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Abstract

Evolutionary algorithms are very popular in training parameters of neural fuzzy network
due to their parallel search techniques. However, current methods have problems of not
scaling well to a large number of training parameters and adjusting fuzzy rules inefficiently.
In this dissertation, a regularized least squares based hierarchical cooperative coevolutionary
algorithm (RGLS-HCCA) is proposed to improve above problems. The major utility of RGLS
is to reduce the number of learning parameters. In HCCA, two-level evolution is proposed to
evolve fuzzy rules efficiently and make the parameters and structure of a network be evolved
locally and globally, respectively. Thus, RGLS-HCCA has advantages of parameter learning
and structure learning, and the evolved network can be applied to the real world applications.
The first application is a 2D image alignment problem. The proposed RGLS-HCCA is used to
construct a cooperative neural fuzzy network (CNFN)-based 2D image alignment system,
which utilizes the multi-stage of neural fuzzy networks to solve problems that one-stage of
neural network have difficulty in applying a large range of affine parameters. The second
application is a 3D image alignment problem. The use of RGLS-HCCA can construct a neural
fuzzy network (NFN)-based coarse-to-fine 3D image alignment system, which solve the
problem of the high alignment error caused by principle component analysis (PCA) and heavy
computational cost caused by iterative closest point (ICP). The evidence can be found in
experimental results demonstrate the superior performance of the proposed 2D and 3D surface

alignment system over typical systems.

Keywords: regularized least squares, hierarchical cooperative coevolutionary algorithm,

two-level evolution, parameter learning, structure learning.
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Chapter 1
Introduction

For most interesting real world problems, the environment is more complicated and highly
non-linear. For instance, to consider image alignment problems, the prediction of the
relationship between input image and output pose is non-linear and it is hard to use the linear
mathematical tools to accomplish modeling. Based on this fact, neural fuzzy networks can
take its “black box” nature and linguistic information to deal with non-linearity. Thus, the
purpose of this dissertation is to develop a methodology to automatically design neural fuzzy
networks by using regularized least squares (RGLS) based hierarchical cooperative
coevolutionary algorithm (HCCA) to evolve the networks for applying to real world
problems.

This chapter is divided into four subsections. In Section 1.1, the motivation of this
dissertation is introduced. Section 1.2° describes the related works of the evolutionary
algorithm and image alignment applications. Section 1.3 specifies the proposed approach. In

Section 1.4 the organization of this dissertation is presented.

1.1 Motivation

In most physical systems, the relationship between input and output is inherent non-linear
in nature. Non-linear relationship is difficult to solve and give rise to interesting research
topics. To cope with non-linearity, neural networks are algorithms that can be used to perform
nonlinear statistical modeling and diverse engineering applications based on this modeling
method have been successfully developed. However, their operation is restricted to the
numeric domain. In recent years, neural fuzzy networks (NFNs) used for several problems
have become a popular research topic [1]-[6], especially for solving nonlinear and complex

problems [7]-[10]. The reason is that it combines fuzzy set and fuzzy logic into the neural



network framework to bring the benefits of processing linguistic and numeric information.

Training parameters is the main issue for designing neural fuzzy networks. The most well
known algorithm is back-propagation (BP) [3], [6] which is a powerful training technique for
tuning the parameters of networks. Since the BP algorithm adopts the steepest decent
approach to minimize the error function, they suffer from a major problem: getting in local
minima of the error surface. To deal with the drawback, there is a need to face with
suboptimal problem. Towards this end, evolutionary algorithms appear to be better candidates
than the BP algorithm because of their parallel search techniques and optimization
methodology.

Recently, several evolutionary algorithms, including genetic algorithm (GA) [11],
hierarchical genetic algorithm (HGA)[12], symbiotic adaptive neruoevolution (SANE) [13],
enforced sub-population (ESP)-algorithm [14], and multi-groups cooperation based symbiotic
evolution (MGCSE) [15] have been proposed to train neural networks or fuzzy systems.
Although these algorithms can obtain better performance than the BP algorithm, they still
have difficulty in_scaling to more complex.-tasks or high input dimension of networks.
Moreover, they also conduct the problem of the random group selection of fuzzy rules and the
lost of potential fuzzy rules combinations. Therefore, these problems are the main issues this
dissertation intends to address.

Furthermore, to transfer the problem from simulation to the real world applications, two
image alignments tasks are utilized. The first one is a 2D image alignment problem which is
widely applied to many industrial applications, such as automatic visual inspection, factory
automation, and robotic machine vision. The second one is a 3D image alignment problem
which is an extended version of 2D image alignment. Thus, this dissertation aims to propose
an evolutionary algorithm to train neural fuzzy networks to apply these two real world

problems.



1.2 Related Works

Neural fuzzy networks are gaining research interest and they have been widely used in
fields of pattern recognition, control problems, image processing, and diagnosis. The major
benefit of neural fuzzy network is the integration of computation power from neural networks
and human-like reasoning from fuzzy systems. Since neural fuzzy networks can bring such
benefit, how to train neural fuzzy networks has become a critical issue.

The back-propagation (BP) algorithm [3] is a typical method for training neural fuzzy
networks. Although the use of steepest descent technique in BP learning can reach the local
minimal much quickly, the global minimal may be never found. Thus, evolutionary
algorithms are better ‘ones than BP due to their parallel search techniques. Recently,
evolutionary fuzzy models have become a popular research field [16]-[24]. The evolutionary
fuzzy model is a learning process using evolutionary learning procedures to generate a fuzzy
system automatically. Among these evolutionary fuzzy models, the well-known algorithms
are the genetic fuzzy models, which are augmented by incorporating genetic algorithms (GAs).
There are several genetic fuzzy models have been proposed [16]-[18]. In [16], Karr adopted
GAs to adjust membership functions for designing a fuzzy controller where its fuzzy rule set
must be predetermined. Lin and Jou [17] applied GAs to fuzzy reinforcement learning to
control a magnetic bearing system. In [18], Juang ef al. proposed symbiotic evolution based
genetic reinforcement learning for designing fuzzy controllers. In their work, the
symbiotic-evolution-based fuzzy controller required fewer trail and less CPU time than the
traditional GA-based fuzzy controller.

Although the genetic fuzzy models can be used to search for the optimal solution, they
may have some limitations, such as the same lengths of chromosomes, predefined parameters,
and so on. Thus, there are several improved evolutionary algorithms [19]-[22] to take into

account these limitations. In [19], Carse et al. used the fusion of genetic algorithms and fuzzy



logic to evolve variable length fuzzy rule-sets. In [20], Bandyopadhyay et al. proposed
variable-length genetic algorithm (VGA) to encode different length of chromosomes in the
same population. Tang [21] proposed a hierarchical genetic algorithm to enable the
optimization of designing a fuzzy system for particular applications. Juang [22] proposed a
combination of online clustering and Q-value based GA learning for fuzzy system design
(CQGAF) to generate fuzzy rules automatically and free parameters in a fuzzy system. In
addition, Gomez and Schmidhuber [14] proposed enforced subpopulations (ESP) to provide
several subpopulations to evaluate each partial solution. The subpopulations that are used to
evaluate the solution locally can obtain better performance than those methods that only use
one population for evaluating the solution. In [15], Hsu and Lin proposed a multi-groups
cooperation based symbiotic,evolution (MGCSE) to train a TSK-type neuro-fuzzy network
(TNFN). They develop a novel-symbiotic evolution to let each sub population can cooperate
to generate better offspring.

In spite of the above evolutionary learning algorithms improving genetic fuzzy models,
these algorithms may conduct one or more of the following problems: (1) the random group
selection of fuzzy rules, (2) low convergence rate as the problem becomes complex, and (3)
potential fuzzy rules combinations are lost.

Recently, hierarchical enforced sub-populations (HESP) [23] provided a hierarchical
evolutionary for preserving the potential neuron combinations. In their work, in spite of
keeping useful networks, HESP still suffer from: the lengths of chromosomes must be the
same and the number of neurons has to be assigned in advance. To this end, this study
attempts to propose an evolutionary learning algorithm, which incorporates concepts of
data-mining [25-29], regularized least square, and hierarchical evolution, for improving the
problems that were mentioned above and achieve the following goals: (1) adapt the trained
network to more complex tasks, (2) select groups of fuzzy rules systematically, (3) preserve
good combinations of fuzzy rules, (4) allow variable length of chromosome, and (5) adjust

4



the number of fuzzy rules automatically.

In addition, to consider 2D image alignment application, the problem of precise image
alignment has been well-studied in several fields. In [30], Liu et al. point out that image
alignment techniques are broadly classified as feature-based [31] and [32] and area-based
matching approaches [33-35]. Amintoosi et al. pointed out that area-based methods produce
better results than results with low signal-to-noise ratio (SNR) from feature-based methods.
Moreover, Zitova and Flusser indicated [39] that area-based methods are preferably applied to
less detailed images. In this study, we assume that our proposed image alignment system is
developed for industrial inspection tasks such that the captured images usually have less detail.
Thus area-based methods that adopt global descriptors are recommended in this paper.

In recent years, the neural-network-based image alignment utilizing global features have
been a relatively new research subject [40-44]. In [40-43], the alignment scheme is to estimate
the affine parameters by a feedforward neural network (FNN). Although FNN is helpful to
improve the alignment efficiency, such methods must take a large number of iterations to
minimize the error function and several training attempts are needed to provide the robust
FNN. In addition to FNN-based methods, Sarnel et al. [44] used a radial basis function neural
network (RBFNN) to align images. According to their results, the training time of a RBFNN
has been reduced, and the alignment accuracy and robustness against noise are better than
those of FNN-based methods. However, a major drawback of the existing neural
network-based methods is the difficulty in applying to align images on a large range of affine
transformation. The reason is that a large range of affine parameters would lead to a large
amount of training data such that the mapping surface becomes more complex and applying
one-stage neural network to estimate a large range of affine parameters accurately is almost
impossible. In this dissertation, a scheme of multi-stage neural network is proposed to
overcome the problem produced by the one-stage neural network. The notion of this approach
is to divide a large size of the network into several small networks, aiming to gradually reduce

5



the image alignment error and finally obtain the desired accuracy. Such phenomenon can be
considered a coarse-to-fine alignment of the sensed image with the reference image.
Regarding the 3D image alignment application, the problem of 3D image alignment has
been implemented by several methods [45-50]. Among them, a coarse-to-fine technique is a
useful way for performing 3D image alignment [45] and [46]. Coarse alignment provides an
approximate transformation for aligning two images. Such alignment must be efficient and
accurate. Fine alignment uses the initial gauss of a transformation given by a coarse alignment
as a starting point to iteratively minimize the distance between the input and the destination
images. Specifically, in consideration of coarse image alignment, common methods [45] and
[46] utilized principal component analysis (PCA) [51] for coarsely aligning two images due to
its high-speed performance. However,-PCA cannot ensure that the laser scanned point clouds
have the same orientation of principal axes as the reference model. This phenomenon would
cause a high alignment error in the coarse alignment phase. In consideration of fine alignment
method, iterative closest point (ICP) [52] is a typical method to iteratively calculate the
rigid-body transformation to minimize the cost function. Although ICP can provide highly
accurate 3D image alignment, its heavy computational cost in searching corresponding points
has been criticized by many researchers [45, 46, 53-55]. To this end, this dissertation intends
to propose a coarse-to-fine 3D image alignment scheme to improve the drawback generated

by PCA and ICP.

1.3 Approach

In this dissertation, three major approaches are proposed. The first one is an evolutionary
algorithm called RGLS-HCCA which is used to design neural fuzzy networks. The second
one is cooperative neural fuzzy network (CNFN)-based 2D image alignment method. The
third one is TNFN-based coarse-to-fine 3D image alignment method. Among these methods,

the second and third ones are the applications of RGLS-HCCA designed neural fuzzy



networks.

Regarding the RGLS-HCCA method, the RGLS method is utilized to control HCCA to
converge toward optimal solution quickly. In HCCA, two-level evolutions are proposed:
parameter level evolution (PLE) and structure level evolution (SLE). In PLE, a data-mining
selection method (DMSM) based evolutionary learning algorithm is utilized to evolve
parameters of networks. By using DMSM, the suitable groups can be identified for
chromosome selection and such selection method would solve the random group selection
problem caused by some typical cooperative coevolution algorithms [15, 57-60]. Moreover, to
prevent the lost of potential fuzzy rules combinations, the good combinations of fuzzy rules
evolved in PLE are reserved for being the initial populations of SLE. In SLE, the initial
population are mated and mutated-to produce new structure level of networks. Similar to PLE,
the good fuzzy rules of evolved network in SLE are inserted into the PLE. Thus, by
interacting two level evolutions, the parameters and structure of network can be evolved
locally and globally, respectively. Besides, this dissertation combines variable antecedent-part
crossover (VAC), variable antecedent-part mutation (VAM), and self-regulated mechanism
(SRM) such that the variable length of chromosomes can be evaluated and the number of
fuzzy rules can be adjusted automatically.

Regarding the CNFN-based 2D 1mage alignment method, it is an application of
RGLS-HCCA. Each CNFN contains multi-stage of TNFN and each TNFN is trained by the
proposed RGLS-HCCA method. The aim of CNFN is to solve tasks that are too difficult to
solve directly. Instead of trying to use one neural network to solve difficult problems, CNFN
utilizes multi-stage of neural fuzzy networks to cover the whole problem. Each stage of
networks manages a simple level problem and through each network cooperating, the
combined network can be applied to a difficult level problem. For a 2D image alignment task,
one-stage neural network have difficulty in estimating a large range of affine parameters
accurately. Thus, CNFN utilizes multi-stage of networks to adapt image alignment to a larger
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range of affine parameters. The input sensed image is sent into each network in turn to
gradually reduce the image alignment error and finally obtain the desired accuracy.

Regarding the TNFN-based coarse-to-fine 3D image alignment method, it is an extended
version of 2D image alignment task. The TNFN-based coarse alignment, which aims to
improve PCA, utilizes multi-views of modified viewpoint feature histogram (MVFH) to be
the input of TNFN and the corresponding 3D poses to be the output of a TNFN. Thus, once
the training of TNFN has completed the relation between the input feature and output pose
can be inferred and such relation results in more accurate pose estimation of the input 3D
image than that of the PCA method. For the TNFN-based fine alignment method, which aims
to improve ICP, it takes the notion of combining the surface modeling with the downhill
simplex optimization. method-to-iteratively reduce distance from the input image to the
reference image. The major benefit of the TNFN-based fine alignment method is to avoid

calculating the corresponding points, which 1s a problem that ICP suffer from.

1.4 Organization of Dissertation

This dissertation is divided into six chapters. Chapter 1 introduces the motivation, related
work, approach, and organization of the dissertation.. Chapter 2 provides the fundamental
information used in the dissertation. The foundation includes regularized least squares method,
neural fuzzy network, cooperative coevolutionary learning, 2D image alignment, and 3D
image alignment. In Chapter 3, RGLS-HCCA is described. RGLS-HCCA consists of the
RGLS method and the two-level evolutions: parameter level evolution and structure level
evolution. Chapter 4 describes the methods of 2D and 3D image alignment which are the
applications of RGLS-HCCA. In Chapter 5, three experiments are performed to demonstrate
the superiority of RGLS-HCCA over other algorithms. The first experiment is a prediction of
Mackey-Glass time series problem, which is a benchmark to verify the proposed algorithm.

The second and third experiments, which are applications of RGLS-HCCA, are 2D and 3D



image alignment tasks, respectively. In Chapter 6, the conclusions and future work of the

dissertation are discussed.




Chapter 2
Foundations

In this chapter, three major backgrounds of cooperative coevolutionary learning, 2D
image alignment, and 3D image alignment are introduced. For the cooperative coevolutionary
learning, the typical SANE method is used to specify how to perform evolutionary learning.
For 2D and 3D image alignment, the procedures of aligning 2D and 3D images are described
and alignment results of general 2D and 3D image alignment methods are briefly presented.

This chapter is divided into five subsections. The concepts of the regularized least squares
method and neural fuzzy network are introduced in Section 2.1 and 2.2, respectively. In
Section 2.3, the general method of cooperative coevolutionary learning is described. Section

2.4 and 2.5 will discuss how to perform 2D and 3D image alignments tasks.

2.1 Regularized Least Squares Method

Before discussing the regularized squares-method, the least square method is introduced.
Give a target vector y, and data matrix X. The most popular loss function used for regression

problems is the residual sum of squared.errors (RSS):
RSS =|Xw-y].. (2.1)

The least square method is defined as setting w to minimize the expression. Thus,
differentiating Eq. (2.1) with respect to w can obtain:
X" (Xw-y). (2.2)
By setting Eq. (2.2) with 0 to solve w:
w=(X"X)"X"y. (2.3)
Unfortunately, the matrix X' X may be singular or nearly singular, which make it

difficult to invert. To address this problem, Tikhonov [61] proposed a regularization to solve

10



the numerical instability of the matrix inversion. The method of regularization adds a positive
constant to the diagonals of XX to make the matrix nonsingular. Thus, the expression of
Eq. (2.3) can be switched to:
w=X"X+AD)"' X"y, (2.4)
where A is a regularization parameter. Since Eq. (2.4) is used to solve the least square
problem, Tikhonov regularization is called regularized least squares [62], which is also called
damped least squares [63-65]. Moreover, to differentiate from the abbreviation of recursive
least square (RLS), this paper takes the idea from [66] to abbreviate regularized least squares
to RGLS.
In addition to RGLS to solve the problem of the matrix. X" X being singular, pseudo
inverse is another solution. Thus;-in-the section of experimental results, this dissertation will

compare regularized least squares-with pseudo inverse.

2.2 Neural Fuzzy Network

In Lin and Peng’s work [2], there are two typical types of neural fuzzy network (NFN)
and they are Mamdani-type [5] and TSK-type [4]. According to [6] and [67], the authors have
shown that the TSK-type NFN can offer better network size and learning accuracy than the
Mamdani-type NFN. Thus, in this dissertation, only the TSK-type NFN is introduced and
such NFN is applied to image alignment applications.

A TSK-type neuro-fuzzy network (TNFN) [4] employs a linear combination of the crisp
inputs as the consequent part of a fuzzy rule. The fuzzy rule of the TSK-type neural fuzzy
system is shown in Eq. (2.5), where n and j represent the dimension of the input and the
number of the fuzzy rules respectively.

IF X1 is Agj (Myj, o3 )and Xz is Agj(myj , oy )and:--and Xn iS Anj (Myj , on;j)
THEN " =woj+wijXq+- - +WpiXn, (2.5)

The structure of TNFN is shown in Fig. 2.1, where n represents the dimension of the
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input. It is a five-layer network structure. The functions of the nodes in each layer are
described as follows:
Layer 1 (input node): Each node in this layer is called an input linguistic node, which

corresponding one linguistic variable. These nodes only pass the input signal to the next layer.

u = x,, (2.6)
where u" denotes the ith node’s input in the first layer and x, denotes ith input dimension.

The number of nodes in this layer is the dimension of input vector.
Layer 2 (membership function node): each nede in this layer acts as a Gaussian membership
function, and its output value specifies the degree to which the given input value belongs to a

fuzzy set. Thus, the membership value in layer 2 can be calculated by:

(€] 2
[ui - mij
2 9

0

u®

i = exp| - (2.7)

where (" =x, and > are the outputs of Ist and 2nd layers ; myand o are the center and

the width of the Gaussian membership function of the jth term of the ith input variable x;,
respectively. In this paper, the reason of adopting the Gaussian membership function is that it
can be a universal approximator of any.-nonlinear functions [6]. Besides, the number of nodes
in this layer is the dimension of input vector multiplied by the number of fuzzy rules.

Layer 3 (rule node): The output in this layer is used to perform precondition matching of
fuzzy rules. In the TNFN, the firing strength of a fuzzy rule is calculated by performing the

following “AND” operation:

up’ =] w. 2.8)

The number of nodes in this layer is the number of fuzzy rules.
Layer 4 (consequent node): each node in this layer calculates the consequent value. Each

consequent value (linear combination of the crisp inputs) is weighted by the firing strength of
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the fuzzy rule and it can be written by:

n
@ _,,03
u;  =u;(wy; + Zwl.jxl.), (2.9)

i=1

where the summation is the consequent part and w; is its corresponding parameters. The
number of nodes in this layer is the dimension of output vector multiplied by the number of
fuzzy rules.

Layer 5 (output node): The node in this layer computes output signal. The output node

integrates with links connected to it and acts as a defuzzifier with:

M n
(4) 3)
! Z”f (W, + 2, W,%,)
j=1 i=1

y =u(5) — = — . A 5 (2.10)

3) )
u; Z“j

=1

~
Il
-

~
L]
—

.

where " is the output of 5th-layer , w;

is the weighting value with ith dimension and jth
rule node, and M is the number of a fuzzy rule. The number of nodes in this layer is the

dimension of output vector.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
(Input nodes)  (membership (rule nodes)  (Consequent nodes) (Output nodes)
function nodes)

Figure 2-1: Structure of TNFN.
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2.3 Cooperative Coevolutionary Learning

Evolutionary algorithms (EAs) are the methods for solving difficult problems using
notions of Darwinian evolution. EAs have been applied to many applications and the major
benefit of EAs over traditional local search methods is their parallel search ability. However,
EAs have difficulty in scaling to large problem domains. For solving this problem, researches
have extended EAs to cooperative coevolutionary algorithms (CCEAs). Instead of solving the
entire problem, the notion of cooperative coevolutionary learning is to reduce the complex of
difficult problems through modularization. In other words, a difficult complete problem can
be divided into small simple-problems. In CCEAs, each individual represents only a partial
solution and a full solution is built by means of cooperating with other partial solutions. Thus,
each individual can be evolved locally and recombined it with other well-performed
individuals to form a good total solution.

Symbiotic adaptive neruoevolution (SANE) is one of typical CCEAs. In SANE, partial
solutions can be viewed as specializations. It indicates that partial solutions specialize toward
one aspect of the full solution. To concern with fitness evaluation, the fitness of an individual
is calculated by summing all. combinations of that individual with other individuals and
dividing by the total number of combinations. Thus, the fitness value reflects an average value
of combined full solutions. Fig. 2.2 presents the basic steps of SANE. As shown in this figure,
there are nine steps of SANE and they are described as follows.

Stepl. Initialization: in this step, all fitness values are clear and all genes of individuals are
assigned a random value within a predefined range.

Step2. Selection: randomly select n individuals from the population.

Step3. Create a neural network: use the selected » individuals to build a neural network.
Step4. Evaluate the network: after the neural is created, the evaluation is performed according

the given problem.
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StepS. Selection times check: each individual must be selected sufficient times. If the
selection time does not satisfy, then go to Step2 to continue the selection step.

Step6. In this step, the average fitness value of an individual is computed by dividing the total
fitness value of each chromosome by the number of times that it has been selected to build
networks.

Step7. Termination check: check the fitness value with respect the whole network not a single
individual. If the fitness value of the whole network satisfies the pre-setting value, then SANE
terminate.

Step8. Crossover: a one-point crossover strategy is used to exchange the site’s values between
the selected sites of individual parents to create mew. individuals, which are offspring
inheriting the parents’ merits.

Step9. Mutation: in the last step,-the gene is mutated at the rate 0.1% drawn randomly from

the domain of the corresponding variable. Then go to Step 2 to perform selection.

Y
Initialization o Selection Create a neural | Evaluate Does each individual be N

network the network selected sufficient times? o

F
Yes
. . Fitness
Crossover Mutation [#+—No Termination? .
Assignment
Yes

Figure 2-2: Basic Steps of SANE.

Although SANE can obtain better performance than traditional evolutionary approaches,
it still has the problem that the algorithm cannot evaluate each partial solution independently.
More specifically, SANE use only one population to evaluate every partial solution, this will
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cause partial solutions too similar. Therefore, the algorithm may have less chance to obtain
optimal solution. To this end, MGCSE [15], which is a previous evolutionary algorithm and
similar to ESP, was proposed for evolving TSK-type neural fuzzy networks. Compare to
SANE, MGCSE provide several groups to evaluate each partial solution. Each group in the
MGCSE represents a group that consists of the set of the chromosomes that belongs to the
partial solution. In MGCSE, the population consists of several sub-populations and each
sub-population represents the set of the chromosomes that belongs to one fuzzy rule. The
structure of the chromosome is shown in Fig. 2.3. In this figure, each fuzzy rule represents a
chromosome that is selected from a group, Pg.. represents there are Py, groups in a
population, and “M,” represents M; fuzzy rules are used to construct a TSK-type neural fuzzy

network.

Rule 1

Rule 1

Group 1
P Rule 1

Rule 1

Rule 1 Rule j Rule M; | TNFN model 1

Rule

Rule 7

Group / Rule 7

Rule ;

Rule 1 Rulej Rule M; | TNFN model Ny

Rule Mk

Rule M,

Group P,
P Fs Rule M,

Rule Mk

Figure 2-3: Structure of the chromosome in MGCSE.

The coding structure of the chromosome in MGCSE is shown in Fig. 2.4. This figure

describes a fuzzy rule that has the form of Eq. (2.5), where m, and o, represent a
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Gaussian membership function with mean and deviation, respectively, and w is the weight

with ith dimension and jth rule node.

My |O;|My;|Oy; | =0 My |0y (Wio (Wit Wi | 7 [ Wy

Figure 2-4: Coding a fuzzy rule of a TNFN into a chromosome in MGCSE.

However, MGCSE have difficulty in scaling to more complex tasks or high input
dimension of networks, conduct the problem of the random group selection of fuzzy rules,
and the lost of potential fuzzy rules combinations. In consideration of the lost of potential
fuzzy rules combinations, Gomez had proposed HESP to accomplish it. Nevertheless, HESP
suffers from the problems that the lengths of chromosemes must be the same and the number
of neurons has to be assigned-in- advance. To this end, this dissertation proposes

RGLS-HCCA to address the above-mentioned problems:

2.4 2D Image Alignment

In this subsection, a 2D image alignment task is introduced. Image alignment can be
viewed as a mapping between two. images by means of a geometric transformation. Typically,
geometric transformation contains many types, including affine, similarity, and projective
transformation. Among them, affine transformation is the most common used type and it
composites of translation, rotation, and scaling. Thus, this paper adopts the affine
transformation as the transformation model. Figure 2.5 shows an example of a remote
controller with different transformation parameters. In Fig. 2.5 (a), it represents a reference
image which other transformed images want to align with. In other words, if the pose of the
transformed image is known, then the transformed image can be recovered to the original
pose of the reference image by reversing the pose. Thus, a 2D image alignment task defined

in this dissertation is to align transformed images with the reference image.
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with respect to the reference image. Finally, the estimated affine transformation parameters

can be used to align the sensed image with th erence image. Toward this end, seeking

accurate affine transformation parameters is the most important fields for aligning images.

Sensed Image ;
— Estimate affine
»  Descriptor »  Pose estimation » transformation > Align
parameters

Reference Image

Figure 2-6: Typical procedure of an area-based 2D image alignment system.
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Figure 2.7 illustrates an example of aligning 2D images where figure (a) is a reference
image, figure (b) is an input image, and figure (c) is a alignment result of using neural
network based alignment scheme defined in [44]. In Fig. 2.7 (c), the cross sign denotes the
estimated results of Sarnel’s work [44] and from the location of this cross sign, the alignment
results is not good enough. The major drawback of such approach is that they have difficulty
in applying to align images on a large range of affine transformation. Thus, this dissertation
proposes a CNFN-based 2D image alignment method to perform coarse-to-fine alignment of

the sensed image and the reference image.

_d

XA
-

(©

Figure 2-7: Example of 2D alignment: (a) reference image, (b) image with an affine transformed, and (c)

alignment results of neural network based scheme.
2.5 3D Image Alignment
The 3D image defined in this dissertation is a range image which is scanned by an
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imaging laser scanner. Each pixel in the range image reflects a range data which indicates a
distance from the sensed point to the scanner. In other words, the range data can be considered
as a 3D point with respect to the scanner. Thus, the scanner can be a center of a coordinate
system to represent each sensed range data. Figure 2.8 presents an example of the range image,
intensity image, and a 3D point cloud data. From this figure, the range image utilizes the color
bar to represent the range data. The intensity image, which is also generated by the imaging
lasers scanner, is used to be the corresponding map of range image. The 3D point cloud data,
which is created by transforming range data to Cartesian coordinate, shows the 3D position of
each pixel.

Figure 2.9 illustrates the procedure of a 3D 1mage alignment task. From this figure, the
3D scene is scanned by a 3D-imaging laser scanner where the size of the scanned scene is
256x256 with 20 degree field of view. The region of interest (ROI) is extracted by using the
segmentation algorithm described in [68]. The reference model is a target 3D surface that the
ROI wants to align with. Thus, the purpose of the 3D image alignment task is to align the ROI

with the reference model.
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Figure 2-8: Example of 3D image.
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Figure 2-9: Procedure of a 3D surface alignment task
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According to Chapter 1, a coarse-to-fine technique is a useful way to perform 3D image
alignment tasks. In consideration of coarse image alignment, common methods [45] and [46]
utilized PCA [51] for coarsely aligning two images due to its high-speed performance. In
consideration of traditional fine alignment methods, iterative closest point (ICP) [52] is a
typical method to iteratively calculate the rigid-body transformation to minimize the cost
function.

Figure 2.10 illustrates an example of aligning an input 3D point with reference model
using PCA. From this figure, (a) and (b) represents the principal axes of a 3D reference model
and input 3D point data, respectively. Figure 2.10 (¢) depicts the alignment results of PCA
method. From Fig. 2.10 (a)-(c), we can know that since the input laser scanned 3D data is
partial, its principal axes would-be-askew with respect to the 3D reference model and such
case results in the large alignment error of PCA method (seen from Fig. 2.10 (c)). Based on
this fact, this dissertation will propose a TNEFN-based coarse alignment method that utilizes
the pose estimation to replace of aligning principal axes.

Figure 2.11 illustrates an example of performing ICP fine alignment where figure (a) is
the initial alignment yielded by PCA coarsely alignment and figure (b) is final fine alignment
performed by ICP. Although ICP can. get a good result for fine alignment, its heavy
computational cost in searching corresponding points is a problem. To this end, this paper
proposed a TNFN-based fine alignment method which combines surface modeling and the

downhill simplex optimization method to improve the problem.
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Figure 2-10: Example of coarse alignment using PCA: (a) the principal axes of the reference model, (b) the

principal axes of the input 3D data, and (c) alignment results of the PCA method:
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Figure 2-11: Example of fine alignment using ICP: (a) the initial alignment yielded by PCA and (b) alignment

results of the ICP method.
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Chapter 3
Regularized Least Squares Based Hierarchical
Cooperative Coevolutionary Algorithm

The learning process of RGLS-HCCA is shown in Fig. 3.1. As show in this figure,
RGLS-HCCA involves two major evolutions: parameter level evolution (PLE) and structure
level evolution (SLE). The blocks of inserting good networks and inserting good neurons (i.e.
good fuzzy rules) are the connection between the parameter and structure level evolution.
These two operations indicate that good evolved results in one level evolution would be
transferred to another level evolution. Once receiving good neurons or networks, the received
chromosomes would be mated-with other old chromosomes to yield some new offspring.
Therefore, by exchanging the good information between two levels of evolution, we have
more chance to find the global optimal solution.

This chapter .is divided into two subsections-to introduce the proposed two-level
evolution. In Section 3.1, parameter level evolution is discussed. Section 3.2 describes how

structure evolution works.
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Figure 3-1: Learning process of RGLS-HCCA.

3.1 Parameter Level Evolution

In this subsection, we will discuss the parameter level evolution (PLE). In PLE, it aims
to determine not only the suitable fuzzy rules of TNFN automatically but also the suitable
individuals used to construct a TNFN. Regarding the former aim, PLE proposes a
self-regulated mechanism (SRM) to determine the number of fuzzy rules automatically. SRM

utilizes the probability vector to represent the suitability of TNFN with different fuzzy rules.

In Fig. 3.2, SRM codes the probability vector P, to represent the suitability of a TNFN

with M, rules where the number of fuzzy rules is limited to a certain bound, i.e., [Mmin, Mmax]-
After the SRM is carried out, the probability of the suitable number of fuzzy rules in a TNFN
will increase, and the probability of the unsuitable number of fizzy rules in a TNFN will
decrease. Therefore, the number of fuzzy rules would be self-regulated. Regarding the later

25



aim, although SRM can determine the suitable number of rules, there is a need to identify the
suitable groups used to select individuals to construct TNFN. More specifically, we should
consider the well-performing groups of individuals to cooperate for producing better a
generation than the current one. To face this issue, this study proposes a data-mining based
selection method (DMSM) to determine which groups should be used to select individuals.
The DMSM involves two major parts, namely, finding frequent patterns and mining
association rules. Regarding the former, the FP-growth algorithm [27] is used to find the
frequent patterns that do not have candidate generation. Regarding latter, association rules are
identified by using the confidence value. In DMSM, the FP-growth is used to find the sets of
groups that occur frequently from transactions. In this paper, a “transaction” refers to the
collection of groups that have good-or-bad performance. After the candidate sets of frequently
occurring groups ‘are found, DMSM identifies the association rules by setting the suitable
confidence and uses the found association rules to determine A groups that are used to select
M, chromosomes that form TNEFN with A rules. To this end, two actions are defined in this
study: normal and explore actions. In the normal action, M) groups are chosen randomly. In
the explore action, My groups are chosen according to association rules. These two actions

will be discussed in the procedures of PLE.

P P,

Mmjn min +1

PM PM

k

-1 PM

max

Figure 3-2: Coding the probability vector to represent the suitability of a TNFN with M, rules.

To consider the structure of TNFN, unlike MGCSE encoding one fuzzy rule into a
chromosome, PLE only encodes an antecedent part of a fuzzy rule into a chromosome. The
consequent part of a fuzzy rule used in PLE is estimated by a regularized least square (RGLS)
approach. The structure of chromosomes to construct TSK-type neuro-fuzzy networks
(TNFNs) in PLE is shown in Fig. 3.3. In this figure, each antecedent part of a fuzzy rule

represents a chromosome selected from a group, Py, denotes that there are Py, groups in a
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population, and M; indicates that there are M; rules used in TNFN construction. In addition,
PLE adopts the variable length of a combination of chromosomes with RGLS method to
construct a TNFN. Thus, the length of combined chromosomes to construct TNFNs can be

different.

antecedent of Rule 1

antecedent of Rule 1

Group 1

antecedent of Rule 1

antecedent of Rule 1
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of Rule
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antecedent of Rule j

antecedent of Rule j

Group j antecedent of Rule /
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of Rule M, consequent of each Rule
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antecedent of Rule M,

antecedent of Rule M,

Group Ps;..

antecedent of Rule M,

antecedent of Rule M,

Figure 3-3: Structure of chromosomes to TNFN construction.in PLE.

After discussing the structure of chromosomes to construct TNFNs, details of the coding
step for PLE and RGLS method are described as follows:
(1) Coding Step:

The coding structure of chromosomes in the proposed PLE is shown in Fig. 3.4. This

figure describes an antecedent part of a fuzzy rule that has the form in Eq. (2.5), where m,

and o, represent a Gaussian membership function with mean and deviation of ith dimension

and jth rule node, respectively. Besides, a pair of (m ,o ) indicates a neuron in Layer 2 of a
TNFN. Evolving an antecedent part of a fuzzy rule is likely to evolve a neuron which is a
parameter of a neural network. Thus, the evolution of this level is called a parameter (i.e.

neuron) level evolution.
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Figure 3-4: Coding an antecedent part of a fuzzy rule into a chromosome in PLE.

(2) RGLS method:
Assume a TSK-type neural fuzzy model composed of m fuzzy rules as the following

form:

R;: IFxiis 4/and---and xnis 4;, THEN y, =w] +w/x, +---+w/x,, (3.1)

J nn?
where j=1,---,m and A’ is the linguistic part with respect the input i and Rule j. From Eq.

(3.1), the output can be ‘written as:

m

Z”jyj

J=!

) =iy Yyt Yy b S50V, (3.2)
24,

j=

—_

where u, is the firing strength of Rule j, and 4; =u, /(u, +-:-+u, ). Then it is possible to

express the equation above into the form:
Y =0,(Wy + WX, e+ Wi ) el (WA W, W x ) =alW, (3.3)
where W =[W" - W, 1", W, =[wi-=wl', j=1-+,m, and
a=[(a @x,-i,x,) @, uyx, -uyx,) (U, u,x u,x,)].
Since y and a are known value, the only unknown value is the consequent part W .

M
=

Suppose a given set of training inputs and desired outputs is {x(t), Vy (t)} .- The Eq. (3.3) can

be rewritten as:
AW =Y,, (3.4)
where A4 =[a(l)a(2)---a(M)]".

In order to get the smooth estimation, the regularization is adopted. The approximation
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solution can be written as follows:
W=(A"A+)"4"Y,, (3.5)

where A 1is a regularization parameter which adjusts the smoothness. Thus, by getting Eq.
(3.5), we finish the estimation of the consequent part of fuzzy rules. Based on this fact, this
dissertation utilizes RGLS to calculate the consequent part of a TSK-type neural fuzzy
network. This operation would not only reduce the number of parameters that must be trained
but also increase the convergence rate of the evolutionary algorithm. Thus, the phenomenon
of reducing training number and increasing convergence rate would promote the evolutionary
algorithm to adapt the neural network to more complex tasks.

The learning process of PLE involves seven operators: initialization, self-regulated
mechanism, data-mining based selection method, fitness assignment, reproduction, crossover,
mutation, and insert good networks. The whole learning process is introduced below:

a. Initialization: Before we start the parameter level evolution, the initial groups of
individuals should be generated. Thus, mitial groups are generated randomly within a
predefined range. The following formulations show how to generate the initial chromosomes

in each group:

Deviation: Chr, . [p]l=random [ O s O 1

where p=2, 4,---, 2n; g=1, 2,*+*, Pyize; c=1,2,-++, N¢, (3.6)
Mean: Chrg . [p]= random [m_, , m_, ],

where p=1, 3,:--, 2n-1, (3.7)

where Chrg . represents cth chromosome in the gth group, Nc¢ is the total number of
chromosomes in each group, p represents the pth gene in a Chrg ¢, and [0, O |5 [P0,
m,.. ] represent the predefined range to generate the chromosomes.

b. Self-regulated mechanism (SRM): To select fuzzy rules automatically, PLE proposes

SRM to determine the suitability of TNFN models with different fuzzy rules. The
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self-regulated mechanism encodes the probability vector P, to stands for the suitability of

a TNFN with M rules. In addition, in SRM, the minimum and maximum number of rules

must be predefined to limit the number of fuzzy rules to a certain bound, i.e., [Mmin, Mmax]-

The processing steps of SRM are described as follows:

Step 0. Initialize the probability vectors P, :

P, =05,

where M, =M_,, M . +1-- M

min 2 max *

Accumulator = 0.

Step 1. Update the probability vectors P, according to the following procedures:

(1) Evaluate the fitness-value-of TNFN with M rules:

if ‘Fitness,—=(Best _Fitness, —ThreadFitnessvalue)

3

then fir, = fit,, +Fitness,, , fitcount = fitcount +1

(3.8)

(3.9)

(3.10)

where ' Fitness u, | Tepresents the fitness wvalue. of TNFN with M, rules,

Best _ Fitness,, . represents the best fitness value of TNFN with M, rules, fit,

is the sum of the fitness values of the TNFN with M; rules and fitcount is a count as

Eq. (3.10) satisfies.

(2) Calculate the average fitness value:

Avgfit,, = fit,, / fitcount,

Mmax
Avg = ZAngith /(Mmax _Mmin +1)7

MI( :Mmin

(3.11)

(3.12)

where Avgfit, is a average value of fir,, and Avg represents the average

fitness value in the whole population.
(3) Update the probability vectors:
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Mmax
Upt _value,, = Avgfit,, / ZAvg‘ith , (3.13)

M =M iy

{PMk =P, +Upt _value, *r), if Avg< Avgfit,
: , (3.14)

P, =P, —(Upt_value, *r), otherwise
where Upt _value,, is a update value for M; fuzzy rules and P, is the

probability vector, and  is a predefined ratio value.
Step 2. Determine the selection times of TNFN with different rules according to the

probability vectors as follows:

Rp,, =(Selection _Times)*(P,, [Total Velocy), (3.15)
Mmax
Total W Velocy=—)"P, , (3.16)
M =M i,
where M, =M .o M _. .., M., Selection Times tepresents the total selection times

in each generation.and Rp, represents the selection times of TNFN with M; rules in one
generation.
Step 3. In SRM, to prevent suitable selection times from falling into the local optimal solution,

we uses two different procedures to update £y, . Such actions are defined as follows:

Procedure 1: update the probability vector

if  Accumulator < SRMTimes, then do Steps 1 to 2 ,
(3.17)
if Best Fitness, = Best _Fitness, then Accumulator = Accumulator +1

where SRMTimes is a predefined value, Best Fitness, represents the best fitness value of

the best combination of chromosomes in the gth generation, and Best Fitness represents
the best fitness value of the best combination of chromosomes in the current generations.

To consider the amount of the computation in SRE, Eq. (3.14) is the major computation
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process for SRM. Since the amount of the computation in Eq. (3.11)-(3.13) is not heavy

(depend on the number of Fitness,, and it is often not much), updatinga P, in Eq. (3.14)

is also less computation. It implies that SRM is not a heavy computation procedure.

Procedure 2: initialize the probability vector

if  Accumulator > SRMTimes, then do Step 0 and Accumulator =0, (3.18)

If Eq. (3.18) is satisfied, it indicates that the suitable selection times may fall into the local

optimal solution. At this time, the processing step of SRM should return to Step 0 to initialize

the probability vector P, .

c. The data-mining based selection-method (DMSM):

After operating SRM, the selection times of TNENs with different numbers of rules are
determined. Thereafter, PLE performs the selection step, which involves the selection of
groups and the selection of chromosomes. In selection of groups, this paper proposes DMSM
to determine the suitable groups for chromosomes.selection to form a TNFN.

In DMSM, suitable groups are selected according to the groups, which conduct from
association rules that indicate good performance. To achieve these aims, DMSM utilizes the
FP-growth [27] and the association rules mining. Regarding former, the FP-growth is used to
identify frequently pattern. It was proposed by Han et al. [27], and it aims to find the
frequently occurring patterns that do not have candidate generation. In the proposed DMSM,
the FP-growth is used to find the frequently occurring groups from transactions. To reiterate, a
transaction refers to a set of the groups that have good or bad performance. Regarding latter,
after the frequently occurring groups are found, DMSM constructs the association rules by
setting the suitable confidence. The association rules algorithm is a well-known approach in
several fields [69-73]. The purpose of mining association rules is to identify good groups.
After performing these two steps, the found association rules are utilized to selects M; groups
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that are used to choose chromosomes to form TNFNs with M rules. To prevent the selected
groups from falling into the local optimal solution, DMSM uses normal and explore actions to
select well-performed groups. The details of the DMSM are discussed below:
Step 1. Normal action:

If Accumulator don not exceed the NormalTimes, the current action is the explore action.
The aims of this action include two parts: accumulate the transaction set and select groups
which are described as follows:
Part 1: Accumulate the transaction set

The transactions are built, as in the following equations:

if  Fitness,, = (Best _Fitness,, —ThreadFitnessvalue)

Transaction ;[i] = TNFNRuleSet,, (] (3.19)
then
Performance Index = g,

if ' Fitness,, <(Best_Fitness, —ThreadFitnessyalue)

Transaction ;[i] = TNFNRuleSet , [i] (3.20)
then
Performance Index = b,

where i=1,2,--- M, , M,=M_. M_. +1--M. , j=12--- TransactionNum , the

Fitness w, Tepresents the fitness value of TNFN with M; rules, ThreadFitnessvalue 1is a
predefined value, TransactionNum is the total number of transactions, Transaction [i]

represents the ith item in the jth transaction, TNFNRuleSet,, [i] represents the ith group in

the M; groups used for chromosomes selection, and Performance Index =g and
Performance Index = b represent the good and bad performance, respectively. Hence,
transactions have the form shown in Table 3.1. As shown in Table 3.1, the first transaction
means that the three-rule TNFN formed by the first, fourth, and eighth groups have ’good”
performance. In contrast, the second transaction indicates that the four-rule TNFN formed

by the second, fourth, seventh, and the tenth groups have “bad” performance.
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Table 3.1: Transactions in the DMSM.

Transaction index ~ Groups Performance Index
1 1,4,8 g
2 2,4,7,10 b

TransactionNum 1,3,4,6,89 g

Part 2: Select groups
In the normal action, DMSM selects groups using the following equation:

if  Accumulator < NormalTimes

(3.21)
then  GroupIndex{i]l= Random[l, P ],

where i=12,---,M,, M, =M ..M - M Accumulator defined in Eq.(3.21) is

min ° min+12 max 2

used to determine which action should be adopted, Grouplndex{i] represents the selected ith

group of the M, groups, and P, indicates that there are" P,

— size - ZTOUPS 1n a population in
PLE. If the best fitness value does not improve for a sufficient number of generations

(NormalTimes), then DMSM selects groups according to explore action.
Step 2. Explore action:

If Accumulator exceeds the NormalTimes, the current action switches to the explore
action. The objective of this action.is to adopt the noetion of DMSM to explore suitable groups
in transactions. The major operations of DMSM include FP-growth performing, association
rules generating, and suitable groups selecting. The details of these three operations are
presented below.

I. FP-growth performing

In this operation, only good groups, whose performance index showed “g” in Table 3.1,
are performed with FP-growth and bad groups are skipped. Thus, frequently occurring groups
can be found according to the predefined Minimum_ Support, which stands for the minimum
fraction of transactions containing the item set. After Minimum_ Support is defined, data

mining using FP-growth is performed (detail procedures of FP-growth can be found in [27]).
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In FP-growth, frequently occurring groups can be found by exploring the FP-tree [27]. After
exploring the frequently occurring groups in the FP-tree, FP-growth data mining is completed
by the concatenation of the suffix group [27] with the generated frequently occurring groups.
Thus, in this paper, frequent groups denote the frequently occurring groups found by
FP-growth algorithm.
ii. Association rules generating

Once the frequently occurring groups are found, we can produce association rules from
these frequent ones. For the purpose of identifying the association rules with good
performance, the frequent groups must combine the groups owing bad performance shown in
Table 3.1 to count the confidence degree. The confidence degree can be computed by the
following formula:

confidence( frequent groups — good)

= P(good | frequent groups) (3.22)
supp( frequent groups U good)

- supp( frequent groups O good) + supp( frequent groups U bad)’

where P(good | frequent groups) 1is the conditional probability, - frequent groups\w good
or bad means the union of frequent groups and good or bad performance, and
supp( frequent groups U good.or.bad) stands for the counts of frequent groups with good or
bad performance occurring in transactions. Then the rule is valid if

confidence( frequent groups = good) > minconf, (3.23)
where minconf represents the minimal confidence given by user or expert. Hence, we can
infer that if a rule satisfies Eq. (3.23), then the frequent groups can be viewed as the suitable
groups, otherwise they would be unsuitable groups. For instance, if the confidence of
{1,3,6}=>{g} is bigger than the minimum confidence, then we construct this association rule.
This rule indicates that the combination of the first, third, and sixth groups results in “good”
performance. After doing so, the frequent groups are conduct to the association rules and

generate the AssociatedGoodPool which contains all frequent groups satisfied Eq. (3.23).
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iii. Suitable groups selecting
After the association rules are identified, DMSM selects groups according to the
association rules. The group indexes are selected from the associated good groups as the

following equations:

if  NormalTimes < Accumulator < ExploreTimes

then  Grouplndex[i] = w,

(3.24)
where w= Randm[1,P,_,] and w € GoodltemSet[q]
GoodltemSet[q] = Random| AssociatedGoodPool],
where ¢ =1,2,---, AssociatedGoodPoolNum, i=1,2,---, M, , M, =M . .M . ... M, ..,

ExploreTimes 1is a predefined value that judge to perform the exploring action,
AssociatedGoodPool . represents-the sets of good item set that obtain from association rules,
AssociatedGoodPoolNum presents--the total number of sets in Associated GoodPool and
GoodltemSet[i] presents a good item set that select from AssociatedGoodPool randomly.
In the Eq. (3.24), if M, greater than the size of GoodltemSet , remain groups are selected
by Eq. (3.21).
Step 3. If the best fitness value does not improve for a sufficient number of generations
(ExploreTimes), DMSM selects groups:-based on the normal action (Step 1).
Step 4. After the M, groups are selected, M; chromosomes are selected from M; groups as
follows:

Chromosomelndex[i] = q, (3.25)
where ¢ = Random[l,N_], i=1,2,---,k, N_ represents the total number of chromosomes

in each group, and Chromosomelndex{i] represents the index of a chromosome that is

selected from the ith group.

d. Fitness assignment: To assign a fitness value of an individual, the following detailed steps

in the fitness value assignment are performed:
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Step 1. Take the DMSM selected M antecedent part of fuzzy rules and use RGLS method to

calculate the consequent part of fuzzy rules. These two actions are repeated to construct

TNFNs Rp,, times from M, groups with size Nc.

Step 2. Evaluate every TNFN that is generated from Stepl to obtain a fitness value. In this

paper, the fitness value is designed according to the following formulation:

Fitness Value=1/(1+ E(y,y)), (3.26)

where |E() = 1041, (3.27)

i=1

where . and ;/ . represents the desired and predicted values of the ith output, respectively,

E(y,y) is an ertor function and N represents the number of the training data in each

generation.
Step 3. Accumulate the divided fitness value to the antecedent part of fuzzy rules with their

fitness value records.

Step 4. Divide the accumulated fitness. value of each chromosome from M, groups by the
number of times that it has been selected.

e. Reproduction: Reproduction is a procedure of copying individuals according to their
fitness value. This study adopted our previous research-elite-based reproduction strategy
(ERS) [15] to perform reproduction. In ERS, every chromosome in the best combination of
M. groups must be kept by performing reproduction step. In the remaining chromosomes in
each group, this study uses the roulette-wheel selection method [74] and [75] for this
reproduction process. The well-performed chromosomes in the top half of each group [18]
proceed to the next generation. The other half is created by executing crossover and mutation
operations on chromosomes in the top half of the parent individuals.
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f. Crossover: Although DMSM can be used to select suitable individuals for TNFN
construction, it does not create any new individual. In nature, an offspring has two parents and
inherits genes from both. The main operator working on the parents is the crossover operator,
the operation of which occurs for a selected pair with a crossover rate. In this paper, a
two-point crossover strategy [76] is adopted and shown in Fig. 3.5. In the figure, exchanging
the site’s values between the selected sites of individual parents creates new individuals. The
advantage of the two-point crossover is its ability of introducing a higher degree of
randomness into the selection of genetic material [77]. Moreover, such crossover strategy

generally yields better performance than one-point crossover due to its larger search step size

Crossover Points
Y Y
My | Gy My | Oy | . Mg | O | ... My | Oy My | Oy My | 0y | .. (Mg | Oy | . |y | Oy
—
my | oy My | oy | . M | oy | . |M | O, my | Oy My | Oy | .. |Mg | Oy | .. |Mm | O,

Figure 3-5: Two-point crossover.

g. Mutation: Although the crossover strategy produces many new strings, these strings do not
provide any new information to every group at the site of an individual. Mutation can
randomly alter the allele of a gene. In this paper, to emphasize the capability of the SRM and
the DMSM, the PLE attempts to simplify the mutation operation. Uniform mutation [74] and
[78] is therefore adopted, and the mutated gene is drawn randomly from the domain of the
corresponding variable. The benefits of uniform mutation are not only to generate new
information into a population but also to keep a highly diverse array of information, which is
useful to the fitness of individuals [79].

h. Insert good networks: Since there are “Selection Times” networks constructed in every
generation, the fitness value of each network is recorded and compares it with the structure
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evolution level. If the fitness of the network is better than the worst network in the structure

evolution level, then this network is inserted into the structure evolution level.

To consider the termination criterion, if the learning steps meet one of the following
conditions, RGLS-HCCA is terminated and output the final results.
(1) The number of generations reaches a predefined maximal iteration value.
(2) Fitness value is greater than a fitness threshold.

Consequently, the whole learning process of PLE is summarized in Fig. 3.6.

Initialize each

chromosome in
each group

Accumulator=0,
reset Py

Using SRM to determine
the selection times of (e
different number of rules
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select group
index Find the association rules

from the transaction
Save the group indexes to
Yes—»|  the transaction and add a
“o" item

No

Seleet group index
according to the
association rules

¥
Save the group indexes to
the transaction and add a
“b" item

oes each different
length of TNEN select
sufficient time?

Fitness
assignment

r

No Output the Accumulator=

final result No Accumulator+1

l

Perform Perform Perform
mutation crossover reproduction

Figure 3-6: The learning process of PLE.
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3.2 Structure Level Evolution

In this subsection, the structure level evolution (SLE) is discussed. The main processes

of SLE involve six operations: receive good networks, reproduction, variable antecedent-part

crossover, variable antecedent-part mutation, evaluation, insert good neurons. The details of

these operations are described as follows:

a.

Receive good networks: Before the structure evolution starts, we receive N
well-performed networks from parameter level evolution to be chromosomes. The coding
structure of chromosomes in the structure level evolution is shown in Fig. 3.7. In this

figure, each block of a chromosome describes an antecedent part of a fuzzy rule that has

the form in Eq. (2.5), where m; and o, represent a Gaussian membership function

with mean and deviation of 7th-dimension and ;jth rule node, respectively. The consequent
part of a fuzzy rule is skipped to encode into chromosomes since regularized least squares
is proposed to- estimate the consequent part. After that, we sort the chromosomes to

prepare for performing reproduction.

antecedent antecedent antecedent
of Rule 1 of Rule j of Rule M,
’,_/"'/' 1__1_“““==,_‘11
.a/“’— -‘--‘--‘-__‘__‘_-‘__-‘--‘-"'--_
,-‘/ -‘-‘“_"""-—__
my 01 My 02 My | Onl w

Figure 3-7: The coding the antecedent part of fuzzy rules into a chromosome in the structure level evolution.

b. Reproduction: Reproduction is a process in which string are copied according to their

C.

fitness value. In this step, roulette-wheel selection method is adopted for the reproduction
process. The well-performed chromosomes in the top half of each group proceed to the
next generation. The other half is generated by executing variable two-part and variable
two-part operations on chromosomes in the top half of the parent individuals.

Variable antecedent-part crossover: In the structure level evolution, the variable

40



antecedent-part crossover (VAC) is proposed to perform crossover. In VAC, two parents
are selected by using the roulette-wheel selection method [74]. Because the selected
parents may be with different length, the misalignment of individuals must be avoided in
the crossover operation. Thus variable antecedent-part crossover is proposed to address
this problem. The antecedent part means that only the antecedent of fuzzy rule is
performed crossover operation. In VAC, two-point crossover [76] is adopted to execute
crossover. Thus, new individuals are generated by exchanging the site’s values between
the selected sites of the parents’ individuals. In VAC, to avoid the misalignment of
individuals in the crossover, the selection of the crossover points would not exceed the
shortest length chromosome of two parents. Two individuals with different lengths using
VAC operation-are shown-in-Fig. 3.8. where AR; represents the parameters of the
antecedent part of the jth rule-in-the TNFEN, and R represents there are k£ fuzzy rules in a
TNFN. After performing the VAC, the new offspring can replace the individuals with

poor performance.

Crossover Points
— -

AR; | AR, | | AR; AR,

AR; -

Figure 3-8: Variable antecedent-part crossover operation in the structure level evolution.

Variable antecedent-part mutation: The mutation operator can randomly alter the allele of
a gene. It provides new information to every population at the site of an individual. In the
structure level evolution, the variable antecedent-part mutation (VAM) is adopted to
perform the mutation operation. The benefit of VAM is to be applied to different length of
chromosomes. The VAM operation of each individual is shown in Fig. 3.9 where AR
indicates antecedent part of fuzzy rule In VAM, uniform mutation [78] is adopted, and the
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mutated gene is drawn randomly from the domain of the corresponding variable.

Mutation Point (Only one gene is generated)

AR

AR, | AR AR

Y

AR, (SRS

AR

¥, Ry

4 RJ’

Figure 3-9: Variable antecedent-part mutation operation in the structure level evolution.

e. Evaluation: The evaluating step is to-evaluate the fitness of each chromosome that has not
already been evaluated in a population. The higher a fitness value indicates the better
performance. Since each chromosome only includes the antecedent part of fuzzy rules, the
consequent part of fuzzy rules is not defined. Thus, similar to the fitness assignment in
PLE, the RGLS method is used to estimate the consequent part of fuzzy rules. After the
antecedent and consequent part are determined, the TNEN is constructed. Then, evaluate
every TNFN toobtain a fitness value. In this paper, the fitness value is designed according
to Eq. (3.26) and (3.27).

f. Insert good neurons: After the evaluation operation, if a network has a higher fitness value
than the best network in the parameter level, then insert the neurons into the
corresponding groups of subpopulation in the parameter level evolution.

Thus, the whole learning process of SLE is summarized in Figure 3.10.
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Figure 3-10: Whole learning process of SLE,

In short, the purpose of SLE-is-to reserve the good combinations of fuzzy rules produced

by PLE and evolve the structure of the produced neural fuzzy networks. Thus, the utility of

SLE is to fine tune the evolved results of PLE. To this end, PLE would be a major evolution

to evolve TNFNs and it affects the effectiveness of the proposed RGLS-HCCA model.
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Chapter 4
Image Alignment Applications

To demonstrate the applicability of RGLS-HCCA to real world problems, two image
alignments tasks are taken to consideration: 2D image alignment and 3D image alignment.
For a 2D image alignment problem, it is considered of great importance in numerous
industrial applications including automatic visual inspection, electronic component assembly
automation, circuit board inspection, and robetic machine vision. Among them, an automatic
visual inspection system [80-82] 1s one of the most important fields for seeking an accurate
geometric transformation to align images. To this end, neural network based methods have
widespread to face this problem. The reason is that such methods often extract global features
from images and feed them into a trained neural network to estimate geometric
transformations parameters. In this dissertation, RGLS-HCCA can be used to develop a neural
fuzzy network-based image alignment system to demonstrate high performance.

For a 3D image alignment problem, it is considered a critical step in object recognition
[83], surface reconstruction [84], and image-guided surgery [85]. Two major concerns for the
alignment task are execution time and alignment accuracy. Recently, neural network-based
methods have become very popular due to their high efficiency. Thus, a TNFN-based
coarse-to-fine 3D surface alignment scheme is proposed in the current dissertation.

In this chapter, two subsections are used to introduce the proposed alignment systems.
Section 4.1 presents how the proposed 2D image system works. In Section 4.2, the proposed

TNFN-based coarse-to-fine 3D image alignment system is described.

4.1 2D Image Alignment System

The flow chart of the proposed image alignment algorithm, which consists of off-line
and on-line procedure, is illustrated in Fig. 4.1. During the off-line procedure, the synthesized
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training images are created by applying the reference image to affine transformations with
randomly selected parameters, and then use the Gabor-weighted gradient orientation
histograms (Gabor-WGOH) descriptor to represent these training images as feature vectors.
Finally, the feature vectors and desired targets are employed to train a CNFN using
RGLS-HCCA. During the executing phase, the sensed image is sent to the Gabor-WGOH
descriptor to extract a feature vector and then feed it into the RGLS-HCCA trained CNFN to
estimate affine transformations parameters. Then, the estimated parameters are taken to align
the sensed image with the reference image. The following subsections will introduce the

process of the proposed 2D image alignment scheme.

i Off-line procedure

Reference Image N
i N inB:Et ezs-‘.l:e 1HE:$E§ _| Gabor-WGOH _| Train CNFN using ;
: £CS: apply descriptor "l RGLS-HCCA :
! transformation '
| On-line procedure
i Sensed Image * Get the final '
: . | Gabor-WGOH | | RGLS-HCCA estimated | Alignthe |]
wiﬁ%?.@@ﬁ@ descriptor trained CNFN transformation sensed image |!
i L2 parameters :

Figure 4-1: Flow chart of the proposed image alignment algorithm.

4.1.1 Off-line Procedure

The objective of the off-line procedure is to train CNFN. Four main parts in the
procedure are synthesized training images creating, Gabor-WGOH descriptor generating,
self-organized training data yielding, and CNFN training. These parts are described as
follows.

(a) Synthesized Training Images Creating

The synthesized training images can be generated by applying various combination of

translation, rotation, and scaling transformations within a predefined range. The
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transformation model is affine transformation which can be described by the following matrix

X, cosd —sinf\ x, —x, x, +Ax
=5 + , (4.1)
¥, sind cos@ Ny, —y. v, +Ay

where (x,,y,) indicates the original image coordinate, (x,,y,) indicates transformed

equations:

image coordinate, s is a scaling factor, (Ax,Ay) is a translation vector, & 1is a rotation angle,

and (x,,y.) is the center of rotation.

(b) Gabor-WGOH Descriptor Generating
The WGOH descriptor has been compared by several global descriptors [40-42, 86-88]

using a nearest-neighbor search of the feature vector proposed by [89] and [90]. Thus, WGOH

was proven a good descriptor-[86]-and [90], inspired by Scale Invariant Feature Transform

(SIFT) descriptor [91], and presented by Bradley et al. to show its high speed [92]. The main

idea of the WGOH 1is that it calculates the orientation histograms within a region, and uses the

magnitude of the gradient at each pixel and the 2D Gaussian function to weight the histogram

[86]. Therefore, for the WGOH descriptor, there are four steps for representing an image:

1 For each image, we capture the template window, whose location is at the center of the
image, to be a place of extracting features. Within the window, we divide the length and
width of the window into 4 equal parts to form 4x4 grids. Each grid is considered a
sub-image. Thus the template window can be split into 4x4 sub-images.

2 On each pixel of the sub-image /(x, y), the gradient magnitude m(x,y), and orientation

A(x,y) is computed using pixel difference which the equations can be written as

m(x,y) = J(I(x+1y)~[(x—1y)* +([(x,y + 1)~ I(x,y—1)’, (4.2)

O(x,y) = tan" (1(x, y + D) = I(x,y =D)L (x +1,3) = I(x =1, ))). (4.3)
3 Calculate the 8-bin orientation histograms (each bin cover 45 degree) within each

sub-image which are weighted by the gradient magnitude, and the Gaussian function.
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4 Concatenate 8-bin histograms of 16 sub-images into a 128-element feature vector, and
normalize it to a unit length. To reduce strong gradient magnitudes, the elements of the
feature vector are limited to 0.2, and this vector is normalized again.

Consequently, each image can be represented by a 128-elemet feature vector. Fig. 4.2
illustrates an example of WGOH computation steps. However, using pixel difference to
compute the gradient is sensitive to noise. To avoid such sensitivity, Moreno et al. combined a
Gabor filter with WGOH descriptor to suppress noise [93]. Based on this fact, we adopt the
Gabor-WGOH descriptor for representing an image.

Because the 128-elemet feature vector is still too high to train a TSK-type neuro-fuzzy
network, there is a requirement of finding a dimensionality reduction method to lower the
dimension of the feature vector.-In-order to lower the dimension of feature vector, we further
employed principal component-analysis method (PCA) to reduce the 128-elemet feature
vector into a 33-element one. Therefore, each image can be represented by a 33-elemet feature

vector.

Figure 4-2: Steps for creating a WGOH feature vector.

(c) Yielding self-organized training data
After describing the Gabor-WGOH descriptor, this paper proposes a self-organized

training data-creating method to provide an appropriate training data set for training neural
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fuzzy networks. The major advantages of the proposed training data-creating method are that
it can prevent the generation of the redundant data and supply a self-organized training data
set for training a neural fuzzy network efficiently. The steps for yielding the self-organized
training data are as follows:

Step 1: First, generate a small training data set {S, . }.

Step 2: Then, utilize the training data set to train a neural fuzzy network.

Step 3: Input a fixed number of testing data set {S,__} into the neural network to create the

test

alignment error {E,,}. Check each error {E, (i)} :

test

If £, (i) > PdError,then {S, (i)} —met 5o

test

}and ErAcc = ErdAcc +1.

train

fori=12,--, N, (4.4)

where PdError is the predefined error, ErAcc is the accumulator of large error counts,

and N

test

is the number-of the test data set.

Step 4: If Erdece < t, , then accumulate the LoopNum=LoopNum+1. Otherwise, set

er

LoopNum=0. The symbol ¢, indicates the threshold of the error accumulator, and

LoopNum means the accumulating number of loop.

Step 5: If LoopNum >loop threshold 7,,,,, terminate the training and output the training set

{S,...}+ - Otherwise, go to step 2 to run recursive training.
In Step 3, the insert testing data is the data that the neural fuzzy network does not
perform well. Therefore, inserting such data can enhance the learning ability of the neural

network and prevent the selection of the redundant training data. Moreover, from Step 5,

LoopNum >t,,,, means that the amount of training data set has converged. At this time, it

also indicates that the training data set is self-organized. Thus, we can utilize the
self-organized training data-creating method to provide the training data for training CNFNs.
(d) Cooperative Neural Fuzzy Network (CNFN) training

The notion of the cooperative neural fuzzy network is to combine several networks to all
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cooperate in adapting to a large range of affine transformation. The aim of this operation is to
improve the problem of applying a large range of affine transformation to traditional
one-stage neural network which can cause a large amount of training data; such a network is
difficult to train. The cooperative networks can be seen a coarse-to-fine aligning the captured
image with reference image.

Figure 4.3 presents the process of cooperative neural fuzzy network. From this figure,
each stage deals with a certain range of affine parameters and they cooperate to get a large
range of affine parameters. As input an image with an unknown pose, the cooperative neural
fuzzy network would gradually.reduce the pose difference between the input and reference
image. Thus the final pose with respect to the reference image can be written as the following

equation:
Iy B SVF J % B (4.5)

where B, P,, and P, indicates the estimated pose from Ist, 2nd, and Nth stage of the

neural network.

Cooperative Neural-Fuzzy Network

|

s 15t stage N ( 2nd stage h ~ Nth stage h
Gabor-WGOH G:tbur-WGOH\ -_'(Gabor-WGDH
descriptor descriptor | L descriptor
= ™ . e ¥ —
B o - ! s i ' Final]mac\
Input Tmage | | neural-fuzzy > > [ neural-fuzzy o > neural-fuzzy > el 8
e o network network | | network \Alignment Result /
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Output pose to align Qutput pose to align Output pose to align
input image with input image with input image with
reference image reference image reference image

Figure 4-3: Process of cooperative neural fuzzy networks.

To perform training CNFN with providing the training data, this study proposes
RGLS-HCCA to accomplish it. In CNFN, once the dynamic image alignment range of each
stage has been determined, each network can be trained independently. Thus, the training

process of each stage of CNFN is similar, and the only difference is its training parameters. To
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this end, RGLS-HCCA is used to train each stage of CNFN to estimate the pose with respect

to the input image.

4.1.2 On-line Procedure

In the on-line phase, the sensed image (input image) is sent to the Gabor-WGOH
descriptor to extract a feature vector and then feed it into RGLS-HCCA trained CNFN to
estimate transformation parameters, which include the scaling factor s, rotation angle &,
and translation (Ax, Ay), to be taken into aligning images. More specifically, the proposed
CNFN performs N-stages of neural fuzzy network (as shown in Fig. 4.3) to gradually align
the sensed image with the reference image. Thus, the image alignment error will be reduced

stage by stage and finally get the best aligning pose with the reference image.

4.2 3D Image ‘Alignment System

According to Chapter 2, each pixel in a 3D image can be considered as a 3D point cloud
data with respect to the laser scanner. Thus, a 3D image is viewed as a collection of 3D point
clouds and these point clouds can represent arbitrary 3D surface. Based on this fact, aligning
two 3D images is likely to align two 3D surfaces and other researches also call 3D image
alignment to be 3D surface alignment (or registration) [45]. In this dissertation, the objective
of a 3D image alignment is to align a captured 3D image (i.e. 3D surface) of an object in an
arbitrary view with the 3D surface of the reference model.

Figure 4.4 presents the flow diagram of the proposed 3D image alignment system. In the
learning phase, two data flows are performed for training TNFNs to adapt two levels of image
alignment: one for coarse alignment and the other one for fine alignment. In the executing
phase, the trained TNFNs are utilized to implement a coarse-to-fine 3D image alignment task.
These two phases are explained in detail to show how the process of 3D image alignment

works.
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Figure 4-4: Flow diagram of the proposed 3D image alignment system.

4.2.1 LearningPhase

The objective of the learning procedure is to train two TNFNs for applying coarse-to-fine
3D image alignment. These two major parts of the procedure are the coarse alignment
learning and the TNFN-based surface modeling. These parts are described in the following
contents.
(a) Coarse alignment learning

The goal of coarse alignment is to determine an approximate rigid transformation that
coarsely aligns the reference model with the input point clouds. The coarse alignment must
be quick to provide a good initial transformation for the fine alignment task. Thus, TNFN is
utilized to learn any case of rigid transformation within the predefined range. Once the
training of TNFN is completed, input arbitrary view of point clouds would yield the estimate
pose with respect to the reference model. Therefore, the executing phase of the TNFN is
simple and efficient.

The procedures of proposed coarse alignment learning involves generating synthesized
training point cloud data, yielding the modified viewpoint feature histogram (MVFH), and
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training the TNFN. These operations are introduced as follows:
(i) Generating synthesized training point cloud data

Figure 4.5 depicts the point cloud data of the reference model. The reference model is an
integrated model constructed by collecting multi-views of point cloud data. To generate the
synthesized training point cloud data, various combinations of translation and rotation
transformations within a predefined range are applied in the reference model. The

transformation can be considered a rigid transformation, which can be written as follows:

1
X " Ny N3 X I,

!

m=|y |=R.saT =1 vty Iyl |Y|+|t

!

Z e —" LT z t

v | (4.6)

z

where R is a rotation matrix, 7 is a translation vector, s is an original set of point cloud data
and m is a transformed set of point cloud data. Furthermore, to simulate the real case in a 3D
scene, point cloud data that cannot be seen in the viewpoint direction are eliminated. Figure
4.6 presents an example of the simulated training data. As shown. in this figure, the point
cloud data is only a partial of reference model and the unseen point clouds have been
eliminated. Therefore, after the training point data has been generated, the following operation

is to extract the feature of the point cloud data.

2(m)

-2 = :
y(m) 2 X(m)

(2) (b)

Figure 4-5: Point cloud data of the reference model: (a) Front view and (b) Top view
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Figure 4-6: Example of the simulated training data: (a) Front view and (b) Top view.

(if) Modified Viewpoint Feature Histogram

Modified Viewpoint Feature Histogram (MVFH) is the modification of Viewpoint
feature histogram (VFH), which was presented by Rusu et al. [94], to show its
computationally efficient 3D feature. To introduce VFH in advance, this descriptor is
computed by accumulating a histogram of the angles between the central viewpoint direction

and each normal of point cloud. Figure 4.7 illustrates the idea of VFH.

Figure 4-7: Creation of viewpoint feature histogram.

Suppose the central point is V, and the viewpoint is V,. Then the central viewpoint

directionis V, —V,. Thus the angle & between the central viewpoint direction (¥, —V,) and
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each normal #n, of point cloud ¥, can be computed by the following equation:

0 =cos™ e =Vy)em . 4.7
V.=V, II-[In |

Thereafter, the N-bin orientation histograms (each bin cover 180/N degree) can be
calculated by accumulating the angle described in Eq. (4.7). The histogram in each bin is
normalized by dividing the total number of point clouds. Thus, such histogram indicates the
percentage of point clouds falling in each bin. However, in 3D surface alignment tasks, the
viewpoint direction angle to represent the 3D surface might be not appropriate because VFH
in some much different view angles would yield similar feature, especially in the case of
symmetrical objects with 180 degree view angle difference. Figure 4.8 illustrates an example
of similar VFH with much different view angle. As shown in this figure, the object is at two

much different viewpoints but they-have similar viewpoint feature histogram.

Fucertage of pants sy in wacn bn
» = &

E) E3 E] E3
Pusmbar of hertogram bins

Figure 4-8: Example of similar viewpoint feature histograms in much different view.

Although Rusu et al. used ideas from Point Feature Histogram (PFH) [95] to assemble
with VFH, the PFH descriptor is a local feature, which indicates PFH to be view independent,
such that the combined VFH-PFH still cannot solve the problem presented in Fig. 4.8. In our
3D surface alignment case, the captured 3D feature must be view dependent. The reason is
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that the 3D feature is utilized to identify the view angle and if the 3D feature is view
independent, the captured feature would be similar in each view such that it is impossible to
differentiate the exact view angles in an object. Regarding this fact, we modify the original
viewpoint feature histogram by calculating another viewpoint direction related angle to
improve the viewpoint feature histogram. Then we name such viewpoint direction as modified
viewpoint feature histogram (MVFH). Figure 4.9 presents a diagram that describes two

viewpoint direction related angles where € is the original angle used by VFH, ¢ is new

added angle used by MVFH, the central point is ¥, the viewpointis ¥, ,and V; is a certain

3D point.

(Ve-Vp)x(Vi-Vo) ~

Figure 4-9: Diagram describes two viewpoint direction related angles € and ¢ .

The new added angle ¢ can be computed by the following equation:

¢=COS_1[ (V. =V, )x(WV,=V.))en, ] 49

Ve =V )<V =Vl -l |
Then the N-bin orientation histograms (each bin cover 180/N degree) can be computed
by accumulating the angle ¢. Thus, MVFH is finished by dividing the total number of point
clouds to normalize histogram in each bin. To demonstrate the improvement of the modified

viewpoint feature histogram, we utilize the previous example presented by Fig. 4.8, which has
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similar VFH in much different view, to re-computed MVFH. Figure 4.10 depicted the
computed MVFH. As shown in this figure, the first histogram and the second histogram have
different shape. This example clarifies that MVFH correct the error of much different view

with similar VFH.
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Figure 4-10: Example of modified viewpoint feature histograms in much different view.

(iii) TNFN Training

After extracting MVFH from a 3D object, let MVEH be the input neurons of TNFN and
let the desired pose be the output neurons of TNFN. The desired pose comprises six degrees
of freedom, including three rotation angles (@, ¢, @) and three translation parameters (x, y, z).
Thus, the use of TNFN is to model the relationship between the MVFH and the desired pose.
Once receiving a MVFH from capturing a certain view of point clouds, the TNFN would
output an estimated pose, which can be used to coarsely align the input point clouds with the
reference model. To this end, training of a TNFN to provide the required pose would affect
the alignment accuracy.

To perform training of a TNFN, the reference model is used as a basis for synthesizing a

set of point clouds constituting a training-set. Each training point data is generated by
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applying the transformation defined in Eq. (4.6). To reduce the correlations between training
point clouds, the six parameters are selected randomly and independently within the
predefined boundaries. After the training-set has been generated, the MVFH method is used to
represent the training point clouds as input features of a TNFN. Subsequently, the proposed
RGLS-HCCA would be adopted to begin training of a TNFN and the training procedure
would stop as the stopping condition is satisfied. Although the training phase is lengthy, the
executing phase of the proposed coarse alignment method merely consists of computing the
MVFH descriptor and then feeding it into TNFN to estimate the corresponding pose.
(b) TNFN-based surface modeling

The purpose of the TNFN-based surface modeling is to provide an evaluation method for
performing the fine alignment-of -3D-surface. The evaluation is to measure how close the
distance from the reference surface to input point clouds is. Thus, the major part of the
TNFN-based surface modeling is to use TNEN to model the 3D surface that maps the 3D
Euclidean input space (input 3D point (x,»,z)) into 1D Euclidean output space (the shortest
distance to the reference surface). Such mapping can be considered a cost function that
evaluates the distance between the input point clouds and the reference model. Thus, the
TNFN mapping can combine with the.downhill simplex optimization method to iteratively
compute the rotation matrix R and translation vector 7 to perform the fine alignment of 3D
surface. The detail of the combination of the TNFN mapping and the downhill simplex
optimization will be discussed in the executing phase.

The procedures of modeling the 3D surface involve combining the cube model, creation
of training data, and surface modeling using TNFN. These operations are explained bellow.
(i) Combing cube model

To model the reference surface, uniform distributed point clouds are needed to prepare the

training data. In this study, a cube model is generated to be combined with the reference
model. The cube model encloses the reference surface, and the point clouds within the cube
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are sampled uniformly. Thus, the point clouds around the reference model can serve as the
training data for modeling the reference surface. Figure 4.11 depicts the locations of cube and

reference model where the reference model is located at the center of the cube.

z(m)

0

-2
y(m) 4 -4 x(m)

Figure 4-11: Location of cube and reference model.
(ii) Creation of training data
In the creation of training data, we extract the point clouds enclosed the cube satisfying
the distance from a point (x,y,z) to the reference model less than a predefined value. The
predefined value is set by observing the alignment error yielded from the coarse alignment
case. Therefore, the point clouds (x,y,z) satisfies
Dist(x,y,z) < predefined value (4.9)
will be used for training the TNFN. In general, the predefined value must be set sufficient
large to involve all the coarse alignment cases. Thus, to simply the creation of training data,
this paper set all point clouds inside the cube model to be the training data.
(iii) Surface modeling using TNFN
Similar to the TNFN training in the coarse alignment learning case, the structure shown in
Fig. 4.5 is used to model the 3D surface. The input of the TNFN is defined as the coordinates
(x,y,2) of a point cloud, and the output of the TNFN is the unsigned shortest distance from a
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point (x,),z) to the reference model. Thus, the surface of the reference model can be modeled

using the TNFN to map the 3D coordinate of point cloud data into the 1D distance between

the cube data and the reference model. The representation of the modeling function can be
written as follows:

Dist = f(x,y,z). (4.10)

The total distance between the cube data and the reference model can be computed as

follows:

N
TotDist:Zf(xi,yi,zi), (4.11)

i=1

where N is the number of the cube model. Thus, when the resolution of the cube model is
sufficiently high, any atbitrary point clouds inside the cube can be send into a trained TNFN
to estimate the distance between the input point clouds and the reference model.

In consideration of training a TNEFN to model the reference surface, as well as the coarse
alignment learning, RGLS-HCCA is also utilized to perform training the TNFN.
4.2.2 Execution Phase

In the execution phase, the input point clouds are aligned with the reference model by
means of MVFH extraction, TNFN-based coarse alignment, and TNFN-based fine alignment.
MVFH extraction has been discussed in.Section 4.2.1 (Part (a)), whereas the TNFN-based
coarse and fine alignments are described bellow.
(a) TNFN-based coarse alignment

Assuming the MVFH descriptor has been calculated, the descriptor is forwarded to the
trained TNFN to obtain the rotation angles (¢, @, @) and translation parameters (x, y, z). Then,
the six parameters are used to compute the rotation matrix R and translation vector 7 defined
in Eq. (4.6). Based on R and 7, we obtain the estimated pose to coarsely align the input point
clouds with the reference model.

(b) TNFN-based fine alignment
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The procedure of the TNFN-based fine alignment consists of the TNFN mapping and the
downhill simplex optimization [96]. In the TNFN mapping, the TNFN maps each 3D point

cloud (x,y,z) into a 1D distance function f(x,y,z) (defined in Eq.(4.16)). The total

distance function Z f(x,y,z) is computed by summing of each distance mapping of 3D

point cloud. Thus, the total distance function is used as the cost function of the subsequent
downhill simplex optimization. In downhill simplex optimization, iterative calculation of rigid
transformation between input point clouds and reference model is adopted to minimize the
cost function. Each iterative loop uses the downhill simplex method to compute the rotation
matrix R and translation vector 7' to perform fine alignment. Once the downhill simplex
optimization is completed, the final R and 7 are used to calculate the estimate pose that align
the input point clouds with reference surface.
Detail steps of the downhill simplex optimization [97] for fine alignment of 3D surface
are described as follows:
Step 0: Under 3D rigid body transformation, we choose six degrees of freedom (three rotation
angles (@, ¢, ) and three translation parameters (x, y, z)) as the vertex of simplex. Then we
randomly generate 6+1 initial vertices of simplex within a fixed range where 6 represents the
dimension of vertex vector. In this study, the 7 initial vertices are denoted as X, X|,---, X.
Step 1: Two procedures are performed in this step.
(1) Evaluation: Based on each vertex of simplex, we can compute the corresponding rigid
transformation matrix defined in Eq. (4.6). According to the transformation matrix, the
input point clouds yielded by coarse alignment are mapped into new coordinates. The new

point clouds are forwarded into the trained TNFN to get distance function f(x, y,z). Then,

Z f(x,y,z) can be calculated by sum of all mapping of new point clouds.

(2) Sorting: Here we choose total distance function Z f(x,y,z) as the cost function and

re-define the symbol to be C(X,) where X, indicates the i-th vertex of simplex. Then
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we sort the C(X,) and set the order as follows:

C(X,)<C(X,) < <C(Xy). (4.12)
Step 2: In this step, the reflection point X[ is calculated. The downhill simplex optimization

utilizes the reflection point as the first candidate point to replace the worst point X,. The

reflection point is calculated as follows:

(a) First find centroid of the remaining point (X, ~ X5):
M==->X,. (4.13)
(b) Then seek the reflection point:
XE=M+a(M=X,), (4.14)
where o >0 and the defaultvalueis o =1.
(c) Finally, C(X;) can be calculated by the means of evaluation method described in Step

1.

Step 3: There are 3 cases are discussed in this step.
Case 1: If C(X[)=C(X,) and C(X[)<C(Xs), choose X{ to replace X,. Then we
re-sort the simplex and forward to Step 4.

Case 2: If C(X[)< C(X,), compute the expansion point X, as follows:
XE =X+ p(XE-M), (4.15)
where 7>0 and the default value is »=1. Then calculate the C(X[). If

C(XF)<C(X,), choose X} to replace X,. Otherwise, choose X[ to replace
X . After that, we re-sort the simplex and forward to Step 4.
Case 3: If C(X})>C(X,) and C(X[)>C(X,), compute the contraction point X as

follows:
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XE=M+B(X, - M), (4.16)
where 0< <1 and the default value is #=0.5. If C(X)<C(X,), then
X, = X[. Otherwise, if C(X[)>C(X,), then X, = X,. Subsequent, check the
case of C(X}) as follows:

() If C(X{)<C(X,), choose X¢ to replace X,. Then, we re-sort the simplex
and forward to Step 4.
(i) If C(X$)>C(X,), shrink the whole simplex toward X,. After shrinking, the

new simplex is expressed as:

X g, (X =) X)X + (- )X )X, + (- X )], (4.17)
where 0 < 77 <1’ and the default valueis 7 =0.5.
Step 4: If the least cost function meet one of the following conditions, the downhill simplex
method is terminated, and output the final results.
(a) The number of loops reaches a predefined maximal iteration value.
(b) The value of cost function is less than a minimal threshold.
Otherwise, if the least'cost function does not meet the above conditions, then we
feedback to the Step 2 to continue the optimization procedure.
To sum up, the final results of the downhill simplex method would output the best vertex
of simplex. Then we decode it to the six degrees of freedom (¢,¢,80,x,y,z). These
parameters can be transfer to a rotation matrix R and translation vector 7. The fine alignment

of 3D surface is completed by computing the rigid body transformation according the R and

T.
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Chapter 5
Experimental Results

In this chapter, the performance of RGLS-HCCA is demonstrated on three problems. The
first one is a problem of prediction of Mackey-Glass time series. This problem is a common
benchmark for examining different learning algorithms. By applying RGLS-HCCA to the
benchmark, RGLS-HCCA would show how fast the algorithm converges and lower
estimating error comparing with other learning algorithms. Subsequently, two real world
problems, which are 2D and 3D image alignment tasks, are used to verify the applications of
RGLS- HCCA. The proposed RGLS-HCCA would act from a simulator to a real system. The
experiments would evaluate the proposed method of aligning 2D and 3D images in
comparison with other typical alignment systems.

This chapter-is divided into three subsections. In' Section 5.1, the prediction of
Mackey-Glass time series is used to examine the learning performance of RGLS-HCCA. In
Section 5.2 and 5.3, RGLS-HCCA is applied to 2D and 3D image alignment problems,
respectively.

All experiments in this chapter are performed by using an Intel Core 17 860 chip with a

2.8GHz CPU, a 3G memory, and the Matlab 7.5 simulation software.

5.1 Prediction of Mackey-Glass Time Series

To verify the proposed RGLS-HCCA, Mackey-Glass time series is utilized to compare
RGLS-HCCA with that of other methods. The initial parameters of the proposed
RGLS-HCCA are determined by parameter exploration methods ([98] and [99]). As shown in
[98], a small population size is good for the initial performance, a large population size is
good for long-term performance and a low mutation rate is good for on-line performance, a
high mutation rate is good for off-line performance. Moreover, in [99], parameters for genetic
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algorithms can be adjusted by exploring the predefined range in increments of a small value.
For instance, the population size has the range from 10 to 100 in increments of 10. Thus, this
study adjusts parameters of RGLS-HCCA according to the criteria mentioned in parameter
exploration methods. The results of parameters used in this study are listed in Table 5.1 where
“none” in SLE indicates “not used” in the learning phase.

Moreover, since 4’4 (with size of 50 x 50 under conditions of 10 fuzzy rules and four
input in a TNFN) in Eq. (3.5) is singular (rank of 4”4 is about 47) for the example of Mackey
Glass time series prediction, this dissertation incorporates RGLS to make (4”4+Al) is
non-singular. To consider the RGLS parameter (L), this paper adopts the cross-validation
method [100] to adjust it. The notion of the cross-validation method is to divide the training
data set into training data and validation data and increase A with small increments to balance
the error of training data set and-validation set. Thus, this paper uses cross-validation method

to optimize the RGLS parameter (A) and final adjusted A of this example is listed in Table 5.1.

Table 5.1: Initial parameters of RGLS-HCCA before training.

Parameters g lue

PLE SLE
Pw'ze 30 20
N, 20 none
Selection Times 40 none
NormalTimes 10 none
ExploreTimes 15 none
Crossover Rate 0.6 0.6
Mutation Rate 0.2 0.3
[Mmina Mnax] [69 15] [69 15]
[mmina mmax] ['59 5] ['59 5]
[ O miny, O max] [39 20] [39 20]
Minimum_Support TransactionNum/2  none
Minimum_Confidence  60% none
RGLS parameter ( A ) 0.00001 0. 00001

The Mackey-Glass time series is a common benchmark for examining different learning
algorithms or fuzzy modeling research communities. In earlier work [101], Lapedes and

Farber used a back propagation network to predict Mackey-Glass time series. After that, other
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researches [102] followed Lapedes and Farber’s work to be a benchmark to examine
algorithms. Thus, we utilize such Mackey-Glass time series to perform an analysis on our
proposed algorithm and other evolutionary algorithms.

The Mackey-Glass time series is generated from the following delay differential

equation:

dx(t)  02x(t-7)
dt 1+x°(t-1)

—0.1x(0). (5.1)

For this time series prediction problem, Jang [103] extracted 1000 input-output data pairs

{x, yd} from =118 to =1117, which consisted of four past values of x(), that is
[x(z =18), x(t —12),x(t — 6), x(¢); x(t + 6)], (5.2)
where 1=17 and x(0)=1.2 and x(#)=0 for /<0. The reason choosing four past values to predict
time series is from Jang’s [103] work which wanted to allow comparison with other
researches’ algorithms (Lapedes and Farber [101], Moody [104], Crower [102]). Thus, there
are four input to  RGLS-HCCA, corresponding to these: values of x(¢), and one output
representing the value x(¢+4¢), where At is a time prediction into the future. The first 500 pairs
[from x(118) to x(617)] are the training data set, and the remaining 500 pairs [from x(618) to
x(1117)] are the testing data set used for validating the proposed method. The values are
floating-point numbers assigned using the RGLS-HCCA initially. The fitness function in this
case is defined in Eq. (3.26) and (3.27) to train the neural fuzzy network. The evolution
learning processes 500 generations and it is repeated 50 times. For comparative analysis, the

present study adopts the root mean square error (RMSE), which is defined as follows:

N, 1/2

RMSE{NLZ(Y,(H@—Y,”’(H@Y , (5.3)
t I=1

where N, is the number of testing data, Y/ (¢+6)=x(#+6) is the desired value, and Y(#+6) is the

predicted value by the model with four inputs and one output.

In this example, RGLS-HCCA is compared the performance with the HESP [23], ESP
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[14], and SANE [13]. In these models, the learning parameters, which are determined
according the parameter exploration method [98] and [99], are shown in Table 5.2. To perform
training, the evolution learning processes for 500 generations. Figure 5.1(a)-(d) show the
prediction results of the three models. The symbol “0” represents the desired output of the

AT 33

time series, and the symbol represents the output of the four models. Figures 5.2(a)-(d)
illustrate the error between the desired and four models’ outputs. As shown in Fig. 5.1-2, the
performances of the RGLS-HCCA are better than those of others. Fig. 5.3 shows the learning
curves of the four models. As shown this figure, the proposed RGLS-HCCA model converges

faster than those of other three models.
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Figure 5-1: Prediction results of the (a) proposed RGLS-HCCA, (b) HESP, (c) ESP, and (d) SANE.
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Figure 5-3: Learning curves of the proposed RGLS-HCCA, HESP, ESP, and SANE.

In addition HESP, ESP, and SANE, to further show the effectiveness and efficiency of
the proposed RGLS-HCCA model, we also apply MGCSE [15], and traditional genetic

algorithm (TGA) [16] to the same problem. To compare with theses algorithms, according the
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parameter exploration method [98] and [99], 14, 13, 12, 14, and 12 fuzzy rules are set for
HESP, MGCSE, ESP, SANE and TGA, respectively. In addition, the population size has the
range of 10 to 250 in increments of 10, the crossover rate has the range of 0.1 to 1 in
increments of 0.1, and the mutation rate has the range of 0 to 0.4 in increments of 0.01. To
this end, the parameters used for HESP, MGCSE, SANE and TGA are listed in Table 5.2. In
addition, as same with RGLS-HCCA, the evolution learning of each method processes for
500 generations and is repeated 50 times. Table 5.3 lists the generalization capabilities of the
proposed RGLS-HCCA, HESP, MGCSE, ESP, SANE, and TGA. Clearly, as shown in Table
5.3, RGLS-HCCA obtains a lower RMSE than other methods. In TGA, according to [13],
cooperative coevolutionary algorithms can find solutions faster and solve harder problems
than TGA. Thus, RGLS-HCCA-and-other methods (HESP, MGCSE, ESP, and SANE) exhibit
lower RMSE than TGA. In SANE, symbiotic evolution is adopted. Since symbiotic evolution
only used one population to evaluate every partial solution, the evaluation would cause partial
solutions too similar. Instead, the proposed RGLS-HCCA provides several groups to evaluate
each partial solution: Thus, the proposed model has more chance to obtain optimal solution.
The explanation can specify that the proposed method has better performance than SANE. To
consider group-based evolutionary algerithms . (HESP, MGCSE, and ESP), when faced with
complex problems, the dimension of chromosomes is still high such that low convergence rate
occurs. Thus, this dissertation incorporates RGLS to reduce the dimension of chromosomes
and proposes HCCA to self adjust the parameters and structure of TNFN. Based on this fact,

the proposed model would be superior to HESP, MGCSE, and ESP.

Moreover, to compare RGLS with the pseudo inverse method, this paper also performs
the same experiment on the pseudo inverse method. The average RMSE of the pseudo inverse
method for 50 runs is 0.0025, which is slightly larger than RGLS (0.0023). Thus, in this

example, RGLS would be better than the pseudo inverse method.
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Table 5.2: Initial parameters of four learning models.

Parameters

Method Populations  Crossover Mutation Fuzzy
size rate rate rules
14(30 for

HESP subpopulations 0.7 0.03 14
size)
13(30 for

MGCSE subpopulations 0.6 0.04 13
size)
12(30 for

ESP subpopulations 0.7 0.05 12
size)

SANE 120 0.1 0.15 14

TGA 140 0.8 0.01 12

Table 5.3: Performance comparison of various existing models.

RMSE
Method

Best Mean Worst STD
RGLS-HCCA 0.0017 0.0023 0.0026 0.0005
HESP 0.0118 0.0149 0.0193 0.0017
MGCSE 0.0100 0.0158 0.0190 0.0019
ESP 0.0110 0.0172 0.0219 0.0026
SANE 0.0145 0.0219 0.0313 0.0039
TGA 0.0192 0.0271 0.0747 0.0079

Furthermore, this example also compares the running time of RGLS-HCCA with that of
other methods. The running time defined in this case is used to measure the time when the
fitness of the algorithm exceeds the predefined value (0.85). The results of four algorithms

over 50 runs are reported in Table 5.4. As shown in this table, the proposed RGLS-HCCA is

faster than HESP, MGCSE, ESP, SANE, and TGA.

Table 5.4: Comparison of the running time of various algorithms.

Method Best(seconds) Worst(seconds) Mean(seconds)
RGLS-HCCA 6.07 43.02 23.28

HESP 16.46 121.49 32.61

MGCSE 11.85 162.27 38.27

ESP 18.54 177.83 40.16

SANE 16.99 231.18 54.80

TGA 17.52 180.27 103.36

5.2 Results of 2D Image Alignment

In the 2D image alignment experiment, visual inspection images, which are 640 by 480
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pixels size, are used to examine the utility of the proposed CNFN-based image alignment
method. Figure 5.4 depicts an example about such images where the left side is a reference
image and the right side is a transformed image by a scaling, rotation and translation. Also in
this figure, the dashed window represents a template window (the size is 200x200, and feature
vectors are extracted within this window), and the cross sign denotes the reference location of

the template.

il

()

Figure 5-4: (a) Reference image. (b) Testing image with scale=0.9, rotation=-10", vertical translation=>5,

horizontal translation=10.

In the following 2D image alignment experiments, two kinds of neural works are
performed. The first one is a one-stage of CNEN (OS-CNFN), which is taken into
consideration of applying to the medium range of affine parameters and examining different
learning methods. The second one is a multi-stage of CNFN (MS-CNFN), which is used to
apply the trained networks to adapt to a large range of affine parameters.

5.2.1 Alignment Results of One-stage Neural Fuzzy Network

In Table 5.5, four types of experimental images are prepared for simulation. The first three
types of images are the synthesized ones generated randomly within the range in Table 5.6. In
the last type of images are real ones captured from a camera. Moreover, Table 5.6 indicates
the searching range for image alignment. If the affine transformation exceeds the range, the
image alignment system may not promise high accuracy. Thus, the range of the image

alignment defined in this subsection is restricted in Table 5.6.
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Table 5.5: Experimental images preparation.

Image Type Image Preparation
Synthesized Images 800 images are generated with randomly selected
affine parameters within the predefined range.

Training Images The 50% of synthesized images
Testing Images The 50% of synthesized images
Real Images Images are acquired from CCD camera with

different pose from the reference image.

Table 5.6: Range of affine transformation parameters used in experiments.

Affine transformation parameter The range of affine
transformation parameter
Scale [0.7 1.3]
rotation(degrees) [-3030]
vertical translation(pixels) [-20 20]
horizontal translation(pixels) [-20 20]

The following parts will discuss the comparison with existing learning methods and with
existing image alignment systems.
Part 1: Comparison with existing learning methods

Three typical evolutionary learning methods, which are HESP [23], ESP [14] and SANE
[13], are implemented carefully (the learning parameters are found using the method given in
[98] and [99]) to compare with the proposed RGLS-HCCA. Moreover, to explore the number
of fuzzy rules for HESP, ESP and SANE, the fuzzy rules are tuned by setting the range of
20-100 in increments of 5. Thus, the results find that 85, 80 and 80 rules are suitable for
SANE, ESP, and HESP respectively.

In this experiment, 800 synthesized images are generated randomly by the way in Table
5.5 where 50% of images are for training set and another 50% ones are for testing set. Then
33-element feature vectors are obtained by applying Gabor-WGOH with PCA dimensionality
reduction to above-generated images. Moreover, before training, the initial parameters of
RGLS-HCCA are given in Table 5.7. The initial parameters are tuned by the parameter
exploration method (where the RGLS parameter (A) is adjusted by cross-validation method)
which has been described in section 5.1.
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To consider SRM in RGLS-HCCA, Figure 5.5 shows the best results of the probability
vectors for 15 runs in different training and testing images. As shown in Fig. 5.5, the highest
probability means the most suitable number of fuzzy rules of the TNFN model in the best run.
Therefore, the suitable number of fuzzy rules is 24. It represents that in most cases a 24-rule
TNFN would have higher probability to obtain better performance than other rules within
[Mmin, Mimax] = [18, 25].

Figure 5.6 depicts the learning curves of four models. From this figure, RGLS-HCCA
demonstrates faster convergence speed than those of HESP, ESP and SANE. Moreover, to
examine the learning accuracy, the testing data would be sent into the trained TNFNs to get
the estimated pose including scale, rotation, vertical translation, and horizontal translation.
Then, by comparing the desired pose; four alignment errors (i.e. ErrScale, ErrAngle, ErrDx,
and ErrDy) are generated. Table-5.8 presents the learning accuracy of four evolutionary
models. From this table, the proposed RGLS-HCCA exhibits the lowest errors among four
models. To this end, the proposed model not only promotes its leaning speed but also sustains

the high learning aceuracy.

Table 5.7: Initial parameters before training.

Parameters Value
PLE SLE
Pe 40 20
N, 20 none
Selection_Times 50 None
NormalTimes 10 None
ExploreTimes 15 None
Crossover Rate 0.6 0.7
Mutation Rate 0.2 0.4
[Minin, Minax] [18,25] [18, 25]
[7umins Minax] [-10, 10] [-10, 10]
[On7in7 Umax] [3’ 15] [33 15]
Minimum_Support TransactionNum/2 none
Minimum_Confidence  60% none
RGLS parameter (1)  0.003 0.003
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Figure 5-6: Learning curves of the RGLS-HCCA, HESP, ESP, and SANE methods.

Table 5.8: Leaning accuracy of the RGLS-HCCA, HESP, ESP, and SANE methods.
Method Mean Errors

ErrAngle  ErrDx ErrDy
(degrees) (pixels) (pixels)

RGLS-HCCA 0.0066 0.3252 0.4953  0.5058

ErrScale

HESP 0.0223 1.4431 1.1309  1.1600
ESP 0.0229 2.0470 1.1051  1.6137
SANE 0.0247 2.0311 1.4620  1.8132
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Part 2: Comparison with existing image alignment systems

To evaluate OS-CNFN (i.e. the proposed system) in comparison with other existing
systems ([42], [44], [87], [88], and [91]), the implementation of these existing systems are
carefully cited their original paper. The comparison in this section consists of the alignment
accuracy, alignment speed, robustness and real image alignment case. These comparisons are
discussed in the following parts.

A. Alignment accuracy

To compare the alignment accuracy of different systems, the training images, which are
used to train neural networks, and the testing images, which are used to check the alignment
accuracy, are generated by the way described in Table 5.5.

Figure 5.7 depicts an alignment-example for a testing image on six different systems. The
cross sign in this figure denotes-the estimated results. From this figure, OS-CNFN can
estimate more accurate position and orientation of the cross sign than other systems.

In addition, 15 runs using different training and testing images are performed to further
examine the alignment accuracy of the proposed system. The simulation results are shown in
Table 5.9, which presents the average and standard deviation error of six image alignment
systems. From this table, OS-CNFN-exhibits the lowest alignment error than other systems.
Moreover, the simulated data indicates that the alignment reaches the high accuracy level,

thus, OS-CNFN can provide a useful way to align images very accurately.

Table 5.9: Alignment errors in different image alignment systems.

Method Errors
ErrScale ErrAngle (degrees) ErrDx (pixels) ErrDy (pixels)
Standard Standard Standard Standard
Mean Deviation Mean Deviation Mean Deviation Mean Deviation

OS-CNFN 0.0061 0.0065 0.3184 0.3106 0.4820 0.3985 0.5175 0.4260
DCT [44] 0.0067 0.0098 0.6330 1.0681 1.4490 1.5832 0.9576 1.1290
FFT [87] 0.0121 0.0149 0.8020 1.0177 54070 4.9574 2.7508 2.4640
KICA [88] 0.0176  0.0192 1.4147 1.6462 0.9929 09172 1.2090 1.1842
ISOMAP[42] 0.0294 0.0268 2.0809 2.0043 1.6430 1.6123 2.2356 2.7793
SIFT[91] 0.0387 0.0775 0.4312 0.8516 1.0764 1.5838 2.1186  3.5750

74
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Figure 5-7: Alignment results for different systems: (a) Ground Truth, (b) OS-CNFN, (c¢) DCT, (d) FFT, (e)

KICA, (f) ISOMAP, and (g) SIFT.

75



B. Alignment speed

To demonstrate the alignment speed, the execution time required in performing one image
alignment task is discussed. In this paper, the steps of performing one image alignment task
consists of capturing the template window from the input image, computing the feature within
the window, and feeding the calculated feature into the trained network to get the affine
parameters.

In this experiment, we utilize 400 testing images to perform image alignment tasks. The
average execution time of OS-CNFN, DCT, FFT, KICA, ISOMAP, and SIFT take about 30m:s,
26ms, 28ms, 65ms, 330ms, and 57ms respectively. From this result, it is obviously that
OS-CNFN is almost as fast as the FFT and DCT systems and is more efficiently than other
three systems.

C. Alignment Robustness

Next, the robustness of OS-CNEN under different levels of random additive Gaussian
noise is discussed. In this experiment, 400 testing images are randomly generated with the
addition of various strengths of Gaussian noise-to examine the robust performance of different
image alignment systems. Figure 5.8 illustrates an example of aligning a testing image with
the reference image under 10 dB signal-to-noise ratio (SNR) condition. As shown in this
figure, OS-CNFN estimates the rotation and translation of the cross sign more accurately than
other methods.

The simulation results of the absolute estimating errors of affine parameters under eight
levels of SNR is presented in Figure 5.9(a)-(d). From these figures, OS-CNFN demonstrates
lower affine parameters error than other systems, especially as SNR is larger than 15 dB. It

stands for OS-CNFN with high robustness against noise.
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® (9]
Figure 5-8: Alignment results for different systems under 10 dB SNR condition: (a) Ground Truth, (b) OS-CNFN,

(¢) DCT, (d) FFT, (e) KICA, (f) ISOMAP, and (g) SIFT.
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Figure 5-9: Average affine transformation errors comparison using OS-CNEN, DCT, FFT, KICA, ISOMAP, and

SIFT under various SNR. Error with respect to (a) scale, (b) rotation, (c) translation on X-axis, and (d)

translation on Y-axis.

D. Real Image Alignment Case

In this part, real images are utilized to verify the effectiveness of the proposed system.
Figure 5.10 (a)-(d) presents the results of aligning the same real image using OS-CNFN, DCT,
FFT, KICA, ISOMAP, and SIFT respectively. As shown in this figure, OS-CNFN
demonstrates more accurate rotation and position of the cross sign than other alignment

systems. Thus applying the proposed image alignment system to real image cases is feasible.
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Figure 5-10: Results of image alignment on real images: (a) OS-CNFN, (b) DCT, (c) FFT, (d) KICA, (e)
ISOMAP, (f) SIFT.

5.2.2 Alignment Results of Multi-stage Neural Fuzzy Networks

Table 5.10 defines the target alignment range for aligning the visual inspection images.
All image alignment systems mentioned in this subsection are implemented to reach the target
alignment range.

The experimental results of multi-stage neural networks contain two parts. In part 1, the
CNFN with RGLS-HCCA training is performed. In part 2, synthesized and real images are
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used to compare the proposed image alignment system with other systems.

Table 5.10: Target alignment range.

Affine parameter The range of affine
parameter
Scale [0.7 1.3]
rotation(degrees) [-100 100]
vertical translation(pixels) [-100 100]
horizontal translation(pixels) [-100 100]

(1) Cooperative Neural Fuzzy Network with the RGLS-HCCA training

To achieve the target alignment range defined in Table 5.10, we choose three ranges of
affine parameters described in Table 5.11 to accomplish the three-stage of CNFN (i.e.
MS-CNFN). In this table, each range contains a single neural fuzzy network, and these ranges
cooperate to adapt to a target alignment range. For the supply suitable training data for
networks, this paper uses the self-organized training data-yielding method to generate 1165,
137, and 219 training data for coarse, medium, and fine alignment ranges, respectively. The
map of recursive loop versus increased training data for each range defined in Table 5.11 is
shown in Fig. 5.11. Based on this figure, the number of the increased training data decreases
gradually and then self-organizes.

Prior to performing the training, the initial parameters of RGLS-HCCA are given in
Table 5.12. Based on the training feature vectors-and initial parameters, we perform the coarse,
medium, and fine RGLS-HCCA training individually. These three-stage training stops when
the fitness is greater than the predefined value. Therefore, once the training process has been
performed, our image alignment system can be concluded to reach the target range defined in

Table 5.10.

Table 5.11: Affine parameters range of three-stage CNFNs.

The coarse range of ~ The medium range of

The fine range of

Affine parameter

affine parameter

affine parameter

affine parameter

Scale [0.7 1.3] [0.85 1.15] [0.9 1.1]
rotation(degrees) [-100 100] [-50 50] [-5 5]
vertical translation(pixels) [-100 100] [-30 60] [-5 5]
horizontal translation(pixels) [-100 100] [-30 60] [-55]
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range, (b) Medium range, and (c) Fine range.

Table 5.12: Initial parameters of RGLS-HCCA training.

Parameters Value of coarse range Value of medium range Value of fine range
PLE SLE PLE SLE PLE SLE
Pie 60 20 40 20 40 20
N, 20 none 20 none 20 none
Selection_Times 50 none 50 none 50 none
NormalTimes 10 none 10 none 10 none
ExploreTimes 15 none 15 none 15 none
Crossover Rate 0.6 0.7 0.5 0.5 0.6 0.5
Mutation Rate 0.2 0.1 0.2 0.1 0.1 0.05
[Minin, Minax] [38, 45] [38, 45] [18,25] [18,25] [18,25] [18, 25]
[Mminy Minax] [-9.5,9.5] [-9.5,9.5] [-8.5,8.5] [-8.5,8.5] [-14.5,14.5] [-14.5,14.5]
[ O min» O max] [14, 16] (14, 16] [13,15] [13,15] [40, 43] [40, 43]
Minimum_Support Transaction none Transaction none Transaction none
Num/2 Num/2 Num/2
Minimum_Confidence  60% none 60% none 60% none
RGLS parameter (1)  0.004 0.004 0.003 0.003 0.001 0.001

(2) Comparison with existing neural network based image alignment systems

To compare the proposed MS-CNFN with other existing neural network-based systems
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([42], [44], [87], and [88]), this paper carefully implements these systems according to the
descriptions in their original paper. In this experiment, three typical comparisons including the
alignment accuracy, speed, robustness, and real-image alignment testing are discussed in the
following parts.

A. Alignment accuracy

In the training phase, since as using the same number of training images (i.e.
1165+137+219=1521) as the proposed CNFN on traditional neural network-based methods
[42, 44, 87, 88] can yield large alignment error, we randomly generate another 4400 training
images from the target alignment range described in Table 5.10 for training traditional
methods. In the testing phase, we examine the alignment accuracy of MS-CNFN and other
systems by using the same 600-testing images randomly generated from the target alignment
range.

Figure 5.12 presents an example of a synthesized testing image on five different systems.
The cross sign in Fig. 5.12 denotes the estimated results. In this figure, MS-CNFN can
estimate more accurate position and orientation of the cross sign than other systems.

To proceed to analyze the alignment accuracy, Table 5.13 describes the average and
standard deviation error of five image-alignment systems for 15 runs using different testing
images. From this table, MS-CNFN exhibits the lowest alignment error than other systems.
The result indicates that the proposed MS-CNFN not only gets much higher alignment
accuracy but also using fewer training data to reach better performance than other one-stage
neural network methods.

To compare RGLS with the pseudo inverse method, 600 testing images are also used on
the pseudo inverse method. The alignment results of the pseudo inverse method are: the
average scaling error is 0.0097, the rotation error is 0.2619, the translation error for x-axis is
3.6024, and the translation error for y-axis is 1.9263. Thus, from the comparison of above
alignment results with Table 5.13, RGLS would be superior to the pseudo inverse method.
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Figure 5-12: Alignment results for different systems: (a) Ground Truth, (b) MS-CNFN, (c¢) DCT, (d) FFT, (e)
KICA, and (f) ISOMAP.

Table 5.13: Alignment errors in different image alignment systems.

Method Errors
ErrScale ErrAngle (degrees) ErrDx (pixels) ErrDy (pixels)
Standard Standard Standard Standard
Mean Deviation Mean Deviation Mean Deviation Mean Deviation
MS-CNFN  0.0095 0.0215 0.0344 0.1776 0.2766 0.1976 0.3883 0.4195
DCT [44] 0.0302 0.0350 6.8495 8.8052 6.7206  10.0008 6.3597 10.6839
FFT [87] 0.0229 0.0348 7.9348 8.8924 9.7631 10.2108 9.0485 9.4451
KICA [88] 0.0333 0.0370 9.8534 14.1339 6.6953 10.9533 6.0219 9.5207
ﬁ;)]MAP 0.0670 0.0557 14.3922 21.0862 8.4077 14.4331 7.3752 9.7249
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B. Alignment speed

In this experiment, 600 testing images are used to check the image alignment speed. The
average execution time of MS-CNFN, DCT, FFT, KICA, and ISOMAP take about 0.103s,
0.078s, 0.085s, 0.226s, and 0.428s, respectively. From this result, the execution time of
MS-CNEN is slightly slower than DCT and FFT methods, and is more efficient than KICA
and ISOMAP methods.
C. Alignment Robustness

In this subsection, we further verify the robustness of MS-CNFN by adding different levels
of random Gaussian noise. To achieve the aim of testing the robustness, 600 testing images
are randomly generated with the addition of various strengths of Gaussian noise to examine
different image alignment systems. Figure 5.13(a)-(d) presents the results of the absolute
errors of the affine parameters-under eight levels of SNR. As shown in these figures,
MS-CNFN demonstrates much lower affine parameters error than other systems. This result
indicates that the adopted Gabor-WGOH descriptor is not disturbed by a high noise level and
so is the proposed RGLS-HCCA trained MS-CNFN. Figure 5.14 illustrates an image
alignment example under a 10 dB signal-to-noise ratio (SNR) condition. From this figure,
MS-CNEFN depicts more accurate cross.sign location than other methods.

Furthermore, except for Gaussian noise, the salt and pepper noise is add to the testing
image at different pose from Fig. 5.14 which is used to check the robustness of the proposed
system and other four other neural network-based systems. Figure 5.15 illustrates the
alignment results of five methods. From this figure, MS-CNFN demonstrates more accurate

cross sign location than other methods.
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Figure 5-13: Average affine transformation errors comparison using MS-CNEN, DCT, FFT, KICA, ISOMAP

under various SNR. Errors with respect to (a) scale, (b) rotation, (c) translation on X-axis, and (d) translation on

Y-axis.

85



(d)

(®
Figure 5-14: Alignment results for different systems under 10 dB SNR condition: (a) Ground Truth, (b)

MS-CNFN, (¢) DCT, (d) FFT, (e) KICA, and (f) ISOMAP.
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(a) (b)

(e) ®
Figure 5-15: Alignment results for different systems under salt and pepper noise: (a) Ground Truth, (b)
MS-CNFN, (¢) DCT, (d) FFT, (e) KICA, and (f) ISOMAP.

D. Real-Image Alignment Testing

In addition to the synthesized images, real-image testing cases are used to verify the
alignment performance of the proposed system. Figure 5.16(a)-(e¢) depicts the experimental
results of aligning the same real image utilizing MS-CNFN, DCT, FFT, KICA, and ISOMAP,
respectively. MS-CNFN demonstrates a more precise position and rotation of the cross sign
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than other systems. Thus, applying the proposed image alignment system to real-image

alignment cases with respective to large range of affine parameters is feasible.

(d) (e)
Figure 5-16: Results of image alignment on real images: (a) MS-CNFN, (b) DCT, (c) FFT, (d) KICA, and (e)

ISOMAP.

Moreover, the circuit board inspection is another case of the real image testing. Figure
5.17(a) presents a template of a circuit board. Figure 5.17 (b)-(f) illustrate the alignment
results of a circuit board with five different poses. As shown in these figures, every cross sign
is located at an accurate position with a precise rotation. Therefore, the results imply that the

proposed 2D image alignment system can be applied to a circuit board inspection system.
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Figure 5-17: Results of image alignment on circuit board inspection images: (a) the template, (b) without rotation,

(c) counterclockwise rotation, (d) clockwise rotation, (e) counterclockwise rotation, and (f) clockwise rotation.

5.3 Results of 3D Image Alignment

In the current section, a vehicle model depicted in Fig. 4.5 is selected as a reference model.
The reference model is constructed by 4907 point clouds which are uniformly distributed on
its surface. Thus, the aim of the 3D surface alignment task defined in the experiment is to
align the arbitrary input 3D images (i.e. point clouds) with the reference model.
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The experimental results comprise two parts. The first part uses the synthesized point
cloud sets to test the proposed TNFN-based coarse alignment approach. In the second part,
real 3D point cloud data scanned by a 3D imaging laser scanner are used to validate the
alignment accuracy of the proposed fine alignment method. In both parts of the experiments,
the alignment algorithm is compared with the neural network method (NNM) [46] and ICP
[45] to demonstrate superior performance of the proposed coarse-to-fine scheme.

A. Testing using synthesized 3D point cloud data

To perform the coarse alignment learning, 2000 synthesized point cloud sets are generated
randomly within the range described in Table 5.14. For training the TNFN, 50% of point
clouds (1000) are prepared for training data set and the remaining 50% of point clouds (1000)
are prepared for testing data set--The learning parameters for the TNFN training are defined in
the left side of Table 5.15. Thus,-after the coarse alignment learning completes, the output of
TNFN is an estimated pose that coarsely aligns the input points with the reference model.

In TNFN-based surface modeling, we produce a cube model with the size of Smx5mx5m
that encloses the entire reference. model. Within the cube model, 64000 point clouds are
uniformly sampled according the resolution setting (0.125 m). Thus, the sampled point clouds
are utilized for training TNFN to model the reference surface. The learning parameters of the
TNFN-based surface modeling are defined in the right side of Table 5.15. Once the training of
TNFN-based surface modeling is completed, the TNFN modeling is combined with the

downhill simplex optimization method to execute the fine alignment of 3D surface.

Table 5.14: Range of 3D rigid transformation parameters.

3D rigid transformation parameter Range of rigid transformation parameter
@ (degree), for roll [-10 10]
@ (degree), for yaw [-90 90]
0 (degree), for pitch [0 90]
x(m) [-0.2 0.2]
y(m) [-0.2 0.2]
z(m) [-0.2 0.2]
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Table 5.15: Learning parameters for the TNFN training.

Parameters of training Value for coarse alignment Value for surface modeling
the TNFN PLE SLE PLE SLE
Py, 40 25 80 25

N, 20 none 20 none
Selection_Times 50 none 50 none
NormalTimes 10 none 10 none
ExploreTimes 15 none 15 none
Crossover Rate 0.6 0.6 0.8 0.7
Mutation Rate 0.3 0.4 0.1 0.4
[Mmin, Minax] [20, 35] [20, 35] [35, 40] [35, 40]
[Phains M) [-15, 15] [-15, 15] [-2,2] [-2,2]

[ O min» O max) [13, 15] [13,15] [0.3,0.9] [0.3,0.9]
Minimum_Support TransactionNum/2 none TransactionNum/2 none
Minimum_Confidence  60% none 60% none
RGLS parameter (A)  0.0001 0. 0001 0.0005 0.0005
N-bin for MVFH 36 36 none none

Because the execution time-and alignment accuracy are two major issues for a 3D image
alignment system, these elements are taken as the evaluation conditions to examine the
proposed alignment system.

(1) Alignment accuracy

To evaluate the alignment accuracy, the proposed TNFN-based coarse-to-fine system is
compared with NNM [46] and ICP [45], two methods that use PCA for coarse alignment.
Thus, based on the 1000 testing sets of point.clouds, the alignment errors of the coarse and
fine alignments are listed in Table 5.16 where RMSE indicates the root mean square error.
From this table, the proposed system-exhibits the lowest coarse and fine alignment errors
among all systems. In addition, the proposed method improves the PCA coarse alignment, as
shown in the table. Figure 5.18(a) and (b) presents a coarse alignment example of PCA and
the proposed TNFN-based method, where the blue and red point clouds represent the testing
and reference model data, respectively. From this figure, the proposed method exhibits less
alignment error than PCA.

To compare RGLS with the pseudo inverse method, this paper uses the same 1000
testing sets of point clouds on the pseudo inverse method. The RMSE of the pseudo inverse
method for the coarse phase is 0.2619, which is larger than RGLS (0.1042). Thus, in the 3D
image alignment task, RGLS would be better than the pseudo inverse method. In short, from
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example 1 to example 3, we conclude that RGLS would be more suitable than the pseudo
inverse method for constructing a TNTN.
(2) Alignment speed

In consideration of alignment speed, the average execution time for aligning 1000 testing
sets of point clouds is calculated. The results of the alignment speed are also listed in Table

5.16. From the table, the execution time of the proposed system is shorter than those of NNM

and ICP.
Table 5.16: Results of alignment accuracy and execution time.

Average RMSE (m) Average
Method g - - execution Time

Coarse alignment error Fine alignment error (sec)
TNFN-based = 0.1042m 0.0627m 3.295
coarse-to-fine alignment
PCA coarse alignment
NNM fine alignment 0.2846m 0.1423m 4.53s
PCA coarse aligugegh 0.2846m 0.0688m 49.48s

ICP fine alignment

15 1 05 0 .05 k7
y(m)

(b)
Figure 5-18: Examples of two coarse alignment methods: (a) PCA and (b) TNFN-based coarse alignment.

B. Validation of real 3D point cloud data alignment

Figure 5.19 presents a real case of 3D point cloud data scanned by a 3D imaging laser
scanner. The image size of the scanned scene is 256x256 with 20 degree field of view. In the
3D scenery, the vehicle region is extracted by using the segmentation algorithm described in
[64]. The extracted vehicle data is then used to validate the alignment performance of the
proposed system, NNM and ICP. Figure 5.20 (a) and (b) show the coarse alignment results of

PCA (used for NNM [46] and ICP [45] in coarse phase) and the proposed TNFN-based
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method. In this figure, the coarse alignment errors of PCA and the proposed method are 0.262
and 0.106m, respectively. Thus, this result again proves that the proposed method is superior
to PCA. In the case of fine alignment, Fig. 5.21(a)-(c) depicts the fine alignment results of
proposed TNFN-based fine alignment system, NNM, and ICP. From this figure, the fine
alignment errors of the proposed system, NNM, and ICP are 0.0558, 0.1121, and 0.0569m,
respectively. These results indicate that the proposed TNFN-based method can achieve high
accuracy in real 3D point cloud data. Furthermore, regarding the alignment speed, the
execution time of the proposed system, NNM, and ICP are 1.71, 2.13, and 7.93s, respectively.
Therefore, the proposed system demonstrates higher alignment speed compared to NNM and
ICP. In short, the proposed TNEN-based coarse-to-fine 3D image alignment system can align

3D point cloud data with the reference-model accurately at high speed.

Figure 5-19: Real case of 3D point cloud data scanned by a 3D imaging laser scanner.

2(m)
o

2(m)
o

(b)
Figure 5-20: Coarse alignment results: (a) PCA and (b) TNFN-based coarse alignment.
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Figure 5-21: Fine alignment result; ased fine alignment, (b) NNM, and (c) ICP.
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Chapter 6
Conclusions and Future Works

The purpose of this dissertation is to develop a methodology to automatically design
TSK-type neural fuzzy networks (TNFNs) such that the developed networks can be applied to
real world problems. To make TNFNs to be useful, the learning algorithm must be powerful
to evolve networks in simulation that are robust enough to transfer to the real world. Toward
this end, two components have been involved to achieve this goal: regularized least square
based cooperative coevolutionary  algorithm  (RGLS-HCCA) and image alignment
applications. The RGLS-HCCA model can evolve the structure and parameters of TNFN and
the evolved TNFN can be taken to transfer the problem from simulation to the real world
applications.

This chapter.summarizes the conclusions of these two components in Section 6.1 and

discusses future works to extend the proposed algorithm.in Section 6.2.

6.1 Conclusions

This dissertation concludes two key components to the fields of evolutionary computation
and its applications. Regarding the first component, the proposed RGLS-HCCA encodes an
antecedent part of a TSK-type fuzzy rule into a chromosome and utilizes RGLS to estimate
the consequent part of a TSK-type fuzzy rule. Such combination not only reduces the number
of parameters that must be trained but also controls HCCA to adapt the network to more
complex tasks. In HCCA, it proposes parameter level evolution (PLE) and structure level
evolution (SLE) to solve the problem of the random group selection, preserve the good
combinations of fuzzy rules, and make the parameters and structure of network be evolved
locally and globally, respectively. In addition, this dissertation proposes VAC, VAM, and
SRM such that the variable length of chromosomes can be evaluated and the number of fuzzy
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rules can be self-adjusted. The experimental results show that by applying RGLS-HCCA to
the prediction of Mackey-Glass time series, RGLS-HCCA would demonstrate faster the
algorithm convergence rate and lower estimating error than those of other learning algorithms.

Regarding the second component, two image alignment applications, which are 2D and
3D image alignment problems, are used to demonstrate the applicability of RGLS-HCCA. For
2D image alignment application, RGLS-HCCA is used to construct a CNFN-based 2D image
alignment system. The CNFN utilizes the multi-stage of TNFN to solve problems that
one-stage neural network have difficulty in applying a large range of affine parameters. This
evidence can be found in the experimental results of both synthesized and real-images cases.
The results show that the performance of the proposed scheme is superior to the traditional
neural network methods on aceuracy.and robustness. For 3D image alignment application, the
use of RGLS-HCCA can benefit-the training of the TNEN-based coarse-to-fine 3D image
alignment system. In the coarse alignment procedure, utilizing RGLS-HCCA to train a TNFN
to model the relationship between the input feature and output pose can solve the problem of
the high alignment error caused by PCA. In fine alignment procedure, using RGLS-HCCA to
train a TNFN to model the reference surface can improve the heavy computational cost
caused by ICP. In addition, by combining. the surface modeling with the downhill simplex
optimization, the distance from the input image to the reference model can be reduced
iteratively. The evidence can be found in the experimental results to demonstrate the superior
performance of the proposed 3D image alignment system over existing systems.

In summary, the most contributions of this dissertation are the proposed RGLS-HCCA for
solving the problems that current evolutionary algorithms suffer from and verify the

applicability of RGLS-HCCA to real world problems.

6.2 Future Works

The future works of the proposed RGLS-HCCA and the image alignment applications
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are discussed as follows:

To discuss the proposed RGLS-HCCA, the number of hierarchical level is only two to
execute the training of structure and parameters of neural fuzzy networks. As the application
problem become more complex, there is a need to increase the hierarchical level to match the
complex problem. Thus, in the future work, the multi hierarchical level is taken into
consideration of further investigation of how to cooperate these hierarchical levels to adapt
the model to a complex problem.

For the image alignment applications, two tasks are considered: 2D image alignment and
3D image alignment. For the 2D ‘image alignment task, although the proposed system can
demonstrate high performance, it still has some limitations. Specifically, as the application
problem becomes more complicated; the number of cooperative neural fuzzy networks would
increase. Such condition leads-the-proposed model to suffer from the difficulty of choosing
the suitable number of cooperative networks. If the unsuitable number of networks is chosen,
the overall system will yield large estimated errors. Therefore, future works should identify a
well-defined method to determine the number of cooperative neural fuzzy networks
automatically.

For the 3D image alignment task;. in spite of combing the surface modeling with the
downhill simplex optimization can obtain good results in fine alignment phase, the downhill
simplex optimization may suffer from getting in local minima. Toward this end, the on-line
parallel search techniques may be the solution for preventing the local minima happened. The
on-lien parallel search techniques should be fast and keep the proper accuracy for applying to
the fine alignment task. Therefore, the future work would modify the proposed RGLS-HCCA

model to satisfy the design of the fine alignment phase.
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