

國 立 交 通 大 學

電機與控制工程學系

碩 士 論 文

適用於多輸入多輸出正交分頻多工 Wi-MAX 系統之可變長度

快速傅立葉轉換

A Variable FFT for MIMO-OFDM Systems over Wi-MAX
Applications

研 究 生：葉柏賢

指導教授：蔡尚澕 教授

中 華 民 國 九 十 七 年 十一 月

適用於多輸入多輸出正交分頻多工 Wi-MAX 系統之可變長度快速傅

立葉轉換

A Variable FFT for MIMO-OFDM Systems over Wi-MAX Applications

研 究 生：葉柏賢 Student：Bo-Xian Ye

指導教授：蔡尚澕 Advisor：Shang-Ho Tsai

國 立 交 通 大 學
電 機 與 控 制 工 程 學 系

碩 士 論 文

A Thesis

Submitted to Department of Electrical and Control Engineering

College of Electrical Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

 Electrical and Control Engineering

November 2008
Hsinchu, Taiwan, Republic of China

中華民國 九 十 七 年 十一 月

適用於多輸入多輸出正交分頻多工 Wi-MAX 系統之可變長度快速傅立葉轉換

學生：葉柏賢

指導教授：蔡尚澕

國立交通大學電機與控制工程學系﹙研究所﹚碩士班

摘 要

在這篇論文，我們介紹一個可以應用於 Wi-MAX 系統中的可變長度快速傅立

葉轉換。這個可變長度快速傅立葉轉換可以提供許多快速傅立葉轉換的長度及多

天線傳輸。這個 2048/1024/512/128-point 可變長度快速傅立葉轉換是以 radix-2
及 3radix-2 快速傅立葉轉換演算法。我們也提出一個記憶體分享的方法去減少記

憶體的使用。這個方法比較於 R2SDF 的方法可以減少 ROM 表格大小從 1023N/1024

到 N/4 ，N 為快速傅立葉轉換的長度。此外，我們使用 3radix-2 快速傅立葉轉換

演算法使得複數乘法器的數量減少並且也使用修正的複數乘法器使的所使用的

邏輯閘數比較少。如此功率消耗也能更加節省。我們所提出的可變長度快速傅立

葉轉換是使用台積電 0.18um CMOS 製程所製造，晶片的面積為 25 2mm 。當處理

器操作於頻率 40MHz 時所需的功率為 181 mW。

A Variable FFT for MIMO-OFDM Systems over Wi-MAX Applications

Student：Bo-Xian Ye

Advisors：Dr. Shang-Ho Tsai

Department﹙Institute﹚of Electrical and Control Engineering

National Chiao Tung University

ABSTRACT

In this thesis, we present a variable FFT that it support multiple FFT size and
multiple antennas for Wi-MAX systems. The 2048/1024/512/128-point variable FFT
is based on radix-2 and 3radix-2 FFT algorithm. We propose a memory sharing
method to reduce the memory size. This method can reduce the ROM table size from
1023N/1024 to N/4, where N is the FFT size, compared with R2SDF. Furthermore,
we use the 3radix-2 FFT algorithm to reduce the number of complex multipliers, and
the modified complex multiplier leads to a smaller gate count. Thus, the power
consumption can be to reduced as well. The proposed variable FFT is fabricated using
a TSMC 0.18um CMOS technology with chip area 25 2mm . The average dynamic
power consumption is 181 mW at 40 MHz operating frequency.

誌 謝

 兩年來的研究生活終於要告一個段落了，此篇論文能夠順利的完

成首先要感謝的是我的指導教授蔡尚澕教授。在兩年的研究生活中，

老師不辭辛苦的一步一步的帶領我們走進通訊晶片設計的領域，也很

配服老師的研究精神及超人的體力，讓我在學習上也有更明確的目

標。也希望老師在忙碌之於能多愛惜自己的身體。也感謝我的口試委

員:林源倍教授、簡鳳村教授、董蘭榮教授的經驗提供使得我的論文更

加的完整。

 另外，感謝 535 實驗室的學長及同學，因為有你們在課業上的幫

忙及意見的提供，讓我在修課上的疑惑能夠有很大的幫助。另外，還

需感謝實驗室一起打拼的同學，讓我在作研究中可以有更多的思考方

式去解決作研究時所遇到的種種困難。也感謝學弟妹們的加入，因為

有你們的加入使的我的研究生活更加有樂趣。

 最後，我要感謝的是我偉大的母親，感謝她一直在背後為了我默

默的付出，一直在背後支持著我，因為有妳的支持及鼓勵使得我在作

任何事情都能更有力量更有信心。

 將此篇論文獻給所有關心我幫助我的人，感謝你們。

A Variable FFT for MIMO-OFDM Systems over

Wi-MAX Applications

Bo-Xian Ye

Advisor: Dr. Shang-Ho Tsai
Department of Electrical and Control Engineering

National Chiao Tung University

November 28, 2008

Abstract

In this thesis, we present a variable FFT that it support multiple FFT
size and multiple antennas for Wi-MAX systems. The 2048/1024/512/128-
point variable FFT is based on radix-2 and radix-23 FFT algorithm. We
propose a memory sharing method to reduce the memory size. This method
can reduce the memory size from 1023N

1024 to N
4 , where N is the FFT size,

compared with R2SDF. Furthermore, we use the radix-23 FFT algorithm
to reduce the number of complex multipliers, and the modified complex
multiplier leads to a smaller gate count. Thus, the power consumption
can be to reduced as well. The proposed variable FFT is fabricated using
a TSMC 0.18um CMOS technology with chip area 25mm2. The average
dynamic power consumption is 181mW at 40MHz operating frequency.

Contents

1 Introduction 1

1.1 Motivation and goal . 1

1.2 Contributions and Features . 3

2 Background 5

2.1 FFT for MIMO systems . 5

2.1.1 Algorithm . 6

2.1.2 Architecture . 9

2.2 Variable FFT . 19

2.2.1 Pipeline FFT processor architecture 20

2.2.2 Variable FFT processor architecture 21

3 The proposed variable FFT for MIMO systems 24

3.1 Algorithm . 24

3.2 Architecture . 27

3.2.1 Module 1 (data reordering) 28

3.2.2 Module 2 to 6 (radix-2 FFT algorithm) 29

3.2.3 Module 7 (radix-23 FFT algorithm) 33

3.2.4 Module 8 (radix-23 FFT algorithm) 33

3.3 Complexity comparison . 34

3.4 Simulation . 35

4 Chip implementation and verification 37

4.1 Cell-based design flow . 39

i

4.2 Chip summary . 43

5 Conclusions 45

ii

List of Figures

2.1 The SFG of 128-point mixed-radix FFT. 8

2.2 Block diagram FFT/IFFT. 9

2.3 Block diagram of the 128/64-point FFT/IFFT processor. 10

2.4 (a) Order of input; (b) Order of output. 11

2.5 Block diagram of Module 1. 11

2.6 Relation between Module 1 input and Module 1 output. 12

2.7 Block diagram of Module 2. 13

2.8 (a) Architecture of multiplexer; (b) Operation mode of multiplexer. 14

2.9 Architecture of four antenna R2SDF FFT 128-point at stage one. 15

2.10 Save data in memory. 15

2.11 Operation of radix-2. 16

2.12 Module 2 memory bank. 16

2.13 Block diagram of Module 3. 17

2.14 Two operation mode. 17

2.15 Eight region of twiddle factor. 18

2.16 Block diagram of Module 4. 19

2.17 Architecture of R2MDC. 21

2.18 Architecture of R2SDF. 21

2.19 Block diagrams of a variable FFT processor. 22

2.20 The SFG of 64-point mixed-radix FFT. 23

3.1 The SFG of stage 1 to stage 5 (radix-2). 27

3.2 The SFG of stage 6 to stage 7 (radix-23). 27

3.3 Block diagram of the variable FFT processor. 28

iii

3.4 The input and output relationship of FFT. 28

3.5 (a) Read and write with column; (b) Read and write with row. . . 29

3.6 Relation between Module 1 input and Module 1 output. 29

3.7 Block diagram of Module 2. 30

3.8 Memory sharing from Module 2 to Module 6. 31

3.9 (a) ROM table at clock cycle 1024 to 2047; (b) ROM table at clock

cycle 2048 to 3071. 32

3.10 (a) ROM table at clock cycle 1024 to 2047; (b) ROM table at clock

cycle 2048 to 3701. 32

3.11 Analysis for critical path. 33

3.12 The FFT critical path. 33

3.13 System model of SQNR. 35

3.14 SQNR v.s. SNR. 36

4.1 A Design flow. 38

4.2 Simulation environment for variable FFT. 39

4.3 Bit-width in all stage. 40

4.4 BIST circuit. 41

4.5 From Flip-Flop to scan Flip-Flop. 41

4.6 Layout view of the proposed FFT processor. 43

iv

List of Tables

2.1 Mapping table of twiddle factors in different regions. 18

2.2 FFT size in several OFDM systems. 20

3.1 Comparison of hardware requirement. 34

4.1 Expected chip performance of the proposed FFT processor. 44

4.2 Comparison of chip performance. 44

v

Chapter 1

Introduction

1.1 Motivation and goal

Wi-MAX (Worldwide Interoperability for Microwave Access) is a technique aimed

to provide applications in wireless metropolitan area networking (WMAN). This

technique was developed by the IEEE 802.16 groups and was adopted by both the

IEEE and the ETSI HIPERMAN groups. The IEEE 802.16 group was formed in

1998 to develop an air-interface standard for wireless broadband. At begin, the

Wi-MAX solutions targeted on fixed applications, e.g. IEEE 802.16-2004 which

is also called as fixed Wi-MAX. In December 2005, the IEEE group completed

and approved IEEE 802.16e-2005 standard, which was and amendment to IEEE

802.16e-2004 standard that added mobility support. The IEEE 802.16e-2005 is

often called as mobile Wi-MAX. Wi-MAX offers a rich set of features with a lot

of flexibility including deployment options and potential service offerings. Some

important features of Wi-MAX in physical layer are as follows:

• OFDM techniques:

The Wi-MAX physical layer is based on orthogonal frequency division mul-

tiplexing (OFDM), which is robust to multipath effect. Thus, it can be used

in Non-Line-of-Sight (NLOS) environments. In OFDM-based systems, FFT

(Fast Fourier Transform) is key component and hence it is widely studied

there years.

• Variable bandwidth:

1

Wi-MAX can support variable bandwidth in physical layer. That is, it

can adjust the transmission rate via changing the bandwidth. As a result,

we need FFT with various sizes. For example, the bandwidth for Wi-

MAX systems can be 1.25MHz, 5MHz, 10MHz, 20MHz corresponding to

the 128-, 512-, 1024- and 2048-point FFT. This dynamic adjustment of and

bandwidth real location possible FFT size enables user roaming in different

network. Thus, the variable FFT is a key component for OFDM systems

with various bandwidth.

• MIMO techniques:

The Wi-MAX solution uses multiple antenna techniques, such as beamform-

ing, space-time coding, and spatial multiplexing to enhance system perfor-

mance, including the overall system capacity and spectral efficiency. There-

fore, an FFT architecture that can be efficiently used in MIMO-OFDM

systems is also important.

The traditional FFT algorithm can be roughly classified into three types. The

first type is fixed-radix FFT algorithm. The fixed-radix algorithm can be further

to divided into the radix-2, radix-4/radix-22 and radix-8/radix-23 algorithm [1]

- [3]. The second type is split-radix FFT algorithm. The split-radix algorithm

can be to divided into the radix-2/4 , radix-2/8 and radix-2/4/8 algorithm [4]

- [5]. Third, we can used the method of common-factor algorithm (CFA) or

prime-factor algorithm (PFA) to preform the mixed-radix algorithm [6].

The traditional pipeline FFT architecture can be roughly classified into two

types. The first type is the single-path delay feedback (SDF). The single-path de-

lay feedback can be divided into the R2SDF, R4SDF/R22SDF and R8SDF/R23SDF.

The second type is the multi-path delay commutator (MDC). The multi-path de-

lay commutator can be further divided into the R2MDC, R4MDC/R22MDC and

R8MDC/R23MDC. Others architecture rather than the pipeline include Memory-

based FFT [6], Cordic-base FFT [7] and systolic FFT [8] - [16]. The above ar-

chitectures are not suitable to be used in Wi-MAX systems without modification

since both MIMO and variable FFT are not needed in Wi-MAX systems.

2

Recently, some architectures for MIMO FFT or variable FFT were proposed.

For example, the combination of MIMO and OFDM such as mixed-radix multi-

path delay feedback (MRMDF) use proposed by Lin [19]. The authors use the

characteristic of mixed-radix, multi-path and feedback plan for FFT and apply

is in standard 802.11n. As for the variable FFT the authors in [8] used radix-

23 and multiplexors to implement the low power FFT architecture. Also, the

others variable FFT architecture as refer to [9] - [11]. In general, we needed

to increase the number of FFT processing units to our best knowledge in order

to increase the throughput rate in MIMO-OFDM systems. Thus, the hardware

complexity and power consumption increase as well. When MIMO-OFDM need

variable FFT size, the hardware complexity increases dramatically. However, few

researches has been conduct about the architecture of combining MIMO-OFDM

and variable FFT which is used in Wi-MAX systems. A good processor not only

need to support high throughput rate and variable FFT size, but also they need

to be more efficient for hardware implementation. It is challenging to combine

the advantages of MIMO-OFDM and variable FFT size.

1.2 Contributions and Features

The contributions of this research include:

• We proposed the method of reduce the memory size to 25% in Wi-MAX

compared with that using R2SDF: Since the maximum supported FFT size

is 2048-point, and the major part of the FFT Module is radix-2 algorithm,

the memory occupancies much gate count. Thus, reducing memory leads

to reduction of die area and power consumption.

• Multiplier sharing: In each radix-2 stage, the number of complex multipliers

can be reduced from 4 to 2. Thus, the utilization rate of the multipliers

increases from 50% to 100%.

• High radix to reduce the complexity: Because higher-radix algorithm can

reduce number of multiplier and power consumption, we employ radix-23

3

algorithm to implement the last two stages.

4

Chapter 2

Background

2.1 FFT for MIMO systems

The combination of the multiple-input multiple-output (MIMO) signal process-

ing with orthogonal frequency-division multiplexing (OFDM) is considered as

a promising solution for enhancing the data rates of the next generation wire-

less communication systems operated in frequency-selective fading environments.

Because the technique of the MIMO can increase the data rate by extending an

OFDM system, in the IEEE802.11n standard that uses a MIMO-OFDM system

provides very high data throughput rate from the original data rate 54 Mb/s

to the data rate in excess of 600 Mb/s. However, the IEEE802.11n standard

also increases the computational and hardware complexities, compared with the

current SISO standards. It is a challenge to realize the physical layer of the

MIMO-OFDM system with small hardware complexity and power consumption

in very large scale integration (VLSI) implementation. Because the employing

traditional approach to solve the simultaneous multiple data sequence, several

FFT/IFFT processors are needed in the physical layer of a MIMO-OFDM sys-

tem, we present the fast Fourier transform (FFT)/inverse FFT (IFFT) architec-

ture was proposed by Lin for applications in a MIMO-OFDM systems [19]. The

mixed-radix multi-path delay feedback (MRMDF) FFT architecture can provide

higher throughput rate with small hardware cost, and can support 1-4 data se-

quence transmitted. The MRMDF architecture utilizes the advantages of the

5

following two FFT architectures: one is the single-path delay feedback and the

other is the multi-path delay commutator [2].

2.1.1 Algorithm

A basic N -point discrete Fourier transform (DFT) is defined as

X(k) =
N−1∑
n=0

x(n)W kn
N , k = 0, 1, . . . , 127 (2.1)

where x(n) and X(k) are complex number. The twiddle factor is

W nk
N = e−j 2πnk

N = cos
2πnk

N
− j sin

2πnk

N
. (2.2)

From the equation (2.1) we know that computational complexity is O(N2)

through directly performing the required computation. By using the FFT al-

gorithm, the computational complexity can be reduced to O(NlogrN), where r

means the radix-r FFT algorithm. Although higher radix FFT algorithm has

smaller process element (PE) iteration counts, generally require higher PE com-

plexities in implementation. One well-known approach to solving this problem is

the method introduced by He and Torkelson [3]. The solution for the problem is

used the radix-23 algorithm replace radix-8 algorithm, and then PE complexity

can be reduce to radix-2 FFT algorithm. Because the 128-point FFT is not a

power of 8, the mixed-radix algorithm is needed. The mixed-radix include the

radix-2 and radix-8 FFT algorithm. we shall be derived in detail below.

First let

N = 128

n = 64n1 + n2,

{
n1 = 0, 1
n2 = 0, 1, . . . , 63

k = k1 + 2k2,

{
k1 = 0, 1
k2 = 0, 1, . . . , 63

the equation (2.1) can be rewritten as

X(2k2 + k1) =
63∑

n2=0

1∑
n1=0

x(64n1 + n2)W
(64n1+n2)(2k2+k1)
128

6

=
63∑

n2=0

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1∑
n1=0

x(64n1 + n2)W
n1k1

2︸ ︷︷ ︸
2-point

W n2k2

128︸ ︷︷ ︸
twiddle factor

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

W n2k2

64

︸ ︷︷ ︸
64-point

(2.3)

=
63∑

n2=0

BU2(k1, n2)W
n2k2

64 . (2.4)

Equation (2.3) can regarded as a two-dimensional DFT, one is 64-point DFT

and the other is 2-point DFT. Thus, we can complete the 128-point mixed-radix

FFT operation. Furthermore, we can decompose 64-point DFT into 8-point DFT

recursively 2 times and replace by radix-23 FFT algorithm. Because the radix-

23 FFT algorithm is more efficient for VLSI design, we further reduce the PE

complexity by using radix-2 process element. By a four-dimensional linear index

map, we can rewritten n2 and k2 as

n2 = 32α1 + 16α2 + 8α3 + α4 α1, α2, α3 = 0, 1; α4 = 0, 1, . . . , 7
k2 = β1 + 2β2 + 4β3 + 8β4 β1, β2, β3 = 0, 1; β4 = 0, 1, . . . , 7

(2.5)

By means of equation (2.5), equation (2.4) take the form of

X(2(β1 + 2β2 + 4β3 + 8β4) + k1)

=
7∑

α4=0

1∑
α3=0

1∑
α2=0

1∑
α1=0

BU2(k1, 32α1 + 16α2 + 8α3 + α4)

× W
(32α1+16α2+8α3+α4)(β1+2β2+4β3+8β4)
64

=
7∑

α4=0

BU8(k1, β1, β2, β3, α4)W
α4β4

8 , (2.6)

where BU8(k1, β1, β2, β3, α4) is show in equation (2.7).

BU8(k1, β1, β2, β3, α4)

=
1∑

α3=0

1∑
α2=0

1∑
α1=0

BU2 × W
α2β1

4 W
α2β2

2 W
α3(β1+2β2)
8 W

α3β3

2 W
α4(β1+2β2+4β3)
64 ,(2.7)

7

where BU2 = BU2(k1, 32α1 + 16α2 + 8α3 + α4) × W
α1β1

2 . The 128-point mixed-

radix FFT algorithm signal flow graph is show in Fig. 2.1. The radix-2 FFT

algorithm is used in the first stage, and the radix-8 FFT algorithm is applied in

the second and third stage. The black point between the stage is twiddle factor.

Stage 1 Stage 2 Stage 3

Figure 2.1: The SFG of 128-point mixed-radix FFT.

8

The IFFT of an N -point sequence x(n), k = 0, 1, . . . , N − 1 is defined as

x(n) =
1

N

N−1∑
k=0

X(k)W−nk
N . (2.8)

In order to implement the IFFT algorithm more efficiently, equation (2.8) can

be rewritten as

x(n) =
1

N

{
N−1∑
k=0

X∗(k)W nk
N

}∗

. (2.9)

According to equation (2.9), the IFFT can be performed by taking the com-

plex conjugate of input data and then taking the complex conjugate of output

data without change in any coefficient in the original FFT architecture. Thus, the

hardware implementation can be more efficient. The block diagram of FFT/IFFT

is show in Fig. 2.2. It was utilized multiplexer to change in the operation mode

that operation of FFT or IFFT.

FFT

M

U

X[]*

M

U

X[]*

Figure 2.2: Block diagram FFT/IFFT.

2.1.2 Architecture

The FFT of MRMDF is provide 128/64-point FFT/IFFT operation, and then

can support 1-4 data sequence transmitted for MIMO-OFDM system. From the

Fig. 2.3 show that system architecture contains of Module 1 (data reorder), Mod-

ule 2 (radix-2), Module 3 (radix-23), Module 4 (radix-23), conjugate block, divi-

sion block and multiplexer. The characteristic of the MRMDF FFT architecture

with size 128/64 are the following:

• The 128/64 point FFT with 1-4 simultaneous data sequence can be operated

in this design.

9

• The FFT architecture can provide 1-4 throughput rates to achieve the re-

quirements of IEEE802.11n standard.

• Small memory is needed by using the delay feed back scheme.

• Hight throughput rate can achieve by using the multi-path scheme.

• Higher radix FFT algorithm can be implemented to save power consump-

tion.

• Modify complex multiplier can be implemented by constant multiplier to

save power consumption.

Because the MRMDF architecture based on a radix-2 butterfly, the order of

the output sequence is the bit reversal of the order of the input sequence, as

shown in Fig. 2.4. The operation of the FFT and IFFT is controlled by the

control signal, FFT/IFFT signal is show in Fig. 2.3. The details of this FFT

architecture will be described in the next subsection.

M

U

X[]*

Module 1

(Data

Reordering)

Module 2

(Radix-2 FFT)

MUX

Module 3

(Radix-8 FFT)

Module 4

(Radix-8 FFT)

[]*1/N

M

U

X

Data In

Data

Out

FFT/IFFT

Mode

Figure 2.3: Block diagram of the 128/64-point FFT/IFFT processor.

a) Module 1: Module 1 contains several different size delay elements and

switch block, as shown in Fig. 2.5. The function of Module 1 is to reorder the

10

Time

Time
(a)

(b)

Figure 2.4: (a) Order of input; (b) Order of output.

input data sequence to achieve two goals. First, let Module 2, Module 3 and

Module 4 implement the operation the FFT/IFFT more efficient. Second, avoid

the data sequences in Module 3 to be multiplied by the same twiddle factor

in each data path simultaneously. Thus, the modify complex multiplier can be

used in Module 3 to reduce the hardware complexity by using the shift-and-add

method [20]. The operation of the Module 1 is show in Fig. 2.6.

sw
itc

h

1

2

3

1

2

3

Figure 2.5: Block diagram of Module 1.

First, the four adjoining sequence with across difference delay unit, and then

four adjoining data will be reordered by the appropriate operation of the switch.

Finally, the adjoining data will simultaneous by difference delay unit. The re-

ordered data will be separated into 32 groups or 16 groups for 128 or 64 point

FFT calculation. If four data sequence will be transmitted, each group contains

four data sequence, A, B, C and D. And in each group has the same sub-index,

as shown in Fig. 2.6. As seen in Fig. 2.6, if there is only three data sequence will

11

Time

1

2

3

1

2

3

Group Group

Time

Time

Time

Figure 2.6: Relation between Module 1 input and Module 1 output.

be transmitted, the number of operation is three in the each group and so on.

The operation of FFT/IFFT will more efficient through the reordering module.

b) Module 2: The Module 2 contains memory, two complex multipliers, four

butterfly units, two ROM tables and some multiplexors as shown in Fig. 2.7.

There are two kind of radix-2 butterfly unit in the FFT/IFFT processor. One

of radix-2 butterflies is in Module 2, denoted by BF1. The function of BF1 is

X(i) = x(i)− y(i) and Y (i) = x(i) + y(i). The dot-line rectangular in Fig. 2.7 is

redrawn more detailed in Fig. 2.8(a). The control signal of the multiplexer is to

determine one of the two operation modes of data change, as shown in Fig. 2.8(b).

When a 64-point FFT/IFFT is used in this architecture, the input data will

skip Module 2 and directly go to Module 3. Four memory units are needed to

save the result of butterfly operation. Only 1/8 cycle of cosine and sine values

are needed to be stored in ROM table, and the other values can be reconstructed

by these stored values. Thus, the ROM table size can be to reduce. In general,

four complex multipliers are needed to implement FFT/IFFT with four-parallel

data sequences by traditional radix-2 SDF architecture, but we only needed two

multipliers to implement four-parallel data sequences in this module. We can

first multiply the twiddle factors of two data sequences, and then multiply the

other two data sequences. We call this method as time sharing. The time sharing

is explained below.

12

BF1

A

B

C

D

DATA IN

DATA IN
DATA OUT

MEM OUT MEM IN

�

�

6
4

BANK1 BANK2 BANK3 BANK4

0

1

1 0

0

1

.

.

.

ROM

ROM

BU2_A

BU2_A

BU2_A

BU2_A

BF1

)3(

)3(

)2(

)2(

)1(

)1(

)0(

)0(

Y

X

Y

X

Y

X

Y

X

)3(

)3(

)2(

)2(

)1(

)1(

)0(

)0(

y

x

y

x

y

x

y

x

�

�
�

)(

)(

iY

iX
)(

)(

iy

ix

BU2_A

A

B

C

D

A

B

C

D

.

.

.

A

B

C

D

A

B

C

D

.

.

.

A

B

C

D

A

B

C

D

.

.

.

A

B

C

D

M
U

X
4

M
U

X
4

Figure 2.7: Block diagram of Module 2.

Time sharing: Consider the traditional R2SDF FFT 128-point architecture

with four data sequences at the first stages, as shown in Fig. 2.9. When data

sequence form x(0) to x(63) arrive, they are stored in memory (at clock cycle 0

to 63), as shown in Fig. 2.10. When data from x(64) to x(127) arrive, radix-2

butterfly starts to work (at clock cycle 64 to 127). Then, added results are fed to

next stage, and the subtract result are sent back and saved in memory, as shown

in Fig. 2.11, where Â0 = A0 − A63, Â1 = A1 − A64, Â2 = A2 − A65,. . . , Â63 =

A63−A127. Finally the data are read from memory, multiplied appropriate twiddle

factors and then passed to next stage (at clock cycle 128 to 191). We know that

there is no need to operate addition and substraction since the operation of adder

or subtract was completed before clock cycle 128. Consequently, we can utilize

13

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

�

�

�

�
=

Mode 1 Mode 2

(a)

(b)
M

U
X

4

M
U

X
4

Figure 2.8: (a) Architecture of multiplexer; (b) Operation mode of multiplexer.

the two or periods of clock cycle 64∼127 and clock cycle 128∼191 to multiply

twiddle factors for four data sequences. Thus, we can use two multipliers to

complete the multiplication of twiddle factors for four data sequence.

14

64

�

64

�

64

�

64

�

�

�

�

�

�

�

�

�

Figure 2.9: Architecture of four antenna R2SDF FFT 128-point at stage one.

�

�

�

�

0 1 2 3 63A A A A ...A

0 1 2 3 63B B B B ...B

0 1 2 3 63C C C C ...C

0 1 2 3 63D D D D ...D

Figure 2.10: Save data in memory.

When a 128-point FFT/IFFT is used in this architecture, at first the data

sequences from x(0) to x(63) arrive, they are stored in memory and operation

mode of multiplexer are mode 2 (at clock cycle 0 to 63), as shown in Fig. 2.12.

When data sequences from x(64) to x(127) arrive, radix-2 PE starts to work (at

clock cycle 64 to 127). Then, the added results are fed to next stage, and the

subtracted results are multiply appropriate twiddle factors with two sequences

and save in memory. Moreover, the operation mode of multiplexer are mode 1.

Finally, these data stored in the memory are read, multiplied appropriate twiddle

15

0 1 2 3 63
ˆ ˆ ˆ ˆ ˆA A A A ...A

0 1 2 3 63
ˆ ˆ ˆ ˆ ˆB B B B ...B

0 1 2 3 63
ˆ ˆ ˆ ˆ ˆC C C C ...C

0 1 2 3 63
ˆ ˆ ˆ ˆ ˆD D D D ...D

Figure 2.11: Operation of radix-2.

factors with other two sequences and then passed to next stage (at clock cycle 128

to 191). In traditional single path delay feedback architecture the utilization rate

of the complex multiplier is only 50%. By the timing sharing, only two complex

multipliers are needed and the utilization of the complex multipliers can achieve

100% in this scheme.

A0

B0

C0

D0

64

BANK1

A60

B60

C60

D60

.

.

.

A1

B1

C1

D1

BANK2

A61

B61

C61

D61

.

.

.

A2

B2

C2

D2

BANK3

A62

B62

C62

D62

.

.

.

A3

B3

C3

D3

BANK4

A63

B63

C63

D63

.

.

.

Figure 2.12: Module 2 memory bank.

c) Module 3: The Module 3 contains three radix-2 PEs and one modified

complex multiplier, as shown in Fig. 2.13. The BU2 B include control signal,

16

which controls the operation modes of radix-2, as show in Fig. 2.14.

A

BF2

Group
j�,1

BF2
�

3

8

1

8 ,,,1 WWj�

BF2 Modified

Complex

Multiplier

Step 1 Step 2 Step 3

�

BU2_B

BU2_B

BU2_B

BU2_B

BF2

)3(

)3(

)2(

)2(

)1(

)1(

)0(

)0(

Y

X

Y

X

Y

X

Y

X

)3(

)3(

)2(

)2(

)1(

)1(

)0(

)0(

y

x

y

x

y

x

y

x

�

)(

)(

iY

iX)(

)(

iy

ix

BU2_B

1

0

0

1�

Control

Signal

32

B C D A B C D A

16

B C D A B C D A

8

B C D A B C D4

Figure 2.13: Block diagram of Module 3.

�

�

Mode 1 Mode 2

Figure 2.14: Two operation mode.

Module 3 is the radix-23 FFT algorithm proposed by He and Torkelson [3],

whose SFG is shown in the second stage of Fig. 2.1. The function of Module 3 is

to preform the second stage butterfly of Fig. 2.1, where each stage is multiplied

by the twiddle factor 1,−j, W 3
8 and W 1

8 . From Fig. 2.9, it is inefficient to have

four complex multipliers to multiply different twiddle factors. Here we can utiliz

an approach proposed by Maharatna [20] to reduce the complexity of the complex

17

multipliers. The twiddle factor in Module 3 is W
p
64=e−

j2πp

64 =Xp + jYp=cos (2πp

64
)−

j×sin (2πp

64
), where p is from 0 to 49, as shown in Fig. 2.15. Due to the symmetric

or anti-symmetric property of sine and cosine function, only nine sets of twiddle

factors is needed to construct. That is, the Xp and Yp with p=0∼8 in region A

are needed, because the twiddle factors in the other seven regions can be obtained

by changing their sign as shown in Table 2.1. Thus, these complex values can

be realized more efficiently by using shift-and-add method [20]. The gate count

of this method can save about 38% compared to the approach four complex

multipliers. In addition, using the performance of this method is equivalent to

that using four complex multipliers.

48

A
BC

D

E
F G

H
0

8

16

24

32

40 56

Figure 2.15: Eight region of twiddle factor.

Region Real Image
A Xp Yp

B −Yp −Xp

C Yp −Xp

D −Xp Yp

E −Xp −Yp

F Yp Xp

G −Yp Xp

H Xp −Yp

Table 2.1: Mapping table of twiddle factors in different regions.

d) Module 4: The block diagram of the Module 4 is show in Fig. 2.16. The

function of Module 4 is the radix-23 FFT algorithm, which is directly mapped to

18

the third stage of Fig. 2.1. Although Module 3 and Module 4 are both radix-23

FFT algorithm, the architecture of Module 4 is different from that of Module 3,

due to the scheme makes the circuit utilization more efficiently, and reduce the

processing unit. Referral Fig. 2.16, due to the four data sequences are proposed

simultaneously in one clock cycle, thus the data are ready for step 2 and step 3.

Hence, the data sequences do not need to be stored in memory at step 2 and step

3.

Step 1

BF2

4

BF2

4

BF2

4

BF2

4

�

�

j�,1

�

�

�

�

�

�

1

8,1 W

1

8,,1 Wj�

�

�

�

�

Group j�,1

Step 2 Step 3

Figure 2.16: Block diagram of Module 4.

2.2 Variable FFT

The standards of DAB, DVB-T, VDSL and Wi-MAX need various FFT sizes, as

shown in Table 2.2. Hence, the design of a variable FFT for different purposes

become more important. In this section we present a variable FFT that can

support 64, 32, 16 and 8-point operation. It is very easy to modify our design

by adding 128-point or others 2k-point FFT operation size to create any required

length of FFT, where k is integer. Hence, this modification of circuit is convenient

19

and simple to be used for DAB, DVB-T, Wi-MAX and VDSL systems. For the

others variable FFT, please refer to the [8].

Communication system FFT size
Wi-MAX 128,512,1024,2048
VDSL [15] 8192,4096,2048,1024,512
DAB [12] 2048,1024,512,256
DVB-T [13] 8192,2048

Table 2.2: FFT size in several OFDM systems.

2.2.1 Pipeline FFT processor architecture

The traditional radix-2 pipeline FFT architectures can be roughly classified multi

path delay commutator and single path delay feedback [3]. A radix-2 multi path

delay commutator (R2MDC) architecture with N=8 is shown in Fig. 2.17. The

data sequence is divided into two data paths by commutator, and then properly

scheduled for two data paths. The processor element (PE) is implemented by

radix-2 algorithm. The numbers of multipliers, PE unit and delay elements are

with order (log2N − 2), log2N and (3N
2

) − 2 respectively. A radix-2 single path

delay feedback (R2SDF) architecture with N=8 is shown in Fig. 2.18. The uti-

lization of delay elements in R2SDF is more efficient than R2MDC by sharing the

memory. The numbers of multipliers, PE units and delay elements for R2MDC

are (log2N − 1), N − 1 and log2N . The SDF FFT and MDC FFT are decried as

follows.

• a) SDF FFT: Because the SDF FFT uses feedback to reuse memory, the

SDF FFT can reduce the memory usage. Its drawback is that the through

put rate is low.

• b) MDC FFT: Because the MDC FFT uses multi path to increase data

path, the MDC FFT can increase the through put rate. Its drawback is

that the memory size is so large.

20

co
m

m
u

tato
r �

4

P
E

2

co
m

m
u

tato
r

2

P
E

� 1
co

m
m

u
tato

r

1

P
E

Figure 2.17: Architecture of R2MDC.

Radix-2

PE

4

Radix-2

PE

2

Radix-2

PE

1

Figure 2.18: Architecture of R2SDF.

2.2.2 Variable FFT processor architecture

Let us see a variable FFT that can achieve 64-point, 32-point, 16-point and 8-

point operation as shown in Fig. 2.19. The radix-2/23 64-point mixed-radix SFG

is shown in Fig. 2.20. Where stage 1 to stage 3 are radix-2 algorithm and stage 4

is radix-23 algorithm. It uses the above architectures and multiplexors to preform

the variable FFT. This FFT can deal with 4 types of transformation. Moreover,

it is easy to be modified to any transformation length. For the 64-point FFT, all

stages are active. For the 32-point FFT, the input data will skip the first stage

and go to the second stage directly. For the 16-point FFT, the input data will

skip the first stage and second stage and go to the third stage. Multiplexors are

used to switch to different FFT size operation.

21

Radix-2

PE

32

ROM

M

U

X

Radix-2

PE

16

ROM

M

U

X

Radix-2

PE

8

ROM

M

U

X

Radix-2

PE

1

Radix-2

PE

2

Radix-2

PE

4

3

8

1

8 ,,,1 WWj� j�,1

32�radix

Figure 2.19: Block diagrams of a variable FFT processor.

22

Stage 1 Stage 2 Stage 3 Stage 4

8-point

16-point

32-point

Figure 2.20: The SFG of 64-point mixed-radix FFT.

23

Chapter 3

The proposed variable FFT for
MIMO systems

In this chapter, we detail the FFT in IEEE 802.16e which is for MIMO-OFDM ap-

plication. The variable FFT can support multiple antenna and 2048/1024/512/128-

point FFT size. In Sec. 3.1 we shall derive the FFT algorithm, and to show the

SFG. In Sec. 3.2 we shall detail the FFT architecture, it is introduce in each

Module. In Sec. 3.3 we compare the hardware requirement with several classes

FFT and proposed approach in case 2048-point FFT. Finally, we show the SQNR

simulation in Sec. 3.4, and to explain about how to determine bit width.

3.1 Algorithm

From (2.1), the N -point DFT operation can be decomposed to N1 × N2 × . . . ×

Nk point DFT operation. We use the radix-23 as many as possible reduce the

multipliers. The mathematical representation is shown in equation (3.1).

N = 2048 = 8 × 8 × 2︸ ︷︷ ︸
128-point

×2 × 2

︸ ︷︷ ︸
512-point

×2

︸ ︷︷ ︸
1024-point

×2

︸ ︷︷ ︸
2048-point

. (3.1)

From (3.1), N = 2048 = N1 × N2 = 2 × 1024. Define the following indices

24

n = N2n1 + n2 = 1024n1 + n2,

{
n1 = 0, 1
n2 = 0, 1, . . . , 1023

and

k = k1 + N1k2 = k1 + 2k2,

{
k1 = 0, 1
k2 = 0, 1, . . . , 1023

(2.1) can be rewritten as

X(k1 + 2k2)

=
1023∑
n2=0

1∑
n1=0

x(1024n1 + n2)W
(1024n1+n2)(k1+2k2)
2048

=
1023∑
n2=0

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1∑
n1=0

x(1024n1 + n2)W
n1k1

2︸ ︷︷ ︸
2-point

W n2k1

2048︸ ︷︷ ︸
twiddle factor

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

W n2k2

1024

︸ ︷︷ ︸
1024-point

(3.2)

=
1024∑
n2=0

B
(1)
2 (n2)W

n2k2

1024 , (3.3)

where B(k)
r denotes the radix-r algorithm at stage k. Now N2 = 1024 = N2×N3 =

2 × 512. Define the indices n2 and k2 as

n2 = N3n2 + n3 = 512n2 + n3,

{
n2 = 0, 1
n3 = 0, 1, . . . , 511

and

k2 = k2 + N2k3 = k2 + 2k3,

{
k2 = 0, 1
k3 = 0, 1, . . . , 511

We have:

X(k1 + 2k2 + 4k3)

=
511∑

n3=0

1∑
n2=0

B
(1)
2 (512n2 + n3)W

(512n2+n3)(k2+2k3)
1024

=
511∑

n3=0

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1∑
n2=0

B
(1)
2 (512n2 + n3)W

n2k2

2︸ ︷︷ ︸
4-point

W n3k2

1024︸ ︷︷ ︸
twiddle factor

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

W n3k3

512

︸ ︷︷ ︸
512-point

25

=
511∑

n3=0

B
(2)
2 (n3)W

n3k3

512 . (3.4)

In this way, we can obtain the result is given by

X(k1 + 2k2 + 4k3 + 8k4 + 16k5 + 32k6)

=
63∑

n6=0

B
(5)
2 (n6)W

n6k6

64 , (3.5)

where k6 = 0, 1, . . . , 63. By decomposing the 64-point DFT into the 8-point DFT,

we can achieve the 2048-point mixed-radix FFT algorithm.

X(k1 + 2k2 + 4k3 + 8k4 + 16k5 + 32k6 + 256k7)

=
7∑

n7=0

⎧⎨
⎩

7∑
n6=0

B
(5)
2 (8n6 + n7)W

n6k6

8 W n7k6

64

⎫⎬
⎭ W n7k7

8 . (3.6)

Because the radix-8 butterfly unit is inefficient in the use of adders and mul-

tipliers. we use the radix-23 FFT algorithm [3] to replace the radix-8 FFT al-

gorithm. In this case, we can further reduce the complexity of the butterfly by

using the radix-2 butterfly three times. The SFG of the 2048-point mixed-radix

FFT algorithm, is as shown in Fig. 3.1 and Fig. 3.2.

Let n6 = 4α1 + 2α2 + α3 and k6 = β1 + 2β2 + 4β3, we can obtain the form

with radix-23 in equation (3.9).

X(k1 + 2k2 + 4k3 + 8k4 + 16k5 + 32(β1 + 2β2 + 4β3) + 256k7)

=
7∑

n7=0

B
(6)
8 (n7, k7)W

n7k7

8 , (3.7)

where

B
(6)
8 (n7, k7) =

1∑
α3=0

1∑
α2=0

1∑
α1=0

B
(5)
2 (8(4α1 + 2α2 + α3) + n7)W

α1β1

2

W
α2β1

4 W
α2β2

2 W
α3(β1+2β2)
8 W

α3β3

2 W
n7(β1+2β2+4β3)
64 . (3.8)

26

x(0)

x(1)

x(2)

x(N/2-1)

x(N/2)

x(N/2+1)

x(N-1)

0

N
W

0

N
W

0

N
W

0

N
W

0

N
W

1

N
W

2

N
W

(/2 1)N

N
W

�

Figure 3.1: The SFG of stage 1 to stage 5 (radix-2).

j�

j�

1

8W

3

8W

x(n)

x(n+8)

x(n+16)

x(n+24)

x(n+32)

x(n+40)

x(n+48)

x(n+56)

y(n)

y(n+8)

y(n+16)

y(n+24)

y(n+32)

y(n+40)

y(n+48)

y(n+56)

j�

j�

j�

1

8W

3

8W

x(n)

x(n+1)

x(n+2)

x(n+3)

x(n+4)

x(n+5)

x(n+6)

x(n+7)

y(n)

y(n+1)

y(n+2)

y(n+3)

y(n+4)

y(n+5)

y(n+6)

y(n+7)

j�

(a) (b)

Figure 3.2: The SFG of stage 6 to stage 7 (radix-23).

3.2 Architecture

The variable FFT for MIMO-OFDM system is provide 2048/1024/512/256-point

FFT/IFFT operations and can support number T of data streams from T = 1

to T = 4. From Fig. 3.3, the system is contains of Module 1 (data reordering),

Module 2 to Module 6 (radix-2), Module 7 (radix-23) and Module 8 (radix-23),

conjugate blocks, some divide blocks and multiplexors. Because the FFT is based

on a radix-2 butterfly, the order of the output sequences is bit reversal of input,

as shown in Fig. 3.4.

27

M

U

X[]*

Module 1 Module 2
Data In

FFT/IFFT

M

U

X

Module 3

M

U

X

Module 4

Module 6Module 7Module 8
[]*

M

U

X

M

U

X

MODE

Data Out

M

U

X

Module 5

1/N1

1/N2

1/N3

1/N4

(radix-2) (radix-2) (radix-2)

(radix-2)(radix-2)
3(radix-2)3(radix-2)

(reorder)

Figure 3.3: Block diagram of the variable FFT processor.

Time

(a)

(b)

Time

Figure 3.4: The input and output relationship of FFT.

3.2.1 Module 1 (data reordering)

The Module 1 is implemented by registers with size 4 × 4, and we use clock

gating to save the power consumption. The time schedule of Module 1 is shown

in Fig. 3.5. The input and output relationship of Module 1 is shown in Fig. 3.6.

In Module 1, the input data sequences are re-permuted so that it leads to efficient

operation for radix-2 module and Module 8 implementation as we will mention

later. From Fig. 3.6, where n = 128, 512, 1024 and 2048, N = 32, 128, 256 and 512

for various FFT sizes. For example, when the number of transmitted sequences

is four and the FFT size is 128, each group is contains four data sequences and

there are 32 groups.

28

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Time

Write

Read

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Write Read

(a) (b)

T
im

e

Figure 3.5: (a) Read and write with column; (b) Read and write with row.

Time

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 An-1

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 Bn-1

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 Cn-1

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 Dn-1

Group 1 Group N

A0 B0 C0 D0 A4 B4 C4 D4 An-4 An-3 An-2 An-1

A1 B1 C1 D1 A5 B5 C5 D5 Bn-4 Bn-3 Bn-2 Bn-1

A2 B2 C2 D2 A6 B6 C6 D6 Cn-4 Cn-3 Cn-2 Cn-1

A3 B3 C3 D3 A7 B7 C7 D7 Dn-4 Dn-3 Dn-2 Dn-1

Time

Module 1

Figure 3.6: Relation between Module 1 input and Module 1 output.

3.2.2 Module 2 to 6 (radix-2 FFT algorithm)

Module 2 contains four butterfly units, two multipliers, four memory banks, ROM

table, rotation factor and some multiplexors, as shown in Fig. 3.7. Module 2 is

similar to previous architecture as mentioned in Sec. 2.1.2. The difference is

that Module 2 includes the rotation factor W 1
N to reduce the memory size. The

architecture of Module 2 to Module 6 are actually the same except their memory

sizes are different. The memory sizes from Module 2 to Module 6 are 1024, 512,

256, 128 and 64, respectively. Module 2 to Module 6 realize the radix-2 FFT

algorithm and the SFG is shown in Fig. 3.1. From Fig. 3.1, the value N for

29

Module 2 to Module 6 are 2048, 1024, 512, 256 and 128, respectively. In addition

to the advantage of time sharing as mentioned in Sec. 2.1.2, we also have the

advantage of memory sharing in Module 2. The memory sharing is explained

below.

BF1

A

B

C

D

D

.

.

.

A

B

C

D

D

.

.

.

A

B

C

D

D

.

.

.

A

B

C

D

R

O

M

DATA IN

DATA IN
DATA OUT

MEM OUT MEM IN

�

�

1

N
W

M
E

M
O

R
Y

S
IZ

E

BANK1 BANK2 BANK3 BANK4

0

1
1 0

0

1

D

.

.

.

P1 P2

M
U

X
4

M
U

X
4

Figure 3.7: Block diagram of Module 2.

Memory sharing: The twiddle factors for T = 4 at the first stage butterfly

is shown in Fig. 3.9, where A, B, C and D represent the four data sequences.

This figure also shows the used twiddle factors in each time instance. Originally,

we need to store N
2

twiddle factors for first stage butterfly. Also, since we need

ROM tables to store the twiddle factors for the radix-2 butterfly in modules 3,

4, 5 and 6. Thus, the total twiddle factors are N
2

+ N
4

+ N
8

+ N
16

+ N
32

= 62N
64

, where

N = 2048 here. Hence, when N is large, the memory size also become large.

Here, we will propose a memory sharing method that can reduce the memory

size from 62N
64

to 31N
64

and we can sharing the memory from Module 2 to Module

6 as shown in Fig. 3.8, thus the memory size can be reduced to N
4
. This memory

sharing method is described as follows:

When a 2048-point FFT/IFFT is used in this architecture, at first the data

30

sequences from x(0) to x(1023) arrive, they are stored in memory of Module 2

(at clock cycle 0 to 1023). When the data sequences from x(1024) to x(2047)

arrive, radix-2 PEs start to work (at clock cycle 1024 to 2047). Then, the added

results are fed to the next stage, and two of the four subtracted data sequences

are multiplied by appropriate twiddle factors and all of the four data sequences

are saved in memory. Finally, all the four data sequences stored in the memory

are read, and two of them (those who have not multiplied the twiddle factors)

are multiplied by appropriate twiddle factors and then pass to the next stage (at

clock cycle 2048 to 3071). Hence, we need a ROM table of size N
2

to store the

twiddle factor for the first stage butterfly.

1

2048W

ROM

1

1024W
1

512W
1

256W
1

128W

To

Module 2

To

Module 3

To

Module 4

To

Module 5

To

Module 6

Figure 3.8: Memory sharing from Module 2 to Module 6.

However, from Fig. 3.9, the twiddle factors in P1 and P2 has a ratio of W 1
N ,

where P1 and P2 are also shown in Fig. 3.7. Since the rotation factor is a shift-

and-add, from Fig. 3.10 we know the rotation factor does not increase the critical

path. The critical path is shown with red color in Fig. 3.12, which is 13ns.

31

)3
2

(

)4
2

(

�

�

N

N

N

N

W

W

)3
2

(

)4
2

(

�

�

N

N

N

N

W

W

)3
2

(

)4
2

(

�

�

N

N

N

N

W

W

)3
2

(

)4
2

(

�

�

N

N

N

N

W

W
0

NW
0

NW
0

NW
0

NW

1

NW
1

NW
1

NW
1

NW

4

NW
4

NW
4

NW 4

NW

5

NW
5

NW
5

NW
5

NW

. . .

. . .

Time

P1

P2

A B C DA B C D A B C D

)1
2

(

)2
2

(

�

�

N

N

N

N

W

W

)1
2

(

)2
2

(

�

�

N

N

N

N

W

W

)1
2

(

)2
2

(

�

�

N

N

N

N

W

W

)1
2

(

)2
2

(

�

�

N

N

N

N

W

W
2

NW
2

NW 2

NW
2

NW

3

NW
3

NW
3

NW
3

NW

6

NW
6

NW
6

NW
6

NW

7

NW
7

NW 7

NW
7

NW

. . .

. . .

Time

P1

P2

A B C DA B C D A B C D

(a)

(b)

Figure 3.9: (a) ROM table at clock cycle 1024 to 2047; (b) ROM table at clock
cycle 2048 to 3071.

)4
2

(�
N

NW
)4

2
(�

N

NW
)4

2
(�

N

NW
)4

2
(�

N

NW
0

NW
0

NW
0

NW
0

NW
4

NW
4

NW
4

NW 4

NW . . .
Time

P1

A B C DA B C D A B C D

)2
2

(�
N

NW
)2

2
(�

N

NW
)2

2
(�

N

NW
)2

2
(�

N

NW
2

NW
2

NW 2

NW
2

NW
6

NW
6

NW
6

NW
6

NW . . .
Time

P1

A B C DA B C D A B C D

(a)

(b)

Figure 3.10: (a) ROM table at clock cycle 1024 to 2047; (b) ROM table at clock
cycle 2048 to 3701.

32

BF1

R

O

M

DATA IN
DATA OUT

�

�

1

N
W

0

1

0

1

�

5.04 ns
3.26 ns

M
U

X
4

M
U

X
4

P1 P2

Figure 3.11: Analysis for critical path.

BF1

R

O

M

DATA OUT

�

�

1

N
W

0

1

0

1

�

Critical Path

(13ns)

M
U

X
4

M
U

X
4

P1 P2

Figure 3.12: The FFT critical path.

3.2.3 Module 7 (radix-23 FFT algorithm)

Module 7 is the same as Module 3 in Sec. 2.1.2. The function of Module 7 is to

preform the 6th stage butterfly of Fig. 3.2.

3.2.4 Module 8 (radix-23 FFT algorithm)

Module 8 is the same as Module 4 in Sec. 2.1.2. The function of Module 8 is to

preform the 7th stage butterfly of Fig. 3.2.

33

3.3 Complexity comparison

Let T = 4, let us compare the hardware complexity of the proposed architec-

ture and the others FFT architectures which is shown in Table 3.1. For four

data sequences the proposed approach can save 69% complex multiplier and 75%

ROM tables compare with R2SDF. Note that for other architectures in Table 3.1,

they may not be able to support the variable FFT sizes required by Wi-MAX

standards. For instance, although using the R23SDF can save 70% complex mul-

tiplier, its FFT size is limited to power of eight.

Architecture Four data sequence

R2SDF

(2048-pt)

Proposed

(Variable 2048-pt)

2R2 SDF

(2048-pt)

3R2 SDF

(2048-pt)

Complex

multiplier

Complex

adder

ROM

table

Memory

size

Throughput

rate

10+4

(31.1%)

10 4=40

(100%)

4 4=16

(40%)

3 4=12

(30%)

80

(90.9%)

88

(100%)

88

(100%)

88

(100%)

512

(25%)

2046

(100%)

2040

(99.7%)

2044

(99.9%)

8188

(100%)

8188

(100%)

8188

(100%)

8188

(100%)

4R

4R

4R

4R

Table 3.1: Comparison of hardware requirement.

34

3.4 Simulation

Determining appropriate bit width in the FFT processor is important. Since

the bit width affects the hardware cost directly. Bit width can be determine by

fixed-point simulation. We use the SQNR (Signal to Quantization Noise Ratio)

system model to determine the FFT bit width. The system model of SQNR is

shown below.

�Signal

Noise

P/S

.

.

.
Fixed-point FFT

Float-point FFT

.

.

.

�

�

.

.

.

.

.

.
Error

�

yk

uk

-

-

Figure 3.13: System model of SQNR.

The SQNR is defined as

SQNR =
1

N

N−1∑
k=0

σ2
x

|yk − uk| + β2σ2
e

. (3.9)

Consider the SNR (Signal to Noise Ratio) is one (σ2
x

σ2
e

= 1), we can rewrite the

equation as

SQNR =
1

N

N−1∑
k=0

1

|yk − uk| + β2
, (3.10)

where β = 10
−SNR

20 . The relationship between SQNR (with final bit-width) and

SNR is shown in Fig. 3.12.

When SQNR is large, it means that quantization error is small. From the

figure, the final bit-width can support SQNR up to 35 dB.

35

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

SNR (dB)

S
Q

N
R

 (
dB

)

Figure 3.14: SQNR v.s. SNR.

36

Chapter 4

Chip implementation and
verification

In this chapter we state how to build the MATLAB platform of the MIMO

variable FFT and how to verify the design. The MATLAB platform can be

used to verify the function of the RTL platform. The design flow is illustrate in

Fig. 4.1. The design flow is suggested by CIC (Chip Implementation Center) for

cell-based design. This design flow includes several important steps:

• Analysis and verification for architecture (using Matlab tool to simulation).

• Architecture design (using NCverilog, Modelsim and debussy tool to simu-

lation).

• Design for testability (using DFT compiler and TetraMAX tool to synthesis

circuit and testability estimate).

• Gate level simulation and timing verification.

• Power estimation analysis (using Encounter tool to estimate).

• Post-layout gate level simulation.

• Layout verification DRC/LVS (using calibre tool for verification).

• Static timing analysis.

37

Specification development

system model

Build the system model

(Matlab platform)

RTL code

(Verilog platform)

RTL level simulation

(NC-verilog and modelsim)

Logic synthesis

(Design compiler)

Gate level netlist

Gate level simulation

Scan chain synthesis

(DFT Complier)

Place & Route

(Soc Encounter)

Layout verification

(DRC/LVS)

RC Extraction

Delay Calculation
Power analysis Gate level STA

Layout Merging

(Calibre)

Layout verification

(DRC/LVS)
Circuit Extraction

Circuit Level

Simulation
Circuit Level STA

Tapeout

RTL verification

Gate level pre-layout

verification

Gate level pos-layout

verification

Circuit level verification

Gate level netlist

Testability estimation

(TetraMAX)

Figure 4.1: A Design flow.

38

4.1 Cell-based design flow

• Build the MATLAB platform and verify the RTL platform

Random

pattern

Fixed-point

FFT model

Design

input

Matlab environment

Expect

output

Verilog environment

Test

pattern

Verilog model

FFT

Simulation environment

Verification Bit

True
Successful or Fail

Figure 4.2: Simulation environment for variable FFT.

We need to build the MATLAB platform and verilog platform. Fig. 4.2

shows the simulation environment for bit-true verification. At first we need

to develop floating-point FFT model in MATLAB environment. Since the

FFT function in MATLAB tool is a floating-point function. We need to

build the MATLAB quantizable FFT function using the proposed archi-

tecture mentioned earlier. When the quantizable FFT function ready, we

can determine the bit-width for in dividual stages using the procedure men-

tioned in Sec. 3.2.6. Fig. 4.3 shows the quantized result in all stages. Note

that total number of bits in all stage is 16. When the fixed-point FFT

model is ready, we can generate random patterns from this model. That is,

the design input and expected output can be generated from this MATLAB

platform. We can save the input and the expect of output in a Text file for

bit-true verification. In the verilog platform, we read input from the save

text file generated by MATLAB platform. We compare the output from

the verilog platform and the MATLAB platform to verify the result.

39

M

U

X[]*

Module 1 Module 2
Data In

FFT/IFFT

M

U

X

Module 3

M

U

X

Module 4

Module 6Module 7Module 8
[]*

M

U

X

M

U

X

MODE

Data Out

M

U

X

Module 5

1/N1

1/N2

1/N3

1/N4

A B C D

EFGHI

Point

Integer bit

A B C D E F G H I

2 2 3 3 4 4 4 6 7

Figure 4.3: Bit-width in all stage.

• Synthesis

We use the Design Compiler to synthesize the RTL code. At synthesis

phase, we need to constrain the following conditions including timing, area

and other rules to meet specification. The coding style is important since

it affect the synthesis results a lot.

• Gate-level simulation

After synthesis, the gate level circuit will include timing information. Thus,

we need to check the function correctness again. The nWave tool can help

us to check the function with timing information.

• Memory BIST (Built-In Self-Test)

We use the memory generator to describe the specification and create the

memory. We also use the memory specification to generate memory BIST

40

Memory

M
u
x

Analyzer &

Pattern

generator

BIST

Controller

Memory Wrapper

Original Memory Port

BistMode
bist_ctrl

mem_ctrl

Q

BistFail

ErrorMap

Finish

Figure 4.4: BIST circuit.

circuit, as shown in Fig. 4.4. From Fig. 4.4, the BistMode control the

function mode and test mode. The BIST circuit contains memory wrapper

and BIST controller. When the memory size is large, the number of pins for

BistFail, ErrorMap and Finish is increate. We use the OR gate to connect

each pin of BistFail or ErrorMap to reduce the core pad.

• Scan chain insertion

Flip-Flop

CLK

D Q

QN

Flip-Flop

D

Q

QNCLK

TE

TI
1

0

Figure 4.5: From Flip-Flop to scan Flip-Flop.

For testability the scan chain synthesis is needed and this can be done by

DFT compiler. The Fig. 4.5 shows flip-flop after scan chain insertion.

• ATPG (Auto Test Pattern Generator)

We use the TetraMAX tool to generate patterns for testing. The function

of testing is to test the fault of stuck-at 0 and stuck-at 1. After ATPG we

41

can get the information with fault coverage. The fault coverage revel the

probability that a chip is in good condition.

• Scan gate level simulation

After scan chain synthesis, we need to do scanned gate level simulation.

From Fig. 4.5, due to the added multiplexors the critical path increases.

Thus we need to adjust timing for function correctness.

• APR (Automatic Place and Route)

We use the SOC encounter to perform the placing and routing. After

APR, we can check some parameters such as timing, power and design rule

viloation.

• DRC/LVS verification

We need to verify the DRC (Design Rule checking) and LVS (Layout V.S.

Schematic) using the calibre tool.

42

4.2 Chip summary

• Chip layout

Figure 4.6: Layout view of the proposed FFT processor.

This proposed variable MIMO FFT processor is fabricated in TSMC 0.18um

1P6M CMOS technology. The layout is as shown in Fig. 4.6. Table 4.1 lists

the expected chip performance and the performance satisfies the require-

ment for IEEE 802.16e standard. The 208-pin package will be used for the

chip, where 175 pins are I/O pins and others are power pins. The core size

is 25mm2 and including total 31.9375K-byte SRAM that used in feedback

memory, as shown in Fig. 4.6. The total power consumption and total area

is 181mW and 41.8mm2, respectively.

• Performance evaluation

43

Items Specification

Technology

Package

Core size

Die size

Gate count

Memory

Max Frequency

Power consumption

TSMC 18um

CQFP208

1350 K

31.9375 KB

40 MHz

181 mW

225 mm
241.8 mm

Table 4.1: Expected chip performance of the proposed FFT processor.

• Performance comparison

Table 4.2 shows that performance comparison with others FFT architec-

tures. The proposed architecture has advantages in throughput and area.

Technology

Core area

Die area

Work frequency

Power

This work

0.18um

Throughput 4R

40 MHz

181 mW

241.8 mm

[20]

0.18um

FFT size 2048-pt 1024-pt

27.6 mm

R

32 mW

52 MHz

[22]

0.6um

256-pt

N.A.

R

N.A.

50 MHz

[16]

0.13um

128-pt

4R

5.2 mW

40 MHz

22.69 mm

[19]

0.35um

2048-pt

N.A.

R

574 mW

60 MHz

212.25 mm

[21]

0.5um

1024-pt

N.A.

R

N.A.

30 MHz

240 mm

24.6 mm
236 mm21.4 mm225 mm

Table 4.2: Comparison of chip performance.

44

Chapter 5

Conclusions

In this thesis, we proposed a variable FFT for MIMO-OFDM over Wi-MAX ap-

plication. In chapter 2 we discuss several FFT architectures which can be applied

in MIMO systems with various FFT size. In chapter 3 we use the advantages

of the architectures in chapter 2 to implement our design. We also proposed a

memory sharing method to reduce the memory size to 25% compare with R2SDF.

In chapter 4, we discuss how to build the system platform in MATLAB environ-

ment and the chip implementation flow. Finally, we follow CIC design flow to

implement the proposed FFT processor in a TSMC 0.18um technology. The total

area and power consumption are 41.8mm2 and 181mW, respectively.

45

Bibliography

[1] A. V. Oppenheim, R. W. Schafer, “Discrete-Time Signal Processing,”

Prentice-Hall Inc., 1999.

[2] S. He and M. Torkelson, “A new approach to pipeline FFT processor,” in

Proc. of Int. Parallel Processing Symposium, pp. 766-770, Apr. 1996.

[3] S. He and M. Torkelson, “Designing Pipeline FFT Processor for OFDM

(de) Modulation,” URSI International Symposium on Signals, Systems and

Electronics, pp. 257-262, 1998.

[4] L. Jia, Y. Gao, J. Isoaho and H. Tenhunen,, “A New VLSI-Oriented FFT

Algorithm and Implementation,” IEEE ASIC Conference, pp. 337-341, Sep.

1998.

[5] W. C. Yeh, C. W. Jen, “High-speed and low-power split-radix FFT,” IEEE

Trans. Acoust, Speech, Signal Processing, vol. 51, pp. 864-874, Mar. 2003.

[6] B. M. Baas, “An approach to low power, high performance, fast Fourier

transform processor design,” PhD Thesis, Stanford University, 1999.

[7] C. P. Hsu, “Design of Fast Fourier Transform Processor in DVB-T Inner

Receiver,” MS Thesis, Central University, 2005.

[8] Y. T. Lin, P. Y. Tsai, and T.D.Chiueh, “Low-power Variable-length Fast

Fourier Transform Processor,” IEEE Proc. Computer. Digit. Tech., vol. 152,

no. 4, pp. 499-506, Jul. 2005.

[9] J. G. Nash, “A High Performance Scalable FFT,” IEEE Wireless Commu-

nications and Networking Conference, pp. 2367-2372, Mar. 2007.

46

[10] Y. Zhao, A.T. Erdogan, T. Arslan, “A low-power and domain-specific re-

configurable FFT fabric for system-on-chip applications,” 19th IEEE Int.,

Parallel and Distributed Processing Symposium, pp. 4, Apr. 2005.

[11] K. Manolopoulos, K. Nakos, D. Reisis, N. Vlassopoulos, V.A. Chouliaras,

“High Performance 16K, 64K, 256K complex points VLSI Systolic FFT Ar-

chitectures,” 14th IEEE International Conference on Electronics, Circuits

and Systems, pp. 146-149, Dec. 2007.

[12] ETSI EN 300 401 (v1.3.2): “Radio broadcasting systems; digital audio

broadcasting (DAB) to mobile, portable and fixed receivers,” Sep. 2000.

[13] ETSI EN 300 744 (v1.2.1): “Digital video broadcasting (DVB); framing

structure, channel coding and modulation for digital terrestrial television,”

Jul. 1999.

[14] T1E1.4/98-007R4: “Standards project for interfaces relating to carrier to

customer connection of asymmetrical digital subscriber line (ADSL) equip-

ment,” Jun. 1998.

[15] ETSI TS 101 270-2 (v1.1.1): “Transmssiion and multiplexing (TM); access

transmission systems on metallic access cables; very high speed digital sub-

scriber line (VDSL); Part 2: Transceiver specification,” Feb. 2001.

[16] S. F. Hsiao, W. R. Shiue, “Design of low-cost and high-throughput linear

arrays for DFT computations: algorithms, architectures, and implementa-

tion,” IEEE Trans. on Circ. and Syst. II. vol 47. pp. 1188-1203, 2000.

[17] V. Boriakoff, “FFT computation with systolic arrays, a new architecture,”

IEEE Trans. on Circ. and Syst. II. vol 41. pp. 278-284, 1994.

[18] Y. W. Lin, H. Y. Liu, and C. Y. Lee, “A 1-GS/s FFT/IFFT processor for

UWB applications,” IEEE Journal of Solid-State Circuits, vol. 40, issue 8,

pp. 17226-1735, Aug. 2005.

[19] Y. W. Lin and C. Y. Lee, “Design of an FFT/IFFT Processor for MIMO-

OFDM Systems,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol.54, no.4,

pp.807-815, Apr. 2007.

47

[20] K. Maharatna, E. Grass, and U. Jagdhold, “A 64-Point Fourier Transform

Chip For High-Speed Wireless LAN Application Using OFDM,” IEEE Jour-

nal of Solid-State Circuits, vol. 39, no. 3, pp. 484-493, Mar. 2004.

[21] J. C. Kuo, C. H. Wen, A. Y. Wu, “Implementation of a Programmable

64∼2048-Point FFT/IFFT Processor for OFDM-based Communication Sys-

tems,” in Proc. IEEE ISCAS, vol. 2, pp. 121-124, May 2003.

[22] H. Zou and B. Daneshard, “VLSI implementation for a low power mobile

OFDM receiver ASIC ,” in Proc. IEEE Wireless Communications and Net-

working Conference, vol.4, pp. 2120-2124, Mar. 2004.

[23] S. He and M. Torkelson, “Design and Implementation of a 1024-point

pipeline FFT processor,” in Proc. IEEE Custom Integrated Circuits. Conf.,

pp. 131-134, May 1998.

[24] L. Fanucci, M. Forliti, F. Gronchi, “Single-Chip Mixed-Radix FFT Processor

for Real-Time On-Board SAR Processing,” in Proc. IEEE Int. Conf. on

Electronics, Circuits and Systems, vol. 2, pp. 1135-1138, Sep. 1999.

48

	(1)封面.pdf
	(2)書名頁.pdf
	(3)中文摘要.pdf
	(4)英文摘要.pdf
	(5)誌謝.pdf
	本文.pdf

