
國 立 交 通 大 學
電控工程研究所

博士論文

正規化最小平方法為基礎的階層式合作共同進化演

算法及其於模糊類神經網路設計和影像對準的應用

Regularized Least Squares based Hierarchical Cooperative

Coevolutionary Algorithm for Neural Fuzzy Network Design

and Image Alignment Applications

研究生：徐啟曜

指導教授：林昇甫 博士

中華民國一○一年六月

 i

正規化最小平方法為基礎的階層式合作共同進化演

算法及其於模糊類神經網路設計和影像對準的應用
Regularized Least Squares based Hierarchical Cooperative

Coevolutionary Algorithm for Neural Fuzzy Network Design

and Image Alignment Applications

研 究 生：徐啟曜 Student：Chi-Yao Hsu
指導教授：林昇甫 博士 Advisor：Dr. Sheng-Fuu Lin

國 立 交 通 大 學

電控工程研究所

博 士 論 文

A Dissertation

Submitted to Institute of Electrical Control Engineering
National Chiao-Tung University

In Partial Fulfillment of the Requirements
For the Degree of

Doctor of Philosophy
in

Electrical and Control Engineering
June 2012

Hsinchu, Taiwan, Republic of China

中華民國一○一年六月

 ii

正規化最小平方法為基礎的階層式合作共同進化演

算法及其於模糊類神經網路設計和影像對準的應用

研究生：徐啟曜 指導教授：林昇甫 博士

國立交通大學 電控工程研究所

摘 要
進化型演算法經常被使用在訓練模糊類神經網路參數方面，主要是因為該方法有並

行搜尋的技術。不過目前此類型的方法有著無法拓展到多數量的訓練參數以及低效率的

調整模糊法則問題，所以本篇論文提出了正規化最小平方法為基礎的階層式合作共同進

化演算法來改善上述問題。使用正規化最小平方法的主要效用為減少訓練參數的數量，

而在階層式合作共同進化演算法方面，兩層級進化法被提出能夠有效地進化模糊規則以

及使得網路的參數及其架構能夠被分別被區域性及全域性的進化，因此以正規化最小平

方法為基礎的階層式合作共同進化演算法有著參數學習及架構學習的優點，並且進化完

成的網路可以被應用到現實世界的實例。第一個應用為二維影像對準問題，本論文所提

出的演算法則可用來建立一個以合作式模糊類神經網路為基礎的二維影像對準系統，該

系統利用多級模糊神經網路來解決單級模糊神經網路在仿射參數的大範圍應用的困

難。第二個應用為三維影像對準問題，採用本論文所提的學習演算法可建立以模糊類神

經網路為基礎的粗糙到細緻的三維影像對準系統，該系統改善傳統的主成份分析對準法

的高粗糙對準誤差的缺點，在細緻對準階段成功改善了遞迴式最近點法的繁重計算的問

題。這些證據可以被發現在實驗結果中來表示本論文提出的二維及三維影像對準系統，

相較於其他一些典型的影像對準系統，本文的方法有較佳的性能。

關鍵字: 正規化最小平方法，階層式合作進化型演算法，兩層級進化，參數學習，架構

學習。

 iii

Regularized Least Squares based Hierarchical Cooperative

Coevolutionary Algorithm for Neural Fuzzy Network Design

and Image Alignment Applications

Student：Chi-Yao Hsu Advisor：Dr. Sheng-Fuu Lin

Institute of Electrical Control Engineering

National Chiao Tung University

Abstract

Evolutionary algorithms are very popular in training parameters of neural fuzzy network

due to their parallel search techniques. However, current methods have problems of not

scaling well to a large number of training parameters and adjusting fuzzy rules inefficiently.

In this dissertation, a regularized least squares based hierarchical cooperative coevolutionary

algorithm (RGLS-HCCA) is proposed to improve above problems. The major utility of RGLS

is to reduce the number of learning parameters. In HCCA, two-level evolution is proposed to

evolve fuzzy rules efficiently and make the parameters and structure of a network be evolved

locally and globally, respectively. Thus, RGLS-HCCA has advantages of parameter learning

and structure learning, and the evolved network can be applied to the real world applications.

The first application is a 2D image alignment problem. The proposed RGLS-HCCA is used to

construct a cooperative neural fuzzy network (CNFN)-based 2D image alignment system,

which utilizes the multi-stage of neural fuzzy networks to solve problems that one-stage of

neural network have difficulty in applying a large range of affine parameters. The second

application is a 3D image alignment problem. The use of RGLS-HCCA can construct a neural

fuzzy network (NFN)-based coarse-to-fine 3D image alignment system, which solve the

problem of the high alignment error caused by principle component analysis (PCA) and heavy

computational cost caused by iterative closest point (ICP). The evidence can be found in

experimental results demonstrate the superior performance of the proposed 2D and 3D surface

alignment system over typical systems.

Keywords: regularized least squares, hierarchical cooperative coevolutionary algorithm,
two-level evolution, parameter learning, structure learning.

 iv

誌謝
經過多年的努力，終於取得博士學位，在博士班的研究生涯中，首先要感謝我的指

導教授-林昇甫博士，林教授在研究上給予學生正確方向的指導，讓學生覺得獲益良多，

並且林教授總是正向地鼓勵學生，讓學生對於學術研究充滿了信心，有了這份信心學生

才能夠通過論文投稿以及博士口試這兩大關卡，所以非常感謝林教授的指導。

在博士論文口試方面，感謝口試委員潘晴財教授、鍾鴻源教授、張翔教授及林錫寬

教授不辭辛苦參與學生的口試，並給與學生許多寶貴的修正意見，讓學生的論文能夠更

加地完整，所以學生由衷地感謝口試委員。

接下來要感謝 806 實驗室的博士班學長弦澤及培家、同學逸章、學弟俊偉及裕筆，

碩士班學弟柏宏、植彥、俊良、學妹婷婷及雅君，有了你們的幫忙，我的求學之路才會

如此順利，另外特別要感謝實驗室已畢業的博士班學長-徐永吉博士，有了你在論文上

的互相討論及協助，我才能完成博士論文中的許多研究。

也感謝中科院各個長官的栽培及支持，讓我能夠有機會攻讀博士，並順利取得博士

學位，而我的同事也在我的求學之路上幫忙很多，不論在工作上的協助，或是在研究上

的心得分享，對我而言都是相當大的助力。

而我的父母是我的心靈上的寄託，感謝你們對我的支持及鼓勵，我才能有信心接受

許多挑戰，並達成我人生重要的夢想-取得博士學位，而我的哥哥對我的照顧，我也是

心存感激。另外我要感謝我相識多年的女友，每當我在研究或工作上遇到挫折，妳總是

在我身邊陪我渡過許多的難關。

最後我要再次感謝所有幫過我的人，有了你們的幫忙，我才能夠取得博士學位。

徐啟曜

一○一年六月

 v

Contents

Chinese Abstract ...ii

English Abstract.. iii

Chinese Acknowledgement ...iv

Contents...v

List of Tables ...vii

List of Figures ... viii

List of Figures ... viii

Chapter 1 Introduction ...1

1.1 Motivation ...1
1.2 Related Works...3
1.3 Approach ...6
1.4 Organization of Dissertation ...8

Chapter 2 Foundations..10

2.1 Regularized Least Squares Method ..10
2.2 Neural Fuzzy Network ... 11
2.3 Cooperative Coevolutionary Learning ...14
2.4 2D Image Alignment...17
2.5 3D Image Alignment...19

Chapter 3 Regularized Least Squares Based Hierarchical Cooperative24

 Coevolutionary Algorithm..24

3.1 Parameter Level Evolution ..25
3.2 Structure Level Evolution..40

Chapter 4 Image Alignment Applications ...44

4.1 2D Image Alignment System ...44
4.1.1 Off-line Procedure ..45
4.1.2 On-line Procedure ..50

4.2 3D Image Alignment System ...50
4.2.1 Learning Phase ...51
4.2.2 Execution Phase ..59

 vi

Chapter 5 Experimental Results ..63

5.1 Prediction of Mackey-Glass Time Series ..63
5.2 Results of 2D Image Alignment ...69

5.2.1 Alignment Results of One-stage Neural Fuzzy Network70
5.2.2 Alignment Results of Multi-stage Neural Fuzzy Networks79

5.3 Results of 3D Image Alignment ...89

Chapter 6 Conclusions and Future Works..95

6.1 Conclusions ...95
6.2 Future Works ..96

Bibliography..98

Vita ...109

Publication List ... 110

 vii

List of Tables

Table 3.1: Transactions in the DMSM..34
Table 5.1: Initial parameters of RGLS-HCCA before training...64
Table 5.2: Initial parameters of four learning models. ...69
Table 5.3: Performance comparison of various existing models..69
Table 5.4: Comparison of the running time of various algorithms...69
Table 5.5: Experimental images preparation. ...71
Table 5.6: Range of affine transformation parameters used in experiments.71
Table 5.7: Initial parameters before training. ...72
Table 5.8: Leaning accuracy of the RGLS-HCCA, HESP, ESP, and SANE methods.73
Table 5.9: Alignment errors in different image alignment systems..74
Table 5.10: Target alignment range. ...80
Table 5.11: Affine parameters range of three-stage CNFNs...80
Table 5.12: Initial parameters of RGLS-HCCA training..81
Table 5.13: Alignment errors in different image alignment systems..83
Table 5.14: Range of 3D rigid transformation parameters. ..90
Table 5.15: Learning parameters for the TNFN training..91
Table 5.16: Results of alignment accuracy and execution time. ..92

 viii

List of Figures

Figure 2-1: Structure of TNFN. ..13
Figure 2-2: Basic Steps of SANE. ..15
Figure 2-3: Structure of the chromosome in MGCSE. ...16
Figure 2-4: Coding a fuzzy rule of a TNFN into a chromosome in MGCSE...........................17
Figure 2-5: Example of generating training images with different affine transformation: (a)

reference image, (b) translation, (c) clockwise rotation, and (d) counterclockwise
rotation..18

Figure 2-6: Typical procedure of an area-based 2D image alignment system.18
Figure 2-7: Example of 2D alignment: (a) reference image, (b) image with an affine

transformed, and (c) alignment results of neural network based scheme.....................19
Figure 2-8: Example of 3D image. ...21
Figure 2-9: Procedure of a 3D surface alignment task ...21
Figure 2-10: Example of coarse alignment using PCA: (a) the principal axes of the reference

model, (b) the principal axes of the input 3D data, and (c) alignment results of the
PCA method..23

Figure 2-11: Example of fine alignment using ICP: (a) the initial alignment yielded by PCA
and (b) alignment results of the ICP method. ...23

Figure 3-1: Learning process of RGLS-HCCA..25
Figure 3-2: Coding the probability vector to represent the suitability of a TNFN with Mk

rules. ...26
Figure 3-3: Structure of chromosomes to TNFN construction in PLE.....................................27
Figure 3-4: Coding an antecedent part of a fuzzy rule into a chromosome in PLE.28
Figure 3-5: Two-point crossover. ...38
Figure 3-6: The learning process of PLE..39
Figure 3-7: The coding the antecedent part of fuzzy rules into a chromosome in the structure

level evolution. ...40
Figure 3-8: Variable antecedent-part crossover operation in the structure level evolution......41
Figure 3-9: Variable antecedent-part mutation operation in the structure level evolution.......42
Figure 3-10: Whole learning process of SLE. ..43
Figure 4-1: Flow chart of the proposed image alignment algorithm..45
Figure 4-2: Steps for creating a WGOH feature vector. ...47
Figure 4-3: Process of cooperative neural fuzzy networks...49
Figure 4-4: Flow diagram of the proposed 3D image alignment system.51
Figure 4-5: Point cloud data of the reference model: (a) Front view and (b) Top view...........52
Figure 4-6: Example of the simulated training data: (a) Front view and (b) Top view.53

 ix

Figure 4-7: Creation of viewpoint feature histogram. ..53
Figure 4-8: Example of similar viewpoint feature histograms in much different view............54
Figure 4-9: Diagram describes two viewpoint direction related angles θ and φ55
Figure 4-10: Example of modified viewpoint feature histograms in much different view.56
Figure 4-11: Location of cube and reference model...58
Figure 5-1: Prediction results of the (a) proposed RGLS-HCCA, (b) HESP, (c) ESP, and (d)

SANE..66
Figure 5-2: Prediction errors of the (a) proposed RGLS-HCCA, (b) HESP, (c) ESP, and (d)

SANE..67
Figure 5-3: Learning curves of the proposed RGLS-HCCA, HESP, ESP, and SANE.............67
Figure 5-4: (a) Reference image. (b) Testing image with scale=0.9, rotation=-10°, vertical

translation=5, horizontal translation=10...70
Figure 5-5: Best results of the probability vectors for 15 runs in SRM.73
Figure 5-6: Learning curves of the RGLS-HCCA, HESP, ESP, and SANE methods.73
Figure 5-7: Alignment results for different systems: (a) Ground Truth, (b) OS-CNFN,

(c) DCT, (d) FFT, (e) KICA, (f) ISOMAP, and (g) SIFT. ..75
Figure 5-8: Alignment results for different systems under 10 dB SNR condition: (a) Ground

Truth, (b) OS-CNFN, (c) DCT, (d) FFT, (e) KICA, (f) ISOMAP, and (g) SIFT.77
Figure 5-9: Average affine transformation errors comparison using OS-CNFN, DCT, FFT,

KICA, ISOMAP, and SIFT under various SNR. Error with respect to (a) scale, (b)
rotation, (c) translation on X-axis, and (d) translation on Y-axis.78

Figure 5-10: Results of image alignment on real images: (a) OS-CNFN, (b) DCT, (c) FFT, (d)
KICA, (e) ISOMAP, (f) SIFT. ..79

Figure 5-11: Recursive training curve of performing self-organized training data yielding
method: (a) Coarse range, (b) Medium range, and (c) Fine range.81

Figure 5-12: Alignment results for different systems: (a) Ground Truth, (b) MS-CNFN, (c)
DCT, (d) FFT, (e) KICA, and (f) ISOMAP...83

Figure 5-13: Average affine transformation errors comparison using MS-CNFN, DCT, FFT,
KICA, ISOMAP under various SNR. Errors with respect to (a) scale, (b) rotation,
(c) translation on X-axis, and (d) translation on Y-axis..85

Figure 5-14: Alignment results for different systems under 10 dB SNR condition: (a) Ground
Truth, (b) MS-CNFN, (c) DCT, (d) FFT, (e) KICA, and (f) ISOMAP.........................86

Figure 5-15: Alignment results for different systems under salt and pepper noise: (a) Ground
Truth, (b) MS-CNFN, (c) DCT, (d) FFT, (e) KICA, and (f) ISOMAP.........................87

Figure 5-16: Results of image alignment on real images: (a) MS-CNFN, (b) DCT, (c) FFT, (d)
KICA, and (e) ISOMAP. ..88

Figure 5-17: Results of image alignment on circuit board inspection images: (a) the template,
(b) without rotation, (c) counterclockwise rotation, (d) clockwise rotation, (e)
counterclockwise rotation, and (f) clockwise rotation..89

 x

Figure 5-18: Examples of two coarse alignment methods: (a) PCA and (b) TNFN-based
coarse alignment. ..92

Figure 5-19: Real case of 3D point cloud data scanned by a 3D imaging laser scanner..........93
Figure 5-20: Coarse alignment results: (a) PCA and (b) TNFN-based coarse alignment.93
Figure 5-21: Fine alignment results: (a) TNFN-based fine alignment, (b) NNM, and (c) ICP.94

 1

Chapter 1

Introduction

For most interesting real world problems, the environment is more complicated and highly

non-linear. For instance, to consider image alignment problems, the prediction of the

relationship between input image and output pose is non-linear and it is hard to use the linear

mathematical tools to accomplish modeling. Based on this fact, neural fuzzy networks can

take its “black box” nature and linguistic information to deal with non-linearity. Thus, the

purpose of this dissertation is to develop a methodology to automatically design neural fuzzy

networks by using regularized least squares (RGLS) based hierarchical cooperative

coevolutionary algorithm (HCCA) to evolve the networks for applying to real world

problems.

This chapter is divided into four subsections. In Section 1.1, the motivation of this

dissertation is introduced. Section 1.2 describes the related works of the evolutionary

algorithm and image alignment applications. Section 1.3 specifies the proposed approach. In

Section 1.4 the organization of this dissertation is presented.

1.1 Motivation

In most physical systems, the relationship between input and output is inherent non-linear

in nature. Non-linear relationship is difficult to solve and give rise to interesting research

topics. To cope with non-linearity, neural networks are algorithms that can be used to perform

nonlinear statistical modeling and diverse engineering applications based on this modeling

method have been successfully developed. However, their operation is restricted to the

numeric domain. In recent years, neural fuzzy networks (NFNs) used for several problems

have become a popular research topic [1]-[6], especially for solving nonlinear and complex

problems [7]-[10]. The reason is that it combines fuzzy set and fuzzy logic into the neural

 2

network framework to bring the benefits of processing linguistic and numeric information.

Training parameters is the main issue for designing neural fuzzy networks. The most well

known algorithm is back-propagation (BP) [3], [6] which is a powerful training technique for

tuning the parameters of networks. Since the BP algorithm adopts the steepest decent

approach to minimize the error function, they suffer from a major problem: getting in local

minima of the error surface. To deal with the drawback, there is a need to face with

suboptimal problem. Towards this end, evolutionary algorithms appear to be better candidates

than the BP algorithm because of their parallel search techniques and optimization

methodology.

Recently, several evolutionary algorithms, including genetic algorithm (GA) [11],

hierarchical genetic algorithm (HGA) [12], symbiotic adaptive neruoevolution (SANE) [13],

enforced sub-population (ESP) algorithm [14], and multi-groups cooperation based symbiotic

evolution (MGCSE) [15] have been proposed to train neural networks or fuzzy systems.

Although these algorithms can obtain better performance than the BP algorithm, they still

have difficulty in scaling to more complex tasks or high input dimension of networks.

Moreover, they also conduct the problem of the random group selection of fuzzy rules and the

lost of potential fuzzy rules combinations. Therefore, these problems are the main issues this

dissertation intends to address.

Furthermore, to transfer the problem from simulation to the real world applications, two

image alignments tasks are utilized. The first one is a 2D image alignment problem which is

widely applied to many industrial applications, such as automatic visual inspection, factory

automation, and robotic machine vision. The second one is a 3D image alignment problem

which is an extended version of 2D image alignment. Thus, this dissertation aims to propose

an evolutionary algorithm to train neural fuzzy networks to apply these two real world

problems.

 3

1.2 Related Works

Neural fuzzy networks are gaining research interest and they have been widely used in

fields of pattern recognition, control problems, image processing, and diagnosis. The major

benefit of neural fuzzy network is the integration of computation power from neural networks

and human-like reasoning from fuzzy systems. Since neural fuzzy networks can bring such

benefit, how to train neural fuzzy networks has become a critical issue.

 The back-propagation (BP) algorithm [3] is a typical method for training neural fuzzy

networks. Although the use of steepest descent technique in BP learning can reach the local

minimal much quickly, the global minimal may be never found. Thus, evolutionary

algorithms are better ones than BP due to their parallel search techniques. Recently,

evolutionary fuzzy models have become a popular research field [16]-[24]. The evolutionary

fuzzy model is a learning process using evolutionary learning procedures to generate a fuzzy

system automatically. Among these evolutionary fuzzy models, the well-known algorithms

are the genetic fuzzy models, which are augmented by incorporating genetic algorithms (GAs).

There are several genetic fuzzy models have been proposed [16]-[18]. In [16], Karr adopted

GAs to adjust membership functions for designing a fuzzy controller where its fuzzy rule set

must be predetermined. Lin and Jou [17] applied GAs to fuzzy reinforcement learning to

control a magnetic bearing system. In [18], Juang et al. proposed symbiotic evolution based

genetic reinforcement learning for designing fuzzy controllers. In their work, the

symbiotic-evolution-based fuzzy controller required fewer trail and less CPU time than the

traditional GA-based fuzzy controller.

Although the genetic fuzzy models can be used to search for the optimal solution, they

may have some limitations, such as the same lengths of chromosomes, predefined parameters,

and so on. Thus, there are several improved evolutionary algorithms [19]-[22] to take into

account these limitations. In [19], Carse et al. used the fusion of genetic algorithms and fuzzy

 4

logic to evolve variable length fuzzy rule-sets. In [20], Bandyopadhyay et al. proposed

variable-length genetic algorithm (VGA) to encode different length of chromosomes in the

same population. Tang [21] proposed a hierarchical genetic algorithm to enable the

optimization of designing a fuzzy system for particular applications. Juang [22] proposed a

combination of online clustering and Q-value based GA learning for fuzzy system design

(CQGAF) to generate fuzzy rules automatically and free parameters in a fuzzy system. In

addition, Gomez and Schmidhuber [14] proposed enforced subpopulations (ESP) to provide

several subpopulations to evaluate each partial solution. The subpopulations that are used to

evaluate the solution locally can obtain better performance than those methods that only use

one population for evaluating the solution. In [15], Hsu and Lin proposed a multi-groups

cooperation based symbiotic evolution (MGCSE) to train a TSK-type neuro-fuzzy network

(TNFN). They develop a novel symbiotic evolution to let each sub population can cooperate

to generate better offspring.

In spite of the above evolutionary learning algorithms improving genetic fuzzy models,

these algorithms may conduct one or more of the following problems: (1) the random group

selection of fuzzy rules, (2) low convergence rate as the problem becomes complex, and (3)

potential fuzzy rules combinations are lost.

Recently, hierarchical enforced sub-populations (HESP) [23] provided a hierarchical

evolutionary for preserving the potential neuron combinations. In their work, in spite of

keeping useful networks, HESP still suffer from: the lengths of chromosomes must be the

same and the number of neurons has to be assigned in advance. To this end, this study

attempts to propose an evolutionary learning algorithm, which incorporates concepts of

data-mining [25-29], regularized least square, and hierarchical evolution, for improving the

problems that were mentioned above and achieve the following goals: (1) adapt the trained

network to more complex tasks, (2) select groups of fuzzy rules systematically, (3) preserve

good combinations of fuzzy rules, (4) allow variable length of chromosome, and (5) adjust

 5

the number of fuzzy rules automatically.

In addition, to consider 2D image alignment application, the problem of precise image

alignment has been well-studied in several fields. In [30], Liu et al. point out that image

alignment techniques are broadly classified as feature-based [31] and [32] and area-based

matching approaches [33-35]. Amintoosi et al. pointed out that area-based methods produce

better results than results with low signal-to-noise ratio (SNR) from feature-based methods.

Moreover, Zitova and Flusser indicated [39] that area-based methods are preferably applied to

less detailed images. In this study, we assume that our proposed image alignment system is

developed for industrial inspection tasks such that the captured images usually have less detail.

Thus area-based methods that adopt global descriptors are recommended in this paper.

In recent years, the neural network-based image alignment utilizing global features have

been a relatively new research subject [40-44]. In [40-43], the alignment scheme is to estimate

the affine parameters by a feedforward neural network (FNN). Although FNN is helpful to

improve the alignment efficiency, such methods must take a large number of iterations to

minimize the error function and several training attempts are needed to provide the robust

FNN. In addition to FNN-based methods, Sarnel et al. [44] used a radial basis function neural

network (RBFNN) to align images. According to their results, the training time of a RBFNN

has been reduced, and the alignment accuracy and robustness against noise are better than

those of FNN-based methods. However, a major drawback of the existing neural

network-based methods is the difficulty in applying to align images on a large range of affine

transformation. The reason is that a large range of affine parameters would lead to a large

amount of training data such that the mapping surface becomes more complex and applying

one-stage neural network to estimate a large range of affine parameters accurately is almost

impossible. In this dissertation, a scheme of multi-stage neural network is proposed to

overcome the problem produced by the one-stage neural network. The notion of this approach

is to divide a large size of the network into several small networks, aiming to gradually reduce

 6

the image alignment error and finally obtain the desired accuracy. Such phenomenon can be

considered a coarse-to-fine alignment of the sensed image with the reference image.

 Regarding the 3D image alignment application, the problem of 3D image alignment has

been implemented by several methods [45-50]. Among them, a coarse-to-fine technique is a

useful way for performing 3D image alignment [45] and [46]. Coarse alignment provides an

approximate transformation for aligning two images. Such alignment must be efficient and

accurate. Fine alignment uses the initial gauss of a transformation given by a coarse alignment

as a starting point to iteratively minimize the distance between the input and the destination

images. Specifically, in consideration of coarse image alignment, common methods [45] and

[46] utilized principal component analysis (PCA) [51] for coarsely aligning two images due to

its high-speed performance. However, PCA cannot ensure that the laser scanned point clouds

have the same orientation of principal axes as the reference model. This phenomenon would

cause a high alignment error in the coarse alignment phase. In consideration of fine alignment

method, iterative closest point (ICP) [52] is a typical method to iteratively calculate the

rigid-body transformation to minimize the cost function. Although ICP can provide highly

accurate 3D image alignment, its heavy computational cost in searching corresponding points

has been criticized by many researchers [45, 46, 53-55]. To this end, this dissertation intends

to propose a coarse-to-fine 3D image alignment scheme to improve the drawback generated

by PCA and ICP.

1.3 Approach

In this dissertation, three major approaches are proposed. The first one is an evolutionary

algorithm called RGLS-HCCA which is used to design neural fuzzy networks. The second

one is cooperative neural fuzzy network (CNFN)-based 2D image alignment method. The

third one is TNFN-based coarse-to-fine 3D image alignment method. Among these methods,

the second and third ones are the applications of RGLS-HCCA designed neural fuzzy

 7

networks.

Regarding the RGLS-HCCA method, the RGLS method is utilized to control HCCA to

converge toward optimal solution quickly. In HCCA, two-level evolutions are proposed:

parameter level evolution (PLE) and structure level evolution (SLE). In PLE, a data-mining

selection method (DMSM) based evolutionary learning algorithm is utilized to evolve

parameters of networks. By using DMSM, the suitable groups can be identified for

chromosome selection and such selection method would solve the random group selection

problem caused by some typical cooperative coevolution algorithms [15, 57-60]. Moreover, to

prevent the lost of potential fuzzy rules combinations, the good combinations of fuzzy rules

evolved in PLE are reserved for being the initial populations of SLE. In SLE, the initial

population are mated and mutated to produce new structure level of networks. Similar to PLE,

the good fuzzy rules of evolved network in SLE are inserted into the PLE. Thus, by

interacting two level evolutions, the parameters and structure of network can be evolved

locally and globally, respectively. Besides, this dissertation combines variable antecedent-part

crossover (VAC), variable antecedent-part mutation (VAM), and self-regulated mechanism

(SRM) such that the variable length of chromosomes can be evaluated and the number of

fuzzy rules can be adjusted automatically.

Regarding the CNFN-based 2D image alignment method, it is an application of

RGLS-HCCA. Each CNFN contains multi-stage of TNFN and each TNFN is trained by the

proposed RGLS-HCCA method. The aim of CNFN is to solve tasks that are too difficult to

solve directly. Instead of trying to use one neural network to solve difficult problems, CNFN

utilizes multi-stage of neural fuzzy networks to cover the whole problem. Each stage of

networks manages a simple level problem and through each network cooperating, the

combined network can be applied to a difficult level problem. For a 2D image alignment task,

one-stage neural network have difficulty in estimating a large range of affine parameters

accurately. Thus, CNFN utilizes multi-stage of networks to adapt image alignment to a larger

 8

range of affine parameters. The input sensed image is sent into each network in turn to

gradually reduce the image alignment error and finally obtain the desired accuracy.

Regarding the TNFN-based coarse-to-fine 3D image alignment method, it is an extended

version of 2D image alignment task. The TNFN-based coarse alignment, which aims to

improve PCA, utilizes multi-views of modified viewpoint feature histogram (MVFH) to be

the input of TNFN and the corresponding 3D poses to be the output of a TNFN. Thus, once

the training of TNFN has completed the relation between the input feature and output pose

can be inferred and such relation results in more accurate pose estimation of the input 3D

image than that of the PCA method. For the TNFN-based fine alignment method, which aims

to improve ICP, it takes the notion of combining the surface modeling with the downhill

simplex optimization method to iteratively reduce distance from the input image to the

reference image. The major benefit of the TNFN-based fine alignment method is to avoid

calculating the corresponding points, which is a problem that ICP suffer from.

1.4 Organization of Dissertation

This dissertation is divided into six chapters. Chapter 1 introduces the motivation, related

work, approach, and organization of the dissertation. Chapter 2 provides the fundamental

information used in the dissertation. The foundation includes regularized least squares method,

neural fuzzy network, cooperative coevolutionary learning, 2D image alignment, and 3D

image alignment. In Chapter 3, RGLS-HCCA is described. RGLS-HCCA consists of the

RGLS method and the two-level evolutions: parameter level evolution and structure level

evolution. Chapter 4 describes the methods of 2D and 3D image alignment which are the

applications of RGLS-HCCA. In Chapter 5, three experiments are performed to demonstrate

the superiority of RGLS-HCCA over other algorithms. The first experiment is a prediction of

Mackey-Glass time series problem, which is a benchmark to verify the proposed algorithm.

The second and third experiments, which are applications of RGLS-HCCA, are 2D and 3D

 9

image alignment tasks, respectively. In Chapter 6, the conclusions and future work of the

dissertation are discussed.

 10

Chapter 2

Foundations

In this chapter, three major backgrounds of cooperative coevolutionary learning, 2D

image alignment, and 3D image alignment are introduced. For the cooperative coevolutionary

learning, the typical SANE method is used to specify how to perform evolutionary learning.

For 2D and 3D image alignment, the procedures of aligning 2D and 3D images are described

and alignment results of general 2D and 3D image alignment methods are briefly presented.

This chapter is divided into five subsections. The concepts of the regularized least squares

method and neural fuzzy network are introduced in Section 2.1 and 2.2, respectively. In

Section 2.3, the general method of cooperative coevolutionary learning is described. Section

2.4 and 2.5 will discuss how to perform 2D and 3D image alignments tasks.

2.1 Regularized Least Squares Method

Before discussing the regularized squares method, the least square method is introduced.

Give a target vector y, and data matrix X. The most popular loss function used for regression

problems is the residual sum of squared errors (RSS):

 .2

2
yXwRSS −= (2.1)

The least square method is defined as setting w to minimize the expression. Thus,

differentiating Eq. (2.1) with respect to w can obtain:

).(yXwX T − (2.2)

By setting Eq. (2.2) with 0 to solve w:

 .)(1 yXXXw TT −= (2.3)

Unfortunately, the matrix XX T may be singular or nearly singular, which make it

difficult to invert. To address this problem, Tikhonov [61] proposed a regularization to solve

 11

the numerical instability of the matrix inversion. The method of regularization adds a positive

constant to the diagonals of XX T to make the matrix nonsingular. Thus, the expression of

Eq. (2.3) can be switched to:

 ,)(1 yXIXXw TT −+= λ (2.4)

where λ is a regularization parameter. Since Eq. (2.4) is used to solve the least square

problem, Tikhonov regularization is called regularized least squares [62], which is also called

damped least squares [63-65]. Moreover, to differentiate from the abbreviation of recursive

least square (RLS), this paper takes the idea from [66] to abbreviate regularized least squares

to RGLS.

In addition to RGLS to solve the problem of the matrix XX T being singular, pseudo

inverse is another solution. Thus, in the section of experimental results, this dissertation will

compare regularized least squares with pseudo inverse.

2.2 Neural Fuzzy Network

In Lin and Peng’s work [2], there are two typical types of neural fuzzy network (NFN)

and they are Mamdani-type [5] and TSK-type [4]. According to [6] and [67], the authors have

shown that the TSK-type NFN can offer better network size and learning accuracy than the

Mamdani-type NFN. Thus, in this dissertation, only the TSK-type NFN is introduced and

such NFN is applied to image alignment applications.

A TSK-type neuro-fuzzy network (TNFN) [4] employs a linear combination of the crisp

inputs as the consequent part of a fuzzy rule. The fuzzy rule of the TSK-type neural fuzzy

system is shown in Eq. (2.5), where n and j represent the dimension of the input and the

number of the fuzzy rules respectively.

IF x1 is A1j (m1j , σ1j)and x2 is A2j(m2j , σ2j)and…and xn is Anj (mnj , σnj)

 THEN y′ =w0j+w1jx1+…+wnjxn. (2.5)

The structure of TNFN is shown in Fig. 2.1, where n represents the dimension of the

 12

input. It is a five-layer network structure. The functions of the nodes in each layer are

described as follows:

Layer 1 (input node): Each node in this layer is called an input linguistic node, which

corresponding one linguistic variable. These nodes only pass the input signal to the next layer.

 ,)1(
ii xu = (2.6)

where)1(
iu denotes the ith node’s input in the first layer and ix denotes ith input dimension.

The number of nodes in this layer is the dimension of input vector.

Layer 2 (membership function node): each node in this layer acts as a Gaussian membership

function, and its output value specifies the degree to which the given input value belongs to a

fuzzy set. Thus, the membership value in layer 2 can be calculated by:

[]
,exp 2

2)1(
)2(

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−=

ij

iji
ij

mu
u

σ
 (2.7)

where ixu i =)1(and)2(
iju are the outputs of 1st and 2nd layers ; ijm and ijσ are the center and

the width of the Gaussian membership function of the jth term of the ith input variable ix ,

respectively. In this paper, the reason of adopting the Gaussian membership function is that it

can be a universal approximator of any nonlinear functions [6]. Besides, the number of nodes

in this layer is the dimension of input vector multiplied by the number of fuzzy rules.

Layer 3 (rule node): The output in this layer is used to perform precondition matching of

fuzzy rules. In the TNFN, the firing strength of a fuzzy rule is calculated by performing the

following “AND” operation:

 .)2()3(∏=
i

ijj uu (2.8)

The number of nodes in this layer is the number of fuzzy rules.

Layer 4 (consequent node): each node in this layer calculates the consequent value. Each

consequent value (linear combination of the crisp inputs) is weighted by the firing strength of

 13

the fuzzy rule and it can be written by:

),(
1

0
)3()4(∑

=

+=
n

i
iijjjj xwwuu (2.9)

where the summation is the consequent part and ijw is its corresponding parameters. The

number of nodes in this layer is the dimension of output vector multiplied by the number of

fuzzy rules.

Layer 5 (output node): The node in this layer computes output signal. The output node

integrates with links connected to it and acts as a defuzzifier with:

 ,
)(

1

)3(

1 1
0

)3(

1

)3(

1

)4(

)5(

∑

∑ ∑

∑

∑

=

= =

=

=

+
=== M

j
j

M

j

n

i
iijjj

M

j
j

M

j
j

u

xwwu

u

u
uy (2.10)

where)5(u is the output of 5th layer , ijw is the weighting value with ith dimension and jth

rule node, and M is the number of a fuzzy rule. The number of nodes in this layer is the

dimension of output vector.

Figure 2-1: Structure of TNFN.

 14

2.3 Cooperative Coevolutionary Learning

Evolutionary algorithms (EAs) are the methods for solving difficult problems using

notions of Darwinian evolution. EAs have been applied to many applications and the major

benefit of EAs over traditional local search methods is their parallel search ability. However,

EAs have difficulty in scaling to large problem domains. For solving this problem, researches

have extended EAs to cooperative coevolutionary algorithms (CCEAs). Instead of solving the

entire problem, the notion of cooperative coevolutionary learning is to reduce the complex of

difficult problems through modularization. In other words, a difficult complete problem can

be divided into small simple problems. In CCEAs, each individual represents only a partial

solution and a full solution is built by means of cooperating with other partial solutions. Thus,

each individual can be evolved locally and recombined it with other well-performed

individuals to form a good total solution.

Symbiotic adaptive neruoevolution (SANE) is one of typical CCEAs. In SANE, partial

solutions can be viewed as specializations. It indicates that partial solutions specialize toward

one aspect of the full solution. To concern with fitness evaluation, the fitness of an individual

is calculated by summing all combinations of that individual with other individuals and

dividing by the total number of combinations. Thus, the fitness value reflects an average value

of combined full solutions. Fig. 2.2 presents the basic steps of SANE. As shown in this figure,

there are nine steps of SANE and they are described as follows.

Step1. Initialization: in this step, all fitness values are clear and all genes of individuals are

assigned a random value within a predefined range.

Step2. Selection: randomly select n individuals from the population.

Step3. Create a neural network: use the selected n individuals to build a neural network.

Step4. Evaluate the network: after the neural is created, the evaluation is performed according

the given problem.

 15

Step5. Selection times check: each individual must be selected sufficient times. If the

selection time does not satisfy, then go to Step2 to continue the selection step.

Step6. In this step, the average fitness value of an individual is computed by dividing the total

fitness value of each chromosome by the number of times that it has been selected to build

networks.

Step7. Termination check: check the fitness value with respect the whole network not a single

individual. If the fitness value of the whole network satisfies the pre-setting value, then SANE

terminate.

Step8. Crossover: a one-point crossover strategy is used to exchange the site’s values between

the selected sites of individual parents to create new individuals, which are offspring

inheriting the parents’ merits.

Step9. Mutation: in the last step, the gene is mutated at the rate 0.1% drawn randomly from

the domain of the corresponding variable. Then go to Step 2 to perform selection.

Figure 2-2: Basic Steps of SANE.

Although SANE can obtain better performance than traditional evolutionary approaches,

it still has the problem that the algorithm cannot evaluate each partial solution independently.

More specifically, SANE use only one population to evaluate every partial solution, this will

 16

cause partial solutions too similar. Therefore, the algorithm may have less chance to obtain

optimal solution. To this end, MGCSE [15], which is a previous evolutionary algorithm and

similar to ESP, was proposed for evolving TSK-type neural fuzzy networks. Compare to

SANE, MGCSE provide several groups to evaluate each partial solution. Each group in the

MGCSE represents a group that consists of the set of the chromosomes that belongs to the

partial solution. In MGCSE, the population consists of several sub-populations and each

sub-population represents the set of the chromosomes that belongs to one fuzzy rule. The

structure of the chromosome is shown in Fig. 2.3. In this figure, each fuzzy rule represents a

chromosome that is selected from a group, Psize represents there are Psize groups in a

population, and “Mk” represents Mk fuzzy rules are used to construct a TSK-type neural fuzzy

network.

Figure 2-3: Structure of the chromosome in MGCSE.

The coding structure of the chromosome in MGCSE is shown in Fig. 2.4. This figure

describes a fuzzy rule that has the form of Eq. (2.5), where ijm and ijσ represent a

 17

Gaussian membership function with mean and deviation, respectively, and jiw is the weight

with ith dimension and jth rule node.

jm1 j1σ jm2 j2σ …
njm njσ 0jw 1jw 2jw …

jnw

Figure 2-4: Coding a fuzzy rule of a TNFN into a chromosome in MGCSE.

However, MGCSE have difficulty in scaling to more complex tasks or high input

dimension of networks, conduct the problem of the random group selection of fuzzy rules,

and the lost of potential fuzzy rules combinations. In consideration of the lost of potential

fuzzy rules combinations, Gomez had proposed HESP to accomplish it. Nevertheless, HESP

suffers from the problems that the lengths of chromosomes must be the same and the number

of neurons has to be assigned in advance. To this end, this dissertation proposes

RGLS-HCCA to address the above mentioned problems.

2.4 2D Image Alignment

In this subsection, a 2D image alignment task is introduced. Image alignment can be

viewed as a mapping between two images by means of a geometric transformation. Typically,

geometric transformation contains many types, including affine, similarity, and projective

transformation. Among them, affine transformation is the most common used type and it

composites of translation, rotation, and scaling. Thus, this paper adopts the affine

transformation as the transformation model. Figure 2.5 shows an example of a remote

controller with different transformation parameters. In Fig. 2.5 (a), it represents a reference

image which other transformed images want to align with. In other words, if the pose of the

transformed image is known, then the transformed image can be recovered to the original

pose of the reference image by reversing the pose. Thus, a 2D image alignment task defined

in this dissertation is to align transformed images with the reference image.

 18

(a)

(b)

(c)

(d)

Figure 2-5: Example of generating training images with different affine transformation: (a) reference image, (b)

translation, (c) clockwise rotation, and (d) counterclockwise rotation.

Since industrial inspection tasks are assumed, area-based alignment methods that adopt

global descriptors are recommended. Thus, this study tries to focus on developing a good

area-based alignment method. Figure 2.6 illustrates a typical procedure of an area-based 2D

image alignment system. As shown in this figure, the sensed image is sent into the descriptor

to extract the feature. Then, feed the feature into a pose estimation block to estimate the pose

with respect to the reference image. Finally, the estimated affine transformation parameters

can be used to align the sensed image with the reference image. Toward this end, seeking

accurate affine transformation parameters is the most important fields for aligning images.

Figure 2-6: Typical procedure of an area-based 2D image alignment system.

 19

Figure 2.7 illustrates an example of aligning 2D images where figure (a) is a reference

image, figure (b) is an input image, and figure (c) is a alignment result of using neural

network based alignment scheme defined in [44]. In Fig. 2.7 (c), the cross sign denotes the

estimated results of Sarnel’s work [44] and from the location of this cross sign, the alignment

results is not good enough. The major drawback of such approach is that they have difficulty

in applying to align images on a large range of affine transformation. Thus, this dissertation

proposes a CNFN-based 2D image alignment method to perform coarse-to-fine alignment of

the sensed image and the reference image.

(a)

(b)

(c)

Figure 2-7: Example of 2D alignment: (a) reference image, (b) image with an affine transformed, and (c)

alignment results of neural network based scheme.

2.5 3D Image Alignment

The 3D image defined in this dissertation is a range image which is scanned by an

 20

imaging laser scanner. Each pixel in the range image reflects a range data which indicates a

distance from the sensed point to the scanner. In other words, the range data can be considered

as a 3D point with respect to the scanner. Thus, the scanner can be a center of a coordinate

system to represent each sensed range data. Figure 2.8 presents an example of the range image,

intensity image, and a 3D point cloud data. From this figure, the range image utilizes the color

bar to represent the range data. The intensity image, which is also generated by the imaging

lasers scanner, is used to be the corresponding map of range image. The 3D point cloud data,

which is created by transforming range data to Cartesian coordinate, shows the 3D position of

each pixel.

Figure 2.9 illustrates the procedure of a 3D image alignment task. From this figure, the

3D scene is scanned by a 3D imaging laser scanner where the size of the scanned scene is

256×256 with 20 degree field of view. The region of interest (ROI) is extracted by using the

segmentation algorithm described in [68]. The reference model is a target 3D surface that the

ROI wants to align with. Thus, the purpose of the 3D image alignment task is to align the ROI

with the reference model.

 21

Figure 2-8: Example of 3D image.

Figure 2-9: Procedure of a 3D surface alignment task

Intensity image

Range image

Coordinate Transformation

3D point cloud

3D scene

Segmentation

Align

ROI

Reference Model

Alignment Result

 22

According to Chapter 1, a coarse-to-fine technique is a useful way to perform 3D image

alignment tasks. In consideration of coarse image alignment, common methods [45] and [46]

utilized PCA [51] for coarsely aligning two images due to its high-speed performance. In

consideration of traditional fine alignment methods, iterative closest point (ICP) [52] is a

typical method to iteratively calculate the rigid-body transformation to minimize the cost

function.

Figure 2.10 illustrates an example of aligning an input 3D point with reference model

using PCA. From this figure, (a) and (b) represents the principal axes of a 3D reference model

and input 3D point data, respectively. Figure 2.10 (c) depicts the alignment results of PCA

method. From Fig. 2.10 (a)-(c), we can know that since the input laser scanned 3D data is

partial, its principal axes would be askew with respect to the 3D reference model and such

case results in the large alignment error of PCA method (seen from Fig. 2.10 (c)). Based on

this fact, this dissertation will propose a TNFN-based coarse alignment method that utilizes

the pose estimation to replace of aligning principal axes.

Figure 2.11 illustrates an example of performing ICP fine alignment where figure (a) is

the initial alignment yielded by PCA coarsely alignment and figure (b) is final fine alignment

performed by ICP. Although ICP can get a good result for fine alignment, its heavy

computational cost in searching corresponding points is a problem. To this end, this paper

proposed a TNFN-based fine alignment method which combines surface modeling and the

downhill simplex optimization method to improve the problem.

 23

Figure 2-10: Example of coarse alignment using PCA: (a) the principal axes of the reference model, (b) the

principal axes of the input 3D data, and (c) alignment results of the PCA method.

Figure 2-11: Example of fine alignment using ICP: (a) the initial alignment yielded by PCA and (b) alignment

results of the ICP method.

(a) (b)

(c)

(a)

(b)

 24

Chapter 3
Regularized Least Squares Based Hierarchical
Cooperative Coevolutionary Algorithm

The learning process of RGLS-HCCA is shown in Fig. 3.1. As show in this figure,

RGLS-HCCA involves two major evolutions: parameter level evolution (PLE) and structure

level evolution (SLE). The blocks of inserting good networks and inserting good neurons (i.e.

good fuzzy rules) are the connection between the parameter and structure level evolution.

These two operations indicate that good evolved results in one level evolution would be

transferred to another level evolution. Once receiving good neurons or networks, the received

chromosomes would be mated with other old chromosomes to yield some new offspring.

Therefore, by exchanging the good information between two levels of evolution, we have

more chance to find the global optimal solution.

This chapter is divided into two subsections to introduce the proposed two-level

evolution. In Section 3.1, parameter level evolution is discussed. Section 3.2 describes how

structure evolution works.

 25

Figure 3-1: Learning process of RGLS-HCCA.

3.1 Parameter Level Evolution

In this subsection, we will discuss the parameter level evolution (PLE). In PLE, it aims

to determine not only the suitable fuzzy rules of TNFN automatically but also the suitable

individuals used to construct a TNFN. Regarding the former aim, PLE proposes a

self-regulated mechanism (SRM) to determine the number of fuzzy rules automatically. SRM

utilizes the probability vector to represent the suitability of TNFN with different fuzzy rules.

In Fig. 3.2, SRM codes the probability vector
kMP to represent the suitability of a TNFN

with Mk rules where the number of fuzzy rules is limited to a certain bound, i.e., [Mmin, Mmax].

After the SRM is carried out, the probability of the suitable number of fuzzy rules in a TNFN

will increase, and the probability of the unsuitable number of fizzy rules in a TNFN will

decrease. Therefore, the number of fuzzy rules would be self-regulated. Regarding the later

 26

aim, although SRM can determine the suitable number of rules, there is a need to identify the

suitable groups used to select individuals to construct TNFN. More specifically, we should

consider the well-performing groups of individuals to cooperate for producing better a

generation than the current one. To face this issue, this study proposes a data-mining based

selection method (DMSM) to determine which groups should be used to select individuals.

The DMSM involves two major parts, namely, finding frequent patterns and mining

association rules. Regarding the former, the FP-growth algorithm [27] is used to find the

frequent patterns that do not have candidate generation. Regarding latter, association rules are

identified by using the confidence value. In DMSM, the FP-growth is used to find the sets of

groups that occur frequently from transactions. In this paper, a “transaction” refers to the

collection of groups that have good or bad performance. After the candidate sets of frequently

occurring groups are found, DMSM identifies the association rules by setting the suitable

confidence and uses the found association rules to determine Mk groups that are used to select

Mk chromosomes that form TNFN with Mk rules. To this end, two actions are defined in this

study: normal and explore actions. In the normal action, Mk groups are chosen randomly. In

the explore action, Mk groups are chosen according to association rules. These two actions

will be discussed in the procedures of PLE.

minMP 1min +MP … kMP … 1max −MP
maxMP

Figure 3-2: Coding the probability vector to represent the suitability of a TNFN with Mk rules.

To consider the structure of TNFN, unlike MGCSE encoding one fuzzy rule into a

chromosome, PLE only encodes an antecedent part of a fuzzy rule into a chromosome. The

consequent part of a fuzzy rule used in PLE is estimated by a regularized least square (RGLS)

approach. The structure of chromosomes to construct TSK-type neuro-fuzzy networks

(TNFNs) in PLE is shown in Fig. 3.3. In this figure, each antecedent part of a fuzzy rule

represents a chromosome selected from a group, Psize denotes that there are Psize groups in a

 27

population, and Mk indicates that there are Mk rules used in TNFN construction. In addition,

PLE adopts the variable length of a combination of chromosomes with RGLS method to

construct a TNFN. Thus, the length of combined chromosomes to construct TNFNs can be

different.

Figure 3-3: Structure of chromosomes to TNFN construction in PLE.

After discussing the structure of chromosomes to construct TNFNs, details of the coding

step for PLE and RGLS method are described as follows:

(1) Coding Step:

The coding structure of chromosomes in the proposed PLE is shown in Fig. 3.4. This

figure describes an antecedent part of a fuzzy rule that has the form in Eq. (2.5), where ijm

and ijσ represent a Gaussian membership function with mean and deviation of ith dimension

and jth rule node, respectively. Besides, a pair of (m ,σ) indicates a neuron in Layer 2 of a

TNFN. Evolving an antecedent part of a fuzzy rule is likely to evolve a neuron which is a

parameter of a neural network. Thus, the evolution of this level is called a parameter (i.e.

neuron) level evolution.

 28

Figure 3-4: Coding an antecedent part of a fuzzy rule into a chromosome in PLE.

(2) RGLS method:

Assume a TSK-type neural fuzzy model composed of m fuzzy rules as the following

form:

 :jR IF x1 is jA1 and…and xn is j
nA , THEN n

j
n

jj
oj xwxwwy +++= L11 , (3.1)

where mj ,,1L= and j
iA is the linguistic part with respect the input i and Rule j. From Eq.

(3.1), the output can be written as:

 ,ˆˆˆ 2211

1

1
mmm

j
j

m

j
jj

yuyuyu
u

yu
y +++==

∑

∑

=

=
L (3.2)

where ju is the firing strength of Rule j, and)/(ˆ 1 mjj uuuu ++= L . Then it is possible to

express the equation above into the form:

 aWxwxwwuxwxwwuy n
m
n

mm
mnn =++++++++=)(ˆ)(ˆ 110

1
1

1
1

1
01 LLL , (3.3)

where mjwwWWWW Tj
n

j
j

TT
m

T ,,1 ,][,][01 LLL === , and

)]ˆˆ ˆ()ˆˆ ˆ()ˆˆ ˆ[(121221111 nmmmnn xuxuuxuxuuxuxuua LLLL= .

Since y and a are known value, the only unknown value is the consequent part W .

Suppose a given set of training inputs and desired outputs is{ }M
td tytx 1)(),(= . The Eq. (3.3) can

be rewritten as:

 dYAW = , (3.4)

where TMaaaA)]()2()1([L= .

In order to get the smooth estimation, the regularization is adopted. The approximation

 29

solution can be written as follows:

d
TT YAIAAW 1)(ˆ −+= λ , (3.5)

where λ is a regularization parameter which adjusts the smoothness. Thus, by getting Eq.

(3.5), we finish the estimation of the consequent part of fuzzy rules. Based on this fact, this

dissertation utilizes RGLS to calculate the consequent part of a TSK-type neural fuzzy

network. This operation would not only reduce the number of parameters that must be trained

but also increase the convergence rate of the evolutionary algorithm. Thus, the phenomenon

of reducing training number and increasing convergence rate would promote the evolutionary

algorithm to adapt the neural network to more complex tasks.

The learning process of PLE involves seven operators: initialization, self-regulated

mechanism, data-mining based selection method, fitness assignment, reproduction, crossover,

mutation, and insert good networks. The whole learning process is introduced below:

a. Initialization: Before we start the parameter level evolution, the initial groups of

individuals should be generated. Thus, initial groups are generated randomly within a

predefined range. The following formulations show how to generate the initial chromosomes

in each group:

Deviation: Chrg, c [p]=random [minσ , maxσ],

where p=2, 4,…, 2n; g=1, 2,…, Psize; c=1, 2,…, NC, (3.6)

 Mean: Chrg, c [p]= random [minm , maxm],

 where p=1, 3,…, 2n-1, (3.7)

where Chrg, c represents cth chromosome in the gth group, NC is the total number of

chromosomes in each group, p represents the pth gene in a Chrg, c, and [minσ , maxσ], [minm ,

maxm] represent the predefined range to generate the chromosomes.

b. Self-regulated mechanism (SRM): To select fuzzy rules automatically, PLE proposes

SRM to determine the suitability of TNFN models with different fuzzy rules. The

 30

self-regulated mechanism encodes the probability vector
kMP to stands for the suitability of

a TNFN with Mk rules. In addition, in SRM, the minimum and maximum number of rules

must be predefined to limit the number of fuzzy rules to a certain bound, i.e., [Mmin, Mmax].

The processing steps of SRM are described as follows:

Step 0. Initialize the probability vectors
kMP :

.,,1,where

,5.0

maxminmin MMMM

P

k

M k

L+=

=
 (3.8)

 .0=rAccumulato (3.9)

Step 1. Update the probability vectors
kMP according to the following procedures:

(1) Evaluate the fitness value of TNFN with Mk rules:

1 ,then

)_(if

+=+=

−≥

fitcountfitcountFitnessfitfit

essvalueThreadFitnFitnessBestFitness

kkk

kk

MMM

MM
, (3.10)

 where
kMFitness represents the fitness value of TNFN with Mk rules,

kMFitnessBest _ represents the best fitness value of TNFN with Mk rules,
kMfit

is the sum of the fitness values of the TNFN with Mk rules and fitcount is a count as

Eq. (3.10) satisfies.

(2) Calculate the average fitness value:

,/ fitcountfitAvgfit
kk MM = (3.11)

),1/(minmax

max

min

+−= ∑
=

MMAvgfitAvg
M

MM
M

k

k
 (3.12)

where
kMAvgfit is a average value of

kMfit and Avg represents the average

fitness value in the whole population.

(3) Update the probability vectors:

 31

∑
=

=
max

min

_
M

MM
MMM

k

kkk
AvgfitAvgfitvalueUpt , (3.13)

⎪⎩

⎪
⎨
⎧

−=

≤+=

otherwise),*_(

if),*_(

rvalueUptPP

AvgfitAvgrvalueUptPP

kkk

kkkk

MMM

MMMM
, (3.14)

where
kMvalueUpt _ is a update value for Mk fuzzy rules and

kMP is the

probability vector, and r is a predefined ratio value.

Step 2. Determine the selection times of TNFN with different rules according to the

probability vectors as follows:

kMRp =)_/(*)_(VelocyTotalPTimesSelection
kM , (3.15)

 ∑
=

=
max

min

_
M

MM
M

k

k
PVelocyTotal , (3.16)

where max1minmin ,,, MMMM k L+= , TimesSelection _ represents the total selection times

in each generation and
kMRp represents the selection times of TNFN with Mk rules in one

generation.

Step 3. In SRM, to prevent suitable selection times from falling into the local optimal solution,

we uses two different procedures to update
kMP . Such actions are defined as follows:

Procedure 1: update the probability vector

1then,__if

,2to1Stepsdo then,if

+==

≤

rAccumulatorAccumulatoFitnessBestFitnessBest

SRMTimesrAccumulato

g

 (3.17)

where SRMTimes is a predefined value, gFitnessBest _ represents the best fitness value of

the best combination of chromosomes in the gth generation, and FitnessBest _ represents

the best fitness value of the best combination of chromosomes in the current generations.

 To consider the amount of the computation in SRE, Eq. (3.14) is the major computation

 32

process for SRM. Since the amount of the computation in Eq. (3.11)-(3.13) is not heavy

(depend on the number of
kMFitness and it is often not much), updating a

kMP in Eq. (3.14)

is also less computation. It implies that SRM is not a heavy computation procedure.

Procedure 2: initialize the probability vector

,0and0Stepdo then,if => rAccumulatoSRMTimesrAccumulato (3.18)

If Eq. (3.18) is satisfied, it indicates that the suitable selection times may fall into the local

optimal solution. At this time, the processing step of SRM should return to Step 0 to initialize

the probability vector
kMP .

c. The data-mining based selection method (DMSM):

After operating SRM, the selection times of TNFNs with different numbers of rules are

determined. Thereafter, PLE performs the selection step, which involves the selection of

groups and the selection of chromosomes. In selection of groups, this paper proposes DMSM

to determine the suitable groups for chromosomes selection to form a TNFN.

In DMSM, suitable groups are selected according to the groups, which conduct from

association rules that indicate good performance. To achieve these aims, DMSM utilizes the

FP-growth [27] and the association rules mining. Regarding former, the FP-growth is used to

identify frequently pattern. It was proposed by Han et al. [27], and it aims to find the

frequently occurring patterns that do not have candidate generation. In the proposed DMSM,

the FP-growth is used to find the frequently occurring groups from transactions. To reiterate, a

transaction refers to a set of the groups that have good or bad performance. Regarding latter,

after the frequently occurring groups are found, DMSM constructs the association rules by

setting the suitable confidence. The association rules algorithm is a well-known approach in

several fields [69-73]. The purpose of mining association rules is to identify good groups.

After performing these two steps, the found association rules are utilized to selects Mk groups

 33

that are used to choose chromosomes to form TNFNs with Mk rules. To prevent the selected

groups from falling into the local optimal solution, DMSM uses normal and explore actions to

select well-performed groups. The details of the DMSM are discussed below:

Step 1. Normal action:

If Accumulator don not exceed the NormalTimes, the current action is the explore action.

The aims of this action include two parts: accumulate the transaction set and select groups

which are described as follows:

Part 1: Accumulate the transaction set

The transactions are built, as in the following equations:

,

][][
)_(if

gIndexePerformanc
then

itTNFNRuleSeinTransactio
essvalueThreadFitnFitnessBestFitness

k

kk

Mj

MM

=

=

−≥

 (3.19)

,

][][
)_(if

bIndexePerformanc
then

itTNFNRuleSeinTransactio
essvalueThreadFitnFitnessBestFitness

k

kk

Mj

MM

=

=

−<

 (3.20)

where kMi , ,2 ,1 L= , maxminmin , ,1 , MMMM k L+= , nNumTransactioj , ,2 ,1 L= , the

kMFitness represents the fitness value of TNFN with Mk rules, essvalueThreadFitn is a

predefined value, nNumTransactio is the total number of transactions,][inTransactio j

represents the ith item in the jth transaction,][itTNFNRuleSe
kM represents the ith group in

the Mk groups used for chromosomes selection, and gIndexePerformanc = and

bIndexePerformanc = represent the good and bad performance, respectively. Hence,

transactions have the form shown in Table 3.1. As shown in Table 3.1, the first transaction

means that the three-rule TNFN formed by the first, fourth, and eighth groups have ”good”

performance. In contrast, the second transaction indicates that the four-rule TNFN formed

by the second, fourth, seventh, and the tenth groups have “bad” performance.

 34

Table 3.1: Transactions in the DMSM.

Transaction index Groups Performance Index

1 1,4,8 g

2 2,4,7,10 b

… … …

TransactionNum 1,3,4,6,8,9 g

Part 2: Select groups

In the normal action, DMSM selects groups using the following equation:

],,1[][then

if

SizePRandomiGroupIndex

sNormalTimerAccumulato

=

≤
 (3.21)

where kMi , ,2 ,1 L= , max1minmin , , , MMMM k L+= , rAccumulato defined in Eq.(3.21) is

used to determine which action should be adopted,][iGroupIndex represents the selected ith

group of the Mk groups, and SizeP indicates that there are SizeP groups in a population in

PLE. If the best fitness value does not improve for a sufficient number of generations

(NormalTimes), then DMSM selects groups according to explore action.

Step 2. Explore action:

If Accumulator exceeds the NormalTimes, the current action switches to the explore

action. The objective of this action is to adopt the notion of DMSM to explore suitable groups

in transactions. The major operations of DMSM include FP-growth performing, association

rules generating, and suitable groups selecting. The details of these three operations are

presented below.

i. FP-growth performing

In this operation, only good groups, whose performance index showed “g” in Table 3.1,

are performed with FP-growth and bad groups are skipped. Thus, frequently occurring groups

can be found according to the predefined Minimum_Support, which stands for the minimum

fraction of transactions containing the item set. After Minimum_Support is defined, data

mining using FP-growth is performed (detail procedures of FP-growth can be found in [27]).

 35

In FP-growth, frequently occurring groups can be found by exploring the FP-tree [27]. After

exploring the frequently occurring groups in the FP-tree, FP-growth data mining is completed

by the concatenation of the suffix group [27] with the generated frequently occurring groups.

Thus, in this paper, frequent groups denote the frequently occurring groups found by

FP-growth algorithm.

ii. Association rules generating

Once the frequently occurring groups are found, we can produce association rules from

these frequent ones. For the purpose of identifying the association rules with good

performance, the frequent groups must combine the groups owing bad performance shown in

Table 3.1 to count the confidence degree. The confidence degree can be computed by the

following formula:

,

) () (
) (

) |(
) (

badgroupsfrequentsuppgoodgroupsfrequentsupp
goodgroupsfrequentsupp

groupsfrequentgoodP
goodgroupsfrequentconfidence

∪+∪
∪

=

=
⇒

 (3.22)

 where) |(groupsfrequentgoodP is the conditional probability, goodgroupsfrequent ∪

or bad means the union of frequent groups and good or bad performance, and

supp(goodgroupsfrequent ∪ or bad) stands for the counts of frequent groups with good or

bad performance occurring in transactions. Then the rule is valid if

 ,) (minconfgoodgroupsfrequentconfidence ≥⇒ (3.23)

where minconf represents the minimal confidence given by user or expert. Hence, we can

infer that if a rule satisfies Eq. (3.23), then the frequent groups can be viewed as the suitable

groups, otherwise they would be unsuitable groups. For instance, if the confidence of

{1,3,6}=>{g} is bigger than the minimum confidence, then we construct this association rule.

This rule indicates that the combination of the first, third, and sixth groups results in “good”

performance. After doing so, the frequent groups are conduct to the association rules and

generate the AssociatedGoodPool which contains all frequent groups satisfied Eq. (3.23).

 36

iii. Suitable groups selecting

After the association rules are identified, DMSM selects groups according to the

association rules. The group indexes are selected from the associated good groups as the

following equations:

],[][

][],1[where

,][then

if

GoodPoolAssociatedRandomqtGoodItemSe

qtGoodItemSewandPRandmw

wiGroupIndex

esExploreTimrAccumulatosNormalTime

size

=

∈=

=

≤<

 (3.24)

where , , ,2 ,1 mGoodPoolNuAssociatedq L= kMi , ,2 ,1 L= , max1minmin , , , MMMM k L+= ,

esExploreTim is a predefined value that judge to perform the exploring action,

GoodPoolAssociated represents the sets of good item set that obtain from association rules,

mGoodPoolNuAssociated presents the total number of sets in GoodPoolAssociated and

][itGoodItemSe presents a good item set that select from GoodPoolAssociated randomly.

In the Eq. (3.24), if kM greater than the size of tGoodItemSe , remain groups are selected

by Eq. (3.21).

Step 3. If the best fitness value does not improve for a sufficient number of generations

(ExploreTimes), DMSM selects groups based on the normal action (Step 1).

Step 4. After the Mk groups are selected, Mk chromosomes are selected from Mk groups as

follows:

,][qiIndexChromosome = (3.25)

where], ,1[cNRandomq = ki , ,2 ,1 L= , cN represents the total number of chromosomes

in each group, and][iIndexChromosome represents the index of a chromosome that is

selected from the ith group.

d. Fitness assignment: To assign a fitness value of an individual, the following detailed steps

in the fitness value assignment are performed:

 37

Step 1. Take the DMSM selected Mk antecedent part of fuzzy rules and use RGLS method to

calculate the consequent part of fuzzy rules. These two actions are repeated to construct

TNFNs
kMRp times from kM groups with size NC.

Step 2. Evaluate every TNFN that is generated from Step1 to obtain a fitness value. In this

paper, the fitness value is designed according to the following formulation:

Fitness Value=)),,(1/(1
_
yyE+ (3.26)

where ,)(),(
1

2
__

∑
=

−=
N

i
ii yyyyE (3.27)

where iy and iy
−

 represents the desired and predicted values of the ith output, respectively,

),(
_
yyE is an error function and N represents the number of the training data in each

generation.

Step 3. Accumulate the divided fitness value to the antecedent part of fuzzy rules with their

fitness value records.

Step 4. Divide the accumulated fitness value of each chromosome from kM groups by the

number of times that it has been selected.

e. Reproduction: Reproduction is a procedure of copying individuals according to their

fitness value. This study adopted our previous research-elite-based reproduction strategy

(ERS) [15] to perform reproduction. In ERS, every chromosome in the best combination of

Mk groups must be kept by performing reproduction step. In the remaining chromosomes in

each group, this study uses the roulette-wheel selection method [74] and [75] for this

reproduction process. The well-performed chromosomes in the top half of each group [18]

proceed to the next generation. The other half is created by executing crossover and mutation

operations on chromosomes in the top half of the parent individuals.

 38

f. Crossover: Although DMSM can be used to select suitable individuals for TNFN

construction, it does not create any new individual. In nature, an offspring has two parents and

inherits genes from both. The main operator working on the parents is the crossover operator,

the operation of which occurs for a selected pair with a crossover rate. In this paper, a

two-point crossover strategy [76] is adopted and shown in Fig. 3.5. In the figure, exchanging

the site’s values between the selected sites of individual parents creates new individuals. The

advantage of the two-point crossover is its ability of introducing a higher degree of

randomness into the selection of genetic material [77]. Moreover, such crossover strategy

generally yields better performance than one-point crossover due to its larger search step size

[76].

Figure 3-5: Two-point crossover.

g. Mutation: Although the crossover strategy produces many new strings, these strings do not

provide any new information to every group at the site of an individual. Mutation can

randomly alter the allele of a gene. In this paper, to emphasize the capability of the SRM and

the DMSM, the PLE attempts to simplify the mutation operation. Uniform mutation [74] and

[78] is therefore adopted, and the mutated gene is drawn randomly from the domain of the

corresponding variable. The benefits of uniform mutation are not only to generate new

information into a population but also to keep a highly diverse array of information, which is

useful to the fitness of individuals [79].

h. Insert good networks: Since there are “Selection_Times” networks constructed in every

generation, the fitness value of each network is recorded and compares it with the structure

 39

evolution level. If the fitness of the network is better than the worst network in the structure

evolution level, then this network is inserted into the structure evolution level.

 To consider the termination criterion, if the learning steps meet one of the following

conditions, RGLS-HCCA is terminated and output the final results.

(1) The number of generations reaches a predefined maximal iteration value.

(2) Fitness value is greater than a fitness threshold.

Consequently, the whole learning process of PLE is summarized in Fig. 3.6.

Figure 3-6: The learning process of PLE.

 40

3.2 Structure Level Evolution

In this subsection, the structure level evolution (SLE) is discussed. The main processes

of SLE involve six operations: receive good networks, reproduction, variable antecedent-part

crossover, variable antecedent-part mutation, evaluation, insert good neurons. The details of

these operations are described as follows:

a. Receive good networks: Before the structure evolution starts, we receive N

well-performed networks from parameter level evolution to be chromosomes. The coding

structure of chromosomes in the structure level evolution is shown in Fig. 3.7. In this

figure, each block of a chromosome describes an antecedent part of a fuzzy rule that has

the form in Eq. (2.5), where ijm and ijσ represent a Gaussian membership function

with mean and deviation of ith dimension and jth rule node, respectively. The consequent

part of a fuzzy rule is skipped to encode into chromosomes since regularized least squares

is proposed to estimate the consequent part. After that, we sort the chromosomes to

prepare for performing reproduction.

Figure 3-7: The coding the antecedent part of fuzzy rules into a chromosome in the structure level evolution.

b. Reproduction: Reproduction is a process in which string are copied according to their

fitness value. In this step, roulette-wheel selection method is adopted for the reproduction

process. The well-performed chromosomes in the top half of each group proceed to the

next generation. The other half is generated by executing variable two-part and variable

two-part operations on chromosomes in the top half of the parent individuals.

c. Variable antecedent-part crossover: In the structure level evolution, the variable

 41

antecedent-part crossover (VAC) is proposed to perform crossover. In VAC, two parents

are selected by using the roulette-wheel selection method [74]. Because the selected

parents may be with different length, the misalignment of individuals must be avoided in

the crossover operation. Thus variable antecedent-part crossover is proposed to address

this problem. The antecedent part means that only the antecedent of fuzzy rule is

performed crossover operation. In VAC, two-point crossover [76] is adopted to execute

crossover. Thus, new individuals are generated by exchanging the site’s values between

the selected sites of the parents’ individuals. In VAC, to avoid the misalignment of

individuals in the crossover, the selection of the crossover points would not exceed the

shortest length chromosome of two parents. Two individuals with different lengths using

VAC operation are shown in Fig. 3.8. where ARj represents the parameters of the

antecedent part of the jth rule in the TNFN, and Rk represents there are k fuzzy rules in a

TNFN. After performing the VAC, the new offspring can replace the individuals with

poor performance.

Figure 3-8: Variable antecedent-part crossover operation in the structure level evolution.

d. Variable antecedent-part mutation: The mutation operator can randomly alter the allele of

a gene. It provides new information to every population at the site of an individual. In the

structure level evolution, the variable antecedent-part mutation (VAM) is adopted to

perform the mutation operation. The benefit of VAM is to be applied to different length of

chromosomes. The VAM operation of each individual is shown in Fig. 3.9 where AR

indicates antecedent part of fuzzy rule In VAM, uniform mutation [78] is adopted, and the

 42

mutated gene is drawn randomly from the domain of the corresponding variable.

Figure 3-9: Variable antecedent-part mutation operation in the structure level evolution.

e. Evaluation: The evaluating step is to evaluate the fitness of each chromosome that has not

already been evaluated in a population. The higher a fitness value indicates the better

performance. Since each chromosome only includes the antecedent part of fuzzy rules, the

consequent part of fuzzy rules is not defined. Thus, similar to the fitness assignment in

PLE, the RGLS method is used to estimate the consequent part of fuzzy rules. After the

antecedent and consequent part are determined, the TNFN is constructed. Then, evaluate

every TNFN to obtain a fitness value. In this paper, the fitness value is designed according

to Eq. (3.26) and (3.27).

f. Insert good neurons: After the evaluation operation, if a network has a higher fitness value

than the best network in the parameter level, then insert the neurons into the

corresponding groups of subpopulation in the parameter level evolution.

Thus, the whole learning process of SLE is summarized in Figure 3.10.

 43

Figure 3-10: Whole learning process of SLE.

In short, the purpose of SLE is to reserve the good combinations of fuzzy rules produced

by PLE and evolve the structure of the produced neural fuzzy networks. Thus, the utility of

SLE is to fine tune the evolved results of PLE. To this end, PLE would be a major evolution

to evolve TNFNs and it affects the effectiveness of the proposed RGLS-HCCA model.

 44

Chapter 4
Image Alignment Applications

To demonstrate the applicability of RGLS-HCCA to real world problems, two image

alignments tasks are taken to consideration: 2D image alignment and 3D image alignment.

For a 2D image alignment problem, it is considered of great importance in numerous

industrial applications including automatic visual inspection, electronic component assembly

automation, circuit board inspection, and robotic machine vision. Among them, an automatic

visual inspection system [80-82] is one of the most important fields for seeking an accurate

geometric transformation to align images. To this end, neural network based methods have

widespread to face this problem. The reason is that such methods often extract global features

from images and feed them into a trained neural network to estimate geometric

transformations parameters. In this dissertation, RGLS-HCCA can be used to develop a neural

fuzzy network-based image alignment system to demonstrate high performance.

For a 3D image alignment problem, it is considered a critical step in object recognition

[83], surface reconstruction [84], and image-guided surgery [85]. Two major concerns for the

alignment task are execution time and alignment accuracy. Recently, neural network-based

methods have become very popular due to their high efficiency. Thus, a TNFN-based

coarse-to-fine 3D surface alignment scheme is proposed in the current dissertation.

In this chapter, two subsections are used to introduce the proposed alignment systems.

Section 4.1 presents how the proposed 2D image system works. In Section 4.2, the proposed

TNFN-based coarse-to-fine 3D image alignment system is described.

4.1 2D Image Alignment System

The flow chart of the proposed image alignment algorithm, which consists of off-line

and on-line procedure, is illustrated in Fig. 4.1. During the off-line procedure, the synthesized

 45

training images are created by applying the reference image to affine transformations with

randomly selected parameters, and then use the Gabor-weighted gradient orientation

histograms (Gabor-WGOH) descriptor to represent these training images as feature vectors.

Finally, the feature vectors and desired targets are employed to train a CNFN using

RGLS-HCCA. During the executing phase, the sensed image is sent to the Gabor-WGOH

descriptor to extract a feature vector and then feed it into the RGLS-HCCA trained CNFN to

estimate affine transformations parameters. Then, the estimated parameters are taken to align

the sensed image with the reference image. The following subsections will introduce the

process of the proposed 2D image alignment scheme.

Figure 4-1: Flow chart of the proposed image alignment algorithm.

4.1.1 Off-line Procedure

The objective of the off-line procedure is to train CNFN. Four main parts in the

procedure are synthesized training images creating, Gabor-WGOH descriptor generating,

self-organized training data yielding, and CNFN training. These parts are described as

follows.

(a) Synthesized Training Images Creating

The synthesized training images can be generated by applying various combination of

translation, rotation, and scaling transformations within a predefined range. The

 46

transformation model is affine transformation which can be described by the following matrix

equations:

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ+
Δ+

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
yy
xx

yy
xx

s
y
x

c

c

c

c

1

1

2

2

cossin
sincos
θθ
θθ

, (4.1)

where),(11 yx indicates the original image coordinate,),(22 yx indicates transformed

image coordinate, s is a scaling factor,),(yx ΔΔ is a translation vector, θ is a rotation angle,

and),(cc yx is the center of rotation.

(b) Gabor-WGOH Descriptor Generating

The WGOH descriptor has been compared by several global descriptors [40-42, 86-88]

using a nearest-neighbor search of the feature vector proposed by [89] and [90]. Thus, WGOH

was proven a good descriptor [86] and [90], inspired by Scale Invariant Feature Transform

(SIFT) descriptor [91], and presented by Bradley et al. to show its high speed [92]. The main

idea of the WGOH is that it calculates the orientation histograms within a region, and uses the

magnitude of the gradient at each pixel and the 2D Gaussian function to weight the histogram

[86]. Therefore, for the WGOH descriptor, there are four steps for representing an image:

1 For each image, we capture the template window, whose location is at the center of the

image, to be a place of extracting features. Within the window, we divide the length and

width of the window into 4 equal parts to form 4×4 grids. Each grid is considered a

sub-image. Thus the template window can be split into 4×4 sub-images.

2 On each pixel of the sub-image),(yxI , the gradient magnitude),(yxm , and orientation

),(yxθ is computed using pixel difference which the equations can be written as

 ,))1,()1,(()),1(),1((),(22 −−++−−+= yxIyxIyxIyxIyxm (4.2)

))).,1(),1(/())1,()1,(((tan),(1 yxIyxIyxIyxIyx −−+−−+= −θ (4.3)

3 Calculate the 8-bin orientation histograms (each bin cover 45 degree) within each

sub-image which are weighted by the gradient magnitude, and the Gaussian function.

 47

4 Concatenate 8-bin histograms of 16 sub-images into a 128-element feature vector, and

normalize it to a unit length. To reduce strong gradient magnitudes, the elements of the

feature vector are limited to 0.2, and this vector is normalized again.

Consequently, each image can be represented by a 128-elemet feature vector. Fig. 4.2

illustrates an example of WGOH computation steps. However, using pixel difference to

compute the gradient is sensitive to noise. To avoid such sensitivity, Moreno et al. combined a

Gabor filter with WGOH descriptor to suppress noise [93]. Based on this fact, we adopt the

Gabor-WGOH descriptor for representing an image.

Because the 128-elemet feature vector is still too high to train a TSK-type neuro-fuzzy

network, there is a requirement of finding a dimensionality reduction method to lower the

dimension of the feature vector. In order to lower the dimension of feature vector, we further

employed principal component analysis method (PCA) to reduce the 128-elemet feature

vector into a 33-element one. Therefore, each image can be represented by a 33-elemet feature

vector.

Figure 4-2: Steps for creating a WGOH feature vector.

(c) Yielding self-organized training data

 After describing the Gabor-WGOH descriptor, this paper proposes a self-organized

training data-creating method to provide an appropriate training data set for training neural

 48

fuzzy networks. The major advantages of the proposed training data-creating method are that

it can prevent the generation of the redundant data and supply a self-organized training data

set for training a neural fuzzy network efficiently. The steps for yielding the self-organized

training data are as follows:

Step 1: First, generate a small training data set }{ trainS .

Step 2: Then, utilize the training data set to train a neural fuzzy network.

Step 3: Input a fixed number of testing data set }{ testS into the neural network to create the

alignment error }{ testE . Check each error)}({ iEtest :

.1 and }{)}({ then ,)(If insert +=⎯⎯ →⎯> ErAccErAccSiSPdErroriE traintesttest

,,,2,1for testNi L= (4.4)

 where PdError is the predefined error, ErAcc is the accumulator of large error counts,

and testN is the number of the test data set.

Step 4: If ErAcc < ert , then accumulate the LoopNum=LoopNum+1. Otherwise, set

LoopNum=0. The symbol ert indicates the threshold of the error accumulator, and

LoopNum means the accumulating number of loop.

Step 5: If LoopNum > loop threshold loopt , terminate the training and output the training set

}{ trainS . Otherwise, go to step 2 to run recursive training.

In Step 3, the insert testing data is the data that the neural fuzzy network does not

perform well. Therefore, inserting such data can enhance the learning ability of the neural

network and prevent the selection of the redundant training data. Moreover, from Step 5,

looptLoopNum > means that the amount of training data set has converged. At this time, it

also indicates that the training data set is self-organized. Thus, we can utilize the

self-organized training data-creating method to provide the training data for training CNFNs.

(d) Cooperative Neural Fuzzy Network (CNFN) training

The notion of the cooperative neural fuzzy network is to combine several networks to all

 49

cooperate in adapting to a large range of affine transformation. The aim of this operation is to

improve the problem of applying a large range of affine transformation to traditional

one-stage neural network which can cause a large amount of training data; such a network is

difficult to train. The cooperative networks can be seen a coarse-to-fine aligning the captured

image with reference image.

 Figure 4.3 presents the process of cooperative neural fuzzy network. From this figure,

each stage deals with a certain range of affine parameters and they cooperate to get a large

range of affine parameters. As input an image with an unknown pose, the cooperative neural

fuzzy network would gradually reduce the pose difference between the input and reference

image. Thus the final pose with respect to the reference image can be written as the following

equation:

 ,21 Nfinal PPPP +++= L (4.5)

where 1P , 2P , and NP indicates the estimated pose from 1st, 2nd, and Nth stage of the

neural network.

Figure 4-3: Process of cooperative neural fuzzy networks.

To perform training CNFN with providing the training data, this study proposes

RGLS-HCCA to accomplish it. In CNFN, once the dynamic image alignment range of each

stage has been determined, each network can be trained independently. Thus, the training

process of each stage of CNFN is similar, and the only difference is its training parameters. To

 50

this end, RGLS-HCCA is used to train each stage of CNFN to estimate the pose with respect

to the input image.

4.1.2 On-line Procedure

In the on-line phase, the sensed image (input image) is sent to the Gabor-WGOH

descriptor to extract a feature vector and then feed it into RGLS-HCCA trained CNFN to

estimate transformation parameters, which include the scaling factor s , rotation angle θ ,

and translation (xΔ , yΔ), to be taken into aligning images. More specifically, the proposed

CNFN performs N-stages of neural fuzzy network (as shown in Fig. 4.3) to gradually align

the sensed image with the reference image. Thus, the image alignment error will be reduced

stage by stage and finally get the best aligning pose with the reference image.

4.2 3D Image Alignment System

According to Chapter 2, each pixel in a 3D image can be considered as a 3D point cloud

data with respect to the laser scanner. Thus, a 3D image is viewed as a collection of 3D point

clouds and these point clouds can represent arbitrary 3D surface. Based on this fact, aligning

two 3D images is likely to align two 3D surfaces and other researches also call 3D image

alignment to be 3D surface alignment (or registration) [45]. In this dissertation, the objective

of a 3D image alignment is to align a captured 3D image (i.e. 3D surface) of an object in an

arbitrary view with the 3D surface of the reference model.

Figure 4.4 presents the flow diagram of the proposed 3D image alignment system. In the

learning phase, two data flows are performed for training TNFNs to adapt two levels of image

alignment: one for coarse alignment and the other one for fine alignment. In the executing

phase, the trained TNFNs are utilized to implement a coarse-to-fine 3D image alignment task.

These two phases are explained in detail to show how the process of 3D image alignment

works.

 51

Figure 4-4: Flow diagram of the proposed 3D image alignment system.

4.2.1 Learning Phase

The objective of the learning procedure is to train two TNFNs for applying coarse-to-fine

3D image alignment. These two major parts of the procedure are the coarse alignment

learning and the TNFN-based surface modeling. These parts are described in the following

contents.

(a) Coarse alignment learning

The goal of coarse alignment is to determine an approximate rigid transformation that

coarsely aligns the reference model with the input point clouds. The coarse alignment must

be quick to provide a good initial transformation for the fine alignment task. Thus, TNFN is

utilized to learn any case of rigid transformation within the predefined range. Once the

training of TNFN is completed, input arbitrary view of point clouds would yield the estimate

pose with respect to the reference model. Therefore, the executing phase of the TNFN is

simple and efficient.

The procedures of proposed coarse alignment learning involves generating synthesized

training point cloud data, yielding the modified viewpoint feature histogram (MVFH), and

 52

training the TNFN. These operations are introduced as follows:

(i) Generating synthesized training point cloud data

Figure 4.5 depicts the point cloud data of the reference model. The reference model is an

integrated model constructed by collecting multi-views of point cloud data. To generate the

synthesized training point cloud data, various combinations of translation and rotation

transformations within a predefined range are applied in the reference model. The

transformation can be considered a rigid transformation, which can be written as follows:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=+⋅=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′
′
′

=

z

y

x

t
t
t

z
y
x

rrr
rrr
rrr

TsR
z
y
x

m

333231

232221

131211

, (4.6)

where R is a rotation matrix, T is a translation vector, s is an original set of point cloud data

and m is a transformed set of point cloud data. Furthermore, to simulate the real case in a 3D

scene, point cloud data that cannot be seen in the viewpoint direction are eliminated. Figure

4.6 presents an example of the simulated training data. As shown in this figure, the point

cloud data is only a partial of reference model and the unseen point clouds have been

eliminated. Therefore, after the training point data has been generated, the following operation

is to extract the feature of the point cloud data.

(a) (b)

Figure 4-5: Point cloud data of the reference model: (a) Front view and (b) Top view

 53

(a) (b)

Figure 4-6: Example of the simulated training data: (a) Front view and (b) Top view.

(ii) Modified Viewpoint Feature Histogram

Modified Viewpoint Feature Histogram (MVFH) is the modification of Viewpoint

feature histogram (VFH), which was presented by Rusu et al. [94], to show its

computationally efficient 3D feature. To introduce VFH in advance, this descriptor is

computed by accumulating a histogram of the angles between the central viewpoint direction

and each normal of point cloud. Figure 4.7 illustrates the idea of VFH.

Figure 4-7: Creation of viewpoint feature histogram.

Suppose the central point is cV and the viewpoint is pV . Then the central viewpoint

direction is pc VV − . Thus the angle θ between the central viewpoint direction (pc VV −) and

 54

each normal in of point cloud iV can be computed by the following equation:

 .
||||||||

)(
cos 1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅−

•−
= −

ipc

ipc

nVV
nVV

θ (4.7)

Thereafter, the N-bin orientation histograms (each bin cover 180/N degree) can be

calculated by accumulating the angle described in Eq. (4.7). The histogram in each bin is

normalized by dividing the total number of point clouds. Thus, such histogram indicates the

percentage of point clouds falling in each bin. However, in 3D surface alignment tasks, the

viewpoint direction angle to represent the 3D surface might be not appropriate because VFH

in some much different view angles would yield similar feature, especially in the case of

symmetrical objects with 180 degree view angle difference. Figure 4.8 illustrates an example

of similar VFH with much different view angle. As shown in this figure, the object is at two

much different viewpoints but they have similar viewpoint feature histogram.

Figure 4-8: Example of similar viewpoint feature histograms in much different view.

Although Rusu et al. used ideas from Point Feature Histogram (PFH) [95] to assemble

with VFH, the PFH descriptor is a local feature, which indicates PFH to be view independent,

such that the combined VFH-PFH still cannot solve the problem presented in Fig. 4.8. In our

3D surface alignment case, the captured 3D feature must be view dependent. The reason is

 55

that the 3D feature is utilized to identify the view angle and if the 3D feature is view

independent, the captured feature would be similar in each view such that it is impossible to

differentiate the exact view angles in an object. Regarding this fact, we modify the original

viewpoint feature histogram by calculating another viewpoint direction related angle to

improve the viewpoint feature histogram. Then we name such viewpoint direction as modified

viewpoint feature histogram (MVFH). Figure 4.9 presents a diagram that describes two

viewpoint direction related angles where θ is the original angle used by VFH, φ is new

added angle used by MVFH, the central point is cV , the viewpoint is pV , and iV is a certain

3D point.

Figure 4-9: Diagram describes two viewpoint direction related angles θ and φ .

The new added angle φ can be computed by the following equation:

 .
||||||)()(||

))()((
cos 1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅−×−

•−×−
= −

icipc

icipc

nVVVV
nVVVV

φ (4.8)

Then the N-bin orientation histograms (each bin cover 180/N degree) can be computed

by accumulating the angle φ . Thus, MVFH is finished by dividing the total number of point

clouds to normalize histogram in each bin. To demonstrate the improvement of the modified

viewpoint feature histogram, we utilize the previous example presented by Fig. 4.8, which has

 56

similar VFH in much different view, to re-computed MVFH. Figure 4.10 depicted the

computed MVFH. As shown in this figure, the first histogram and the second histogram have

different shape. This example clarifies that MVFH correct the error of much different view

with similar VFH.

Figure 4-10: Example of modified viewpoint feature histograms in much different view.

(iii) TNFN Training

After extracting MVFH from a 3D object, let MVFH be the input neurons of TNFN and

let the desired pose be the output neurons of TNFN. The desired pose comprises six degrees

of freedom, including three rotation angles (θϕφ , ,) and three translation parameters (x, y, z).

Thus, the use of TNFN is to model the relationship between the MVFH and the desired pose.

Once receiving a MVFH from capturing a certain view of point clouds, the TNFN would

output an estimated pose, which can be used to coarsely align the input point clouds with the

reference model. To this end, training of a TNFN to provide the required pose would affect

the alignment accuracy.

To perform training of a TNFN, the reference model is used as a basis for synthesizing a

set of point clouds constituting a training-set. Each training point data is generated by

 57

applying the transformation defined in Eq. (4.6). To reduce the correlations between training

point clouds, the six parameters are selected randomly and independently within the

predefined boundaries. After the training-set has been generated, the MVFH method is used to

represent the training point clouds as input features of a TNFN. Subsequently, the proposed

RGLS-HCCA would be adopted to begin training of a TNFN and the training procedure

would stop as the stopping condition is satisfied. Although the training phase is lengthy, the

executing phase of the proposed coarse alignment method merely consists of computing the

MVFH descriptor and then feeding it into TNFN to estimate the corresponding pose.

(b) TNFN-based surface modeling

The purpose of the TNFN-based surface modeling is to provide an evaluation method for

performing the fine alignment of 3D surface. The evaluation is to measure how close the

distance from the reference surface to input point clouds is. Thus, the major part of the

TNFN-based surface modeling is to use TNFN to model the 3D surface that maps the 3D

Euclidean input space (input 3D point (x,y,z)) into 1D Euclidean output space (the shortest

distance to the reference surface). Such mapping can be considered a cost function that

evaluates the distance between the input point clouds and the reference model. Thus, the

TNFN mapping can combine with the downhill simplex optimization method to iteratively

compute the rotation matrix R and translation vector T to perform the fine alignment of 3D

surface. The detail of the combination of the TNFN mapping and the downhill simplex

optimization will be discussed in the executing phase.

 The procedures of modeling the 3D surface involve combining the cube model, creation

of training data, and surface modeling using TNFN. These operations are explained bellow.

(i) Combing cube model

To model the reference surface, uniform distributed point clouds are needed to prepare the

training data. In this study, a cube model is generated to be combined with the reference

model. The cube model encloses the reference surface, and the point clouds within the cube

 58

are sampled uniformly. Thus, the point clouds around the reference model can serve as the

training data for modeling the reference surface. Figure 4.11 depicts the locations of cube and

reference model where the reference model is located at the center of the cube.

Figure 4-11: Location of cube and reference model.

(ii) Creation of training data

In the creation of training data, we extract the point clouds enclosed the cube satisfying

the distance from a point (x,y,z) to the reference model less than a predefined value. The

predefined value is set by observing the alignment error yielded from the coarse alignment

case. Therefore, the point clouds (x,y,z) satisfies

 valuepredefinedzyxDist),,(≤ (4.9)

will be used for training the TNFN. In general, the predefined value must be set sufficient

large to involve all the coarse alignment cases. Thus, to simply the creation of training data,

this paper set all point clouds inside the cube model to be the training data.

(iii) Surface modeling using TNFN

Similar to the TNFN training in the coarse alignment learning case, the structure shown in

Fig. 4.5 is used to model the 3D surface. The input of the TNFN is defined as the coordinates

(x,y,z) of a point cloud, and the output of the TNFN is the unsigned shortest distance from a

 59

point (x,y,z) to the reference model. Thus, the surface of the reference model can be modeled

using the TNFN to map the 3D coordinate of point cloud data into the 1D distance between

the cube data and the reference model. The representation of the modeling function can be

written as follows:

).,,(zyxfDist = (4.10)

The total distance between the cube data and the reference model can be computed as

follows:

 ,),,(
1
∑
=

=
N

i
iii zyxfTotDist (4.11)

where N is the number of the cube model. Thus, when the resolution of the cube model is

sufficiently high, any arbitrary point clouds inside the cube can be send into a trained TNFN

to estimate the distance between the input point clouds and the reference model.

 In consideration of training a TNFN to model the reference surface, as well as the coarse

alignment learning, RGLS-HCCA is also utilized to perform training the TNFN.

4.2.2 Execution Phase

In the execution phase, the input point clouds are aligned with the reference model by

means of MVFH extraction, TNFN-based coarse alignment, and TNFN-based fine alignment.

MVFH extraction has been discussed in Section 4.2.1 (Part (a)), whereas the TNFN-based

coarse and fine alignments are described bellow.

(a) TNFN-based coarse alignment

Assuming the MVFH descriptor has been calculated, the descriptor is forwarded to the

trained TNFN to obtain the rotation angles (θϕφ , ,) and translation parameters (x, y, z). Then,

the six parameters are used to compute the rotation matrix R and translation vector T defined

in Eq. (4.6). Based on R and T, we obtain the estimated pose to coarsely align the input point

clouds with the reference model.

(b) TNFN-based fine alignment

 60

The procedure of the TNFN-based fine alignment consists of the TNFN mapping and the

downhill simplex optimization [96]. In the TNFN mapping, the TNFN maps each 3D point

cloud),,(zyx into a 1D distance function),,(zyxf (defined in Eq.(4.16)). The total

distance function ∑),,(zyxf is computed by summing of each distance mapping of 3D

point cloud. Thus, the total distance function is used as the cost function of the subsequent

downhill simplex optimization. In downhill simplex optimization, iterative calculation of rigid

transformation between input point clouds and reference model is adopted to minimize the

cost function. Each iterative loop uses the downhill simplex method to compute the rotation

matrix R and translation vector T to perform fine alignment. Once the downhill simplex

optimization is completed, the final R and T are used to calculate the estimate pose that align

the input point clouds with reference surface.

Detail steps of the downhill simplex optimization [97] for fine alignment of 3D surface

are described as follows:

Step 0: Under 3D rigid body transformation, we choose six degrees of freedom (three rotation

angles (θϕφ , ,) and three translation parameters (x, y, z)) as the vertex of simplex. Then we

randomly generate 6+1 initial vertices of simplex within a fixed range where 6 represents the

dimension of vertex vector. In this study, the 7 initial vertices are denoted as 610 ,,, XXX L .

Step 1: Two procedures are performed in this step.

(1) Evaluation: Based on each vertex of simplex, we can compute the corresponding rigid

transformation matrix defined in Eq. (4.6). According to the transformation matrix, the

input point clouds yielded by coarse alignment are mapped into new coordinates. The new

point clouds are forwarded into the trained TNFN to get distance function),,(zyxf . Then,

∑),,(zyxf can be calculated by sum of all mapping of new point clouds.

(2) Sorting: Here we choose total distance function ∑),,(zyxf as the cost function and

re-define the symbol to be)(iXC where iX indicates the i-th vertex of simplex. Then

 61

we sort the)(iXC and set the order as follows:

).()()(610 XCXCXC <<< L (4.12)

Step 2: In this step, the reflection point RX 6 is calculated. The downhill simplex optimization

utilizes the reflection point as the first candidate point to replace the worst point 6X . The

reflection point is calculated as follows:

(a) First find centroid of the remaining point)~(50 XX :

 .
6
1 5

1
∑
=

=
i

iXM (4.13)

(b) Then seek the reflection point:

),(66 XMMX R −+= α (4.14)

where 0>α and the default value is 1=α .

(c) Finally,)(6
RXC can be calculated by the means of evaluation method described in Step

1.

Step 3: There are 3 cases are discussed in this step.

Case 1: If)()(06 XCXC R ≥ and)()(56 XCXC R < , choose RX 6 to replace 6X . Then we

re-sort the simplex and forward to Step 4.

Case 2: If)()(06 XCXC R < , compute the expansion point EX 6 as follows:

),(666 MXXX RRE −+= γ (4.15)

 where 0>r and the default value is 1=r . Then calculate the)(6
EXC . If

)()(06 XCXC E < , choose EX 6 to replace 6X . Otherwise, choose RX 6 to replace

6X . After that, we re-sort the simplex and forward to Step 4.

Case 3: If)()(06 XCXC R ≥ and)()(56 XCXC R ≥ , compute the contraction point CX 6 as

follows:

 62

),(66 MXMX C −+= β (4.16)

where 10 << β and the default value is 5.0=β . If)()(66 XCXC R < , then

.66
RXX = Otherwise, if)()(66 XCXC R ≥ , then .66 XX = Subsequent, check the

case of)(6
RXC as follows:

(i) If)()(66 XCXC C < , choose CX 6 to replace 6X . Then, we re-sort the simplex

and forward to Step 4.

(ii) If)()(66 XCXC C ≥ , shrink the whole simplex toward 0X . After shrinking, the

new simplex is expressed as:

 []))1((),)1((,),)1((, 6050100 XXXXXXX ηηηηηη −+−+−+ L , (4.17)

 where 10 <<η and the default value is 5.0=η .

Step 4: If the least cost function meet one of the following conditions, the downhill simplex

method is terminated, and output the final results.

(a) The number of loops reaches a predefined maximal iteration value.

(b) The value of cost function is less than a minimal threshold.

Otherwise, if the least cost function does not meet the above conditions, then we

feedback to the Step 2 to continue the optimization procedure.

To sum up, the final results of the downhill simplex method would output the best vertex

of simplex. Then we decode it to the six degrees of freedom (zyx ,,, , , θϕφ). These

parameters can be transfer to a rotation matrix R and translation vector T. The fine alignment

of 3D surface is completed by computing the rigid body transformation according the R and

T.

 63

Chapter 5

Experimental Results

In this chapter, the performance of RGLS-HCCA is demonstrated on three problems. The

first one is a problem of prediction of Mackey-Glass time series. This problem is a common

benchmark for examining different learning algorithms. By applying RGLS-HCCA to the

benchmark, RGLS-HCCA would show how fast the algorithm converges and lower

estimating error comparing with other learning algorithms. Subsequently, two real world

problems, which are 2D and 3D image alignment tasks, are used to verify the applications of

RGLS- HCCA. The proposed RGLS-HCCA would act from a simulator to a real system. The

experiments would evaluate the proposed method of aligning 2D and 3D images in

comparison with other typical alignment systems.

This chapter is divided into three subsections. In Section 5.1, the prediction of

Mackey-Glass time series is used to examine the learning performance of RGLS-HCCA. In

Section 5.2 and 5.3, RGLS-HCCA is applied to 2D and 3D image alignment problems,

respectively.

All experiments in this chapter are performed by using an Intel Core i7 860 chip with a

2.8GHz CPU, a 3G memory, and the Matlab 7.5 simulation software.

5.1 Prediction of Mackey-Glass Time Series

To verify the proposed RGLS-HCCA, Mackey-Glass time series is utilized to compare

RGLS-HCCA with that of other methods. The initial parameters of the proposed

RGLS-HCCA are determined by parameter exploration methods ([98] and [99]). As shown in

[98], a small population size is good for the initial performance, a large population size is

good for long-term performance and a low mutation rate is good for on-line performance, a

high mutation rate is good for off-line performance. Moreover, in [99], parameters for genetic

 64

algorithms can be adjusted by exploring the predefined range in increments of a small value.

For instance, the population size has the range from 10 to 100 in increments of 10. Thus, this

study adjusts parameters of RGLS-HCCA according to the criteria mentioned in parameter

exploration methods. The results of parameters used in this study are listed in Table 5.1 where

“none” in SLE indicates “not used” in the learning phase.

Moreover, since ATA (with size of 50 × 50 under conditions of 10 fuzzy rules and four

input in a TNFN) in Eq. (3.5) is singular (rank of ATA is about 47) for the example of Mackey

Glass time series prediction, this dissertation incorporates RGLS to make (ATA+λI) is

non-singular. To consider the RGLS parameter (λ), this paper adopts the cross-validation

method [100] to adjust it. The notion of the cross-validation method is to divide the training

data set into training data and validation data and increase λ with small increments to balance

the error of training data set and validation set. Thus, this paper uses cross-validation method

to optimize the RGLS parameter (λ) and final adjusted λ of this example is listed in Table 5.1.

Table 5.1: Initial parameters of RGLS-HCCA before training.
Value Parameters PLE SLE

Psize 30 20
Nc 20 none
Selection_Times 40 none
NormalTimes 10 none
ExploreTimes 15 none
Crossover Rate 0.6 0.6
Mutation Rate 0.2 0.3
[Mmin, Mmax] [6, 15] [6, 15]
[mmin, mmax] [-5, 5] [-5, 5]
[σmin, σmax] [3, 20] [3, 20]
Minimum_Support TransactionNum/2 none
Minimum_Confidence 60% none
RGLS parameter (λ) 0.00001 0. 00001

The Mackey-Glass time series is a common benchmark for examining different learning

algorithms or fuzzy modeling research communities. In earlier work [101], Lapedes and

Farber used a back propagation network to predict Mackey-Glass time series. After that, other

 65

researches [102] followed Lapedes and Farber’s work to be a benchmark to examine

algorithms. Thus, we utilize such Mackey-Glass time series to perform an analysis on our

proposed algorithm and other evolutionary algorithms.

The Mackey-Glass time series is generated from the following delay differential

equation:

).(1.0
)(1

)(2.0)(
10 tx

tx
tx

dt
tdx

−
−+
−

=
τ
τ (5.1)

For this time series prediction problem, Jang [103] extracted 1000 input-output data pairs

{x, yd} from t=118 to t=1117, which consisted of four past values of x(t), that is

)],6();(),6(),12(),18([+−−− txtxtxtxtx (5.2)

where τ=17 and x(0)=1.2 and x(t)=0 for t<0. The reason choosing four past values to predict

time series is from Jang’s [103] work which wanted to allow comparison with other

researches’ algorithms (Lapedes and Farber [101], Moody [104], Crower [102]). Thus, there

are four input to RGLS-HCCA, corresponding to these values of x(t), and one output

representing the value x(t+Δt), where Δt is a time prediction into the future. The first 500 pairs

[from x(118) to x(617)] are the training data set, and the remaining 500 pairs [from x(618) to

x(1117)] are the testing data set used for validating the proposed method. The values are

floating-point numbers assigned using the RGLS-HCCA initially. The fitness function in this

case is defined in Eq. (3.26) and (3.27) to train the neural fuzzy network. The evolution

learning processes 500 generations and it is repeated 50 times. For comparative analysis, the

present study adopts the root mean square error (RMSE), which is defined as follows:

 ,))6()6((1
2/1

1

2
⎥
⎦

⎤
⎢
⎣

⎡
+−+= ∑

=

tN

l

d
ll

t

tYtY
N

RMSE (5.3)

where Nt is the number of testing data, Yl
d(t+6)=x(t+6) is the desired value, and Yl(t+6) is the

predicted value by the model with four inputs and one output.

In this example, RGLS-HCCA is compared the performance with the HESP [23], ESP

 66

[14], and SANE [13]. In these models, the learning parameters, which are determined

according the parameter exploration method [98] and [99], are shown in Table 5.2. To perform

training, the evolution learning processes for 500 generations. Figure 5.1(a)-(d) show the

prediction results of the three models. The symbol “o” represents the desired output of the

time series, and the symbol “*” represents the output of the four models. Figures 5.2(a)-(d)

illustrate the error between the desired and four models’ outputs. As shown in Fig. 5.1-2, the

performances of the RGLS-HCCA are better than those of others. Fig. 5.3 shows the learning

curves of the four models. As shown this figure, the proposed RGLS-HCCA model converges

faster than those of other three models.

(a)

(b)

(c)

(d)

Figure 5-1: Prediction results of the (a) proposed RGLS-HCCA, (b) HESP, (c) ESP, and (d) SANE.

 67

(a)

(b)

(c) (d)
Figure 5-2: Prediction errors of the (a) proposed RGLS-HCCA, (b) HESP, (c) ESP, and (d) SANE.

Figure 5-3: Learning curves of the proposed RGLS-HCCA, HESP, ESP, and SANE.

In addition HESP, ESP, and SANE, to further show the effectiveness and efficiency of

the proposed RGLS-HCCA model, we also apply MGCSE [15], and traditional genetic

algorithm (TGA) [16] to the same problem. To compare with theses algorithms, according the

 68

parameter exploration method [98] and [99], 14, 13, 12, 14, and 12 fuzzy rules are set for

HESP, MGCSE, ESP, SANE and TGA, respectively. In addition, the population size has the

range of 10 to 250 in increments of 10, the crossover rate has the range of 0.1 to 1 in

increments of 0.1, and the mutation rate has the range of 0 to 0.4 in increments of 0.01. To

this end, the parameters used for HESP, MGCSE, SANE and TGA are listed in Table 5.2. In

addition, as same with RGLS-HCCA, the evolution learning of each method processes for

500 generations and is repeated 50 times. Table 5.3 lists the generalization capabilities of the

proposed RGLS-HCCA, HESP, MGCSE, ESP, SANE, and TGA. Clearly, as shown in Table

5.3, RGLS-HCCA obtains a lower RMSE than other methods. In TGA, according to [13],

cooperative coevolutionary algorithms can find solutions faster and solve harder problems

than TGA. Thus, RGLS-HCCA and other methods (HESP, MGCSE, ESP, and SANE) exhibit

lower RMSE than TGA. In SANE, symbiotic evolution is adopted. Since symbiotic evolution

only used one population to evaluate every partial solution, the evaluation would cause partial

solutions too similar. Instead, the proposed RGLS-HCCA provides several groups to evaluate

each partial solution. Thus, the proposed model has more chance to obtain optimal solution.

The explanation can specify that the proposed method has better performance than SANE. To

consider group-based evolutionary algorithms (HESP, MGCSE, and ESP), when faced with

complex problems, the dimension of chromosomes is still high such that low convergence rate

occurs. Thus, this dissertation incorporates RGLS to reduce the dimension of chromosomes

and proposes HCCA to self adjust the parameters and structure of TNFN. Based on this fact,

the proposed model would be superior to HESP, MGCSE, and ESP.

 Moreover, to compare RGLS with the pseudo inverse method, this paper also performs

the same experiment on the pseudo inverse method. The average RMSE of the pseudo inverse

method for 50 runs is 0.0025, which is slightly larger than RGLS (0.0023). Thus, in this

example, RGLS would be better than the pseudo inverse method.

 69

Table 5.2: Initial parameters of four learning models.

Parameters
Method Populations

size
Crossover
rate

Mutation
rate

Fuzzy
rules

HESP
14(30 for
subpopulations
size)

0.7 0.03 14

MGCSE
13(30 for
subpopulations
size)

0.6 0.04 13

ESP
12(30 for
subpopulations
size)

0.7 0.05 12

SANE 120 0.1 0.15 14
TGA 140 0.8 0.01 12

Table 5.3: Performance comparison of various existing models.

RMSE
Method

Best Mean Worst STD

RGLS-HCCA 0.0017 0.0023 0.0026 0.0005

HESP 0.0118 0.0149 0.0193 0.0017

MGCSE 0.0100 0.0158 0.0190 0.0019

ESP 0.0110 0.0172 0.0219 0.0026

SANE 0.0145 0.0219 0.0313 0.0039

TGA 0.0192 0.0271 0.0747 0.0079

 Furthermore, this example also compares the running time of RGLS-HCCA with that of

other methods. The running time defined in this case is used to measure the time when the

fitness of the algorithm exceeds the predefined value (0.85). The results of four algorithms

over 50 runs are reported in Table 5.4. As shown in this table, the proposed RGLS-HCCA is

faster than HESP, MGCSE, ESP, SANE, and TGA.

Table 5.4: Comparison of the running time of various algorithms.
Method Best(seconds) Worst(seconds) Mean(seconds)
RGLS-HCCA 6.07 43.02 23.28
HESP 16.46 121.49 32.61
MGCSE 11.85 162.27 38.27
ESP 18.54 177.83 40.16
SANE 16.99 231.18 54.80
TGA 17.52 180.27 103.36

5.2 Results of 2D Image Alignment

In the 2D image alignment experiment, visual inspection images, which are 640 by 480

 70

pixels size, are used to examine the utility of the proposed CNFN-based image alignment

method. Figure 5.4 depicts an example about such images where the left side is a reference

image and the right side is a transformed image by a scaling, rotation and translation. Also in

this figure, the dashed window represents a template window (the size is 200×200, and feature

vectors are extracted within this window), and the cross sign denotes the reference location of

the template.

(a)

(b)

Figure 5-4: (a) Reference image. (b) Testing image with scale=0.9, rotation=-10°, vertical translation=5,

horizontal translation=10.

 In the following 2D image alignment experiments, two kinds of neural works are

performed. The first one is a one-stage of CNFN (OS-CNFN), which is taken into

consideration of applying to the medium range of affine parameters and examining different

learning methods. The second one is a multi-stage of CNFN (MS-CNFN), which is used to

apply the trained networks to adapt to a large range of affine parameters.

5.2.1 Alignment Results of One-stage Neural Fuzzy Network

In Table 5.5, four types of experimental images are prepared for simulation. The first three

types of images are the synthesized ones generated randomly within the range in Table 5.6. In

the last type of images are real ones captured from a camera. Moreover, Table 5.6 indicates

the searching range for image alignment. If the affine transformation exceeds the range, the

image alignment system may not promise high accuracy. Thus, the range of the image

alignment defined in this subsection is restricted in Table 5.6.

 71

Table 5.5: Experimental images preparation.
Image Type Image Preparation
Synthesized Images 800 images are generated with randomly selected

affine parameters within the predefined range.
Training Images The 50% of synthesized images
Testing Images The 50% of synthesized images
Real Images Images are acquired from CCD camera with

different pose from the reference image.

Table 5.6: Range of affine transformation parameters used in experiments.

Affine transformation parameter The range of affine
transformation parameter

Scale [0.7 1.3]
rotation(degrees) [-30 30]

vertical translation(pixels) [-20 20]
horizontal translation(pixels) [-20 20]

The following parts will discuss the comparison with existing learning methods and with

existing image alignment systems.

Part 1: Comparison with existing learning methods

Three typical evolutionary learning methods, which are HESP [23], ESP [14] and SANE

[13], are implemented carefully (the learning parameters are found using the method given in

[98] and [99]) to compare with the proposed RGLS-HCCA. Moreover, to explore the number

of fuzzy rules for HESP, ESP and SANE, the fuzzy rules are tuned by setting the range of

20-100 in increments of 5. Thus, the results find that 85, 80 and 80 rules are suitable for

SANE, ESP, and HESP respectively.

In this experiment, 800 synthesized images are generated randomly by the way in Table

5.5 where 50% of images are for training set and another 50% ones are for testing set. Then

33-element feature vectors are obtained by applying Gabor-WGOH with PCA dimensionality

reduction to above-generated images. Moreover, before training, the initial parameters of

RGLS-HCCA are given in Table 5.7. The initial parameters are tuned by the parameter

exploration method (where the RGLS parameter (λ) is adjusted by cross-validation method)

which has been described in section 5.1.

 72

To consider SRM in RGLS-HCCA, Figure 5.5 shows the best results of the probability

vectors for 15 runs in different training and testing images. As shown in Fig. 5.5, the highest

probability means the most suitable number of fuzzy rules of the TNFN model in the best run.

Therefore, the suitable number of fuzzy rules is 24. It represents that in most cases a 24-rule

TNFN would have higher probability to obtain better performance than other rules within

[Mmin, Mmax] = [18, 25].

 Figure 5.6 depicts the learning curves of four models. From this figure, RGLS-HCCA

demonstrates faster convergence speed than those of HESP, ESP and SANE. Moreover, to

examine the learning accuracy, the testing data would be sent into the trained TNFNs to get

the estimated pose including scale, rotation, vertical translation, and horizontal translation.

Then, by comparing the desired pose, four alignment errors (i.e. ErrScale, ErrAngle, ErrDx,

and ErrDy) are generated. Table 5.8 presents the learning accuracy of four evolutionary

models. From this table, the proposed RGLS-HCCA exhibits the lowest errors among four

models. To this end, the proposed model not only promotes its leaning speed but also sustains

the high learning accuracy.

Table 5.7: Initial parameters before training.
Value Parameters

PLE SLE
Psize 40 20
Nc 20 none
Selection_Times 50 None
NormalTimes 10 None
ExploreTimes 15 None
Crossover Rate 0.6 0.7
Mutation Rate 0.2 0.4
[Mmin, Mmax] [18, 25] [18, 25]
[mmin, mmax] [-10, 10] [-10, 10]
[σmin, σmax] [3, 15] [3, 15]
Minimum_Support TransactionNum/2 none
Minimum_Confidence 60% none
RGLS parameter (λ) 0.003 0.003

 73

Figure 5-5: Best results of the probability vectors for 15 runs in SRM.

Figure 5-6: Learning curves of the RGLS-HCCA, HESP, ESP, and SANE methods.

Table 5.8: Leaning accuracy of the RGLS-HCCA, HESP, ESP, and SANE methods.
Mean Errors Method

ErrScale ErrAngle
(degrees)

ErrDx
(pixels)

ErrDy
(pixels)

RGLS-HCCA 0.0066 0.3252 0.4953 0.5058
HESP 0.0223 1.4431 1.1309 1.1600
ESP 0.0229 2.0470 1.1051 1.6137
SANE 0.0247 2.0311 1.4620 1.8132

 74

Part 2: Comparison with existing image alignment systems

To evaluate OS-CNFN (i.e. the proposed system) in comparison with other existing

systems ([42], [44], [87], [88], and [91]), the implementation of these existing systems are

carefully cited their original paper. The comparison in this section consists of the alignment

accuracy, alignment speed, robustness and real image alignment case. These comparisons are

discussed in the following parts.

A. Alignment accuracy

To compare the alignment accuracy of different systems, the training images, which are

used to train neural networks, and the testing images, which are used to check the alignment

accuracy, are generated by the way described in Table 5.5.

Figure 5.7 depicts an alignment example for a testing image on six different systems. The

cross sign in this figure denotes the estimated results. From this figure, OS-CNFN can

estimate more accurate position and orientation of the cross sign than other systems.

In addition, 15 runs using different training and testing images are performed to further

examine the alignment accuracy of the proposed system. The simulation results are shown in

Table 5.9, which presents the average and standard deviation error of six image alignment

systems. From this table, OS-CNFN exhibits the lowest alignment error than other systems.

Moreover, the simulated data indicates that the alignment reaches the high accuracy level;

thus, OS-CNFN can provide a useful way to align images very accurately.

Table 5.9: Alignment errors in different image alignment systems.
Errors

ErrScale ErrAngle (degrees) ErrDx (pixels) ErrDy (pixels)
Method

Mean Standard
Deviation Mean Standard

Deviation Mean Standard
Deviation Mean Standard

Deviation
OS-CNFN 0.0061 0.0065 0.3184 0.3106 0.4820 0.3985 0.5175 0.4260
DCT [44] 0.0067 0.0098 0.6330 1.0681 1.4490 1.5832 0.9576 1.1290
FFT [87] 0.0121 0.0149 0.8020 1.0177 5.4070 4.9574 2.7508 2.4640
KICA [88] 0.0176 0.0192 1.4147 1.6462 0.9929 0.9172 1.2090 1.1842
ISOMAP[42] 0.0294 0.0268 2.0809 2.0043 1.6430 1.6123 2.2356 2.7793
SIFT[91] 0.0387 0.0775 0.4312 0.8516 1.0764 1.5838 2.1186 3.5750

 75

(a)

(b) (c)

(d) (e)

(f) (g)

Figure 5-7: Alignment results for different systems: (a) Ground Truth, (b) OS-CNFN, (c) DCT, (d) FFT, (e)

KICA, (f) ISOMAP, and (g) SIFT.

 76

B. Alignment speed

To demonstrate the alignment speed, the execution time required in performing one image

alignment task is discussed. In this paper, the steps of performing one image alignment task

consists of capturing the template window from the input image, computing the feature within

the window, and feeding the calculated feature into the trained network to get the affine

parameters.

In this experiment, we utilize 400 testing images to perform image alignment tasks. The

average execution time of OS-CNFN, DCT, FFT, KICA, ISOMAP, and SIFT take about 30ms,

26ms, 28ms, 65ms, 330ms, and 57ms respectively. From this result, it is obviously that

OS-CNFN is almost as fast as the FFT and DCT systems and is more efficiently than other

three systems.

C. Alignment Robustness

Next, the robustness of OS-CNFN under different levels of random additive Gaussian

noise is discussed. In this experiment, 400 testing images are randomly generated with the

addition of various strengths of Gaussian noise to examine the robust performance of different

image alignment systems. Figure 5.8 illustrates an example of aligning a testing image with

the reference image under 10 dB signal-to-noise ratio (SNR) condition. As shown in this

figure, OS-CNFN estimates the rotation and translation of the cross sign more accurately than

other methods.

The simulation results of the absolute estimating errors of affine parameters under eight

levels of SNR is presented in Figure 5.9(a)-(d). From these figures, OS-CNFN demonstrates

lower affine parameters error than other systems, especially as SNR is larger than 15 dB. It

stands for OS-CNFN with high robustness against noise.

 77

(a)

(b)

(c)

(d)

(e)

(f) (g)

Figure 5-8: Alignment results for different systems under 10 dB SNR condition: (a) Ground Truth, (b) OS-CNFN,

(c) DCT, (d) FFT, (e) KICA, (f) ISOMAP, and (g) SIFT.

 78

(a) (b)

(c) (d)
Figure 5-9: Average affine transformation errors comparison using OS-CNFN, DCT, FFT, KICA, ISOMAP, and

SIFT under various SNR. Error with respect to (a) scale, (b) rotation, (c) translation on X-axis, and (d)

translation on Y-axis.

D. Real Image Alignment Case

In this part, real images are utilized to verify the effectiveness of the proposed system.

Figure 5.10 (a)-(d) presents the results of aligning the same real image using OS-CNFN, DCT,

FFT, KICA, ISOMAP, and SIFT respectively. As shown in this figure, OS-CNFN

demonstrates more accurate rotation and position of the cross sign than other alignment

systems. Thus applying the proposed image alignment system to real image cases is feasible.

 79

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5-10: Results of image alignment on real images: (a) OS-CNFN, (b) DCT, (c) FFT, (d) KICA, (e)

ISOMAP, (f) SIFT.

5.2.2 Alignment Results of Multi-stage Neural Fuzzy Networks

Table 5.10 defines the target alignment range for aligning the visual inspection images.

All image alignment systems mentioned in this subsection are implemented to reach the target

alignment range.

The experimental results of multi-stage neural networks contain two parts. In part 1, the

CNFN with RGLS-HCCA training is performed. In part 2, synthesized and real images are

 80

used to compare the proposed image alignment system with other systems.

Table 5.10: Target alignment range.

Affine parameter The range of affine
parameter

Scale [0.7 1.3]
rotation(degrees) [-100 100]

vertical translation(pixels) [-100 100]
horizontal translation(pixels) [-100 100]

(1) Cooperative Neural Fuzzy Network with the RGLS-HCCA training

 To achieve the target alignment range defined in Table 5.10, we choose three ranges of

affine parameters described in Table 5.11 to accomplish the three-stage of CNFN (i.e.

MS-CNFN). In this table, each range contains a single neural fuzzy network, and these ranges

cooperate to adapt to a target alignment range. For the supply suitable training data for

networks, this paper uses the self-organized training data-yielding method to generate 1165,

137, and 219 training data for coarse, medium, and fine alignment ranges, respectively. The

map of recursive loop versus increased training data for each range defined in Table 5.11 is

shown in Fig. 5.11. Based on this figure, the number of the increased training data decreases

gradually and then self-organizes.

Prior to performing the training, the initial parameters of RGLS-HCCA are given in

Table 5.12. Based on the training feature vectors and initial parameters, we perform the coarse,

medium, and fine RGLS-HCCA training individually. These three-stage training stops when

the fitness is greater than the predefined value. Therefore, once the training process has been

performed, our image alignment system can be concluded to reach the target range defined in

Table 5.10.

Table 5.11: Affine parameters range of three-stage CNFNs.

Affine parameter The coarse range of
affine parameter

The medium range of
affine parameter

The fine range of
affine parameter

Scale [0.7 1.3] [0.85 1.15] [0.9 1.1]
rotation(degrees) [-100 100] [-50 50] [-5 5]

vertical translation(pixels) [-100 100] [-30 60] [-5 5]
horizontal translation(pixels) [-100 100] [-30 60] [-5 5]

 81

(a)

(b) (c)
Figure 5-11: Recursive training curve of performing self-organized training data yielding method: (a) Coarse

range, (b) Medium range, and (c) Fine range.

Table 5.12: Initial parameters of RGLS-HCCA training.
Value of coarse range Value of medium range Value of fine range Parameters
PLE SLE PLE SLE PLE SLE

Psize 60 20 40 20 40 20
Nc 20 none 20 none 20 none
Selection_Times 50 none 50 none 50 none
NormalTimes 10 none 10 none 10 none
ExploreTimes 15 none 15 none 15 none
Crossover Rate 0.6 0.7 0.5 0.5 0.6 0.5
Mutation Rate 0.2 0.1 0.2 0.1 0.1 0.05
[Mmin, Mmax] [38, 45] [38, 45] [18, 25] [18, 25] [18, 25] [18, 25]
[mmin, mmax] [-9.5, 9.5] [-9.5, 9.5] [-8.5, 8.5] [-8.5, 8.5] [-14.5, 14.5] [-14.5, 14.5]
[σmin, σmax] [14, 16] [14, 16] [13, 15] [13, 15] [40, 43] [40, 43]
Minimum_Support Transaction

Num/2
none Transaction

Num/2
none Transaction

Num/2
none

Minimum_Confidence 60% none 60% none 60% none
RGLS parameter (λ) 0.004 0.004 0.003 0.003 0.001 0.001

(2) Comparison with existing neural network based image alignment systems

To compare the proposed MS-CNFN with other existing neural network-based systems

 82

([42], [44], [87], and [88]), this paper carefully implements these systems according to the

descriptions in their original paper. In this experiment, three typical comparisons including the

alignment accuracy, speed, robustness, and real-image alignment testing are discussed in the

following parts.

A. Alignment accuracy

In the training phase, since as using the same number of training images (i.e.

1165+137+219=1521) as the proposed CNFN on traditional neural network-based methods

[42, 44, 87, 88] can yield large alignment error, we randomly generate another 4400 training

images from the target alignment range described in Table 5.10 for training traditional

methods. In the testing phase, we examine the alignment accuracy of MS-CNFN and other

systems by using the same 600 testing images randomly generated from the target alignment

range.

Figure 5.12 presents an example of a synthesized testing image on five different systems.

The cross sign in Fig. 5.12 denotes the estimated results. In this figure, MS-CNFN can

estimate more accurate position and orientation of the cross sign than other systems.

To proceed to analyze the alignment accuracy, Table 5.13 describes the average and

standard deviation error of five image alignment systems for 15 runs using different testing

images. From this table, MS-CNFN exhibits the lowest alignment error than other systems.

The result indicates that the proposed MS-CNFN not only gets much higher alignment

accuracy but also using fewer training data to reach better performance than other one-stage

neural network methods.

To compare RGLS with the pseudo inverse method, 600 testing images are also used on

the pseudo inverse method. The alignment results of the pseudo inverse method are: the

average scaling error is 0.0097, the rotation error is 0.2619, the translation error for x-axis is

3.6024, and the translation error for y-axis is 1.9263. Thus, from the comparison of above

alignment results with Table 5.13, RGLS would be superior to the pseudo inverse method.

 83

(a) (b)

(c) (d)

(e) (f)

Figure 5-12: Alignment results for different systems: (a) Ground Truth, (b) MS-CNFN, (c) DCT, (d) FFT, (e)

KICA, and (f) ISOMAP.

Table 5.13: Alignment errors in different image alignment systems.
Errors

ErrScale ErrAngle (degrees) ErrDx (pixels) ErrDy (pixels)
Method

Mean Standard
Deviation Mean Standard

Deviation Mean Standard
Deviation Mean Standard

Deviation
MS-CNFN 0.0095 0.0215 0.0344 0.1776 0.2766 0.1976 0.3883 0.4195
DCT [44] 0.0302 0.0350 6.8495 8.8052 6.7206 10.0008 6.3597 10.6839
FFT [87] 0.0229 0.0348 7.9348 8.8924 9.7631 10.2108 9.0485 9.4451
KICA [88] 0.0333 0.0370 9.8534 14.1339 6.6953 10.9533 6.0219 9.5207
ISOMAP

[42] 0.0670 0.0557 14.3922 21.0862 8.4077 14.4331 7.3752 9.7249

 84

B. Alignment speed

In this experiment, 600 testing images are used to check the image alignment speed. The

average execution time of MS-CNFN, DCT, FFT, KICA, and ISOMAP take about 0.103s,

0.078s, 0.085s, 0.226s, and 0.428s, respectively. From this result, the execution time of

MS-CNFN is slightly slower than DCT and FFT methods, and is more efficient than KICA

and ISOMAP methods.

C. Alignment Robustness

In this subsection, we further verify the robustness of MS-CNFN by adding different levels

of random Gaussian noise. To achieve the aim of testing the robustness, 600 testing images

are randomly generated with the addition of various strengths of Gaussian noise to examine

different image alignment systems. Figure 5.13(a)-(d) presents the results of the absolute

errors of the affine parameters under eight levels of SNR. As shown in these figures,

MS-CNFN demonstrates much lower affine parameters error than other systems. This result

indicates that the adopted Gabor-WGOH descriptor is not disturbed by a high noise level and

so is the proposed RGLS-HCCA trained MS-CNFN. Figure 5.14 illustrates an image

alignment example under a 10 dB signal-to-noise ratio (SNR) condition. From this figure,

MS-CNFN depicts more accurate cross sign location than other methods.

Furthermore, except for Gaussian noise, the salt and pepper noise is add to the testing

image at different pose from Fig. 5.14 which is used to check the robustness of the proposed

system and other four other neural network-based systems. Figure 5.15 illustrates the

alignment results of five methods. From this figure, MS-CNFN demonstrates more accurate

cross sign location than other methods.

 85

 (a) (b)

 (c) (d)
Figure 5-13: Average affine transformation errors comparison using MS-CNFN, DCT, FFT, KICA, ISOMAP

under various SNR. Errors with respect to (a) scale, (b) rotation, (c) translation on X-axis, and (d) translation on

Y-axis.

 86

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5-14: Alignment results for different systems under 10 dB SNR condition: (a) Ground Truth, (b)

MS-CNFN, (c) DCT, (d) FFT, (e) KICA, and (f) ISOMAP.

 87

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5-15: Alignment results for different systems under salt and pepper noise: (a) Ground Truth, (b)

MS-CNFN, (c) DCT, (d) FFT, (e) KICA, and (f) ISOMAP.

D. Real-Image Alignment Testing

In addition to the synthesized images, real-image testing cases are used to verify the

alignment performance of the proposed system. Figure 5.16(a)-(e) depicts the experimental

results of aligning the same real image utilizing MS-CNFN, DCT, FFT, KICA, and ISOMAP,

respectively. MS-CNFN demonstrates a more precise position and rotation of the cross sign

 88

than other systems. Thus, applying the proposed image alignment system to real-image

alignment cases with respective to large range of affine parameters is feasible.

(a)

(b)

(c)

(d)

(e)

Figure 5-16: Results of image alignment on real images: (a) MS-CNFN, (b) DCT, (c) FFT, (d) KICA, and (e)

ISOMAP.

Moreover, the circuit board inspection is another case of the real image testing. Figure

5.17(a) presents a template of a circuit board. Figure 5.17 (b)-(f) illustrate the alignment

results of a circuit board with five different poses. As shown in these figures, every cross sign

is located at an accurate position with a precise rotation. Therefore, the results imply that the

proposed 2D image alignment system can be applied to a circuit board inspection system.

 89

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5-17: Results of image alignment on circuit board inspection images: (a) the template, (b) without rotation,

(c) counterclockwise rotation, (d) clockwise rotation, (e) counterclockwise rotation, and (f) clockwise rotation.

5.3 Results of 3D Image Alignment

In the current section, a vehicle model depicted in Fig. 4.5 is selected as a reference model.

The reference model is constructed by 4907 point clouds which are uniformly distributed on

its surface. Thus, the aim of the 3D surface alignment task defined in the experiment is to

align the arbitrary input 3D images (i.e. point clouds) with the reference model.

 90

The experimental results comprise two parts. The first part uses the synthesized point

cloud sets to test the proposed TNFN-based coarse alignment approach. In the second part,

real 3D point cloud data scanned by a 3D imaging laser scanner are used to validate the

alignment accuracy of the proposed fine alignment method. In both parts of the experiments,

the alignment algorithm is compared with the neural network method (NNM) [46] and ICP

[45] to demonstrate superior performance of the proposed coarse-to-fine scheme.

A. Testing using synthesized 3D point cloud data

To perform the coarse alignment learning, 2000 synthesized point cloud sets are generated

randomly within the range described in Table 5.14. For training the TNFN, 50% of point

clouds (1000) are prepared for training data set and the remaining 50% of point clouds (1000)

are prepared for testing data set. The learning parameters for the TNFN training are defined in

the left side of Table 5.15. Thus, after the coarse alignment learning completes, the output of

TNFN is an estimated pose that coarsely aligns the input points with the reference model.

In TNFN-based surface modeling, we produce a cube model with the size of 5m×5m×5m

that encloses the entire reference model. Within the cube model, 64000 point clouds are

uniformly sampled according the resolution setting (0.125 m). Thus, the sampled point clouds

are utilized for training TNFN to model the reference surface. The learning parameters of the

TNFN-based surface modeling are defined in the right side of Table 5.15. Once the training of

TNFN-based surface modeling is completed, the TNFN modeling is combined with the

downhill simplex optimization method to execute the fine alignment of 3D surface.

Table 5.14: Range of 3D rigid transformation parameters.
3D rigid transformation parameter Range of rigid transformation parameter

φ (degree), for roll [-10 10]
ϕ (degree), for yaw [-90 90]
θ (degree), for pitch [0 90]

x(m) [-0.2 0.2]
y(m) [-0.2 0.2]
z(m) [-0.2 0.2]

 91

Table 5.15: Learning parameters for the TNFN training.
Value for coarse alignment Value for surface modeling Parameters of training

the TNFN PLE SLE PLE SLE
Psize 40 25 80 25
Nc 20 none 20 none
Selection_Times 50 none 50 none
NormalTimes 10 none 10 none
ExploreTimes 15 none 15 none
Crossover Rate 0.6 0.6 0.8 0.7
Mutation Rate 0.3 0.4 0.1 0.4
[Mmin, Mmax] [20, 35] [20, 35] [35, 40] [35, 40]
[mmin, mmax] [-15, 15] [-15, 15] [-2, 2] [-2, 2]
[σmin, σmax] [13, 15] [13, 15] [0.3, 0.9] [0.3, 0.9]
Minimum_Support TransactionNum/2 none TransactionNum/2 none
Minimum_Confidence 60% none 60% none
RGLS parameter (λ) 0.0001 0. 0001 0.0005 0.0005
N-bin for MVFH 36 36 none none

 Because the execution time and alignment accuracy are two major issues for a 3D image

alignment system, these elements are taken as the evaluation conditions to examine the

proposed alignment system.

(1) Alignment accuracy

To evaluate the alignment accuracy, the proposed TNFN-based coarse-to-fine system is

compared with NNM [46] and ICP [45], two methods that use PCA for coarse alignment.

Thus, based on the 1000 testing sets of point clouds, the alignment errors of the coarse and

fine alignments are listed in Table 5.16 where RMSE indicates the root mean square error.

From this table, the proposed system exhibits the lowest coarse and fine alignment errors

among all systems. In addition, the proposed method improves the PCA coarse alignment, as

shown in the table. Figure 5.18(a) and (b) presents a coarse alignment example of PCA and

the proposed TNFN-based method, where the blue and red point clouds represent the testing

and reference model data, respectively. From this figure, the proposed method exhibits less

alignment error than PCA.

 To compare RGLS with the pseudo inverse method, this paper uses the same 1000

testing sets of point clouds on the pseudo inverse method. The RMSE of the pseudo inverse

method for the coarse phase is 0.2619, which is larger than RGLS (0.1042). Thus, in the 3D

image alignment task, RGLS would be better than the pseudo inverse method. In short, from

 92

example 1 to example 3, we conclude that RGLS would be more suitable than the pseudo

inverse method for constructing a TNTN.

(2) Alignment speed

 In consideration of alignment speed, the average execution time for aligning 1000 testing

sets of point clouds is calculated. The results of the alignment speed are also listed in Table

5.16. From the table, the execution time of the proposed system is shorter than those of NNM

and ICP.

Table 5.16: Results of alignment accuracy and execution time.

Average RMSE (m)
Method

Coarse alignment error Fine alignment error

Average
execution Time
(sec)

TNFN-based
coarse-to-fine alignment 0.1042m 0.0627m 3.29s

PCA coarse alignment
NNM fine alignment 0.2846m 0.1423m 4.53s

PCA coarse alignment
ICP fine alignment 0.2846m 0.0688m 49.48s

(a)

(b)

Figure 5-18: Examples of two coarse alignment methods: (a) PCA and (b) TNFN-based coarse alignment.

B. Validation of real 3D point cloud data alignment

Figure 5.19 presents a real case of 3D point cloud data scanned by a 3D imaging laser

scanner. The image size of the scanned scene is 256×256 with 20 degree field of view. In the

3D scenery, the vehicle region is extracted by using the segmentation algorithm described in

[64]. The extracted vehicle data is then used to validate the alignment performance of the

proposed system, NNM and ICP. Figure 5.20 (a) and (b) show the coarse alignment results of

PCA (used for NNM [46] and ICP [45] in coarse phase) and the proposed TNFN-based

 93

method. In this figure, the coarse alignment errors of PCA and the proposed method are 0.262

and 0.106m, respectively. Thus, this result again proves that the proposed method is superior

to PCA. In the case of fine alignment, Fig. 5.21(a)-(c) depicts the fine alignment results of

proposed TNFN-based fine alignment system, NNM, and ICP. From this figure, the fine

alignment errors of the proposed system, NNM, and ICP are 0.0558, 0.1121, and 0.0569m,

respectively. These results indicate that the proposed TNFN-based method can achieve high

accuracy in real 3D point cloud data. Furthermore, regarding the alignment speed, the

execution time of the proposed system, NNM, and ICP are 1.71, 2.13, and 7.93s, respectively.

Therefore, the proposed system demonstrates higher alignment speed compared to NNM and

ICP. In short, the proposed TNFN-based coarse-to-fine 3D image alignment system can align

3D point cloud data with the reference model accurately at high speed.

Figure 5-19: Real case of 3D point cloud data scanned by a 3D imaging laser scanner.

Figure 5-20: Coarse alignment results: (a) PCA and (b) TNFN-based coarse alignment.

(a)

(b)

 94

(a)

(b)

(c)
Figure 5-21: Fine alignment results: (a) TNFN-based fine alignment, (b) NNM, and (c) ICP.

 95

Chapter 6

Conclusions and Future Works

The purpose of this dissertation is to develop a methodology to automatically design

TSK-type neural fuzzy networks (TNFNs) such that the developed networks can be applied to

real world problems. To make TNFNs to be useful, the learning algorithm must be powerful

to evolve networks in simulation that are robust enough to transfer to the real world. Toward

this end, two components have been involved to achieve this goal: regularized least square

based cooperative coevolutionary algorithm (RGLS-HCCA) and image alignment

applications. The RGLS-HCCA model can evolve the structure and parameters of TNFN and

the evolved TNFN can be taken to transfer the problem from simulation to the real world

applications.

This chapter summarizes the conclusions of these two components in Section 6.1 and

discusses future works to extend the proposed algorithm in Section 6.2.

6.1 Conclusions

This dissertation concludes two key components to the fields of evolutionary computation

and its applications. Regarding the first component, the proposed RGLS-HCCA encodes an

antecedent part of a TSK-type fuzzy rule into a chromosome and utilizes RGLS to estimate

the consequent part of a TSK-type fuzzy rule. Such combination not only reduces the number

of parameters that must be trained but also controls HCCA to adapt the network to more

complex tasks. In HCCA, it proposes parameter level evolution (PLE) and structure level

evolution (SLE) to solve the problem of the random group selection, preserve the good

combinations of fuzzy rules, and make the parameters and structure of network be evolved

locally and globally, respectively. In addition, this dissertation proposes VAC, VAM, and

SRM such that the variable length of chromosomes can be evaluated and the number of fuzzy

 96

rules can be self-adjusted. The experimental results show that by applying RGLS-HCCA to

the prediction of Mackey-Glass time series, RGLS-HCCA would demonstrate faster the

algorithm convergence rate and lower estimating error than those of other learning algorithms.

 Regarding the second component, two image alignment applications, which are 2D and

3D image alignment problems, are used to demonstrate the applicability of RGLS-HCCA. For

2D image alignment application, RGLS-HCCA is used to construct a CNFN-based 2D image

alignment system. The CNFN utilizes the multi-stage of TNFN to solve problems that

one-stage neural network have difficulty in applying a large range of affine parameters. This

evidence can be found in the experimental results of both synthesized and real-images cases.

The results show that the performance of the proposed scheme is superior to the traditional

neural network methods on accuracy and robustness. For 3D image alignment application, the

use of RGLS-HCCA can benefit the training of the TNFN-based coarse-to-fine 3D image

alignment system. In the coarse alignment procedure, utilizing RGLS-HCCA to train a TNFN

to model the relationship between the input feature and output pose can solve the problem of

the high alignment error caused by PCA. In fine alignment procedure, using RGLS-HCCA to

train a TNFN to model the reference surface can improve the heavy computational cost

caused by ICP. In addition, by combining the surface modeling with the downhill simplex

optimization, the distance from the input image to the reference model can be reduced

iteratively. The evidence can be found in the experimental results to demonstrate the superior

performance of the proposed 3D image alignment system over existing systems.

 In summary, the most contributions of this dissertation are the proposed RGLS-HCCA for

solving the problems that current evolutionary algorithms suffer from and verify the

applicability of RGLS-HCCA to real world problems.

6.2 Future Works

The future works of the proposed RGLS-HCCA and the image alignment applications

 97

are discussed as follows:

To discuss the proposed RGLS-HCCA, the number of hierarchical level is only two to

execute the training of structure and parameters of neural fuzzy networks. As the application

problem become more complex, there is a need to increase the hierarchical level to match the

complex problem. Thus, in the future work, the multi hierarchical level is taken into

consideration of further investigation of how to cooperate these hierarchical levels to adapt

the model to a complex problem.

For the image alignment applications, two tasks are considered: 2D image alignment and

3D image alignment. For the 2D image alignment task, although the proposed system can

demonstrate high performance, it still has some limitations. Specifically, as the application

problem becomes more complicated, the number of cooperative neural fuzzy networks would

increase. Such condition leads the proposed model to suffer from the difficulty of choosing

the suitable number of cooperative networks. If the unsuitable number of networks is chosen,

the overall system will yield large estimated errors. Therefore, future works should identify a

well-defined method to determine the number of cooperative neural fuzzy networks

automatically.

For the 3D image alignment task, in spite of combing the surface modeling with the

downhill simplex optimization can obtain good results in fine alignment phase, the downhill

simplex optimization may suffer from getting in local minima. Toward this end, the on-line

parallel search techniques may be the solution for preventing the local minima happened. The

on-lien parallel search techniques should be fast and keep the proper accuracy for applying to

the fine alignment task. Therefore, the future work would modify the proposed RGLS-HCCA

model to satisfy the design of the fine alignment phase.

 98

Bibliography

[1] L. X. Wang and J. M. Mendel, “Generating fuzzy rules by learning from examples,” IEEE

Trans. Systems Man Cybern., vol. 22, no. 6, pp. 1414-1427, 1992.

[2]C. J. Lin and C. C. Peng, “Identification and prediction using neuro-fuzzy networks with

symbiotic adaptive particle swarm optimization,” Informatica, vol. 35, no. 1, pp. 113-122,

2011.

[3] C. J. Lin and C. T. Lin, “An ART-based fuzzy adaptive learning control network,” IEEE

Trans. Fuzzy Systems, vol. 5, no. 4, pp. 477-496, 1997.

[4] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to

modeling and control,” IEEE Trans. Systems Man Cybern., vol. 15, pp. 116-132, 1985.

[5] C. T. Lin and C. S. G. Lee, Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent

System, Prentice-Hall, Englewood Cliffs, NJ, May 1996.

[6] C. F. Juang and C. T. Lin, “An on-line self-constructing neural fuzzy inference network

and its applications,” IEEE Trans. Fuzzy Systems, vol. 6, no. 1, pp. 12-31, 1998.

[7] P. A. Mastorocostas and J. B. Theocharis, “A recurrent fuzzy-neural model for dynamic

system identification,” IEEE Trans. Systems Man Cybern., vol. 32, no. 2, pp. 176-190,

2002.

[8] K. S. Narendra and K. Parthasarathy, “Identification and control of dynamical systems

using neural networks,” IEEE Trans. Neural Networks, vol. 1, pp. 4-27, 1990.

[9] C. J. Lin and C. C. Chin, “Prediction and identification using wavelet-based recurrent

fuzzy neural networks,” IEEE Trans. Systems Man Cybern. Part B, vol. 34, no. 5, pp.

2144-2154, 2004.

[10] C. F. Juang and C. T. Lin, “A recurrent self-organizing neural fuzzy inference network,”

IEEE Trans. Neural Networks, vol. 10, no. 4, pp. 828-845, 1999.

 99

[11] D. E. Goldberg, Genetic algorithms in search optimization and machine learning.

Reading, MA: Addison-Wesley, 1989.

[12] C. J. Lin and Y. C. Hsu, “Reinforcement hybrid evolutionary learning for recurrent

wavelet-based neuro-fuzzy systems,” IEEE Trans. on Fuzzy Systems, vol. 15, no. 4, pp.

729-745, 2007.

[13] D. E. Moriarty and R. Miikkulainen, “Efficient reinforcement learning through symbiotic

evolution,” Mach. Learn., vol. 22, pp. 11-32, 1996.

[14] F. J. Gomez, “Robust non-linear control through neuroevolution,” Ph. D. Disseration,

Dep. Computer Sciences, Univ. Texas of Austin, USA, 2003.

[15] Y. C. Hsu, S. F. Lin, and Y. C. Cheng, “Multi groups cooperation based symbiotic

evolution for TSK-type neuro-fuzzy systems design,” Expert Systems with Applications,

vol. 37, no. 7, pp. 5320-5330, 2010.

[16] C. L. Karr, “Design of an adaptive fuzzy logic controller using a genetic algorithm,” in

Proc. Int. Conf. Genetic Algorithms, San Diego, CA, USA, pp. 450-457, July 1991.

[17] C. T. Lin and C. P. Jou, “GA-based fuzzy reinforcement learning for control of a

magnetic bearing system,” IEEE Trans. Systems Man Cybern. Part B, vol. 30, no. 2, pp.

276-289, 2000.

[18] C. F. Juang, J. Y. Lin, and C. T. Lin, “Genetic reinforcement learning through symbiotic

evolution for fuzzy controller design,” IEEE Trans. Systems Man, Cybern. Part B, vol.

30, no. 2, pp. 290-302, 2000.

[19] B. Carse, T. C. Fogarty, and A. Munro, “Evolving fuzzy rule based controllers using

genetic algorithms,” Fuzzy Sets and Systems, vol. 80, no. 3, pp. 273-293, 1996.

[20] S. Bandyopadhyay, C. A. Murthy, and S. K. Pal, “VGA-classifier: design and

applications,” IEEE Trans. Systems Man and Cybern. Part B, vol. 30, no.6 , pp. 890-895,

2000.

[21] K. S. Tang, “Genetic algorithms in modeling and optimization,” Ph. D. Dissertation, Dep.

 100

Electronic Engineering, City Univ. Hong Kong, Hong Kong, 1996.

[22] C. F. Juang, “Combination of online clustering and Q-value based GA for reinforcement

fuzzy system design,” IEEE Trans. on Fuzzy Systems, vol. 13, no. 3, pp. 289–302, 2005.

[23] F. Gomez and J. Schmidhuber, “Co-evolving recurrent neurons learn deep memory

POMDPs,” in Proc. Conf. Genetic and Evolutionary Computation, Washington, DC,

USA, pp. 491-498, June 25-29, 2005.

[24] R. P. Wiegand, “An analysis of cooperative coevolutionary algorithm,” Ph. D.

Disseration, Dep. of Computer Sciences, University North Carolina Charlotte, USA,

1999.

[25] S. K. Tanbeer, C. F. Ahmed, and B. S. Jeong, “Parallel and distributed algorithm for

frequent pattern mining in large database,” IETE Tech Rev, vol. 26, no.1, pp. 55-65,

2009.

[26] R. Agrawal and R. Srikant, “Fast algorithm for mining association rules,” in Proc.

Int .Conf. Very Large Data Bases, Santiago, Chile, pp. 487-499, September 12-15, 1994.

[27] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate generation,” in

Proc. Int. Conf. Management of Data, Dallas, Texas, USA, pp.1-12, May 16-18, 2000.

[28] Y. T. Wu, Y. J. An, J. Geller, and Y. T. Wu, “A data mining based genetic algorithm,” in

Proc. IEEE Int. Workshop on Software Technologies for Future Embedded and

Ubiquitous Systems and Collaborative Computing, Integration, and Assurance, Gyeongju,

Korea, pp. 6, April 27-28, 2006.

[29] S. Shankar and T. Purusothaman, “Utility sentient frequent itemset mining and

association rule mining: a literature survey and comparative study,” International

Journal of Soft Computing Applications, No. 4, pp. 81-95, 2009.

[30] X. J. Liu, J. Yang, and H. B. Shen, “Automatic image registration by local descriptors in

remote sensing,” Optical Engineering, vol. 47, no. 8, 087206, 2008.

[31] X. M. Peng, W. Chen, and Q. Ma, “Feature-based nonrigid image registration using

 101

Hausdorff distance matching measure,” Optical Engineering, vol. 46, no. 5, 057201,

2007.

[32] D. Skea, I. Barrodale, R. Kuwahara, and R. Poeckert, “A control point matching

algorithm,” Pattern Recognition, vol. 26, no 2, pp. 269-276, 1993.

[33] S. Manickam, S. D. Roth, and T. Bushman, “Intelligent and optimal normalized

correlation for high-speed pattern matching,” NEPCON. WEST 2000, Anaheim,

California, USA, pp. 191-206, February 27-March 2, 2000.

[34] R. J. Althof, M.G. J. Wind, and J. T. Dobbins, “A rapid and automatic image registration

algorithm with subpixel accuracy,” IEEE Transactions on Medical Imaging, vol. 16, no.

3, pp. 308-316, 1997.

[35] L. M. G. Fonseca and B. S. Manjunath, “Registration techniques for multisensor

remotely sensed imagery,” Photogrammetric Engineering and Remote Sensing , vol. 62,

no. 9, pp. 1049-1056, 1996.

[36] S. Kaneko, I. Murase, and S. Igarashi, “Robust image registration by increment sign

correlation,” Pattern Recognition , vol. 35, no. 10, pp. 2223-2234, 2002.

[37] G. D. Evangelidis and E. Z. Psarakis, “Parametric image alignment using enhanced

correlation coefficient maximization,” IEEE Trans. on Pattern Analysis and Machine

Intelligence, vol. 30, no. 10, pp. 1858-1865, 2008.

[38] M. Amintoosi, M. Fathy, and N. Mozayani, “Precise image registration with structural

similarity error measurement applied to superresolution,” EURASIP Journal on

Advances in Signal Processing, Article ID 305479, 7 pages, 2009.

[39] B. Zitova and J. Flusser, “Image registration methods: A survey,” Image and Vision

Computing, vol. 21, no. 11, pp. 977-1000, 2003.

[40] I. Elhanany, M. Sheinfeld, A. Beckl, Y. Kadmon, N. Tal, and D. Tirosh, “Robust image

registration based on feedforward neural networks,” in Proceedings of IEEE

International Conference on System, Man and Cybernetic, NASHVILLE, TN, vol. 2, pp.

 102

1507–1511, October 8-11, 2000.

[41] J. Wu and J. Xie, “Zernike moment-based image registration scheme utilizing

feedforward neural networks,” in Proceedings of the 5th World Congress on Intelligent

Control and Automation, Hangzhou, China, vol. 5, pp. 4046-4048, June 15-19, 2004.

[42] A. B. Xu and P. Guo, “Isomap and neural networks based image registration scheme,”

Lecture Notes in Computer Science, vol. 3972, pp. 486-491, 2006.

[43] A. B. Xu and P. Guo, “Image registration with regularized neural network,” Lecture

Notes in Computer Science, vol. 4233, pp. 286-293, 2006.

[44] H. Sarnel and Y. Senol, “Accurate and robust image registration based on radial basis

neural networks,” Neural Comput. & Applic., vol. 20, no. 8, pp. 1255-1262, 2011.

[45] H. Liu, J. Yan, and D. Zhang, “Three-dimensional surface registration: A neural network

strategy,” Neurocomputing, vol. 70, pp. 597-602, 2006.

[46] J. Zhang, Y. Ge, S. H. Ong, C. K. Chui, S. H. Teoh, and C. H. Yan, “Rapid surface

registration of 3D volumes using a neural network approach,” Image and Vision

Computing, vol. 26, pp. 201-210, 2008.

[47] A. Ghafoor, R.N. Iqbal, and S. Khan, “Robust image matching algorithm,” 4th EURASIP

Conference Focused on Video/Image Processing and Multimedia Communications,

Zagreb, Croatia, vol. 1, pp. 155-160, July 2-5, 2003.

[48] D. Chetverikov, D. Stepanov, and P. Kresk, “Robust Euclidean alignment of 3D point

sets: the trimmed iterative closest point algorithm,” Image and Vision Computing, vol.

23, pp. 299-309, 2005.

[49] Y. H. Liu, “Improving ICP with easy implementation for free-form surface matching,”

Pattern Recognition, vol. 37, pp. 211-226, 2004.

[50] J. J. Jack and C. Roux, “Registration of 3-D images by genetic optimization,” Pattern

Recognition Letters, vol. 16, pp. 823-841, 1995.

[51] N. M. Alpert, J. F. Bradshaw, D. Kennedy, and J. A. Correia, “The principal axes

 103

transformation – a method for image registration,” Journal of Nuclear Mdeicine, vol. 31,

pp. 1717-1722, 1990.

[52] P. Besl and N. Mckay, “A method for registration of 3-D shapes,” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 14, no. 2, pp. 239-256, 1992.

[53] J. Peng, V. Strela, and D. Zorin, “A simple algorithm for surface denoising,” in

Proceedings of IEEE Visualization, San Diego, CA, USA, pp. 107-112, October 2001.

[54] S. Rusinkiewicz and M. Levoy, “Efficient variants of ICP algorithm,” in Prcoceeding s

of Third International Conference on 3D Digital Imaging and Modeling, Quebec City,

Canada, pp. 145-152, May 28-June 1, 2001.

[55] G. Blais and M.Levine, “Registering multiview range data to create 3D computer

objects,” IEEE on Trans. PAMI, vol. 17, no. 8, pp. 820-824, 1995.

[56] C. C. Wu and S. F. Lin, “Efficient model detection in point cloud data based on bag of

words classification,” Journal of Computational Information Systems, vol. 7, no. 12, pp.

4170-4177, 2011.

[57] Y. J. Xu and C, J. Lin, “Efficient reinforcement learning through dynamic symbiotic

evolution for TSK-type fuzzy controller design,” International Journal of General

Systems, Vol. 34, No. 5, pp. 559-578, 2005.

[58] Y. J. Xu and C. J. Lin, “A novel evolution learning for recurrent wavelet-based

neuro-fuzzy networks,” Soft Comput., vol. 10, no.3, pp. 193-205, 2006.

[59] Y. J. Xu, C. J. Lin, and C. Y. Lee, “Supervised and reinforcement evolutionary learning

for wavelet-based neuro-fuzzy networks,” J. Intell. Robot Syst., vol. 52, no. 2, pp.

285-312, 2008.

[60] C. J. Lin, C. H. Chen, and C. T. Lin, “Efficient self-evolving evolutionary learning for

neurofuzzy inference systems,” IEEE Transactions on Fuzzy Systems, vol. 16, no. 6, pp.

1476-1490, 2008.

[61] A. N. Tikhonov, “On solving incorrectly posed problems and method of regularization,”

 104

Doklady Akademii Nauk USSR, vol. 153, pp. 501-504, 1963.

[62] M. C. D. Almeida, A. V. Garcia, and E. N. Asada, “Regularized least squares power

system state estimation,” IEEE Trans. Power Systems, vol. 27, no.1, pp. 290-297, 2012.

[63] S. Shidong, “A Levenberg-Marquardt method for large-scale bound constrained

nonlinear least-squares,” Master Thesis, University of British Columbia, Canada, 2008.

[64] S. Chiaverini, B. Siciliano, and O. Egeland, “Review of the damped least-squares inverse

kinematics with experiments on an industrial robot manipulator,” IEEE Trans. Control

Systems Technology, vol. 2, no. 2, pp. 123-134, 1994.

[65] C. W. Wampler, “Manipulator inverse kinematic solutions based on vector formulations

and damped least-squares methods,” IEEE Trans. Systems Man Cybern, vol. 16, no. 1,

pp. 93-101, 1986.

[66] O. Sigaud, C. Salaun, and V. Padois, “On-line regression algorithms for learning

mechanical models of robots: A survey,” Robotics and Autonomous Systems, vol. 59, no.

12, pp. 1115-1129, 2011.

[67] M. Sugeno and K. Tanaka, “Successive identification of a fuzzy model and its

applications to prediction of a complex system,” Fuzzy Sets Syst., vol. 42, no. 3, pp.

315–334, 1991.

[68] T. Rabbani, F. A. van den Heuvel, and G. Vosselmann, “Segmentation of point clouds

using smoothness constraint,” in Proc. of ISPRS, Dresden, Germany, pp. 248-253, Sep.

25-27, 2006.

[69] X. Wu, C. Zhang, and S. Zhang, “Mining both positive and negative association rules,”

Proceedings of the 19th International Conference on Machine Learning, Sydney,

Australia, pp. 658–665, July 8-12, 2002.

[70] P. L. Hsu, R. Lai, C. C. Chiu, and C. I. Hsu, “The hybrid of association rule algorithm

and genetic algorithms for tree induction: an example of predicting the student course

performance,” Expert Systems with Applications, vol. 25, no. 1, pp. 51-62, 2003.

 105

[71] X. Yan, C. Zhang, and S. Zhang, “Genetic algorithm-based strategy for identifying

association rules without specifying actual minimum support,” Expert Systems with

Applications, vol. 36, no. 2, pp. 3066-3076, 2009.

[72] C. Chai and B. Li , “A novel association rules method based on genetic algorithm and

fuzzy set strategy for web mining,” Journal of Computers, vol. 5, no. 9, pp. 1448-1455,

2010.

[73] R. Surendiran, K. P. Rajan, and M. S. Kumar, “Study on the customer targeting using

association rule mining,” International Journal on Computer Science and Engineering,

vol. 2, no. 7, pp. 2483-2485, 2010.

[74] O. Cordon, F. Herrera, F. Hoffmann, and L. Magdalena, Genetic fuzzy systems

evolutionary tuning and learning of fuzzy knowledge bases, Advances in Fuzzy

Systems-Applications and Theory, vol.19, World Scientific Publishing, NJ, USA, 2001.

[75] Y. P. Zou, Z. K. Mi, and M. H. Xu, “Dynamic load balancing based on roulette wheel

selection,” in Proc. IEEE Int. Conf. Communications, Circuits and Systems, Guilin,

China, vol. 3, pp.1732-1734, June 25-28, 2006.

[76] G. Lin and X. Yao, “Analysing crossover operators by search step size,” in Proc. IEEE

Int. Conf. Evolutionary Computation, Indianapolis, USA, pp. 107-110, April 13-16,

1997.

[77] E. Cox, Fuzzy modeling and genetic algorithms for data mining and exploration, Morgan

Kaufman Publications, San Francisco, USA, 1st edition, 2005.

[78] S. Abedi and R. Tafazolli, “Genetically modified multiuser detection for code division

multiple access systems,” IEEE Journal on Selected Areas, pp. 1884-1887, 2008.

[79] I. Dempsey, “Constant generation for the financial domain using grammatical evolution,”

Genetic and Evolutionary Computation Conference workshop program, Washington,

D.C., USA, pp. 350-353, June 25-29, 2005.

[80] R. T. Chin, “Automatic visual inspection: 1981 to 1987,” Computer Vision, Graphics,

 106

and Image Processing , vol. 41, no. 3, pp. 346–381, 1988.

[81] T. S. Newman and A. K. Jain, “A survey of automatic visual inspection,” Computer

Vision and Image Understanding, vol. 61, pp. 231–262, 1995.

[82] M. Moganti, F. Ercal, C. H. Dagli, and S. Tsunekawa, “Automatic PCB inspection

algorithms: a survey,” Computer Vision and Image Understanding, vol. 63, pp. 287–313,

1996.

[83] A. Johnson and M. Hebert, “Using spin images for efficient object recognition in

cluttered 3D scenes,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 21,

no. 5, pp. 433–449, 1999.

[84] L. W. Peng and S. M. Shamsuddin, “3D object reconstruction and representation using

neural networks,” in Proceedings GRA-PHITE 2004, Singapore, pp. 139-147, 15-18 June,

2004.

[85] C. R. Maurer, R. J. Maciunas, and J. M. Fitzpatrick, “Registration of head CT Images to

physical space using a weighted combination of points and surfaces,” IEEE Trans. on

medical imaging, vol. 17, no. 5, pp. 753-761, 1998.

[86] M. Hofmeister, P. Vorst, and A. Zell, “A comparison of efficient global image features

for localizing small mobile robots,” in Proceedings of ISR/ROBOTIK, Munich,

Germany, pp. 143-150, June 7-9, 2010.

[87] A. B. Abche, F. Yaacoub, A. Maalouf, and E. Karam, “Image registration based

on neural network and Fourier transform,” in Proceedings of the 28th IEEE EMBS

annual international conference, New York, USA, pp. 1460-1463, , Aug.30-Sep. 3,

2006.

[88] A. Xu, X. Jin, P. Guo, and R. Bie “KICA feature extraction in application to FNN based

image registration,” International Joint Conference on Neural Networks, Vancouver, BC,

Canada , pp. 3602-3608, July 16-21, 2006.

[89] S. Wei and S. Lai, “Robust and efficient image alignment based on relative gradient

 107

matching,” IEEE Trans. on Image Processing , vol. 15, no. 10, pp. 2936-2943, 2006.

[90] C. Y. Hsu, Y. C. Hsu, and S. F. Lin, “A hybrid learning neural network based image

alignment system using global feature selection approach,” Advances in Computer

Science and Engineering, vol. 6, no. 2, pp. 129-157, 2011.

[91] D. Lowe, “Distinctive image features from scale-invariant keypoints,” International

Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, 2004.

[92] D. M. Bradley, R. Patel, N. Vandapel, and S. M. Thayer, “Real-time image-based

topological localization in large outdoor environments,” in Proceedings of IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), Edmonton, Canada,

pp. 3670-3677, August 2005.

[93] P. Moreno, A. Bernardion, and J. S. Victor, “Improving the SIFT descriptor with

 smooth derivative filters,” Pattern Recognition Letters, vol. 30, no. 1, pp. 18-26, 2009.

[94] R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu, “Fast 3D recognition and pose using the

viewpoint feature histogram,” IEEE international Conference on Intelligent Robots and

Systems, Taipei, Taiwan, pp. 2155-2162, Oct. 18-22, 2010.

[95] R. B. Rusu, N. C. Marton, N. Blodow, and M. Beetz, “Persistent point feature histograms

for 3D point clouds,” in Proceedings of the 10th International Conference on Intelligent

Autonomous Systems, Baden-Baden, Germany, pp. 119-128, July 24, 2008.

[96] W. Spendley, G. R. Hext, and F. R. Himsworth, “Sequential application of simplex

designs in optimization and evolutionary operation,” Technometrics , vol. 4, pp. 441-461,

1962.

[97] D. Lee and M. Wiswall, “A parallel implementation of the simplex function

minimization routine,” Computational Economics, vol. 30, no. 2, pp. 171-187, 2007.

[98] K. A. De Jong, “Analysis of the behavior of a class of genetic adaptive systems,” Ph. D.

Dissertation, Dep. Computer and Communication Sciences, Univ. Michigan, Ann Arbor,

MI, 1975.

 108

[99] J. J. Grefenstette, “Optimization of control parameters for genetic algorithms,” IEEE

Trans. Syst., Man, Cybern., vo1. 6, no. 1, pp. 122-128, 1986.

[100] T. Pahikkala and J. Boberg, “Fast n-fold cross-validation for regularized least-squares,”

In Proceedings of the Ninth Scandinavian Conference on Artificial Intelligence, Espoo,

Finland, pp. 83-90, October 2006.

[101] A. S. Lapedes and R. Farber, “Nonlinear signal processing using neural networks:

prediction and system modeling,” Tech. Rep. LA-UR-87- 2662, Los Alamos Nat. Lab.,

Los Alamos, NM, 1987.

[102] R. S. Crowder, “Predicting the Mackey-Glass time series with cascade correlation

learning,” in Proc. 1990 Connectionist Models Summer School, D. Touretzky, G.

Hinton, and T. Sejnowski, Eds., Carnegie Mellon Univ., pp. 117-123, 1990.

[103] R. Jang, “ANFIS: Adaptive-network-based fuzzy inference system,” IEEE Transactions

on Systems, Man, and Cybernetics, vol. 23, no. 3, pp. 665-685, 1993.

[104] J. Moody, “Fast learning in multi-resolution hierarchies,” in Advances in Neural

Information Processing Systems I, D. S. Touretzky, Ed. San Mateo, CA Morgan

Kaufman, pp. 29-39, 1989.

 109

Vita

Chi-Yao Hsu has received his B.S. degree in department of electrical engineering from

National Taiwan Ocean University, Taiwan, in 2001 and his M.S. degree in department of

electrical engineering from National Central University, Taiwan, in 2003. He proposed the Ph.

D. oral exam at institute of electrical control engineering from the National Chiao Tung

University, Taiwan, R.O.C. in May, 2012. His research interests lie in the areas of neural

networks, fuzzy systems, evolutionary algorithms, pattern recognition, and computer vision.

 110

Publication List
Accepted Journal Papers:

1. Chi-Yao Hsu, Yung-Chi Hsu, and Sheng-Fuu Lin, “Reinforcement evolutionary learning

using data mining algorithm with TSK-type fuzzy controllers,” Applied Soft Computing,
vol. 11, no. 3, pp. 3247-3259, 2011. (SCI/EI)

2. Sheng-Fuu Lin, Chin-Chia Wu, Chi-Yao Hsu, and Dou-Chih Hsu, “An efficient 3D model
retrieval based on principal axes analysis and feature integration, ” International Journal
of Pattern Recognition and Artificial Intelligence, vol. 25, no. 4, pp. 583-604, 2011.
(SCI/EI)

3. Chi-Yao Hsu, Yung-Chi Hsu, and Sheng-Fuu Lin, “A hybrid learning neural network
based image alignment system using global feature selection approach,” Advances in
Computer Science and Engineering, vol. 6, no. 2, pp.129-157, 2011.

4. Chi-Yao Hsu, Yi-Chang Cheng, and Sheng-Fuu Lin, “Efficient and accurate image
alignment using TSK-type neuro-fuzzy network with data-mining based Evolutionary
Learning Algorithm” EURASIP Journal on Advances in Signal Processing, vol. 2011, no.
96, pp. 1-22, 2011. (SCI/EI)

5. Yi-Chang Cheng, Sheng-Fuu Lin, and Chi-Yao Hsu, “Q-Value based particle swarm
optimization for reinforcement neuro-fuzzy system design,” International Journal on
Computer Science and Engineering, vol. 3, no. 10, pp. 3477-3489, 2011.

6. Chi-Yao Hsu, Yi-Chang Cheng, and Sheng-Fuu Lin, “Precise image alignment using
cooperative neural-fuzzy networks with association rule mining based evolutionary
learning algorithm,” Optical Engineering, vol. 51, no. 2, pp. 027006:1-15, 2012. (SCI/EI)

7. Chi-Yao Hsu, Sheng-Fuu Lin, and Jyun-Wei Chang, “Data mining-based hierarchical
cooperative coevolutionary algorithm for TSK-type neuro-fuzzy networks design,”
accepted to appear in Neural Computing and Applications, 2012. (SCI/EI)

8. Jyun-Wei Chang, Sheng-Fuu Lin, and Chi-Yao Hsu, “Accurate and rapid alignment of
laser scanned 3D surface using TSK-type neural-fuzzy network-based coarse-to-fine
strategy,” accepted to appear in Optics and Lasers in Engineering, 2012. (SCI/EI)

Conference Paper:

1. Chi-Yao Hsu and Sheng-Fuu Lin, “Design of image alignment system using TSK-type

neuro-fuzzy network with two-stage data-mining based evolutionary learning algorithm,”
in Proc. Computer Graphics Workshop 2011, Taipei, Taiwan, July 2011.

