

國 立 交 通 大 學

電機資訊學院 電子與光電學程

碩 士 論 文

IEEE 802.16a 分時雙工正交分頻多重進接之下行同步技

術研討與在數位訊號處理器上的實現

Study and DSP Implementation of IEEE 802.16a TDD OFDM Downlink

Synchronization

研 究 生：蔣宗書

指導教授：林大衛 博士

中 華 民 國 九 十 三 年 七 月

IEEE 802.16a 分時雙工正交分頻多重進接之下行同步技

術研討與在數位訊號處理器上的實現

Study and DSP Implementation of IEEE 802.16a TDD OFDM Downlink
Synchronization

研 究 生：蔣宗書 Student：Tsung-Shu Chiang

指導教授：林大衛 博士 Advisor：Dr. David W. Lin

國 立 交 通 大 學
電機資訊學院 電子與光電學程

碩 士 論 文

A Thesis
Submitted to Degree Program of Electrical Engineering Computer Science

College of Electrical Engineering and Computer Science
National Chiao Tung University

in Partial Fulfillment of the Requirements
for the Degree of
Master of Science

in
Electronics and Electro-Optical Engineering

July 2004
Hsinchu, Taiwan, Republic of China

中華民國九十三年七月

 i

IEEE 802.16a 分時雙工正交分頻多重進接之下

行同步技術研討與在數位訊號處理器上的實現

研究生：蔣宗書 指導教授：林大衛 博士

國立交通大學電機資訊學院 電子與光電學程﹙研究所﹚碩士班

摘要

在論文中我們介紹一種實現 IEEE 802.16a 分時雙工正交分頻多重進接之下

行同步技術的方法。下行同步技術包含 OFDM 符元(symbol) 開始時間與分數頻

率偏移之同步，整數頻率偏移之同步，以及傳送資料訊框(frame)的同步。我們

將同步技術以軟體方便實現在 Texas Instruments(TI)公司製造型號為

TMS320C6416 的數位訊號處理器上(DSP)。此處理器的操作平台為 Innovative

Integration 公司製名為 Quixote 的 cPCI 卡。

為了能方便驗証同步技術，我們也同時實現了整個 802.16a 下行傳輸的系

統。為了獲得較高的 DSP 運算效率,在此系統中所有的運算皆是以定點

(fixed-point)的格式來進行。在同步技術中我們以 15 個位元(bits)代表小數 1

個位元代表正負號共 16 位元的定點格式作運算。我們使用了 TI 提供的程式庫裏

以組合語言做過最佳化的 FFT 程式。我們藉著使用 C6416 本身具有的指令以及將

無法做軟體程序規畫(software pipeline scheduling)的迴圈展開(unroll)以達

到提高執行效率的目的。在同步技術的程式做過改善之後，其執行效率獲得大幅

度的提高。

 ii

論文中並針對執行效率做了分析。以軟體實現的同步技術在一顆 DSP 上執

並無法達到即時運算的要求。如果我們要使同步技術的執行可以達到即時運算的

要求，我們必須將同步技術分割成數個部份。用更多顆的 DSP 來實現同步技術或

將一部份用 FPGA 實現。

 iii

Study and DSP Implementation of IEEE

802.16a TDD OFDMA Downlink

Synchronization

Student： Tsung-Shu Chiang Advisor：Dr. David W. Lin

Degree Program of Electrical Engineering Computer Science

National Chiao Tung University

Abstract
This thesis presents an implementation method of IEEE 802.16a TDD (time

division duplex) OFDMA (frequency-division multiple access) downlink (DL)
synchronization techniques. The DL synchronization includes symbol time
synchronization, fractional frequency offset synchronization, integer frequency offset
synchronization and frame synchronization. Our implementation is software-based,
employing Texas Instruments’ TMS320C6416 digital signal processor (DSP) housed
on Innovative Integration's Quixote cPCI card.

We implement the complete 802.16a DL system to verify the accuracy of
synchronization function. The computation on this system is fixed-point for obtaining
a higher execution efficiency. The data format we use in synchronization is Q.15
which is a 16 bits fixed-point data format that consists of a sign bit nad 15 fractional
bits. We use the assembly-optimized FFT which is supported by TI’s DSP library to
obtain the high execution efficiency. We increase the execution efficiency of
synchronization by using intrinsics of C6416 DSP and unrolling the disqualified
loops to make the software pipeline well scheduled. The efficiency is much increased
after we refine the program.

 iv

The execution efficiency of synchronization is analyzed. We find that the real

time operation requirement is over the synchronization execution time. If we want the
synchronization function to achieve real-time speed, we must partition the
synchronization function into sub-functions and implement these functions either on
more DSPs or on FPGA.

致謝

誠摯地感謝指導老師林大衛博士二年來的指導。以在職生的身份要找指導

老師一開始便是件辛苦的事。但林老師並不排斥我在職生的身份而將我收入門

下，給予當時在尋找指導教授之途不甚順遂的我重新燃起對學業的熱情。林老師

指導的二年中對我碩士論文的完整規畫，讓我有明確的目標可以努力，這對一個

在職生的求學過程有相當大的幫助。而林老師高深的學術素養，對於我在通訊領

域上專業知識的增進是難以用數字來衡量。我感到非常榮幸能成為林老師的學

生。在此，我要向林老師及老師的家人表達由衷的謝意。

通訊電子與訊號處理實驗室設備完善，讓我在完成碩士論文的過程中有取

用不盡的資源。我要感謝實驗室中和我一起 meeting 的團隊成員俊榮以及筱晴、

明哲、子瀚和盈縈，因為有大家的幫助才能使我完成這篇論文。還要感謝郁男、

崑健、明偉、建統、岳賢以及全體實驗室裏的同學們給予我各方面的幫助。由於

這些同學，才使得我在本實驗室中充滿快樂的回憶。

我所服務的公司加爾發半導體，在我做論文的過程一直支持我、給我最大

的方便。感謝黃董事長、廖總經理和我的直屬上司呂經理以及我部門的唐先生。

有他們的支持才讓我無後顧之憂。

我要感謝我的父母及家人對我的支持。最後，特別要感謝我的妻子。只有

她才知道我這一路走來的艱辛以及所承受的壓力。並且在這完成學業的過程中，

她一直不斷給我鼓勵與支持。沒有她的支持，我不可能完成這一切。僅將這本論

文獻給我親愛的妻子。

 v

Contents

1 Introduction 1

2 Techniques for Downlink Synchronization 3
2.1 Introduction to the 802.16a TDD OFDMA System 4

2.1.1 Pilot and Data Carrier Allocatin 5
2.1.2 Data Modulation and Pilot Modulation [5] 9
2.1.3 Frame Structure . 10

2.2 Downlink Synchronization Techniques 12
2.2.1 Initial Synchronization . 13
2.2.2 Normal Synchronization . 19

2.3 Summary of Downlink Synchronization Techniques 20

3 DSP Introduction 27
3.1 DSP Board Introduction . 27
3.2 Introduction to TMS320C6416 DSP [9] 29

3.2.1 TMS320C6416 Features . 29
3.2.2 Central Processing Unit . 30
3.2.3 Memory Architecture . 36

3.3 TI’s Code Development Environment [16], [17] 36
3.4 Code Development Flow to Increase Performance [10] 39

3.4.1 Compilier Optimization Options [10] 42

4 DSP Implementation 45
4.1 Efficiency Enhancement of DL Synchronization Code 45

4.1.1 Performance of the Original Program 45
4.1.2 Fixed-Point Number System Consideration 47
4.1.3 Code Refinement . 58

4.2 Performance Discussion . 73

5 Conclusion and Future work 78
5.1 Conclusion . 78
5.2 Potential Future Work . 79

vi

List of Tables

2.1 Carrier Allocation in the OFDMA DL (from [5]) 8
2.2 Complexity of Symbol Time Synchronization 14
2.3 Possible Pilot Structures in Frame Synchronization 18
2.4 System Parameters Used in Our Study 20

3.1 Execution Stage Length Description for Each Instruction Type (from [9]) 34
3.2 Functional Units and Operations Performed (from [9]) 35

4.1 Floating-Point Profile of 802.16a DL Transmitter Function Blocks 47
4.2 Floating-Point Profile of 802.16a DL Receive Function Blocks 47
4.3 Characteristics of the ETSI “Vehicular A” Channel Environment 49
4.4 Relations Between Spreed and Maximum Doppler Shift at Carrier Fre-

quency 6 GHz and Subcarrier Spacing 5.58 kHz 50
4.5 Performance Comparision of Frequency Lock Between Floating-Point

and Fixed-Point Implementation . 51
4.6 Performance Comparision of Frame Lock Between Floating-Point and

Fixed-Point Implementation . 51
4.7 Q16.15 Bit Fields . 52
4.8 Q.15 Bit Fields . 52
4.9 Comparisons of Computational Complexity for Different FFT Algorithms 54
4.10 Complexity and Performance of IFFT/FFT Implementation 54
4.11 Sine/Cosine Look-Up Table . 57
4.12 Fixed-Point Profile of 802.16a DL Transmitter Function Blocks 58
4.13 Fixed-Point Profile of 802.16a DL Receiver Function Blocks 58
4.14 Comparison Between FFT and Recursive DFT 59
4.15 Efficiency of Recursive DFT Implementation 60
4.16 The Execution Cycles of Pilot Correlation Loop 62
4.17 Profile of the sync Function . 68
4.18 Profile of CP Correlation Function Loop Using Different Buffer Types . . 68
4.19 Multiply-Add Efficiency of CP Correlation Functions 72
4.20 Profile of Refined Code of 802.16a DL Receiver Function Blocks 77
4.21 Performances Estimation in Separate Initial and Tracking Condition . . . 77

vii

List of Figures

2.1 OFDMA symbol time structure (from [5]). 4
2.2 DL transmitter structure (from [1]). 5
2.3 DL receiver structure (from [1]). 5
2.4 Illustration of carrier usage in OFDMA DL (from [1]). 6
2.5 Pilot allocation in the OFDMA DL (from [5]). 7
2.6 QPSK, 16-QAM and 64-QAM constellations (from [5]). 9
2.7 Pseudo random binary sequence (PRBS) generator for pilot modulation

(from [5]). 10
2.8 Frame structure of the TDD OFDMA system (from [5]). 11
2.9 The stucture of the symbol time and frequency estimator from [1]. 15
2.10 DL/UL symbols identification. 16
2.11 (a) Symbol location detected in stage I, where the gray region is the useful

samples which are applied FFT. (b), (c) Leftmost and rightmost ranges of
correlation, respectively. (from [1]) . 19

2.12 DL transmitter structure (from [1]). The gray regions indicate the imple-
mented function in our study. 21

2.13 DL receiver structure (from [1]). The gray regions indicate the imple-
mented fuction in our study. 21

2.14 DL synchronization process block diagram. 22
2.15 Flow chart of symbol time and fractional frequency offset synchronization. 24
2.16 Flow chart of integer frequency offset synchronization. 25
2.17 The state machine of framing synchronization. 26

3.1 Block diagram of Quixote (from [15]). 28
3.2 Block diagram of TMS320C6416 DSP (from [9]). 31
3.3 Pipeline phases of TMS320C6416 DSP (from [9]). 33
3.4 TMS320C64x CPU data path. (from [9]). 37
3.5 Code development flow for TI C6000 DSP. 41

4.1 The bursts allocation in a frame. 49
4.2 A part of assembly code for DSP fft32x32. 54
4.3 The fixed-point data formats at the TX side. 55
4.4 The fixed-point data formats at the RX side 56
4.5 C code of recursive DFT. 59
4.6 The software pipeline information of recursive DFT. 60
4.7 Assembly code of recursive DFT. 61

viii

4.8 C code of revised pilot correlation loop. 63
4.9 Partial assembly code of original pilot correlation loop. 64
4.10 The software pipeline information of pilot correlaton loop 65
4.11 Partial assembly code of revised pilot correlation loop. 66
4.12 The abs() function is replaced by instrinsic abs() in C code. 67
4.13 Shift-register buffer arrangement. 68
4.14 Code of CP correlation functions using shift-register buffer and circular

buffer. 70
4.15 Software pipeline information of shift-register buffer type CP correlation

loop. 71
4.16 Software pipline information of circular buffer type CP correlation loop. . 72
4.17 Hand-unrolled code of circular buffer type CP correlation. 73
4.18 Software pipline information of hand-unrolled circular buffer type CP

correlation loop. 74
4.19 Execution cycles of synchronization functions. 75

ix

Chapter 1

Introduction

The IEEE-SA (Institute of Electrical and Electronics Engineers Standards Association)’s

802.16 working group is concerned with the WirelessMAN air interface for wireless

metropolitan area networks. The IEEE 802.16 Task Group a developed IEEE Standard

802.16a that amends IEEE Std 802.16-2001 by enhancing the medium access control

layer and providing additional physical layer specifications in support of broadband wire-

less access at frequencies 2–11 GHz.

We consider the DSP implementation of a IEEE802.16a downlink synchronization

method. The synchronization includes symbol time synchronization, frequency offset

synchronization and frame synchronization. The synchronization techinques are from [1]

with some modifications. Our implementation is software-based, employing Texas Instru-

ment’s TMS320C6416 digital signal processor (DSP) housed on Innovative Integration’s

Quixote cPCI card. The TMS320C6416 is a fixed-point DSP with 1.67 ns instruction

cycle time. It adopts the advanced VelociTI Very Long InstructionWord (VLIW) archi-

tecture that enables sustained throughput of eight instructions in parallel.

The implemented code is modified from the simulation program from [1]. We rewrite

the floating-point version to the 16-bit fixed-point version and refine the code to maximize

the execution performance.

The thesis is organized as follows. In chapter 2, we introduce the 802.16a downlink

synchronization techniques. Chapter 3 introduces the synchronization program executing

1

environment, including the Quixote card and the TMS320C6416 DSP chip. Chapter 4

describes the DSP implementation and its performance. Finally, chapter 5 containes the

conclusion.

2

Chapter 2

Techniques for Downlink
Synchronization

The IEEE standard 802.16a [5] specifies the WirelessMAN air interface for wireless

metropolitan area networks. There are several system modes in 802.16a: SC (single

carrier), OFDM (orthogonal frequency-division multiplexing) and OFDMA(orthogonal

frequency-division multiple access). It also supports two duplex types: TDD (time di-

vision duplex) and FDD (frequency division duplex). We consider the TDD OFDMA

option.

Accurate demodulation and detection of an OFDM signal requires carrier orthogo-

nality. Variations of the carrier oscillator, sampling clock or the symbol time affect the

orthogonality of the system. In this thesis, the sample clocks of the users and the base

station are assumed to be identical. Then, before an OFDM receiver can demodulate

the carriers, it has to perform two synchronization tasks. First, timing synchronization is

needed to detect the proper frame start time. Secondly, it has to estimate and correct the

carrier frequency offset of the received signal.

Before a more detailed technical overview of the IEEE 802.16a standard, we intro-

duce some frequently used terms below. The subscriber station (SS) is usually known as

the mobil station or the user. The base station (BS) is a generalized equipment set pro-

viding connectivity, management, and control of the subscriber station. The direction of

transmission from the BS to the SS is called downlink (DL), and the opposite direction is

3

Fig. 2.1: OFDMA symbol time structure (from [5]).

uplink (UL). In this thesis, we only discuss the downlink synchronization techniques.

2.1 Introduction to the 802.16a TDD OFDMA System

The 802.16a WirelessMan-OFDMA system is based on OFDMA modulation. The inverse

Fourier transform creates the OFDMA waveform. The time duration is referred to as the

useful symbol time
���

. The cyclic prefix (CP) is a copy of the last
�����

s of the usful

symbol period. The two together are referred to as the symbol time
���

. The ratio of CP

time to useful time 	 �
����
��� that shulod be supported includes 1/32, 1/16, 1/8 and 1/4. In

this thesis, CP time to useful time ratio is set to 1/8. The time domain OFDMA symbol is

as shown in Fig. 2.1.

In frequency domain, an OFDMA symbol is made up of carriers. There are several

carrier types: data carriers, pilot carriers and null carriers. Data carriers are used for data

transmission. Pilot carriers carry pilot data and are used for various estimation purposes.

Null carriers do not transmission at all, they consist of the guard band and the DC carrier.

The total carrier number in a DL OFDMA symbol is 2048. There are 166 pilot carriers,

1536 data carriers and 346 null carriers.

The DL system structures are shown in Figs. 2.2 and 2.3. This thesis focuses on

synchronization techniques. The pilot and data carrier allocation, pilot and data modula-

tion, and frame structure that impact the synchronization techniques are described in the

4

modulation

carrier allocation
Framing &

parameters: No_OFDM_symbol/ No_subchannel/
OFDM_symbol_offset/ Subchannel_offset

LPF
(SRRC filter)

scrambler FEC modulation
data 1702

S/P add virtual carriers
(padding zeros)burst 1

burst n

channel
D/A
filter RF

Tx

pilot (preamble)

DL_MAP,UL_MAP

interpolator

4

burst n data

burst 1 data

2048
P/SIFFT add prefix

(fadding channel)
(AWGN)

not addressed in the
present study

Fig. 2.2: DL transmitter structure (from [1]).

4
symbol
time
sync. 2048

S/P FFT

fractional
freq.sync.

frame
sync.

demodulation
data

LPF
(SRRC filter)filter

A/D
RF
Rx

freq. sync.present study
not addressed in the

FEC
decoder

DL_frame_prefix

DL_MAP

dataP/S

1702
de−scrambler data

integer
freq.

removal
interval
guard

channel
estimation

 equalization deframing

Fig. 2.3: DL receiver structure (from [1]).

following.

2.1.1 Pilot and Data Carrier Allocatin

2.1.1.1 Pilot Allocation

The carriers allocation in a DL OFDM symbol is shown in Fig. 2.4. Null carriers are

allocated in the left side,the right side and the DC carrier. The pilot and data carriers are

termed useful carriers for they transmit useful information. The pilot tones are allocated

first, and the remainder of the used carriers are divided into 32 subchannels, and then the

data carriers are allocated within each subchannel.

The pilot carriers include fixed-location pilots and varible-location pilots. The carrier

5

Group 1 Group 2 Group48

The 1702 used carriers = 1536 data carriers + 166 pilot carriers

32 data carriers (no pilots in the group)

pilot subchannel 1 subchannel 2

Guard bandGuard band DC carrier

Fig. 2.4: Illustration of carrier usage in OFDMA DL (from [1]).

indices of fixed-location pilots never change. The carrier indices of the varible-location

pilots vary according to the formula ����� ���	��
����������������������
 �
, where ����� ���	��
�������!� is

the carrier index of a varible-location pilot,
�

is the symbol index that cycles through the

values 0,2,1,3,0,..., periodically every 4-symbol period, and

��"�$#�%'&(��&)�'&+*,*-*,*-*-&(�(./��0

. The

pilot carriers allocation map is shown in Fig. 2.5.

2.1.1.2 Carrier Allocation

After mapping the pilots, the remainder of the useful carriers from the data subchannels.

To allocate data subchannels, partition the remaining carriers into groups of contiguous

carriers. Each subchannel consists of one carrier from each of these groups. The number

of the carriers in a subchannel is therefore equal to the number of groups, and it is denoted1 �32 �54�687�7:9<;=7��
. The number of carriers in a groups is equal to the number of channels, and

it is denoted
1 ��2 �54�>)6!?+?(;=@ �

. The total number of data carriers is thus equal to
1 �32 �54�6!7�7�9<;37��BA

1 �32 �54�>�6!?+?+;:@ �
.

The exact patitioning into subchannels is according to the following equation called a

permutation formula:

� �C�	� ��D � 	3E &)F �G� 	 1 �32 �54�>�6!?+?+;:@ ���IH E � (2.1)JLK �LM EONQP�RTSVUXWZY�[]\5^�_a`�`cbZdeW8fZg �ih�jk4�;:@l@'H���D(���8M 	3E ��� � �+1 �32 �54�>�6!?+?+;:@ � g�m SnNoP�RTS<U WZY8[-\Z^�_a`c`�bZdeW f,f
6

Fig. 2.5: Pilot allocation in the OFDMA DL (from [5]).

where
� �C�	� ��D � 	3E &)F � is the carrier index of carrier E in subchannel

F
,
F�� M % & 1 �����)��� �CE E D �3F	�� g is the index of a subchannel, E � M % & 1 �
���)� �C�	� ��D � F�� � g is the index of a subcarrier

in the subchannel,
1 ��2 �543>)6!?+?+;:@

is the number of subchannels,
K �LM g is the series obtained

by rotating

 D ��� �X� � �!��� E�� � F D��(0 cyclically to the left

F
times,

��D(���8M g is the function that

rounds its argument up to the next integer,
h�j 4�;:@l@

is a positive integer assigned by the

MAC (Medium Access Control) to identify this particular BS sector, and � NoP�RTS � f denotes

the remainder of the quotient � ���
(which is most

��� �
). The numerical parameters are

given in Table. 2.1.

7

Table 2.1: Carrier Allocation in the OFDMA DL (from [5])

8

Fig. 2.6: QPSK, 16-QAM and 64-QAM constellations (from [5]).

2.1.2 Data Modulation and Pilot Modulation [5]

2.1.2.1 Data Modulation

The data modulation in 802.16a are shown in Fig. 2.6. The data bits are entered serially to

the constellation mapper. Gray-mapped QPSK and 16-QAM must be supported, whereas

the support of 64-QAM is optional.

2.1.2.2 Pilot Modulation

Pilot carriers are inserted into each data burst in order to constitute the symbol and they

are modulated according to their carrier locations within the OFDMA symbol. The PRBS

(Pseudo-Random Binary Sequence) generator is used to produce a sequence �
�

where
�

corresponds to the carrier index. The value of the pilot modulation on carrier
�

is then

derived from �
�
. The polynomial for the PRBS generator is � ��� � � � � �

, as Fig. 2.7

shows.

The symbols in an TDD OFDMA system DL transmission can be separated to two

different types. The first three symbols are termed preamble symbols, and other symbols

9

Fig. 2.7: Pseudo random binary sequence (PRBS) generator for pilot modulation (from
[5]).

are normal symbols. The initialization vector of the PRBS in the DL normal symbols is

[11111111111], while the initialization vector of the PRBS in the DL preamble symbol is

[01010101010]. The PRBS shall be initialized so that its first output bit coincides with the

first usable carrier. A new value shall be generated by the PRBS on every usable carrier.

Each pilot shall be transmitted with a boosting of 2.5 dB over the average power of each

data tone. The pilot carriers shall be modulated as

� D # ��� 0 ���� 	 �� �
�
����& h � # �)� 0 � % *

2.1.3 Frame Structure

The frame structure of TDD OFDMA is as shown in Fig. 2.8. The data are segmented

into blocks from the view of coding, and each fit into one FEC (forward error correction)

block. Each FEC block spans one OFDMA subchannel in the subchannel axis and three

OFDM symbols in the time axis. A frame consists of one DL subframe and one UL

subframe. The duration of a frame can be from 2 to 20 ms and is specified by the frame

duration code. A subframe contains several transmission bursts, which are composed

of multiples of FEC blocks. In each frame, the Tx/Rx transition gap (TTG) and Rx/Tx

transition gap (RTG) shall be inserted between the downlink and uplink and at the end of

each frame respectively to allow the BS and the SS to turn around. TTG and RTG shall

10

Fig. 2.8: Frame structure of the TDD OFDMA system (from [5]).

be at least �
�

s and an integer multiple of four samples in duration [5].

For DL, the transmitted data from the BS should contain the control messages and

the system parameters, so that the subscribers can know when and how to receive and

transmit their data. The burst profile is used to define the parameters such as modulation

type, FEC type, preamble length, guard times, etc. The first FEC block of each frame is

the DL Frame Prefix that is always transmitted in the most robust burst profile QPSK-

1/2. The DL Frame Prefix contains the parameters of the FCH (Frame Control Header)

which includes the DL-MAPs, UL-MAPs and may additional DCD and UCD messages.

The DL-MAP/UL-MAP messages define the access to the DL/UL information, including

the burst profiles and the allocation in the subchannel and time axes of the bursts. The

Downlink Channel Descriptor (DCD) and Uplink Channel Descriptor (UCD) shall be

transmitted by the BS at a periodic interval to define the characteristics of downlink and

uplink physical channels. The pilots of the first three OFDM symbols is the DL preamble

in the sense that they indicate where the OFDMA frame starts. The number of OFDM

symbols of the DL is
��1

, where
1

is positive integer.

11

2.2 Downlink Synchronization Techniques

A time offset gives rise to a phase rotation of the carriers. If the time offset is smaller than

the length of the guard interval minus the length of the channel impulse response, then the

orthogonality among carriers is maintained. In this case, the time offset will appear as a

linear phase shift of the demodulated data symbols across the carriers but will not result in

inter-symbol interference (ISI) and inter-carrier interference (ICI). For larger time offset,

ISI and ICI occur. By increasing the length of the guard interval, the timing requirement

can be loosened.

Frequency offset due to oscillator mismatch usually exists between the transmitter

and the receiver. Each subcarrier can be assumed equally affected by a center carrier

frequency spread, because the system bandwidth is small compared to the center carrier

frequency. The frequency offset causes three effects : reducing the amplitude of FFT

output, introducing ICI from other carriers, and introducing a common phase rotation

of the subcarriers [3]. The frequency offset can be separated to an integer part and a

fractional part. The former gives frequency offset in integer times carrier spacing, and

the latter gives frequency offset in fractional number times carrier spacing. The integer

frequency offset results in the entire spectrum of an OFDMA signal be cyclicly shifted,

and no ICI [4].

There are two DL synchronization conditions: initial synchronization and normal

synchronization. In the beginning when one subscriber wants to join the transmission

network, it has no idea about the timing of the network and frequency offset with the

base station. When the SS receives DL OFDMA symbol, the OFDMA symbol start time

should be found, and the frequency offset between SS and BS should be estimated and

compensated. According to 802.16a, the center frequency of the SS shall be synchronized

to the BS with a tolerance of maximum 2% of the inter-carrier spacing. The frame start

time should be found after symbol time and frequency offset synchronization are finished.

After the frame synchronization, SS can get the frame information and use it to enter the

12

normal synchronization condition [1].

2.2.1 Initial Synchronization

The scheme that we use divides initial synchronization into four stages [1], which are

symbol time synchronization, fractional frequency synchronization, integer frequency

synchronization and frame synchronization.

2.2.1.1 Stage I: Symbol Time Synchronization

The research in [1] suggests estimating symbol time by using the cyclic prefix. Two al-

gorithms are mentioned in that thesis: ML estimation and CP correlation. ML estimation

algorithm is proposed in [2], using the maximum likelihood criterion to estimate time

and frequency offsets. Under the assumption that received samples are jointly Gaussian,

symbol time offset
��

is given by

�� �������	�
����#� � 	 � �� ����� 	 � � 0B& (2.2)

where
� 	 � � ��������� �����

�
� 	 � � � � 	 � �i1 �)&

(2.3)

� 	 � ��� �� ������� �����
�

 � 	 � �� !I�" � 	 � � 1 ��#! &
(2.4)

and
�k� $ U&%$ U&% � � with SNR being signal to noise ratio. It is a one-shot estimator in the sense

that the estimates are based on the observation of one OFDM symbol. To roduce the com-

plexity, CP correlation algorithm [1] suggests using only the correlation part to estimate

the symbol time. As the samples of different OFDM symbols are uncorrelated, the peak of

the sliding sum of � 	 � � � � 	 �O� 1 �
would occur when the samples � 	 � �)&(H H H�& � 	 � � 1 � � �k� �

are all within the same OFDM symbol. Then, the symbol time offset estimator becomes

�� �����'�(�
���*)))))
������� �����

�
� 	 � � � � 	 �� 1 �+)))))

*
(2.5)

The complexities of ML estimation and CP correlation algorithm are shown in Ta-

ble 2.2. Notes that after the CP correlation is computed at sample time
�

by formula 2.3,

13

Table 2.2: Complexity of Symbol Time Synchronization

Multipications(complex) Additions(complex) Other Functions� 	 � � 4350 4349� 	 � � 8700 8452 1 absolute value�
6913 6909 1 division

1 square root
1 absolute value

the CP correlation at sample time
�
+1 is simplified as

� 	 � � � �G� ���������
��� �

� 	 � � � � 	 �� 1 ��&
� � 	 � � � � 	 � � � � 	 � �i1 � � � 	 � � � � � � 	 � �i� � 1 ��*

(2.6)

The CP correlation algorithm only calculates
� 	 � � , and ML estimation algorithm calcu-

lates all the entries listed. The research in [1] shows that although the performance of ML

estimator algorithm is better than that of CP correlation algorithm, neither algorithm can

estimate the exact symbol time at 100% accuracy. To estimate the exact symbol time, both

algorithms should be assisted by some other auxiliary operations. Here pilot correlation

is used as the auxiliary operation to estimate the symbol time, which is performed in stage

IV. The complexity of ML estimaiton is much more than CP correlation algorithm, but

the benefit is not as much. We use the CP correlation to estimate the symbol time in this

stage.

2.2.1.2 Stage II: Fractional Frequency Synchronization

In our algorithm, integer frequency offset is estimated in the post-FFT stages. Fractional

frequency offset is estimated in this stage.

Based on the frequency part of the joint ML estimator in [2] and [8], the fractional

frequency offset
�� is given by

�� � � ���� � � 	 �� ��&
as shown in Fig. 2.9. It is easy to understand why � can be estimated by this method. The

frequency offset � results in a sinusoidal wave in the time domain, and thus the received

14

samples
Dealy 2048

(.)* (length=L
 =CP legnth)

sliding sum
| . | argmax

− 1/(2) π

r(k+2048)

r(k)
ε

θ

Fig. 2.9: The stucture of the symbol time and frequency estimator from [1].

samples are multiplied by
J ��& D��������� & D��������	�� &(*-*-* m . In AWGN channel, the received sample

in the guard time is

� 	 � � � F 	 � ��D �������	
� � E 	 � ��&
and the sample in the last part of the useful time is

� 	 � �i1 � � F 	 �� 1 ��D � ��������
� ���� � E 	 �� 1 ��&
where

F 	 � � is the transmitted signal,
1

is the FFT size, and E 	 � � is the noise. Then the

multiplication of � 	 � � and � � 	 �� 1 �
becomes

� 	 � � � � 	 � � 1 � � F 	 � ��F � 	 � � 1 �8D � � !���� � noise
*

Note that
D � � !���� is the common factor of all the sample pairs with � 	 � � in the guard

interval. It makes sense that the sum of these sample pairs would reduce the noise effect.

The frequency offset � can be given by the angle part of the sum of � 	 � � � � 	 � � 1 �
taken

at the symbol start position. Note that the phase rotation of integer frequency offset is

integer times of
� �

. Thus this estimator is merely able to detect the fractional frequency

offset.

The structure of this estimator including stages I and II is shown in Fig. 2.9.

2.2.1.3 Stage III: Integer Frequency Synchronization

After the fractional frequency synchronization, we use the guard bands information to

estimate integer frequency offset [1]. To begin, an SS shuld check whether the received

OFDM symbol is from BS rather than from another SS. In 802.16a [5], the definition

15

Fig. 2.10: DL/UL symbols identification.

of the guard bands and pilots are different for DL and UL. The indices of the DL guard

carriers are from
� � %C�	.

to
�
� �
�

and from � �
�

to
� %����

, while the UL are from
� � %��	.

to
�
�
.��

and from �
.��

to
� %C�	�

. Because the symbol from another SS has the limitation that

its frequency offset to the BS must not be over 2% carrier spacing, if the OFDMA symbol

is from another SS, the magnitude in carrier indices
�
� �
��&��
� �
% & �
�
.�� &
�
.�� &
� �
% &
� �
�	0

must be small. A threshold can be set that if any of the carriers
�
�
.�� & �
� �
% & �
� �
��&
�
.�� &
� �
% &
� �
��0

is larger than the threshold, the SS will regard the symbol as a DL symbol, as shown in

Fig. 2.10.

For the DL, the standard defines the carriers
�
� �
�

and 851 as fixed location pilots

which are modulated to ���� in amplitude. If there is no integer frequency offset, the FFT

outputs of all the guard carriers will be small. So, all the guard carriers are checked to

16

see if any of them exceeds the threshold. The checking direction is from 1023 to 852, and

then from
� � %��	.

to
�
� �
�
. If carrier

�
is detected to be larger than the threshold in the

checking procedure, the � � �
�
st fixed pilots are supposed to shift

� �
� �
�

carrier spacings

due to the frequency offset. Thus the checking is stopped and the frequency is corrected

by
� �
� �
�

carrier spacings. The checking and correction take turns until all the guard

carriers are checked to be smaller than the threshold.

In fading channels, ICI may cause serious distortion. Thus, if the � � �
�
st pilots are

distorted to be less than the threshold, the frequency offset will not be detected by the

previous method. An additional check is added to see whether both of the � � �
�
st pilot

carriers are larger than the threshold. After these three checks, the integer synchronization

finishes.

2.2.1.4 Stage IV: Frame Synchronization

By stage I, the OFDMA symbol start time can be ruoghly estimated, but the SS has

to know exactly where the frame starts. The frame start time estimation suggested in

[1] uses the pilot correlation method. In the 802.16a standard [5], the varible location

pilots change their location from symbol to symbol depending on symbol index
�

. The

modulation of pilots is decided by the PRBS generator, and the initialization vector of

the PRBS generator is different in preamble symbol generation from in non-preamble

symbol generation. Therefore, there are 7 possible kinds of pilot sructures as shown in

Table 2.3. If the received symbol has the same pilot locations and the same initial vector

of modulation PRBS with the reference data, the correlation of them will be larger than

the other 6 cases. A frame is determined to start if there are three successive DL symbols

with the maximum correlation corresponding to the preamble.

The simulation result of [1] shows that the accuracy of symbol time estimation is

not enough. There is a serious problem by using the post-FFT pilots or preamble if the

symbol time synchronization in stage I does not detect the correct location of the symbol,

for then there will be a time offset � . After FFT, the time offset causes phase shift across

17

Table 2.3: Possible Pilot Structures in Frame Synchronization

DL preamble DL normal symbol��� %'&�
 � ��� � % � % � %'� % � % �(% � � % &	
 � ��� � ������������������������ ��&�
 � ��� � % � % � %'� % � % �(% � � �'&	
 � ��� � ������������������������$��&�
 � ��� � % � % � %'� % � % �(% � �$��&	
 � ��� � ���������������������� � � &	
 � ��� � ���������������������

the carriers by
D�� ���
��� , where

�
is the carrier index. This phase shift affects the correlation

of the received pilots and the reference data. Moreover, if the detected symbol start time

is later than the actual time, ISI and ICI may occur. Whether the maximum correlation of

the 7 cases indicates the true frame start becomes doubtful.

To solve this problem, a more robust symbol time should be estimated. If there was a

time offset, the useful time would be shifted and the pilots correlation would be smaller.

The simulation of [1] shows that the symbol time estimation error in stage I has high

probability to be smaller than 30 samples. Assume that the time offset may be from
���C�

to 32 sample times. Fig. 2.11(a) shows the symbol start location detected in stage I, where

the gray region is the corresponding useful samples which are taken FFT. We apply the

FFT to the gray region from
���C�

to
�C�

samples in offset, as shown in Fig. 2.11(b) and (c)

[1]. After observing the correlation for 65 sample times, the location with peak correlation

is assumed to be the real symbol start time. The maximum correlation of the 7 cases is

then robust enough to be used. In order to reduce the complexity of FFT, the conventional

FFT is only applied to location
� ���

. When a new data value is received, the FFT may be

computed successively as

� ? 	 � � � M � ? � � 	 � � ���X? � U ���X? g D � ���
� (2.7)

where
1

is the FFT size,
�

is the carrier index, E is sample number, and
� ?

is the new

incoming sample.

18

x

x

(1)

(cp)

x(k+N)(a)

(b)

(c)

x(k)*

detected symbol
start time

corresponding
detected useful time

Fig. 2.11: (a) Symbol location detected in stage I, where the gray region is the useful
samples which are applied FFT. (b), (c) Leftmost and rightmost ranges of correlation,
respectively. (from [1])

.

2.2.2 Normal Synchronization

After finishing initial synchronization, the SS can find the frame duration from frame

duration code in the MAPs. The timing synchronization stage should still be used to

track the exact symbol time, because the received symbol time may shift with time due

to channel variation. The CP correlation can estimate the rough symbol time. In normal

synchronization condition, pilot correlation helps to find the robust symbol time. The

simulation result in [1] shows that when the Doppler spread is small, the standard devi-

ation of time synchronization error is about 3–4. If the channel is compensated, we can

reduce the range of possible timing offset that estimated from CP correlation to simplify

the complexity. The normal synchronization condition should be started after the channel

is compensated. In our system, the channel estimator is performed after the synchroniza-

tion. We assume that the channel is compensated before the frame is synchronized. In this

case, the timing synchronization error in CP correlation stage is assumed to be less than 5

sample time. Just as the pilot correlation step in frame synchronization stage, we should

take FFT in the range from 5 sample time before the estimated symbol time to 5 sample

19

Table 2.4: System Parameters Used in Our Study

Number of carriers (
1

)
��%�.
�

Center frequency � GHz
Uplink / Downlink bandwidth (���)

� %
MHz

Carrier spacing (���) �
*

� � kHz
Sampling frequency (� �) ����*n.��

MHz
OFDM symbol time (

���
)

��% ��* � ���	��
 (2304 samples)
Useful time (

���
)

�� � * � ���	��

(2048 samples)

Cyclic prefix time (
�
�

)
���'*l. ���	��

(256 samples)

time after the estimated symbol time. The FFT output is used to do the pilot correlation

with 7 symbol types listed in Table 2.3. We can track the exact symbol time and check

the symbol types. If the symbol type is not as expected, the initial synchronization should

be re-done.

Besides, the frequency has been synchronized to the BS during normal operation.

According to 802.16a, the SS shall track the frequency changes and shall defer any trans-

mission if synchronization is lost. The small frequency changes can be tracked by the

frequency part of the joint ML estimation (the same as stage II of initial synchronization).

These changes are averaged for a period of time and then compensated, so the frequency

offset under the tracking mode will be smaller than the initial frequency synchronization.

If by any chance a larger frequency variation occurs, we may detect it by monitoring the

received guard carriers and then try to correct it.

2.3 Summary of Downlink Synchronization Techniques

The system parameters employed in this study are shown in 2.4. Our goal in this thesis

is to do software implementation of the synchronization techniques on DSPs. The imple-

mented transmitter and receiver components are as indicated in Fig. 2.12 and 2.13. The

gray regions are implemented blocks, and the others such as FEC, channel estimation and

equalization are not implemented in this study.

Recall from 2.2 that the initial DL synchronization contains 4 stages, which are sym-

20

Fig. 2.12: DL transmitter structure (from [1]). The gray regions indicate the implemented
function in our study.

Fig. 2.13: DL receiver structure (from [1]). The gray regions indicate the implemented
fuction in our study.

21

Fig. 2.14: DL synchronization process block diagram.

bol time synchronization, fractional frequency offset synchronization, integer frequency

offset synchronization , and frame synchronization. At beginning, the CP correlator out-

put detects an local peak value. The phase of correlator output peak is the fractional

frequency offset. As shown in Fig. 2.14, use this peak location to perform the integer fre-

quency estimaion. The integer frequency offset estimator estimates the integer frequency

offset. Adding integer and fractional frequency offset and using this result to compensate

the input data. After some iterations, the integer frequency offset will be fixed, than start

to find the frame start by using pilot correlation.

The flow chart of symbol time and fractional frequency offset estimations are shown in

Fig. 2.15. The CP max records the maximum value of CP correlation, CP corre location

records the start time of a symbol that estimated in CP correlation stage, Freq Off records

the estimated fractional frequency offset. A new correlation value is computed and then

compared with CP Max whenever a new sampled data is received and shifted into syn-

chronization buffer. If the new correlation value is larger than CP Max, we replace the

value of CP Max by the news correlation value, CP corre location by current location,

22

and Freq Off by the phase of correlation value. If the correlation value is not larger than

the maximum vlaue, we compute the next CP correlation value by receiving new sampled

data without modify the content of these varibles that record the CP correlation informa-

tion. If all the next 256 successive CP correlation values are not larger than CP Max, the

current CP Corre location is the estimated symbol time and the current Freq Off is the

estimated fractional frequency offset.

Integer frequency offset estimation is perfomed after FFT. The CP correlation peak

location is used in this stage to be the symbol start time. The flow chart of integer fre-

quency offset estimation are shown in Fig. 2.16. The lock condition is achieved after the

spectrum offset of the received symbol is checked zero.

Frame synchronization is started after frequency offset is compensated. The type

of every received symbol is identified by pilot correlation. In the beginning of frame

synchronization, the preamble and
�$� %

symbol is waited. This is the first symbol of

a frame. The state machine is started when the first preamble symbol is received and

goes to the next state when the predicted symbol is received. The normal synchronization

codition is achieved when the third preamble symbol is received. If the received symobl

is not the predicted symbol, the synchronization lost, and then the frame synchronization

is re-started. Fig. 2.17 shows the state machine for frame synchronization.

23

Fig. 2.15: Flow chart of symbol time and fractional frequency offset synchronization.

24

Fig. 2.16: Flow chart of integer frequency offset synchronization.

25

Fig. 2.17: The state machine of framing synchronization.

26

Chapter 3

DSP Introduction

The 802.16a DL synchronization techinques are implemented on DSP platform. The

platform we use is a DSP card made by Innovative Integration, the Quixote. This chap-

ter introduces the Quixote PC-plugin card and the DSP which is Texas Instruments’

TMS320C6416 on this card. Our discussion will concentrate more on the DSP chip be-

cause of our implementation is pure software on the DSP.

3.1 DSP Board Introduction

Quixote is Innovative Integration’s Velocia-family baseboard for various applications re-

quiring high-speed computation. Fig. 3.1 shows a block diagram of the Quixote board. It

combines a 600 MHz 32-bit fixed-point DSP, an FPGA (Virtex-II) analog acquisition, and

system-level peripherals. The TI C6416 DSP operating at 600 MHz offers a processing

power of 4800 MIPS.

The Virtex-II FPGA includes 18x18 hardware multipliers and contains up to 12 digital

clock managers, each providing 256 subdivisions of phase shifting and frequency synthe-

sis capabilities to deliver flexibility in managing both on-chip and off-chip clock domains

and synchronization. On-chip memory blocks in the Virtex-II fabric provide convenient

high-speed memory elements for FIFOs, dual-port RAM and local process memory that

are invaluable in efficient logic design.

The Quixote card has a 32MB SDRAM for use by the DSP. When used with the

27

advanced cache controller on the ’C6416, the SDRAM provides a large, fast external

memory pool for DSP data and code. The 6416 cache controller is effective to over 85%

of infinite on-chip memory performance for most DSP applications. A flash EEPROM

allows configuration data to be saved and a 512 byte serial EEPROM memory allows

storage of converter correction coefficients which is used by the embedded Viterbi and

turbo decoder .

Fig. 3.1: Block diagram of Quixote (from [15]).

28

3.2 Introduction to TMS320C6416 DSP [9]

3.2.1 TMS320C6416 Features

The TMS320C64x DSPs are the highest-performance fixed-point DSP generation on

the TMS320C6000 DSP platform. The TMS320C64x device is based on the second-

generation high-performance, very-long-instruction-word (VLIW) architecture developed

by Texas Instruments (TI). The C6416 device has two high-performance embedded co-

processors, Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)

that significantly speed up channel-decoding operations on-chip.

The C64x core CPU consists of 64 general-purpose 32-bits registers and 8 function

units. These 8 function units contain two multipliers and six ALUs. Features of C6000

device includes :

� Advanced VLIW CPU with eight functional units, including two multipliers and

six arithmetic units:

– Executes up to eight instructions per cycle.

– Allows designers to develop highly effective RISC-like code for fast develop-

ment time.

� Instruction packing:

– Gives code size equivalence for eight instructions executed serially or in par-

allel.

– Reduces code size, program fetches, and power consumption.

� Conditional execution of all instructions:

– Reduces costly branching.

– Increases parallelism for higher sustained performance.

� Efficient code execution on independent functional units:

29

– Efficient C compiler on DSP benchmark suite.

– Assembly optimizer for fast development and improved parallelization.

� 8/16/32-bit data support, providing efficient memory support for a variety of appli-

cations:

� 40-bit arithmetic options add extra precision for applications requiring it.

� Saturation and normalization provide support for key arithmetic operations.

� Field manipulation and instruction extract, set, clear, and bit counting support com-

mon operation found in control and data manipulation applications.

The C64x additional features include:

� Each multiplier can perform two 16
A

16 bits or four 8
A

8 bits multiplies every clock

cycle.

� Quad 8-bit and dual 16-bit instruction set extensions with data flow support.

� Support for non-aligned 32-bit (word) and 64-bit (double word) memory accesses.

� Special communication-specific instructions have been added to address common

operations in error-correcting codes.

� Bit count and rotate hardware extends support for bit-level algorithms.

3.2.2 Central Processing Unit

The block diagram of C6416 DSP is shown in Fig. 3.2. The DSP contains:

� Program fetch unit.

� Instruction dispatch unit.

� Instruction decode unit.

30

Fig. 3.2: Block diagram of TMS320C6416 DSP (from [9]).

31

� Two data paths, each with four functional units.

� 64 32-bit registers.

� Control registers.

� Control logic.

� Test, emulation, and interrupt logic.

The TMS320C64x DSP pipeline provides flexibility to simplify programming and im-

prove performance. The pipeline can dispatch eight parallel instructions every cycle.

These two factors provide this flexibility:

� Control of the pipeline is simplified by eliminating pipeline interlocks.

� Increased pipelining eliminates traditional architectural bottlenecks in program fetch,

data access, and multiply operations. This provides single cycle throughput.

The pipeline phases are divided into three stages:

� Fetch.

� Decode.

� Execute.

All instructions in the C62x/C64x instruction set flow through the fetch, decode, and

execute stages of the pipeline. The fetch stage of the pipeline has four phases for all

instructions, and the decode stage has two phases for all instructions. The execute stage

of the pipeline requires a varying number of phases, depending on the type of instruction.

The stages of the C62x/C64x pipeline are shown in Fig. 3.3.

Reference [9] contains the detailed fetch and decode phases information. The pipeline

operation of the C62x/C64x instructions can be categorized into seven instruction types.

Six of these are shown in Table 3.1, which gives a mapping of operations occurring in

32

Fig. 3.3: Pipeline phases of TMS320C6416 DSP (from [9]).

each execution phase for the different instruction types. The delay slots associated with

each instruction type are listed in the bottom row.

The execution of instructions can be defined in terms of delay slots. A delay slot is

a CPU cycle that occurs after the first execution phase (E1) of an instruction. Results

from instructions with delay slots are not available until the end of the last delay slot.

For example, a multiply instruction has one delay slot, which means that one CPU cycle

elapses before the results of the multiply are available for use by a subsequent instruction.

However, results are available from other instructions finishing execution during the same

CPU cycle in which the multiply is in a delay slot.

The eight functional units in the C6000 data paths can be divided into two groups of

four; each functional unit in one data path is almost identical to the corresponding unit in

the other data path. The functional units are described in Table 3.2.

Besided being able to perform 32-bit operations, the C64x also contains many 8-bit

to 16-bit extensions to the instruction set. For example, the MPYU4 instruction performs

four 8x8 unsigned multiplies with a single instruction on an .M unit. The ADD4 instruc-

tion performs four 8-bit additions with a single instruction on an .L unit.

The data line in the CPU supports 32-bit operands, long (40-bit) and double word (64-

bit) operands. Each functional unit has its own 32-bit write port into a general-purpose

register file (Refer to Fig. 3.4). All units ending in 1 (for example, .L1) write to register

file A, and all units ending in 2 write to register file B. Each functional unit has two 32-bit

read ports for source operands src1 and src2. Four units (.L1, .L2, .S1, and .S2) have an

extra 8-bit-wide port for 40-bit long writes, as well as an 8-bit input for 40-bit long reads.

33

Table 3.1: Execution Stage Length Description for Each Instruction Type (from [9])

34

Table 3.2: Functional Units and Operations Performed (from [9])
Function Unit Operations

.L unit (.L1, .L2) 32/40-bit arithmetic and compare operations
32-bit logical operations
Leftmost 1 or 0 counting for 32 bits
Normalization count for 32 and 40 bits
Byte shifts
Data packing/unpacking
5-bit constant generation
Dual 16-bit arithmetic operations
Quad 8-bit arithmetic operations
Dual 16-bit min/max operations
Quad 8-bit min/max operations

.S unit (.S1, .S2) 32-bit arithmetic operations
32/40-bit shifts and 32-bit bit-field operations
32-bit logical operations
Branches
Constant generation
Register transfers to/from control register file (.S2 only)
Byte shifts
Data packing/unpacking
Dual 16-bit compare operations
Quad 8-bit compare operations
Dual 16-bit shift operations
Dual 16-bit saturated arithmetic operations
Quad 8-bit saturated arithmetic operations

.M unit (.M1, .M2) 16 x 16 multiply operations
16 x 32 multiply operations
Quad 8 x 8 multiply operations
Dual 16 x 16 multiply operations
Dual 16 x 16 multiply with add/subtract operations
Quad 8 x 8 multiply with add operation
Bit expansion
Bit interleaving/de-interleaving
Variable shift operations
Rotation
Galois Field Multiply

.D unit (.D1, .D2) 32-bit add, subtract, linear and circular address calculation
Loads and stores with 5-bit constant offset
Loads and stores with 15-bit constant offset (.D2 only)
Load and store double words with 5-bit constant
Load and store non-aligned words and double words
5-bit constant generation
32-bit logical operations

35

Because each unit has its own 32-bit write port, when performing 32-bit operations all

eight units can be used in parallel every cycle.

3.2.3 Memory Architecture

The C64x has a 32-bit, byte-addressable address space. Internal (on-chip) memory is

organized in separate data and program spaces. When off-chip memory is used, these

spaces are unified on most devices to a single memory space via the external memory

interface (EMIF). The C62x/C67x have two 32-bit internal ports to access internal data

memory. The C64x has two 64-bit internal ports to access internal data memory. The

C62x/C64x/C67x have a single internal port to access internal program memory, with an

instruction-fetch width of 256 bits.

A variety of memory options are available for the C6000 platform. In our system, the

memory types we can use are:

� On-chip RAM, up to 7M bits.

� Program cache.

� Two-level caches.

� 32-bit external memory interface supports SDRAM, SBSRAM, SRAM, and other

asynchronous memories. In our system, the external memory used by DSP is a

32MB SDRAM.

3.3 TI’s Code Development Environment [16], [17]

TI supports a useful GUI development to DSP users for developing and debugging their

projects: the Code Composer Studio (CCS). The CCS development tools are a key el-

ement of the DSP software and development tools from Texas Instruments. The fully

integrated development environment includes real-time analysis capabilities, easy to use

36

Fig. 3.4: TMS320C64x CPU data path. (from [9]).

37

debugger, C/C++ compiler, assembler, linker, editor, visual project manager, simulators,

XDS560 and XDS510 emulation drivers and DSP/BIOS support.

Some of CCS’s fully integrated host tools include:

� Simulators for full devices, CPU only and CPU plus memory for optimal perfor-

mance.

� Integrated Visual Project Manager with source control interface, multi-project sup-

port and the ability to handle thousands of project files.

� Source code debugger common interface for both simulator and emulator targets:

– C/C++/assembly language support.

– Simple breakpoints.

– Advanced watch window.

– Symbol browser.

� DSP/BIOS host tooling support (configure, real-time analysis and debug).

� Data transfer for real time data exchange between host and target.

� Profiler to understand code performance.

CCS also delivers foundation software consisting of:

� DSP/BIOS kernel for the TMS320C6000 DSPs.

– Pre-emptive multi-threading

– Interthread communication

– Interupt Handling

� TMS320 DSP Algorithm Standard to enable software reuse.

38

� Chip Support Libraries (CSL) to simplify device configuration. CSL provides C-

program functions to configure and control on-chip peripherals.

� DSP libraries for optimum DSP functionality. The DSP Library includes many C-

callable, assembly-optimized, general-purpose signal-processing and image/video

processing routines. These routines are typically used in computationally intensive

real-time applications where optimal execution speed is critical.

TI also supports many optimized DSP functions for the TMS320C64x devices: the

TMS320C64x digital signal processor library (DSPLIB). This source code library in-

cludes C-callable functions (ANSI-C language compatible) for general signal processing

mathematical and vector functions [11]. The routines included in the DSP library are

organized into eight groups:

� Adaptive filtering.

� Correlation.

� FFT.

� Filtering and convolution.

� Math.

� Matrix functions.

� Miscellaneous.

In our project, the FFT and IFFT functions are from this library.

3.4 Code Development Flow to Increase Performance [10]

The recommended code development flow involves utilizing the C6000 code generation

tools to aid in optimization rather than forcing the programmer to code by hand in as-

sembly. These advantages allow the compiler to do all the laborious work of instruction

39

selection, parallelizing, pipelining, and register allocation. These features simplify the

maintenance of the code, as everything resides in a C framework that is simple to main-

tain, support, and upgrade.

The recommended code development flow for the C6000 involves the phases de-

scribed in Fig. 3.5. The tutorial section of the Programmers Guide focuses on phases

1 – 3. These phases will instruct the programmer when to go to the tuning stage of phase

3. What is learned is the importance of giving the compiler enough information to fully

maximize its potential. An added advantage is that this compiler provides direct feedback

on the entire programmers high MIPS areas (loops). Based on this feedback, there are

some very simple steps the programmer can take to pass complete and better information

to the compiler allowing the programmer a quicker start in maximizing compiler perfor-

mance. The following items list goal for each phase in the 3-step software development

flow shown in Fig. 3.5.

� Developing C code (phase 1) without any knowledge of the C6000. Use the C6000

profiling tools to identify any inefficient areas that we might have in the C code. To

improve the performance of the code, proceed to phase 2.

� Use techniques described in [10] to improve the C code. Use the C6000 profiling

tools to check its performance. If the code is still not as efficient as we would like

it to be, proceed to phase 3.

� Extract the time-critical areas from the C code and rewrite the code in linear assem-

bly. We can use the assembly optimizer to optimize this code.

TI provides high performance C program optimization tools, and they do not suggest

the programmer to code by hand in assembly. In this thesis, the development flow is

stopped at phase 2. We do not optimize the code by writing linear assembly. Coding the

program in high level language keeps the flexibility of porting to other platforms.

40

Fig. 3.5: Code development flow for TI C6000 DSP.

41

3.4.1 Compilier Optimization Options [10]

The compilier supports several options to optimize the code. The compilier options can

be used to optimize code size or executing performance. Our primary concern in this

work is the execution performance. Hence we do not care very much about the code size.

The easiest way to invoke optimization is to use the cl6x shell program, specifying the

-o E option on the cl6x command line, where E denotes the level of optimization (0, 1, 2,

3) which controls the type and degree of optimization:

� -o0.

– Performs control-flow-graph simplification.

– Allocates variables to registers.

– Performs loop rotation.

– Eliminates unused code.

– Simplifies expressions and statements.

– Expands calls to functions declared inline.

� -o1. Peforms all -o0 optimization, and:

– Performs local copy/constant propagation.

– Removes unused assignments.

– Eliminates local common expressions.

� -o2. Performs all -o1 optimizations, and:

– Performs software pipelining.

– Performs loop optimizations.

– Eliminates global common subexpressions.

– Eliminates global unused assignments.

42

– Converts array references in loops to incremented pointer form.

– Performs loop unrolling.

� -o3. Performs all -o2 optimizations, and:

– Removes all functions that are never called.

– Simplifies functions with return values that are never used.

– Inlines calls to small functions.

– Reorders function declarations so that the attributes of called functions are

known when the caller is optimized.

– Propagates arguments into function bodies when all calls pass the same value

in the same argument position.

– Identifies file-level variable characteristics.

The -o2 is the defaule if -o is set without an optimization level.

The program-level optimization can be specified by using the -pm option with the

-o3 option. With program-level optimization, all of the source files are compiled into

one intermediate file called a module. The module moves to the optimization and code

generation passes of the compiler. Because the compiler can see the entire program, it

performs several optimizations that are rarely applied during file-level optimization:

� If a particular argument in a function always has the same value, the compiler re-

places the argument with the value and passes the value instead of the argument.

� If a return value of a function is never used, the compiler deletes the return code in

the function.

� If a function is not called directly or indirectly, the compiler removes the function.

43

When program-level optimization is selected in Code composer studio, options that have

been selected to be file-specific are ignored. The program level optimization is the hightest

level optimization option. We use this option to optimization our code.

44

Chapter 4

DSP Implementation

Recall that 802.16a downlink synchronization process is as shown in Fig. 2.14. The pro-

cess includes symbol timing synchronization, fractional frequency synchronization, inte-

ger frequency synchronization and frame synchronization. Our target is to implemente

DL synchroization process on TI TMS32C6416 DSP.

Because of the memory on our platform is quite large, the most important issue to be

optimized on our system is the execution efficiency. This chapter focuses on the perfor-

mance improvement of the DL synchronization code. The DL synchronization programs

developed in [1] employed floating-point computation. The code we implemente on DSP

employs fixed-point computation. The precision of fixed-point numbers that we use is

also discussed.

4.1 Efficiency Enhancement of DL Synchronization Code

The original DL synchronization program is written in C language. It is written without

any knowledge of DSP at beginning. This section introduces the process of maximizing

the performance.

4.1.1 Performance of the Original Program

The compile option that we use to optimize the original DL synchronization program

is the program-level optimization. Tables 4.1 and 4.2 shows the the code size, maxi-

45

mum exection cycles, and minmmum exection cycles of individual function blocks for

the transmitter and the receiver, respectively. Floating-point computation is used in the

program. Because the C6416 is a fixed-point DSP, floating-point operations on it is time-

consuming.

The transmitter consists of several function blocks that are listed in Table 4.1. Mod-

ulation performs the data modulation that IEEE 802.16a supports. The options of data

modulation are QPSK, 16-QAM and 64-QAM. In our program, the modulation is fixed

64-QAM for all burst data. Framing performs the allocations of pilot carriers , guard car-

riers and burst data. Fft float is the discrete fast fourier transfer from [1]. IFFT function in-

cludes the fft float with some input data buffer arrangement of fft float. Tx mask satisfaction

performs the 4-times oversample and SRRC filter (from [1]).

The functions that executed in receiver are listed in Table 4.2. SRRC downsample per-

forms the 4-times downsample and SRRC filter (from [1]). CP correlation, initial freq sync,

integer freq sync, and pilot corre functions perform the synchronization techniques that

are CP correlation, fractional frequency synchronization, integer frequency synchroniza-

tion and pilot correlation respectively. Fft float in receiver is the same as that in trans-

mitter with different input option. FFT consists of fft float function and some input data

buffer arrangement of fft float. In de-framing function, data bursts are extracted from

the received symbols. And finally, de-modulation of the burst data is performed in de-

modulation function.

In our system, one symbol duration is 201.6
�

s and there are 2304 samples in a sym-

bol. The clock frequency of DSP is 600 MHz. The execution clock cycles is 120960

in a symbol duration and average 52.5 in a sample duration. The average counts of all

transmitter functions are in a symbol duration. Their target counts are 120960 cycles for

real time operation. In the receiver, the average count of fft float, FFT, de framing and

de modulation functions are in a symbol duration and their targets counts are 120960 for

real time operations. For the other funcions in receiver, their average counts are in one

46

Table 4.1: Floating-Point Profile of 802.16a DL Transmitter Function Blocks

Block Code size Max. count Min. count Avg. count Real time
(Bytes) (Cycles) (Cycles) (Cycles) rate

Modulation 460 4294288 1441061 3058185 3.96%
Framing 2212 188125 188091 188110 64.30%
fft float 1328 23487728 23476418 23481019 0.52%

IFFT 676 23491380 23480070 23484737 0.52%
Tx mask satisfaction 1852 46471084 46460414 46465084 0.26%

Table 4.2: Floating-Point Profile of 802.16a DL Receive Function Blocks
Block Code Size Max. count Min. count Avg. count Real time

(Bytes) (Cycles) (Cycles) (Cycles) rate

SRRC downsample 608 23283 16387 21233 0.25%
CP correlation 1188 185559 43 645 8.14%

initial freq sync 420 184 52 57 92.11%
integer freq sync 1228 23484952 40 2078 2.53%

pilot corre 2972 24057628 48 167290 0.03%
sync 1132 47393690 56192 228702 0.02%

fft float 1328 23258068 23250546 23254032 0.52%
FFT 420 23456722 23451576 23453957 0.52%

de framing 948 1626187 1626187 1626187 7.44%
de modulation 904 1883132 637124 1352664 8.94%

sample duration and their target counts are 52.5 cycles for real time operation. The real

time rate listed in Table 4.1 and 4.2 show that the rate that average counts compared with

real time requirement of individual function.

In this thesis, we will optimize the synchronization related functions. They are CP correlation

(CP correlation), initial freq sync (initial frequency synchronization) , integer freq sync

(integer frequency synchronization) , pilot corre (pilot correlation) and sync (synchro-

nization). The sync function is the top-level function of synchronization.

4.1.2 Fixed-Point Number System Consideration

The C6416 is a fixed-point DSP. Floating-point operations on it are inefficient. We should

realize the transmission system using fixed-point arithmetic to maximize the performance.

47

TI’s programmer guide [10] recommands the user to use the short data type (16 bits) for

fixed-point multiplication inputs whenever possible. Because this data type provides the

most efficient use of the 16-bit multiplier in the C6416. Besides changing the data type,

some sub-functions in this system such as FFT, IFFT, sine and cosine should be replaced

by fixed-point version.

4.1.2.1 On the Precision of Fixed-Point Computation

The fixed-point number format that we use in the system to do arithmetic operations is

Q.15. We choose the format because the most efficiency data format for the multiply

operation is 16 bits, and the data used in synchronization process are less than 1 in their

numerical values. Now, we evaluate whether the precision is enough for the synchroniza-

tioni work.

For this, we allocate 6 bursts (users) in the downlink part of one 802.16a frame. Source

data are generated randomly, and are modulated to 64 QAM symbols. There are 12

OFDMA symbols in one DL frame and 4 OFDMA symbols in UL frames. The TTG

and RTG are 136 samples. The frame structure and the bursts allocation are shown in

Fig. 4.1. The frame is repeated several times in transmission.

In the simulation environment, we employ the multipath ETSI “Vehicular A” channel

model [1]. The time-varying channel impulse response for these models can be described

by
� 	�� &c� ��� � 9 � 9 	 � ��� 	�� �

�
9 ��&

(4.1)

which defines the channel impulse response at time
�

as a function of the lag � . The chan-

nel taps � 9 	 � � are independent complex stochastic variables, fading with Jakes’ Doppler

spectrum, with a maximum Doppler frequency of 240 Hz, reflecting a mobile speed of

approximately 120 km/h (and scatterers uniformly distributed around the mobile). The

real-valued �
9

and the variance of the complex-valued � 9 are given in [13] and repeated in

Table 4.3.

48

Fig. 4.1: The bursts allocation in a frame.

Table 4.3: Characteristics of the ETSI “Vehicular A” Channel Environment

tap relative delay (nsec or sample number) average power
(nsec) (4 oversampling) (normal) (dB) (normal scale) (normalized)

1 0 0 0 0 1.0000 0.4850
2 310 14 4 -1.0 0.7943 0.3852
3 710 32 8 -9.0 0.1259 0.0610
4 1090 50 12 -10.0 0.1000 0.0485
5 1730 79 20 -15.0 0.0316 0.0153
6 2510 115 29 -20.0 0.0100 0.0049

49

Table 4.4: Relations Between Spreed and Maximum Doppler Shift at Carrier Frequency
6 GHz and Subcarrier Spacing 5.58 kHz

Speed (km/hr) Doppler shift (Hz) � R ���
0 0 0

20 111 0.0224
40 222 0.0448
60 333 0.0672
80 444 0.0896
100 556 0.112
120 557 0.134

The SNR is set to 10 dB in the fading chnanel. The receiver SNR specified in 802.16a

test condition is from 9.4 to 24.4 dB, so 10 dB, which is almost the worst condition, is

a reasonable value for simulation. The maximum Doppler shifts of our simulation are

shown in Table 4.4 for the speed from 0 to 120 km/hr.

The goals of synchronization are to compensate the frequency offset and to find the

frame start time. To evaluate the precision of fixed-point format, we compare the fre-

quency lock and frame lock performance between floating-point system and fixed-point

system. The frequency offset is estimated and compensated in the synchronization pro-

cess. The frequency lock condition is achievd when the frequency offset is compensated.

The frame lock condition is achieved when the three successive preamble symbols are

identified. The simulation transmits 5 802.16a frames every time. If the frequency lock

and frame lock are not obtained in these 5 frames, the synchronization is declared to fail.

The current symbol number is recorded when the frequency is locked, and the current

frame number is recorded when the frame is locked. The average symbol number of fre-

quency lock and frequency lock fail rate is used to measure the performance of frequency

lock, and the average frame number of frame lock and the frame lock fail rate is used to

measure the performance of frame lock. Tables 4.5 and 4.6 show the simulation result.

The frequency offset is always locked in 5 frames duration. And it takes on average

no more than 6 symbols to achieve the frequency lock. The performance is not clearly

50

Table 4.5: Performance Comparision of Frequency Lock Between Floating-Point and
Fixed-Point Implementation

Doppler shift Lock fail rate Average lock symbol number
� R ��� Floating-point Fixed-point Floating-point Fixed-point

0 0 0 2.99 2.98
0.0224 0 0 2.66 2.69
0.0448 0 0 2.36 2.39
0.0672 0 0 2.30 2.32
0.0896 0 0 2.61 2.57
0.112 0 0 3.23 3.42
0.134 0 0 5.15 5.14

Table 4.6: Performance Comparision of Frame Lock Between Floating-Point and Fixed-
Point Implementation

Doppler shift Lock fail rate Average lock frame number
� R ��� Floating-point Fixed-point Floating-point Fixed-point

0 0.001 0.001 1.00 1.00
0.0224 0.057 0.074 1.98 1.94
0.0448 0.008 0.100 1.26 1.24
0.0672 0.027 0.032 1.65 1.70
0.0896 0.136 0.140 2.59 2.59
0.112 0.107 0.135 2.14 2.19
0.134 0.063 0.069 1.50 1.47

51

Table 4.7: Q16.15 Bit Fields
Bits 31 30 29 ... 15 14 ... 1 0

Value S I15 I14 ... I0 Q14 ... Q1 Q0

Table 4.8: Q.15 Bit Fields
Bits 15 14 13 ... 1 0

Value S Q14 Q13 ... Q1 Q0

dependent on Doppler shifts. The performance of fixed-point system is very close to that

of the floating-point system. The probability of frame locking in 5 received frames is

not very high when the Doppler shift exists. But the frame can be locked quickly when

Doppler shift is 0. This is because the IEEE 802.16a is designed for fixed environments.

The useable information is useful when the Doppler shift is small. Comparing the simu-

lation results, we see that the performance of frame lock is close in floating-point and in

fixed-point systems. The Q.15 format fixed-point computation is precise enough for the

synchronization process.

4.1.2.2 Fixed-Point Data Formats

In the transmitter (TX) side, as Fig. 2.2 shows, multiplication only exists in modulation,

IFFT and the 4-times upsample SRRC filter. The data formats we set in the TX side are:

� The data format before IFFT is Q16.15.

� The data format after IFFT is Q.15.

Q16.15 format places the sign bit in the leftmost, followed by 16 integer bits and 15 bits

fraction component (Table 4.7). Q.15 format places the sign bit in the leftmost, and the

remainder 15 bits are fraction component (Table 4.8).

The range of data values before IFFT is
M �
� �
&
� � g , and the data after IFFT is less than

1 in their numerical values. The critical functions in TX are FFT and SRRC filter. We

can get the FFT/IFFT code from TI TMS320C64x DSP library (DSPLIB). This library

52

supports two types of FFT/IFFT. They are 16 bits input/output data type and 32 bits in-

put/output data type. The inputs of the FFT/IFFT must be scaled by the FFT length to

prevent overflow. In our 802.16a system, the FFT/IFFT length is 2048. If we use the 16

bits type FFT/IFFT, the input data format of FFT/IFFT must be scaled by 2048. In this

case, only 4 bits can be used to represent the fixed-point value. Intuitively, 4 bits is not

enough in our system. For this reason, we choose the 32 bits FFT/IFFT DSP fft32x32

and DSP ifft32x32.

DSP fft32x32 is the complex mixed radix 32-
A

32-bit FFT with rounding, while in-

verse FFT version of the same type is DSP ifft32x32. It computes an extended precision

complex forward mixed radix FFT with rounding and digital reversal. Input data
�oM g , out-

put data � M g and coefficients �
M g are 32-bit. The output is returned in the separate array y[

] in normal order. The FFT coefficients (twiddle factors) are generated using the program

“tw fft32x32”. No scaling is done with the routine; thus the input data must be scaled

by
�������

� U to completely prevent overflow. The routine uses �	� � �
1 � �

stages of Cooley

Tukey radix-4 DIF FFT and performs either a radix-2 or radix-4 DIF FFT on the last stage

depending on
1

. If
1

is a power of 4, then this last stage is also a radix-4 transform, oth-

erwise it is a radix-2 transform. In our work, we have 5 stages of radix-4 transform and 1

stage radix-2 transform.

Table 4.9 shows the comparisons of computational complexity for different FFT al-

gorithm. The mixed radix FFT needs 19203 real multiplications and 64259 real addi-

tions theoretically in our application. Practically, the time DSP fft32x32/DSP ifft32x32

needed is 2811 clock cycles. The complexity and performance of IFFT/FFT are listed in

Table 4.10. The efficiency of DSP fft32x32 is quiet high because the code is assembly-

optimized. The software pipeline is well scheduled as show in Fig. 4.2.

We set the data format before IFFT as Q16.15 rather arbitrarily. The most critical

arithmetic operation in TX side is the SRRC filter. We set the data format after IFFT as

Q.15 so that the inputs of multiplication in SRRC filter is 16 bits. This is the most efficient

53

Table 4.9: Comparisons of Computational Complexity for Different FFT Algorithms

Complexity No. of Real Multiplications No. of Real Additions

Radix-2 FFT
!� 1 �	� � ! 1 ���! 1 �

�
�! 1 �	� � ! 1 ���! 1 �

�
Radix-4 FFT

�
�
1 � � � ! 1 � ��1 �i� ! �

�
1 �	� � ! 1 � ��1 � �

Radix-8 FFT
! �! �
1 	 � � � ! 1 ��� � �i. � �! �

1 �	� � ! 1 � ! �
�
1 �i.

Split-radix-4/2 FFT
1 � � � ! 1 � ��1 �i. ��1 �	� � ! 1 � ��1 � .

Simplified FFT
.C1 � 1

Table 4.10: Complexity and Performance of IFFT/FFT Implementation

Needed Number of Actual Number of Performance
Clock Cycles Clock Cycles

IFFT/FFT 20311 28811 70.5%

Fig. 4.2: A part of assembly code for DSP fft32x32.

54

use of the 16-bit multiplier in C6416. The output of SRRC is Q.15 for the arithmetic

operations of RX side are 16 bits fixed-point. Fig. 4.3 shows the data format of TX side.

Fig. 4.3: The fixed-point data formats at the TX side.

In the RX side, the operation is much more complex than in TX side. The main

consideration of setting fixed-point data format is that the multiplier operations are always� � A � � . The data formats we set in the RX side are:

� The data format of SRRC filter input is Q.15.

� The data format after SRRC filter is Q.15.

� The data format after FFT is Q16.15.

� The data format of estimated frequency offset is Q16.15.

Fig. 4.4 shows the data formats at RX side. The stages after FFT are de-framing and

de-modulation. The range of data values after FFT is
M �
� �
&
� � g and the Q.15 format can

not cover this range. The performance of these functions is not discussed in this thesis,

and we set the fractional part of fixed-point data after FFT to be 15 bits for simplifying

the data format transformation. For these reasons, the data format after FFT is set to be

Q16.15. The fractional part of fixed-point number in this system in 15 bits. Hence the

finest fractional resolution is
� � � � � � *n%

�
A � % � � .

55

Fig. 4.4: The fixed-point data formats at the RX side

4.1.2.3 Fixed-Point Sine and Cosine Functions

The sine and cosine functions in RX side are used to compensate the frequency offset.

The library of TI C compiler only supports the floating-point version. We have to replace

these two functions by fixed-point version for efficiency. There are several methods that

can be used to accomplish these two functions. The table look-up method is faster than

the series expansion [12]. The former stores values of the function and the values of the

slope used to interpolate between the table entries. If we let the constants in the table be

represented by
� 9

, and the interpolation values (multipliers) by � 9
, a function table might

appear as shown in Table 4.11, and

����� 	 �
��� � 9 � � 9 �
(4.2)

where
� 9 � ����� 	 � 9 � � � A 	 ����� 	 � 9 � � � � ����� 	 � 9 � ��& (4.3)

56

Table 4.11: Sine/Cosine Look-Up Table
0

�����"%
 � � %� � ����� � �
 � � � �� ! ����� � !
 � � � !H H HH H HH H H
� ? ����� � ?
 � � � ?

� 9 � ����� 	 � 9 � � � � ����� 	 � 9 �� 9
� � � � 9 *

(4.4)

Once the program has been written to use the table look-up method, it can be used to

generate any function required by changing the values in the table. So the equation for

cosine is the same as that for sine.

In this thesis, the table length is 512 and its data type is Q.15. The
� 9 � !�� 9

� � ! , and

	 � 9 � � � � 9 � � � �
�
��� *

The input data can be normized by a factor
� �

for convenience. Then (4.4) can be modi-

fied to

� 9 � 	 ����� 	 � 9 � � � � ����� 	 � 9 � � A �
����*

(4.5)

The error mean of the fixed-point sine/cosine function is
�'*n% � A�� % � � and the mean square

error is �
* ��� A � % � � � . The precision is close to the resolution of the system.

4.1.2.4 Performance of Fixed-Point System

After the data format is changed to fixed-point, the operation performance is shown in

Tables 4.12 and 4.13. The performance is much better than the floating-point in the

synchronization related functions which including CP correlation, initial freq sync, pi-

lot corre and sync. Some other functions such as framing and de framing are not much

enhanced because the arthimetic operations are not the critical factors of their execution

efficiency. The critical factors of these functions are the interface of input and output data.

57

Table 4.12: Fixed-Point Profile of 802.16a DL Transmitter Function Blocks

Block Code Size Max. Min. Avg. Improvement Real
(Bytes) count count count (compare with time

(Cycles) (Cycles) (Cycles) floating-point rate
operations)

Modulation 616 2716875 906088 1932318 36.81% 6.26%
Framing 1624 191530 191496 191515 -1.81% 53.16%

IFFT 964 37528 37528 35728 99.85% 338.56%
Tx mask satisfaction 1624 6199459 6199459 6199459 86.55% 1.95%

Table 4.13: Fixed-Point Profile of 802.16a DL Receiver Function Blocks

Code Size Max. Min. Avg. Improvement Real
(Bytes) count count count (compare with time

(Cycles) (Cycles) (Cycles) floating-point rate
operations)

SRRC downsample 700 8942 1175 1301 93.87% 4.01%
CP correlation 1040 376 37 80 87.60% 65.63%

initial freq sync 312 179 32 38 33.33% 138.16%
integer freq sync 1276 65128 39 42 97.98% 125%

pilot corre 2400 638902 38 8462 94.94% 0.62%
sync 1132 713535 9759 18114 92.08% 0.29%
FFT 276 32259 32259 32259 99.86% 374.96%

de framing 1036 1225985 1225985 1225985 24.61% 9.87%
de modulation 460 755037 252196 537886 60.24% 22.49%

The performance of these functions should be fine-tuned but we have not worked on it in

this thesis.

The synchronization related functions can be further improved by refining the program

code.

4.1.3 Code Refinement

4.1.3.1 Recursive DFT in Pilot Correlation Function

In pilot correlation fucntion, the FFT is executed several times in one symbol duration.

FFT should be done 64 times in initial condition and 10 times in normal condition during

58

Fig. 4.5: C code of recursive DFT.

Table 4.14: Comparison Between FFT and Recursive DFT
Code Size (Bytes) Clock Cycles

DSP fft32x32 932 28811
Recursive DFT 652 6172

one symbol time. These FFT can be calculated recursively as discussed before as

� ? 	 � ��� M � ? � � 	 � � � �X? � U ���X? g D � ����
� *
The input

!�� �U to sine and cosine in this equation is not a random number. We can store

these sine and cosine values in a table to simplify the calculation. The resulting C code is

shown in Fig. 4.5, and Table 4.14 shows the profile of the recursive DFT.

The recursive DFT calculates 2048 complex multiplications. One complex multi-

plication needs 4 real multiplications and 2 additions. The recursive DFT thus takes��%	.
�
A . �

�
� �C�

multiplications and
��%�.
�
A � ��.�%�� � additions. There are 2 multipliers

and 6 ALUs in TI C6416 DSP, so the lower-bound execution time of recursive DFT is
� � � !! �

�
� ���
�

� . � � �
clock cycles. The efficiency of the recursive DFT implementation

is 77.4% as Table 4.15 shows. The software pipeline information of the recursive DFT

program is shown in Fig. 4.6. The resource is partitioned equally and software pipeline is

well scheduled. Fig. 4.7 shows a part of the assembly code.

59

Fig. 4.6: The software pipeline information of recursive DFT.

Table 4.15: Efficiency of Recursive DFT Implementation
Lower-Bound of Actual Execution Efficiency
Execution Cycles Cycles

Recursive DFT 4778 6172 77.4%

60

Fig. 4.7: Assembly code of recursive DFT.

61

Table 4.16: The Execution Cycles of Pilot Correlation Loop
Original Code Refined Code

(Cycles) (Cycles)

Pilot Correlation Loop 76293 1013

4.1.3.2 Pilot Correlation Function Refinement

In pilot correlation function, the locations of pilots are found in the frequency domain and

then they are used to be the reference of correlation. The pilot locations in OFDMA sym-

bol has only 4 types depending on the symbol index
�

. We can store the pilot locations

instead of calculating them time after time. Besides, the values of the pilots are either � �

or
�
� � . We do not need to do multiplications to find the maximum of pilot correlation. We

can replace the multipliers by additions.

The revised code is shown in Fig. 4.8. The pilot locations are stored in var pilot loc

array and no multiplication is needed. The most important enhancement of the perfor-

mance is that the loop count is reduced from 1702 (the useful carriers number) to 144

(the variable carriers number), as shown in Table 4.16. Fig 4.9 shows the partial assembly

code of original pilot correlation loop. It is a disqualified loop and the software pipeline

is not scheduled. The software pipeline information of revised code is shown in Fig. 4.10,

which shows that the software pipline is well scheduled. Fig 4.11 shows a part of the

assembly code.

4.1.3.3 Using Intrinsics

The C6000 compiler provides intrinsics, which are special functions that map directly to

inlined C62x/C64x/C67x instructions, to optimize the C/C++ code quickly. The intrinsic

function we used in synchronization code is the integer absolute value instruction abs().

The absoulate value function used originally was fabs(). In TI’s CCS library, it takes 70

clock cycles to perform the absolute value computation through fabs(). Replacing the

library function by the instrinsic enhances the execution performance. Fig. 4.12 shows

62

Fig. 4.8: C code of revised pilot correlation loop.

63

Fig. 4.9: Partial assembly code of original pilot correlation loop.

64

Fig. 4.10: The software pipeline information of pilot correlaton loop

65

Fig. 4.11: Partial assembly code of revised pilot correlation loop.

66

Fig. 4.12: The abs() function is replaced by instrinsic abs() in C code.

the change in program.

4.1.3.4 Synchronization Buffer Arrangement

Table 4.13 shows that the minimum clock cycle of sync function is 9759. The minimum

condition should be much faster because the minimum condition of sync is almost idle.

The inefficiency in sync code is caused by that the original code uses the shift-register

buffer. Whenever a new data is received, the data in buffer are shifted left, and the new

data is put in the rightmost position. If the shift-register buffer had been implemented

in hardware, then the shift operation can be done in one clock cycle. But in the DSP

software, shifting all the data in the buffer, as shown in Fig. 4.13, is time-consuming.

After changing the buffer to a circular buffer, the new data input is kept in the buffer in

circular order. So the code used to handle buffer like Fig. 4.13 is no more needed.

The minimum count of sync function should close to idle. Table 4.17 lists the ex-

ecution profile of sync functions which use different buffer arrangements. It shows that

the performance is much enhanced by using a circular buffer in place of a shift-register

buffer.

67

Fig. 4.13: Shift-register buffer arrangement.

Table 4.17: Profile of the sync Function
Shift buffer Circular buffer

(Cycles) (Cycles)

Minimum count of sync 9759 312

Table 4.18: Profile of CP Correlation Function Loop Using Different Buffer Types
Code Size Maximum count Minimum Count Average Count

(Bytes) (Cycles) (Cycles) (Cycles)

CP correlation 1040 376 37 80
(Shifted Buffer)
CP correlation 844 1329 37 99

(Circular Buffer)

68

4.1.3.5 Loop Unrolling

The maximum count of CP correlation is increased when using circular buffer as shown in

Table 4.18. The maximum count occurs when the CP correlation is caculated for the first

time. The method of calculation is given in (2.3). The code of CP correlation functions

using two different buffer types are shown in Fig. 4.14. When using shift-register buffer,

the data used to calculate correlation are obtained from fixed memory addresses. It is

much easier for compiler to optimize the code. When using the circular buffer, the data

used to calculate correlation are from a different memory address each time. And the

pointer of circular buffer must be checked whether or not it arrives the end of buffer. The

conditional statement in loop is very difficult for compiler to do optimization.

The software pipeline scheduling of CP correlation function using shifted-register

buffer is shown in Fig. 4.15, and that of using circular buffer is shown in Fig. 4.16.

Resource partition for shift-register buffer type CP correlation is apparently better than

for circular buffer type correlation. And the loop is unrolled automatically in the case of

shift-register buffer type of CP correlation, but not in the case of circular buffer type. This

is because the compiler does not know how to unroll the loop with conditional operation

in it. We unrolled the loop 4 times by hand as shown in Fig. 4.17. The software pipeline

information is as shown in Fig. 4.18. The resource partition is better than before and the

software pipeline is well scheduled.

The C6416 DSP has 2 .M units, and each unit can execute dual
� � A�� � multiply

operation. Because our data formats are 16 bits and C6416 has 6 ALUs, 4 multiply

operations and 6 additions can be executed simultaneously. The CP correlation in the

first step calculates a total of 256 samples times another 256 samples separated by 2048

samples. It is the maximum count condition. The CP correlation needs 256 complex

number multiply operations, and 255 complex number add operations. The number of

real multiply operations is
�

� � A . � �(%C�	.
, and the number of real addition operations

is
�

� � A � � �
� �

A � � � %C���
. The minimum required number of execution cycles is

69

Fig. 4.14: Code of CP correlation functions using shift-register buffer and circular buffer.

256. The performance of CP correlation functions are shown in Table 4.19, . After the

first time calculation, the CP correlation is calculated by (2.6). The equation includes

2 complex number multiplications and 2 complex number additions. The number of real

multiply operations is 8 and that of real addition operations is 8. In this stage, the absolute

value should be calculated and then the maximum found. The absolute value calculation

requires 2 real number multiplications and 1 real number addition. In total, the number of

real multiply operations is 10 and the number of real addition operations is 5. This stage

should be finishable in 3 cycles ideally.

The performance of CP correlation is shown in Table 4.19. After changing the buffer

to circular buffer, the performance can be increased by unrolling the loop by hand. The

efficiency of stage II is very low. In C6416 DSP, all instructions executing in parallel

constitute an execute packet. An execute packet can contain up to eight instructions. Be-

sides, the .M unit can executes dual
� � A � � multiply operations simultaneously. In stage

I, the software pipeline can be well scheduled, and an execute packet can contain several

70

Fig. 4.15: Software pipeline information of shift-register buffer type CP correlation loop.

71

Fig. 4.16: Software pipline information of circular buffer type CP correlation loop.

Table 4.19: Multiply-Add Efficiency of CP Correlation Functions
Stage I Stage II

Cycles Multiply-Add Cycles Multiply-Add
Efficiency efficiency

Shift-register buffer 372 68.8% 159 1.89%
type

Circular buffer type 1329 19.3% 174 1.72%
without loop unrolling

Circular buffer type 395 64.8% 177 1.69%
with loop unrolling

72

Fig. 4.17: Hand-unrolled code of circular buffer type CP correlation.

instructions. But in stage II, multiplications and additions that we used to measure the

computing power of DSP are minor portion of CP correlation operations. The most com-

puting power in stage II is contributed to handle that the operations of program branches

into CP correlation function. Hence the code efficiency that obtained by caculating mul-

tiplications and additions is unreasonable in this stage. This is why the efficiency shown

in stage II is much lower than in stage I, as Table 4.19 shows.

4.2 Performance Discussion

Fig. 4.19 shows that the performance of synchronization function is much better after the

code is refined. The sub-functions of framing, de framing, modulation, and de modulation

are not optimized in this thesis. The critical factor that affects the performance of these

functions is not complexity of arithmetics. In this system, the input data of these functions

are read from files, and the results are output to files. We use the library functions � � D � �

and � ��� �3�8D functions to access the data. This is not good in terms of speed because the

� � D � � and � � � �=�8D function calls are very slow on the DSP card. If we want improve the

system efficiency, then the data interface should be replaced by a more efficient method.

The profile of refined code is shown in Table 4.20. The performance of pilot corre-

lation function is much enhanced after we refined the code. The performance of initial

73

Fig. 4.18: Software pipline information of hand-unrolled circular buffer type CP correla-
tion loop.

74

Fig. 4.19: Execution cycles of synchronization functions.

75

frequency synchronization is little enhanced by using intrinsics. The efficiency of CP

correlation is decreased after refining the code because of the conditional operations are

added in the correlation loop after the buffer type is modified to circular buffer. We have

maximized the efficiency of CP correlation by unrolled the loop by hand. In spite of

the efficiency of CP correlation is decreased, the efficiency of synchronization top-level

function sync is much increased after we refine the code. That is, the overall efficiency is

much increased. Recall that the clock cycle counts of real time requirement is 120960 in

one symbol duration and 52.5 in on sample duration. The overall synchronization func-

tion does not meet the requirement when executing on one DSP chip. Table 4.21 shows

the estimated performance of bottleneck functions of synchronization. The initial con-

dition of CP correlation is the first time that we find the symbol start time. Because the

next symbol start time is about 2048 away from the current symbol start time, we do not

need to do CP correlation immediately. We can start the CP correlation at location that

256 samples before the possible start time of the next symbol. Hence performance of CP

correlation in tracking stage meets the real time requirement. The reason why complex-

ity of pilot correlation in initial condition is more complex than in tracking condition is

given before. The performance of overall synchronization reachs real time requirement of

8.96% in initial condition and 24% in tracking condition. Hence the real time requirement

can not be fulfilled in both condition. To meet the real time requirement, we can partition

the synchronization function into sub-functions that are either executed on more DSPs or

implemented on FPGA.

76

Table 4.20: Profile of Refined Code of 802.16a DL Receiver Function Blocks

Code Size Avg. Count Improvement Improvement Real time
(Bytes) (Cycles) (compare with (compare with rate

floating-point fixed-point
operations operations

before refinement)

SRRC downsample 700 1301 93.87% 0% 4.04%
CP correlation 1320 101 84.34% -26.25% 51.98%

initial freq sync 300 29 49.12% 23.68% 181.03%
integer freq sync 932 42 97.98% 0% 125.00%

pilot corre 2824 234 98.56% 97.23% 22.44%
sync 784 560 99.76% 96.91% 9.38%
FFT 276 32259 99.86% 0% 374.97%

de framing 988 1225991 24.61% 0% 9.87%
de modulation 460 528672 60.92% 1.71% 22.88%

Table 4.21: Performances Estimation in Separate Initial and Tracking Condition
Initial Avg. Tracking Avg.

Clock Cnt. Real time Clock Cnt. Real time
rate rate

CP correlatior 177 29.66% 39 133.15%
pilot corre 544 9.60% 103 50.97%

sync 585 8.96% 215 24.42%

77

Chapter 5

Conclusion and Future work

5.1 Conclusion

We considered implementation of 802.16a TDD OFDMA downlink synchronization tech-

niques on TI’s C6416 digital signal processor. The complete TDD OFDMA DL system is

also implemented for verifying the accuracy. The implementation is based on the simula-

tion program from [1], which is floating-point version. We modified the original program

to fixed-point version and increased the efficiency of synchronization code.

The scheme that we used divides DL synchronization into four stages [1], which

are symbol time synchronization, fractional frequency synchronization, integer frequency

synchronization and frame synchronization. The recommended data type for fixed-point

multiplication on TI’s C6000 DSP is 16-bit [10] because this data type provides the most

efficient use of 16-bit multiplication in the C6000. Hence the data format that we used

in DL synchronization is Q.15 which is 16-bit fixed-point data format. The precision of

using Q.15 data format in DL synchronizaiton was proved enough in this thesis. To in-

crease the efficiency of synchronization code, we used intrinsics to replace the inefficient

function calls, modified the shift-register buffers to circular buffers for simplifying data

buffer operations, stored the pilot location in memory to simplify the pilot correlation

loop, and unrolled the loop in CP correlation function to make the software pipeline be

well scheduled. We also used the FFT/IFFT functions which had been optimized by TI

from TI’s DSP library to increase the execution efficiency.

78

After the optimization, the efficiency of CP correlation was increased 84.34%, frac-

tional synchronization was increased 49.12%, integer synchronization was increase 97.98%,

pilot correlation (frame synchronization) was increase 98.56%, and the overall synchro-

nization function was increased 99.76%. The individual function such as fractional fre-

quency synchronization, integer frequency synchronization, and FFT has met the real time

operations requirement. The execution speed of total synchronization function is 9.38%

of real time requirement. We estimated the performances in initial condition and tracking

condition. The performance of overall synchronization reachs real time requirement of

8.96% in initial condition and 24% in tracking condition. The execution speed in tracking

condition is better than in initial condition, but the real time requirement is not fulfilled in

tracking condition.

5.2 Potential Future Work

We have been optimized the efficiency of arithmetic functions of synchronization. The

real time requirement can not be fulfilled after the optimization. To fulfilled the real time

requirement, we can make more effort to improve the synchronization program. One

way we can consider is that skipping a function call when it is idle operation. In most

time, program enters and then exits synchronization function without doing anything.

In tracking condition, the idle time of synchronization operation can be predited. We

can let the program skip the idle synchronization function to save the time of branching.

The other way is increasing the efficiency of doing a function call. There are quite a

few of delivered parameters in synchronization function and its sub-functions. The more

parameters delivered by a function the more stack operations in the branching process, and

the less efficiency of a function call. If the real time requirement can not be fulfilled after

all the optimization methods are applied, We must partition the synchronization function

into sub-functions that are either executed on more DSPs or implemented on FPGA to

meet the real time requirement.

79

Bibliography

[1] M.-T. Lin, “Fixed and mobile wireless communication based on IEEE 802.16a TDD

OFDMA: transmission filtering and synchronization,” M.S. thesis, Department of

Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.,

June 2003.

[2] J. J. van de Beek et al., “ML estimation of time and frequency offset in OFDM

systems,” IEEE Trans. Signal Processing, vol. 45, no. 7, pp. 1800–1805, July 1997.

[3] P. H. Moose, “A technique for orthogonal frequency-division multiplexing fre-

quency offset correction,” IEEE Trans. Commun., vol. 42, no. 10, pp. 2908–2914,

Oct. 1994.

[4] Y.-L. Huang, C.-R. Sheu, and C.-C. Huang, “Joint synchronization in Eureka 147

DAB system based on abrupt phase change detection,” IEEE J. Select. Areas com-

mun., vol.17, no.10,Oct 1999.

[5] IEEE Std 802.16a-2003, IEEE Standard for Local and Metropolitan Area Networks

— Part 16: Air Interface for Fixed Broadband Wireless Access Systems — Amend-

ment 2: Medium Access Control Modifications and Additional Physical Layer Spec-

ifications for 2–11GHz. New York: IEEE, April 1, 2003.

[6] Texas Instruments, TMS320C64x Technical Overview. Literature number

SPRU395B, Jan. 2001.

80

[7] Texas Instruments, TMS320C6000 DSP Peripherals Overviews Reference Guide.

Literature number SPRU190F, Apr. 2004.

[8] J. J. van de Beek, P. O. Borjesson, M. L. Boucheret, D. Landstrom, J. M. Arenas,

P. Odling, C. Ostberg, M. Wahlqvist, and S. K. Wilson, “A time and frequency

synchronization scheme for multiuser OFDM,” IEEE J. Select. Areas Commun.,

vol. 17, pp. 1900–1914, Nov. 1999.

[9] Texas Instruments, TMS320C6000 CPU and Instruction Set. Literature number

SPRU189F, Oct.2000

[10] Texas Instruments, TMS320C6000 Programmer’s Guide. Literature number

SPRU198G, Oct.2002

[11] Texas Instruments, TMS320C64x DSP Library Programmer’s Reference. Literature

number SPRU565B, Oct.2003

[12] M. E. Frerking, Digital Signal Processing in Communication Systems, Van Nostrand

Reinhold, 1994.

[13] ETSI SMG, “Overall requirements on the radio interface(s) of the UMTS,” Techni-

cal Report ETR/SMG-21.02, v.3.0.0., ETSI, Valbonne, France, 1997.

[14] Innovative Integration, Quixote User’s Manual, Dec. 2003.

[15] Innovative Integration, Quixote Data Sheet, http://www.innovative-

dsp.com/support/datasheets/quixote.pdf.

[16] Texas Instruments, Code Composer Studio User’s Guide. Literature number

SPRU328B, Feb. 2000.

[17] Texas Instruments, TMS320C6000 Code Composer Studio Getting Started Guide.

Literature number SPRU509D, Aug. 2003.

81

	Study and DSP Implementation of IEEE 802.16a TDD OFDM Downli
	Study and DSP Implementation of IEEE 802.16a TDD OFDM Downli
	A Thesis

	Submitted to Degree Program of Electrical Engineering Comput
	Master of Science
	ABSTRACT.pdf
	Degree Program of Electrical Engineering Computer Science

