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INT. J. ELECTRONICS, 1997, VOL. 83, NO. 2, 215± 233

A self-correction Hopfield neural network for computing the bit-level
transform image coding

PO-RONG CHANG²

A Hopfield-type neural network approach is presented, which leads to an analogue
circuit for implementing the bit-level transform image. Unlike the conventional
digital approach to image coding, the analogue coding system would operate at
a much higher speed and it requires less hardware than a digital system. To utilize
the concept of neural net, the computation of a two-dimensional DCT-based
transform coding should be reformulated as minimizing a quadratic nonlinear
programming problem subject to the corresponding 2s complement binary
variables of two-dimensional DCT coefficients. A Hopfield-type neural net with
a number of graded-response neurons designed to perform the quadractic
nonlinear programming would lead to such a solution, in a time determined by
RC time constants, not by algorithmic time complexity. Nevertheless, the existance
of local minima in the energy function of the original Hopfield model implies that
in general the correct globally optimal solution is not guaranteed. To tackle this
difficulty, a network with an additional self-correction circuitry is developed to
eliminate these local minima and yields the correct digital representations of 2-D
DCT coefficients. A fourth-order Runge± Kutta simulation is conducted to verify
the performance of the proposed analogue circuit. Experiments show that the
circuit is quite robust and independent of parameter variations, and the
computation time of an 8 ´ 8 DCT is estimated as 128 ns for RC = 10- 9.

1. Introduction

The goal of transform image coding is to reduce the bit-rate to minimize com-
munication channel capacity or digital storage memory requirements while main-
taining the necessary fidelity of data. The discrete cosine transform (DCT) has been
widely recognized as the most effective among various transform coding methods for
image and video signal compression. However, it is computationally intensive and is
very costly to implement using discrete components. Many investigators have
explored ways and means of developing high-speed architectures for real-time
image data coding (Sun et al. 1987, Liou and Bellisio 1987). Up to now, all image
coding techniques, without exception, have been implemented by digital systems
using digital multipliers, adders, shifters and memories. As an alternative to the
digital approach, an analogue approach based on a Hopfield-type neural network
(Hopfield 1984, Tank and Hopfield 1986) is presented.

Neural network models have received more and more attention in many fields
where high computation rates are required. Hopfield and Tank showed that the
neural optimization network can perform some signal-processing tasks, such as
the signal decomposition/decision problem. Culhane et al. (1989) applied their con-
cepts to discrete Hartley and Fourier transforms. Chua and Lin (1988) and Chang et
al. (1991) proposed an analogue approach based on Hopfield neural network to
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implement the two-dimensional (2-D) DCT transform. Chang et al. (1991) demon-
strated that the computation time for the 2-D DCT transform is within the RC time
constants of the neural analogue circuit. Owing to the nature of the energy function
of the Hopfield neural network, the solution of this network is highly dependent on
its initial state. The energy function may decrease to settle down at one of the
equilibrium points called s̀purious states’ or local minima that does not correspond
to the exact digital representations of the 2-D DCT coefficients. Moreover, Lee and
Sheu (1988, 1989) investigated the conditions for determining the local minima and
detailed analysis on the equilibrium properties of Hopfield networks. Simulated
annealing (Kirkpatrick et al. 1983) is one heuristic technique to help escape the
local minima by perturbing the energy function with the annealing temperature
and artificial noise. It is proven that the solution obtained by the simulated annealing
is independent of the initial state and is very close to the global minimum. As the
network should settle down at each temperature and the temperature decrement is
very small, an extraordinary long time is required in the computation and it does not
meet the real-time requirement. A different approach to eliminating the local minima
has been proposed by Lee and Sheu (1989). Their method is based on adding an
additional self-correction circuitry to the original Hopfield network, and it yields the
global minimum in real time. Here we use Lee and Sheu’s concept in our design.

In this paper a neural-based optimization formulation is proposed to solve the
two-dimensional (2-D) discrete cosine transform in real time. It is known that the
direct computation of a 2-D DCT of size L ´ L is to perform the triple matrix
product of an input image matrix and two orthonormal base matrices. After proper
arrangements, the triple matrix product can be reformulated as minimizing a large-
scale quadratic nonlinear programming problem subject to L ´ L DCT coefficient
variables. However, a decomposition technique is applied to divide the large-scale
optimization problem into L ´ L smaller-scale subproblems, each of which depends
on its corresponding 2-D DCT coefficient variable only and then can be easily
solved. To achieve the digital video applications, each 2-D DCT coefficient variable
should be considered in the 2s complement binary representation. Therefore, each
subproblem has been changed to be a new optimization problem subject to a number
of binary variables of the corresponding 2-D DCT coefficient. Indeed, the new
optimization problem is also a quadratic programming with minimization which
occurs on the corners of the binary hypercube space. This is identical to the energy
function involved in the Hopfield neural model (Hopfield 1984, Tank and Hopfield
1986). They showed that a neural net has associated with it an ènergy function’
which the net always seeks to minimize. As the energy function of Hopfield model
has many local minima, the network output is usually the closest local minimum to
the initial state which may be not identical to the desired DCT coefficient. A self-
correction circuitry for the neural-based DCT transform coder is developed in § 5 to
improve the probability of finding the correct global minimum solution. With the
extra self-correction logic, the energy function decreases until the net reaches a
steady-state solution (global minimum point which is the desired 2-D DCT coeffi-
cient. Experimental results shown in § 7 have been conducted to verify the perfor-
mance of the self-correction neural network. It is seen that the architecture of the
neural net designed to perform the 2-D DCT would, therefore, reach a solution in a
time determined by RC time constants, not by algorithmic time complexity, and
would be straightforward to fabricate.
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2. An optimization formulation for the transform image coding

The Discrete cosine transform (DCT) is an orthogonal transform that consists of
a set of basis vectors that are sampled cosine functions A normalized L th-order DCT
matrix U is defined by

ust =
2
L( ) 1 /2

cos
p (2s + 1)t

2L[ ] (1)

for 0 £ s £ L - 1, 1 £ t £ L - 1 and ust = L - 1/2 for t = 0. The two-dimensional
(2-D) DCT of size L ´ L is de® ned as

Y = U
T
XU (2)

where U
T is the transpose of U, and X is the given image data block of size L ´ L

(typically 8 ´ 8 or 16 ´ 16).
Traditionally, the resultant matrix in the transform domain Y may be obtained

by a direct implementation of (2) which is computationally intensive. By taking the
advantage of the high-speed analogue implementation of the Hopfield-type neural
network (Hopfield 1984, Tank and Hopfield 1986), the following formulations are
required and would be described as follows.

From (2), we have

X = UYU
T

= å
L - 1

i= 0 å
L - 1

j= 0

yijuiu
T
j (3)

where yij denotes the (i, j) entry of Y and ui is the ith column vector of U.
Define the distance or norm between two matrices A and B to be

NORM (A,B) = tr (AT
B) (4)

where tr (A) is equal to å L - 1
i= 0 aii .

Let D = X - UYU
T and ||D ||2 = NORM ( D , D ). Therefore, the coefficients yij in

(3) minimize the distance function

min
yij

0 £ i, j £ L - 1

||D ||2 (= ||X - UYU
T||2) (5)

In this way, given X, the problem of computing Y by (3) has been changed into
the problem of finding the minimum Y = [yij]of the function ||D ||2 in (5).

To reduce the complexity of performing the optimization problem in (5), ||D ||2
can be rewritten in the following form:

||D ||2 = å
L - 1

i= 0 å
L - 1

j= 0
||X - yijuiu

T
j ||2 - ( L 2 - 1) tr (XT

X) (6)

Observing (6), it should be noted that the second term of the right-hant side of (2) is
constant, and the components involved in the summation of the ® rst term are inde-
pendent of each other. Therefore, the minimization problem (5) could be divided into
L 2 subproblems as follows:

min
yij

||D ij||2 (= ||X - yijuiu
T
j ||2), 0 £ i, j £ L - 1 (7)
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Indeed, (7) can be expanded and rearranged in the scalar form

min
yij

||D ij||2 = å
L - 1

s= 0 å
L - 1

t= 0

(xst - yijuisutj)2( ) (8)

This decomposition approach provides us with a technique to divide a large-scale
optimization problem into a number of smaller-scale subproblems, each of which
can be easily solved.

Owing to the requirement of many digital video applications, each yij is quantized
into ŷij which can be represented by the 2s complement codes as follows:

ŷij = - s
(mij)
ij 2m ij + å

mij- 1

p= - nij

s
(p)
ij 2p (9)

where s
(p)
ij is the pth bit of ŷij which has a value of either 0 or 1; s

(mij- 1)
ij is the most

signi® cant bit (MSB), s
(- nij)
ij is the least signi® cant bit, and s

(m ij )
ij is the sign bit.

By substituting (9) into (8), one may obtain the new minimization problem
subject to the binary variables, s(p)

ij = 0 or 1, - nij £ p £ mij ; that is

min
s
(p)
ij

- nij £ p£ mij

||D ij||2 (10)

In the following section a novel neural-based optimizer is proposed to solve the
above minimization problem, to meet the real-time requirement of many digital
video applications.

3. A neural-based optimization approach

Artificial neural networks contain a large number of identical computing ele-
ments or neurons with specific interconnection strengths between neuron pairs. The
massively parallel processing power of neural network in solving difficult problems
lies in the cooperation of highly interconnected computing elements. It is shown that
the speed and solution quality obtained when using neural networks for solving
specific problems in signal processing make specialized neural network implementa-
tions attractive. For instance, the Hopfield network can be used as an efficient
technique for solving various combinatorial problems (Hopfield and Tank 1985)
by the programming of synaptic weights stored as a conductance matrix.

The Hopfield model is a popular model of continuous interconnected N nodes.
Each node is assigned a potential, up(t), p = 1,2, . . . ,N, as its state variable. Each
node receives external input bias Ip(t) and internal inputs from other nodes in the
form of a weighted sum of firing rates å q Tpqgq(¸quq), where gq( )́ is a mono-
tonically increasing sigmoidal bounded function converting potential to firing rate.
The general structure of the networks is shown in Fig. 1. The equations of motion
are

C
dup

dt
= - up

R
+ å

N

q= 1

Tpqvq + Ip

vp = gp(¸pup) (11)
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where ¸p are the ampli® er gains and gp(¸pup) is typically identi® ed as
1
2 (1 + tanh ¸pup)).

Electrically, Tpqvq might be understood to represent the electrical current input to
neuron p due to the present potential of neuron q. The quantity |Tpq| represents the
finite conductance between the output vq and the body of neuron p. In other words,
this connection is made with a resistor of value Rpq = 1 /|Tpq|. If Tpq > 0 this resistor
is conducted to the normal output of amplified q. If Tpq < 0 it is conducted to the
inverted output of amplifier q. It would also be considered to represent the synapse
efficacy. The term - up /R is the current flow due to finite transmembrane resistance
R, and it causes a decrease in up. Ip is any other (fixed) input bias current to neuron p.
Thus, acording to (11), the change in up is due to the changing action of all the Tpqvq

terms, balanced by the decrease due to - up R, with a bias set by Ip.
Hopfield and Tank have shown that in the case of symmetric connections

(Tpq = Tqp), the equations of motion for this network of analogue processors always
lead to a convergence to stable states, in which the output voltages of all amplifiers
remain constant. In addition, when the diagonal elements (Tpp) are 0 and the ampli-
fier gains ¸p are high, the stable states of a network composed of N neurons are the
minima of the computational energy of Lyapunov function

E = - 1
2 å

N

p= 1 å
N

q= 1
Tpqvpvq - å

N

p= 1
Ipvp (12)

Self-correction Hopfield neural network 219

Figure 1. The circuit schematic of Hopfield model. Black squares at intersections represent
resistive connections (|Tpq|). If Tpq < 0, the resistor is connected to the inverted
amplifier.
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The state space over which the analogue circuit operates is the N-dimensional
hypercube defined by vp = 0 or 1. However, it has been shown that in the high-gain
limit networks with vanishing diagonal connections (Tpp = 0) have minima only at
corners of this space (Tank and Hopfield 1986). Under these conditions the stable
states of the network correspond to those locations in the discrete space consisting of
the 2N corners of this hypercube which minimize E.

To solve the minimization problem in (10) by the Hopfield-type neural network,
the binary variables s(p)

ij should be assigned to their corresponding potential variables
up with N (= mij + nij + 1) neurons. Truly, the computational energy function Eij of
the proposed network for yij may be identified as ||D ij||2 in (10). However, with this
simply energy function there is no guarantee that the values of s

(p)
ij will be near

enough to 0 or 1 to be identified as digital logic. As (10) contains diagonal elements
of the T-matrix that are non-zero, the minimal points to the ||D ij||2 in (10) will not
necessarily lie on the corners of the hypercube, and thus may not represent the exact
2s complement digital representation. One can eliminate this problem by adding one
additional term to the function ||D ij||2. Its form can be chosen as

D Eij = å
L - 1

s= 0 å
L - 1

t= 0 å
m ij

p= - nij

s
(p)
ij (1 - s

(p)
ij )22pé

ë
ù
û

(uis)2(utj)2ì
í
î

ü
ý
þ

(13)

The structure of this term was chosen to favour digital representations. Note that
this term has the minimal value when, for each p, either s

(p)
ij = 1 or s

(p)
ij = 0. Although

any set of (negative) coef ® cients will provide this bias towards a digital representa-
tion, the coef ® cients in (13) were chosen to cancel out the diagonal elements in (10).
The elimination to diagonal connection strengths will generally lead to stable points
only at corners of the hypercube. Thus the new total energy function Eij for yij which
contains the sum of the two terms in (10) and (13) has minimal value when the {s

(p)
ij }

is a digital representation close to the resultant yij in (3). After expanding and
rearranging the energy function Eij , we have

Eij = ||D ij||2 + D Eij

= - 1
2 å

mij

p= - nij
å
mij

q=- nij

s
(p)
ij s

(q)
ij T ij

pq

- å
m ij

p=- nij

s
(p)
ij Iij

p (14 a)

where

T ij
pq =

0, f or p = q

- 2 å
L - 1

s= 0
å
L - 1

t= 0
2p+ qu2

isu
2
tj, f or p /= q,p /= mij,q /= mij

2 å
L - 1

s= 0
å
L - 1

t= 0
2p+ qu2

isu
2
tj , f or p /= q,p /= mij,q = mij

2 å
L - 1

s= 0
å
L - 1

t= 0
2p+ qu2

isu
2
tj , f or p /= q,p = mij,q /= mij

ìïïïïïïïïï
íïïïïïïïïïî

(14 b)
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Iij
p =

å
L - 1

s= 0
å
L - 1

t= 0
(2p+ 1uisutjxst - 22pu2

isu
2
tj), f or p /= mij

- å
L - 1

s= 0
å
L - 1

t= 0
(2p+ 1uisutjxst + 22pu2

isu
2
tj), f or p = mij

ìïïï
íïïïî

(14 c)

As it can be shown that the term ( å L - 1
s= 0 å L - 1

t= 0 u2
isu

2
tj) is identical to unity for

0 £ i, j £ L - 1, (14 b) and (14 c) become

T ij
pq =

0, f or p = q
- 2p+ q+ 1 f or p /= q,p /= mij,q /= mij

2p+ q+ 1 f or p /= q,p /= mij,q = mij

2p+ q+ 1 f or p /= q,p = mij,q /= mij

ìïï
íïïî

(15 a)

Iij
p =

2p+ 1vs(ij) + 22p V R, f or p /= mij

- 2p+ 1vs(ij) + 22p V R, f or p = mij{ (15 b)

where vs(ij) is the analogue input voltage and it equals ( å L - 1
s= 0 å L - 1

t= 0 uisutjxxt), and VR

is the reference voltage and it equals 1 V.
Observing (15 a), it may be found that the synapse weights T ij

pq do not include the
index (i, j) of their corresponding results yij directly. Meanwhile, the range of T ij

pq

depends on the (i, j)-related parameters mij and nij inherently. Moreover, the energy
function for the simple Hopfield neural-based transform coding circuitry shown in
Fig. 2 can be rewritten as

E = - 1
2 å

m

p=- n å
m

q=- n
Tpqvpvq - å

m

p=- n

(TpRV R + Tps Vs)vp (16)

where vp corresponds to s
(p)
ij , and TpR is the conductance between the pth ampli® er

and the reference voltage V R, and Tps is the conductance between the pth ampli® er
input and analogue input voltage. Note that the index (i, j) is not included in (16) for
the sake of simplicity. The values for TpR and Tps are given by

TpR = 22p (17 a)

Tps = 2p+ 1, f or - n £ p £ m - 1
- 2p+ 1, f or p = m{ (17 b)

The corresponding circuit dynamics of the simple Hopfield neural-based
transform coding can be described as

C
dup

dt
= - TpR + Tps + å

m

q= - n
Tpq( ) up + å

m

q=- n
Tpqvq + TpRVR + Tps Vs

vp = gp(¸pup) (18)
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4. Local minima of Hopfield neural-based transform coding

Lee and Sheu (1988, 1989) showed that the energy function of a Hopfield net-
work has many local minima and the resultant network output is the closest local
minimum to the initial state. The existance of local minima in the energy function of
the Hopfield network is not tolerable for a great variety of engineering optimization
applications. In this section we discuss the properties of the local minima of neural-
based transform image coding.

At a stable point, the term (C dup /dt) of (18) becomes zero and every neuron
input voltage is governed by

up
> 0 when vp = 1 V
< 0 when vp = 0{ (19)

From (18) and (19), the range of input voltage Vs to the pth amplifier for the
corresponding stable state and a specific digital output can be calculated:

222 P.-R. Chang

Figure 2. An(m + n + 1)-bit self-correction Hopfield neural network. Di = vi- n- 1Â
1 £ i £ m + n + 1 and Cl = fl- n- 1( V- n, . . . Vm), 2 £ l £ m + n.
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Vs

> - TpR

Tps( ) V R - å
m

q=- n

Tpq

Tps( ) vq, when vp = 1V and - n £ p £ m - 1

< - TmR

Tms( ) V R - å
m- 1

q=- n

Tmq

Tms( ) vq, when vm = 1 V

ìïïïï
íïïïïî

üïïïï
ýïïïïþ
(20 a)

Vs

< - TpR

Tps( ) V R - å
m

q=- n

Tpq

Tps( ) vq, when vp = 0 and - n £ p £ m - 1

> - TmR

Tms( ) V R - å
m- 1

q=- n

Tmq

Tms( ) vq, when vm = 0

ìïïïï
íïïïïî

üïïïï
ýïïïïþ

(20 b)
Substitute (15 a), (17 a) and (17 b) into (20 a) and (20 b); this yields

Vs

> 2p- 1 + å
m

q=- n
2qvq - vm2m , when vp = 1 V and - n £ p £ m - 1

< - 2m- 1 + å
m- 1

q=- n
2qvq, when vm = 1 V

ìïïïï
íïïïïî

üïïïï
ýïïïïþ

(21 a)

Vs

< 2p- 1 + å
m- 1

q=- n
2qvq - vm2m , when vp = 1 V and - n £ p £ m - 1

> - 2m- 1 + å
m- 1

q= - n
2qvq, when vm = 0

ìïïïï
íïïïïî

üïïïï
ýïïïïþ

(21 b)

During the transient period, the voltage vp is changing in the direction that the
energy function E decreases. When all amplifiers reach the stable condition in (19), a
local minimum is reached and the searching process is terminated. The inequalities
(21 a) and (21 b) are derived for the pth amplifier output voltage to be stable. For a
stable output, the input voltage range is given by the logic-AND operation of the
range decided by each amplifier. From (21 a) and (21 b), it is indicated that the lower
limit and upper limit of Vs are determined by the first high-bit occurrence and low-
bit occurrence of the digital code from the least significant bit (LSB), respectively. In
other words, if a digital code has the first low bit at the pth bit, the next adjacent
digital code has the first high bit at the pth bit. Thus, the upper limit and lower limit
of input voltage between the two adjacent digital codes are decided by the pth
amplifier.

To justify the behaviour of local minima, a characteristic parameter GAPp pro-
posed by (Lee and Sheu 1988, 1989) is used as an indicator of the existance of local
minima. The parameter GAPp is defined by the input voltage of the lower limit for
vp = 1 V and the upper limit for vp = 0 decioded by the pth amplifier

GAPp =
- å

m

q=- n

Tpq

Tps( ) (vu
q - vl

q), f or - n £ p £ m - 1

- å
m- 1

q=- n

Tmq

Tms( ) (vl
q - vu

q), f or p = m

ìïïï
íïïïî

(22)

Self-correction Hopfield neural network 223
D

ow
nl

oa
de

d 
by

 [
N

at
io

na
l C

hi
ao

 T
un

g 
U

ni
ve

rs
ity

 ]
 a

t 0
5:

53
 2

8 
A

pr
il 

20
14

 



where vu
p and vl

p are the pth ampli® er output voltages of the digital codes whose pth
bits from the least signi® cant bit (LSB) are logic 1 and logic 0, respectively. {vu

q}and
{vl

q}are usually the adjacent digital codes and are given by

vu
q = vl

q, if q > p

vu
q = 1 V and vl

q = 0, if q = p

vu
q = 0 and vl

q = 1 V, if q < p

üïï
ýïïþ

(23)

As GAPp represents the overlapped range of the input voltage Vs to the pth
amplifier, both adjacent digital codes can be stable and become the same converted
output at a given input voltage. To guarantee that one of the adjacent digital codes is
not a local minimum when the other code is the global minimum at a given input, the
input voltage ranges for the codes should not be overlapped, i.e. GAPp ³ 0 for every
p. The only global minimum corresponds to each analogue input. Hence, the one-to-
one correspondence between the digital output and analogue input should exist. Let
us examine the existance of local mimina in neural-based transform coding. By
substituting (23) into (22) we have

GAPp = - 2p + 2- n, f or - n £ p £ m - 1
2m - 2- n, f or p = m{ (24)

Equation (24) shows that the indicator GAPp is always negative except when p = - n
and p = m. Thus, there could exist more than two digital output codes (i.e. local
minima) corresponding to a given analogue input for - n < p < m. In the next sec-
tion a self-correction logic based on Lee and Sheu’s concept is proposed to eliminate
the overlapped input range.

5. Self-correction logic approach

The overlapped input voltage range between two digital codes can be eliminated
by adding a correction logic circuitry at the amplifier (neuron) outputs as shown in
Fig. 2. The values of conductances located in the main body of the neural network
and the extended conductance network will be discussed and specified by (31) ± (34).
Here we give the overall structure to understand the function of correction logic
circuitry. The correction logic monitors the Hopfield network outputs and generates
the correcting information. The correction voltage outputs are fed back into the
neuron inputs through the extended conductance network. Note that there is no
feedback connection to the input of the first amplifier (i.e. A1) because the digital
code decided by the first amplifier does not produce a local minimum for any
analogue input signal. Similarly, there is no connection to the last amplifier (i.e.
Am+ n+ 1).

The correction logic circuitry and extended conductance network can be
identified by using the following equation:

TpR + Tps + Tpc + å
m

q=- n
q /=p

Tpqæ
è

ö
ø up = TpRV R + Tps Vs + Tpc fp(Vo) + å

m

q=- n
q /=p

Tpqvq (25)

where Vo is the digital output voltage given as {- vm2m + å m- 1
q=- n vq2

q}, fp(Vo) is the
pth correction logic output, Tpc is a conductance in the extended conductance
network to the pth ampli® er, and V R = - 1 V.
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Using the procedure shown in the preceding section to derive the characteristic
parameter, the indicator GAPp can be calculated:

GAPp = - 2p + 2- n - Tpc

2p+ 1( ) ( fp( V l
o) - fp(V u

o )), f or - n < p < m (26)

where V l
o and V u

o are the digital output voltages of the adjacent digital coded de® ned
in (23), and they can be given by

V l
o = - V l

m2m + å
m- 1

q= - n
V l

q2
q (27 a)

V u
o = - V u

m2m + å
m- 1

q= - n
V u

q 2q (27 b)

Note that only the characteristic parameters GAPp, - n < p < m, are considered
in designing the correction logic circuitry.

The local minima are eliminated when the indicators GAPp, - n < p < m, are set
to be zero. Therefore, the extended conductance becomes

Tpc =
22p+ 1 - 2p+ 1- n

fp(V u
o ) - fp(V l

o)
(28)

As Tpc is always non-negative, the correction logic circuitry output can be
selected as

fp(V u
o ) = - fp(V l

o) > 0 (29)

Thus, Tpc becomes

Tpc =
22p - 2p- n

fp(V u
o )

(30)

To characterize the correction logic circuitry specified by (29), the circuitry out-
put can take a discrete value of - 1, 0, or 1V to be compatible with the amplifier
output voltage and the reference voltage. Table 1 lists the relationship between the
amplifier outputs Di = vi- n- 1, for 1 £ i £ N, and the correction logic outputs
Cl = fl- n- 1(Vo) for 2 £ l £ N - 1, where Vo is the digital output voltage and
N = m + n + 1 = 16. The self-correction circuitry characterized by Table 1 can be
implemented by the simple combinational logic or SRAM memory devices.

As the input voltage {up} is determined by the ratios of the conductances, the
scaling factor to realize absolute conductance values can be used as an integrated-
circuit design parameter. For example, the conductances are reduced by a scaling
factor |Tps| (= 2p+ 1) and are given by

Tpq =

0, f or p = q
- 2q, f or p /= q,p /= m,q /= m
2q, f or p /= q,p = m,q /= m
2q, f or p /= q,p /= m,q = m

ìï
íïî

(31)

Tpc = 2p- 1 - 2- n- 1 (32)
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TpR = 2p- 1 (33)

Tps =
1, f or - n £ p £ m - 1

- 1, f or p = m{ (34)

6. System architecture for neural-based transform coding

Observing (15 b), it is indicated that the bias is not fixed but depends on input
analogue signal xst and the index ( i, j) of its corresponding result yij . From (31) ± (34),
one may find that the synapse weights (Tpq), extended conductance (Tpc), TpR and
Tps do not include the index (i, j) directly. However, their ranges are determined by
two (i, j)-related parameters mij and nij . Therefore, both synapse weights and bias
should be programmable to capture the information from the data set. Chang et al.
(1991) proposed a reconfigurable hybrid MOS neural circuit including electrically
programming synapses and bias to implement the transform coding. As the realiza-
tion of programmable synapses seems quite complicated, our paper presents a nor-
malization technique to force their ranges to be within a fixed interval. After
performing the normlaization, the bias would be the only remaining (i, j)-related
term. In this paper a cost-effective design according to the normalization technique
is developed to compute the transform coding.

The normalization procedure can be performed by letting the conductances, i.e.
Tpq, TpR and Tps be reduced by a new scaling facter, 2p+ mij + 1. Thus, the normalized
conductances become

Tpq =

0, f or p = q
- 2q- mij , f or p /= q,p /= mij,q /= mij

2q- mij , f or p /= q,p = mij,q /= mij

2q- mij , f or p /= q,p /= mij,q /= mij

ìïï
íïïî

(35)

Tpc = 2p- m ij- 1 - 2- m ij- nij- 1 (36)

TpR = 2p- m ij- 1 (37)

Tps =
2- mij , f or - nij £ p £ mij - 1
- 2- mij , f or p = mij{ (38)

It can be shown that the ranges of normalized terms 2q- mij and 2p- mij- 1 are within
the intervals [2- N+ 1,1]and [2- N,2- 1], and 2- m ij- nij- 1 equals 2- N, respectively, where
- nij £ p,q £ mij , and N (= mij + nij + 1) is the number of neurons. Therefore,
Tpq, Tpc and TpR are totally independent of the index (i, j) which corresponds to
the resultant ŷij and depends on the normalized index (p,q), which corresponds to
the size of neural network (or number of bits involved in ŷij). Unfortunately, the
conductance between the pth neuron and analogue input voltage, Tps, becomes an
(i, j)-related term which is in the term 2- m ij after performing normalization. To
eliminate the dependence of index (i, j), several arrangements should be considered
in the expression of bias Iij

p :
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Iij
p = Tpsvs(ij) + TpRV R

= T̂psv̂s(ij) + TpRV R (39)

where

T̂ps =
1, f or - nij £ p £ mij - 1

- 1, f or p = mij{ (40)

v̂s( ij) = 2- m ij vs( ij)

= å
L - 1

s= 0 å
L - 1

t= 0

2- m ij uisutjxst

= å
L - 1

s= 0 å
L - 1

t= 0

uistjxst (41)

uistj = 2- m ij uisutj , 0 £ i, j, s, t £ L - 1 (42)

Basically, the concept of the above arrangements is considered to combine the
(i, j)-related terms 2- m ij and uisutj together. This new term is denoted by uistj . As a
result, those conductances located in the self-correction neural network are indepen-
dent of the index (i, j). Based on the above discussion, a proposed system architec-
ture and the function structures of normalized self-correction neural network and
analogue MOS vector multiplier are illustrated in Figs 3, 4 (a) and 4 (b) respectively.

228 P.-R. Chang

Figure 3. Architecture of image transform coding neural chip.
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The (i, j)-related parameters uistj could be precomputed and are stored in the
( L 2 ´ L 2) register file which is controlled by a refreshing counted with clock D t1.
Note that D t1 is defined as the sum of D trefresh (= time for refreshing the bias) and
D tneural (= computation time for the neural network). Although computing a parti-
cular ŷij , those parameters should be converted to analogue form and then pumped
out from the register file to the analogue MOS vector multiplier. From (40), the
analogue input to the network v̂s(i,j) can be obtained by performing the analogue
inner vector multiplication between two L 2-tuple vectors

x = [x00 x10 . . . xL - 1,L - 1]T

uij = [ui,0,0, j ui,1,0, j . . . ui,L - 1,L - 1,j]T

The time for updating the bias would be dominated by the computation time for the
L 2 ´ L 2 analogue inner vector multiplication D tvm . In other words, D trefresh . D tvm .

Self-correction Hopfield neural network 229

Figure 4. (a) The time evolution of the reduction of energy for y25 when RC = 10- 9 and
¸ = 105; (b) the time evolution of the reduction of energy for y25 when RC = 10- 10 and
¸ = 105.

(a)

(b)
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As the L 2 input analogue signals xst are required in computing the vector multi-
plication (with uistj ,0 £ s, t £ L - 1) involved in each Ip

ij ,0 £ i, j £ L - 1,xst should
stay in the analogue buffer until the L 2ŷij have been completed. This analogue buffer
is controlled by a system counter with clock D t2 = ( L 2( D t1 + D toverhead)), where
D toverhead is the time for input± output overhead. Usually, the analogue buffer if
realized by analogue DRAM-style storage based on the ¯ oating-gate storage
approach. The overall output of the analogue vector multiplier vout is given by

vout = å
L - 1

s= 0 å
L - 1

t= 0
cuistjxst (43)

where c is the constant that depends on the characteristics of MOS implementation.
It is interesting to note that the constant c could be compensated for by absorb-

ing the values into uistj . For example, one may precompute the new uistj as c- 1uistj ,
where uistj is the old one. The input± output compatibility of the overall MOS imple-
mentation is of particular interest because the relatively high output impedance
node of the double inveter is connected to the almost infinite input impedance
node of the MOSFET gates with almost no restriction on the fan-in/fan-out cap-
ability. More details about the analogue MOS vector multiplier are given by Mead
(1989), Salam et al. (1989) and Khachab and Ismail (1987).

7. Illustrated examples

To examine the performance of the neural-based analogue circuit for computing
the 2-D DCT transform coding, an often used 8 ´ 8 DCT will be considered in our
simulation because it represents a good compromise between coding efficiency and
hardware complexity. Because of its effectiveness, the CCITT H.261 recommended
standard for p ´ 64 kbit/s (p = 1,2, . . . ,30) visual telephony developed by CCITT,
and the still-image compression standard developed by ISO JPEG all include the use
of 8 ´ 8 DCT in their algorithms.

To obtain the size (N) of neural network required to compute its corresponding
DCT coefficient, it is necessary to calculate their respective dynamic range and take
into account the sign bit. To achieve this purpose, the range of each DCT coefficient
can be determined by generating random integer pixel data values in the range 0 to
255 through the 2-D discrete cosine transform. For example, the range of y00 is from
- 1024 to 1023. Therefore, m00 is identified as 11; that is, 10 bits are for the magni-
tude of y00 and 1 bit is for the sign. As a result, the corresponding mij for each DCT
coefficient yij is illustrated in Table 2. Another important parameter required in
determining the size is nij , which depends on the required accuracy and the tolerable
mismatch in the final representation of the reconstructed video samples. The analysis
of the accuracy and mismatch involved in the finite length arithmetic DCT compu-
tation was discussed by Sun et al. (1987) and Liou and Bellisio (1987). Based on their
results and the consideration of feasible hardware implementation, the number of
bits (or size of neural network) involved in each DCT coefficient is set to be 16. Then
nij would be equal to (15 - mij), for example n00 = 5. The above suggestion seems
quite reasonable to improve the accuracy of a particular yij which has a small
dynamic range.

We have simulated both the DCT-based neural analogue circuit without the
correction logic of (18), and a circuit based on the proposed correction logic using

230 P.-R. Chang
D

ow
nl

oa
de

d 
by

 [
N

at
io

na
l C

hi
ao

 T
un

g 
U

ni
ve

rs
ity

 ]
 a

t 0
5:

53
 2

8 
A

pr
il 

20
14

 



the simultaneous differential equation solver (DVERK in the IMSL). This routine
solves a set of nonlinear differential equations using the fifth-order Runge± Kutta
method. It can be found that the convergence times for both neural networks is
within the RC time constant. We used two different RC time constants,
RC = 10- 10 (R = 1 kV ,C = 0 0́1 pF) and RC = 10- 9 (R = 1 kV ,C = 0 1́ pF), and
all amplifier gains ¸p are assigned to be 104 in our experiments, and ran simulations
on a SUN workstation. The test input pixel data xst are illustrated in Table 3 (a). Figs
4 (a) and (b) show an example of the time evolution of the reduction of energy
performed by both networks with N (= 16) neurons that represent y25 based on
the 2s complement binary number representation for two different RC time con-
stants. Moreover, both figures show that the curves for correction logic case reach
the steady-state values which are less than the values for the non-correction logic
case. In other words, the non-correction reaches a local minimum and yields the
incorrect solution. The (2,5)-entry in Table 3 (c) shows the resulting DCT coefficient
y25 obtained at the steady-state points on the correction logic curves of Figs 4 (a) and
(b). It is shown that the result is almost independent of the RC time constants.
However, each converegence time will be in proportion to its corresponding RC
time constant. For example, the converge times for RC = 10- 10 and RC = 10- 9

are in proportion to the orders of timescale 10- 10 s (= 0 1́ ns) and 10- 9 s (= 1ns),
respectively. However, these two curves have almost the same time evolution.
Starting from a very high energy state, the neural network reduces its energy spon-
taneously by changing its state so that the 2s complement binary variables s(p)

ij
minimize the error energy function.

Considering the system architeture shown in Fig. 3, another important module is
the analogue vector multiplier. For simplicity in estimating the computation time in
computer simulation, we assume that the op-amp involved in the overall MOS vector
implementation is ideal. The computation time for a 64 ´ 64 analogue MOS vector
multiplier D tvm is estimated as 1 ns by performing the inner vector product on two
64-tuple vectors on SPICE-II. Thus, the refreshing clocl D t1 ( . D tneural + D tvm) is
identified as 2 ns. Therefore, the computation time for computing all DCT coeffi-
cients would be estimated as 128 ns when L = 8 and RC = 10- 9. Computer simula-
tion verifies the effectiveness of the proposed neural-based transform coder.
Undoubtedly, this analogue coder can be practically implemented with ASICs
using today’s low-cost VLSI technology. The estimated computation time provides
an index to evaluate and justify the computational efficiency and performance of the
real VLSI implementation of our design.
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i\ j 0 1 2 3 4 5 6 7

0 11 9 9 9 9 9 9 9
1 9 9 9 9 9 9 9 9
2 9 9 9 9 9 9 9 9
3 9 9 9 9 9 9 9 9
4 9 9 9 9 9 9 9 9
5 9 9 9 9 9 9 9 9
6 9 9 9 9 9 9 9 9
7 9 9 9 9 9 9 9 9

Table 2. mij for yij .

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

5:
53

 2
8 

A
pr

il 
20

14
 



8. Conclusion

The computation of a 2-D DCT-based transform coding has been shown to solve
a quadratic nonliner programming problem subject to the corresponding 2s comple-
ment binary variables of 2-D DCT coefficients. We have shown that the existance of
local minima in neural-based transform coding will lead to an incorrect digital
representation of the DCT coefficient. A self-correction logic based on Lee and
Sheu’s concept is developed to eliminate these local minima. Using this concept, a
novel self-correction Hopfield-type neural analogue circuit designed to perform the
DCT-based quadratic nonlinear programming could obtain the desired coefficients
of an 8 ´ 8 DCT in 2s complement code within 128 ns with RC = 10- 9.
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