3.2GHz
Transistor 55M 681M 681M 1,400M 55M 2.5M
(Tech (130nm) (90nm) (90nm) (TSMC 65nm)| (130nm)  (UMC 90nm)
Process) [98] [98]1[98] [99]
Image Size
(Pixel) 10.4M 1.0M 1.0M 10M 1.0M 2.07M
Frame Rate 0.16
(Frame/sec)| (high dynamic range) 222 66 0.01-1 3.22 60
Throughput
(Pixel/sec) 16 M 222M 66M 0.1M-10M 3.22M 124M
Memory
- 625K 4M 1G-100M 96M 23K
(Byte)

3.4 Baseline Disparity Estimation Algorithm

In this section, we first present the baseline disparity estimation algorithm, which applies the
baseline BP and JBU algorithms. Then, we demonstrate the disparity quality comparison between the

proposed baseline algorithm and the DERS algorithm.

3.4.1 Baseline Algorithm
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Figure 111-26 shows the baseline disparity estimation algorithm that combines the baseline BP and
JBU algorithms. In the baseline algorithm, the sampling factor is set as 1/2, 1/4 for horizontal and
vertical direction. Note that the horizontal sampling factor could not further decrease since the detailed
disparity would be lost. In addition, all the steps in the algorithm flow are performed for three times
for calculating the three view disparity maps by the software implementation.

In the first step, the 3x3 SAD match metric is adopted to calculate the initial cost cube C, using
the high resolution images Iy, Inc, lhr. Note that the matching costs are computed only for the
sampled pixels but with the full disparity range. Thus, the size of Cy is (H/4)x(W/2)xDR. Then, the
5x7 ADSW cost aggregation method [3] and the baseline BP algorithm [24] are performed to compute
the low resolution disparity maps D, , D ¢, D r. In the baseline BP, we employ the Potts model to the
smoothness term and data term, and execute the baseline BP for 15 iterations. Finally, the low

resolution disparity maps are scaled up to the .high ‘resolution ones Dy, Dnc, Dyg by the JBU

algorithm.
Left-view Center-view Right-view
Image Frame Image Frame Image Frame
T lhc lur
7777777777777777777777777 Low Resolution
| Y
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'

P 5x7 ADSW
| Cost Aggregation

'

Baseline BP

I e I

lhe e hr 2x4 JBU
Left-view Center-view Right-view
Disparity Map Disparity Map Disparity Map
Dh. Dhc Dhr
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Figure 111-26 Flow of the proposed baseline disparity estimation algorithm




3.4.2 Comparison

In the experiment, the disparity maps and the synthesized videos are computed by the baseline
algorithm and the DERS algorithm with the configuration of Figure I11-17. Furthermore, the
synthesized videos are evaluated by the PSNR and PSPNR methods mentioned in the Section 2.3.4.

Figure 111-27 shows the evaluation results of them. In the evaluation results, the “View0” and
“View8” refer to the most-left-view and the most-right-view videos in the output of 3-view
configuration for 9-view display. The results of the DERS algorithm are not available for the test
sequences Café, Kendo, and Balloons due to insufficient input views. The more details of the test
sequences are presented in Chapter V. For the Y-PSNR results, the baseline algorithm has the quality
changes from -1.78 dB to 4.51 dB, compared to the DERS algorithm. On the other hand, the
T_PSPNR results have large variance in the test sequences. The worst case has the large drop of 4.49
dB because of no temporal consistency enhancementmethod adopted in the baseline algorithm.

Figure 111-28 and Figure 111-29 shows the disparity maps and the synthesized images. Compared
to the DERS algorithm, the baseline algorithm additionally suffers from the incorrect disparities in the
textureless regions. Nevertheless, those incorrect disparities do not impact on the synthesized image of
baseline algorithm. In addition, the disparities at the object boundary are over blurred in the baseline

algorithm. That would result in the background distortion if the background has texture.
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(€)
Figure 111-28 Center disparity maps and synthesized View8 of baseline algorithm at the 100th frame

(a) BookArrival, (b) LoveBird1, (c) Newspaper, (d) Champagne, (e) Pantomime
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(d)

Figure 111-29 Center disparity maps and synthesized View8 of DERS algorithm at the 100th frame

(a) BookArrival, (b) LoveBird1, (c) Newspaper, (d) Champagne, (e) Pantomime

3.5 Summary

For the high definition 3DTV applications, our strategy is to increase the computational
parallelism by the baseline BP algorithm, and reduce the processed frame size by the JBU algorithm.
The computational characteristics and design challenges of the two main algorithms are analyzed in
this chapter. To conquer their design challenges, we propose the low-memory-cost memory access
approaches, and the parallel computing architectures for their kernel components. In the experimental
results, the baseline algorithm could deliver comparable disparity quality to the DERS algorithm.

However, it still suffers from high computational complexity because of high iteration count in BP. In
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addition, the disparity quality should be further improved, especially for the temporal consistency

problem.
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I\VV Advanced Disparity Estimation Algorithms
for High Definition 3DTV Applications

Based on the previous baseline algorithm, we propose three new advanced disparity estimation
algorithms in this chapter. The first high-quality algorithm focuses on the disparity quality
improvement, including the temporal consistency enhancement and the occlusion handling. The
second sparse-computation algorithm could reduce the computation of high-quality algorithm by the
sparse-computation strategy, and it could be accelerated by the implementation of software
programming. The third hardware-efficient algorithm simplifies the massive computation in
high-quality algorithm, and reduces the high memory cost of BP optimization. The experimental
results and evaluation will be compared with the DERS algorithm in Chapter V, and the last

hardware-efficient algorithm will be further implemented by VLSI design in Chapter VI.

4.1 High-Quality Disparity Estimation‘/Algorithm
The proposed high-quality disparity estimation (HQ-DE) algorithm is presented in this section.
This section first reviews the state-of-the-art disparity estimation algorithms, and then describes the

details of the proposed HQ-DE algorithm.

4.1.1 Related Work

The state-of-the-art disparity estimation algorithms are the 3DVC’s DERS algorithm [63] and the
top algorithms in the Middlebury rank [72]. The details of DERS algorithm has been described in
Section 2.3. For the algorithms in the Middlebury rank, we review the high-quality BP-based
algorithms including the adaptive-BP [39] and the double-BP [40]. In addition, we also introduce the

enhanced-BP [41], since it additionally takes the temporal consistency into consideration.

1. Adaptive-BP
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Figure IV-1 shows the algorithm flow of adaptive-BP, whose main idea is to apply the BP
optimization to a segment-based graph, instead of the conventional pixel-based graph. In this
algorithm, the mean-shift segmentation [69] is first performed to obtain over-segment information.
Then the SAD match metric is applied to the pixel matching cost using for pixel intensity and gradient.
In the segment cost calculation, the plane fitting [46] is used to determine a disparity plane for each
segment, and the pixel costs of a disparity plane are summed up as the segment cost. According to the
disparity planes and segment costs, this step iteratively merges disparity planes and segments. Finally,
the segment-based BP is performed in a segment-based graph. The adaptive-BP could produce high
quality disparity results, but it suffers from irregular computation due to its complex connected

segment-based graph.

Left-view Right-view
Image Image

' '

‘ Mean-Shift Segmentatlon

‘ Pixel Cost Calculatlon

|
|
‘ Segment Cost Calculation ﬁ

‘ Segment based BP

Dlsparlty
Map

Figure 1V-1 Flow of the adaptive-BP algorithm [39]

2. Double-BP
Figure 1VV-2 shows the algorithm flow of double-BP, which consists of the three main steps: initial
stereo, pixel classification, and iterative refinement. The initial stereo step computes the initial cost
cubes by the ADSW approach [7], and performs the hierarchical BP (HBP) [25] to obtain the initial
disparity maps for two views. With the initial disparity map and cost cubes, the pixel classification
step categorizes the pixels into occluded, stable, and unstable ones using the mutual consistency and

correlation confidence checks. Then the iterative refinement step performs the plane fitting and the
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HBP for five iterations. In the iterative process, the disparity map and the cost cube are updated in
each iteration. The double-BP could deliver better disparity maps than the adaptive-BP because it has

different approaches to deal with the classified pixels.
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Figure 1\VV-2 Flow of the double-BP algorithm [40]

3. Enhanced-BP
The enhanced-BP [41] proposed three techniques to improve the conventional BP algorithm. The
first technique defines a new graph with 6-connected nodes, which have 4 original spatial neighbors
and 2 temporal neighbors, to enhance the temporal consistency. In BP optimization, the connection to
neighbors would be broken at the boundaries of color segment and motion regions. The second
technique is to deal with the occlusion problem by the plane fitting methods or the background

clustering method. The last technique is to accelerate the optimization process by inputting the
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matching costs to the initial messages, and removing the matching costs from the computation of
message passing.

In summary, as the above mentioned state-of-the-art BP-based algorithms and the 3DVC’s DERS
algorithm, they could produce high quality disparity maps by the common steps: color-constrained
cost aggregation, disparity optimization, and segment-based refinement. The color-constrained cost
aggregation could be the ADSW method or the segment cost method, the disparity optimization could
be GC or BP approach, and the segment-based refinement is the common-used plane-fitting. Therefore,

our developed HQ-DE algorithm should include the above common steps.

4.1.2 Observation in DERS and Baseline Algorithms

Based on the baseline algorithm in Section 3.4.1, the HQ-DE algorithm adopts the BP for
disparity estimation, and the joint bilateral ‘upsampling (JBU) algorithm to reduce the native
computation in high resolution frame. For the disparity quality improvement, we focus on the temporal
consistency and the occlusion problems.

At first, we observe the disparity results of the DERS and the baseline algorithms as follows.
Figure 1V-3 shows the flicker artifact of the baseline algorithm. The stand of poster behind the chair
has a little change on its boundary in the continuous frames due to no temporal consistency
enhancement in the baseline algorithm. The slight change would result in the noticeable flicker artifact
for human. On the other hand, the DERS algorithm has the temporal consistency enhancement but
suffers from the foreground copy artifact as shown in Figure 1V-4. In which, the door pivot is changed
after the man passed because the disparity of the man remains on the door pivot.

Figure 1V-5 shows the occlusion problem in the DERS and the baseline algorithms. Compared to
the reference golden image in Figure IV-5 (a), the DERS and the baseline algorithms suffer from the

distortion of red sketch because its background disparities are incorrect.
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Figure 1VV-3 An example of flicker artifact of the baseline algorithm in BookArrival
Synthesized videos from left to right are the 9th to 12th frames.

Figure 1V-4 An example of foreground copy artifact of the DERS algorithm in BookArrival
Top to bottom are the synthesized frame, interested region of synthesized image and disparity map.
Left to right are (a) the 1st frame, (b) the 25th frame, (c) the 40th frame.
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Figure IV-5 An example of occlusion‘problem at the 44th frame of BookAurrival

(a) reference golden image, (b) the disparity maps of DERS algorithm and the synthesized image, (c)
disparity maps of baseline algorithm and synthesized image.

4.1.3 Proposed Algorithm Flow

With the above observation, the temporal consistency and the occlusion problems need to be
solved in the HQ-DE algorithm. The main flow of the proposed HQ-DE algorithm is shown in Figure
IV-6 for the center view and Figure IV-7 for the left and right views. In which, | and D refer to the
image frame and disparity map, respectively, and the superscript t and t-1 refer to the current frame
and the previous frame. Besides, the first subscript, L or H, means the low resolution or the

high-resolution frame, and the second subscript means the view point.
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Figure 1V-6 Flow of the HQ-DE algorithm for a center-view disparity map

In the main flow, the high-resolution image frames at target-view and reference-view are fetched
to compute an initial low-resolution disparity map D,' by the steps of matching cost calculation, cost
aggregation, and BP optimization. Then, the low-resolution disparity map D' is scaled up to the
high-resolution disparity map D' by the JBU algorithm, and refined by the window vote method.

For the occlusion problems, the three view disparity maps are cross handled in the occlusion
handling step. On the other hand, for the temporal consistency problems, the proposed no-motion
registration (NMR) method and the still-edge preservation (SEP) method are attached into the main
flow to respectively deal with the foreground copy artifact and the flicker artifact. In addition, the
side-view algorithm flow additionally has the inter-view cost calculation step, which could constrain
the side-view disparity estimation using the more reliable center disparity map D, . The details of

each step are described in the following sections.
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Figure 1\VV-7 Flow of theHQ-DE algorithm for a side view disparity map

4.1.4 Downsampled Disparity Estimation for Full Range Disparity

The downsampled disparity estimation process consists of the matching cost, cost aggregation,
and the BP optimization steps, which are performed only for the downsampled pixels at the positions
as shown in Figure 1V-10 (a). In which, the sampling factor is 1/2 for horizontal direction and 1/4 for
vertical direction according to the simulation results as listed in Table V-1 and depicted in Figure
IV-8. The details of test sequences and evaluation method are elaborated in Chapter V. The selected
sampling factors could keep the view synthesis quality for all resolutions, especially for the smaller
size of 1024x768. Figure 1V-9 compares the results of the sampling factors 1/2x1/4 and 1/4x1/4. The

latter one would suffer from more serious artifacts in the disparity map and synthesized image.
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Table IV-1 Simulation results with different sampling factors in Y-PSNR (dB)

Hori.

Vert.

Sampling Sampling ABOPk Love Newspaper Café Kendo Balloons Champagne Pantomime | Avg.
rrival  Birdl
Factor  Factor
1/2 1/2 36.40  30.72 30.77 N.A.  36.17 34.10 30.73 38.47 3391
1/2 1/4 36.34  30.89 30.79 33.96 36.00 33.97 30.46 38.38 33.85
1/2 1/8 36.07  30.85 30.62 33.78 35.89 33.67 29.38 37.56 33.48
1/2 1/16 3557  30.85 30.29 33.05 3524 32.77 28.84 37.54 33.02
1/4 1/2 36.00  30.77 30.73 33.82 35.75 33.81 29.83 38.48 33.65
1/4 1/4 3590  30.92 30.64 33.96 36.04 33.64 29.79 38.46 33.67
1/4 1/8 35.68  30.87 30.57 3371 3573 33.18 29.93 38.46 33.52
1/4 1/16 35.27  30.90 30.12 3245 35.10 32.66 29.12 38.40 33.00
1/8 1/2 35.66  30.77 30.24 3321 3550 33.00 29.04 38.48 33.24
1/8 1/4 3549 3077 30.15 3316 35.37 32.89 29.40 38.49 3321
1/8 1/8 3523  30.73 30.18 32.16 35.08 32.43 29.01 38.47 3291
1/8 1/16 34.66  30.68 29.76 30.84 3453 32.32 28.82 38.44 32.50
1/16 1/2 3456  30.38 29.43 32.04 3442 31.92 29.30 38.42 32.56
1/16 1/4 3462 3051 28.95 3166 34.55 32.15 29.07 38.45 32.50
1/16 1/8 3446  30.46 29.11 3111 3429 31.89 34.13 38.43 32.99
1/16 1/16 3417  30.67 28.08 30.60 33.88 31.58 27.85 38.49 31.92

Average Y-PSNR for 1024x768 Sequences

N

2

(dB)
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4
Horizontal Sampling Factor

(@)
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Vertical
Sampling
Factor

33.50 -34.00
#33.00 -33.50
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m32.00 -32.50
m31.50 -32.00
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Figure IV-8 Comparison of different sampling factors in the average Y-PSNR of two frames
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(c) (d)
Figure IV-9 Simulation results using the sampling factors of 1/2x1/4 and 1/4x1/4

(a) and (b) are the center-view disparity map and the maost left synthesized image with 1/2x1/4. (c) and
(d) are the center-view disparity map and the most left synthesized image with 1/4x1/4.

In the matching cost calculation step, we propose the sampling sum of absolute difference (SSAD)
match metric, which calculates the matching costs only for the downsampled pixel, and considers the
full disparity range to avoid the loss of disparity precision. Figure 1V-10 (b) illustrates the SSAD
match metric. For the target downsampled pixel, the reference pixels in the full disparity range are
used to calculate matching costs by the 2x4 SAD match metric. Thus, the SSAD matching cost is

defined as

SSADtar—ref(x' Y, d) = Zszu<2(x+1)|IH,tar (u; 17) - IH,ref (u + d! v)l ' (|V_1)
4y<v<4(y+1)

where Iy IS the high-resolution target-view image, Iy is the high-resolution reference-view image,
and SSADy,f is the low-resolution matching cost. By the SSAD match metric, the initial cost cubes

Coc, CoL, Cor for the three input views are calculated by
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Co,c(x,y,d) = min{SSAD¢_; (x,y,d),SSAD¢c_r(x,y,—d)} , (IV-2)

Cor(x,y,d) = min{SSAD;_.(x,y,—d),SSAD;_g(x,y,—2d)} , (IV-3)

Cor(x,y,d) = min{SSADg_c(x,y,d),SSADg_(x,y,2d)} , (IvV-4)

where the minimal SSAD from two reference views is selected for the initial cost cube. Note that the
disparity index in the SSAD match metric is associated with the relative position of target view and

reference view.

Positions of Downsampled Pixels

Hiih-Resqution Frame Low-Resolution Frame

(a)
Target Frame Reference Frames
High-resolution Center-view I c' High-resolution Left-view I, "
2
Target sampled pixel T Reference pixels[0]1]2]3]4]5[6]7]-
L ¢« DR———>
High-resolution Right-view '
------ [6]5]4][3]2]1]0]Reference pixels
DR
(b)

Figure 1VV-10 Illustration of downsampled disparity estimation for full disparity range
(2) positions of downsampled pixels in high-resolution frame, (b) example of the matching cost for the
center view

In the cost aggregation step, we adopt the simplified adaptive support-weight (ADSW) [10],

which is defined as

1
Caggr,c(x,y,d) =~ Z Coc, v, f (106 y) = w)DI(LcCey) = Le@w)|)  av-s)
(w,v)es
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for center view disparity estimation. In this equation, the initial matching costs Co ¢ in the aggregation
window S are accumulated with the Gaussian weights of spatial kernel f and range kernel g, and « is
the normalized term. The size of the aggregation window [S] is set as 5x7 in the HQ-DE algorithm.
Compared to the original ADSW in [7], the simplified ADSW contains two simplification techniques.
First, only one support-weight referring to the target view image is used. Second, the computation of
spatial distance and color distance is simplified to the Manhattan color distance. The same
computation in (IV-5) could be applied to compute the left-view and right-view costs Caggr, Caggrr-

With the three view aggregated cost cubes, the BP optimization is separately performed to
calculate the low resolution disparity maps D, c, D, D r. For the BP optimization, the baseline
algorithm adopts the baseline BP [24] but suffers from slow convergence due to one-pixel-distance
message passing in each iteration. In the BP-based algorithms, the hierarchical BP (HBP) [22] and the
max-product loopy BP (BP-M) [26] could'address the slow convergence problem. The former
performs the message passing by the coarse-to-fine manner, while the later on performs the massage
passing separately in four directions. In. the proposed HQ-DE algorithm, we adopt the BP-M with
single iteration. In addition, the Potts model is"applied to the data and smoothness term. They are
defined as

D(d;) = min{Caggr(x, Y, d),TD} - Ap (1V-6)
V(d;, d;) = min{|d; — d;|, 7v} - Ay (IV-7)
where p, 7y are for truncation, and Ap, Ay are for scaling.

In addition to the above three steps, the downsampled disparity estimation has the inter-view cost
calculation step for the side views as shown in Figure IV-7. The concept of inter-view cost Cy, is that
the center-view disparity map is more reliable than other two because of its less occluded regions, and
it can be used to constrain the side-view disparity estimation. The inter-view costs for two side view

are computed by

Cview,L (x; Y, d) = Aview |d - DL,C—>L (x, y)' ) (IV'8)
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Coiewr(X,y,d) = Aviewld — Dy cr(x, J/)| ' (1V-9)
where D_ ¢, and D, ¢  are the left-view and right-view disparity maps warped from the center-view
one in low resolution, and e, iS @ constant for scaling. To compute the inter-view costs, the
center-view disparity map needs to be first computed by the BP optimization, and it is warped to the
side views by the method in Section 2.2.1. Then, we assume the side-view disparity maps will be
approximate to the warped one, and give a penalty for the inconsistency through the inter-view cost
Cuiew. Besides of the inter-view cost, the temporal cost Cin, is also added to the cost cube by

Crotar (0, y,d) = Caggr(x,¥,d) + Cromp(x, ¥, d) + Cpjew (x,y,d) . (IV-10)
Thus, the original cost cube C,y is replaced by the cost cube Ciy and is substituted into (IV-6) as the
data term for the BP-M optimization. The more details of the temporal cost are presented in Section

4.1.7.

4.1.5 Joint Bilateral Upsampling

The associated disparity upsampling techniques have been introduced in Section 3.1.2. In the
proposed HQ-DE algorithm, we adopt the same joint bilateral upsampling (JBU) algorithm [81] as that
in the baseline algorithm. Note that the JBU is performed by the single-step process, instead of the

original multi-step process. Thus, the single-step JBU is defined as

1
DE@ = Y DEGL) - Fllliy = D - gCIEG) = TG (IV-11)

JLES

where the window S is in the low-resolution frame, and its size is set as 7x7 for the HQ-DE algorithm.

In addition, the upsampled disparity map D' is further refined by the proposed window vote
method that is modified from the regional vote method in [6]. The original regional vote method could
remove the disparity noise by taking the disparity with the most votes in a local region. The regional
vote method could approximate the purpose of plane fitting method, which is usually applied in the
state-of-the-art disparity estimation algorithms. However, the regional vote method does not perform

well for the highly textured region due to its continuous grown region and limited shape as shown in
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Figure IV-11 (a). To address it, our proposed window vote method considers all the support disparities
in a window, and gives votes to the support pixels I(u, v) if their colors are consistent to the center

pixel 1(x, y) for all color channels. The proposed window vote method is calculated by
D'} (x,y) = arg m&slx{vote(x, y,d)} (IV-12)
where
vote(x,y,d) = Zuwyes(d = Df(w, v)) A (15 (x, ) — I (w, V)| < Tyore)- (IV-13)
Figure IV-11 (b) shows that the proposed window vote could obtain the correct result for the case of

highly texture. In the HQ-DE algorithm, the window size |S]| is 15x15.

Original Disparity Guide Image Resultant Disparity

(a)

Original Disparity Guide Image Resultant Disparity

(b)

Figure 1\VV-11 Comparison between the original regional vote [6] and the proposed window vote

4.1.6 Occlusion Handling

As the concept of occlusion handling in Section 2.1.2, we proposed a new method for the
occlusion handling problem based the left-right check (LRC) method. The proposed occlusion
handling method consists of the occlusion detection and the occlusion filling steps. They are described

as follows.

1. Occlusion Detection
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In the LRC method, the three view disparity maps Dy ', Dy, Dyg' are cross considered. For an
example of center view as the target, the disparities
Dic(xy), Dfi(x+Dfic(xy).y), Dir(x—Dfic(xy).y) (Iv-14)
are compared, and the occlusion map Oy ¢ is determined by

true  |Dfyc(xy) — Dfy (x+ D c(x¥),y)| > Tocc
Ouc(x,y) =9 true |Dfc(xy) — Dfir(x— Dfic(x¥),¥)| > tocc (Iv-15)
false otherwise

where zocc is the threshold for disparity gap. If the disparity gap in inter views is more than zocc, the
position would be regarded as an occlusion pixel.

With the occlusion map, we further refine the occlusion region to fit the object boundary by the
proposed occlusion extension method. In general, the foreground disparity has stronger confidence,
and would affect the neighboring weak background disparity. Thus, the proposed occlusion extension
method extends the foreground side of occlusion.region.according the image information, and dilates
the background side by one pixel as illustrated in-Figure IV-12. Note that for the original occlusion
region detected by the LRC method, its foreground and background sides are determined by the
disparities on the boundary for the center view. In which, the boundary with larger disparity is
foreground side, and the other boundary with smaller disparity is background side. On the other hand,
for the side view, the foreground and background side is fixed. The left-hand-side boundary is
background side for the left-view occlusion map, and foreground side for the right-view occlusion

map.

Occlusion region Extended
3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11 0 1 2
B B - I

Disparity map
3 4 5

0 1 2

7 8 9 10 11 4 5 6 7 8 9 10 11

0 1 2 3
JEIEIN B4 BERRRBENEN

background side foreground side

Figure 1\VV-12 Illustration of the proposed occlusion detection method
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2. Occlusion Filling

In this step, the occlusion regions are filled with the disparities of visible pixels. The visible
pixels could be obtained from the intra frame, inter frame, and inter-view frame. In the intra frame, we
could refer to the disparities of background pixels surrounding the occlusion region for occlusion
filling. In the inter frames, the occluded position would be seen at other time if the camera or the
foreground object moves. Thus, we could refer to the disparity at the non-occluded frame for occlusion
filling. In the inter-view frames, the occlusion regions might be visible in other two views. Thus, we
could refer to the disparity in other view for occlusion filling.

In the HQ-DE algorithm, we adopt the intra-frame approach and apply the modified window vote
method to fill occlusion regions. In addition to the color consistency constraint, the modified window
vote method gives votes to the non-occluded support pixels only. The window size for the occlusion
filling is 11x11. Figure 1V-13 shows that the:proposed occlusion handling methods could improve the
occluded regions in the disparity map and the synthesized image. Moreover, compared to the previous
results of DERS and baseline algorithms in Figure V-5, the red sketch is clearer, and the HQ-DE

algorithm could perform better.
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(b)

Figure 1VV-13 Results with and without the proposed occlusion handling method in BookArrival
(a) disparity map and synthesized image without occlusion handling, (b) occlusion map, disparity map,
and synthesized image with occlusion handling.

(a) (b)
Figure 1V-14 Results of the HQ-DE algorithm in BookArrival compared to Figure 1V-5

(a) center-view disparity map, (b) right-view disparity map, (c) synthesized image

4.1.7 Temporal Consistency Enhancement

In previous work and the baseline algorithm, the temporal consistency problems include the

flicker artifact and foreground copy artifact due to no enhancement method and over enhancement
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method, respectively. To address it, we propose the NMR method and the SEP method based on the

conventional method in the 3DVC’s DERS algorithm.

1. Conventional Method
First, we introduce the conventional temporal consistency enhancement method in the 3DTV’s
DERS algorithm, and point out its drawback. In the conventional method, the main idea is to
propagate previous disparity map to current one for no-motion regions by adding the temporal cost
Ceemp t0 cost cube. The conventional method first applies the bilateral filter to smooth the previous
frame and the current frame, and then partition the frames into 16x16 macroblocks for calculating the

motion absolute difference (MAD) by

1 -
MAD = mZ(u,v)Emacroblocklllgl (w,v) — IIFI 1(u' U)l . (IV-16)

If MAD is less than a defined threshold y.nm,, the block would be regarded as a no-motion block. Thus,
the temporal cost can be computed by

_ nt=1 .
Cuomp ) = {Merpl 4 ZDIZCO PN if MAD < Ve, (v-17)

where Zemp IS @ scaling term. In this equation, the no-motion block will suffer from the penalty if its
disparity is inconsistent to previous frame.

The conventional method can solve the flicker artifact, but incurs the foreground copy artifact
because the background object does not have enough time to update its disparity. On the hand, the
previous disparity upsampling step would result in the flicker artifact even if the conventional
temporal consistency enhancement is adopted in the HQ-DE algorithm. That is because the object
boundary suffers from mixed color of background and foreground, so that the disparity at the
boundary would be unstable after the disparity upsampling. To sum up, the HQ-DE algorithm has the
foreground copy artifact and the flicker artifact if the convention method is adopted. The following

proposed two methods could solve them.

2. No-Motion Registration Method
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Figure 1V-15 illustrates the concept of the proposed no-motion registration (NMR) method by a
common case. In which, the pixel is changed from a foreground pixel to a background pixel when a
foreground object passes. The conventional method in DERS algorithm propagates the previous
disparity to current one when the pixel is no-motion pixel, and takes short frame time to update the
disparity from foreground to background while the foreground object is moving out. That would result
in foreground copy artifact because of insufficient updating time. To address it, the proposed NMR
method extends the motion interval by zyvr frames to provide sufficient updating time. In other word,
the no-motion frame count NMC begins to be accumulated while the pixel becomes no-motion one. If
NMC is more than zywr, the temporal cost Cim, Would be computed to propagate previous disparity to

current frame.

«——no-motion motion no-motion

Pixel ...OQOQQOQQQ

Foreground  |Foreground object

P Timet

Background Object

object is moving out.
Conventional
Method Previous Disparii% Current Disparit? Previous Disparity
Proposed NMR ' P L>
Method Previous Disparity Current Disparity Previous Disparity

S TNMR—

Figure IV-15 Concept of the proposed no-motion registration (NMR) method

Figure 1V-16 shows the resultant disparity maps and the synthesized images of the proposed
NMR method. Compared to the conventional method in Figure 1V-4, the door pivot could be
recovered well using the proposed method. In addition, Figure IV-17 shows the change of disparity
maps and synthesized images in the seccussive frames while the man is passing away. In Figure 1\V-17
(c), the door pivot is temporarily distorted as the same as that in Figure IV-4, because the background

disparity is still updating. Nevertheless, the distortion could disappear in Figure 1V-17 (d).
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(@) (b) (©

Figure 1\VV-16 Results of the proposed NMR method in BookArrival
(@) the 1st frame, (b) the 25th frame, and (c) the 40th frame

@) (b) (© (d)

Figure 1VV-17 Results of the proposed NMR method in the 32th, 34th, 36th, 38th frames

3. Still-Edge Preservation Method
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The main idea of the proposed SEP method is to preserve the previous disparity for the still-edge.
In the SEP method, we use the bilateral filter to de-noise image, and apply the Sobel filter with a
gradient threshold to detect edges. Combining with the above motion and no-motion information, we
could find the still edge, which is no-motion pixel and edge pixel. For the still edges, the current
disparity is directly propagated from the previous frame.

Figure 1V-18 shows the synthesized result using the disparity maps of SEP method. Compared to

the results of baseline algorithm in Figure 1V-3, the SEP method could address the flicker artifact on

the object boundary.
(@ (b) (€) (d)

Figure 1VV-18 Results of the proposed SEP method in BookArrival
(@) the 9th frame, (b) the 10th frame, (c) the 11th frame, (d) the 12th frame

To sum up, the proposed HQ-DE algorithm could address the temporal consistency and occlusion
problems to deliver better disparity maps than the previous work. Taking advantage of the disparity
upsampling technique and the fast convergent BP-M approach, the HQ-DE algorithm could also save
computation time for high definition disparity estimation. Note that the window sizes in the joint
bilateral upsampling and window vote methods are selected from several sampled sizes, and they
could be finely tuned to attain the higher quality. The associated objective quality evaluation of

HQ-DE algorithm will be presented in Chapter V.

4.2 Sparse-Computation Disparity Estimation Algorithm
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This section proposes the sparse-computation disparity estimation (SC-DE) algorithm that
accelerates the HQ-DE algorithm by the strategy of sparse computation. In this section, we review the
related fast BP-based algorithms and summarize their reduction strategies. Then, we present our

proposed algorithm in details.

4.2.1 Related Work

In the previous disparity estimation, the hierarchical BP (HBP) [25] is commonly used to
accelerate the baseline BP by the coarse-to-fine order in the spatial domain. Based on the HBP, the
approximate BP [42] merges the outgoing messages between hierarchical blocks into one to reduce the
number of messages. In addition, the constant-space BP [43] additionally performs the hierarchical
computation in the disparity domain by the fine-to-coarse order, and can keep the memory usage
constant. Unlike the above acceleration approach:with regular computation, the sparse BP [44] first
applies the adaptive mesh technique to:select essential pixels, and then computes the disparities for the
sparse pixels by the baseline BP. Finally, a dense disparity map is recovered.

The acceleration strategies in above work are to perform BP optimization for the sparse points in
the spatial domain and disparity domain. Their selected sparse points are at the hierarchically regular
positions or the selected irregular positions. In the video processing, besides of the spatial and

disparity domains, the temporal domain can also be considered into the computational reduction.

4.2.2 Proposed Algorithm Flow

1. Aofiling of HQ-DE Algorithm
First, we analyze the profiling of HQ-DE algorithm on PC platform by the Visual Studio 2010
Profiler Tool. Figure 1V-19 shows the profiling result in the XGA sequence “BookArrival” and the
HD1080p sequence “Halll”. The distributions of the two sequences are similar. The first part is
occupied by the BP-M optimization. The second part is the window vote and the no-motion

registration because they apply the median filter and bilateral filter to de-noise image frames.
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In the computation of HQ-DE algorithm, the SSAD, ADSW steps are proportional to DR, and the
BP-M step is proportional to DR% Nevertheless, the SSAD and ADSW do not suffer from heavy
computation, because they are performed in low resolution, and have small window sizes. On the other
hand, the window vote and no-motion registration use large window process, and are performed in
high resolution. Thus, they suffer from high computational complexity.

As the above mentioned analysis, in the SC-DE algorithm, we mainly focus on the acceleration of

BP-M optimization, and further try to introduce the idea of sparse computation into other steps.

Profiling of HQ-DE algorithm in Halll Profiling of HQ-DE algorithm in BookArrival

o 3:3% 3.2%
3.8%-34% =BP-M 3.9 35%

= BP-M
= Window Vote = Window Vote
= No-Motion Registration u No-Motion Registration
u Occlusion Handling u Occlusion Handling
u SSAD Matching Cost u SSAD Matching Cost
u Joint Bilateral Upsampling u Joint Bilateral Upsampling
Still-Edge Preservation Still-Edge Preservation

ADSW Cost Aggregation ADSW Cost Aggregation

(@) (b)
Figure 1\VV-19 Profiling of the HQ-DE algorithm on PC

(a) BookArrival with 100 frames (1024x768), (b) Hall1 with 200 frames (1920x1088)

2. Proposed Sparse-Computation Disparity Estimation Algorithm

To reduce the computational complexity of HQ-DE algorithm, our strategy is to propagate the
disparity map and the cost cube of previous frame to current frame, and update partial of them to
compute the current disparity map. In the SC-DE algorithm, we perform the same processes in HQ-DE
algorithm for the first frame, and store both the computed disparity maps and the cost cubes for the
next frame. In the following frames, the SC-DE algorithm updates the cost cubes and applies the new
sparse BP-M method for the selected regions to calculate the disparity maps. The selected regions are
differently defined for center view and side views. In the video sequences, only the disparities in

motion regions are changed, and should be updated. Thus, for the center view, the disparities are
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re-computed in the motion regions. On the other hand, for the side views, most of disparities could be
warped from the center-view disparity map, and only the occlusion regions have different disparities.
Thus, only the disparities in the occlusion regions have to be recomputed for the side view.

With the above strategy, we proposed the flow of SC-DE algorithm in Figure 1VV-20 for center
view and Figure IV-21 for side views. In the SC-DE algorithm, the center-view disparity map should
be computed first, and then refers it to the other side-view disparity maps. In the proposed algorithm
flow, the motion map My, edge map Ey, and occlusion map Oy are initially computed to determine the

sparse pixels. The details of their computation are described in the next sub-section.

Previous Frame Previous Cost Cube Target Frame Reference Frames
t-1 t-1 t t t
DH,C CL,C IH,C IH,R IH,L
]
DL Ct 1
y vy |
S — > Sparse SSAD |
¥
T e — . Sparse ADSW |
v
T E——— ﬁ Temporal Cost Cal. ‘
3 Side-View Process
Mg - Sparse BP-M ‘ ‘
Low-Resolution 1
D¢
‘ Joint Bilateral Upsampling ‘
‘ Window Vote ‘
\ \ T
DH‘Ct DH,Lt DHRt
v v v
4 Occlusion Handling
v
T T ﬁ Still-Edge Preservation
v l
t t
CiLc Dhc

Figure 1VV-20 Flow of the SC-DE algorithm for center-view disparity map

In Figure 1V-20 for the center-view disparity estimation, the cost cube C_c"™" and the disparity

map Dy ™ in previous frame are updated by the sparse-computation steps: sparse SSAD, the sparse

109



ADSW, temporal cost calculation, sparse BP-M. The sparse-computation steps are guided by the
sampled motion map M, ¢, and they only process on the motion regions. With these four steps, the new
cost cube C_ "™ and the new low-resolution disparity map D, ¢' are produced.

With the low-resolution disparity map Dy ¢!, the JUB algorithm and the window vote methods are
adopted to scale up and refine the high-resolution disparity map Dy The sparse-computation
approach could not be applied to the JUB and window vote steps because the new updated disparities
in motion regions are not consistent with those in the no-motion regions. The consistency would be
expended in following frames, and result in serious quality drop. Thus, the JBU and window vote steps
are still performed by dense-computation approach. Finally, the occlusion handling and the still-edge
preservation (SEP) steps are performed to deal with the occlusion and temporal consistency problems.

In Figure IV-21 for the side-view disparity estimation, the sparse-computation approach is also
applied to the SSAD, ADSW, temporal cost calculation;, and BP-M steps. Although the side-view
disparity estimation needs to update the disparities-only in-occlusion regions, the cost cube still
requires to be updated for the motion regions. Thus, the former three steps, sparse SSAD, sparse
ADSW, and the temporal cost calculation, are guided by the motion map M, , while the later sparse
BP-M is guided by the occlusion map O . The rest steps are the same as the center-view disparity

estimation.
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Figure 1V-21 Flow of the’SC-DE algorithm for side-view disparity maps

4.2.3 Sparse Pixel

The sparse pixel selection is to determine the sparse pixels which should be processed by the
sparse-computation steps as mentioned above. To find the sparse pixels, the edge detection, the

occlusion detection, and the motion detection are required. Their algorithm flow is shown in Figure

IV-22.

Selection
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Figure 1V-22 Flow of region detection for sparse pixel selection

(a) edge detection, (b) occlusion detection, (c) motion detection

1. Edge Detection

Figure IV-22 (a) shows the flow of edge detection. First, the bilateral filter with the window size
of 9x9 is applied to de-noise the input frame. Then the Sobel filter is used to compute the gradients for
the horizontal and vertical directions. Finally, the edge decision step determines the edge pixel if the
gradient magnitude is higher than a threshold. The produced edge map Ey is used in the motion

detection and the still-edge preservation steps in the SC-DE algorithm. Figure 1V-23 shows an

example of edge maps in the sequence BookArrival.
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(a) (b) (©
Figure 1\VV-23 Example of edge maps in BookAurrival

(@) left-view frame Iy, Dy, (b) center-view frame I c, Dy c, (C) right-view frame Iy g, Dyr

2. Occlusion Detection
The occlusion region is detected-using the center-view disparity map. In Figure 1V-22 (b), the
center-view disparity map is warped to“left view and right view. In the warped disparity maps, the
position without any disparity value is regarded as an occlusion pixel. Then, the occlusion map is
further processed by the dilation and erosion filter to remove the small occlusion regions, which are
considered as noise. Figure IV-24 shows an example of occlusion maps Oy, Oy r generated using the

center-view disparity map Dy c".

—

(@)

Figure 1V-24 Example of occlusion maps in BookArrival
(a) center-view disparity map Dy c, (b) left-view occlusion map Oy, (c) right-view disparity map Oy r
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3. Motion Detection

The motion information in the SC-DE algorithm is used to not only the temporal consistency
enhancement, but also the sparse-computation guidance. The motion map should be more precise in
the SC-DE algorithm, because the quality of SC-DE algorithm depends on the selected sparse regions.
Thus, we modify the original motion detection method in HQ-DE algorithm to the new one as
described in Figure 1\VV-22 (c). The new motion detection method is to first compute the block-based
motion map, and then refine it to pixel-based motion map.

In the motion detection method, the bilateral filter is first applied to de-noise the previous and the
current image frames, and the difference of the two frames are computed by the Manhattan distance
for each pixel. Then, the block-based motion map is calculated according the sum of frame difference
in a 32x32 block. If the sum of frame difference is high than a threshold, this block would be regarded
as a motion block. Note that the block-based motion'map should be dilated by a 3x3 filter, because the
no-motion block neighboring motion one maybe contains a few:-motion pixels.

Finally, the block-based motion map is refined to be a pixel-based motion map. For the pixels in
motion blocks, the pixel would be considered as a motion pixel if its frame difference is high than a
threshold. Since there are some noising motion pixels, the dilation and erosion filter is adopted to
remove them.

Furthermore, the pixel-based motion map is processed by the motion extension step, which
extends the motion regions along the edge pixels. Finally, the no-motion registration (NMR) is
performed to handle the mentioned foreground copy artifact.

Figure 1\VV-25 shows the example results of the motion map in the sequence BookArrival. Some
motion regions are over extended by the motion extension step, and it will result in more
computational complexity in the sparse-computation steps. Nevertheless, the over-extended motion

map could avoid missing the motion pixel, whose disparity is necessary to be updated.
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Figure 1V-25 Example of motion maps in BookArrival
(a) left-view motion map My, (b) center-view motion map My ¢, (c) right-view motion map My r

4.2.4 Sparse-Computation Steps

The sparse-computation steps include the sparse SSAD, the sparse ADSW, and the sparse BP-M.

Their detailed flow is described as follows.

1. Sparse SSAD and ADSW for Cost Cube
The sparse SSAD and sparse ADSW steps aré to update the previous cost cube C."* and generate
the new cost cube C.' for the current. frame. Figure 1V-26 illustrates the concept of the two
sparse-computation steps. The updated-target pixels are the motion pixels. To compute the new costs
for these motion pixels, the matching costs of all the associated support pixels should be calculated by
the SSAD match metric. Using the matching costs of support pixels, the sparse ADSW then aggregates
them for the motion pixels. The sparse SSAD and the sparse ADSW could further reduce the

computational complexity of the original dense method in the HQ-DE algorithm.

Support
Pixels

Motion Pixels

Figure 1VV-26 Concept of sparse SSAD and sparse ADSW methods

2. Sparse BP-M Optimization
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For the sparse BP-M optimization, the guide for sparse-computation is the motion map M ¢ for
center view, and the occlusion maps O, O for the side views. Figure 1V-27 illustrates the concept
of the sparse BP-M method. In which, the “updated region” is processed by the original BP-M
algorithm. To connect the “updated region” and “other regions”, the sparse BP-M method also passes
the message from the “other regions”. This connection could decrease the disparity incoherency
between the updated and other regions. The sparse BP-M method could significantly reduce the
original dense BP-M because the motion regions in center view and the occlusion regions in side

views are very small.

-—

T Updated 1
Region

-—

A
A
T

Other Regions

— -

—
—

—

Figure 1\VV-27 Concept of sparse BP-M method

4.2.5 Computational Reduction

This subsection compares the computational distribution of main steps between the HQ-DE
algorithm and the SC-DE algorithm. For the execution time and disparity quality, the associated
analysis is presented in Chapter V. Figure 1V-28 shows the profiling of SC-DE algorithm in the
sequences BookArrival and Halll. In which, the motion detection is added into the execution time of
no-motion registration step, and the edge detection is added into the still-edge detection step.

The percentage of BP-M is significantly decreased from 35.7% to 8.0% in BookArrival and from
38.0% to 9.0% in Halll. Table IVV-2 furthers lists the execution time of each step in the HQ-DE and
SC-DE algorithms. The computation of all the steps with sparse-computation approach is significantly

reduced. Compared to the HQ-DE algorithm, the major computation of BP-M is decreased to 13.4% in
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the SC-DE algorithm. In addition, the total execution time could be reduced to less than 60%. Note
that the execution time of still-edge preservation increases near twice because it replaces the original

median filter with the bilateral filter for better de-noising but incurs heavy computation.

Profiling of SC-DE algorithm in BookArrival Profiling of SC-DE algorithm in Halll

1.6% 1.7%

=BP-M uBP-M

10.8% u Window Vote 10.8% = Window Vote

= No-Motion Registration u No-Motion Registration
= Occlusion Handling u Occlusion Handling
= SSAD Matching Cost u SSAD Matching Cost
= Joint Bilateral Upsampling u Joint Bilateral Upsampling
Still-Edge Preservation Still-Edge Preservation

ADSW Cost Aggregation
(@) (b)
Figure 1VV-28 Profiling of the SC-DE algorithm on PC

(a) BookArrival with 100 frames (1024x768), (b) Hall1 with 200 frames (1920x1088)

ADSW Cost Aggregation

Table IV-2 Comparison of execution time of HQ-DE and SC-DE algorithms

HQ-DE SC-DE
BookArrival | Halll  BookArrival  Halll
BP-M 358,361 2,127,407 47,833 285,861
Window Vote 199,819 /1,000,995 199,042 1,001,075
No-Motion Registration 181,615 982,290 127,767 676,116
Occlusion Handling 90,877 487,167 90,346 486,272
SSAD Matching Cost 66,365 408,361 20,036 126,827
Joint Bilateral Upsampling 39,175 210,521 39,756 210,177
Still-Edge Preservation 35,558 189,802 64,614 343,325
ADSW Cost Aggregation 31,740 187,311 9,845 55,041
Total 1,003,510 5,593,854 599,239 3,184,694

Unit: Sampled time on PC

4.3 Hardware-Efficient Disparity Estimation Algorithm

The proposed SC-DE algorithm could significantly reduce the computation complexity of
HQ-DE algorithm, but is not suitable to be further accelerated by VLSI design due to its regular
computation and large storage for the information of previous frame. In this section, we proposed the
hardware-efficient disparity estimation (HE-DE) algorithm that could significantly reduce the

computation and memory cost of HQ-DE algorithm. In this section, we first point out the design
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challenges in the HQ-DE algorithm. Then, we present the main algorithm flow of our proposed

HE-DE algorithm.

4.3.1 Design Challenges in High-Quality Algorithm

In the HQ-DE algorithm, the main design challenge consists of the high memory cost and the

high computational complexity. They are explained as follows.

1. High Memory Cost in Belief Propagation

The problem of high memory is the fatal disadvantage of BP-based algorithm. The requirement in
BP-based algorithm includes the cost cube and the messages. Our low memory-cost approach in
Section 3.2.2 could significantly reduce the memory cost, but the memory cost is still proportional to
the disparity range DR, even if the block-based [36] or tile-based [29] method is adopted. For example,
if the block size is 32x32, DR is 128, and each-data is 1-byte, the memory requirement would be
131Kbytes for the cost cube and 524Kbytes for the messages. The extremely high memory space
could not be affordable in the internal memory. If the massive data are configured in the external
memory, it would incur high bandwidth. Thus, to directly conquer the high memory cost problem, we
need to develop another new optimization algorithm that could not only have memory requirement

independent to disparity range, but also acquire approximate results to BP-M’s.

2. Large Image Buffers
Figure 1VV-29 Image buffer required by the SSAD and ADSW steps (a) shows that the required
pixels for computing a target aggregated cost. For the target aggregated cost, the ADSW cost
aggregation step aggregates the 5x7 matching costs in low resolution. These 5x7 matching costs is
computed by the SSAD matching cost step using the 10x28 pixels in high resolution. Therefore,
computing a target cost needs 1280 pixels in the target view image, and these pixels are cross 28

image rows.
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Figure IV-29 Image buffer required by the SSAD and ADSW steps
(a) required pixels for computing a target aggregated cost, (b) image buffers for one matching cost row

For the above data dependency, all the 28 rows of three view images should be buffered into the
internal memory, so that the external bandwidth be minimized. However, such the multiple-row image
buffers are too large. For example of 1920x1080 sequences, the memory requirement for the image
buffers would be 1920x28x3 pixels (i.e. 483Kbytes for YUV444 format). On the other hand, if the
SSAD matching costs are stored for data reuse technique, the memory requirement is proportional to
disparity range DR, and would be 960x7x128 (i.e. 860Kbytes) for the DR of 128. In addition, if the
image pixels are accessed from external memory in run time, the image buffer could be reduced to the
“used pixels” region but the external bandwidth would be 1920x1080x7x3 pixels/frame (i.e.

130.6GBytes/frame for YUV444 format).
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To sum up, no matter what the data configuration method is applied, the required image data in
the SSAD and ADSW steps would incurs the large image buffer or high external bandwidth. Thus, we

should simplify the SSAD and ADSW steps in the HE-DE algorithm to reduce the image buffer.

3. High Computational Complexity in Filtering

In the HQ-DE algorithm, there are many filter-based processes, such as bilateral filter, joint
bilateral upsampling, window vote, and the ADSW cost aggregation. These filter-based processes
suffer from high computational complexity due to their larger window size. Table IV-3 lists all the
filter-based processes in the HQ-DE algorithm. In which, the bilateral filter (BF) computation suffers
from 11x11 for the high resolution in the NMR step. In addition, the WVote step requires the largest
window size of 15x15. Because of their large window sizes, they occupy the high percentage of
computation as analyzed in Figure 1V-19. Thus, we decrease the window size of the filter-based
processes in the HE-DE algorithm under the condition of preserving the disparity quality.

Table IV-3 Window sizes of filter-based processes in HQ-DE algorithm

. Frame . .
Step Computation Resolution Window Size
No-Motion Registration (NMR) BF High 11x11
Adaptive Support-Weight Cost Aggregation (ADSW) BF Low 75
Occlusion Handling (OCC) \ote High 9x9
Joint Bilateral Upsampling (JBU) JBF High =7
Window Vote (WVote) \ote High 15x15
Still-Edge Preservation (SEP) Median High 3%x3

4. Irregular Computation in Occlusion Handling
The final design challenge is the irregular computation in the occlusion handling step. This step
first detects the occlusion region by left-right check (LRC) method, and then extends the occlusion
region for background and foreground. Finally it fills the occlusion regions by the modified window
vote method. The irregular computation is in the occlusion extension process, which needs to extend
the occlusion region until the foreground is touched. This irregular computation is not compatible to

all the other raster-scan computations, and is not suitable be implemented by high-throughput

120



pipelining architecture. Thus, we develop another new regular occlusion handling in the HE-DE
algorithm.

In summary, for the high memory cost, the BP-M needs a frame-scale-magnitude memory space
to store the cost cube and messages for whole frame, and cost cube calculation requires a large image
buffer in run-time. On the other hand, for the high computational complexity, the filter-based
computation is performed using too large window size, and the computation of proposed occlusion
handing is not regular for extending occlusion region. Therefore, the proposed HE-DE algorithm

focuses on these design challenges and conquers them.

4.3.2 Proposed Algorithm Flow

Figure 1V-30 shows the main flow of the proposed HE-DE algorithm for center view. This
algorithm flow also could be applied to the process of side views. In this algorithm, for the cost cube
calculation, we propose the new window-based SSAD method to replace the block-based SSAD and
ADSW steps in the HQ-DE algorithm. The new method could reduce the image buffers from 28 image
rows to 5 image rows. For the temporal cost calculation, the same method in the HQ-DE algorithm is
adopted.

Note that this algorithm removes the inter-view cost calculation step in the HQ-DE algorithm for
high parallelism, because the step would result in the data dependency between the center view and
side views. In other words, with the inter-view cost calculation step, the center-view disparity map
should be computed first, and the side-view disparity maps are computed latter. Moreover, to support
the computing order, the three-view input data would be loaded for three times for matching cost
calculation. Therefore, we remove the inter-view cost calculation from our algorithm flow, and take
care of the inter-view consistency in the occlusion handling step.

With the computed cost cube, we propose the cost diffusion method to compute the
low-resolution disparity maps. The proposed cost diffusion method could replace the BP-M to reduce

the memory requirement to be independent to the disparity range.
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Figure 1V-30 Flow of the HE-DE algorithm for center view

For the occlusion handling step, the new regular method'is performed in the low resolution, and it
also considers the inter-view consistency at the same time. Finally, the low-resolution disparity maps
are scaled and refined by the JBU, window vote, and still-edge preservation steps. To reduce the
computational complexity in filter-based processes, we decrease all the window size of filters to 5x5
under the condition of no observable quality degradation.

The mentioned design challenges in the HQ-DE algorithm are solved by the following method in

the proposed HE-DE algorithm.

4.3.3 Cost Diffusion Algorithm

In this subsection, we first discuss about the memory requirement of BP-M, and then propose the

low memory-cost cost diffusion method to replace the BP-M.

1. Memory Requirement in BP-M
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The original BP-M updates the messages in four directions as illustrated in Figure 1VV-31 (a),
where the message passing is performed direction by direction. Figure 1V-31 (b) shows the data
dependency of message passing in the node level. In which, the new message is computed for the
“updated message” using the “used messages™. First, the right message passing updates the left
incoming message of each node in the order of left-to-right and row-by-row. Then, the left message
passing is performed in inverse direction to update the right incoming message of each node. With the
same manner, the down message passing and the up message passing is performed column by column.
Note that the “used messages” in the right message passing and left message passing could be
removed, because their values are initially 0 and the horizontal message passing are performed for one

time in the single iterative BP-M.

Right Direction Left Direction Down Direction Up Direction
_
_
- -
_—_——-——— —
(@)

Right Message Passing Left Message Passing
R e

t

e i e e

Down Messa@e Passing Up Message Passing

=0 m =GO =0 s = g = -
S N S N S NS N S S 0

Unused Message  +—Used Message  +—Updated Message
(b)
Figure 1V-31 Concept of BP-M computation

(a) Message passing in four directions, (b) data dependency of messages in four directions

With the data dependency of BP-M, all the messages of whole frame have to be stored in memory
until the up message passing and the final disparity selection is performed. Thus, the memory
requirement is 4HxWxDR for messages in the HQ-DE algorithm as listed in Table V-4,

To reduce the memory cost in BP-M, we first propose the horizontal-only BP-M that only

performs the left message passing and the right message passing steps. The horizontal-only BP-M
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could reduce the memory cost from frame-scale-magnitude to row-scale-magnitude as shown in Table
IV-4. However, its memory cost still has the factor of disparity range DR. Thus, we further propose the

cost different method to completely address the high memory cost problem.

Table 1VV-4 Comparison of memory requirement between BP-M and cost diffusion methods

Operation Times

Method Memory Requirement of Message Passing
Single iterative BP-M 4HxWxDR (Message) AHXW
(HQ-DE) HxWxDR (Matching Cost)
. WxDR  (Message)
Horizontal-Only BP-M WxDR  (Matching Cost) 2HxW
Cost Diffusion W (Matching Cost) DHXW
(HE-DE) W (Disparity Map)

2. Proposed Cost Diffusion Method

The main idea of the proposed cost diffusion-method-is to diffuse the matching cost of current
pixel to its neighbor by the message passing mechanism,-and-immediately determine the best disparity
for the current pixel. The cost diffusion methad. includesthe strong horizontal diffusion and the weak
vertical diffusion. That is because the human eyes weakly percept the vertical disparity and are
sensitive to the horizontal disparity [108], [109]. It implies the demand of vertical disparity is lower
than that of horizontal disparity. Therefore, the horizontal diffusion applies a complicated mechanism
and the vertical diffusion applies a simple one.

The horizontal diffusion method consists of the right cost diffusion process and the left cost
diffusion process. The two processes can generate two disparity rows, which will be merged into one
by our specific constraint. In the two processes, the disparities are computed immediately and the
diffused costs could be thrown at the same time. In the proposed cost diffusion method, only the best
disparity row and the corresponding minimal matching costs need to be stored. Its memory
requirement is listed in Table IV-4.

The details of the proposed cost diffusion method are described using the right cost diffusion

process as an example. In the right cost diffusion process, the final cost RCyp, is computed from left to
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right, and it is combined with the original cost C to determine the disparity row. The final cost
RCfina is computed by
RCfinal(x: Y d) = Ctotal(x' Y d) + RDC(x—1,y,d) . (IV-18)

where the diffused cost RDC(x-1, y, d) at the left neighbor is defined as
RDC(x —1,y,d) = min (V(d dy) + RCpina(x — 1,y,d9)) — & , (IV-19)

where V is the smoothness term in (IV-7), and « is the average of RDC for normalization. This
equation is similar to the calculation of message passing in (111-7) but all the messages are removed.
Then, the previous diffused cost RDC is combined with the matching cost of current pixel by
for the current pixel (%, y). With the final cost RCyq, the temporary best disparity RDye; could be
immediately calculated by the winner-take-all (WTA) manner, and the minimal cost RC, is also
computed for the final disparity decision. They are calculated by
RCmin(,y) =m0 RCrina (%, y,d) (1V-20)

RDpest (%) = atgMinRCrinai(x, y,d) - (1V-21)
By the above right cost diffusion process, we could abtain the temporary best disparity RDpes; and the
minimal cost RC,,, of one frame row. We also can acquire the LDy and LCy, by the left cost
diffusion process. Finally, the two disparity row RDyes and LDy are merged into one by the equation

RDbest(xJY) if RCmin(x'y) < LCmin(x'y) (|V-22)
LDbest(xJY) else .

D (x,y) = {
according to the minimal costs RC;, and LCy,. In which, we take the disparity with minimal cost as
the final disparity.

On the other hand, the concept of vertical cost diffusion is to propagate the disparities of previous
row into the current row. Thus, we define another new vertical cost Cyey; as
Coert(%,y,d) = Avereld — Di(x,y — 1)| (IV-23)

where D.'(x, y-1) is the disparity in previous row, A, is a scaling term. Note that this cost is

constrained by the color consistency between the current pixel I, (x, y) and the previous row pixel I, (x,
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y-1). If the two pixels are inconsistent, the vertical cost C,e; would be 0. Thus, the total cost cube in
the HE-DE algorithm is defined as

Ctotat (%, ¥, d) = Caggr(,y,d) + Cremp (%, ¥, d) + Coere(x, 7, d) (IV-24)

To minimize the memory requirement of cost diffusion method, we could perform the right cost

diffusion process first and the left cost diffusion process latter. Thus, only one disparity row and one

cost row required to be stored. Compared to the BP-M, the proposed cost diffusion method could

reduce the memory cost to 0.00029% for the HD1080p resolution and 128 disparity levels.

4.3.4 1Image Buffer Reduction Methods

As mentioned in Section 4.3.1, the SSAD matching cost calculation and the ADSW cost
aggregation steps requires 28 image rows to minimize the external bandwidth. However, the memory
cost of such the image buffer is too high. Thus,.in'the.HE-DE algorithm, we modify the cost cube
calculation method, and propose the window-based SSAD, which can reduce the requirement of image
buffer to 5 image rows. Figure 1V-32 illustrates the concept of the proposed window-based SSAD. In
which, the pixels in a 5x5 window are fetched to compute a target aggregated cost by the 5x5 SAD
metric. Without the ADSW cost aggregation step, the disparity would have slight degradation,
compared to the HQ-DE algorithm. The comparison results are demonstrated in Chapter V. To
compute the matching costs for full disparity range, the “used pixels” are needed for the center-view
disparity estimation as shown in Figure 1V-32 (b). We could use the image buffers with the size of five
image rows to increase the data reuse and minimize the external bandwidth usage. The memory
requirement of this configuration would be 1920x5x3 pixels (i.e. 86Kbytes for YUV444 format).

Compared to the original method in HQ-DE algorithm, the memory requirement is saved by 82%.
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Figure 1VV-32 Concept-of the proposed window-based SSAD method
(a) required pixels for computing a target aggregated cost; (b) image buffers for one matching cost row

4.3.5 Small Filter Window Size

The filter-based processes suffer from high computational complexity due to its large window
size as listed in Table 1VV-3. To reduce their computation, we decrease the window size of filter-based
processes while keeping the disparity quality without significant drop. Table 1V-5 lists the window
sizes of filter-based processes in the HE-DE algorithm. In which, most of the processes are changed to
use 5x5 window. In addition, the ADSW cost aggregation step is removed in the HE-DE algorithm,

and the median filter in the SEP step is replaced by the 3x3 bilateral filter.
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Table IV-5 Window sizes of filter-based processes in HE-DE algorithm

Step Computation Resolution Window Size
No-Motion Registration (NMR) BF High 5x5
Adaptive Support-Weight Cost Aggregation (ADSW) - - -
Occlusion Handling (OCC) \ote High 3x3
Joint Bilateral Upsampling (JBU) JBF High 5%x5
Window Vote (WVote) \ote High 5%x5
Still-Edge Preservation (SEP) BF High 3x3

4.3.6 Regular Occlusion Handling

For the irregularity problem in the original occlusion handling, we propose a new occlusion
handling method that could be performed by raster-scan order, and take care of the inter-view
consistency at the same time. Figure 1V-33 shows the flow of proposed new occlusion handling
method, which consists of the left-right check (LRC) to detect occlusion regions, and the inter-view
and the intra-view reference steps to fill the occlusion regions.

The inter-view reference step fills the target-view .disparity map using the other two view
disparity maps. For example, the two view disparity maps Dy, ', D_g' are warped to the center view.
Only the non-occluded disparity pixels could: be warped.-If there are many disparities warped to the
same position, the highest disparity is selected. Then, the occlusion regions could be filled by the
warped disparity map. The inter-view reference step can not only recover most of the occlusion

regions, but also enhance the inter-view consistency because of its cross warping.

I:)L,Lt DL,Ct DL,Rt IL,ct |L,Rt IL,Lt
l l l l } }
\ Left-Right Check (LRC) \ \ Median Filter (3x3) \
Inter-view reference i ”””

Intra-view reference v
‘ ‘ Good Disparity Detection ‘ |
7 |
‘ Border Filling }
v
Inside Filling ‘F

Figure 1VV-33 Flow of proposed occlusion handling method in HE-DE algorithm
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Then, the rest of occlusion regions are filled by the intra-view reference step, which consists of
the good disparity detection, the border filling, and the inside filling. The main idea of the intra-view
reference step is to fill the occlusion regions by the neighboring non-occlusion disparity pixel in intra
frame. To find the reliable non-occlusion disparity pixels, the good disparity detection applies the
double-LRC method to find the “good disparity”. The double-LRC method checks the disparity
consistency by referring to the other two views, instead one view in the original LRC method. The
“good disparity” passing the examination of double-LRC can be used to fill the rest of occlusion
regions. Finally, the filling process contains the border part and the inside part of frame. They also
adopt the modified window vote method proposed in Section 4.1.6, and the center pixel of vote
window should be a “good disparity”.

The computation of the proposed new. occlusion handling method does not have the occlusion
extension process, which would result:in_irregular computation. All the computation in this method is
performed in raster-scan order. In addition, the inter-view consistency could be enhanced by the

inter-view reference step.

4.3.7 Simple Region Detection

In addition to the above methods to deal with the design challenges in the HQ-DE algorithm, the
edge detection and the motion detection are also simplified in the HE-DE algorithm. Figure 1V-34
shows the flow of the simplified edge detection and motion detection. In which, the bilateral filter uses
the window size of 5x5, and the block size of the block-based motion calculation is reduced from

32x32 to 4x2 that is equal to the downsampling factor.
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Figure 1VV-34 Flow of edge detection and:motion detection in HE-DE algorithm

(a) edge detection, (b):motion detection

To sum up, the proposed HE-DE algorithm could solve the high memory cost and high
computational complexity in HQ-DE algorithm by our simplification. For the high memory cost
problems, the proposed cost diffusion method could replace the BP-M optimization to reduce the
memory requirement to only one data row whose size is independent to the disparity range. In addition,
the proposed window-based SSAD could decrease the image buffers to the size of five image rows. On
the other hand, for the high computational complexity problems, the window size of filter-based
processes are decreased, and the original irregular occlusion handling method is improved. With these
simplifications, the HE-DE algorithm is suitable to be implemented by VLSI design. The architecture

design of HE-DE algorithm is presented in Chapter VI.
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4.4 Summary

In this chapter, we propose the HQ-DE algorithm to improve the temporal consistency and the
occlusion problems in the baseline algorithm. In addition, the BP-M approach is also applied to
accelerate the BP optimization.

Based on the HQ-DE algorithm, we further propose two new fast disparity estimation algorithms
for different implementation methods. For the software-based implementation, we deliver the SC-DE
algorithm, which performs the matching cost calculation, cost aggregation, and BP-M on the sparse
pixels, and updates partial disparity map in seccussive frames. The sparse pixels are no-motion ones
for center-view disparity estimation, and occlusion ones for side-view disparity estimation. Compared
to the HQ-DE algorithm, the major computation in BP-M could be reduced to 13.4% in the SC-DE
algorithm. The SC-DE algorithm is suitable to be executed the software-based platform because of its
sparse computation.

On the other hand, for the VLSI implementation, we propose the HE-DE algorithm, which
improves the design challenges of highmemory cost-and computational complexity in the HQ-DE
algorithm. For the high memory cost problem, we propose the cost diffusion method and the
window-based SSAD to replace the original methods. The major memory cost in BP-M could be
reduced to 0.00029% by the proposed cost diffusion method. For the high computational complexity
problem, we decrease the filter size and propose a new occlusion handling method with regular
computation.

The above advanced disparity estimation algorithms are evaluated on the disparity quality and

execution time in the next chapter.
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V Experimental Results

The previous chapter presents the proposed baseline disparity estimation (baseline) algorithm,
high-quality disparity estimation (HQ-DE) algorithm, sparse-computation disparity estimation (SC-DE)
algorithm, and hardware-efficient disparity estimation (HE-DE) algorithm using different strategies.
They have different improvement in the disparity quality or the computational speed. In this chapter,
we first introduce the experiment setting about the test sequences and the input/output configuration.
Then, we compare those algorithms by the execution time on PC and the objective quality evaluation

through the view synthesis results.

5.1 Experiment Setting

5.1.1 Test Sequences

Figure V-1 shows the test sequences adopted in the experiment, and Table V-1 lists their detailed
information. The test sequences are provided by different research institutes. The frame size includes
1024x768 (XGA), 1920x1080 (HD1080p), and 1280x960. In these sequences, the Kendo, Balloons,
Halll, and Hall2 are captured by the moving cameras, and others are captured by fixed cameras. In
addition, all the sequences are rectified by the similar processes as described in [78]. In the processes,
the brightness, contrast, and gamma among views are adjusted to be consistent. Then, the lens
distortion and chromatic aberration are rectified in the normalization process. Finally, all the view
images are re-projected to the position with parallel optic axis. Because of the rectification processes,
the source videos could be directly used to disparity estimation without any pre-processing, and the

disparity range can be limited in 1-D space.
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Figure V-1 Clips of test sequences in center view

(a) BookArrival, (b) LoveBird1, (c) Newspaper, (d) Café, (e) Kendo, (f) Balloons, (g) Champagne, (h)
Pantomime, (i) Halll, (j) Hall2, (k) Street, (I) CarPark
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Table V-1 Test sequences

Sequence . . Frame Number of Number of Cam(_era IS.
Provider Frame Size Rate - Spacing Moving
Name Frame View
(frame/s) (cm) Camera
BookArrival HHI 1024x768 16.67 300 16 6.5 No
LoveBirdl ETRI 1024x768 30 300 12 35 No
Newspaper GIST 1024x768 30 300 9 6.5 No
Café GIST 1920x1080 30 200 5 5 No
Kendo Nagoya 1024x768 30 300 7 5 Yes
Balloons Nagoya  1024x768 30 300 7 5 Yes
Champagne  Nagoya  1280x960 30 300 80 5 No
Pantomime Nagoya 1280%960 30 300 80 5 No
Halll Poznan  1920x1088 25 200 9 13.75 Yes
Hall2 Poznan  1920x1088 25 200 9 13.75 Yes
Street Poznan  1920x1088 25 250 9 13.75 No
CarPark Poznan  1920x1088 25 250 9 13.75 No

HHI: Fraunhofer Heinrich Hertz Institute, Germany

ERTI: Electronics and Telecommunications Research Institute, Korea
GIST: Gwangju Institute of Science and Technology, Korea

Nagaya: Nagoya University, Japan

Poznan: Poznan University of Technology, Poznan

5.1.2 Input and Output Configuration

As mentioned in Section 2.3.1, the MPEG 3DV C defines the 2-view configuration and the 3-view
configuration for different displays. Table V-2-lists the-selected views of all the test sequences for
2-view configuration. The frame ranges of test sequences are also defined for the disparity quality
evaluation and the coding performance evaluation. This table only lists the frame range for disparity
estimation. On the other hand, Table V-3 shows the selected input and output views for the 3-view
configuration. In which, the output views for the stereoscopic display are located near the center-view
input Ic. For the 9-view displays, the most left output is located at the middle of center-view input I¢
and left-view input I, while the most right output is located at the middle of center-view input I¢ and
right-view input Ir. The wider spacing between the most left and right output, the higher performance
required in the view synthesis and disparity estimation algorithms. In this dissertation, we focus on the

3-view configuration for 9-view displays.
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Table V-2 Input and output views for 2-view configuration [71]

Sequence Name Input View No.  Synthesized Pair Frame Range for
(I.-1g) (I.-Vcor Ve-1g) Disparity Estimation

BookArrival 10-8 10-9 0-99
LoveBird1 6-8 7-8 0-299
Newspaper 4-6 5-6 0-299
Café 1-3 2-3 0-299
Kendo 2-4 3-4 0-299
Balloons 2-4 3-4 0-299
Champagne 39-41 40-41 0-499
Pantomime 39-41 40-41 0-499
Halll 2-1 2-1.5 0-199
Hall2 7-6 7-6.5 0-199

Street 4-3 4-3.5 150-349

CarPark 4-3 4-3.5 200-399

Table V-3 Input and out views for 3-view configuration [71]

Sequence Name Input View No. Output for Output for 9-view
(I.-1c-1R) Stereoscopic Display Display
BookArrival 10-8-6 8.25-7.75 9to 7
LoveBirdl1 4-6-8 5.75-6.25 5t07
Newspaper 2-4-6 3.75-4.25 3to5
Cafeé 1-3-5 2.75-3.25 2to 4
Kendo 1-3-5 2.75-3.25 2to 4
Balloons 1-3-5 2.75-3.25 2to 4
Champagne 37:39-41 37.75-39.25 381040
Pantomime 37-39-41 37.75-39.25 381040
Halll 3-2-1 2.125-1.875 251015
Hall2 7-6<5 6.125-5.875 6.5t05.5
Street 5-4-3 4.125-3.875 451035
CarPark 5-4-3 4.125-3.875 451035

Table V-4 summarizes the our experiment setting for the DERS algorithm and our proposed
algorithms. The target outputted views are the most left and the most right ones in the 3-view
configuration for 9-view display. The disparity ranges are dependent on the sequence content, and the
frame ranges are the same as those in Table V-2. For the inputted views, our proposed algorithm only
requires three views, and meets the defined configuration in Table V-3. However, the DERS algorithm
requires five views because of its functionality described in Section 2.3.1. It would result in that the
DERS algorithm could not produce complete three view disparity maps in the sequences, Kendo,
Balloons and Café, for view synthesis due to insufficient inputted views. For the three sequences, the

column “Avail.” is marked by “No” in Table V-4.
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In addition, the sequences Halll, Hall2, Street, and CarPark, cannot be evaluated by objective
method, because the common evaluation methods need the real captured videos to compare with the
synthesized videos. However, these sequences target outputs are at the fractional positions, that means
there are no real captured videos. Thus, the four sequences could not be used in the objective
evaluation, and their column “Eval.” is marked by “No”.

To sum up, the DERS algorithm could provide the results of sequences BookArrival, Pantomime,
Champange, LoveBirdl, and Newspaper for the objective evaluation. On the other hand, our
algorithms could not provide only the results of sequences Halll, Hall2, Street, and CarPark for the
objective evaluation.

Table V-4 Experiment setting in our evaluation

Sequence | Output Frame Size Disparity Frame DERS Our algorithms
Name No. Range Range Input No.  Avail. Eval.| Input Avail. Eval.
No.

BookArrival| 9,7 1024x768 70 0-99 12-10-8-6-4  Yes Yes| 10-8-6 Yes Yes
LoveBirdl 57 1024x768 70 0-299 2-4-6-8-10 Yes Yes| 4-6-8 Yes Yes
Newspaper | 3,5 1024x768 88 0-299 0-2-4-6-8 Yes Yes| 2-4-6 Yes Yes

Café 2,4 1920x1080 160 0-299 - No No | 1-3-5 Yes Yes
Kendo 2,4 1024x768 64 0-299 - No No | 1-3-5 Yes Yes
Balloons 2,4 1024x768 64 0-299 - No No | 1-3-5 Yes Yes

Champagne | 38,40  1280x960 110 0-499.  [35-37-39-41-43 Yes Yes |37-39-41 Yes Yes

Pantomime | 38,40  1280x960 40 0-499 " "[35-37-39-41-43 Yes Yes |37-39-41 Yes Yes
Halll 25,15 1920x1088 80 0-199 4-3-2-1-0 Yes No | 3-2-1 Yes No
Hall2 6.5,5.5 1920x1088 64 0-199 8-7-6-5-4 Yes No | 7-6-5 Yes No
Street 45,35 1920x1088 64 150-349 6-5-4-3-2 Yes No | 5-4-3 Yes No

CarPark | 4.5,3.5 1920x1088 64 200-399 6-5-4-3-2 Yes No | 5-4-3 Yes No

5.2 Comparison

5.2.1 Execution Time

For the comparison of execution time, all the algorithms are compiled by the Microsoft Visual
Studio 2010 with the optimization option of O2. The compiled programs are executed on the same PC
that has the 2.83-GHz Intel Core2 Quad CPU and the 4-Gbyte RAM with the operation system of
32-bit Windows 7. Table V-5 compares the average execution time of the proposed algorithms for one

frame. The execution time is measured in the calculation of 3 view disparity maps for the defined
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frame range listed in Table VV-4. Moreover, we scale the average execution time to the same resolution
of 1920x1080 and disparity range of 128 for our target specification. Table V-6 lists the scaled average
execution time. In which, the HQ-DE algorithm could take advantage of the single iterative BP-M to
speed up the baseline algorithm by 2.7 times in average. In addition, the HQ-DE algorithm is 9.3 times
faster than the DERS algorithm.

Compared to the HQ-DE algorithm, the SC-DE algorithm could reduce the execution time to
62.9% by the sparse computation method. On the other hand, the HE-DE algorithm employs the
proposed efficient cost diffusion method and the filter computation with decreased window size to
reduce the execution time to 57.2%.

Table V-5 Average execution time of proposed algorithms on PC for one frame

Sequence Name DERS Baseline HQ-DE SC-DE HE-DE

BookArrival 161,182 100,327 36,907 21,448 20,534
LoveBirdl 248,399 73,460 31,990 20,020 18,620
Newspaper 281,858 138,565 42,376 22,627 25,121

Cafeé N.A 1,011,112 206,917 N.A 131,773
Kendo N.A 73,755~ 31,854 21,999 17,890
Balloons N.A 72,604 - 31,640 22,531 17,880

Champagne 652,850 306,348 - 77,766 35,707 47,589

Pantomime 498,999 58,091 39,762 30,672 19,858
Halll 286,225 297,946 100,916 57,361 59,135
Hall2 800,368 220,713 88,216 55,355 49,354
Street 1,187,748 184,441 83,457 53,340 47,269

CarPark 1,377,180 195,976 84,309 54,188 47,902
Unit: ms

Table V-6 Average execution time scaled to HD1080p resolution and disparity range of 128

Sequence Name DERS Baseline HQ-DE SC-DE HE-DE
BookArrival 777,129 483,719 177,944 103,410 99,003
LoveBirdl 1,197,638 354,182 154,238 96,525 89,775
Newspaper 1,080,990 531,428 162,522 86,780 96,345
Café N.A 808,890 165,534 N.A 105,418
Kendo N.A 388,942 167,980 116,010 94,342
Balloons N.A 382,873 166,852 118,816 94,289
Champagne 1,281,961 601,556 152,704 70,116 93,447
Pantomime 2,694,595 313,691 214,715 165,629 107,233
Halll 454,592 473,208 160,278 91,103 93,920
Hall2 1,588,966 438,180 175,135 109,896 97,982
Street 2,358,028 366,170 165,687 105,896 93,843
CarPark 2,734,108 389,070 167,378 107,579 95,100
Average 1,574,223 460,993 169,247 106,524 96,725
Compared to HQ-DE 930.1%  272.4% 100.0% 62.9% 57.2%
Unit: ms
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5.2.2 Objective Quality Evaluation

The experiment setting follows the description in previous section. As mentioned in Section 2.3.4,
the common-used objective quality evaluation methods are PSNR, SSIM, and T_PSPNR. Their main
idea is to evaluate disparity quality by view synthesis results. Thus, they compare the difference
between the real captured videos and the synthesized videos, and then analyze the frame difference by
different methods. The PSNR and SSIM could be used to evaluate the spatial distortion, and the
T _PSPNR could be used to evaluate the temporal distortion. The associated software tools can be
obtained from [63], [77]. Note that the view synthesis algorithms are different for the DERS algorithm
and our proposed algorithms. The DERS algorithm cooperates with the VSRS algorithm [64], while
our proposed algorithms cooperates with the simplified VSRS algorithm [62] that adopts the Gaussian

filter for the hole filling and has approximate quality to the original VSRS algorithm.

1. PSNR Evaluation Results

Table V-7 and Table V-8 shows the PSNR. evaluation results for luminance channel only, and
Figure V-2 plots the corresponding data by column:diagram. Note that the “View0” and “View8 mean
the left most and the right most views for the 9-view displays. Note that the results of Café, Kendo,
and Balloons are not available in the DERS algorithm due to the reason described in previous section.
In addition, the proposed SC-DE algorithm could not generate disparity maps for the sequence Café
because of insufficient memory space on PC to support the extremely high resolution and large
disparity range. In this table, APSNR is the PSNR difference of our algorithm and the DERS algorithm.
The positive APSNR refers to our algorithm performs better than the DERS algorithm, and vice versa.

Compared to the DERS algorithm, the baseline algorithm could not perform better in most
sequences because the baseline algorithm only focuses on the computational reduction, instead of the
disparity quality improvement. With the temporal consistency and occlusion improvement methods,

the HQ-DE algorithm could has higher PSNR than the DERS algorithm in average.
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The SC-DE algorithm is accelerated version of HQ-DE algorithm, and suffers from slight PSNR
drops. On the other hand, the HE-DE algorithm, the other accelerated version of HQ-DE algorithm,
has the slight quality drops in all sequences except the sequence Champagne, and the average PSNR is
higher than other algorithms. That implies the proposed cost diffusion method and the new irregular
occlusion handling method could deliver better disparity maps than the other proposed algorithms.

Table V-7 Evaluation results of Y-PSNR for View0

DERS Baseline HQ-DE SC-DE HE-DE

PSNR |PSNR APSNR |PSNR APSNR [PSNR APSNR [PSNR APSNR
BookArrival | 34.28 | 35.54 1.26 |3598 1.70 |3585 158 |3580 1.53
LoveBirdl | 32.45 | 32.07 -0.38 |32.63 0.18 |[3258 0.13 |[3153 -0.92
Newspaper | 29.53 | 29.27 -0.27 |29.90 0.37 |29.84 031 |30.03 049

Café N.A. | 32.83 - 33.30 - N.A. - 33.22 -
Kendo N.A. | 34.66 - 34.84 - 34.82 - 34.88 -
Balloons N.A. | 34.72 - 35.07 - 34.79 - 3491 -

Champagne | 25.32 | 28.27 2,95 |27.63 231 |2499 -0.32 |31.07 575

Pantomime | 36.46 | 37.01 055 |3594 -0.52 |3558 -0.88 |34.66 -1.80

Average |31.61|33.04 082 |3316 081 |3264 0.16 |33.26 101
Unit: dB

Table V-8 Evaluation results of Y-PSNR for View8

DERS Baseline HQ-DE SC-DE HE-DE

PSNR | PSNR APSNR|PSNRAPSNR |PSNR APSNR |PSNR APSNR
BookArrival | 35.87 | 35.68 -0.191.35.89-°°0.02 |36.08 0.21 |36.02 0.15
LoveBirdl | 29.31 | 27.53 -1.78 | 2823 -1.08 |28.22 -1.09 |2798 -1.33
Newspaper | 31.86 | 31.29 -0.57 |31.76 -0.10 |31.65 -0.20 |31.92 0.06

Café N.A. | 32.87 - 33.01 - N.A. - 33.04 -
Kendo N.A. | 35.75 - 36.24 - 36.12 - 36.36 -
Balloons N.A. | 35.24 - 35.63 - 35.40 - 35.58 -

Champagne | 24.20 | 28.72 452 |28.11 391 |2746 326 |29.73 553

Pantomime | 34.65 | 35.85 1.20 |[36.00 135 |36.13 148 |3561 0.96

Average |31.18|32.87 064 |33.11 082 |33.01 0.73 |[33.28 1.08
Unit: dB

139



Y-PSNR for View0 (dB)

— mDERS
I— = Baseline
— ®HQ-DE
—  ESC-DE
" HE-DE
BookArrivaI LoveBirdl Newspaper Café Kendo Balloons Champagne  Pantomime
(@)
Y-PSNR for View8 (dB)
38
36
34 - —
32 B IDERS.
30 _ mBaseline
28 - — ®EHQ-DE
gg 1 ~ mSC-DE
2 " HE-DE
20 - T T T T T T T
BookArrival LoveBirdl Newspaper Café Kendo Balloons Champagne  Pantomime
(b)

Figure V-2 Evaluation results of Y-PNSR

2. SSIM Evaluation Results
In the SSIM evaluation, we calculate the average of-the SSIMs in the three channels, R, G, and B
for each sequence. Table V-9 and Table V-10 list the SSIM evaluation results for the View0 and Views,
and Figure V-3 shows the corresponding column diagrams. With the SSIM evaluation results, all the
proposed algorithms could have the approximate quality to the DERS algorithm but suffer from slight
drops less than 0.02.

Table V-9 Evaluation results of SSIM for View0

DERS Baseline HQ-DE SC-DE HE-DE
SSIM | SSIM ASSIM | SSIM ASSIM | SSIM  ASSIM | SSIM  ASSIM
BookArrival | 098 | 095 -0.02 | 095 -0.02 | 095 -0.02 | 095 -0.02
LoveBirdl | 0.95 | 095 000 | 096 0.00 | 096 0.00 | 0.95 0.00
Newspaper | 099 | 099 0.00 | 099 0.00 | 099 0.00 | 099 0.00

Café N.A. | 0.99 - 0.99 - N.A - 0.99 -
Kendo N.A. | 0.98 - 0.98 - 0.98 - 0.98 -
Balloons N.A. | 0.97 - 0.98 - 0.98 - 0.97 -

Champagne | 097 | 097 0.00 | 0.96 -0.01 | 095 -0.02 | 0.97 0.00
Pantomime | 0.98 | 098 0.00 | 098 000 | 0.97 0.00 | 097 0.00
Average 097 | 097 -001 | 097 -001 | 0.85 -0.01 | 0.97 0.00
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Table V-10 Evaluation results of SSIM for View8

DERS Baseline HQ-DE SC-DE HE-DE
SSIM | SSIM  ASSIM | SSIM  ASSIM | SSIM  ASSIM | SSIM  ASSIM
BookArrival | 0.97 | 095 -0.02 | 095 -0.02 | 095 -0.02 | 095 -0.02
LoveBird1 | 093 | 0.92 -0.01 | 0.92 -0.01 | 092 -0.01 | 092 -0.01
Newspaper | 0.99 | 098 -001 | 099 000 | 099 0.00 | 0.99 0.00
Café N.A. | 0.99 - 0.99 - N.A. - 0.99 -
Kendo N.A. | 0.98 - 0.99 - 0.99 - 0.99 -
Balloons N.A. | 0.98 - 0.98 - 0.99 - 0.98 -
Champagne | 097 | 097 0.00 | 0.96 0.00 | 096 -0.01 | 0.97 0.00
Pantomime | 097 | 097 0.00 | 097 0.00 | 097 0.00 | 0.97 0.00
Average 097 | 097 -001 | 097 -001 | 097 -0.01 | 097 -0.01
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Figure V-3 Evaluation results of SSIM

3. PSPNR Evaluation Results
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The PSPNR evaluation method [76] consists of the S_PSPNR for spatial distortion and the

T _PSPNR for temporal distortion. In this dissertation, we adopt the T_PSPNR to evaluate the

temporal consistency of disparity maps. Table V-11 and Table V-12 list the T_PSPNR evaluation

results, and Figure V-4 plots the corresponding column diagrams. Compared to the DERS algorithm,

the baseline algorithm has serious quality degradation due to no temporal consistency enhancement

applied. Taking advantage of the proposed temporal consistency enhancement methods, the HQ-DE
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algorithm could have higher performance than the DERS algorithm. Such the high performance is
slightly decreased in the SC-DE and HE-DE algorithms in most sequences because of their
acceleration methods. Nevertheless, the two fast algorithms still perform better than the DERS in most
of the sequences.

Table V-11 Evaluation results of T_PSPNR (dB) for View0

DERS Baseline HQ-DE SC-DE HE-DE
T_PSPNR|T_PSPNR AT_PSPNR|T_PSPNR AT_PSPNR|T_PSPNR AT_PSPNR|T_PSPNR AT_PSPNR
BookArrival| 52.96 | 49.83 -3.13 53.60 0.64 54.10 1.14 52.94 -0.02

LoveBirdl | 45.30 | 43.08 -2.23 46.57 1.26 46.46 1.16 45.70 0.39
Newspaper | 43.38 | 39.44 -3.94 44.09 0.71 44,19 0.82 43.65 0.27

Café N.A. | 44.00 - 46.59 - N.A. - 47.83 -
Kendo N.A. | 47.57 - 48.08 - 47.90 - 48.15 -
Balloons N.A. | 48.25 - 49.99 - 48.25 - 49.93 -

Champagne | 34.62 | 40.34 5.72 41.28 6.66 40.03 5.41 44.56 9.94

Pantomime | 51.85 | 52.10 0.25 52.19 0.35 50.12 -1.72 50.95 -0.90

Average | 45.62 | 45.57 -0.67 47.80 1.92 41.38 1.36 47.96 1.94
Unit dB

Table VV-12 Evaluation results,of T_PSPNR for View8

DERS Baseline HQ-DE SC-DE HE-DE
T_PSPNR|T_PSPNR AT_PSPNR|T:PSPNR AT _PSPNR|T-PSPNR AT_PSPNR|T_PSPNR AT_PSPNR
BookArrival| 51.82 | 50.34 -1.48 53.52 1.70 52.81 0.99 54.62 2.79

LoveBirdl | 43.33 | 41.21 -2.11 44.70 1.37 44.75 1.42 43.84 0.51
Newspaper | 47.92 | 43.43 -4.49 4796 0.04 47.24 -0.67 47.82 -0.09

Café N.A. | 43.42 - 46.86 - N.A. - 46.85 -
Kendo N.A. | 49.34 - 50.58 - 50.41 - 50.81 -
Balloons N.A. | 47.69 - 49.76 - 48.03 - 49.90 -

Champagne | 34.16 | 40.00 5.84 41.18 7.02 41.32 7.16 42.19 8.03

Pantomime | 48.45 | 49.13 0.68 50.12 1.67 49.98 1.53 50.06 1.61

Average | 45.14 | 45.57 -0.31 48.09 2.36 47.79 2.09 48.26 257
Unit dB

142



T_PSPNR for View0 (dB)

m DERS
m Baseline
uHQ-DE
uSC-DE
HE-DE
BookArrival  LoveBirdl Newspaper Café Kendo Balloons Champagne ~ Pantomime
(@)
T_PSPNR for View8 (dB)
m DERS
— mBaseline
__ mHQ-DE
m SC-DE
HE-DE
BookArrival LoveBirdl Newspaper Café Kendo Balloons Champagne  Pantomime
(b)

Figure V-4 Evaluation results of T_PSPNR

4. Disparity Maps and Synthesized Images
Finally, the disparity maps and view:synthesis results are demonstrated in Figure V-5 to Figure
V-16. The HQ-DE algorithm could improve the disparity maps and synthesized images better than the
baseline algorithm, and has comparable results to the DERS algorithm. Compared to the HQ-DE
algorithm, the SC-DE and the HE-DE algorithms has disparity noising at the object boundaries due to

their simplified methods.
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Figure V-5 Disparity maps and view synthesized images in the 50" frame of BookArrival
Results from top to down are the produced by the DERS, baseline, HQ-DE, SC-DE, HE-DE
algorithms.
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Figure V-6 Disparity maps and view synthesized images in the 50" frame of LoveBird1
Results from top to down are the produced by the DERS, baseline, HQ-DE, SC-DE, HE-DE
algorithms.
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Figure V-7 Disparity maps and view synthesized images in the 100" frame of Newspaper
Results from top to down are the produced by the DERS, baseline, HQ-DE, SC-DE, HE-DE
algorithms.

g / P /'
Figure V-8 Disparity maps and view synthesized images in the 50" frame of Café
Results from top to down are the produced by the baseline, HQ-DE, HE-DE algorithms.
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Figure V-9 Disparity maps and view synthesized images in the 50" frame of Kendo
Results from top to down are the produced by the baseline, HQ-DE, SC-DE, HE-DE algorithms.
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Figure V-11 Disparity maps and view synthesized images in the 50" frame of Champagne
Results from top to down are the produced by the DERS, baseline, HQ-DE, SC-DE, HE-DE
algorithms.
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Figure V-12 Disparity maps and view synthesized images in the 50" frame of Pantomime
Results from top to down are the produced by the DERS, baseline, HQ-DE, SC-DE, HE-DE
algorithms.
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Figure V-13 Disparity maps and view synthesized images in the 50" frame of Halll
Results from top to down are by the DERS, baseline, HQ-DE, SC-DE, HE-DE algorithms.
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Figure V-14 Disparity maps and view synthesized images in the 50" frame of Hall2
Results from top to down are by the DERS, baseline, HQ-DE, SC-DE, HE-DE algorithms.
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Figure V-15 Disparity maps and view synthesized images in the 167" frame of CarPark
Results from top to down are by the DERS, baseline, HQ-DE, SC-DE, HE-DE algorithms.
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Figure V-16 Disparity maps and view synthesized images in the 50" frame of CarPark
Results from top to down are the produced by the baseline, HQ-DE, SC-DE, HE-DE algorithms.

5.3 Summary
The disparity quality and execution time of the proposed algorithms are examined using the test
bench for view synthesis application. Compared to the DERS algorithm, the proposed HQ-DE
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algorithm has high disparity quality in the temporal PSPNR evaluation, and approximate disparity
guality in the spatial PSNR evaluation. For the computational comparison, our proposed HQ-DE
algorithm is more efficient than the DERS algorithm because our processing resolution is decreased by
the disparity upsampling technique. The computation of HQ-DE algorithm could be significantly
reduced by the proposed SC-DE and HE-DE algorithms with slight disparity quality change. Moreover,
according to their computational characteristics, the SC-DE algorithm could be further accelerated by
processor-based platforms, and the HE-DE algorithm could be accelerated by VLSI design. In the next
chapter, the HE-DE algorithm is implemented by VLSI design to achieve the required throughput of

high resolution 3DTV applications.
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VI Design of Disparity Estimation Engine for
High Definition 3DTV Applications

The main target of this dissertation is to deliver a disparity estimation engine that can generate
three view HD1080p disparity maps in the throughput of 60 frames/s. To achieve this target, we
simplify the hardware-efficient disparity estimation (HE-DE) algorithm for lower hardware cost, and
propose a corresponding hardware design. The implementation result shows that the proposed
disparity estimation engine could achieve the target throughput, and outperform the previous
implementation.

This chapter is organized as follows. First, we analyze the data dependency of HE-DE algorithm,
and simplify it to reduce more hardware cost. Then, we present the proposed architecture for the
simplified HE-DE algorithm. The details of-its computational modules and memory access schedule
are also described. Finally, the implementation result 'is demonstrated and compared with previous

work.

6.1 Architectural Analysis

6.1.1 Analysis of Hardware-Efficient Disparity Estimation Algorithm

The HE-DE algorithm could significantly reduce the memory cost and computational complexity
of HQ-DE algorithm by the proposed methods. However, the HE-DE algorithm still suffers from high
hardware cost while considering its detailed architecture. In Figure VI-1, we analyze the data
dependency of the HQ-DE algorithm that consists of the main process and the branch process in the
whole flow. The main process is from the window-based SSAD to the still-edge preservation steps for
the computation of cost cube, low-resolution disparity map, and high-resolution disparity map, while

the branch process includes the motion detection and the edge detection steps for the assistant
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information of temporal consistency enhancement. Because of no feedback data path in this flow, we
could adopt the pipelining architecture to increase the throughput of HE-DE algorithm. With the
pipelining architecture, the hardware design of HE-DE algorithm has the high memory cost problem

due to the following reasons.
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Figure VI-1 Data dependency of the HE-DE algorithm

1. Long Pipelining Stall for Branch Process
In the pipelining architecture, the size of pipelining buffer is related to the computational
characteristics of two steps and the stall cycles. The main process has the critical latency but no
pipelining stall since the produced data between each two steps can be immediately used. However,

the branch process suffers from long pipelining stall because the motion and edge maps are fetched by
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the start and the end of main process. Therefore, the branch process requires large memory space to

store the data.

2. Filter-based Process

The HE-DE algorithm employs many filter-based processes, such as bilateral filter, median filter,
dilation, erosion, and etc. By decreasing their filter size, the computational complexity is significantly
reduced in the HE-DE algorithm. However, the filter-based processes still result in high memory cost
even if the filter size is minimized to 3x3. Figure VI-2 shows the required buffers for two continuous
filter processes. The step 1 performs a 3x3 filter, and its filter center has moved to the position (x, y).
With the calculated result of Step 1, the step 2 could perform the 5x5 filter for the center position (x-2,
y-2). The two steps in the pipelining architecture demand a 2-row buffer and a 4-row buffer, whose
total memory size is 1920x6 pixels (i.e. 34.5Kbytes for 3-channel pixel) for the HD1080p resolution.
To sum up, the filter-based process is expensive on the memory cost, and a filter with radius r needs a
buffer with 2r frame rows at least. Therefore, we should try to remove the filter-based processes in the

HE-DE algorithm under the condition of no_observable impact on disparity quality.

Stepl: 3x3 filter

Centered for (X, y)
] =p 2-row Buffer

Step2: 5x5 filter
Centered for (x-2, ?/—2)

[] 4-row Buffer
=

Figure VI-2 Required row buffers in filter-based processes for pipelining architecture

3. Motion Detection with Sequential Steps
The motion detection in the HE-DE algorithm is to find the motion map for the temporal cost

calculation and the still-edge preservation. It mainly includes the frame difference computation and the
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motion map extension as shown in Figure 1\VV-34 (a). The motion detection method is simple but needs
many pipelining buffers between each two steps as shown in Figure VI-5. It results from that each step
in the motion detection is sequentially performed, and their required data are cross multiple rows. In
addition, the motion detection also suffers from the problems of filter-based processes due to the
dilation and erosion. Therefore, we should further simplify the motion detection with the consideration

of memory cost.
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Figure VI-3 Memory buffers in the motion detection

To solve the above problems, we modify partial blocks of the HE-DE algorithm in Figure VI-1.
In which, we would merge the edge detection into the sill-edge preservation, remove all the bilateral
filters (BF) and the median filters (MF), and simplify the motion detection. The improved HE-DE
algorithm could be implemented by VLSI design, and is called hardware-based disparity estimation

(HW-DE) algorithm in this dissertation.

6.1.2 Proposed Hardware-Based Algorithm
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Figure VI-4 shows the flow of proposed HW-DE algorithm. In which, the window sizes are
minimized to 3x3 for the window-based SSAD and the window vote. In addition, all the bilateral and
median filters for de-noising images are removed in the HW-DE algorithm. But it would result in that
the image noise affects the disparity quality. Therefore, the cost diffusion, temporal cost and motion

detection are also improved in the HW-DE algorithm for keeping disparity quality and lower hardware

cost.
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Figure VI1-4 Flow of the proposed HW-DE algorithm

1. Improved Cost Diffusion
The original vertical cost in (IV-23) strongly propagates previous row disparity to current costs if
their corresponding pixels are consistent. However, the pixel consistency would be not accurate
because of the image noise. Therefore, we should modify the scaling term A« and disparity difference

term for the vertical cost to decrease the dependency on the pixel consistency. The main idea of new
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defined vertical cost is to introduce the Potts model into the scaling term and disparity difference, so
that the new vertical cost is defined as

Coert (%Y, @) = Apere (AIf) X min{|d — Df (x,y — D), Tyere} (VI-1)
where e is for truncating the disparity difference, A is for scaling the cost value according to the
color distance of 1.(x, y) and 1.'(x, y-1). The value of scaling function A, should be increased while
the color distance is decreased. Thus, the scaling function A is defined as

Avert (AID) = Avertmax — Avert siope min{AIf, Yyert} - (VI-2)
where yyert and Avertsiope are for truncation and scale in the Potts model. This new vertical cost could
tolerate the inaccurate pixel consistency, because its value is adaptive with the color consistency Al ",
In addition, the disparity candidates far from previous row would not suffer from too much penalty by

the truncation term zye.

2. Improved Motion Detection
Figure VI-5 shows the simplified motion detection for the HW-DE algorithm. Compared to the
original motion detection in Figure 1V-34, the motion calculation steps are replaced by the motion
value calculation, and the dilation and erosion steps are removed. Without the separate pixel-based and
block-based motion calculation, the simplified motion detection directly computes the motion value to
decide the motion map, and passes the motion value to the temporal cost calculation. The motion value

for the low-resolution pixel at (x, y) is defined as

t — 1 t t—1
MV == [lhw) — 15 @) (VI-3)
3x3 (uw,v)es

where S is a 3x3 window centered for (2x, 4y) in the high-resolution frames. With the motion value
MV, " and the old no-motion count NMC, ", the motion decision step determines the motion flag M, by

; t t-1
ME(x,y) = {(1) le];SIeWVL (x,y) >ty or NMC[™"(x,y) < Twmc (V1-4)

In addition, the no-motion registration step also updates the old no-motion count NMC_"*to the new

one NMC_' by

166



NMCE(x, ) = {NMCLt‘l(()x, y)+1 ij; MV (x,y) <ty (VI-5)
else

Note that the edge information is not necessary in the improved motion detection. Therefore, the edge

map would not result in the high memory cost for long pipelining stall.
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Figure VI-5 Proposed motion detection in the HW-DE algorithm

3. Improved Temporal Cost
With the simplified motion detection, the outputted binary motion map M, could well support the
still-edge preservation but the temporal cost calculation due to the performance of motion map is
affected by the image noise. Thus, using the same method in the modification of vertical cost, we
modify the original temporal cost calculation from (IV-17) to
Ceemp (.Y, d) = Aeemp(MVE (x,)) X min{|d — D26, 3)], Teemp) (VI-6)
where Jienp i changed from a constant to the function of motion value MV,". The function is Aemp
defined as
/‘Ltemp MV) = Atemp,max - Atemp,slope min{M v, Vtemp}- (VI-7)
With the improvement, the temporal cost is adapted according to the motion value, instead of only the
binary motion map contaminated by image noise. The lower motion value the more impact from
previous disparity.
The proposed HW-DE algorithm could reduce most of the memory cost that results from the long

pipelining stall in the edge detection, the filter-based processes, and the motion detection. In addition,
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the proposed improved vertical cost and temporal cost could tolerate the image noise, and keep the
disparity quality without significant degradation. The proposed algorithm is implemented by VLSI

design in the following sections, and its disparity quality is evaluated in Section 6.5.

6.2 Overview of Disparity Estimation Engine

The major design challenges of the disparity estimation engine have been addressed in the
algorithm level. In the architectural design level, how to meet the target throughput with less hardware
cost is the main task. To achieve the task, this section presents the proposed high-throughput
architecture and the initial schedule for the computational circuits that could meet the target

throughput.

6.2.1 Proposed Three-Stage Pipelining Architecture

Figure VI-6 shows the proposed architecture of disparity estimation engine and the associated
peripheral resource. The proposed architecture consists of the main core and the 1/O interface. The I/O
interface accessed the required and resultant data from the external memory through a 128-bit bus, and
the main core uses the fetched data to calculate the disparity maps.

According to the computational characteristics in the proposed disparity estimation algorithm, we
propose the three-stage pipelining architecture for the main core. The first low-resolution disparity
estimation stage processes in low resolution frame, and produces the initial disparity maps and motion
information for the following stages. Then, the second stage deals with the occlusion problem in
different processing directions for the three views. Finally, the high-resolution disparity estimation
stage upsamples and refines the disparity maps in high resolution frame. Note that the pipelining
stages are row-based buffers, and the buffers between the second and third stages are the external
memory to decrease the internal memory cost.

On the other hand, in the I/O interface, the memory access controller serves all the requests from

main core to access the data in the external memory. To decrease the idle time of main core, we
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propose an efficient memory access schedule for the memory access controller, and the corresponding

data configuration for the external memory in Section 6.4.
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Figure VI-6 Overview architecture of the proposed disparity estimation engine

6.2.2 Schedule of Main Core

We assume the proposed disparity estimation engine could calculate one disparity for three views
in one cycle. This engine can achieve the throughput of 60 frames/s for three view HDO180p disparity
maps if the main core can work at the higher frequency than 125MHz. With this assumed throughput,
we propose the computational schedule of main core for calculating one disparity frame in Figure VI-7.
Note that the three view disparity maps are simultaneously produced. In this schedule, the computation
of one disparity frame requires 1920x1080 cycles, and a schedule tile has 1920x4 cycles for four
disparity rows. In a schedule tile, the former two stages produce one low-resolution disparity row, and

last stage uses it to further produce the corresponding four high-resolution disparity rows.
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Figure VI-7 Proposed computational schedule for main core

In the low-resolution disparity estimation.stage, the schedule is dominated by the forward and
backward cost diffusion. To cooperate with them, the required data should be calculated twice or once
with a data reuse technique. Considering the“memory cost into the other computation, the motion
detection applies the once calculation with data reuse technique, and the window-based SSAD and
temporal cost calculation applies the twice calculation. Therefore, for the matching cost-related
calculation, we have 4 cycles to compute the costs of a pixel with full disparity range, and the
throughput of this stage would be 1/8 pixels/cycle. For the occlusion handling stage, we do not spread
their calculation to the whole slot because of no heavy computation. For the final high-resolution
disparity estimation stage, the required throughput is 1 pixel/cycle to meet the target performance.

Based on the computational schedule of main core, we could further design the architecture of
each computational module according to the above mentioned throughput. Note that the computational

schedule will be modified by considering the external memory access in Section 6.4.

6.3 Detailed Architectural Design
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In this section, we describe the details of computational modules in each pipelining stage by the
pipelining stage scope and the module scope. The pipelining stage scope focuses on the data flow
among modules and the internal memory configuration, while the module scope focuses on the

computational logic.

6.3.1 Low-Resolution Disparity Estimation Stage

Figure VI-8 shows the architecture of low-resolution disparity estimation stage. In which, all the
computational modules has three parallel PEs for three target views. The data from the external
memory are buffered in groups of registers to support the wide data access of main core. By the
schedule in Figure VI-7, the computation of this stage consists of the forward process and the
backward process. In the forward process, the motion detection module finishes all tasks, and stores
the motion value into the internal memory lo:mval.for data reuse in the next process. In addition, the
updated no-motion count and motion flag are written to the external memory for the last pipelining
stage. At the same time, the modules from window-based SSAD to the horizontal diffusion are
performed in one frame row from left to right in the forward process. Their temporary minimal cost
and disparity rows are stored in the memory lo_min_cost and lo_cur_disp. Then, in the backward
process, they are performed in the opposite direction using the temporary data, and reuse the motion
values of the internal memory lo_mval. The produced disparity and downsampled image rows are

placed in the internal memory lo_cur_disp and lo_cur_img for the next pipelining stage.
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Figure V1-8 Architecture of the low-resolution disparity estimation stage

The architecture of the computational modules is presented as follows.

1. Motion Detection
Figure VI1-9 illustrates the input and output data in the frame coordinate system for the motion
detection module, and Figure VI-10 shows the architecture of motion detection module. In Figure VI-9,
the motion detection module uses the two 3x3 windows from the current frame I,' and previous frame
I,"'to compute the motion value MV.' and motion flag M.". In addition, the old no-motion count
NMC,"" is updated and used to extend motion map for the foreground copy artifact. The architecture
of motion detection module is directly implemented according to (VI1-3), (VI-4), and (VI-5). However,

a divider is required for normalization in (VI1-3). To remove the divider, all the associated values are
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multiplied by 9. In addition, the pixel difference in (VI-3) adopts the Manhattan color distance for low
hardware cost. Note that the truncation of MV, " in the temporal cost calculation is pre-performed here

to reduce the memory cost of motion value.
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Figure VI-9 Data access of the motion detection module in the frame coordinate system
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Figure VI-10 Architecture of the motion detection module

2. Matching Cost Calculation
For each target view, the original matching cost calculation uses the other two views as the
reference frames. In the disparity estimation engine, we simplify the side-view matching cost
calculation only using the center-view as reference frame to reduce the hardware cost. Figure VI-11
shows the input data and required data for computing the full matching costs of one pixel. For example

of the left-view matching cost calculation, the required data contains the 3x3 block of left-view input
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data (i.e. block No. 2), and the (DR+2)x3 block of center-view input data (i.e. block No. 4 and 5). The

required data for the center-view and right-view matching cost calculation are also illustrated.
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Figure VI-11 Input and required data in matching cost calculation for three target views

As mentioned in Section 6.2.2, the throughput of this module should be DR/4 costs/cycle, and it
is designed with the parallelism factor of 32 for the-disparity range of 128. Figure VI-12 shows the
proposed architecture of this module for three views. Note that the center-view has double
32-parallel-SAD PEs because of two reference views. For each disparity, the minimum matching cost

is selected. Thus, the three-view matching costs are defined as

C(g,C (x' y' d) = min{SSADC—L (‘xl yi +d)! SSADC—R (x! y' _d)} (VI_8)
C(g,L (x,y,d) = SSAD;_¢(x,y, —d) (VI-9)
C5r(x,y,d) = SSADp_c(x,y, +d) (VI-10)

where the window-based SSAD is calculated by

SSADtar—rer (,¥,d) = Lumesl i tar W v) = I rep(w + d,v)|| (VI-11)
In which, S is a 3x3 window centered for (X, y), and the Manhattan difference is adopted for the color
difference. The initial matching costs are substituted into the DPotts model by

CB (xl Y, d) = AD min{cg(xl Y, d): TD} ) (VI‘12)
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Finally, the produced Cp' is added with the temporal cost Cimp, and the vertical cost Cye' for the

horizontal cost diffusion to calculate the disparity maps. They are summed up by

Cgotal (X, Y, d) = CB (X, Y, d) + Clgemp(x' Y d) + Clsert(xr Y, d) ' (VI'13)

Window-based SSAD | D Potts
32 Parallel SAD modules :
Left-view image Iy, ' Adder | )
32x9x24bit 9x24bit. T{eel : Sell\:::rt]i.on
> -to-
J MIN2 Cot MIN2
9x10pit 32413bit [MIN2 0,C MIN2) |C At
S . : — — > DC t
Center-view image Iy ¢ oabit | . . sxobit | Crotaic
9x24bit 32 13bit 10— : - 32x10bit
e . D .
32 Parallel SAD modules :
Right-view image Ij5' |
Adder Temporal
ofoanit Tree I Cost C t
j/ -to-1 | temp,C
32x9x24bit ' Vertical Cost
gEEY b Diffusion | Cyerc'
Dl I Pipelining '
9x24bjt : |
— : |
H |
(a)
Window-based SSAD | D Potts
32 Parallel SAD.modules :
Left-view image Iy, ' ' 95CD Adder }
9x24bit 9x24t YABSY+1+ Tree [
— — s j/j/ -to-1 [
laBs|— |, g Cotll  PMING] | ¢
ANCE2ATT | oxaopit SPj3bit oL (MIN2) |cp HE) .
H H t . . P > Ll f
Center-view image luc' | ., ||i| & |i|i : 32xbit CootalL
: 1070 = : — 32x11bit
32x9x24bit |
|
Pipelining Temporal
Cost
Vertical Cost
Diffusion C\,em_t
(b)
Window-based SSAD | D Potts
32 Parallel SAD modules :
Left-view image Iy, ' Adder I
32x9x24bit 9x24hit Tree |
> -to-1 |
9x10L 324I13t Co Rt mmg t(+)
X10Dit it 5 o C
. R t : — > DR t
Right-view image Iz oxadbit | 32x6pit Chotal R
9x24bit > : : " 32x11bit
| 10tp = 32x7pit | * e
' _—
|
Pipelining Temporal
Cost
Vertical Cost
Diffusion CVen,Rt

(©
Figure VI-12 Architecture of the window-based SSAD and DPotts modules

(a) center view, (b) left view, (c) right view
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With the above equations, the window-based SSAD and the DPotts modules could be directly
implemented. The two modules calculate the matching costs pixel by pixel from left to right in the
forward cost diffusion, and the opposite direction in the backward cost diffusion. Note that the
required images are loaded twice for the two direction steps, and the sliding image buffers are applied

to reduce the external memory access.

3. Temporal Cost Calculation and Vertical Cost Diffusion
The temporal cost calculation is to generate the full temporal costs Cipn, Using the previous
disparity Dy"*(x, y) and the motion value MV, '(x, y) for four iterations. Figure VI-13 shows the
architecture of temporal cost calculation module that is implemented according to (VI-6) and (VI-7).
The 32 parallel disparity differences of |[d-Dy"™(x, y)| is implemented by look-up table to reduce 32
subtractors, and the function Aemp is also implemented by look-up table to fit its curve. The truncation

and the multiplication in (V1-6) can be simplified to adders-and shifters as shown in Figure VI-13 (b).
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Figure VI-13 Architecture of the temporal cost calculation module
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With the same simplification architecture, Figure VI1-14 shows the architecture of vertical cost
diffusion module that calculates the full vertical costs C. for four iterations. Except for the similar
architecture of disparity difference table, slope table, and slope multipliers, the vertical cost diffusion
module needs to compute the pixel difference Al_' by the Manhattan color distance. The computation
of pixel difference would result in critical path in this architecture. Thus, we install a pipelining stage
as shown in Figure VI1-14 (a).
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Figure VI-14 Architecture of vertical cost diffusion module
4. Horizontal Cost Diffusion
For the horizontal cost diffusion, we first propose a fully parallel architecture with the highest
throughput to analyze its computational characteristics, and then simplify the initial architecture to just
meet our target throughput with less hardware cost. Figure VI-15 shows the fully parallel architecture
that contains the convolution, normalization, addition, and winner-take-all (WTA) corresponding to

(IV-19) to (IV-21). The straightforward architecture can achieve the highest throughput of one best
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disparity RDyes; and one minimum cost RC.,i, per cycle. Note that the labels of data are for the right
cost diffusion as an example. The left cost diffusion can also apply this module directly.

In this fully parallel architecture, we adopt the parallel architecture proposed in [33] to the
convolution PE. The hardware cost in the convolution PE depends on the truncation term 7 in the
smoothness term V in (IV-19). To reduce the hardware cost of this PE, we change z, from the original
15 to 5 that could reduce the number of parallel adders from 3,728 to 1,338 but suffers from slight
disparity quality change as demonstrated in Section 6.5. On the other hand, in the normalization PE,
we change the normalization term « in (IV-19) from the average of diffusion costs to the minimum to
avoid a high data-width adder tree for the average computation. Finally the addition and WTA are
directly implemented according to (1\VV-18) and (I\VV-20), (IV-21), respectively.
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Figure VI-15 Fully parallel architecture of the horizontal cost diffusion module

However, the fully parallel architecture suffers from the two design problems: long critical path
and feedback data path, as shown in Figure VI-16 (a). The pipelining approach could only solve the
long critical path problems but it would violate the original functionality due to the feedback data path.
Thus, we propose the sequential architecture in Figure VI-16 (b) to simplify the fully parallel
architecture and meet our target throughput. In the sequential architecture, the four steps in the
horizontal cost diffusion are sequentially performed. The advantage of this architecture is that the four

steps could share the same registers and PE to further reduce the hardware cost.
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Figure VI-16 Architecture of the horizontal cost diffusion module
(a) fully parallel architecture;:(b) proposed sequential architecture

6.3.2 Occlusion Handling Stage

Figure VI1-17 shows the proposed architecture for the occlusion handling pipelining stage. In
which, the disparity cross warping and the good disparity detection modules are performed in the first
iteration, and then the border filling and the inside filling modules are performed in the second and
third iterations. By the schedule in Figure VI-7, the disparity cross warping module progressively
fetches a disparity row from the previous pipelining stage. Then, it detects the occlusion map and
initially fills the partial occlusion pixels. At the same time, the good disparity detection module
receives the results of disparity cross warping module to find the good disparity map. The produced
disparity, occlusion, and good disparity rows are stored in the internal memories lo_warp_disp, lo_occ,

lo_good for the following two iterations.
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In the second and third iterations, the border filling module and the inside filling module fix the
rest of occlusion by the window vote method. The required image data in the window vote are loaded
from the shared image buffers in the previous pipelining stage. With the required image data and the
other data in internal memories, the recovered disparity row is produced in the raster-scan order and

written to the external memory through the memory access controller. The detailed architecture of the

Figure VI1-17 Architecture of the occlusion handling stage

computational modules is presented as follows.

1. Disparity Cross

Figure V1-18 shows the proposed architecture for the disparity cross warping. The computation of
this module is corresponding to the two steps of left-right check (LRC) and disparity cross warping in
Figure IV-33. It produces the disparity and occlusion rows pixel by pixel in the direction from left to

right. In this module, the input disparity from previous stage is pushed into the FIFO registers. With

Warping
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the buffered disparities, the occlusion detection PEs perform the LRC process to generate the
occlusion label Oy, Oc, Or for three views. Figure VI-19 (a) shows the architecture of the occlusion
detection PE that compares the target disparity and the corresponding disparity in reference view to
determine occlusion label. Both the target disparity and its correspondence are in the FIFO registers.
Furthermore, the produced occlusion labels are shifted into the occlusion buffers for the warp
filling PEs. According to the occlusion information, two warp filling PEs in each view warps the
non-occluded disparities from the other two views to fill its occlusion pixels. Figure VI-19 (b) shows
the architecture of the warp filling PE that uses the warped non-occlusion disparity to replace one of

the original disparities to form the new disparities.
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Figure VI1-18 Architecture of the disparity cross warping module
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Figure V1-19 Architecture of the occlusion detection PE and the warp filling PE
2. Good Disparity Detection
With the disparity pixels generated by the disparity cross warping module, the good disparity
detection module is to further find the reliable disparities for the next border and inside filling. Figure
VI-20 shows the proposed architecture for the good disparity-detection module. In which, the input
disparities are shifted into the FIFO registers, and the double-LRC method is applied to find the good
disparity. Unlike the single occlusion detection PE in the disparity cross warping module for side
views, this module has two PEs because the good disparity should pass the stricter left-right check.

Finally, the output good disparity labels are stored into the internal memory lo_good in Figure VI-17.
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Figure V1-20 Architecture of the good disparity detection module

3. Border Filling and Inside Filling

The processing directions of occlusion: filling.are different in different views. For the left view,
the border filling module processes a disparity row in the right-to-left direction, and the inside filling
module processes the final disparity row in the left-to-right direction. For the right view, the two
modules are performed in opposite directions to the left view. In addition, the processing direction of
center view could follow the left view or right view.

Figure VI-21 (a) shows the architecture of border filling module that generates the new disparity
for occlusion by the disparity vote PE according to the good disparity and occlusion maps. The
disparity vote PE is identical to the window vote module in Figure VI-25. Its detailed architecture will
be presented in the next stage. On the other hand, Figure VI-21 (b) and (c) shows the architecture of
inside filling module for the center and side views. Their architecture is similar to the border filling
module, and only the constraints for filling occlusion are different. After the processing of border
filling and inside filling, the final low-resolution disparity rows are completed and written to the

external memory for the last pipelining stage.
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Figure VI-21 Architecture of border filling and inside filling modules

(@) border filling module, (b) inside filling module for center view, (c) inside filling module for side
views

6.3.3 High-Resolution Disparity Estimation Stage

In the last pipelining stage, the low-resolution disparity maps are upsampled to the

high-resolution ones by the joint bilateral upsampling, and refined by the window vote and the

184



still-edge preservation. Figure VI1-22 shows the proposed architecture for this high-resolution disparity
estimation pipelining stage, which consists of the data buffers and the three main modules. In which,
the joint bilateral upsampling module fetches the guide high-resolution image and the low-resolution
disparity from the external memory to calculate the high-resolution disparities. The new calculated

disparities are stored into the internal memory hi_cur_disp for further processes.
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Figure VI1-22 Architecture of the high-resolution disparity estimation stage

Then we consider the memory configuration in this stage as shown in Figure VI-23 The joint
bilateral upsampling module could calculate 2x4 high-resolution disparities using 1 low-resolution
disparity. At the same time, the window vote module refines the neighboring 2x4 disparities using the
4x6 disparities. Then, the still-edge preservation module masks the resultant 4x2 disparities for the
temporal consistency. In the temporary output disparities, only the data between the joint bilateral
upsampling and the window vote modules needs to be buffered, because the two modules are belong
to filter-based process. To minimize the buffer size, we install a register file memory for the two

disparity rows, and a 6x6 register array for the immediate accessed data. By the data configuration,
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this pipelining stage could easy achieve the required throughput of 1 pixel/cycle with small internal
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Figure VI-23 Memory configuration in:the high-resolution disparity estimation stage

The detailed architecture of each module is introduced.as follows.

1. Joint Bilateral Upsampling

The computation of the joint bilateral upsampling is defined in (IV-11). The architectural design
approach proposed in Section 3.3 is not applied because that approach is helpful for large filter size,
and the filter size in our algorithm is decreased to 5x5. Thus, we adopt the straightforward architecture
for the joint bilateral upsampling, and propose the low-hardware-cost multipliers for the range and
spatial kernels. Figure VI-24 (a) shows the proposed architecture for the joint bilateral upsampling
module, and Figure VI-24 (b) and (c) shows the proposed low-hardware-cost multipliers for the spatial
and range kernels. In Figure VI-24 (a), a 5x5 low-resolution disparity window is used to compute one
high-resolution disparity by considering a 5x5 low-resolution image window and a high-resolution
pixel. For the computation in (IV-11), the product of the spatial kernel f and disparity is calculated by

the proposed S_EXP multiplier in Figure VI-24 (b). The spatial kernel f is implemented by a S_EXP
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table, and the multiplication is implemented by the adders and shifters. By the similar architecture, the
proposed C_EXP multiplier in Figure VI1-24 (c) is for the range kernel g and its multiplication. In
addition, the summation and normalization in (I\VV-11) are implemented by adder-trees and the
pipelined divider as shown in Figure VI-24 (a). Note that the pipelining stages are installed for the cut

lines to break the critical paths.
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Figure V1-24 Architecture of the joint bilateral upsampling module
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2. Window Vote

The window vote module is adopted in this stage for disparity refinement, and in the previous
stage for occlusion filling. The computation of window vote method is defined in (IV-12) and (IV-13),
and the corresponding architecture is shown in Figure VI-25. In which, the vote computation in
(IV-13) is performed by the mask PE and 9 parallel vote PEs. Their architecture is shown in Figure
VI-26. In the mask PE, each disparity in the 3x3 block is compared with other disparities. For the
same disparity, the corresponding vote bit will be 1. Then, the vote bits for each target disparity are
summed up by the vote PE. Finally, the disparity selection PE in Figure VI-25 chooses the disparity
with the maximum vote as the resultant disparity. The resultant disparity is directly passed to the next

still-edge preservation module.
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Figure V1-25 Architecture of the window vote module
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Figure V1-26 Architecture of the mask and vote PEs for the window vote module
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3. Still-Edge Preservation
Figure VI-27 shows the architecture of still-edge preservation module, which replaces the current
disparity with the previous disparity for the still-edge according to the edge and motion flag. The
motion flag is fetched from the external memory, and the edge flag is computed by the Sobel filter in
this module. The horizontal gradient gx and vertical gradient gy computed by the Sobel filter are used
to decide the edge flag. If the pixel is no-motion and edge, the previous disparity would substitute the

current disparity to be sent to external memory.
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Figure VI1-27 Architecture of the still-edge preservation module

6.4 External Memory Access

The computational modules are presented in previous section, and their throughputs are designed
to fit the computational schedule in Figure VI-7. In this section, we additionally consider the external
memory access of each module into the schedule. This section is organized as follows. First, we
estimate the bandwidth requirement to determine the bus width. Then we present the external memory
architecture and its data configuration. Finally, we describe the proposed external memory access

schedule that could determine the required cycle count of our disparity estimation engine.

6.4.1 Bandwidth Requirement
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First, we estimate the bandwidth requirement of the proposed disparity estimation engine. Figure
VI-28 (a) shows the data width of access ports to the external memory. Corresponding to the previous
computational schedule, Figure VI-28 shows an initial memory access schedule for computing 4
high-resolution disparity rows. In which, the peak of bandwidth usage would occur at the access of
occlusion stage. For this peak interval, the estimated average bandwidth is estimated in Table VI-1.
The total required bandwidth is 507 bits/cycle, and the budget bandwidth using 64-bit just satisfy the
requirement. However, the average required bandwidth is an ideal value without considering the
memory row miss. Thus, we choose the 128-bit for the system bus, and adopt the DDR3 SDRAM for

the external memory.
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Figure VI-28 Rough schedule for external memory access
(a) input and output ports to external memory, (b) rough external memory access schedule
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Table VI-1 Estimated average external bandwidth for computing four disparity rows.

Accessed | No.of | No.of | No.of |Data Width| Iteration | Required Time [Bandwidth

Data |Column| Row View (bit) Count (Cycle) (bit/cycle)

pre_disp 1 1 3 7 1 4 5

Low-Resolution | pre_img 2 3 3 24 1 4 108
Disparity cur_img 2 3 3 24 1 4 108
Estimation Stage | mncount 1 1 3 3 2 4 5
mflag 1 1 3 1 1 4 1

Occlusion lo_disp 1 1 3 7 1 1 21
Handling Stage lo_img 1 1 3 24 1 1 72
lo_img 1 5 3 24 1 8 45

High-Resolution lo_disp 1 5 3 7 1 8 13
Disparity hi_img 2 6 3 24 1 8 108
Estimation Stage mflag 1 2 3 1 1 8 1
hi_disp 2 4 3 7 1 8 21

Total Required Bandwidth 507
Budget Bandwidth (DDR3 SDRAM 800MHz, 64-bit bus) 512
Budget Bandwidth (DDR3 SDRAM 800MHz, 128-bit bus) 1024

6.4.2 External Memory Architecture

For the above estimated bandwidth requirement, Figure VI-29 shows the architecture of external
memory that consists of eight DDR3 SDRAMs [110] for 128-bit bus. One of the DDR3 SDRAMSs has
8 banks, and one row has 1024 columns. In addition, the-word width is 16-bit of each SDRAM module,
and the data width of the merged SDRAMSs would-be 128-bit. According to the latency information in
[110], the DDR3 SDRAMs could work at the highest frequency of 800 MHz. They could output data
at the positive and negative edges of clock signal, and there are two transfers in one cycle. Thus, the

external memory architecture can provide the bandwidth of 800Mx128x 2 bits (i.e. 25,600 Mbytes/s).
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Figure VI1-29 Architecture of external memory in our design
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Figure VI-30 summarizes the data access latency of the external memory at the clock frequency
of 800MHz. According to the associated latencies defined in [110], we could obtain the row miss

latencies for different access types, and apply them to arrange the external memory access schedule.
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Figure VI1-30 Read and write latency-in'the. SDRAM model [110]

6.4.3 Data Configuration in External Memory

For the external memory, we propose the data configuration method as illustrated in Figure VI-31
to achieve efficient data access. The high-resolution videos and disparity maps are configured in the
bankO to bank5, and each view placed in one bank. The high resolution is mainly used by the motion
detection, downsampled matching cost and the joint bilateral upsampling modules. Since their access
are in the raster-scan order and cross multiple rows, 16 continuous pixels and disparities are packed,

and neighboring pixel and disparity rows are in the same memory row to avoid frequent row miss.

For the low-resolution images and disparity maps are configured in the bank6, and their three
view data are packed together as shown in Figure VI-31 (c). The low-resolution data are mainly
accessed by the occlusion handling and the joint bilateral upsampling modules. Their access

characteristic is similar to the above high-resolution data, so that they are configured with the same
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manner. In addition, the disparity is bound with the image pixel as the image-disparity pixel because
their accessed positions in image coordinate are identical. On the other hand, the low-resolution
motion information is configured in bank?7 as illustrated in Figure VI-31 (d) and (e). They are accessed
by the motion detection and the still-edge preservation modules in the raster scan order without

crossing multiple rows. Therefore, we place each motion information row into the same memory row.
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Figure V1-31 Data configuration in external memory
() high-resolution videos in bank 0, 1, 2, (b) high-resolution disparity maps in bank 3, 4, 5, (c)
low-resolution image and disparity map in bank 6, (d) no-motion count in bank 7, (e) motion flag in
bank 7.

6.4.4 External Memory Access Schedule

With the above mentioned data configuration in the-external memory, we could further plan the
external memory access schedule. Figure VI-32 shows the schedule of external memory access that is
a hierarchy schedule from one frame to an access tile. By the schedule of access tile, the memory
access controller can use a finite-state machine to read or write data for the main core computation.
The order of data access follows the numbers in this figure. Note that each access block only uses the
beginning cycles and preserves other cycles for row miss handling. Note that the available block at the
bank 6 is preserved for the occlusion handling stage. We do not schedule the access of occlusion
handling stage because its access period is very long and different from others. With the same reason,
the motion information at the bank 7 is also not scheduled.

With this proposed external memory access schedule, the required data for one-frame
computation could be completely accessed in 8.36Mcycles at the memory clock rate of 800MHz. In
other words, the data throughput from external memory could achieve 95.6 frames/s. For the previous
computational schedule, our main core could achieve 112.5 frames/s at the working frequency of 200

MHz. In other words, the performance bottleneck of our disparity estimation engine is the external

194



data access, instead of the computational speed. Nevertheless, the proposed disparity estimation

engine could outperform our target throughput.
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Figure VI-32 Schedule of external memory access for one HD1080p frame at 800MHz

6.5 Implementation Result

6.5.1 Hardware Cost

The proposed architecture of disparity estimation engine is implemented by the Verilog and
synthesized using the UMC90nm technology process. Table VI-2 lists the performance of our disparity
estimation engine. The proposed engine could use the three view HD1080p videos to calculate their
corresponding three view disparity maps. The support disparity range could be 128 pixels. The
required system memory is DDR3 SDRAM working at the clock frequency of 800MHz, and the

system bus is 128-bit with the same clock frequency. The core module could achieve the throughput of
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75.64G pixel-disparities/s by the logic cost of 1,645K gate counts and the memory cost of 59.4Kbytes.
In other words, our disparity estimation engine could deliver 95 frames/s for three view HD1080p
disparity maps.

Table VI-2 Performance of the proposed disparity estimation engine

Input Data 3 View HD1080p Videos
. Disparity Range (Pixel) 128
1/ Function Output Data 3 View HD1080p Disparity Maps
Frame Rate (Frame/s) 95
System External Memory DDR3 SDRAM (800MHz)
Bus Width (Bit) 128 (800MHz)
Technology Process UMC 90nm
Clock Frequency 200MHz
Core Gate-Count (Including Memory) 2,020K
Gate-Count (Excluding Memory) 1,645K
Internal Memory (Byte) 59.4K
Throughput (Pixel-Disparity/s) 75.64G

Table VI-3 lists the internal SRAM usage for each pipelining stage. In which, the most usage is
the low-resolution image buffers lo_cur_img, which is a shared buffer for the low-resolution disparity
estimation stage and the occlusion handling stage. In addition, the SRAM usage of the high-resolution
disparity estimation stage is also high due“to.the disparity row buffers for the joint bilateral

upsampling and the window vote modules. The total gate-count for these internal SRAMs is about

375.6K.
Table VI-3 Internal SRAM usage in the proposed disparity estimation engine
Memory Type Word Num. Word Width Count (SBIT'S
lo_pre_disp single-port 960 21 1 20,160
lo_mval single-port 960 24 1 23,040
Low-Resol. DE Stage  lo_min_cot single-port 960 33 1 31,680
lo_cur_disp dual-port 960 21 2 40,320
lo_cur_img single-port 960 72 3 207,360
lo_occ single-port 960 3 3 8,640
Occlusion Handling Stage lo_warp_disp single-port 960 21 3 60,480
lo_good single-port 960 3 1 2,880
High-Resol. DE Stage  hi_cur_disp two-port 1,920 21 2 80,640
Total 475,200

Table VI-4 lists the internal registers in each stage. Most of the registers are the access buffers in

the 1/0 interface module. Because the registers are accessed by the main core with high data width,
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they are not implemented by SRAM. In this table, the most register usage is the image data for the
window-based SSAD in the low-resolution DE stage. It results from that the access to compute
parallel matching costs in one cycle. The total register usage is 73Kbits, which is about 396K
gate-counts.

Table VI-4 Internal registers in the proposed disparity estimation engine

Row Num. Word Num. Word Width Count (SB'T,S
hi_pre_img 3 16 24 3 3,456
lo_nmcount 1 14 3 6 252
lo_mflag 1 42 1 3 126
Low-Resol. DE Stage hi_pre_disp 1 16 7 3 336
hi_cur_img_| 3 146 24 1 10,512
hi_cur_img_c 3 273 24 1 19,656
hi_cur_img_r 3 146 24 1 10,512
ref_disp_buf 1 259 7 1 1,813
Occlusion Handling Stage Wg%g:;fgggf % 129 274 g zggg
lo_img_disp 1 16 31 6 2,976
lo_img_disp 5 9 31 3 4,185
hi_cur_img 6 22 24 3 9,504
. lo_mfla 2 42 1 3 252
High-Resol. DE Stage hi_Ere_digsp 4 18 7 3 1,512
hi_cur_disp 4 32 7 3 2,688
hi_disp_buf 6 6 24 3 2,592
Total 73,729

Table VI-5 lists the area of each module by the unit of gate count. In which, the half hardware
cost is occupied by the window-based SSAD modules due to its parallel computation for matching
costs. On the other hand, the horizontal cost diffusion has 17.1% hardware cost of whole core. That is
because its convolution PE requires many parallel adders.

Table VI-5 Area of the computational logic

Module Gate Count Percentage

Motion Detection 19,058 1.5%

Window-based SSAD, DPotts 616,725 49.4%

Low-Resol. DE Stage Temporal Cost, Vertical Diffusion(Center-View) 54,541 4.4%
' Temporal Cost, Vertical Diffusion(Side-View) 102,077 8.2%

Horizontal Diffusion (Computation) 213,495 17.1%

Horizontal Diffusion (Registers) 4,794 0.4%

Warp Filling 31,688 2.5%

Occlusion Handling Stage Good Disparity Detection 5,210 0.4%
Border and Inside Filling 36,174 2.9%

Joint Bilateral Upsampling 125,457 10.0%

Occlusion Stage Window Vote 30,318 2.4%
Still-Edge Preservation 8,887 0.7%

Total 1,248,422 100%
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Finally, Table VI-6 compares the previous implementation of real-time disparity estimation. For

the GPU implementation, the previous work [43], [33] could deliver accurate disparity maps by the

BP-based algorithm, but their throughputs are far from the requirement of real-time high-definition

process. For the hardware design, Diaz et al. [111] implemented a high-throughput disparity

estimation engine on FPGA but its disparity quality is not good enough for 3DTV applications due to

its local disparity estimation approach. On the other hand, the ASIC implementation [10] could

achieve real-time frame rate and requires low memory cost. But it supported frame resolution is only

CIF. The other AISC implementation [33] could reach high frame rate for the VGA resolution, but it

suffers from extremely high memory cost because of the BP algorithm. Compared to the related

implementation, our disparity estimation engine could have the highest throughput with less hardware

cost than the implementation [33] to satisfy the requirement of high definition 3DTV applications.

Table V1-6 Comparison of our design and previous implementation

Yang [43] Liang [33] Diaz[111] /Chang[10] Liang[33] Our Design
No. Input View 2 2 2 2 2 3
No. Output View
(Disparity Map) ! ! i ! ! 8
Hierarchical Phase Mini-Census Cost
Algorithm BP Tile-based BP Matching ADSW Tile-based BP Dlgfgt:on
Frame Size 800x600 450% 375 1280x960 352x288 640x480 1920x1080
Frame Rate 0.67 1.68 52 42 58 95
(Frame/s)
Disparity Range 300 60 29 64 64 128
(Pixels)
GPU GPU FPGA ASIC ASIC ASIC
Implementation Nvidia Nvidia Xilinx UMC90nm UMC90nm UMC 90nm
Method Geforce Geforce Vertex-Il
8800GTX 8800GTS
Frequency (MHz) - - 65 95 185 200
Logic Area ) ) )
(Gate-Count) 562K 633K 1,645K
Memory Usage - - - - 1,871K 375K
(Gate-Count) (9Mbtye) (21.3Kbyte) (59.4Kbyte)
Total Area - - - - 2,505K 2,020K
Throughput 96M 17M 1,885M 272M 1,146M 75,644M

(Pixel-Disparity/s)
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6.5.2 Disparity Quality

In this subsection, we demonstrate the disparity quality of disparity estimation engine using the
same objective evaluation method in Chapter V. The first version of the algorithm for hardware design
is called HW-DE algorithm, while the final version is called modified HW-DE algorithm. The only
difference between the two algorithms is that the smoothness term in the cost diffusion process.
Because the parameter 7y could impact on the hardware cost, we change its value in the modified
HW-DE algorithm to decrease hardware cost. In the following, we demonstrate the disparity quality
change between the two algorithms. In addition, the evaluation results of DERS, HQ-DE, and HE-DE
algorithms are also compared to the HW-DE algorithms.

Table VI-7 and Table VI-8 list the Y-PSNR evaluation results, and its corresponding column
diagram is shown in Figure VI-33. Compared to the HE-DE algorithm, the HW-DE algorithm has the
slight quality drop especially for the sequence LoveBirdl. The disparity quality of modified HW-DE
algorithm is approximate to HW-DE in-the spatial distortion. For the other spatial distortion evaluation
SSIM as shown in Table VI-9, Table VI-10, and Figure VI1-34, the HW-DE and modified HW-DE
algorithms have similar quality to the HE-DE algorithm. Finally, Table VI-11 and Table VI-12 lists the
temporal distortion evaluation T_PSPNR, and its corresponding column diagram is shown in Figure
VI-35. The evaluation results show that the HW-DE and the modified HW-DE algorithms have the
same quality change, compared to the HE-DE algorithm. They suffer from quality degradation for the

sequences LoveBird1 and Newspaper.
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Table VI-7 Evaluation results of Y-PSNR for View0

DERS HQ-DE HE-DE HW-DE Modified HW-DE

PSNR |PSNR PSNR|PSNR APSNR|PSNR APSNR| PSNR APSNR

BookArrival | 34.28 | 3598 1.70 | 35.80 153 | 35.64 1.36| 35.46 1.19
LoveBirdl | 32.45|32.63 0.18 | 3153 -0.92 | 31.32 -1.13| 31.09 -1.36
Newspaper | 29.53 [ 29.90 0.37 | 30.03 049 | 29.93 0.40| 29.91 0.38

Café N.A. [ 33.30 N.A. | 3322 NA. | 3265 N.A.| 3252 N.A.

Kendo N.A. | 3484 N.A. | 3488 N.A. | 34.78 N.A.| 34.76 N.A.

Balloons | N.A. | 35.07 N.A. [ 3491 N.A. | 34.78 N.A.| 34.83 N.A.
Champagne | 25.32 | 27.63 2.31 | 31.07 5.75 | 30.74 542| 30.63 531
Pantomime | 36.46 | 35.94 -0.52 | 34.66 -1.80 | 36.54 0.08| 36.64 0.18
Average |31.61|33.16 0.81 [33.26 1.01 | 33.30 1.23] 33.23 1.14

Unit: dB

Table VI1-8 Evaluation results of Y-PSNR for View8

DERS HQ-DE HE-DE HW-DE Modified HW-DE

PSNR |PSNR PSNR|APSNR PSNR|PSNR PSNR| APSNR APSNR

BookArrival | 35.87 | 35.68 -0.19 | 36.02 0.02 | 35.80 -0.07 35.62 -0.24

LoveBirdl | 29.31 | 27.53 -1.78 | 27.98 -1.08 | 27.67 -1.64 27.68 -1.63
Newspaper | 31.86 | 31.29 -0.57 | 31.92 -0.10 | 31.75 -0.11 31.72 -0.14

Café N.A. | 32.87 - 33.04 - 32.70 N.A. 32.48 N.A.

Kendo N.A. | 35.75 - 36.36 - 36.15 N.A. 36.10 N.A.

Balloons N.A. | 35.24 - 35.58 g 35.35 N.A. 35.38 N.A.

Champagne | 24.20 | 28.72 452 | 29.73 391 {.29.78 5.58 29.51 531

Pantomime | 34.65 | 35.85 1.20 | -:35.61 1:35 | 35.66 1.01 35.65 1.00

Average | 31.18 | 33.11 0.82 |-33.28 1.08 | 3311 0.95 33.02 0.86

Unit: dB

Y-PSNR for View0 (dB)
T | ~ mDERS
] ] [ | [ | _ =HQ-DE
1 —— — — — ©HE-DE
7 ] ] ] ~  ©HW-DE
| ] ] ] = Modified HW-DE
BookArrival  LoveBirdl ' Newspaper ' Café Kendo Balloons ' Champagne' Pantomime
(a)
Y-PSNR for View8 (dB)
T | ~ mDERS
] ] | | _ =HQ-DE
1 — — — — — ©HE-DE
T | | | B B HW-DE
| I | | q = Modified HW-DE
BookArrival  LoveBirdl  Newspaper ' Café Kendo Balloons ' Champagne ' Pantomime
(b)

Figure VI1-33 Evaluation results of Y-PNSR
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Table VI1-9 Evaluation results of SSIM for View0
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Figure VI-34 Evaluation results of SSIM
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DERS HQ-DE HE-DE HW-DE Modified HW-DE
SSIM |SSIM SSIM | SSIM ASSIM |SSIM ASSIM | SSIM  ASSIM
BookArrival | 0.98 | 095 -0.02| 095 -0.02 095 -0.02 0.95 -0.02
LoveBirdl | 0.95 | 0.95 0.00 | 0.95 0.00 0.95 0.00 0.95 -0.01
Newspaper | 0.99 | 099 0.00 | 0.99 0.00 0.99 0.00 0.99 0.00
Café N.A. | 0.99 - 0.99 - 0.99 N.A. 0.99 N.A.
Kendo N.A. | 0.98 - 0.98 - 0.98 N.A. 0.98 N.A.
Balloons N.A. | 0.97 - 0.97 - 0.97 N.A. 0.97 N.A.
Champagne | 0.97 | 0.97 0.00 | 0.97 -0.01 0.97 0.00 0.97 0.00
Pantomime | 0.98 | 0.98 0.00 | 0.97 0.00 0.98 0.00 0.98 0.00
Average 097 | 097 -0.01| 097 0.00 0.97 0.00 0.97 0.00
Table VI-10 Evaluation results of SSIM for View8
DERS HQ-DE HE-DE HW-DE Modified HW-DE
SSIM |SSIM SSIM |SSIM  ASSIM |SSIM ASSIM | SSIM  ASSIM
BookArrival | 0.97 | 0.95 -0.02 | 095 -0.02 0.95 -0.02 0.95 -0.02
LoveBirdl | 0.93 | 0.92 -0.01| 092 -0.01 092 -0.02 0.92 -0.02
Newspaper | 0.99 | 098 -0.01| 0.99 0.00 0.99 0.00 0.99 0.00
Café N.A. | 0.99 - 0.99 - 0.99 N.A. 0.99 N.A.
Kendo N.A. | 0.98 - 0.99 - 0.99 N.A. 0.99 N.A.
Balloons N.A. | 0.98 - 0.98 < 0.98 N.A. 0.98 N.A.
Champagne | 0.97 | 0.97 0.00 | 0.97° 0.00 0.97 0.00 0.97 0.00
Pantomime | 0.97 | 0.97 0.00 | 0.97 0.00 0.97 0.00 0.97 0.00
Average 0.97 | 0.97 -0.0110.97 - =0.01 097 -0.01 0.97 -0.01
SSIM for View0
[ ] N ] ~ mDERS
| | | _ =HQDE
I I I | HE-DE
I — I | HW-DE
i i i I I I = Modified HW-DE
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SSIM for View8
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Table VI-11 Evaluation results of T_PSPNR (dB) for View0

DERS HQ-DE HE-DE HW-DE Modified HW-DE
T_PSPNR|T_PSPNR T_PSPNR|T_PSPNR AT_PSPNR|T_PSPNR AT_PSPNR|T_PSPNR AT_PSPNR
BookArrival| 52.96 | 53.60 0.64 52.94 0.64 52.93 -0.03| 52.65 -0.31
LoveBirdl | 45.30 | 46.57 1.26 45.70 1.26 45.65 0.35| 45.37 0.07
Newspaper | 43.38 | 44.09 0.71 43.65 0.71 43.51 0.13] 43.37 -0.01
Café N.A. 46.59 - 47.83 - 46.38 N.A.| 46.51 N.A.
Kendo N.A. 48.08 - 48.15 - 48.12 N.A.| 48.02 N.A.
Balloons N.A. 49.99 - 49.93 - 49.87 N.A.| 49.89 N.A.
Champagne | 34.62 | 41.28 6.66 44.56 6.66 45.00 10.38| 44.87 10.25
Pantomime | 51.85 | 52.19 0.35 50.95 0.35 52.58 0.73] 52.66 0.81
Average | 45.62 | 47.80 1.92 47.96 1.94 48.01 231 47.92 2.16
Unit: dB
Table VI1-12 Evaluation results of T_PSPNR (dB) for View8
DERS HQ-DE HE-DE HW-DE Modified HW-DE
T_PSPNR|T_PSPNR T_PSPNR|T_PSPNR AT_PSPNR|T_PSPNR AT_PSPNR|T_PSPNR AT_PSPNR
BookArrival| 51.82 | 53.52 1.70 54.62 1.70 53.70 1.88| 53.87 2.05
LoveBirdl | 43.33 | 44.70 1.37 43.84 1.37 43.27 -0.06| 42.82 -0.50
Newspaper | 47.92 | 47.96 0.04 | 47.82 0.04 47.19 -0.73| 47.01 -0.91
Café N.A. 46.86 - 46.85 - 45.96 N.A.| 45.84 N.A.
Kendo N.A. 50.58 - 50.81 - 50.66 N.A.| 50.50 N.A.
Balloons N.A. 49.76 - 49.90 2 49.85 N.A.| 49.84 N.A.
Champagne | 34.16 | 41.18 7.02 42.19 7.02 43.08 8.91| 4271 8.54
Pantomime | 48.45 | 50.12 1.67 50.06 1.67 50.03 1.58| 50.06 1.61
Average | 45.14 | 48.09 2.36 48.26 2.57 47.97 2.32| 47.83 2.16
Unit: dB
T_PSPNR for View0 (dB)
1 ~ mDERS
1 EE— — — —— — mHQ-DE
) | | | | _ "HE-DE
HW-DE
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Figure VI1-35 Evaluation results of T_PSPNR
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6.6 Summary

In this chapter, we simplify the HE-DE algorithm by removing the de-noising filters, and improve
the motion detection by considering the hardware cost. According to the HW-DE algorithm, we
propose a high throughput disparity estimation engine using the three-pipelining-stage architecture and
well-defined external memory access schedule. The implementation result shows that the proposed
disparity estimation engine could achieve 95 frames/s for three view HD1080p disparity maps. The
final quality evaluation shows that the disparity estimation engine only has slight quality drop in

average.
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VIl Conclusion

7.1 Contribution

For the high definition 3DTV applications, the disparity estimation is one of the most important
processes to generate disparity maps for view synthesis. The state-of-the-art DERS algorithm could
provide high quality disparity maps but incurs high computational complexity. Because of its irregular
and non-parallel graph-cut algorithm, it could not be accelerated to meet the high throughput
requirement by software programming and hardware design.

To address the problem, this dissertation proposes the baseline disparity estimation algorithm that
combines the belief propagation with the joint bilateral upsampling. The former has highly parallel
computational characteristic, and the latter could reduce the computational resolution of disparity
estimation.

Based on the baseline algorithm, we- further propose -the high-quality disparity estimation
(HQ-DE) algorithm that could deal with the temporal-consistency and occlusion problems to deliver
high quality disparity maps. To accelerate the HQ-DE algorithm, we propose two fast algorithms by
different strategies for different implementation. The first spare-computation disparity estimation
(SC-DE) algorithm is suitable to software programming. That could reduce the computation of dense
belief propagation to 13.4%, and the overall execution to 62.9%. The other hardware-efficient
disparity estimation (HE-DE) algorithm is suitable to VVLSI design, and could reduce the memory cost
of original belief propagation to 0.00029% and achieve the approximate reduction of execution time to
SC-DE algorithm. The objective evaluation results show that the proposed HQ-DE algorithm could
deliver better disparity maps than the DERS algorithm, and the two fast algorithms has slight quality
drop compared to the HQ-DE algorithm.

Following the HE-DE algorithm, we further simplify its computation to reduce the hardware cost

in the algorithm level with slight quality drop, and deliver the hardware-based disparity estimation
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(HW-DE) algorithm. By the architectural design techniques, we propose a disparity estimation engine
that applies the three-stage pipelining architecture and parallel PEs to increase its throughput. The
implementation result shows that our disparity estimation engine could achieve the throughput of 95
frames/s for the three view HD1080p disparity maps. Such the high throughput disparity estimation

engine could be applied to high definition 3DTV systems.

7.2 Future Work

In this dissertation, the occlusion handling method and the evaluation results could be improved
in the future work. For the occlusion problems, this dissertation fills the occlusion regions by the
reliable disparities from the spatial and the inter-view domains. However, the disoccluded regions,
which are visible only at one viewpoint, could not be filled well by the disparities from the two
domains. To address this special case, .we could detect the reliable disparities from the temporal

domain. In other words, the reliable disparities would be at previous or next frames.

For the evaluation method, this dissertation-adopts the common-used three objective evaluation
methods which are compares the real captured videos with the synthesized videos using the proposed
disparity maps. However, these evaluation methods are performed on 2-D videos, instead of 3-D
videos. For the 3-D videos, the subjective evaluation method needs to be applied. Therefore, both the
objective evaluation and the subjective evaluation methods should be used to assess the disparity

quality.

In addition, the disparity map for scene change should be considered, especially for the temporal
consistency and the sparse regions in the SC-DE algorithm. To deal with it, we could detect the frame
with scene change according the total difference of successive frames, and initialize the motion
information in the temporal consistency methods and the propagated cost cubes in the SC-DE

algorithm.
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