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正規化最小平方法為基礎的階層式合作共同進化演

算法及其於模糊類神經網路設計和影像對準的應用 
 

研究生：徐啟曜                 指導教授：林昇甫 博士 

 

國立交通大學 電控工程研究所 

摘  要 
進化型演算法經常被使用在訓練模糊類神經網路參數方面，主要是因為該方法有並

行搜尋的技術。不過目前此類型的方法有著無法拓展到多數量的訓練參數以及低效率的

調整模糊法則問題，所以本篇論文提出了正規化最小平方法為基礎的階層式合作共同進

化演算法來改善上述問題。使用正規化最小平方法的主要效用為減少訓練參數的數量，

而在階層式合作共同進化演算法方面，兩層級進化法被提出能夠有效地進化模糊規則以

及使得網路的參數及其架構能夠被分別被區域性及全域性的進化，因此以正規化最小平

方法為基礎的階層式合作共同進化演算法有著參數學習及架構學習的優點，並且進化完

成的網路可以被應用到現實世界的實例。第一個應用為二維影像對準問題，本論文所提

出的演算法則可用來建立一個以合作式模糊類神經網路為基礎的二維影像對準系統，該

系統利用多級模糊神經網路來解決單級模糊神經網路在仿射參數的大範圍應用的困

難。第二個應用為三維影像對準問題，採用本論文所提的學習演算法可建立以模糊類神

經網路為基礎的粗糙到細緻的三維影像對準系統，該系統改善傳統的主成份分析對準法

的高粗糙對準誤差的缺點，在細緻對準階段成功改善了遞迴式最近點法的繁重計算的問

題。這些證據可以被發現在實驗結果中來表示本論文提出的二維及三維影像對準系統，

相較於其他一些典型的影像對準系統，本文的方法有較佳的性能。 

 
關鍵字: 正規化最小平方法，階層式合作進化型演算法，兩層級進化，參數學習，架構

學習。 
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Abstract 

Evolutionary algorithms are very popular in training parameters of neural fuzzy network 

due to their parallel search techniques. However, current methods have problems of not 

scaling well to a large number of training parameters and adjusting fuzzy rules inefficiently. 

In this dissertation, a regularized least squares based hierarchical cooperative coevolutionary 

algorithm (RGLS-HCCA) is proposed to improve above problems. The major utility of RGLS 

is to reduce the number of learning parameters. In HCCA, two-level evolution is proposed to 

evolve fuzzy rules efficiently and make the parameters and structure of a network be evolved 

locally and globally, respectively. Thus, RGLS-HCCA has advantages of parameter learning 

and structure learning, and the evolved network can be applied to the real world applications. 

The first application is a 2D image alignment problem. The proposed RGLS-HCCA is used to 

construct a cooperative neural fuzzy network (CNFN)-based 2D image alignment system, 

which utilizes the multi-stage of neural fuzzy networks to solve problems that one-stage of 

neural network have difficulty in applying a large range of affine parameters. The second 

application is a 3D image alignment problem. The use of RGLS-HCCA can construct a neural 

fuzzy network (NFN)-based coarse-to-fine 3D image alignment system, which solve the 

problem of the high alignment error caused by principle component analysis (PCA) and heavy 

computational cost caused by iterative closest point (ICP). The evidence can be found in 

experimental results demonstrate the superior performance of the proposed 2D and 3D surface 

alignment system over typical systems. 

Keywords: regularized least squares, hierarchical cooperative coevolutionary algorithm, 
two-level evolution, parameter learning, structure learning. 
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Chapter 1  

Introduction 
 

For most interesting real world problems, the environment is more complicated and highly 

non-linear. For instance, to consider image alignment problems, the prediction of the 

relationship between input image and output pose is non-linear and it is hard to use the linear 

mathematical tools to accomplish modeling. Based on this fact, neural fuzzy networks can 

take its “black box” nature and linguistic information to deal with non-linearity. Thus, the 

purpose of this dissertation is to develop a methodology to automatically design neural fuzzy 

networks by using regularized least squares (RGLS) based hierarchical cooperative 

coevolutionary algorithm (HCCA) to evolve the networks for applying to real world 

problems. 

This chapter is divided into four subsections. In Section 1.1, the motivation of this 

dissertation is introduced. Section 1.2 describes the related works of the evolutionary 

algorithm and image alignment applications. Section 1.3 specifies the proposed approach. In 

Section 1.4 the organization of this dissertation is presented. 

1.1 Motivation 

In most physical systems, the relationship between input and output is inherent non-linear 

in nature. Non-linear relationship is difficult to solve and give rise to interesting research 

topics. To cope with non-linearity, neural networks are algorithms that can be used to perform 

nonlinear statistical modeling and diverse engineering applications based on this modeling 

method have been successfully developed. However, their operation is restricted to the 

numeric domain. In recent years, neural fuzzy networks (NFNs) used for several problems 

have become a popular research topic [1]-[6], especially for solving nonlinear and complex 

problems [7]-[10]. The reason is that it combines fuzzy set and fuzzy logic into the neural 
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network framework to bring the benefits of processing linguistic and numeric information.  

Training parameters is the main issue for designing neural fuzzy networks. The most well 

known algorithm is back-propagation (BP) [3], [6] which is a powerful training technique for 

tuning the parameters of networks. Since the BP algorithm adopts the steepest decent 

approach to minimize the error function, they suffer from a major problem: getting in local 

minima of the error surface. To deal with the drawback, there is a need to face with 

suboptimal problem. Towards this end, evolutionary algorithms appear to be better candidates 

than the BP algorithm because of their parallel search techniques and optimization 

methodology.  

Recently, several evolutionary algorithms, including genetic algorithm (GA) [11], 

hierarchical genetic algorithm (HGA) [12], symbiotic adaptive neruoevolution (SANE) [13], 

enforced sub-population (ESP) algorithm [14], and multi-groups cooperation based symbiotic 

evolution (MGCSE) [15] have been proposed to train neural networks or fuzzy systems. 

Although these algorithms can obtain better performance than the BP algorithm, they still 

have difficulty in scaling to more complex tasks or high input dimension of networks. 

Moreover, they also conduct the problem of the random group selection of fuzzy rules and the 

lost of potential fuzzy rules combinations. Therefore, these problems are the main issues this 

dissertation intends to address. 

Furthermore, to transfer the problem from simulation to the real world applications, two 

image alignments tasks are utilized. The first one is a 2D image alignment problem which is 

widely applied to many industrial applications, such as automatic visual inspection, factory 

automation, and robotic machine vision. The second one is a 3D image alignment problem 

which is an extended version of 2D image alignment. Thus, this dissertation aims to propose 

an evolutionary algorithm to train neural fuzzy networks to apply these two real world 

problems. 
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1.2 Related Works 

Neural fuzzy networks are gaining research interest and they have been widely used in 

fields of pattern recognition, control problems, image processing, and diagnosis. The major 

benefit of neural fuzzy network is the integration of computation power from neural networks 

and human-like reasoning from fuzzy systems. Since neural fuzzy networks can bring such 

benefit, how to train neural fuzzy networks has become a critical issue.  

 The back-propagation (BP) algorithm [3] is a typical method for training neural fuzzy 

networks. Although the use of steepest descent technique in BP learning can reach the local 

minimal much quickly, the global minimal may be never found. Thus, evolutionary 

algorithms are better ones than BP due to their parallel search techniques. Recently, 

evolutionary fuzzy models have become a popular research field [16]-[24]. The evolutionary 

fuzzy model is a learning process using evolutionary learning procedures to generate a fuzzy 

system automatically. Among these evolutionary fuzzy models, the well-known algorithms 

are the genetic fuzzy models, which are augmented by incorporating genetic algorithms (GAs). 

There are several genetic fuzzy models have been proposed [16]-[18]. In [16], Karr adopted 

GAs to adjust membership functions for designing a fuzzy controller where its fuzzy rule set 

must be predetermined. Lin and Jou [17] applied GAs to fuzzy reinforcement learning to 

control a magnetic bearing system. In [18], Juang et al. proposed symbiotic evolution based 

genetic reinforcement learning for designing fuzzy controllers. In their work, the 

symbiotic-evolution-based fuzzy controller required fewer trail and less CPU time than the 

traditional GA-based fuzzy controller. 

Although the genetic fuzzy models can be used to search for the optimal solution, they 

may have some limitations, such as the same lengths of chromosomes, predefined parameters, 

and so on. Thus, there are several improved evolutionary algorithms [19]-[22] to take into 

account these limitations. In [19], Carse et al. used the fusion of genetic algorithms and fuzzy 
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logic to evolve variable length fuzzy rule-sets. In [20], Bandyopadhyay et al. proposed 

variable-length genetic algorithm (VGA) to encode different length of chromosomes in the 

same population. Tang [21] proposed a hierarchical genetic algorithm to enable the 

optimization of designing a fuzzy system for particular applications. Juang [22] proposed a 

combination of online clustering and Q-value based GA learning for fuzzy system design 

(CQGAF) to generate fuzzy rules automatically and free parameters in a fuzzy system. In 

addition, Gomez and Schmidhuber [14] proposed enforced subpopulations (ESP) to provide 

several subpopulations to evaluate each partial solution. The subpopulations that are used to 

evaluate the solution locally can obtain better performance than those methods that only use 

one population for evaluating the solution. In [15], Hsu and Lin proposed a multi-groups 

cooperation based symbiotic evolution (MGCSE) to train a TSK-type neuro-fuzzy network 

(TNFN). They develop a novel symbiotic evolution to let each sub population can cooperate 

to generate better offspring. 

In spite of the above evolutionary learning algorithms improving genetic fuzzy models, 

these algorithms may conduct one or more of the following problems: (1) the random group 

selection of fuzzy rules, (2) low convergence rate as the problem becomes complex, and (3) 

potential fuzzy rules combinations are lost. 

Recently, hierarchical enforced sub-populations (HESP) [23] provided a hierarchical 

evolutionary for preserving the potential neuron combinations. In their work, in spite of 

keeping useful networks, HESP still suffer from: the lengths of chromosomes must be the 

same and the number of neurons has to be assigned in advance. To this end, this study 

attempts to propose an evolutionary learning algorithm, which incorporates concepts of 

data-mining [25-29], regularized least square, and hierarchical evolution, for improving the 

problems that were mentioned above and achieve the following goals: (1) adapt the trained 

network to more complex tasks, (2) select groups of fuzzy rules systematically, (3) preserve 

good combinations of fuzzy rules, (4) allow variable length of chromosome, and (5) adjust 



 5

the number of fuzzy rules automatically. 

In addition, to consider 2D image alignment application, the problem of precise image 

alignment has been well-studied in several fields. In [30], Liu et al. point out that image 

alignment techniques are broadly classified as feature-based [31] and [32] and area-based 

matching approaches [33-35]. Amintoosi et al. pointed out that area-based methods produce 

better results than results with low signal-to-noise ratio (SNR) from feature-based methods. 

Moreover, Zitova and Flusser indicated [39] that area-based methods are preferably applied to 

less detailed images. In this study, we assume that our proposed image alignment system is 

developed for industrial inspection tasks such that the captured images usually have less detail. 

Thus area-based methods that adopt global descriptors are recommended in this paper. 

In recent years, the neural network-based image alignment utilizing global features have 

been a relatively new research subject [40-44]. In [40-43], the alignment scheme is to estimate 

the affine parameters by a feedforward neural network (FNN). Although FNN is helpful to 

improve the alignment efficiency, such methods must take a large number of iterations to 

minimize the error function and several training attempts are needed to provide the robust 

FNN. In addition to FNN-based methods, Sarnel et al. [44] used a radial basis function neural 

network (RBFNN) to align images. According to their results, the training time of a RBFNN 

has been reduced, and the alignment accuracy and robustness against noise are better than 

those of FNN-based methods. However, a major drawback of the existing neural 

network-based methods is the difficulty in applying to align images on a large range of affine 

transformation. The reason is that a large range of affine parameters would lead to a large 

amount of training data such that the mapping surface becomes more complex and applying 

one-stage neural network to estimate a large range of affine parameters accurately is almost 

impossible. In this dissertation, a scheme of multi-stage neural network is proposed to 

overcome the problem produced by the one-stage neural network. The notion of this approach 

is to divide a large size of the network into several small networks, aiming to gradually reduce 
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the image alignment error and finally obtain the desired accuracy. Such phenomenon can be 

considered a coarse-to-fine alignment of the sensed image with the reference image. 

 Regarding the 3D image alignment application, the problem of 3D image alignment has 

been implemented by several methods [45-50]. Among them, a coarse-to-fine technique is a 

useful way for performing 3D image alignment [45] and [46]. Coarse alignment provides an 

approximate transformation for aligning two images. Such alignment must be efficient and 

accurate. Fine alignment uses the initial gauss of a transformation given by a coarse alignment 

as a starting point to iteratively minimize the distance between the input and the destination 

images. Specifically, in consideration of coarse image alignment, common methods [45] and 

[46] utilized principal component analysis (PCA) [51] for coarsely aligning two images due to 

its high-speed performance. However, PCA cannot ensure that the laser scanned point clouds 

have the same orientation of principal axes as the reference model. This phenomenon would 

cause a high alignment error in the coarse alignment phase. In consideration of fine alignment 

method, iterative closest point (ICP) [52] is a typical method to iteratively calculate the 

rigid-body transformation to minimize the cost function. Although ICP can provide highly 

accurate 3D image alignment, its heavy computational cost in searching corresponding points 

has been criticized by many researchers [45, 46, 53-55]. To this end, this dissertation intends 

to propose a coarse-to-fine 3D image alignment scheme to improve the drawback generated 

by PCA and ICP. 

1.3 Approach 

In this dissertation, three major approaches are proposed. The first one is an evolutionary 

algorithm called RGLS-HCCA which is used to design neural fuzzy networks. The second 

one is cooperative neural fuzzy network (CNFN)-based 2D image alignment method. The 

third one is TNFN-based coarse-to-fine 3D image alignment method. Among these methods, 

the second and third ones are the applications of RGLS-HCCA designed neural fuzzy 
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networks. 

Regarding the RGLS-HCCA method, the RGLS method is utilized to control HCCA to 

converge toward optimal solution quickly. In HCCA, two-level evolutions are proposed: 

parameter level evolution (PLE) and structure level evolution (SLE). In PLE, a data-mining 

selection method (DMSM) based evolutionary learning algorithm is utilized to evolve 

parameters of networks. By using DMSM, the suitable groups can be identified for 

chromosome selection and such selection method would solve the random group selection 

problem caused by some typical cooperative coevolution algorithms [15, 57-60]. Moreover, to 

prevent the lost of potential fuzzy rules combinations, the good combinations of fuzzy rules 

evolved in PLE are reserved for being the initial populations of SLE. In SLE, the initial 

population are mated and mutated to produce new structure level of networks. Similar to PLE, 

the good fuzzy rules of evolved network in SLE are inserted into the PLE. Thus, by 

interacting two level evolutions, the parameters and structure of network can be evolved 

locally and globally, respectively. Besides, this dissertation combines variable antecedent-part 

crossover (VAC), variable antecedent-part mutation (VAM), and self-regulated mechanism 

(SRM) such that the variable length of chromosomes can be evaluated and the number of 

fuzzy rules can be adjusted automatically. 

Regarding the CNFN-based 2D image alignment method, it is an application of 

RGLS-HCCA. Each CNFN contains multi-stage of TNFN and each TNFN is trained by the 

proposed RGLS-HCCA method. The aim of CNFN is to solve tasks that are too difficult to 

solve directly. Instead of trying to use one neural network to solve difficult problems, CNFN 

utilizes multi-stage of neural fuzzy networks to cover the whole problem. Each stage of 

networks manages a simple level problem and through each network cooperating, the 

combined network can be applied to a difficult level problem. For a 2D image alignment task, 

one-stage neural network have difficulty in estimating a large range of affine parameters 

accurately. Thus, CNFN utilizes multi-stage of networks to adapt image alignment to a larger 
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range of affine parameters. The input sensed image is sent into each network in turn to 

gradually reduce the image alignment error and finally obtain the desired accuracy. 

Regarding the TNFN-based coarse-to-fine 3D image alignment method, it is an extended 

version of 2D image alignment task. The TNFN-based coarse alignment, which aims to 

improve PCA, utilizes multi-views of modified viewpoint feature histogram (MVFH) to be 

the input of TNFN and the corresponding 3D poses to be the output of a TNFN. Thus, once 

the training of TNFN has completed the relation between the input feature and output pose 

can be inferred and such relation results in more accurate pose estimation of the input 3D 

image than that of the PCA method. For the TNFN-based fine alignment method, which aims 

to improve ICP, it takes the notion of combining the surface modeling with the downhill 

simplex optimization method to iteratively reduce distance from the input image to the 

reference image. The major benefit of the TNFN-based fine alignment method is to avoid 

calculating the corresponding points, which is a problem that ICP suffer from. 

1.4 Organization of Dissertation 

This dissertation is divided into six chapters. Chapter 1 introduces the motivation, related 

work, approach, and organization of the dissertation. Chapter 2 provides the fundamental 

information used in the dissertation. The foundation includes regularized least squares method, 

neural fuzzy network, cooperative coevolutionary learning, 2D image alignment, and 3D 

image alignment. In Chapter 3, RGLS-HCCA is described. RGLS-HCCA consists of the 

RGLS method and the two-level evolutions: parameter level evolution and structure level 

evolution. Chapter 4 describes the methods of 2D and 3D image alignment which are the 

applications of RGLS-HCCA. In Chapter 5, three experiments are performed to demonstrate 

the superiority of RGLS-HCCA over other algorithms. The first experiment is a prediction of 

Mackey-Glass time series problem, which is a benchmark to verify the proposed algorithm. 

The second and third experiments, which are applications of RGLS-HCCA, are 2D and 3D 
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image alignment tasks, respectively. In Chapter 6, the conclusions and future work of the 

dissertation are discussed.  
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Chapter 2  

Foundations 
 

In this chapter, three major backgrounds of cooperative coevolutionary learning, 2D 

image alignment, and 3D image alignment are introduced. For the cooperative coevolutionary 

learning, the typical SANE method is used to specify how to perform evolutionary learning. 

For 2D and 3D image alignment, the procedures of aligning 2D and 3D images are described 

and alignment results of general 2D and 3D image alignment methods are briefly presented. 

This chapter is divided into five subsections. The concepts of the regularized least squares 

method and neural fuzzy network are introduced in Section 2.1 and 2.2, respectively. In 

Section 2.3, the general method of cooperative coevolutionary learning is described. Section 

2.4 and 2.5 will discuss how to perform 2D and 3D image alignments tasks. 

2.1 Regularized Least Squares Method 

Before discussing the regularized squares method, the least square method is introduced. 

Give a target vector y, and data matrix X. The most popular loss function used for regression 

problems is the residual sum of squared errors (RSS): 

                       .2

2
yXwRSS −=                             (2.1) 

The least square method is defined as setting w to minimize the expression. Thus, 

differentiating Eq. (2.1) with respect to w can obtain: 

                       ).( yXwX T −                                (2.2) 

By setting Eq. (2.2) with 0 to solve w: 

                       .)( 1 yXXXw TT −=                           (2.3) 

Unfortunately, the matrix XX T  may be singular or nearly singular, which make it 

difficult to invert. To address this problem, Tikhonov [61] proposed a regularization to solve 
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the numerical instability of the matrix inversion. The method of regularization adds a positive 

constant to the diagonals of XX T  to make the matrix nonsingular. Thus, the expression of 

Eq. (2.3) can be switched to: 

                    ,)( 1 yXIXXw TT −+= λ                          (2.4) 

where λ  is a regularization parameter. Since Eq. (2.4) is used to solve the least square 

problem, Tikhonov regularization is called regularized least squares [62], which is also called 

damped least squares [63-65]. Moreover, to differentiate from the abbreviation of recursive 

least square (RLS), this paper takes the idea from [66] to abbreviate regularized least squares 

to RGLS. 

In addition to RGLS to solve the problem of the matrix XX T  being singular, pseudo 

inverse is another solution. Thus, in the section of experimental results, this dissertation will 

compare regularized least squares with pseudo inverse. 

2.2 Neural Fuzzy Network 

In Lin and Peng’s work [2], there are two typical types of neural fuzzy network (NFN) 

and they are Mamdani-type [5] and TSK-type [4]. According to [6] and [67], the authors have 

shown that the TSK-type NFN can offer better network size and learning accuracy than the 

Mamdani-type NFN. Thus, in this dissertation, only the TSK-type NFN is introduced and 

such NFN is applied to image alignment applications. 

A TSK-type neuro-fuzzy network (TNFN) [4] employs a linear combination of the crisp 

inputs as the consequent part of a fuzzy rule. The fuzzy rule of the TSK-type neural fuzzy 

system is shown in Eq. (2.5), where n and j represent the dimension of the input and the 

number of the fuzzy rules respectively. 

IF x1 is A1j (m1j , σ1j )and x2 is A2j(m2j , σ2j )and…and xn is Anj (mnj , σnj ) 

         THEN y′ =w0j+w1jx1+…+wnjxn.                            (2.5) 

The structure of TNFN is shown in Fig. 2.1, where n represents the dimension of the 
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input. It is a five-layer network structure. The functions of the nodes in each layer are 

described as follows: 

Layer 1 (input node): Each node in this layer is called an input linguistic node, which 

corresponding one linguistic variable. These nodes only pass the input signal to the next layer. 

    ,)1(
ii xu =                                  (2.6) 

where )1(
iu  denotes the ith node’s input in the first layer and ix  denotes ith input dimension. 

The number of nodes in this layer is the dimension of input vector. 

Layer 2 (membership function node): each node in this layer acts as a Gaussian membership 

function, and its output value specifies the degree to which the given input value belongs to a 

fuzzy set. Thus, the membership value in layer 2 can be calculated by: 

[ ]
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where ixu i =)1( and )2(
iju are the outputs of 1st and 2nd layers ; ijm and ijσ are the center and 

the width of the Gaussian membership function of the jth term of the ith input variable ix , 

respectively. In this paper, the reason of adopting the Gaussian membership function is that it 

can be a universal approximator of any nonlinear functions [6]. Besides, the number of nodes 

in this layer is the dimension of input vector multiplied by the number of fuzzy rules. 

Layer 3 (rule node): The output in this layer is used to perform precondition matching of 

fuzzy rules. In the TNFN, the firing strength of a fuzzy rule is calculated by performing the 

following “AND” operation: 

                       .)2()3( ∏=
i

ijj uu                               (2.8) 

The number of nodes in this layer is the number of fuzzy rules. 

Layer 4 (consequent node): each node in this layer calculates the consequent value.  Each 

consequent value (linear combination of the crisp inputs) is weighted by the firing strength of 
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the fuzzy rule and it can be written by: 

                        ),(
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0
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iijjjj xwwuu                    (2.9) 

where the summation is the consequent part and ijw  is its corresponding parameters. The 

number of nodes in this layer is the dimension of output vector multiplied by the number of 

fuzzy rules. 

Layer 5 (output node): The node in this layer computes output signal. The output node 

integrates with links connected to it and acts as a defuzzifier with: 
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where )5(u is the output of 5th layer , ijw  is the weighting value with ith dimension and jth 

rule node, and M is the number of a fuzzy rule. The number of nodes in this layer is the 

dimension of output vector. 

 
Figure 2-1: Structure of TNFN. 
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2.3 Cooperative Coevolutionary Learning 

Evolutionary algorithms (EAs) are the methods for solving difficult problems using 

notions of Darwinian evolution. EAs have been applied to many applications and the major 

benefit of EAs over traditional local search methods is their parallel search ability. However, 

EAs have difficulty in scaling to large problem domains. For solving this problem, researches 

have extended EAs to cooperative coevolutionary algorithms (CCEAs). Instead of solving the 

entire problem, the notion of cooperative coevolutionary learning is to reduce the complex of 

difficult problems through modularization. In other words, a difficult complete problem can 

be divided into small simple problems. In CCEAs, each individual represents only a partial 

solution and a full solution is built by means of cooperating with other partial solutions. Thus, 

each individual can be evolved locally and recombined it with other well-performed 

individuals to form a good total solution.  

Symbiotic adaptive neruoevolution (SANE) is one of typical CCEAs. In SANE, partial 

solutions can be viewed as specializations. It indicates that partial solutions specialize toward 

one aspect of the full solution. To concern with fitness evaluation, the fitness of an individual 

is calculated by summing all combinations of that individual with other individuals and 

dividing by the total number of combinations. Thus, the fitness value reflects an average value 

of combined full solutions. Fig. 2.2 presents the basic steps of SANE. As shown in this figure, 

there are nine steps of SANE and they are described as follows. 

Step1. Initialization: in this step, all fitness values are clear and all genes of individuals are 

assigned a random value within a predefined range. 

Step2. Selection: randomly select n individuals from the population. 

Step3. Create a neural network: use the selected n individuals to build a neural network. 

Step4. Evaluate the network: after the neural is created, the evaluation is performed according 

the given problem.  
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Step5. Selection times check: each individual must be selected sufficient times. If the 

selection time does not satisfy, then go to Step2 to continue the selection step. 

Step6. In this step, the average fitness value of an individual is computed by dividing the total 

fitness value of each chromosome by the number of times that it has been selected to build 

networks. 

Step7. Termination check: check the fitness value with respect the whole network not a single 

individual. If the fitness value of the whole network satisfies the pre-setting value, then SANE 

terminate. 

Step8. Crossover: a one-point crossover strategy is used to exchange the site’s values between 

the selected sites of individual parents to create new individuals, which are offspring 

inheriting the parents’ merits. 

Step9. Mutation: in the last step, the gene is mutated at the rate 0.1% drawn randomly from 

the domain of the corresponding variable. Then go to Step 2 to perform selection. 

 
Figure 2-2: Basic Steps of SANE. 

Although SANE can obtain better performance than traditional evolutionary approaches, 

it still has the problem that the algorithm cannot evaluate each partial solution independently. 

More specifically, SANE use only one population to evaluate every partial solution, this will 
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cause partial solutions too similar. Therefore, the algorithm may have less chance to obtain 

optimal solution. To this end, MGCSE [15], which is a previous evolutionary algorithm and 

similar to ESP, was proposed for evolving TSK-type neural fuzzy networks. Compare to 

SANE, MGCSE provide several groups to evaluate each partial solution. Each group in the 

MGCSE represents a group that consists of the set of the chromosomes that belongs to the 

partial solution. In MGCSE, the population consists of several sub-populations and each 

sub-population represents the set of the chromosomes that belongs to one fuzzy rule. The 

structure of the chromosome is shown in Fig. 2.3. In this figure, each fuzzy rule represents a 

chromosome that is selected from a group, Psize represents there are Psize groups in a 

population, and “Mk” represents Mk fuzzy rules are used to construct a TSK-type neural fuzzy 

network. 

 
Figure 2-3: Structure of the chromosome in MGCSE. 

The coding structure of the chromosome in MGCSE is shown in Fig. 2.4. This figure 

describes a fuzzy rule that has the form of Eq. (2.5), where ijm  and ijσ  represent a 
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Gaussian membership function with mean and deviation, respectively, and jiw is the weight 

with ith dimension and jth rule node. 

jm1 j1σ  jm2  j2σ …
njm njσ 0jw 1jw 2jw … 

jnw  

Figure 2-4: Coding a fuzzy rule of a TNFN into a chromosome in MGCSE. 

However, MGCSE have difficulty in scaling to more complex tasks or high input 

dimension of networks, conduct the problem of the random group selection of fuzzy rules, 

and the lost of potential fuzzy rules combinations. In consideration of the lost of potential 

fuzzy rules combinations, Gomez had proposed HESP to accomplish it. Nevertheless, HESP 

suffers from the problems that the lengths of chromosomes must be the same and the number 

of neurons has to be assigned in advance. To this end, this dissertation proposes 

RGLS-HCCA to address the above mentioned problems. 

2.4 2D Image Alignment 

In this subsection, a 2D image alignment task is introduced. Image alignment can be 

viewed as a mapping between two images by means of a geometric transformation. Typically, 

geometric transformation contains many types, including affine, similarity, and projective 

transformation. Among them, affine transformation is the most common used type and it 

composites of translation, rotation, and scaling. Thus, this paper adopts the affine 

transformation as the transformation model. Figure 2.5 shows an example of a remote 

controller with different transformation parameters. In Fig. 2.5 (a), it represents a reference 

image which other transformed images want to align with. In other words, if the pose of the 

transformed image is known, then the transformed image can be recovered to the original 

pose of the reference image by reversing the pose. Thus, a 2D image alignment task defined 

in this dissertation is to align transformed images with the reference image.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2-5: Example of generating training images with different affine transformation: (a) reference image, (b) 

translation, (c) clockwise rotation, and (d) counterclockwise rotation. 

Since industrial inspection tasks are assumed, area-based alignment methods that adopt 

global descriptors are recommended. Thus, this study tries to focus on developing a good 

area-based alignment method. Figure 2.6 illustrates a typical procedure of an area-based 2D 

image alignment system. As shown in this figure, the sensed image is sent into the descriptor 

to extract the feature. Then, feed the feature into a pose estimation block to estimate the pose 

with respect to the reference image. Finally, the estimated affine transformation parameters 

can be used to align the sensed image with the reference image. Toward this end, seeking 

accurate affine transformation parameters is the most important fields for aligning images. 

 
Figure 2-6: Typical procedure of an area-based 2D image alignment system. 
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Figure 2.7 illustrates an example of aligning 2D images where figure (a) is a reference 

image, figure (b) is an input image, and figure (c) is a alignment result of using neural 

network based alignment scheme defined in [44]. In Fig. 2.7 (c), the cross sign denotes the 

estimated results of Sarnel’s work [44] and from the location of this cross sign, the alignment 

results is not good enough. The major drawback of such approach is that they have difficulty 

in applying to align images on a large range of affine transformation. Thus, this dissertation 

proposes a CNFN-based 2D image alignment method to perform coarse-to-fine alignment of 

the sensed image and the reference image. 

 

(a) 

 

(b) 

 

(c) 

Figure 2-7:  Example of 2D alignment: (a) reference image, (b) image with an affine transformed, and (c) 

alignment results of neural network based scheme. 

2.5 3D Image Alignment 

The 3D image defined in this dissertation is a range image which is scanned by an 
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imaging laser scanner. Each pixel in the range image reflects a range data which indicates a 

distance from the sensed point to the scanner. In other words, the range data can be considered 

as a 3D point with respect to the scanner. Thus, the scanner can be a center of a coordinate 

system to represent each sensed range data. Figure 2.8 presents an example of the range image, 

intensity image, and a 3D point cloud data. From this figure, the range image utilizes the color 

bar to represent the range data. The intensity image, which is also generated by the imaging 

lasers scanner, is used to be the corresponding map of range image. The 3D point cloud data, 

which is created by transforming range data to Cartesian coordinate, shows the 3D position of 

each pixel. 

Figure 2.9 illustrates the procedure of a 3D image alignment task. From this figure, the 

3D scene is scanned by a 3D imaging laser scanner where the size of the scanned scene is 

256×256 with 20 degree field of view. The region of interest (ROI) is extracted by using the 

segmentation algorithm described in [68]. The reference model is a target 3D surface that the 

ROI wants to align with. Thus, the purpose of the 3D image alignment task is to align the ROI 

with the reference model. 
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Figure 2-8: Example of 3D image. 

 
Figure 2-9: Procedure of a 3D surface alignment task 
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According to Chapter 1, a coarse-to-fine technique is a useful way to perform 3D image 

alignment tasks. In consideration of coarse image alignment, common methods [45] and [46] 

utilized PCA [51] for coarsely aligning two images due to its high-speed performance. In 

consideration of traditional fine alignment methods, iterative closest point (ICP) [52] is a 

typical method to iteratively calculate the rigid-body transformation to minimize the cost 

function. 

Figure 2.10 illustrates an example of aligning an input 3D point with reference model 

using PCA. From this figure, (a) and (b) represents the principal axes of a 3D reference model 

and input 3D point data, respectively. Figure 2.10 (c) depicts the alignment results of PCA 

method. From Fig. 2.10 (a)-(c), we can know that since the input laser scanned 3D data is 

partial, its principal axes would be askew with respect to the 3D reference model and such 

case results in the large alignment error of PCA method (seen from Fig. 2.10 (c)). Based on 

this fact, this dissertation will propose a TNFN-based coarse alignment method that utilizes 

the pose estimation to replace of aligning principal axes. 

Figure 2.11 illustrates an example of performing ICP fine alignment where figure (a) is 

the initial alignment yielded by PCA coarsely alignment and figure (b) is final fine alignment 

performed by ICP. Although ICP can get a good result for fine alignment, its heavy 

computational cost in searching corresponding points is a problem. To this end, this paper 

proposed a TNFN-based fine alignment method which combines surface modeling and the 

downhill simplex optimization method to improve the problem. 
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Figure 2-10: Example of coarse alignment using PCA: (a) the principal axes of the reference model, (b) the 

principal axes of the input 3D data, and (c) alignment results of the PCA method. 

 

Figure 2-11: Example of fine alignment using ICP: (a) the initial alignment yielded by PCA and (b) alignment 

results of the ICP method. 

 
(a) (b) 

 
(c) 

 
(a) 

 
(b) 
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Chapter 3  
Regularized Least Squares Based Hierarchical 
Cooperative Coevolutionary Algorithm 

 

The learning process of RGLS-HCCA is shown in Fig. 3.1. As show in this figure, 

RGLS-HCCA involves two major evolutions: parameter level evolution (PLE) and structure 

level evolution (SLE). The blocks of inserting good networks and inserting good neurons (i.e. 

good fuzzy rules) are the connection between the parameter and structure level evolution. 

These two operations indicate that good evolved results in one level evolution would be 

transferred to another level evolution. Once receiving good neurons or networks, the received 

chromosomes would be mated with other old chromosomes to yield some new offspring. 

Therefore, by exchanging the good information between two levels of evolution, we have 

more chance to find the global optimal solution. 

This chapter is divided into two subsections to introduce the proposed two-level 

evolution. In Section 3.1, parameter level evolution is discussed. Section 3.2 describes how 

structure evolution works. 
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Figure 3-1: Learning process of RGLS-HCCA. 

3.1 Parameter Level Evolution 

In this subsection, we will discuss the parameter level evolution (PLE). In PLE, it aims 

to determine not only the suitable fuzzy rules of TNFN automatically but also the suitable 

individuals used to construct a TNFN. Regarding the former aim, PLE proposes a 

self-regulated mechanism (SRM) to determine the number of fuzzy rules automatically. SRM 

utilizes the probability vector to represent the suitability of TNFN with different fuzzy rules. 

In Fig. 3.2, SRM codes the probability vector 
kMP  to represent the suitability of a TNFN 

with Mk rules where the number of fuzzy rules is limited to a certain bound, i.e., [Mmin, Mmax]. 

After the SRM is carried out, the probability of the suitable number of fuzzy rules in a TNFN 

will increase, and the probability of the unsuitable number of fizzy rules in a TNFN will 

decrease. Therefore, the number of fuzzy rules would be self-regulated. Regarding the later 
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aim, although SRM can determine the suitable number of rules, there is a need to identify the 

suitable groups used to select individuals to construct TNFN. More specifically, we should 

consider the well-performing groups of individuals to cooperate for producing better a 

generation than the current one. To face this issue, this study proposes a data-mining based 

selection method (DMSM) to determine which groups should be used to select individuals. 

The DMSM involves two major parts, namely, finding frequent patterns and mining 

association rules. Regarding the former, the FP-growth algorithm [27] is used to find the 

frequent patterns that do not have candidate generation. Regarding latter, association rules are 

identified by using the confidence value. In DMSM, the FP-growth is used to find the sets of 

groups that occur frequently from transactions. In this paper, a “transaction” refers to the 

collection of groups that have good or bad performance. After the candidate sets of frequently 

occurring groups are found, DMSM identifies the association rules by setting the suitable 

confidence and uses the found association rules to determine Mk groups that are used to select 

Mk chromosomes that form TNFN with Mk rules. To this end, two actions are defined in this 

study: normal and explore actions. In the normal action, Mk groups are chosen randomly. In 

the explore action, Mk groups are chosen according to association rules. These two actions 

will be discussed in the procedures of PLE. 

minMP  1min +MP  … kMP  … 1max −MP  
maxMP  

Figure 3-2: Coding the probability vector to represent the suitability of a TNFN with Mk rules. 

To consider the structure of TNFN, unlike MGCSE encoding one fuzzy rule into a 

chromosome, PLE only encodes an antecedent part of a fuzzy rule into a chromosome. The 

consequent part of a fuzzy rule used in PLE is estimated by a regularized least square (RGLS) 

approach. The structure of chromosomes to construct TSK-type neuro-fuzzy networks 

(TNFNs) in PLE is shown in Fig. 3.3. In this figure, each antecedent part of a fuzzy rule 

represents a chromosome selected from a group, Psize denotes that there are Psize groups in a 
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population, and Mk indicates that there are Mk rules used in TNFN construction. In addition, 

PLE adopts the variable length of a combination of chromosomes with RGLS method to 

construct a TNFN. Thus, the length of combined chromosomes to construct TNFNs can be 

different. 

 
Figure 3-3: Structure of chromosomes to TNFN construction in PLE. 

After discussing the structure of chromosomes to construct TNFNs, details of the coding 

step for PLE and RGLS method are described as follows: 

(1) Coding Step: 

The coding structure of chromosomes in the proposed PLE is shown in Fig. 3.4. This 

figure describes an antecedent part of a fuzzy rule that has the form in Eq. (2.5), where ijm  

and ijσ  represent a Gaussian membership function with mean and deviation of ith dimension 

and jth rule node, respectively. Besides, a pair of ( m ,σ ) indicates a neuron in Layer 2 of a 

TNFN. Evolving an antecedent part of a fuzzy rule is likely to evolve a neuron which is a 

parameter of a neural network. Thus, the evolution of this level is called a parameter (i.e. 

neuron) level evolution. 
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Figure 3-4: Coding an antecedent part of a fuzzy rule into a chromosome in PLE. 

(2) RGLS method: 

Assume a TSK-type neural fuzzy model composed of m fuzzy rules as the following 

form: 
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where ju  is the firing strength of Rule j, and )/(ˆ 1 mjj uuuu ++= L . Then it is possible to 

express the equation above into the form: 
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Since y and a  are known value, the only unknown value is the consequent part W . 

Suppose a given set of training inputs and desired outputs is{ }M
td tytx 1)(),( = . The Eq. (3.3) can 

be rewritten as: 

   dYAW = ,                                 (3.4) 

where TMaaaA )]( )2( )1([ L= . 

In order to get the smooth estimation, the regularization is adopted. The approximation 
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solution can be written as follows: 

d
TT YAIAAW 1)(ˆ −+= λ ,                       (3.5) 

where λ  is a regularization parameter which adjusts the smoothness. Thus, by getting Eq. 

(3.5), we finish the estimation of the consequent part of fuzzy rules. Based on this fact, this 

dissertation utilizes RGLS to calculate the consequent part of a TSK-type neural fuzzy 

network. This operation would not only reduce the number of parameters that must be trained 

but also increase the convergence rate of the evolutionary algorithm. Thus, the phenomenon 

of reducing training number and increasing convergence rate would promote the evolutionary 

algorithm to adapt the neural network to more complex tasks. 

The learning process of PLE involves seven operators: initialization, self-regulated 

mechanism, data-mining based selection method, fitness assignment, reproduction, crossover, 

mutation, and insert good networks. The whole learning process is introduced below: 

a. Initialization: Before we start the parameter level evolution, the initial groups of 

individuals should be generated. Thus, initial groups are generated randomly within a 

predefined range. The following formulations show how to generate the initial chromosomes 

in each group: 

Deviation: Chrg, c [p]=random [ minσ , maxσ ], 

where p=2, 4,…, 2n; g=1, 2,…, Psize; c=1, 2,…, NC,            (3.6) 

     Mean: Chrg, c [p]= random [ minm , maxm ], 

     where p=1, 3,…, 2n-1,                                   (3.7) 

where Chrg, c represents cth chromosome in the gth group, NC is the total number of 

chromosomes in each group, p represents the pth gene in a Chrg, c, and [ minσ , maxσ ], [ minm , 

maxm ] represent the predefined range to generate the chromosomes. 

b. Self-regulated mechanism (SRM): To select fuzzy rules automatically, PLE proposes 

SRM to determine the suitability of TNFN models with different fuzzy rules. The 
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self-regulated mechanism encodes the probability vector 
kMP  to stands for the suitability of 

a TNFN with Mk rules. In addition, in SRM, the minimum and maximum number of rules 

must be predefined to limit the number of fuzzy rules to a certain bound, i.e., [Mmin, Mmax]. 

The processing steps of SRM are described as follows: 

Step  0. Initialize the probability vectors 
kMP : 
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     .0=rAccumulato                                          (3.9) 

Step 1. Update the probability vectors 
kMP  according to the following procedures: 

(1) Evaluate the fitness value of TNFN with Mk rules: 
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         where 
kMFitness  represents the fitness value of TNFN with Mk rules, 

kMFitnessBest _  represents the best fitness value of TNFN with Mk rules, 
kMfit  

is the sum of the fitness values of the TNFN with Mk rules and fitcount is a count as 

Eq. (3.10) satisfies. 

(2) Calculate the average fitness value: 

,/ fitcountfitAvgfit
kk MM =                                  (3.11)   
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MM
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where 
kMAvgfit  is a average value of 

kMfit  and Avg represents the average 

fitness value in the whole population. 

(3) Update the probability vectors: 
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where
kMvalueUpt _ is a update value for Mk fuzzy rules and 

kMP  is the 

probability vector, and r is a predefined ratio value.  

Step 2. Determine the selection times of TNFN with different rules according to the 

probability vectors as follows: 

kMRp = )_/(*)_( VelocyTotalPTimesSelection
kM ,                  (3.15) 
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where max1minmin ,,, MMMM k L+= , TimesSelection _  represents the total selection times 

in each generation and 
kMRp  represents the selection times of TNFN with Mk rules in one 

generation. 

Step 3. In SRM, to prevent suitable selection times from falling into the local optimal solution, 

we uses two different procedures to update 
kMP . Such actions are defined as follows:  

Procedure 1: update the probability vector 

      
1then,__if

,2to1Stepsdo  then,if

+==

≤

rAccumulatorAccumulatoFitnessBestFitnessBest

SRMTimesrAccumulato

g

   (3.17) 

where SRMTimes is a predefined value, gFitnessBest _  represents the best fitness value of 

the best combination of chromosomes in the gth generation, and FitnessBest _  represents 

the best fitness value of the best combination of chromosomes in the current generations. 

 To consider the amount of the computation in SRE, Eq. (3.14) is the major computation 
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process for SRM. Since the amount of the computation in Eq. (3.11)-(3.13) is not heavy 

(depend on the number of 
kMFitness  and it is often not much), updating a 

kMP  in Eq. (3.14) 

is also less computation. It implies that SRM is not a heavy computation procedure. 

Procedure 2: initialize the probability vector 

,0and0Stepdo  then,if => rAccumulatoSRMTimesrAccumulato     (3.18) 

If Eq. (3.18) is satisfied, it indicates that the suitable selection times may fall into the local 

optimal solution. At this time, the processing step of SRM should return to Step 0 to initialize 

the probability vector
kMP . 

 

c. The data-mining based selection method (DMSM): 

After operating SRM, the selection times of TNFNs with different numbers of rules are 

determined. Thereafter, PLE performs the selection step, which involves the selection of 

groups and the selection of chromosomes. In selection of groups, this paper proposes DMSM 

to determine the suitable groups for chromosomes selection to form a TNFN.  

In DMSM, suitable groups are selected according to the groups, which conduct from 

association rules that indicate good performance. To achieve these aims, DMSM utilizes the 

FP-growth [27] and the association rules mining. Regarding former, the FP-growth is used to 

identify frequently pattern. It was proposed by Han et al. [27], and it aims to find the 

frequently occurring patterns that do not have candidate generation. In the proposed DMSM, 

the FP-growth is used to find the frequently occurring groups from transactions. To reiterate, a 

transaction refers to a set of the groups that have good or bad performance. Regarding latter, 

after the frequently occurring groups are found, DMSM constructs the association rules by 

setting the suitable confidence. The association rules algorithm is a well-known approach in 

several fields [69-73]. The purpose of mining association rules is to identify good groups. 

After performing these two steps, the found association rules are utilized to selects Mk groups 
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that are used to choose chromosomes to form TNFNs with Mk rules. To prevent the selected 

groups from falling into the local optimal solution, DMSM uses normal and explore actions to 

select well-performed groups. The details of the DMSM are discussed below: 

Step 1. Normal action: 

If Accumulator don not exceed the NormalTimes, the current action is the explore action. 

The aims of this action include two parts: accumulate the transaction set and select groups 

which are described as follows: 

Part 1: Accumulate the transaction set 

The transactions are built, as in the following equations:  
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          (3.20) 

where kMi  , ,2 ,1 L= , maxminmin  , ,1 , MMMM k L+= , nNumTransactioj  , ,2 ,1 L= , the 

kMFitness  represents the fitness value of TNFN with Mk rules, essvalueThreadFitn  is a 

predefined value, nNumTransactio is the total number of transactions, ][inTransactio j  

represents the ith item in the jth transaction, ][itTNFNRuleSe
kM  represents the ith group in 

the Mk groups used for chromosomes selection, and gIndexePerformanc =  and 

bIndexePerformanc =  represent the good and bad performance, respectively. Hence, 

transactions have the form shown in Table 3.1. As shown in Table 3.1, the first transaction 

means that the three-rule TNFN formed by the first, fourth, and eighth groups have ”good” 

performance. In contrast, the second transaction indicates that the four-rule TNFN formed 

by the second, fourth, seventh, and the tenth groups have “bad” performance.  
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Table 3.1: Transactions in the DMSM. 

Transaction index Groups Performance Index 

1 1,4,8 g 

2 2,4,7,10 b 

… … … 

TransactionNum 1,3,4,6,8,9 g 

Part 2: Select groups 

In the normal action, DMSM selects groups using the following equation: 

],,1[][then

if

SizePRandomiGroupIndex

sNormalTimerAccumulato

=

≤
               (3.21) 

where kMi  , ,2 ,1 L= , max1minmin  , , , MMMM k L+= , rAccumulato  defined in Eq.(3.21) is 

used to determine which action should be adopted, ][iGroupIndex  represents the selected ith 

group of the Mk groups, and SizeP  indicates that there are SizeP  groups in a population in 

PLE. If the best fitness value does not improve for a sufficient number of generations 

(NormalTimes), then DMSM selects groups according to explore action.  

Step 2. Explore action: 

If Accumulator exceeds the NormalTimes, the current action switches to the explore 

action. The objective of this action is to adopt the notion of DMSM to explore suitable groups 

in transactions. The major operations of DMSM include FP-growth performing, association 

rules generating, and suitable groups selecting. The details of these three operations are 

presented below. 

i.   FP-growth performing 

In this operation, only good groups, whose performance index showed “g” in Table 3.1, 

are performed with FP-growth and bad groups are skipped. Thus, frequently occurring groups 

can be found according to the predefined Minimum_Support, which stands for the minimum 

fraction of transactions containing the item set. After Minimum_Support is defined, data 

mining using FP-growth is performed (detail procedures of FP-growth can be found in [27]). 
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In FP-growth, frequently occurring groups can be found by exploring the FP-tree [27]. After 

exploring the frequently occurring groups in the FP-tree, FP-growth data mining is completed 

by the concatenation of the suffix group [27] with the generated frequently occurring groups. 

Thus, in this paper, frequent groups denote the frequently occurring groups found by 

FP-growth algorithm. 

ii. Association rules generating 

Once the frequently occurring groups are found, we can produce association rules from 

these frequent ones. For the purpose of identifying the association rules with good 

performance, the frequent groups must combine the groups owing bad performance shown in 

Table 3.1 to count the confidence degree. The confidence degree can be computed by the 

following formula:  

      
,

) () (
) (

) |(
) (

badgroupsfrequentsuppgoodgroupsfrequentsupp
goodgroupsfrequentsupp

groupsfrequentgoodP
goodgroupsfrequentconfidence

∪+∪
∪

=

=
⇒

   (3.22) 

 where ) |( groupsfrequentgoodP  is the conditional probability, goodgroupsfrequent ∪  

or bad means the union of frequent groups and good or bad performance, and 

supp( goodgroupsfrequent ∪ or bad) stands for the counts of frequent groups with good or 

bad performance occurring in transactions. Then the rule is valid if  

        ,) ( minconfgoodgroupsfrequentconfidence ≥⇒                (3.23) 

where minconf represents the minimal confidence given by user or expert. Hence, we can 

infer that if a rule satisfies Eq. (3.23), then the frequent groups can be viewed as the suitable 

groups, otherwise they would be unsuitable groups. For instance, if the confidence of 

{1,3,6}=>{g} is bigger than the minimum confidence, then we construct this association rule. 

This rule indicates that the combination of the first, third, and sixth groups results in “good” 

performance. After doing so, the frequent groups are conduct to the association rules and 

generate the AssociatedGoodPool which contains all frequent groups satisfied Eq. (3.23). 
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iii. Suitable groups selecting 

After the association rules are identified, DMSM selects groups according to the 

association rules. The group indexes are selected from the associated good groups as the 

following equations: 

 

],[][

][    ],1[where

,][then

if

GoodPoolAssociatedRandomqtGoodItemSe

qtGoodItemSewandPRandmw

wiGroupIndex

esExploreTimrAccumulatosNormalTime

size

=

∈=

=

≤<

        (3.24) 

where , , ,2 ,1 mGoodPoolNuAssociatedq L= kMi  , ,2 ,1 L= , max1minmin  , , , MMMM k L+= , 

esExploreTim  is a predefined value that judge to perform the exploring action, 

GoodPoolAssociated  represents the sets of good item set that obtain from association rules, 

mGoodPoolNuAssociated presents the total number of sets in GoodPoolAssociated  and 

][itGoodItemSe  presents a good item set that select from GoodPoolAssociated  randomly. 

In the Eq. (3.24), if kM  greater than the size of tGoodItemSe , remain groups are selected 

by Eq. (3.21). 

Step 3. If the best fitness value does not improve for a sufficient number of generations 

(ExploreTimes), DMSM selects groups based on the normal action (Step 1). 

Step 4. After the Mk groups are selected, Mk chromosomes are selected from Mk groups as 

follows: 

,][ qiIndexChromosome =                          (3.25) 

where ], ,1[ cNRandomq =  ki  , ,2 ,1 L= , cN  represents the total number of chromosomes 

in each group, and ][iIndexChromosome  represents the index of a chromosome that is 

selected from the ith group. 

d. Fitness assignment: To assign a fitness value of an individual, the following detailed steps 

in the fitness value assignment are performed: 
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Step 1. Take the DMSM selected Mk antecedent part of fuzzy rules and use RGLS method to 

calculate the consequent part of fuzzy rules. These two actions are repeated to construct 

TNFNs 
kMRp times from kM  groups with size NC.  

Step 2. Evaluate every TNFN that is generated from Step1 to obtain a fitness value. In this 

paper, the fitness value is designed according to the following formulation: 

Fitness Value= )),,(1/(1
_
yyE+                       (3.26) 
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ii yyyyE                      (3.27) 

where iy  and iy
−

 represents the desired and predicted values of the ith output, respectively, 

),(
_
yyE  is an error function and N represents the number of the training data in each 

generation. 

Step 3. Accumulate the divided fitness value to the antecedent part of fuzzy rules with their 

fitness value records. 

Step 4. Divide the accumulated fitness value of each chromosome from kM  groups by the 

number of times that it has been selected.  

e. Reproduction: Reproduction is a procedure of copying individuals according to their 

fitness value. This study adopted our previous research-elite-based reproduction strategy 

(ERS) [15] to perform reproduction. In ERS, every chromosome in the best combination of 

Mk groups must be kept by performing reproduction step. In the remaining chromosomes in 

each group, this study uses the roulette-wheel selection method [74] and [75] for this 

reproduction process. The well-performed chromosomes in the top half of each group [18] 

proceed to the next generation. The other half is created by executing crossover and mutation 

operations on chromosomes in the top half of the parent individuals. 
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f. Crossover: Although DMSM can be used to select suitable individuals for TNFN 

construction, it does not create any new individual. In nature, an offspring has two parents and 

inherits genes from both. The main operator working on the parents is the crossover operator, 

the operation of which occurs for a selected pair with a crossover rate. In this paper, a 

two-point crossover strategy [76] is adopted and shown in Fig. 3.5. In the figure, exchanging 

the site’s values between the selected sites of individual parents creates new individuals. The 

advantage of the two-point crossover is its ability of introducing a higher degree of 

randomness into the selection of genetic material [77]. Moreover, such crossover strategy 

generally yields better performance than one-point crossover due to its larger search step size 

[76]. 

 

Figure 3-5: Two-point crossover. 

g. Mutation: Although the crossover strategy produces many new strings, these strings do not 

provide any new information to every group at the site of an individual. Mutation can 

randomly alter the allele of a gene. In this paper, to emphasize the capability of the SRM and 

the DMSM, the PLE attempts to simplify the mutation operation. Uniform mutation [74] and 

[78] is therefore adopted, and the mutated gene is drawn randomly from the domain of the 

corresponding variable. The benefits of uniform mutation are not only to generate new 

information into a population but also to keep a highly diverse array of information, which is 

useful to the fitness of individuals [79]. 

h. Insert good networks: Since there are “Selection_Times” networks constructed in every 

generation, the fitness value of each network is recorded and compares it with the structure 
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evolution level. If the fitness of the network is better than the worst network in the structure 

evolution level, then this network is inserted into the structure evolution level. 

   

  To consider the termination criterion, if the learning steps meet one of the following 

conditions, RGLS-HCCA is terminated and output the final results. 

(1) The number of generations reaches a predefined maximal iteration value. 

(2) Fitness value is greater than a fitness threshold. 

Consequently, the whole learning process of PLE is summarized in Fig. 3.6.  

 
Figure 3-6: The learning process of PLE. 
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3.2 Structure Level Evolution 

In this subsection, the structure level evolution (SLE) is discussed. The main processes 

of SLE involve six operations: receive good networks, reproduction, variable antecedent-part 

crossover, variable antecedent-part mutation, evaluation, insert good neurons. The details of 

these operations are described as follows: 

a. Receive good networks: Before the structure evolution starts, we receive N 

well-performed networks from parameter level evolution to be chromosomes. The coding 

structure of chromosomes in the structure level evolution is shown in Fig. 3.7. In this 

figure, each block of a chromosome describes an antecedent part of a fuzzy rule that has 

the form in Eq. (2.5), where ijm  and ijσ  represent a Gaussian membership function 

with mean and deviation of ith dimension and jth rule node, respectively. The consequent 

part of a fuzzy rule is skipped to encode into chromosomes since regularized least squares 

is proposed to estimate the consequent part. After that, we sort the chromosomes to 

prepare for performing reproduction. 

 
Figure 3-7: The coding the antecedent part of fuzzy rules into a chromosome in the structure level evolution. 

b. Reproduction: Reproduction is a process in which string are copied according to their 

fitness value. In this step, roulette-wheel selection method is adopted for the reproduction 

process. The well-performed chromosomes in the top half of each group proceed to the 

next generation. The other half is generated by executing variable two-part and variable 

two-part operations on chromosomes in the top half of the parent individuals. 

c. Variable antecedent-part crossover: In the structure level evolution, the variable 
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antecedent-part crossover (VAC) is proposed to perform crossover. In VAC, two parents 

are selected by using the roulette-wheel selection method [74]. Because the selected 

parents may be with different length, the misalignment of individuals must be avoided in 

the crossover operation. Thus variable antecedent-part crossover is proposed to address 

this problem. The antecedent part means that only the antecedent of fuzzy rule is 

performed crossover operation. In VAC, two-point crossover [76] is adopted to execute 

crossover. Thus, new individuals are generated by exchanging the site’s values between 

the selected sites of the parents’ individuals. In VAC, to avoid the misalignment of 

individuals in the crossover, the selection of the crossover points would not exceed the 

shortest length chromosome of two parents. Two individuals with different lengths using 

VAC operation are shown in Fig. 3.8. where ARj represents the parameters of the 

antecedent part of the jth rule in the TNFN, and Rk represents there are k fuzzy rules in a 

TNFN. After performing the VAC, the new offspring can replace the individuals with 

poor performance. 

 
Figure 3-8: Variable antecedent-part crossover operation in the structure level evolution. 

d. Variable antecedent-part mutation: The mutation operator can randomly alter the allele of 

a gene. It provides new information to every population at the site of an individual. In the 

structure level evolution, the variable antecedent-part mutation (VAM) is adopted to 

perform the mutation operation. The benefit of VAM is to be applied to different length of 

chromosomes. The VAM operation of each individual is shown in Fig. 3.9 where AR 

indicates antecedent part of fuzzy rule In VAM, uniform mutation [78] is adopted, and the 
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mutated gene is drawn randomly from the domain of the corresponding variable. 

 
Figure 3-9: Variable antecedent-part mutation operation in the structure level evolution. 

e. Evaluation: The evaluating step is to evaluate the fitness of each chromosome that has not 

already been evaluated in a population. The higher a fitness value indicates the better 

performance. Since each chromosome only includes the antecedent part of fuzzy rules, the 

consequent part of fuzzy rules is not defined. Thus, similar to the fitness assignment in 

PLE, the RGLS method is used to estimate the consequent part of fuzzy rules. After the 

antecedent and consequent part are determined, the TNFN is constructed. Then, evaluate 

every TNFN to obtain a fitness value. In this paper, the fitness value is designed according 

to Eq. (3.26) and (3.27). 

f. Insert good neurons: After the evaluation operation, if a network has a higher fitness value 

than the best network in the parameter level, then insert the neurons into the 

corresponding groups of subpopulation in the parameter level evolution. 

Thus, the whole learning process of SLE is summarized in Figure 3.10. 
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Figure 3-10: Whole learning process of SLE. 

In short, the purpose of SLE is to reserve the good combinations of fuzzy rules produced 

by PLE and evolve the structure of the produced neural fuzzy networks. Thus, the utility of 

SLE is to fine tune the evolved results of PLE. To this end, PLE would be a major evolution 

to evolve TNFNs and it affects the effectiveness of the proposed RGLS-HCCA model. 
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Chapter 4  
Image Alignment Applications 

 

To demonstrate the applicability of RGLS-HCCA to real world problems, two image 

alignments tasks are taken to consideration: 2D image alignment and 3D image alignment. 

For a 2D image alignment problem, it is considered of great importance in numerous 

industrial applications including automatic visual inspection, electronic component assembly 

automation, circuit board inspection, and robotic machine vision. Among them, an automatic 

visual inspection system [80-82] is one of the most important fields for seeking an accurate 

geometric transformation to align images. To this end, neural network based methods have 

widespread to face this problem. The reason is that such methods often extract global features 

from images and feed them into a trained neural network to estimate geometric 

transformations parameters. In this dissertation, RGLS-HCCA can be used to develop a neural 

fuzzy network-based image alignment system to demonstrate high performance. 

For a 3D image alignment problem, it is considered a critical step in object recognition 

[83], surface reconstruction [84], and image-guided surgery [85]. Two major concerns for the 

alignment task are execution time and alignment accuracy. Recently, neural network-based 

methods have become very popular due to their high efficiency. Thus, a TNFN-based 

coarse-to-fine 3D surface alignment scheme is proposed in the current dissertation.  

In this chapter, two subsections are used to introduce the proposed alignment systems. 

Section 4.1 presents how the proposed 2D image system works. In Section 4.2, the proposed 

TNFN-based coarse-to-fine 3D image alignment system is described. 

4.1 2D Image Alignment System 

The flow chart of the proposed image alignment algorithm, which consists of off-line 

and on-line procedure, is illustrated in Fig. 4.1. During the off-line procedure, the synthesized 
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training images are created by applying the reference image to affine transformations with 

randomly selected parameters, and then use the Gabor-weighted gradient orientation 

histograms (Gabor-WGOH) descriptor to represent these training images as feature vectors. 

Finally, the feature vectors and desired targets are employed to train a CNFN using 

RGLS-HCCA. During the executing phase, the sensed image is sent to the Gabor-WGOH 

descriptor to extract a feature vector and then feed it into the RGLS-HCCA trained CNFN to 

estimate affine transformations parameters. Then, the estimated parameters are taken to align 

the sensed image with the reference image. The following subsections will introduce the 

process of the proposed 2D image alignment scheme. 

 
Figure 4-1: Flow chart of the proposed image alignment algorithm. 

4.1.1 Off-line Procedure 

The objective of the off-line procedure is to train CNFN. Four main parts in the 

procedure are synthesized training images creating, Gabor-WGOH descriptor generating, 

self-organized training data yielding, and CNFN training. These parts are described as 

follows. 

(a) Synthesized Training Images Creating 

The synthesized training images can be generated by applying various combination of 

translation, rotation, and scaling transformations within a predefined range. The 
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transformation model is affine transformation which can be described by the following matrix 

equations: 
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where ),( 11 yx  indicates the original image coordinate, ),( 22 yx  indicates transformed 

image coordinate, s is a scaling factor, ),( yx ΔΔ  is a translation vector, θ  is a rotation angle, 

and ),( cc yx  is the center of rotation. 

(b) Gabor-WGOH Descriptor Generating 

The WGOH descriptor has been compared by several global descriptors [40-42, 86-88] 

using a nearest-neighbor search of the feature vector proposed by [89] and [90]. Thus, WGOH 

was proven a good descriptor [86] and [90], inspired by Scale Invariant Feature Transform 

(SIFT) descriptor [91], and presented by Bradley et al. to show its high speed [92]. The main 

idea of the WGOH is that it calculates the orientation histograms within a region, and uses the 

magnitude of the gradient at each pixel and the 2D Gaussian function to weight the histogram 

[86]. Therefore, for the WGOH descriptor, there are four steps for representing an image: 

1 For each image, we capture the template window, whose location is at the center of the 

image, to be a place of extracting features. Within the window, we divide the length and 

width of the window into 4 equal parts to form 4×4 grids. Each grid is considered a 

sub-image. Thus the template window can be split into 4×4 sub-images. 

2 On each pixel of the sub-image ),( yxI , the gradient magnitude ),( yxm , and orientation 

),( yxθ  is computed using pixel difference which the equations can be written as 

  ,))1,()1,(()),1(),1((),( 22 −−++−−+= yxIyxIyxIyxIyxm            (4.2) 

 ))).,1(),1(/())1,()1,(((tan),( 1 yxIyxIyxIyxIyx −−+−−+= −θ            (4.3) 

3 Calculate the 8-bin orientation histograms (each bin cover 45 degree) within each 

sub-image which are weighted by the gradient magnitude, and the Gaussian function. 
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4 Concatenate 8-bin histograms of 16 sub-images into a 128-element feature vector, and 

normalize it to a unit length. To reduce strong gradient magnitudes, the elements of the 

feature vector are limited to 0.2, and this vector is normalized again. 

Consequently, each image can be represented by a 128-elemet feature vector. Fig. 4.2 

illustrates an example of WGOH computation steps. However, using pixel difference to 

compute the gradient is sensitive to noise. To avoid such sensitivity, Moreno et al. combined a 

Gabor filter with WGOH descriptor to suppress noise [93]. Based on this fact, we adopt the 

Gabor-WGOH descriptor for representing an image.  

Because the 128-elemet feature vector is still too high to train a TSK-type neuro-fuzzy 

network, there is a requirement of finding a dimensionality reduction method to lower the 

dimension of the feature vector. In order to lower the dimension of feature vector, we further 

employed principal component analysis method (PCA) to reduce the 128-elemet feature 

vector into a 33-element one. Therefore, each image can be represented by a 33-elemet feature 

vector.  

 
Figure 4-2: Steps for creating a WGOH feature vector. 

 

(c) Yielding self-organized training data  

 After describing the Gabor-WGOH descriptor, this paper proposes a self-organized 

training data-creating method to provide an appropriate training data set for training neural 
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fuzzy networks. The major advantages of the proposed training data-creating method are that 

it can prevent the generation of the redundant data and supply a self-organized training data 

set for training a neural fuzzy network efficiently. The steps for yielding the self-organized 

training data are as follows: 

Step 1: First, generate a small training data set }{ trainS .  

Step 2: Then, utilize the training data set to train a neural fuzzy network. 

Step 3: Input a fixed number of testing data set }{ testS  into the neural network to create the 

alignment error }{ testE . Check each error )}({ iEtest : 

.1 and }{)}({ then ,)( If insert +=⎯⎯ →⎯> ErAccErAccSiSPdErroriE traintesttest  

,,,2,1for testNi L=                                                   (4.4) 

      where PdError is the predefined error, ErAcc is the accumulator of large error counts, 

and testN is the number of the test data set.  

Step 4: If ErAcc < ert , then accumulate the LoopNum=LoopNum+1. Otherwise, set 

LoopNum=0. The symbol ert  indicates the threshold of the error accumulator, and 

LoopNum means the accumulating number of loop. 

Step 5: If LoopNum > loop threshold loopt , terminate the training and output the training set 

}{ trainS . Otherwise, go to step 2 to run recursive training. 

In Step 3, the insert testing data is the data that the neural fuzzy network does not 

perform well. Therefore, inserting such data can enhance the learning ability of the neural 

network and prevent the selection of the redundant training data. Moreover, from Step 5, 

looptLoopNum >  means that the amount of training data set has converged. At this time, it 

also indicates that the training data set is self-organized. Thus, we can utilize the 

self-organized training data-creating method to provide the training data for training CNFNs. 

(d) Cooperative Neural Fuzzy Network (CNFN) training 

The notion of the cooperative neural fuzzy network is to combine several networks to all 
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cooperate in adapting to a large range of affine transformation. The aim of this operation is to 

improve the problem of applying a large range of affine transformation to traditional 

one-stage neural network which can cause a large amount of training data; such a network is 

difficult to train. The cooperative networks can be seen a coarse-to-fine aligning the captured 

image with reference image.  

 Figure 4.3 presents the process of cooperative neural fuzzy network. From this figure, 

each stage deals with a certain range of affine parameters and they cooperate to get a large 

range of affine parameters. As input an image with an unknown pose, the cooperative neural 

fuzzy network would gradually reduce the pose difference between the input and reference 

image. Thus the final pose with respect to the reference image can be written as the following 

equation: 

                       ,21 Nfinal PPPP +++= L                      (4.5) 

where 1P , 2P , and NP  indicates the estimated pose from 1st, 2nd, and Nth stage of the 

neural network. 

 
Figure 4-3: Process of cooperative neural fuzzy networks. 

To perform training CNFN with providing the training data, this study proposes 

RGLS-HCCA to accomplish it. In CNFN, once the dynamic image alignment range of each 

stage has been determined, each network can be trained independently. Thus, the training 

process of each stage of CNFN is similar, and the only difference is its training parameters. To 
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this end, RGLS-HCCA is used to train each stage of CNFN to estimate the pose with respect 

to the input image. 

4.1.2 On-line Procedure 

In the on-line phase, the sensed image (input image) is sent to the Gabor-WGOH 

descriptor to extract a feature vector and then feed it into RGLS-HCCA trained CNFN to 

estimate transformation parameters, which include the scaling factor s , rotation angle θ , 

and translation ( xΔ , yΔ ), to be taken into aligning images. More specifically, the proposed 

CNFN performs N-stages of neural fuzzy network (as shown in Fig. 4.3) to gradually align 

the sensed image with the reference image. Thus, the image alignment error will be reduced 

stage by stage and finally get the best aligning pose with the reference image. 

4.2 3D Image Alignment System 

According to Chapter 2, each pixel in a 3D image can be considered as a 3D point cloud 

data with respect to the laser scanner. Thus, a 3D image is viewed as a collection of 3D point 

clouds and these point clouds can represent arbitrary 3D surface. Based on this fact, aligning 

two 3D images is likely to align two 3D surfaces and other researches also call 3D image 

alignment to be 3D surface alignment (or registration) [45]. In this dissertation, the objective 

of a 3D image alignment is to align a captured 3D image (i.e. 3D surface) of an object in an 

arbitrary view with the 3D surface of the reference model.  

Figure 4.4 presents the flow diagram of the proposed 3D image alignment system. In the 

learning phase, two data flows are performed for training TNFNs to adapt two levels of image 

alignment: one for coarse alignment and the other one for fine alignment. In the executing 

phase, the trained TNFNs are utilized to implement a coarse-to-fine 3D image alignment task. 

These two phases are explained in detail to show how the process of 3D image alignment 

works. 
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Figure 4-4: Flow diagram of the proposed 3D image alignment system. 

4.2.1 Learning Phase 

The objective of the learning procedure is to train two TNFNs for applying coarse-to-fine 

3D image alignment. These two major parts of the procedure are the coarse alignment 

learning and the TNFN-based surface modeling. These parts are described in the following 

contents. 

(a) Coarse alignment learning  

The goal of coarse alignment is to determine an approximate rigid transformation that 

coarsely aligns the reference model with the input point clouds. The coarse alignment must 

be quick to provide a good initial transformation for the fine alignment task. Thus, TNFN is 

utilized to learn any case of rigid transformation within the predefined range. Once the 

training of TNFN is completed, input arbitrary view of point clouds would yield the estimate 

pose with respect to the reference model. Therefore, the executing phase of the TNFN is 

simple and efficient. 

The procedures of proposed coarse alignment learning involves generating synthesized 

training point cloud data, yielding the modified viewpoint feature histogram (MVFH), and 
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training the TNFN. These operations are introduced as follows: 

(i) Generating synthesized training point cloud data  

Figure 4.5 depicts the point cloud data of the reference model. The reference model is an 

integrated model constructed by collecting multi-views of point cloud data. To generate the 

synthesized training point cloud data, various combinations of translation and rotation 

transformations within a predefined range are applied in the reference model. The 

transformation can be considered a rigid transformation, which can be written as follows: 
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where R is a rotation matrix, T is a translation vector, s is an original set of point cloud data 

and m is a transformed set of point cloud data. Furthermore, to simulate the real case in a 3D 

scene, point cloud data that cannot be seen in the viewpoint direction are eliminated. Figure 

4.6 presents an example of the simulated training data. As shown in this figure, the point 

cloud data is only a partial of reference model and the unseen point clouds have been 

eliminated. Therefore, after the training point data has been generated, the following operation 

is to extract the feature of the point cloud data. 

(a) (b) 

Figure 4-5: Point cloud data of the reference model: (a) Front view and (b) Top view 
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(a) (b) 

Figure 4-6: Example of the simulated training data: (a) Front view and (b) Top view. 

(ii) Modified Viewpoint Feature Histogram 

Modified Viewpoint Feature Histogram (MVFH) is the modification of Viewpoint 

feature histogram (VFH), which was presented by Rusu et al. [94], to show its 

computationally efficient 3D feature. To introduce VFH in advance, this descriptor is 

computed by accumulating a histogram of the angles between the central viewpoint direction 

and each normal of point cloud. Figure 4.7 illustrates the idea of VFH. 

 
Figure 4-7: Creation of viewpoint feature histogram. 

Suppose the central point is cV  and the viewpoint is pV . Then the central viewpoint 

direction is pc VV − . Thus the angle θ  between the central viewpoint direction ( pc VV − ) and 
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each normal in  of point cloud iV  can be computed by the following equation: 

                .
||||||||

)(
cos 1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅−

•−
= −

ipc

ipc

nVV
nVV

θ                         (4.7) 

Thereafter, the N-bin orientation histograms (each bin cover 180/N degree) can be 

calculated by accumulating the angle described in Eq. (4.7). The histogram in each bin is 

normalized by dividing the total number of point clouds. Thus, such histogram indicates the 

percentage of point clouds falling in each bin. However, in 3D surface alignment tasks, the 

viewpoint direction angle to represent the 3D surface might be not appropriate because VFH 

in some much different view angles would yield similar feature, especially in the case of 

symmetrical objects with 180 degree view angle difference. Figure 4.8 illustrates an example 

of similar VFH with much different view angle. As shown in this figure, the object is at two 

much different viewpoints but they have similar viewpoint feature histogram. 

 
Figure 4-8: Example of similar viewpoint feature histograms in much different view. 

Although Rusu et al. used ideas from Point Feature Histogram (PFH) [95] to assemble 

with VFH, the PFH descriptor is a local feature, which indicates PFH to be view independent, 

such that the combined VFH-PFH still cannot solve the problem presented in Fig. 4.8. In our 

3D surface alignment case, the captured 3D feature must be view dependent. The reason is 
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that the 3D feature is utilized to identify the view angle and if the 3D feature is view 

independent, the captured feature would be similar in each view such that it is impossible to 

differentiate the exact view angles in an object. Regarding this fact, we modify the original 

viewpoint feature histogram by calculating another viewpoint direction related angle to 

improve the viewpoint feature histogram. Then we name such viewpoint direction as modified 

viewpoint feature histogram (MVFH). Figure 4.9 presents a diagram that describes two 

viewpoint direction related angles where θ  is the original angle used by VFH, φ  is new 

added angle used by MVFH, the central point is cV , the viewpoint is pV , and iV  is a certain 

3D point. 

 
Figure 4-9: Diagram describes two viewpoint direction related angles θ  and φ . 

The new added angle φ  can be computed by the following equation: 
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Then the N-bin orientation histograms (each bin cover 180/N degree) can be computed 

by accumulating the angle φ . Thus, MVFH is finished by dividing the total number of point 

clouds to normalize histogram in each bin. To demonstrate the improvement of the modified 

viewpoint feature histogram, we utilize the previous example presented by Fig. 4.8, which has 
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similar VFH in much different view, to re-computed MVFH. Figure 4.10 depicted the 

computed MVFH. As shown in this figure, the first histogram and the second histogram have 

different shape. This example clarifies that MVFH correct the error of much different view 

with similar VFH.  

 
Figure 4-10: Example of modified viewpoint feature histograms in much different view. 

(iii) TNFN Training 

After extracting MVFH from a 3D object, let MVFH be the input neurons of TNFN and 

let the desired pose be the output neurons of TNFN. The desired pose comprises six degrees 

of freedom, including three rotation angles ( θϕφ  , , ) and three translation parameters (x, y, z). 

Thus, the use of TNFN is to model the relationship between the MVFH and the desired pose. 

Once receiving a MVFH from capturing a certain view of point clouds, the TNFN would 

output an estimated pose, which can be used to coarsely align the input point clouds with the 

reference model. To this end, training of a TNFN to provide the required pose would affect 

the alignment accuracy.  

To perform training of a TNFN, the reference model is used as a basis for synthesizing a 

set of point clouds constituting a training-set. Each training point data is generated by 
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applying the transformation defined in Eq. (4.6). To reduce the correlations between training 

point clouds, the six parameters are selected randomly and independently within the 

predefined boundaries. After the training-set has been generated, the MVFH method is used to 

represent the training point clouds as input features of a TNFN. Subsequently, the proposed 

RGLS-HCCA would be adopted to begin training of a TNFN and the training procedure 

would stop as the stopping condition is satisfied. Although the training phase is lengthy, the 

executing phase of the proposed coarse alignment method merely consists of computing the 

MVFH descriptor and then feeding it into TNFN to estimate the corresponding pose. 

(b) TNFN-based surface modeling 

The purpose of the TNFN-based surface modeling is to provide an evaluation method for 

performing the fine alignment of 3D surface. The evaluation is to measure how close the 

distance from the reference surface to input point clouds is. Thus, the major part of the 

TNFN-based surface modeling is to use TNFN to model the 3D surface that maps the 3D 

Euclidean input space (input 3D point (x,y,z)) into 1D Euclidean output space (the shortest 

distance to the reference surface). Such mapping can be considered a cost function that 

evaluates the distance between the input point clouds and the reference model. Thus, the 

TNFN mapping can combine with the downhill simplex optimization method to iteratively 

compute the rotation matrix R and translation vector T to perform the fine alignment of 3D 

surface. The detail of the combination of the TNFN mapping and the downhill simplex 

optimization will be discussed in the executing phase. 

 The procedures of modeling the 3D surface involve combining the cube model, creation 

of training data, and surface modeling using TNFN. These operations are explained bellow. 

(i) Combing cube model 

To model the reference surface, uniform distributed point clouds are needed to prepare the 

training data. In this study, a cube model is generated to be combined with the reference 

model. The cube model encloses the reference surface, and the point clouds within the cube 
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are sampled uniformly. Thus, the point clouds around the reference model can serve as the 

training data for modeling the reference surface. Figure 4.11 depicts the locations of cube and 

reference model where the reference model is located at the center of the cube. 

 
Figure 4-11: Location of cube and reference model. 

(ii) Creation of training data 

In the creation of training data, we extract the point clouds enclosed the cube satisfying 

the distance from a point (x,y,z) to the reference model less than a predefined value. The 

predefined value is set by observing the alignment error yielded from the coarse alignment 

case. Therefore, the point clouds (x,y,z) satisfies 

                   valuepredefinedzyxDist  ),,( ≤                    (4.9) 

will be used for training the TNFN. In general, the predefined value must be set sufficient 

large to involve all the coarse alignment cases. Thus, to simply the creation of training data, 

this paper set all point clouds inside the cube model to be the training data. 

(iii) Surface modeling using TNFN 

Similar to the TNFN training in the coarse alignment learning case, the structure shown in 

Fig. 4.5 is used to model the 3D surface. The input of the TNFN is defined as the coordinates 

(x,y,z) of a point cloud, and the output of the TNFN is the unsigned shortest distance from a 
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point (x,y,z) to the reference model. Thus, the surface of the reference model can be modeled 

using the TNFN to map the 3D coordinate of point cloud data into the 1D distance between 

the cube data and the reference model. The representation of the modeling function can be 

written as follows: 

                         ).,,( zyxfDist =                          (4.10) 

The total distance between the cube data and the reference model can be computed as 

follows: 

                       ,),,(
1
∑
=

=
N

i
iii zyxfTotDist                   (4.11) 

where N is the number of the cube model. Thus, when the resolution of the cube model is 

sufficiently high, any arbitrary point clouds inside the cube can be send into a trained TNFN 

to estimate the distance between the input point clouds and the reference model. 

 In consideration of training a TNFN to model the reference surface, as well as the coarse 

alignment learning, RGLS-HCCA is also utilized to perform training the TNFN. 

4.2.2 Execution Phase 

In the execution phase, the input point clouds are aligned with the reference model by 

means of MVFH extraction, TNFN-based coarse alignment, and TNFN-based fine alignment. 

MVFH extraction has been discussed in Section 4.2.1 (Part (a)), whereas the TNFN-based 

coarse and fine alignments are described bellow. 

(a) TNFN-based coarse alignment 

Assuming the MVFH descriptor has been calculated, the descriptor is forwarded to the 

trained TNFN to obtain the rotation angles ( θϕφ  , , ) and translation parameters (x, y, z). Then, 

the six parameters are used to compute the rotation matrix R and translation vector T defined 

in Eq. (4.6). Based on R and T, we obtain the estimated pose to coarsely align the input point 

clouds with the reference model. 

(b) TNFN-based fine alignment 
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The procedure of the TNFN-based fine alignment consists of the TNFN mapping and the 

downhill simplex optimization [96]. In the TNFN mapping, the TNFN maps each 3D point 

cloud ),,( zyx  into a 1D distance function ),,( zyxf  (defined in Eq.(4.16)). The total 

distance function ∑ ),,( zyxf  is computed by summing of each distance mapping of 3D 

point cloud. Thus, the total distance function is used as the cost function of the subsequent 

downhill simplex optimization. In downhill simplex optimization, iterative calculation of rigid 

transformation between input point clouds and reference model is adopted to minimize the 

cost function. Each iterative loop uses the downhill simplex method to compute the rotation 

matrix R and translation vector T to perform fine alignment. Once the downhill simplex 

optimization is completed, the final R and T are used to calculate the estimate pose that align 

the input point clouds with reference surface.  

Detail steps of the downhill simplex optimization [97] for fine alignment of 3D surface 

are described as follows: 

Step 0: Under 3D rigid body transformation, we choose six degrees of freedom (three rotation 

angles ( θϕφ  , , ) and three translation parameters (x, y, z)) as the vertex of simplex. Then we 

randomly generate 6+1 initial vertices of simplex within a fixed range where 6 represents the 

dimension of vertex vector. In this study, the 7 initial vertices are denoted as 610 ,,, XXX L . 

Step 1: Two procedures are performed in this step. 

(1) Evaluation: Based on each vertex of simplex, we can compute the corresponding rigid 

transformation matrix defined in Eq. (4.6). According to the transformation matrix, the 

input point clouds yielded by coarse alignment are mapped into new coordinates. The new 

point clouds are forwarded into the trained TNFN to get distance function ),,( zyxf . Then, 

∑ ),,( zyxf  can be calculated by sum of all mapping of new point clouds. 

(2) Sorting: Here we choose total distance function ∑ ),,( zyxf  as the cost function and 

re-define the symbol to be )( iXC  where iX  indicates the i-th vertex of simplex. Then 
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we sort the )( iXC  and set the order as follows: 

                 ).()()( 610 XCXCXC <<< L                    (4.12) 

Step 2: In this step, the reflection point RX 6  is calculated. The downhill simplex optimization 

utilizes the reflection point as the first candidate point to replace the worst point 6X . The 

reflection point is calculated as follows: 

(a) First find centroid of the remaining point )~( 50 XX : 

                 .
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=

=
i

iXM                                 (4.13) 

(b) Then seek the reflection point: 

                  ),( 66 XMMX R −+= α                         (4.14) 

where 0>α  and the default value is 1=α .  

(c) Finally, )( 6
RXC  can be calculated by the means of evaluation method described in Step 

1. 

Step 3: There are 3 cases are discussed in this step. 

Case 1: If )()( 06 XCXC R ≥  and )()( 56 XCXC R < , choose RX 6  to replace 6X . Then we 

re-sort the simplex and forward to Step 4. 

Case 2: If )()( 06 XCXC R < , compute the expansion point EX 6  as follows: 

             ),( 666 MXXX RRE −+= γ                             (4.15) 

 where 0>r  and the default value is 1=r . Then calculate the )( 6
EXC . If 

)()( 06 XCXC E < , choose EX 6  to replace 6X . Otherwise, choose RX 6  to replace 

6X . After that, we re-sort the simplex and forward to Step 4. 

Case 3: If )()( 06 XCXC R ≥  and )()( 56 XCXC R ≥ , compute the contraction point CX 6  as 

follows: 
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                 ),( 66 MXMX C −+= β                             (4.16) 

where 10 << β  and the default value is 5.0=β . If )()( 66 XCXC R < , then 

.66
RXX =  Otherwise, if )()( 66 XCXC R ≥ , then .66 XX =  Subsequent, check the 

case of )( 6
RXC  as follows: 

(i) If )()( 66 XCXC C < , choose CX 6  to replace 6X . Then, we re-sort the simplex 

and forward to Step 4. 

(ii) If )()( 66 XCXC C ≥ , shrink the whole simplex toward 0X . After shrinking, the 

new simplex is expressed as:  

  [ ]))1((),)1((,),)1((, 6050100 XXXXXXX ηηηηηη −+−+−+ L ,   (4.17) 

   where 10 <<η  and the default value is 5.0=η . 

Step 4: If the least cost function meet one of the following conditions, the downhill simplex 

method is terminated, and output the final results. 

(a) The number of loops reaches a predefined maximal iteration value. 

(b) The value of cost function is less than a minimal threshold. 

Otherwise, if the least cost function does not meet the above conditions, then we 

feedback to the Step 2 to continue the optimization procedure. 

To sum up, the final results of the downhill simplex method would output the best vertex 

of simplex. Then we decode it to the six degrees of freedom ( zyx ,,, , , θϕφ ). These 

parameters can be transfer to a rotation matrix R and translation vector T. The fine alignment 

of 3D surface is completed by computing the rigid body transformation according the R and 

T. 
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Chapter 5  

Experimental Results 
 

In this chapter, the performance of RGLS-HCCA is demonstrated on three problems. The 

first one is a problem of prediction of Mackey-Glass time series. This problem is a common 

benchmark for examining different learning algorithms. By applying RGLS-HCCA to the 

benchmark, RGLS-HCCA would show how fast the algorithm converges and lower 

estimating error comparing with other learning algorithms. Subsequently, two real world 

problems, which are 2D and 3D image alignment tasks, are used to verify the applications of 

RGLS- HCCA. The proposed RGLS-HCCA would act from a simulator to a real system. The 

experiments would evaluate the proposed method of aligning 2D and 3D images in 

comparison with other typical alignment systems.  

This chapter is divided into three subsections. In Section 5.1, the prediction of 

Mackey-Glass time series is used to examine the learning performance of RGLS-HCCA. In 

Section 5.2 and 5.3, RGLS-HCCA is applied to 2D and 3D image alignment problems, 

respectively.  

All experiments in this chapter are performed by using an Intel Core i7 860 chip with a 

2.8GHz CPU, a 3G memory, and the Matlab 7.5 simulation software. 

5.1 Prediction of Mackey-Glass Time Series 

To verify the proposed RGLS-HCCA, Mackey-Glass time series is utilized to compare 

RGLS-HCCA with that of other methods. The initial parameters of the proposed 

RGLS-HCCA are determined by parameter exploration methods ([98] and [99]). As shown in 

[98], a small population size is good for the initial performance, a large population size is 

good for long-term performance and a low mutation rate is good for on-line performance, a 

high mutation rate is good for off-line performance. Moreover, in [99], parameters for genetic 
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algorithms can be adjusted by exploring the predefined range in increments of a small value. 

For instance, the population size has the range from 10 to 100 in increments of 10. Thus, this 

study adjusts parameters of RGLS-HCCA according to the criteria mentioned in parameter 

exploration methods. The results of parameters used in this study are listed in Table 5.1 where 

“none” in SLE indicates “not used” in the learning phase.  

Moreover, since ATA (with size of 50 × 50 under conditions of 10 fuzzy rules and four 

input in a TNFN) in Eq. (3.5) is singular (rank of ATA is about 47) for the example of Mackey 

Glass time series prediction, this dissertation incorporates RGLS to make (ATA+λI) is 

non-singular. To consider the RGLS parameter (λ), this paper adopts the cross-validation 

method [100] to adjust it. The notion of the cross-validation method is to divide the training 

data set into training data and validation data and increase λ with small increments to balance 

the error of training data set and validation set. Thus, this paper uses cross-validation method 

to optimize the RGLS parameter (λ) and final adjusted λ of this example is listed in Table 5.1.  

 

Table 5.1: Initial parameters of RGLS-HCCA before training. 
Value Parameters PLE SLE 

Psize 30 20 
Nc 20 none 
Selection_Times 40 none 
NormalTimes 10 none 
ExploreTimes 15 none 
Crossover Rate 0.6 0.6 
Mutation Rate 0.2 0.3 
[Mmin, Mmax] [6, 15] [6, 15] 
[mmin, mmax] [-5, 5] [-5, 5] 
[σmin, σmax] [3, 20] [3, 20] 
Minimum_Support TransactionNum/2 none 
Minimum_Confidence 60% none 
RGLS parameter (λ) 0.00001 0. 00001 

 

The Mackey-Glass time series is a common benchmark for examining different learning 

algorithms or fuzzy modeling research communities. In earlier work [101], Lapedes and 

Farber used a back propagation network to predict Mackey-Glass time series. After that, other 
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researches [102] followed Lapedes and Farber’s work to be a benchmark to examine 

algorithms. Thus, we utilize such Mackey-Glass time series to perform an analysis on our 

proposed algorithm and other evolutionary algorithms. 

The Mackey-Glass time series is generated from the following delay differential 

equation:  

        ).(1.0
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For this time series prediction problem, Jang [103] extracted 1000 input-output data pairs 

{x, yd} from t=118 to t=1117, which consisted of four past values of x(t), that is 

            )],6();(),6(),12(),18([ +−−− txtxtxtxtx               (5.2) 

where τ=17 and x(0)=1.2 and x(t)=0 for t<0. The reason choosing four past values to predict 

time series is from Jang’s [103] work which wanted to allow comparison with other 

researches’ algorithms (Lapedes and Farber [101], Moody [104], Crower [102]). Thus, there 

are four input to RGLS-HCCA, corresponding to these values of x(t), and one output 

representing the value x(t+Δt), where Δt is a time prediction into the future. The first 500 pairs 

[from x(118) to x(617)] are the training data set, and the remaining 500 pairs [from x(618) to 

x(1117)] are the testing data set used for validating the proposed method. The values are 

floating-point numbers assigned using the RGLS-HCCA initially. The fitness function in this 

case is defined in Eq. (3.26) and (3.27) to train the neural fuzzy network. The evolution 

learning processes 500 generations and it is repeated 50 times. For comparative analysis, the 

present study adopts the root mean square error (RMSE), which is defined as follows: 

            ,))6()6((1
2/1

1

2
⎥
⎦

⎤
⎢
⎣

⎡
+−+= ∑

=

tN

l

d
ll

t

tYtY
N

RMSE               (5.3) 

where Nt is the number of testing data, Yl
d(t+6)=x(t+6) is the desired value, and Yl(t+6) is the 

predicted value by the model with four inputs and one output.  

In this example, RGLS-HCCA is compared the performance with the HESP [23], ESP 
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[14], and SANE [13]. In these models, the learning parameters, which are determined 

according the parameter exploration method [98] and [99], are shown in Table 5.2. To perform 

training, the evolution learning processes for 500 generations. Figure 5.1(a)-(d) show the 

prediction results of the three models. The symbol “o” represents the desired output of the 

time series, and the symbol “*” represents the output of the four models. Figures 5.2(a)-(d) 

illustrate the error between the desired and four models’ outputs. As shown in Fig. 5.1-2, the 

performances of the RGLS-HCCA are better than those of others. Fig. 5.3 shows the learning 

curves of the four models. As shown this figure, the proposed RGLS-HCCA model converges 

faster than those of other three models. 

(a) 
 

(b) 

 
(c) 

 
(d) 

Figure 5-1: Prediction results of the (a) proposed RGLS-HCCA, (b) HESP, (c) ESP, and (d) SANE. 
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(a) 
 

(b) 

(c) (d) 
Figure 5-2: Prediction errors of the (a) proposed RGLS-HCCA, (b) HESP, (c) ESP, and (d) SANE. 

 
Figure 5-3: Learning curves of the proposed RGLS-HCCA, HESP, ESP, and SANE. 

In addition HESP, ESP, and SANE, to further show the effectiveness and efficiency of 

the proposed RGLS-HCCA model, we also apply MGCSE [15], and traditional genetic 

algorithm (TGA) [16] to the same problem. To compare with theses algorithms, according the 
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parameter exploration method [98] and [99], 14, 13, 12, 14, and 12 fuzzy rules are set for 

HESP, MGCSE, ESP, SANE and TGA, respectively. In addition, the population size has the 

range of 10 to 250 in increments of 10, the crossover rate has the range of 0.1 to 1 in 

increments of 0.1, and the mutation rate has the range of 0 to 0.4 in increments of 0.01. To 

this end, the parameters used for HESP, MGCSE, SANE and TGA are listed in Table 5.2. In 

addition, as same with RGLS-HCCA, the evolution learning of each method processes for 

500 generations and is repeated 50 times. Table 5.3 lists the generalization capabilities of the 

proposed RGLS-HCCA, HESP, MGCSE, ESP, SANE, and TGA. Clearly, as shown in Table 

5.3, RGLS-HCCA obtains a lower RMSE than other methods. In TGA, according to [13], 

cooperative coevolutionary algorithms can find solutions faster and solve harder problems 

than TGA. Thus, RGLS-HCCA and other methods (HESP, MGCSE, ESP, and SANE) exhibit 

lower RMSE than TGA. In SANE, symbiotic evolution is adopted. Since symbiotic evolution 

only used one population to evaluate every partial solution, the evaluation would cause partial 

solutions too similar. Instead, the proposed RGLS-HCCA provides several groups to evaluate 

each partial solution. Thus, the proposed model has more chance to obtain optimal solution. 

The explanation can specify that the proposed method has better performance than SANE. To 

consider group-based evolutionary algorithms (HESP, MGCSE, and ESP), when faced with 

complex problems, the dimension of chromosomes is still high such that low convergence rate 

occurs. Thus, this dissertation incorporates RGLS to reduce the dimension of chromosomes 

and proposes HCCA to self adjust the parameters and structure of TNFN. Based on this fact, 

the proposed model would be superior to HESP, MGCSE, and ESP.  

 Moreover, to compare RGLS with the pseudo inverse method, this paper also performs 

the same experiment on the pseudo inverse method. The average RMSE of the pseudo inverse 

method for 50 runs is 0.0025, which is slightly larger than RGLS (0.0023). Thus, in this 

example, RGLS would be better than the pseudo inverse method. 
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Table 5.2: Initial parameters of four learning models. 

Parameters 
Method Populations 

size 
Crossover 
rate 

Mutation 
rate 

Fuzzy 
rules 

HESP 
14(30 for 
subpopulations 
size) 

0.7 0.03 14 

MGCSE 
13(30 for 
subpopulations 
size) 

0.6 0.04 13 

ESP 
12(30 for 
subpopulations 
size) 

0.7 0.05 12 

SANE 120 0.1 0.15 14 
TGA 140 0.8 0.01 12 

Table 5.3: Performance comparison of various existing models. 

RMSE 
Method 

Best Mean Worst STD 

RGLS-HCCA 0.0017 0.0023 0.0026 0.0005 

HESP 0.0118 0.0149 0.0193 0.0017 

MGCSE 0.0100 0.0158 0.0190 0.0019 

ESP 0.0110 0.0172 0.0219 0.0026 

SANE 0.0145 0.0219 0.0313 0.0039 

TGA 0.0192 0.0271 0.0747 0.0079 

 Furthermore, this example also compares the running time of RGLS-HCCA with that of 

other methods. The running time defined in this case is used to measure the time when the 

fitness of the algorithm exceeds the predefined value (0.85). The results of four algorithms 

over 50 runs are reported in Table 5.4. As shown in this table, the proposed RGLS-HCCA is 

faster than HESP, MGCSE, ESP, SANE, and TGA. 

Table 5.4: Comparison of the running time of various algorithms. 
Method Best(seconds) Worst(seconds) Mean(seconds) 
RGLS-HCCA 6.07 43.02 23.28 
HESP 16.46 121.49 32.61 
MGCSE 11.85 162.27 38.27 
ESP 18.54 177.83 40.16 
SANE 16.99 231.18 54.80 
TGA 17.52 180.27 103.36 

 

5.2 Results of 2D Image Alignment 

In the 2D image alignment experiment, visual inspection images, which are 640 by 480 
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pixels size, are used to examine the utility of the proposed CNFN-based image alignment 

method. Figure 5.4 depicts an example about such images where the left side is a reference 

image and the right side is a transformed image by a scaling, rotation and translation. Also in 

this figure, the dashed window represents a template window (the size is 200×200, and feature 

vectors are extracted within this window), and the cross sign denotes the reference location of 

the template.  

 
(a) 

 
(b) 

Figure 5-4: (a) Reference image. (b) Testing image with scale=0.9, rotation=-10°, vertical translation=5, 

horizontal translation=10.  

 In the following 2D image alignment experiments, two kinds of neural works are 

performed. The first one is a one-stage of CNFN (OS-CNFN), which is taken into 

consideration of applying to the medium range of affine parameters and examining different 

learning methods. The second one is a multi-stage of CNFN (MS-CNFN), which is used to 

apply the trained networks to adapt to a large range of affine parameters. 

5.2.1 Alignment Results of One-stage Neural Fuzzy Network  

In Table 5.5, four types of experimental images are prepared for simulation. The first three 

types of images are the synthesized ones generated randomly within the range in Table 5.6. In 

the last type of images are real ones captured from a camera. Moreover, Table 5.6 indicates 

the searching range for image alignment. If the affine transformation exceeds the range, the 

image alignment system may not promise high accuracy. Thus, the range of the image 

alignment defined in this subsection is restricted in Table 5.6. 
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Table 5.5: Experimental images preparation. 
Image Type Image Preparation 
Synthesized Images 800 images are generated with randomly selected 

affine parameters within the predefined range.  
Training Images The 50% of synthesized images 
Testing Images The 50% of synthesized images 
Real Images Images are acquired from CCD camera with 

different pose from the reference image. 

 

Table 5.6: Range of affine transformation parameters used in experiments. 

Affine transformation parameter The range of affine 
transformation parameter 

Scale [0.7 1.3] 
rotation(degrees) [-30 30] 

vertical translation(pixels) [-20 20] 
horizontal translation(pixels) [-20 20] 

 

The following parts will discuss the comparison with existing learning methods and with 

existing image alignment systems. 

Part 1: Comparison with existing learning methods 

Three typical evolutionary learning methods, which are HESP [23], ESP [14] and SANE 

[13], are implemented carefully (the learning parameters are found using the method given in 

[98] and [99]) to compare with the proposed RGLS-HCCA. Moreover, to explore the number 

of fuzzy rules for HESP, ESP and SANE, the fuzzy rules are tuned by setting the range of 

20-100 in increments of 5. Thus, the results find that 85, 80 and 80 rules are suitable for 

SANE, ESP, and HESP respectively.  

In this experiment, 800 synthesized images are generated randomly by the way in Table 

5.5 where 50% of images are for training set and another 50% ones are for testing set. Then 

33-element feature vectors are obtained by applying Gabor-WGOH with PCA dimensionality 

reduction to above-generated images. Moreover, before training, the initial parameters of 

RGLS-HCCA are given in Table 5.7. The initial parameters are tuned by the parameter 

exploration method (where the RGLS parameter (λ) is adjusted by cross-validation method) 

which has been described in section 5.1.  
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To consider SRM in RGLS-HCCA, Figure 5.5 shows the best results of the probability 

vectors for 15 runs in different training and testing images. As shown in Fig. 5.5, the highest 

probability means the most suitable number of fuzzy rules of the TNFN model in the best run. 

Therefore, the suitable number of fuzzy rules is 24. It represents that in most cases a 24-rule 

TNFN would have higher probability to obtain better performance than other rules within 

[Mmin, Mmax] = [18, 25]. 

 Figure 5.6 depicts the learning curves of four models. From this figure, RGLS-HCCA 

demonstrates faster convergence speed than those of HESP, ESP and SANE. Moreover, to 

examine the learning accuracy, the testing data would be sent into the trained TNFNs to get 

the estimated pose including scale, rotation, vertical translation, and horizontal translation. 

Then, by comparing the desired pose, four alignment errors (i.e. ErrScale, ErrAngle, ErrDx, 

and ErrDy) are generated. Table 5.8 presents the learning accuracy of four evolutionary 

models. From this table, the proposed RGLS-HCCA exhibits the lowest errors among four 

models. To this end, the proposed model not only promotes its leaning speed but also sustains 

the high learning accuracy. 

Table 5.7: Initial parameters before training. 
Value Parameters 

PLE SLE 
Psize 40 20 
Nc 20 none 
Selection_Times 50 None 
NormalTimes 10 None 
ExploreTimes 15 None 
Crossover Rate 0.6 0.7 
Mutation Rate 0.2 0.4 
[Mmin, Mmax] [18, 25] [18, 25] 
[mmin, mmax] [-10, 10] [-10, 10] 
[σmin, σmax] [3, 15] [3, 15] 
Minimum_Support TransactionNum/2 none 
Minimum_Confidence 60% none 
RGLS parameter (λ) 0.003 0.003 
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Figure 5-5: Best results of the probability vectors for 15 runs in SRM. 

 

 

Figure 5-6: Learning curves of the RGLS-HCCA, HESP, ESP, and SANE methods. 

 

Table 5.8: Leaning accuracy of the RGLS-HCCA, HESP, ESP, and SANE methods. 
Mean Errors Method 

ErrScale ErrAngle 
(degrees)

ErrDx 
(pixels)

ErrDy 
(pixels) 

RGLS-HCCA 0.0066 0.3252 0.4953 0.5058 
HESP 0.0223 1.4431 1.1309 1.1600 
ESP 0.0229 2.0470 1.1051 1.6137 
SANE 0.0247 2.0311 1.4620 1.8132 
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Part 2: Comparison with existing image alignment systems 

To evaluate OS-CNFN (i.e. the proposed system) in comparison with other existing 

systems ([42], [44], [87], [88], and [91]), the implementation of these existing systems are 

carefully cited their original paper. The comparison in this section consists of the alignment 

accuracy, alignment speed, robustness and real image alignment case. These comparisons are 

discussed in the following parts.  

A. Alignment accuracy 

To compare the alignment accuracy of different systems, the training images, which are 

used to train neural networks, and the testing images, which are used to check the alignment 

accuracy, are generated by the way described in Table 5.5.  

Figure 5.7 depicts an alignment example for a testing image on six different systems. The 

cross sign in this figure denotes the estimated results. From this figure, OS-CNFN can 

estimate more accurate position and orientation of the cross sign than other systems. 

In addition, 15 runs using different training and testing images are performed to further 

examine the alignment accuracy of the proposed system. The simulation results are shown in 

Table 5.9, which presents the average and standard deviation error of six image alignment 

systems. From this table, OS-CNFN exhibits the lowest alignment error than other systems. 

Moreover, the simulated data indicates that the alignment reaches the high accuracy level; 

thus, OS-CNFN can provide a useful way to align images very accurately.  

Table 5.9: Alignment errors in different image alignment systems. 
Errors 

ErrScale ErrAngle (degrees) ErrDx (pixels) ErrDy (pixels) 
Method 

Mean Standard 
Deviation Mean Standard 

Deviation Mean Standard 
Deviation Mean Standard 

Deviation
OS-CNFN 0.0061 0.0065 0.3184 0.3106 0.4820 0.3985 0.5175 0.4260 
DCT [44] 0.0067 0.0098 0.6330 1.0681 1.4490 1.5832 0.9576 1.1290 
FFT [87] 0.0121 0.0149 0.8020 1.0177 5.4070 4.9574 2.7508 2.4640 
KICA [88] 0.0176 0.0192 1.4147 1.6462 0.9929 0.9172 1.2090 1.1842 
ISOMAP[42] 0.0294 0.0268 2.0809 2.0043 1.6430 1.6123 2.2356 2.7793 
SIFT[91] 0.0387 0.0775 0.4312 0.8516 1.0764 1.5838 2.1186 3.5750 
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(a) 

 
(b) (c) 

(d) (e) 

(f) (g) 

Figure 5-7: Alignment results for different systems: (a) Ground Truth, (b) OS-CNFN, (c) DCT, (d) FFT, (e) 

KICA, (f) ISOMAP, and (g) SIFT. 
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B. Alignment speed 

To demonstrate the alignment speed, the execution time required in performing one image 

alignment task is discussed. In this paper, the steps of performing one image alignment task 

consists of capturing the template window from the input image, computing the feature within 

the window, and feeding the calculated feature into the trained network to get the affine 

parameters. 

In this experiment, we utilize 400 testing images to perform image alignment tasks. The 

average execution time of OS-CNFN, DCT, FFT, KICA, ISOMAP, and SIFT take about 30ms, 

26ms, 28ms, 65ms, 330ms, and 57ms respectively. From this result, it is obviously that 

OS-CNFN is almost as fast as the FFT and DCT systems and is more efficiently than other 

three systems. 

C. Alignment Robustness  

Next, the robustness of OS-CNFN under different levels of random additive Gaussian 

noise is discussed. In this experiment, 400 testing images are randomly generated with the 

addition of various strengths of Gaussian noise to examine the robust performance of different 

image alignment systems. Figure 5.8 illustrates an example of aligning a testing image with 

the reference image under 10 dB signal-to-noise ratio (SNR) condition. As shown in this 

figure, OS-CNFN estimates the rotation and translation of the cross sign more accurately than 

other methods.  

The simulation results of the absolute estimating errors of affine parameters under eight 

levels of SNR is presented in Figure 5.9(a)-(d). From these figures, OS-CNFN demonstrates 

lower affine parameters error than other systems, especially as SNR is larger than 15 dB. It 

stands for OS-CNFN with high robustness against noise.  

 



 77

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

(f) (g) 

Figure 5-8: Alignment results for different systems under 10 dB SNR condition: (a) Ground Truth, (b) OS-CNFN, 

(c) DCT, (d) FFT, (e) KICA, (f) ISOMAP, and (g) SIFT. 
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(a) (b) 

(c) (d) 
Figure 5-9: Average affine transformation errors comparison using OS-CNFN, DCT, FFT, KICA, ISOMAP, and 

SIFT under various SNR. Error with respect to (a) scale, (b) rotation, (c) translation on X-axis, and (d) 

translation on Y-axis. 

 

D. Real Image Alignment Case 

In this part, real images are utilized to verify the effectiveness of the proposed system. 

Figure 5.10 (a)-(d) presents the results of aligning the same real image using OS-CNFN, DCT, 

FFT, KICA, ISOMAP, and SIFT respectively. As shown in this figure, OS-CNFN 

demonstrates more accurate rotation and position of the cross sign than other alignment 

systems. Thus applying the proposed image alignment system to real image cases is feasible. 
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(a) 
 

(b) 

(c) 
 

(d) 

 
(e) 

 
(f) 

Figure 5-10: Results of image alignment on real images: (a) OS-CNFN, (b) DCT, (c) FFT, (d) KICA, (e) 

ISOMAP, (f) SIFT. 

 

5.2.2 Alignment Results of Multi-stage Neural Fuzzy Networks 

Table 5.10 defines the target alignment range for aligning the visual inspection images. 

All image alignment systems mentioned in this subsection are implemented to reach the target 

alignment range. 

The experimental results of multi-stage neural networks contain two parts. In part 1, the 

CNFN with RGLS-HCCA training is performed. In part 2, synthesized and real images are 
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used to compare the proposed image alignment system with other systems.  

Table 5.10: Target alignment range. 

Affine parameter The range of affine 
parameter 

Scale [0.7 1.3] 
rotation(degrees) [-100 100] 

vertical translation(pixels) [-100 100] 
horizontal translation(pixels) [-100 100] 

(1) Cooperative Neural Fuzzy Network with the RGLS-HCCA training 

 To achieve the target alignment range defined in Table 5.10, we choose three ranges of 

affine parameters described in Table 5.11 to accomplish the three-stage of CNFN (i.e. 

MS-CNFN). In this table, each range contains a single neural fuzzy network, and these ranges 

cooperate to adapt to a target alignment range. For the supply suitable training data for 

networks, this paper uses the self-organized training data-yielding method to generate 1165, 

137, and 219 training data for coarse, medium, and fine alignment ranges, respectively. The 

map of recursive loop versus increased training data for each range defined in Table 5.11 is 

shown in Fig. 5.11. Based on this figure, the number of the increased training data decreases 

gradually and then self-organizes. 

Prior to performing the training, the initial parameters of RGLS-HCCA are given in 

Table 5.12. Based on the training feature vectors and initial parameters, we perform the coarse, 

medium, and fine RGLS-HCCA training individually. These three-stage training stops when 

the fitness is greater than the predefined value. Therefore, once the training process has been 

performed, our image alignment system can be concluded to reach the target range defined in 

Table 5.10. 

Table 5.11: Affine parameters range of three-stage CNFNs. 

Affine parameter The coarse range of 
affine parameter 

The medium range of 
affine parameter 

The fine range of 
affine parameter 

Scale [0.7 1.3] [0.85 1.15] [0.9 1.1] 
rotation(degrees) [-100 100] [-50 50] [-5 5] 

vertical translation(pixels) [-100 100] [-30 60] [-5 5] 
horizontal translation(pixels) [-100 100] [-30 60] [-5 5] 
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(a) 

(b) (c) 
Figure 5-11: Recursive training curve of performing self-organized training data yielding method: (a) Coarse 

range, (b) Medium range, and (c) Fine range.  

 

Table 5.12: Initial parameters of RGLS-HCCA training. 
Value of coarse range Value of medium range Value of fine range Parameters 
PLE SLE PLE SLE PLE SLE 

Psize 60 20 40 20 40 20 
Nc 20 none 20 none 20 none 
Selection_Times 50 none 50 none 50 none 
NormalTimes 10 none 10 none 10 none 
ExploreTimes 15 none 15 none 15 none 
Crossover Rate 0.6 0.7 0.5 0.5 0.6 0.5 
Mutation Rate 0.2 0.1 0.2 0.1 0.1 0.05 
[Mmin, Mmax] [38, 45] [38, 45] [18, 25] [18, 25] [18, 25] [18, 25] 
[mmin, mmax] [-9.5, 9.5] [-9.5, 9.5] [-8.5, 8.5] [-8.5, 8.5] [-14.5, 14.5] [-14.5, 14.5] 
[σmin, σmax] [14, 16] [14, 16] [13, 15] [13, 15] [40, 43] [40, 43] 
Minimum_Support Transaction

Num/2 
none Transaction

Num/2 
none Transaction

Num/2 
none 

Minimum_Confidence 60% none 60% none 60% none 
RGLS parameter (λ) 0.004 0.004 0.003 0.003 0.001 0.001 

(2) Comparison with existing neural network based image alignment systems 

To compare the proposed MS-CNFN with other existing neural network-based systems 
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([42], [44], [87], and [88]), this paper carefully implements these systems according to the 

descriptions in their original paper. In this experiment, three typical comparisons including the 

alignment accuracy, speed, robustness, and real-image alignment testing are discussed in the 

following parts.  

A. Alignment accuracy 

In the training phase, since as using the same number of training images (i.e. 

1165+137+219=1521) as the proposed CNFN on traditional neural network-based methods 

[42, 44, 87, 88] can yield large alignment error, we randomly generate another 4400 training 

images from the target alignment range described in Table 5.10 for training traditional 

methods. In the testing phase, we examine the alignment accuracy of MS-CNFN and other 

systems by using the same 600 testing images randomly generated from the target alignment 

range.  

Figure 5.12 presents an example of a synthesized testing image on five different systems. 

The cross sign in Fig. 5.12 denotes the estimated results. In this figure, MS-CNFN can 

estimate more accurate position and orientation of the cross sign than other systems. 

To proceed to analyze the alignment accuracy, Table 5.13 describes the average and 

standard deviation error of five image alignment systems for 15 runs using different testing 

images. From this table, MS-CNFN exhibits the lowest alignment error than other systems. 

The result indicates that the proposed MS-CNFN not only gets much higher alignment 

accuracy but also using fewer training data to reach better performance than other one-stage 

neural network methods. 

To compare RGLS with the pseudo inverse method, 600 testing images are also used on 

the pseudo inverse method. The alignment results of the pseudo inverse method are: the 

average scaling error is 0.0097, the rotation error is 0.2619, the translation error for x-axis is 

3.6024, and the translation error for y-axis is 1.9263. Thus, from the comparison of above 

alignment results with Table 5.13, RGLS would be superior to the pseudo inverse method. 
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 5-12: Alignment results for different systems: (a) Ground Truth, (b) MS-CNFN, (c) DCT, (d) FFT, (e) 

KICA, and (f) ISOMAP. 

Table 5.13: Alignment errors in different image alignment systems. 
Errors 

ErrScale ErrAngle (degrees) ErrDx (pixels) ErrDy (pixels) 
Method 

Mean Standard 
Deviation Mean Standard 

Deviation Mean Standard 
Deviation Mean Standard 

Deviation
MS-CNFN 0.0095 0.0215 0.0344 0.1776 0.2766 0.1976 0.3883 0.4195 
DCT [44] 0.0302 0.0350 6.8495 8.8052 6.7206 10.0008 6.3597 10.6839 
FFT [87] 0.0229 0.0348 7.9348 8.8924 9.7631 10.2108 9.0485 9.4451 
KICA [88] 0.0333 0.0370 9.8534 14.1339 6.6953 10.9533 6.0219 9.5207 
ISOMAP 

[42] 0.0670 0.0557 14.3922 21.0862 8.4077 14.4331 7.3752 9.7249 
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B. Alignment speed 

In this experiment, 600 testing images are used to check the image alignment speed. The 

average execution time of MS-CNFN, DCT, FFT, KICA, and ISOMAP take about 0.103s, 

0.078s, 0.085s, 0.226s, and 0.428s, respectively. From this result, the execution time of 

MS-CNFN is slightly slower than DCT and FFT methods, and is more efficient than KICA 

and ISOMAP methods.  

C. Alignment Robustness  

In this subsection, we further verify the robustness of MS-CNFN by adding different levels 

of random Gaussian noise. To achieve the aim of testing the robustness, 600 testing images 

are randomly generated with the addition of various strengths of Gaussian noise to examine 

different image alignment systems. Figure 5.13(a)-(d) presents the results of the absolute 

errors of the affine parameters under eight levels of SNR. As shown in these figures, 

MS-CNFN demonstrates much lower affine parameters error than other systems. This result 

indicates that the adopted Gabor-WGOH descriptor is not disturbed by a high noise level and 

so is the proposed RGLS-HCCA trained MS-CNFN. Figure 5.14 illustrates an image 

alignment example under a 10 dB signal-to-noise ratio (SNR) condition. From this figure, 

MS-CNFN depicts more accurate cross sign location than other methods. 

Furthermore, except for Gaussian noise, the salt and pepper noise is add to the testing 

image at different pose from Fig. 5.14 which is used to check the robustness of the proposed 

system and other four other neural network-based systems. Figure 5.15 illustrates the 

alignment results of five methods. From this figure, MS-CNFN demonstrates more accurate 

cross sign location than other methods.  
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    (a) (b) 

    (c) (d) 
Figure 5-13: Average affine transformation errors comparison using MS-CNFN, DCT, FFT, KICA, ISOMAP 

under various SNR. Errors with respect to (a) scale, (b) rotation, (c) translation on X-axis, and (d) translation on 

Y-axis. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 5-14: Alignment results for different systems under 10 dB SNR condition: (a) Ground Truth, (b) 

MS-CNFN, (c) DCT, (d) FFT, (e) KICA, and (f) ISOMAP. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 5-15: Alignment results for different systems under salt and pepper noise: (a) Ground Truth, (b) 

MS-CNFN, (c) DCT, (d) FFT, (e) KICA, and (f) ISOMAP. 

 

D. Real-Image Alignment Testing 

In addition to the synthesized images, real-image testing cases are used to verify the 

alignment performance of the proposed system. Figure 5.16(a)-(e) depicts the experimental 

results of aligning the same real image utilizing MS-CNFN, DCT, FFT, KICA, and ISOMAP, 

respectively. MS-CNFN demonstrates a more precise position and rotation of the cross sign 
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than other systems. Thus, applying the proposed image alignment system to real-image 

alignment cases with respective to large range of affine parameters is feasible. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 5-16: Results of image alignment on real images: (a) MS-CNFN, (b) DCT, (c) FFT, (d) KICA, and (e) 

ISOMAP. 

Moreover, the circuit board inspection is another case of the real image testing. Figure 

5.17(a) presents a template of a circuit board. Figure 5.17 (b)-(f) illustrate the alignment 

results of a circuit board with five different poses. As shown in these figures, every cross sign 

is located at an accurate position with a precise rotation. Therefore, the results imply that the 

proposed 2D image alignment system can be applied to a circuit board inspection system. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 5-17: Results of image alignment on circuit board inspection images: (a) the template, (b) without rotation, 

(c) counterclockwise rotation, (d) clockwise rotation, (e) counterclockwise rotation, and (f) clockwise rotation. 

5.3 Results of 3D Image Alignment 

In the current section, a vehicle model depicted in Fig. 4.5 is selected as a reference model. 

The reference model is constructed by 4907 point clouds which are uniformly distributed on 

its surface. Thus, the aim of the 3D surface alignment task defined in the experiment is to 

align the arbitrary input 3D images (i.e. point clouds) with the reference model. 
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The experimental results comprise two parts. The first part uses the synthesized point 

cloud sets to test the proposed TNFN-based coarse alignment approach. In the second part, 

real 3D point cloud data scanned by a 3D imaging laser scanner are used to validate the 

alignment accuracy of the proposed fine alignment method. In both parts of the experiments, 

the alignment algorithm is compared with the neural network method (NNM) [46] and ICP 

[45] to demonstrate superior performance of the proposed coarse-to-fine scheme. 

A. Testing using synthesized 3D point cloud data 

To perform the coarse alignment learning, 2000 synthesized point cloud sets are generated 

randomly within the range described in Table 5.14. For training the TNFN, 50% of point 

clouds (1000) are prepared for training data set and the remaining 50% of point clouds (1000) 

are prepared for testing data set. The learning parameters for the TNFN training are defined in 

the left side of Table 5.15. Thus, after the coarse alignment learning completes, the output of 

TNFN is an estimated pose that coarsely aligns the input points with the reference model. 

In TNFN-based surface modeling, we produce a cube model with the size of 5m×5m×5m 

that encloses the entire reference model. Within the cube model, 64000 point clouds are 

uniformly sampled according the resolution setting (0.125 m). Thus, the sampled point clouds 

are utilized for training TNFN to model the reference surface. The learning parameters of the 

TNFN-based surface modeling are defined in the right side of Table 5.15. Once the training of 

TNFN-based surface modeling is completed, the TNFN modeling is combined with the 

downhill simplex optimization method to execute the fine alignment of 3D surface. 

Table 5.14: Range of 3D rigid transformation parameters. 
3D rigid transformation parameter Range of rigid transformation parameter 

φ (degree), for roll [-10 10] 
ϕ (degree), for yaw [-90 90] 
θ (degree), for pitch [0 90] 

x(m) [-0.2 0.2] 
y(m) [-0.2 0.2] 
z(m) [-0.2 0.2] 
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Table 5.15: Learning parameters for the TNFN training. 
Value for coarse alignment Value for surface modeling Parameters of training 

the TNFN PLE SLE PLE SLE 
Psize 40 25 80 25 
Nc 20 none 20 none 
Selection_Times 50 none 50 none 
NormalTimes 10 none 10 none 
ExploreTimes 15 none 15 none 
Crossover Rate 0.6 0.6 0.8 0.7 
Mutation Rate 0.3 0.4 0.1 0.4 
[Mmin, Mmax] [20, 35] [20, 35] [35, 40] [35, 40] 
[mmin, mmax] [-15, 15] [-15, 15] [-2, 2] [-2, 2] 
[σmin, σmax] [13, 15] [13, 15] [0.3, 0.9] [0.3, 0.9] 
Minimum_Support TransactionNum/2 none TransactionNum/2 none 
Minimum_Confidence 60% none 60% none 
RGLS parameter (λ) 0.0001 0. 0001 0.0005 0.0005 
N-bin for MVFH 36 36 none none 

 Because the execution time and alignment accuracy are two major issues for a 3D image 

alignment system, these elements are taken as the evaluation conditions to examine the 

proposed alignment system.  

(1) Alignment accuracy 

To evaluate the alignment accuracy, the proposed TNFN-based coarse-to-fine system is 

compared with NNM [46] and ICP [45], two methods that use PCA for coarse alignment. 

Thus, based on the 1000 testing sets of point clouds, the alignment errors of the coarse and 

fine alignments are listed in Table 5.16 where RMSE indicates the root mean square error. 

From this table, the proposed system exhibits the lowest coarse and fine alignment errors 

among all systems. In addition, the proposed method improves the PCA coarse alignment, as 

shown in the table. Figure 5.18(a) and (b) presents a coarse alignment example of PCA and 

the proposed TNFN-based method, where the blue and red point clouds represent the testing 

and reference model data, respectively. From this figure, the proposed method exhibits less 

alignment error than PCA. 

 To compare RGLS with the pseudo inverse method, this paper uses the same 1000 

testing sets of point clouds on the pseudo inverse method. The RMSE of the pseudo inverse 

method for the coarse phase is 0.2619, which is larger than RGLS (0.1042). Thus, in the 3D 

image alignment task, RGLS would be better than the pseudo inverse method. In short, from 
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example 1 to example 3, we conclude that RGLS would be more suitable than the pseudo 

inverse method for constructing a TNTN. 

(2) Alignment speed 

 In consideration of alignment speed, the average execution time for aligning 1000 testing 

sets of point clouds is calculated. The results of the alignment speed are also listed in Table 

5.16. From the table, the execution time of the proposed system is shorter than those of NNM 

and ICP.  

Table 5.16: Results of alignment accuracy and execution time. 

Average RMSE (m) 
Method 

Coarse alignment error Fine alignment error 

Average 
execution Time 
(sec) 

TNFN-based 
coarse-to-fine alignment 0.1042m 0.0627m 3.29s 

PCA coarse alignment 
NNM fine alignment 0.2846m 0.1423m 4.53s 

PCA coarse alignment 
ICP fine alignment 0.2846m 0.0688m 49.48s 

 

 
(a) 

 
(b) 

Figure 5-18: Examples of two coarse alignment methods: (a) PCA and (b) TNFN-based coarse alignment. 

B. Validation of real 3D point cloud data alignment  

Figure 5.19 presents a real case of 3D point cloud data scanned by a 3D imaging laser 

scanner. The image size of the scanned scene is 256×256 with 20 degree field of view. In the 

3D scenery, the vehicle region is extracted by using the segmentation algorithm described in 

[64]. The extracted vehicle data is then used to validate the alignment performance of the 

proposed system, NNM and ICP. Figure 5.20 (a) and (b) show the coarse alignment results of 

PCA (used for NNM [46] and ICP [45] in coarse phase) and the proposed TNFN-based 
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method. In this figure, the coarse alignment errors of PCA and the proposed method are 0.262 

and 0.106m, respectively. Thus, this result again proves that the proposed method is superior 

to PCA. In the case of fine alignment, Fig. 5.21(a)-(c) depicts the fine alignment results of 

proposed TNFN-based fine alignment system, NNM, and ICP. From this figure, the fine 

alignment errors of the proposed system, NNM, and ICP are 0.0558, 0.1121, and 0.0569m, 

respectively. These results indicate that the proposed TNFN-based method can achieve high 

accuracy in real 3D point cloud data. Furthermore, regarding the alignment speed, the 

execution time of the proposed system, NNM, and ICP are 1.71, 2.13, and 7.93s, respectively. 

Therefore, the proposed system demonstrates higher alignment speed compared to NNM and 

ICP. In short, the proposed TNFN-based coarse-to-fine 3D image alignment system can align 

3D point cloud data with the reference model accurately at high speed.  

 

Figure 5-19: Real case of 3D point cloud data scanned by a 3D imaging laser scanner. 

 

Figure 5-20: Coarse alignment results: (a) PCA and (b) TNFN-based coarse alignment. 

 

 

 
(a) 

 
(b) 
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(a) 

 
(b) 

 
 

(c) 
Figure 5-21: Fine alignment results: (a) TNFN-based fine alignment, (b) NNM, and (c) ICP. 
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Chapter 6  

Conclusions and Future Works 
 

The purpose of this dissertation is to develop a methodology to automatically design 

TSK-type neural fuzzy networks (TNFNs) such that the developed networks can be applied to 

real world problems. To make TNFNs to be useful, the learning algorithm must be powerful 

to evolve networks in simulation that are robust enough to transfer to the real world. Toward 

this end, two components have been involved to achieve this goal: regularized least square 

based cooperative coevolutionary algorithm (RGLS-HCCA) and image alignment 

applications. The RGLS-HCCA model can evolve the structure and parameters of TNFN and 

the evolved TNFN can be taken to transfer the problem from simulation to the real world 

applications.  

This chapter summarizes the conclusions of these two components in Section 6.1 and 

discusses future works to extend the proposed algorithm in Section 6.2. 

6.1 Conclusions 

This dissertation concludes two key components to the fields of evolutionary computation 

and its applications. Regarding the first component, the proposed RGLS-HCCA encodes an 

antecedent part of a TSK-type fuzzy rule into a chromosome and utilizes RGLS to estimate 

the consequent part of a TSK-type fuzzy rule. Such combination not only reduces the number 

of parameters that must be trained but also controls HCCA to adapt the network to more 

complex tasks. In HCCA, it proposes parameter level evolution (PLE) and structure level 

evolution (SLE) to solve the problem of the random group selection, preserve the good 

combinations of fuzzy rules, and make the parameters and structure of network be evolved 

locally and globally, respectively. In addition, this dissertation proposes VAC, VAM, and 

SRM such that the variable length of chromosomes can be evaluated and the number of fuzzy 



 96

rules can be self-adjusted. The experimental results show that by applying RGLS-HCCA to 

the prediction of Mackey-Glass time series, RGLS-HCCA would demonstrate faster the 

algorithm convergence rate and lower estimating error than those of other learning algorithms. 

   Regarding the second component, two image alignment applications, which are 2D and 

3D image alignment problems, are used to demonstrate the applicability of RGLS-HCCA. For 

2D image alignment application, RGLS-HCCA is used to construct a CNFN-based 2D image 

alignment system. The CNFN utilizes the multi-stage of TNFN to solve problems that 

one-stage neural network have difficulty in applying a large range of affine parameters. This 

evidence can be found in the experimental results of both synthesized and real-images cases. 

The results show that the performance of the proposed scheme is superior to the traditional 

neural network methods on accuracy and robustness. For 3D image alignment application, the 

use of RGLS-HCCA can benefit the training of the TNFN-based coarse-to-fine 3D image 

alignment system. In the coarse alignment procedure, utilizing RGLS-HCCA to train a TNFN 

to model the relationship between the input feature and output pose can solve the problem of 

the high alignment error caused by PCA. In fine alignment procedure, using RGLS-HCCA to 

train a TNFN to model the reference surface can improve the heavy computational cost 

caused by ICP. In addition, by combining the surface modeling with the downhill simplex 

optimization, the distance from the input image to the reference model can be reduced 

iteratively. The evidence can be found in the experimental results to demonstrate the superior 

performance of the proposed 3D image alignment system over existing systems. 

 In summary, the most contributions of this dissertation are the proposed RGLS-HCCA for 

solving the problems that current evolutionary algorithms suffer from and verify the 

applicability of RGLS-HCCA to real world problems. 

6.2 Future Works 

The future works of the proposed RGLS-HCCA and the image alignment applications 
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are discussed as follows: 

To discuss the proposed RGLS-HCCA, the number of hierarchical level is only two to 

execute the training of structure and parameters of neural fuzzy networks. As the application 

problem become more complex, there is a need to increase the hierarchical level to match the 

complex problem. Thus, in the future work, the multi hierarchical level is taken into 

consideration of further investigation of how to cooperate these hierarchical levels to adapt 

the model to a complex problem. 

For the image alignment applications, two tasks are considered: 2D image alignment and 

3D image alignment. For the 2D image alignment task, although the proposed system can 

demonstrate high performance, it still has some limitations. Specifically, as the application 

problem becomes more complicated, the number of cooperative neural fuzzy networks would 

increase. Such condition leads the proposed model to suffer from the difficulty of choosing 

the suitable number of cooperative networks. If the unsuitable number of networks is chosen, 

the overall system will yield large estimated errors. Therefore, future works should identify a 

well-defined method to determine the number of cooperative neural fuzzy networks 

automatically.  

For the 3D image alignment task, in spite of combing the surface modeling with the 

downhill simplex optimization can obtain good results in fine alignment phase, the downhill 

simplex optimization may suffer from getting in local minima. Toward this end, the on-line 

parallel search techniques may be the solution for preventing the local minima happened. The 

on-lien parallel search techniques should be fast and keep the proper accuracy for applying to 

the fine alignment task. Therefore, the future work would modify the proposed RGLS-HCCA 

model to satisfy the design of the fine alignment phase. 
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