[EEE 802.16a # FFE1 & 2 4 4f 5 €882 T AR H
P B B ASE B i IR

Study and DSP Implementation of IEEE 802.16a TDD OFDM Downlink
Synchronization

Boro4 L ER

—_—

BEsE T RAE B2

Ty

Hr & XN e q = F = F

—_—

[EEE 802.16a # 1t 2 A4 s €82 T AR H HE
PR 2 T A B B AT B b e IR

Study and DSP Implementation of IEEE 802.16a TDD OFDM Downlink
Synchronization

oro4 i ERD Student : Tsung-Shu Chiang

hERE R E B Advisor : Dr. David W. Lin

A Thesis
Submitted to Degree Program of Electrical Engineering Computer Science
College of Electrical Engineering and Computer Science
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master of Science
in
Electronics and Electro-Optical Engineering
July 2004
Hsinchu, Taiwan, Republic of China

PEARAY L

IEEE 802.16a A~ FFEF1 &+ * A4 5 €842 7
Tl b BTN AN AT B chE IR

FiA o Ez

ik
T

oy
|

iﬂ %’?Ii'» ’f T 4

M2 < FTRFTAEIR TFEELTER (FLA) MLT

B2

b ¥ AP AL - R [EEER02:16a A PF L < A HE F g2 T
I S R o T e H RS OFDME & (symbol) B 45 &1 A HoHp
FmA RN B F B2 FH > 2 B3 TR (frame) Gl H o AP
Bl HoF s i B 2 i 3 R & Texas Instruments(TI) = & #] i 4] 35 3
TMS320C6416 =izt 5L k32 B + (DSP) » p Bd® B ik i 2 5 Innovative
Integration = # % % % Quixote e cPCI + -

508 A BRIER O EE 0 AL RREFIRT ER 802,1631%?@;@%]_&?1,]‘4
Foo 57 EE B 0 DSP i E v, gt kAP g iR Y L gk
(fixed-point)erfe ;N k&7 o e Hpee AP 15 B =~ (bits) ™ & /[#kc 1
Bl il oy 161z Bt Niv@geAPER* T TIHRERIER
MG Rk O FRT AR e A PR R % C6416 & 4 & chdp £ 112
£ M A 2 E (software pipeline scheduling)F:® B & B (unroll) i
DB T NP o e PR e L 2 18 HI T kT Lt
B ® o

T P A AR A o IR Renk g Hae - 3F DSP
R E DRI R R fodok AP R R P PR FT LE D] TPREE S
B Foo AL F M A B BB o % {5 REenDSP ok R S

#— > * FPGA F IR o

Study and DSP Implementation of IEEE
802.16a TDD OFDMA Downlink

Synchronization

Student: Tsung-Shu Chiang Advisor: Dr. David W. Lin

Degree Program of Electrical Engineering Computer Science

National Chiao Tung University

Abstract

This thesis presents an implementation _method of IEEE 802.16a TDD (time
division duplex) OFDMA (frequency-division multiple access) downlink (DL)
synchronization techniques. The DL synchronization includes symbol time
synchronization, fractional frequency offset synchronization, integer frequency offset
synchronization and frame synchronization. Our implementation is software-based,
employing Texas Instruments” TMS320C6416 digital signal processor (DSP) housed
on Innovative Integration's Quixote cPCI card.

We implement the complete 802.16a DL system to verify the accuracy of
synchronization function. The computation on this system is fixed-point for obtaining
a higher execution efficiency. The data format we use in synchronization is Q.15
which is a 16 bits fixed-point data format that consists of a sign bit nad 15 fractional
bits. We use the assembly-optimized FFT which is supported by T1’s DSP library to
obtain the high execution efficiency. We increase the execution efficiency of
synchronization by using intrinsics of C6416 DSP and unrolling the disqualified
loops to make the software pipeline well scheduled. The efficiency is much increased
after we refine the program.

The execution efficiency of synchronization is analyzed. We find that the real
time operation requirement is over the synchronization execution time. If we want the
synchronization function to achieve real-time speed, we must partition the
synchronization function into sub-functions and implement these functions either on
more DSPs or on FPGA.

e

FEEESEHp R R L E kg o N ARL NP RS RE
EF - B AR 2T o REFT AR T ARBA LA AT
TR FRFAFS TR ATE AN LATRAKET LT R

*%ﬁ:ﬁﬂ%HW%Efém%§%§’§A4mpwﬁwﬂ M?J,E%—%
B hfFiEas 4py ~ hflet o a ikt E'Wrﬁ‘zrm?ﬁ?'% %o FT A A A
J%$fr VPR e E EE e KRR o AR DAY a2 S fhE e éﬁ
o gt o AR S AREFFE LR L ?lméﬁ»frg,. °

1‘4\~r‘€“\:1:-

HATFEANG LT R T RARL) BA LRI LG il 5 B2
2 F e F R AL R 1—*56%? ¢ ot - Ao meeting (HBI A B & K fem
P Ffe@ ¥ F15 5 RenFE R R AT 2 hHm o BEEHIT -
L -P 2R BTN WRRE ROFEFES AL g onfles o d 3t
TLRE A REA AT R LR -

EAE L W S PAS 4“@ LR AN i B A IEA B E S
3 R WE FEE C FREEfoN T Bt PRSI E AP R LA o

2,

ﬁ%@ﬁi%ﬂiéﬁ@@i%o

;‘\-Q /&1’3\‘[77\‘5‘5 ’ﬁ’{ ‘H;‘\rﬂ;\;fé? ﬁy\lg ’ ;”4 J-Q}' ;&Ti’\Eﬁi; ° F’ﬁ

] mE A G- BAKFEIR R PR E SRS o XY AR A L auFaed
4 7"Rﬁ"/\i\‘ﬁﬁ""t’k&%"u»y@ﬂmxi}f"1\'7?5 ?LG\'LE» *Toliig-i@<;m

%
S prpAE it T

Contents

Introduction

Techniques for Downlink Synchronization

2.1 Introduction to the 802.16a TDD OFDMA System .
2.1.1 Pilotand Data Carrier Allocatin
2.1.2 Data Modulation and Pilot Modulation [5] . .
2.1.3 Frame Structure L.

2.2 Downlink Synchronization Techniques
2.2.1 Initial Synchronization® ™ = ifes L
2.2.2 Normal Synchronization_.5

2.3 Summary of Downlink Synchronization Techniques .

DSP Introduction

3.1 DSP Board Introduction- .. iy L L L L

3.2 Introduction to TMS320C6416 DSP [9] «.".
3.21 TMS320C6416 Features~
3.2.2 Central ProcessingUnit
3.2.3 Memory Architecture

3.3 TI’'s Code Development Environment [16], [17] . . .

3.4 Code Development Flow to Increase Performance [10]
3.4.1 Compilier Optimization Options [10]

DSP Implementation

4.1 Efficiency Enhancement of DL Synchronization Code
4.1.1 Performance of the Original Program
4.1.2 Fixed-Point Number System Consideration .
4.1.3 Code Refinement

4.2 Performance Discussion

Conclusion and Future work
5.1 Conclusion
5.2 Potential FutureWork

Vi

List of Tables

2.1
2.2
2.3
2.4

3.1
3.2

4.1
4.2
4.3
4.4

4.5

4.6

4.7

4.8

4.9

4.10
411
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21

Carrier Allocation in the OFDMA DL (from[5]) 8
Complexity of Symbol Time Synchronization 14
Possible Pilot Structures in Frame Synchronization 18
System Parameters Used inOQur Study 20
Execution Stage Length Description for Each Instruction Type (from [9]) 34
Functional Units and Operations Performed (from[9]) 35
Floating-Point Profile of 802.16a DL Transmitter Function Blocks 47
Floating-Point Profile of 802.16a:DL: Receive Function Blocks 47
Characteristics of the ETSE“Vehicular A”Channel Environment 49
Relations Between Spreed and iMaximum Doppler Shift at Carrier Fre-

quency 6 GHz and Subecarrier Spacing5.58kHz 50
Performance Comparision of Frequency Lock Between Floating-Point

and Fixed-Point Implementation=rrm 51
Performance Comparision of Frame Lock Between Floating-Point and

Fixed-Point Implementation“ oo . o o o o 51
Q16.15BitFields 52
Q.A5BitFields 52
Comparisons of Computational Complexity for Different FFT Algorithms 54
Complexity and Performance of IFFT/FFT Implementation 54
Sine/Cosine Look-Up Table 57
Fixed-Point Profile of 802.16a DL Transmitter Function Blocks 58
Fixed-Point Profile of 802.16a DL Receiver Function Blocks 58
Comparison Between FFT and Recursive DFT 59
Efficiency of Recursive DFT Implementation 60
The Execution Cycles of Pilot CorrelationLoop 62
Profile of thesync Function 68
Profile of CP Correlation Function Loop Using Different Buffer Types . . 68
Multiply-Add Efficiency of CP Correlation Functions 72
Profile of Refined Code of 802.16a DL Receiver Function Blocks 77
Performances Estimation in Separate Initial and Tracking Condition . . . 77

vii

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7

2.8
2.9
2.10
211

2.12
2.13

2.14
2.15
2.16
2.17

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7

OFDMA symbol time structure (from [5]). 4
DL transmitter structure (from [1]).. 5
DL receiver structure (from [1]). 5
Illustration of carrier usage in OFDMA DL (from [1]). 6
Pilot allocation in the OFDMA DL (from [5]). 7
QPSK, 16-QAM and 64-QAM constellations (from [5]). 9
Pseudo random binary sequence (PRBS) generator for pilot modulation

(from [5]). 10
Frame structure of the TDD OFDMA system (from[5]). 11
The stucture of the symbol time and frequency estimator from [1]. 15
DL/UL symbols identification. speds, W% . . . o o o oL 16

(a) Symbol location detected'in stage'|, where.the gray region is the useful
samples which are applied FFT. (b),(c) Leftmost and rightmost ranges of

correlation, respectively. (from {1= 19
DL transmitter structure(from:{1])."The gray regions indicate the imple-

mented functioninour study. v ..o lu L L L 21
DL receiver structure (from [1]). The gray regions indicate the imple-

mented fuction inourstudy. L L 21
DL synchronization process block diagram. 22
Flow chart of symbol time and fractional frequency offset synchronization. 24
Flow chart of integer frequency offset synchronization. 25
The state machine of framing synchronization. 26
Block diagram of Quixote (from [15]). 28
Block diagram of TMS320C6416 DSP (from [9]). 31
Pipeline phases of TMS320C6416 DSP (from[9]). 33
TMS320C64x CPU data path. (from[9]). 37
Code development flow for TI C6000DSP. 41
The bursts allocationinaframe. 49
A part of assembly code for DSP_fft32x32. 54
The fixed-point data formats at the TX side. 55
The fixed-point data formatsat the RX'side 56
Ccodeofrecursive DFT. 59
The software pipeline information of recursive DFT. 60
Assembly code of recursive DFT. 61

4.8

4.9

4.10
411
412
4.13
4.14

4.15
4.16
4.17
4.18

4.19

C code of revised pilot correlation loop.
Partial assembly code of original pilot correlation loop.
The software pipeline information of pilot correlaton loop
Partial assembly code of revised pilot correlation loop.
The abs() function is replaced by instrinsic _abs() inCcode.
Shift-register buffer arrangement.
Code of CP correlation functions using shift-register buffer and circular

buffer.
Software pipeline information of shift-register buffer type CP correlation

Software pipline information of circular buffer type CP correlation loop. .
Hand-unrolled code of circular buffer type CP correlation.
Software pipline information of hand-unrolled circular buffer type CP

correlation loop.
Execution cycles of synchronization functions.

Chapter 1

| ntroduction

The IEEE-SA (Institute of Electrical and Electronics Engineers Standards Association)’s
802.16 working group is concerned with the WirelessMAN air interface for wireless
metropolitan area networks. The IEEE 802.16 Task Group a developed IEEE Standard
802.16a that amends IEEE Std 802.:16-2001 by enhancing the medium access control
layer and providing additional physical layer specifications in support of broadband wire-
less access at frequencies 2-11 GHz.

We consider the DSP implementation of a TEEE802.16a downlink synchronization
method. The synchronization includes‘symbol time synchronization, frequency offset
synchronization and frame synchronization. The synchronization techinques are from [1]
with some modifications. Our implementation is software-based, employing Texas Instru-
ment’s TMS320C6416 digital signal processor (DSP) housed on Innovative Integration’s
Quixote cPCI card. The TMS320C6416 is a fixed-point DSP with 1.67 ns instruction
cycle time. It adopts the advanced VelociTIl Very Long InstructionWord (VLIW) archi-
tecture that enables sustained throughput of eight instructions in parallel.

The implemented code is modified from the simulation program from [1]. We rewrite
the floating-point version to the 16-bit fixed-point version and refine the code to maximize
the execution performance.

The thesis is organized as follows. In chapter 2, we introduce the 802.16a downlink

synchronization techniques. Chapter 3 introduces the synchronization program executing

environment, including the Quixote card and the TMS320C6416 DSP chip. Chapter 4
describes the DSP implementation and its performance. Finally, chapter 5 containes the

conclusion.

Chapter 2

Techniquesfor Downlink
Synchronization

The IEEE standard 802.16a [5] specifies the WirelessMAN air interface for wireless
metropolitan area networks. There are several system modes in 802.16a: SC (single
carrier), OFDM (orthogonal frequency-division multiplexing) and OFDMA (orthogonal
frequency-division multiple access). It also supports two duplex types: TDD (time di-
vision duplex) and FDD (frequency division duplex).- We consider the TDD OFDMA
option.

Accurate demodulation and detection of an OFDM signal requires carrier orthogo-
nality. Variations of the carrier oscillator, sampling clock or the symbol time affect the
orthogonality of the system. In this thesis, the sample clocks of the users and the base
station are assumed to be identical. Then, before an OFDM receiver can demodulate
the carriers, it has to perform two synchronization tasks. First, timing synchronization is
needed to detect the proper frame start time. Secondly, it has to estimate and correct the
carrier frequency offset of the received signal.

Before a more detailed technical overview of the IEEE 802.16a standard, we intro-
duce some frequently used terms below. The subscriber station (SS) is usually known as
the mobil station or the user. The base station (BS) is a generalized equipment set pro-
viding connectivity, management, and control of the subscriber station. The direction of

transmission from the BS to the SS is called downlink (DL), and the opposite direction is

Fig. 2.1: OFDMA symbol time structure (from [5]).

uplink (UL). In this thesis, we only discuss the downlink synchronization techniques.

2.1 Introduction to the 802.16a TDD OFDMA System

The 802.16a WirelessMan-OFDMA systemiis based on OFDMA modulation. The inverse
Fourier transform creates the OFDMA wavefarm. The'time duration is referred to as the
useful symbol time 7,. The cyclic prefix (CP)-is a copy of the last 7, ps of the usful
symbol period. The two together are referred.to as the symbol time 7. The ratio of CP
time to useful time (7, /73) that shulod be supported includes 1/32, 1/16, 1/8 and 1/4. In
this thesis, CP time to useful time ratio is set to 1/8. The time domain OFDMA symbol is
as shown in Fig. 2.1.

In frequency domain, an OFDMA symbol is made up of carriers. There are several
carrier types: data carriers, pilot carriers and null carriers. Data carriers are used for data
transmission. Pilot carriers carry pilot data and are used for various estimation purposes.
Null carriers do not transmission at all, they consist of the guard band and the DC carrier.
The total carrier number in a DL OFDMA symbol is 2048. There are 166 pilot carriers,
1536 data carriers and 346 null carriers.

The DL system structures are shown in Figs. 2.2 and 2.3. This thesis focuses on
synchronization techniques. The pilot and data carrier allocation, pilot and data modula-

tion, and frame structure that impact the synchronization techniques are described in the

4

DL_MAP,UL_MAP

parameters: No_OFDM_symbol/ No_subchannel/
OFDM_symbol_offset/ Subchannel _offset

pilot (preamble) modulation add virtud)
Framing & SP virtual carriers | 5
burst 1 data ﬂscrambler H FEC F» data burst 1 carrier alocation 1702 (padding zeros) | | _
modulation
burst n data burst n
not addressed in the
present study
interpolator
PIS) LPF D/A Tx
FFT | poanl = ot = 44 || (ormcfte) " ileer || RF
; (AWGN)
(fadding channel)
Fig. 2.2: DL transmitter structure (from [1]).
fractional integer
not addressed in the
present study freq.sync. freq. sync.
RX AD LPF % symbol guard /P frame
I RE [filter SRRC filter 4_ 47 ctime [interval FFT | o |
() sync., removal 2048 sync.
channel DL_frame_prefix
estimation DL_MAP
] Y
equalization PIS | % data LI data -~ FEC L de—scrambler | data
q 1702 deframing demodulation decoder
Fig. 2.3: DL receiver structure (from [1]).
following.

2.1.1 Pilot and Data Carrier Allocatin
2.1.1.1 Pilot Allocation

The carriers allocation in a DL OFDM symbol is shown in Fig. 2.4. Null carriers are

allocated in the left side,the right side and the DC carrier. The pilot and data carriers are

termed useful carriers for they transmit useful information. The pilot tones are allocated

first, and the remainder of the used carriers are divided into 32 subchannels, and then the

data carriers are allocated within each subchannel.

The pilot carriers include fixed-location pilots and varible-location pilots. The carrier

32 datacarriers (no pilots in the group)

N

Al ! NE Al A A
Guard band ol L DC carrier : ‘ || Guard band
< | | ‘ ! : | »
Groupl Group2 Group48
The 1702 used carriers = 1536 data carriers + 166 pilot carriers
f pilot ‘4 subchannel 1 A subchannel 2

Fig. 2.4: lllustration of carrier usage in OFDMA DL (from [1]).

indices of fixed-location pilots never change. The carrier indices of the varible-location
pilots vary according to the formula var LocPilot, = 3L + 12 Py, where var LocPiloty, iS
the carrier index of a varible-location pilot;-L-isthe Symbol index that cycles through the
values 0,2,1,3,0,..., periodically every-4-symbolkperiod;.and P, = {0,1,2,.....,141}. The

pilot carriers allocation map is shown in Fig,-2.5.
2.1.1.2 Carrier Allocation

After mapping the pilots, the remainder of the useful carriers from the data subchannels.
To allocate data subchannels, partition the remaining carriers into groups of contiguous
carriers. Each subchannel consists of one carrier from each of these groups. The number
of the carriers in a subchannel is therefore equal to the number of groups, and it is denoted
Nsubearriers- 1he number of carriers in a groups is equal to the number of channels, and
it is denoted Nyypehanners- The total number of data carriers is thus equal to Nypearriers X
Nsubchannels-

The exact patitioning into subchannels is according to the following equation called a

permutation formula:

CCLTT’i@T’(n, 5) = (Nsubchannels) "N+
{ps [and(Nsubchannels)] + IDce”) Cell[(n + 1)/NSUbChannels]}

6

(2.1)

(mOd(Nsubchannels))

carrier index
B

[T« « + HIITITH

|
24 Vused -1

nil L2 !|||||||H||||||\|||||H||||||HI|| DIDE]J
0 §) 18 30

symbaol

{ex

R
0 I|2

'\.'-t.'.:."'l

n+2 =1 ! se !

I I

0 3 15 27 N pwea =1

w3 L3 !I|||||H||||||H|||H||||||H|| D]]]]]]]]

| I

0 9 2] Nised =1

nd 10 !IIIIIIHIII LIRS oo U]]]]]]]J

| |

b 0 12 24 Vo =1

time o

Allocation Kev: I:I Variable Location Pilot I Fixed-location Pilot I:I[Z];llu

Fig. 2.5: Pilot allocation-in-the:OFDMA DL (from [5]).

where carrier(n, s) is the carrier index of carrier n in subchannel s, s € [0, Nyubchannels—
1] is the index of a subchannel, n € [0, Nyubcarriers — 1] is the index of a subcarrier
in the subchannel, Nypchanner 1S the number of subchannels, p,[j] is the series obtained
by rotating { PermutationBaseg} cyclically to the left s times, ceil[] is the function that
rounds its argument up to the next integer, 1D, is a positive integer assigned by the
MAC (Medium Access Control) to identify this particular BS sector, and X ,,,4(x) denotes
the remainder of the quotient X/k (which is most £ — 1). The numerical parameters are

given in Table. 2.1.

Table 2.1: Carrier Allocation in the OFDMA DL (from [5])

Parameter Value

Number of de carriers 1
Number of guard carriers, left 173
Number of guard carriers, right 172
N ,yeq - Number of used carriers 1702
Total number of carriers 2048
Nm-'aan cPilots 142
Number of fixed-location pilots 32
Number of variable-location pilots which 8
coincide with fixed-location pilots
Total number of pilots® 166
Number of data carriers 1536
"Vmbchmrrree’s 32
Nyubcarriers 48
Number of data carriers per subchannel 48

BasicFixedLocationPilots

{0,39, 261, 330, 342, 351, 522, 636, 645, 651, 708, 726,
756, 792, 849, 855, 918, 1017, 1143, 1155, 1158, 1185,
1206, 1260, 1407, 1419,1428, 1461, 1530.1545, 1572,
1701

{PermutationBase}

}
13 18..2. 8. 16,1031 15, 26:22. 6,927, 20,25, 1,29,
7,21,5,28,31,23,17, 4, 24, 0, 13, 12, 19, 14, 30}

Variable Location Pilots which coincide with Fixed-location Pilots are counted only once in this value.

babibg N T

011 = . . CIE o . . .
010 = . . * 5

000 = . . $ 3+

001 = .

.
- } } f T T 1
5 5 1 1 3 3

-

by Qe=1/0 qorTe

100 = - - « 3 . . - L]

- =7 110 = . . « 5t . .

111 = . L LIS S .
11 e el o 5 111 110 100 101 ' 001 000 010 OI1 bsbb;

1110 00 01 by,

Fig. 2.6: QPSK, 16-QAM and 64-QAM constellations (from [5]).

2.1.2 Data Modulation and Rilot Modulation [5]
2.1.2.1 Data Modulation

The data modulation in 802.16a are shown in Fig. 2.:6: The data bits are entered serially to
the constellation mapper. Gray-mapped QPSK'and 16-QAM must be supported, whereas
the support of 64-QAM is optional.

2.1.2.2 Pilot Modulation

Pilot carriers are inserted into each data burst in order to constitute the symbol and they
are modulated according to their carrier locations within the OFDMA symbol. The PRBS
(Pseudo-Random Binary Sequence) generator is used to produce a sequence w;, where k
corresponds to the carrier index. The value of the pilot modulation on carrier £ is then
derived from wy,. The polynomial for the PRBS generator is X! + X° + 1, as Fig. 2.7
shows.

The symbols in an TDD OFDMA system DL transmission can be separated to two

different types. The first three symbols are termed preamble symbols, and other symbols

msb Ish

Initialization DL 1 1 1 111 1 1 1 1 1
Sequences UL:1 0 I 0 1 0 1 0 1 0 I

P2 134567 (8|9 (10]11

Fig. 2.7: Pseudo random binary sequence (PRBS) generator for pilot modulation (from

[5D).

are normal symbols. The initialization vector of the PRBS in the DL normal symbols is
[11111111111], while the initialization vector of the PRBS in the DL preamble symbol is
[01010101010]. The PRBS shall beinitialized so that its first output bit coincides with the
first usable carrier. A new value Shall be generated by-the PRBS on every usable carrier.
Each pilot shall be transmitted with a boosting of 2.5'dB over the average power of each

data tone. The pilot carriers shall be modulated as

Re{c} =

(= —wg), Im{cx} =0.

W oo
N | =

2.1.3 Frame Structure

The frame structure of TDD OFDMA is as shown in Fig. 2.8. The data are segmented
into blocks from the view of coding, and each fit into one FEC (forward error correction)
block. Each FEC block spans one OFDMA subchannel in the subchannel axis and three
OFDM symbols in the time axis. A frame consists of one DL subframe and one UL
subframe. The duration of a frame can be from 2 to 20 ms and is specified by the frame
duration code. A subframe contains several transmission bursts, which are composed
of multiples of FEC blocks. In each frame, the Tx/Rx transition gap (TTG) and Rx/Tx
transition gap (RTG) shall be inserted between the downlink and uplink and at the end of

each frame respectively to allow the BS and the SS to turn around. TTG and RTG shall

10

OFDMA symbaol number 1

B
A0 et &rI2 ktl3 k14
I Lrame Prefic

K o] g B2 g k3 g Red g RS) RGBT g AR 9
oI DL Frome Prefis | o
! =
2] € | ULburst#l
3 B! =
o DL-MAP DI burst #3 21 i
4= 1
8
;_ Q I
= 87 .L— T SETL |
z|e] uL-map DL burst #1 e | ULbusti2
= o
£ 112 = I UL-MAP
2|1 |
=];_ DL Durst g |
S | 16
= |17 |
| 18 o
19 =
o] = b UL burst 3 DL burst #1
2 DL burst #2 DL burst #3 5 |
22] =
247
254 |
2?: 1 DL burst #2
"%a— Ranging subchannel
- =
- DI e Ul RTG

Fig. 2.8: Frame structure of the TDD OFDMA system (from [5]).

be at least 5us and an integer multiple of four samplesin duration [5].

For DL, the transmitted data-from.the BS_should-contain the control messages and
the system parameters, so that the ‘subscribers can*know when and how to receive and
transmit their data. The burst profile is used to define the parameters such as modulation
type, FEC type, preamble length, guard times, etc. The first FEC block of each frame is
the DL_Frame_Prefix that is always transmitted in the most robust burst profile QPSK-
1/2. The DL_Frame_Prefix contains the parameters of the FCH (Frame Control Header)
which includes the DL-MAPs, UL-MAPs and may additional DCD and UCD messages.
The DL-MAP/UL-MAP messages define the access to the DL/UL information, including
the burst profiles and the allocation in the subchannel and time axes of the bursts. The
Downlink Channel Descriptor (DCD) and Uplink Channel Descriptor (UCD) shall be
transmitted by the BS at a periodic interval to define the characteristics of downlink and
uplink physical channels. The pilots of the first three OFDM symbols is the DL preamble
in the sense that they indicate where the OFDMA frame starts. The number of OFDM

symbols of the DL is 3N, where N is positive integer.

11

2.2 Downlink Synchronization Techniques

A time offset gives rise to a phase rotation of the carriers. If the time offset is smaller than
the length of the guard interval minus the length of the channel impulse response, then the
orthogonality among carriers is maintained. In this case, the time offset will appear as a
linear phase shift of the demodulated data symbols across the carriers but will not result in
inter-symbol interference (1SI) and inter-carrier interference (ICl). For larger time offset,
ISI and ICI occur. By increasing the length of the guard interval, the timing requirement
can be loosened.

Frequency offset due to oscillator mismatch usually exists between the transmitter
and the receiver. Each subcarrier can be assumed equally affected by a center carrier
frequency spread, because the system bandwidth is small compared to the center carrier
frequency. The frequency offset causes three effects : reducing the amplitude of FFT
output, introducing ICI from other;carriers, and introducing a common phase rotation
of the subcarriers [3]. The frequency. offset.can be separated to an integer part and a
fractional part. The former gives frequency offset'in integer times carrier spacing, and
the latter gives frequency offset in fractional number times carrier spacing. The integer
frequency offset results in the entire spectrum of an OFDMA signal be cyclicly shifted,
and no ICI [4].

There are two DL synchronization conditions: initial synchronization and normal
synchronization. In the beginning when one subscriber wants to join the transmission
network, it has no idea about the timing of the network and frequency offset with the
base station. When the SS receives DL OFDMA symbol, the OFDMA symbol start time
should be found, and the frequency offset between SS and BS should be estimated and
compensated. According to 802.16a, the center frequency of the SS shall be synchronized
to the BS with a tolerance of maximum 2% of the inter-carrier spacing. The frame start
time should be found after symbol time and frequency offset synchronization are finished.

After the frame synchronization, SS can get the frame information and use it to enter the

12

normal synchronization condition [1].

2.2.1 Initial Synchronization

The scheme that we use divides initial synchronization into four stages [1], which are
symbol time synchronization, fractional frequency synchronization, integer frequency

synchronization and frame synchronization.
2.2.1.1 Stage I: Symbol Time Synchronization

The research in [1] suggests estimating symbol time by using the cyclic prefix. Two al-
gorithms are mentioned in that thesis: ML estimation and CP correlation. ML estimation
algorithm is proposed in [2], using the maximum likelihood criterion to estimate time
and frequency offsets. Under the assumption that received samples are jointly Gaussian,

symbol time offset 4 is given by

~

0 =argmax {{I'(0)| — p2(0)}, (2.2)
where
0+L-1
re) = Z r(k)r*(k + N), (2.3)
k=0
0—|—L 1
=3 Z E)? + |r(k+ N)|?, (2.4)

and p = z3F%s with SNR being 5|gnal to noise ratio. It isa one-shot estimator in the sense

that the estimates are based on the observation of one OFDM symbol. To roduce the com-
plexity, CP correlation algorithm [1] suggests using only the correlation part to estimate
the symbol time. As the samples of different OFDM symbols are uncorrelated, the peak of
the sliding sum of r(k)r*(k+ N) would occur when the samples r(6), - - -, r(+N+L—1)

are all within the same OFDM symbol. Then, the symbol time offset estimator becomes

. 0+L—1
0 = argmax| »_ r(k)r*(k+ N)|. (2.5)
k=0

The complexities of ML estimation and CP correlation algorithm are shown in Ta-

ble 2.2. Notes that after the CP correlation is computed at sample time # by formula 2.3,

13

Table 2.2: Complexity of Symbol Time Synchronization

Multipications(complex) | Additions(complex) | Other Functions

r'(6) 4350 4349
d(0) 8700 8452 1 absolute value
6913 6909 1 division

1 square root
1 absolute value

the CP correlation at sample time #+1 is simplified as

re+1) = ai:L r(k)r*(k + N),
= F_(e)—r(k)r*(k+N)+r(0+L)r*(0+L+N). (2.6)

The CP correlation algorithm only calculates T'(6), and ML estimation algorithm calcu-
lates all the entries listed. The research.in [1]'shows that although the performance of ML
estimator algorithm is better than.thatiof CP, correlation algorithm, neither algorithm can
estimate the exact symbol time at-100% accuracy. To estimate the exact symbol time, both
algorithms should be assisted by some ether-auxiliary operations. Here pilot correlation
is used as the auxiliary operation to estimate:the symbol time, which is performed in stage
IV. The complexity of ML estimaiton is much more than CP correlation algorithm, but
the benefit is not as much. We use the CP correlation to estimate the symbol time in this

stage.
2.2.1.2 Stage Il: Fractional Frequency Synchronization

In our algorithm, integer frequency offset is estimated in the post-FFT stages. Fractional
frequency offset is estimated in this stage.
Based on the frequency part of the joint ML estimator in [2] and [8], the fractional
frequency offset € is given by
-1 .

€= %ZF(Q),

as shown in Fig. 2.9. It is easy to understand why e can be estimated by this method. The

frequency offset e results in a sinusoidal wave in the time domain, and thus the received

14

sliding sum
" (length=L . > argmax (> §
=CP legnth) !

r(k+2048)

Y
I

Dealy 2048 Al sl ven =3¢
samples Y

Fig. 2.9: The stucture of the symbol time and frequency estimator from [1].

samples are multiplied by {1, IR el "N } In AWGN channel, the received sample
in the guard time is

- 2mek

r(k) = s(k)e’ v 4+ n(k),
and the sample in the last part of the useful time is

- 2we(k+N)
N

r(k+ N) = s(k +N)e’ +n(k+ N),

where s(k) is the transmitted signal, N-is/the FET. size, and n(k) is the noise. Then the

multiplication of (k) and r*(k + V) becomes
r(k)r*(k + N) =8(k)s* (k4 N)e 7> + noise.

Note that e=727¢ is the common factor of all the sample pairs with r(k) in the guard
interval. 1t makes sense that the sum of these sample pairs would reduce the noise effect.
The frequency offset e can be given by the angle part of the sum of »(k)r*(k + V) taken
at the symbol start position. Note that the phase rotation of integer frequency offset is
integer times of 27. Thus this estimator is merely able to detect the fractional frequency
offset.

The structure of this estimator including stages | and Il is shown in Fig. 2.9.
2.2.1.3 Stage Ill: Integer Frequency Synchronization

After the fractional frequency synchronization, we use the guard bands information to
estimate integer frequency offset [1]. To begin, an SS shuld check whether the received

OFDM symbol is from BS rather than from another SS. In 802.16a [5], the definition

15

TIL { DL symbol identification

UL OFDM Symhol

5 B

P
>

DL OFDM Symhbol

5 £ e

Integer freq shaft

F 3

-

Fig. 2.10: DL/UL symbeols-identification.

of the guard bands and pilots are different for DL and UL. The indices of the DL guard
carriers are from —1024 to —852 and from 852 to 1023, while the UL are from —1024 to
—849 and from 849 to 1023. Because the symbol from another SS has the limitation that
its frequency offset to the BS must not be over 2% carrier spacing, if the OFDMA symbol
is from another SS, the magnitude in carrier indices {—851, —850, —849, 849, 850, 851}
must be small. A threshold can be set that if any of the carriers {—849, —850, —851, 849, 850, 851}
is larger than the threshold, the SS will regard the symbol as a DL symbol, as shown in
Fig. 2.10.
For the DL, the standard defines the carriers —851 and 851 as fixed location pilots
which are modulated to i% in amplitude. If there is no integer frequency offset, the FFT

outputs of all the guard carriers will be small. So, all the guard carriers are checked to

16

see if any of them exceeds the threshold. The checking direction is from 1023 to 852, and
then from —1024 to —852. If carrier k is detected to be larger than the threshold in the
checking procedure, the +-851st fixed pilots are supposed to shift £ — 851 carrier spacings
due to the frequency offset. Thus the checking is stopped and the frequency is corrected
by k£ — 851 carrier spacings. The checking and correction take turns until all the guard
carriers are checked to be smaller than the threshold.

In fading channels, ICI may cause serious distortion. Thus, if the +851st pilots are
distorted to be less than the threshold, the frequency offset will not be detected by the
previous method. An additional check is added to see whether both of the +851st pilot
carriers are larger than the threshold. After these three checks, the integer synchronization

finishes.
2.2.1.4 Stage 1V: Frame Synchrenization

By stage I, the OFDMA symbaol start time can be ruoghly estimated, but the SS has
to know exactly where the frame starts. = The-frame start time estimation suggested in
[1] uses the pilot correlation method. In.the 802.16a standard [5], the varible location
pilots change their location from symbol to symbol depending on symbol index L. The
modulation of pilots is decided by the PRBS generator, and the initialization vector of
the PRBS generator is different in preamble symbol generation from in non-preamble
symbol generation. Therefore, there are 7 possible kinds of pilot sructures as shown in
Table 2.3. If the received symbol has the same pilot locations and the same initial vector
of modulation PRBS with the reference data, the correlation of them will be larger than
the other 6 cases. A frame is determined to start if there are three successive DL symbols
with the maximum correlation corresponding to the preamble.

The simulation result of [1] shows that the accuracy of symbol time estimation is
not enough. There is a serious problem by using the post-FFT pilots or preamble if the
symbol time synchronization in stage | does not detect the correct location of the symbol,

for then there will be a time offset d. After FFT, the time offset causes phase shift across

17

Table 2.3: Possible Pilot Structures in Frame Synchronization

| DL preamble | DL normal symbol |
0, PRBS = 01010101010
2, PRBS = 01010101010
1, PRBS = 01010101010

L
L
L

2k

the carriers by e? ¥ where £ is the carrier index. This phase shift affects the correlation
of the received pilots and the reference data. Moreover, if the detected symbol start time
is later than the actual time, ISI and ICI may occur. Whether the maximum correlation of
the 7 cases indicates the true frame start becomes doubtful.

To solve this problem, a more robust symbol time should be estimated. If there was a
time offset, the useful time would be shifted and the pilots correlation would be smaller.
The simulation of [1] shows that the symbol. time ‘estimation error in stage | has high
probability to be smaller than 30:samples. Assume that the time offset may be from —32
to 32 sample times. Fig. 2.11(a) showsithe symbol start location detected in stage I, where
the gray region is the corresponding useful samples which are taken FFT. We apply the
FFT to the gray region from —32 to 32 samples in offset, as shown in Fig. 2.11(b) and (c)
[1]. After observing the correlation for 65 sample times, the location with peak correlation
Is assumed to be the real symbol start time. The maximum correlation of the 7 cases is
then robust enough to be used. In order to reduce the complexity of FFT, the conventional
FFT is only applied to location —32. When a new data value is received, the FFT may be

computed successively as

27k

Xo(k) = [Xn-1(k) = 20y + 2] F 2.7)

where N is the FFT size, k is the carrier index, n is sample number, and z,, is the new

incoming sample.

18

1)
X

(a | X()* | x(k+N) |
l X 7
| (cp) |
® [1]
© |
detected symbol corresponding
start time detected useful time

Fig. 2.11: (a) Symbol location detected in stage I, where the gray region is the useful
samples which are applied FFT. (b), (c) Leftmost and rightmost ranges of correlation,
respectively. (from [1])

2.2.2 Normal Synchronization

After finishing initial synchronization, 'the"SS can find the frame duration from frame
duration code in the MAPs. The"timing synchronization stage should still be used to
track the exact symbol time, because the received symbol time may shift with time due
to channel variation. The CP correlation can estimate the rough symbol time. In normal
synchronization condition, pilot correlation helps to find the robust symbol time. The
simulation result in [1] shows that when the Doppler spread is small, the standard devi-
ation of time synchronization error is about 3—-4. If the channel is compensated, we can
reduce the range of possible timing offset that estimated from CP correlation to simplify
the complexity. The normal synchronization condition should be started after the channel
Is compensated. In our system, the channel estimator is performed after the synchroniza-
tion. We assume that the channel is compensated before the frame is synchronized. In this
case, the timing synchronization error in CP correlation stage is assumed to be less than 5
sample time. Just as the pilot correlation step in frame synchronization stage, we should

take FFT in the range from 5 sample time before the estimated symbol time to 5 sample

19

Table 2.4: System Parameters Used in Our Study

Number of carriers (N) 2048
Center frequency 6 GHz
Uplink / Downlink bandwidth (BW) 10 MHz
Carrier spacing (A f) 5.58 kHz
Sampling frequency (f;) 11.43 MHz
OFDM symbol time (7%) 201.6 p sec (2304 samples)
Useful time (73) 179.2 psec (2048 samples)
Cyclic prefix time (7},) 22.4 psec (256 samples)

time after the estimated symbol time. The FFT output is used to do the pilot correlation
with 7 symbol types listed in Table 2.3. We can track the exact symbol time and check
the symbol types. If the symbol type is not as expected, the initial synchronization should
be re-done.

Besides, the frequency has been synchronized:to the BS during normal operation.
According to 802.16a, the SS shall track the frequency:changes and shall defer any trans-
mission if synchronization is lost. The small frequency changes can be tracked by the
frequency part of the joint ML estimation (the same'as stage 11 of initial synchronization).
These changes are averaged for a period of time and then compensated, so the frequency
offset under the tracking mode will be smaller than the initial frequency synchronization.
If by any chance a larger frequency variation occurs, we may detect it by monitoring the

received guard carriers and then try to correct it.

2.3 Summary of Downlink Synchronization Techniques

The system parameters employed in this study are shown in 2.4. Our goal in this thesis
is to do software implementation of the synchronization techniques on DSPs. The imple-
mented transmitter and receiver components are as indicated in Fig. 2.12 and 2.13. The
gray regions are implemented blocks, and the others such as FEC, channel estimation and
equalization are not implemented in this study.

Recall from 2.2 that the initial DL synchronization contains 4 stages, which are sym-

20

DL_MAP, UL_MAP

Pilot
(preamble)

Add virtual [—*

Ty

Burst 1 data Framing & SP . —-
e Carrierallocation [| 1702 | | | ~ camers |
» screambler | FEC | a8 U » (padding zeros) —=
modulation
Burst h dat
i Not addressed in
Interpolator the present study
e —| b LPF D/A T
| IFFT | 2048 - Add pl‘EfIX T4 ™ (mRCflltEI‘) 1 filter] RF | »| channel| —»
(AWGN)
(fadding channel)

Fig. 2.12: DL transmitter structure (from [1]). The gray regions indicate the implemented
function in our study.

fractional .| Integer
freq sync. freq. sync.
Not addressed in *
the present study ¥
Rx | | AD LPF) [Sp i
| ti interval : - rame
P RE [filter [P (SRRCfilter) [T 44 ["] e [T raere [2048 FFT N s
channel DL_f[r)e;_mm;ﬁx
estimation - ¢
- P data data FEC
lizati g ™~ _— | De-screambler < data
SRR 1] .| 1702 deframing demodulation decoder

Fig. 2.13: DL receiver structure (from [1]). The gray regions indicate the implemented
fuction in our study.

21

Synchronization function

Filot
Correlation

SRRC

output
g / Integer Frequency 3
Dta Buffer X, offsel Estimation De-framing >
|
|
L

Peak
Detection

CP Correlation

Phase
Detection

o
(7

-EXP(.)

Fig. 2.14: DL synchronization process block diagram.

bol time synchronization, fractional-frequency.offset synchronization, integer frequency
offset synchronization , and frame synchronization. At beginning, the CP correlator out-
put detects an local peak value. The phase of correlator output peak is the fractional
frequency offset. As shown in Fig. 2.14, use this peak location to perform the integer fre-
quency estimaion. The integer frequency offset estimator estimates the integer frequency
offset. Adding integer and fractional frequency offset and using this result to compensate
the input data. After some iterations, the integer frequency offset will be fixed, than start
to find the frame start by using pilot correlation.

The flow chart of symbol time and fractional frequency offset estimations are shown in
Fig. 2.15. The CP_max records the maximum value of CP correlation, CP_corre_location
records the start time of a symbol that estimated in CP correlation stage, Freq_Off records
the estimated fractional frequency offset. A new correlation value is computed and then
compared with CP_Max whenever a new sampled data is received and shifted into syn-
chronization buffer. If the new correlation value is larger than CP_Max, we replace the

value of CP_Max by the news correlation value, CP_corre_location by current location,

22

and Freq_Off by the phase of correlation value. If the correlation value is not larger than
the maximum vlaue, we compute the next CP correlation value by receiving new sampled
data without modify the content of these varibles that record the CP correlation informa-
tion. If all the next 256 successive CP correlation values are not larger than CP_Max, the
current CP_Corre_location is the estimated symbol time and the current Freq_Off is the
estimated fractional frequency offset.

Integer frequency offset estimation is perfomed after FFT. The CP correlation peak
location is used in this stage to be the symbol start time. The flow chart of integer fre-
quency offset estimation are shown in Fig. 2.16. The lock condition is achieved after the
spectrum offset of the received symbol is checked zero.

Frame synchronization is started after frequency offset is compensated. The type
of every received symbol is identified by pilot correlation. In the beginning of frame
synchronization, the preamble and L = 0:symbol is waited. This is the first symbol of
a frame. The state machine is Started when the first preamble symbol is received and
goes to the next state when the predicted symbolis received. The normal synchronization
codition is achieved when the third preamble symbol is received. If the received symobl
is not the predicted symbol, the synchronization lost, and then the frame synchronization

is re-started. Fig. 2.17 shows the state machine for frame synchronization.

23

Timing & fractional frequency

offset synchronization

Initial: CP_Max=0,
CP_Corre_location=0,
Freq Off=0

Data into bufffer
culate CPD

"

Cal

/

CP_max=CP_corre

Count ++ CP_corre_location=Count

Freq_offset=Phase(CP_corre)

-CP_corre_location

N Peak_detected

Freq Offset detected

Fig. 2.15: Flow chart of symbol time and fractional frequency offset synchronization.

24

Integer Frequency Synchronization

DL Symbol in

Freguency
compensation

(Next Symhal)

'y
Find if any

N

Integer offset

*— = (k85D

carrier k from 1023 to §52

> threshold?

Integer offset | Y Findifany

carrier k from -1024 to -852

=-851-k

= threshold?

Carriers
(851 & -851) =
Threshold?

LOCK=1

Fig. 2.16: Flow chart of integer frequency offset synchronization.

25

Yes

ormal symbol
L=3

Fig. 2.17: The state machine of framing synchronization.

26

Chapter 3

DSP I ntroduction

The 802.16a DL synchronization techinques are implemented on DSP platform. The
platform we use is a DSP card made by Innovative Integration, the Quixote. This chap-
ter introduces the Quixote PC-plugin card and the DSP which is Texas Instruments’
TMS320C6416 on this card. Our discussion will concentrate more on the DSP chip be-

cause of our implementation is pure software.on.the DSP.

3.1 DSP Board Introduction

Quixote is Innovative Integration’s Velocia-family baseboard for various applications re-
quiring high-speed computation. Fig. 3.1 shows a block diagram of the Quixote board. It
combines a 600 MHz 32-bit fixed-point DSP, an FPGA (Virtex-I1) analog acquisition, and
system-level peripherals. The T1 C6416 DSP operating at 600 MHz offers a processing
power of 4800 MIPS.

The Virtex-11 FPGA includes 18x18 hardware multipliers and contains up to 12 digital
clock managers, each providing 256 subdivisions of phase shifting and frequency synthe-
sis capabilities to deliver flexibility in managing both on-chip and off-chip clock domains
and synchronization. On-chip memory blocks in the Virtex-I1 fabric provide convenient
high-speed memory elements for FIFOs, dual-port RAM and local process memory that
are invaluable in efficient logic design.

The Quixote card has a 32MB SDRAM for use by the DSP. When used with the

27

advanced cache controller on the *C6416, the SDRAM provides a large, fast external

memory pool for DSP data and code. The 6416 cache controller is effective to over 85%

of infinite on-chip memory performance for most DSP applications. A flash EEPROM

allows configuration data to be saved and a 512 byte serial EEPROM memory allows

storage of converter correction coefficients which is used by the embedded Viterbi and

turbo decoder .

PLL Clock (out)

ZBT SBSRAM ZBT SBSRAM

SDRAM

O Ext Clock (in) 4 Mbyte o 4 Mbyte ey
O ExtTriggef
(o b FIFO 32K/channel TMS320C6416 DSP
sup ©==0"" Analog 10 each direction 600 MHz
CamECtars (e | 105 MS/s Virtex Il FPGA
0A
O=1n 144t
with & pole filters EMIF &
@ Analog Comparator 64-bil/100MH2
MDR-E0 Digital I/O AL AL —— |CBSPS (2
EMIF B
LETIR]]
PMC Site = 16-bit/100MHz
| 32132
PLL each direction
‘ Timebase
’ 10105 Mz
TCXO
-
— 33MHz

FPGA XC 000 (or 6000)

A o Digital
/D dala from ofissiinain

convertsrs

Coeflicient
Memory
] Digial

ofiseligain |o
<—] Comection

D/ datato
CONVEMErS

b allaslac s 3

Gomsction [

=
Diata Packing/
Xilimx ode Control
noe j Mode Contro

i

266164 it
FFO

Frag'amn‘a &
Intematation MY]

W6epFR | |1
icale |ol|P2 Urpacingy

[-

25664 bit
FFQ

cooffcierts Mode Control [*]

Gonverier]
Timing

Araiog trigger
data

~ P e———

PCI 64/66
PICMG 2.0

To/From CE418
EMIFA Inferface

tat
. L—intermupls) fo
‘o414

To/From
PLL Signal

PXI Triggers

Enlarged view of Xilinx Virtex Il FPGA

Fig. 3.1: Block diagram of Quixote (from [15]).

28

Quixote Block Diagram

3.2 Introduction to TMS320C6416 DSP [9]

3.2.1 TMS320C6416 Features

The TMS320C64x DSPs are the highest-performance fixed-point DSP generation on
the TMS320C6000 DSP platform. The TMS320C64x device is based on the second-
generation high-performance, very-long-instruction-word (VLIW) architecture developed
by Texas Instruments (T1). The C6416 device has two high-performance embedded co-
processors, Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)
that significantly speed up channel-decoding operations on-chip.

The C64x core CPU consists of 64 general-purpose 32-bits registers and 8 function
units. These 8 function units contain two multipliers and six ALUs. Features of C6000

device includes :

e Advanced VLIW CPU with eight functional units, including two multipliers and

six arithmetic units:

— Executes up to eight inStructions per cycle.

— Allows designers to develop highly effective RISC-like code for fast develop-

ment time.
e Instruction packing:

— Gives code size equivalence for eight instructions executed serially or in par-

allel.

— Reduces code size, program fetches, and power consumption.
e Conditional execution of all instructions:

— Reduces costly branching.

— Increases parallelism for higher sustained performance.

e Efficient code execution on independent functional units:

29

— Efficient C compiler on DSP benchmark suite.

— Assembly optimizer for fast development and improved parallelization.

8/16/32-bit data support, providing efficient memory support for a variety of appli-

cations:

40-bit arithmetic options add extra precision for applications requiring it.

Saturation and normalization provide support for key arithmetic operations.

Field manipulation and instruction extract, set, clear, and bit counting support com-

mon operation found in control and data manipulation applications.
The C64x additional features include:

e Each multiplier can perform:two 1616 bits or four 8 x 8 bits multiplies every clock

cycle.

Quad 8-bit and dual 16-bit instruction set extensions with data flow support.

Support for non-aligned 32-bit (word) and 64-bit (double word) memory accesses.

Special communication-specific instructions have been added to address common

operations in error-correcting codes.

Bit count and rotate hardware extends support for bit-level algorithms.
3.2.2 Central Processing Unit
The block diagram of C6416 DSP is shown in Fig. 3.2. The DSP contains:

e Program fetch unit.

e Instruction dispatch unit.

e Instruction decode unit.

30

CB2x/CB4x/CETxX device

Program cache/program memory
32-bit address

256-bit data
CE2x/Ce4x/CE7x CPU
Power Program fetch
down Instruction dispatch (See Mote) Contral
= registers
¥ Instruction decode
Data path A Data path B
| WLy DMA, EMIF — : Control
| Registeriiea | | Regsteriies | legic
Test
M2] S2] 12 | Emulation
Interrupts f—»
Additional
> a . peripherals:
Data cache/data memory 'Ifirrersri —M
32-bit address serthcpm 3,
8-, 16-, 32-bit data (64-bit data, CE4x only))

Fig. 3.2: Block diagram of TMS320C6416 DSP (from [9]).

31

Two data paths, each with four functional units.

64 32-bit registers.

Control registers.

Control logic.

Test, emulation, and interrupt logic.

The TMS320C64x DSP pipeline provides flexibility to simplify programming and im-
prove performance. The pipeline can dispatch eight parallel instructions every cycle.

These two factors provide this flexibility:
e Control of the pipeline is simplified by eliminating pipeline interlocks.

e Increased pipelining eliminates traditional architectural bottlenecks in program fetch,

data access, and multiply operations. This provides single cycle throughput.
The pipeline phases are divided intQ three stages:
e Fetch.
e Decode.
e EXxecute.

All instructions in the C62x/C64x instruction set flow through the fetch, decode, and
execute stages of the pipeline. The fetch stage of the pipeline has four phases for all
instructions, and the decode stage has two phases for all instructions. The execute stage
of the pipeline requires a varying number of phases, depending on the type of instruction.
The stages of the C62x/C64x pipeline are shown in Fig. 3.3.

Reference [9] contains the detailed fetch and decode phases information. The pipeline
operation of the C62x/C64x instructions can be categorized into seven instruction types.

Six of these are shown in Table 3.1, which gives a mapping of operations occurring in

32

4—— Feich— w4 Decode 44— Execule —p

PG PS | PW | PR P | DC | E1 E2 E3 | B4 | ES

Fig. 3.3: Pipeline phases of TMS320C6416 DSP (from [9]).

each execution phase for the different instruction types. The delay slots associated with
each instruction type are listed in the bottom row.

The execution of instructions can be defined in terms of delay slots. A delay slot is
a CPU cycle that occurs after the first execution phase (E1) of an instruction. Results
from instructions with delay slots are not available until the end of the last delay slot.
For example, a multiply instruction has,enedelay slot, which means that one CPU cycle
elapses before the results of the multiply arelavailable for use by a subsequent instruction.
However, results are available from other instructions finishing execution during the same
CPU cycle in which the multiplyis in adelayslot:

The eight functional units in the C6000. data paths can be divided into two groups of
four; each functional unit in one data path is almost identical to the corresponding unit in
the other data path. The functional units are described in Table 3.2.

Besided being able to perform 32-bit operations, the C64x also contains many 8-bit
to 16-bit extensions to the instruction set. For example, the MPY U4 instruction performs
four 8x8 unsigned multiplies with a single instruction on an .M unit. The ADD4 instruc-
tion performs four 8-bit additions with a single instruction on an .L unit.

The data line in the CPU supports 32-bit operands, long (40-bit) and double word (64-
bit) operands. Each functional unit has its own 32-bit write port into a general-purpose
register file (Refer to Fig. 3.4). All units ending in 1 (for example, .L1) write to register
file A, and all units ending in 2 write to register file B. Each functional unit has two 32-bit
read ports for source operands srcl and src2. Four units (.L1, .L2, .S1, and .S2) have an

extra 8-bit-wide port for 40-bit long writes, as well as an 8-bit input for 40-bit long reads.

33

Table 3.1: Execution Stage Length Description for Each Instruction Type (from [9])

Instruction Type

16 X 16 Single Codx
. Multiply/ Multiply
Single Cyel St Load B h
mgnye C64dx .M Unit e Extensions o Lo
Non-Multiply
Execution E1 Compute Read operands Compute Reads oper- Compute Target-
phases result and start address ands and address code
and write to computations start com- in PGT
register putations
E2 Compute result Send ad- Send ad-
and write to dress and dress to
register data to memaory
memory
E3 Access Access
memaory memary
E4 Write results Send data
to register back to CPU
EL Write data
into register
Delay 0 1 ot 3 41 51

slots

34

Table 3.2: Functional Units and Operations Performed (from [9])

| Function Unit

| Operations

L unit(.L1,.L2)

32/40-bit arithmetic and compare operations
32-bit logical operations

Leftmost 1 or 0 counting for 32 bits
Normalization count for 32 and 40 bits
Byte shifts

Data packing/unpacking

5-bit constant generation

Dual 16-bit arithmetic operations
Quad 8-bit arithmetic operations

Dual 16-bit min/max operations

Quad 8-bit min/max operations

S unit (.51, .52)

32-bit arithmetic operations

32/40-bit shifts and 32-bit bit-field operations
32-bit logical operations

Branches

Constant generation

Register transfers to/from-control register file (.S2 only)
Byte shifts

Data packing/unpacking

Dual 16-bit compare operations

Quad 8=bit compare-operations

Dual 16-hit shift operations

Dual 16-bit saturated arithmetic operations
Quad 8-bit saturated arithmetic operations

.M unit (M1, .M2)

16 x 16 multiply operations

16 x 32 multiply operations

Quad 8 x 8 multiply operations

Dual 16 x 16 multiply operations

Dual 16 x 16 multiply with add/subtract operations
Quad 8 x 8 multiply with add operation
Bit expansion

Bit interleaving/de-interleaving
Variable shift operations

Rotation

Galois Field Multiply

.D unit (.D1, .D2)

32-bit add, subtract, linear and circular address calculation
Loads and stores with 5-bit constant offset

Loads and stores with 15-bit constant offset (.D2 only)
Load and store double words with 5-bit constant

Load and store non-aligned words and double words

5-bit constant generation

32-bit logical operations

35

Because each unit has its own 32-bit write port, when performing 32-bit operations all

eight units can be used in parallel every cycle.

3.2.3 Memory Architecture

The C64x has a 32-bit, byte-addressable address space. Internal (on-chip) memory is
organized in separate data and program spaces. When off-chip memory is used, these
spaces are unified on most devices to a single memory space via the external memory
interface (EMIF). The C62x/C67x have two 32-bit internal ports to access internal data
memory. The C64x has two 64-bit internal ports to access internal data memory. The
C62x/C64x/C67x have a single internal port to access internal program memory, with an
instruction-fetch width of 256 bits.

A variety of memory options are available for,the C6000 platform. In our system, the

memory types we can use are:

On-chip RAM, up to 7M bits.

Program cache.

Two-level caches.

32-bit external memory interface supports SDRAM, SBSRAM, SRAM, and other
asynchronous memories. In our system, the external memory used by DSP is a

32MB SDRAM.

3.3 TI’s Code Development Environment [16], [17]

T supports a useful GUI development to DSP users for developing and debugging their
projects: the Code Composer Studio (CCS). The CCS development tools are a key el-
ement of the DSP software and development tools from Texas Instruments. The fully

integrated development environment includes real-time analysis capabilities, easy to use

36

sl

i

Ly sl

Ja

dst
long dst L

y
L A

If
32 MSB il il

3ZLSE

S5Tib 4
5T1a

¥ 3

H

leng sro

(5]

b

Register
dst file A

Data path A S (AD-A31)

L

long dst

¥

Zae Nowe 1
See Note 2

b T Y
Ty

E
n
g
1 ' f F

F 3 3

22 MSE
32158
Fa

LD1b
LD1a

y¥¥ ¥

s
DA1 D1

— 2x

Y

D2 sod

dl./i\ /til\n

o
a
¥

. 321SE
LD2a = #
LDzp 22 MSE

4

L 2 J

& i
F 7

M2 soi

Zee Nowe 2

See Note 1

L

Register
file B
52 t
e = (B0-B31)
long dst =
long sro

Data path B

¥

3z M=EB

ST2a %
32058

STZh 4 o

)

[+]
I

long sro
long dst
dst

ry

L2

se2

_lT

Control Register

¥

Motes for .M unit:
1. long dstis 32 MSB
2. dsfis 32 LSB

Fig. 3.4: TMS320C64x CPU data path. (from [9]).

37

debugger, C/C++ compiler, assembler, linker, editor, visual project manager, simulators,
XDS560 and XDS510 emulation drivers and DSP/BIOS support.

Some of CCS’s fully integrated host tools include:

e Simulators for full devices, CPU only and CPU plus memory for optimal perfor-

mance.

e Integrated Visual Project Manager with source control interface, multi-project sup-

port and the ability to handle thousands of project files.
e Source code debugger common interface for both simulator and emulator targets:

— C/C++/assembly language support.
— Simple breakpoints.
— Advanced watch window.

— Symbol browser.
e DSP/BIOS host tooling support (configure, real-time analysis and debug).
e Data transfer for real time data exchange between host and target.
e Profiler to understand code performance.
CCS also delivers foundation software consisting of:
e DSP/BIOS kernel for the TMS320C6000 DSPs.

— Pre-emptive multi-threading
— Interthread communication

— Interupt Handling

e TMS320 DSP Algorithm Standard to enable software reuse.

38

e Chip Support Libraries (CSL) to simplify device configuration. CSL provides C-

program functions to configure and control on-chip peripherals.

e DSP libraries for optimum DSP functionality. The DSP Library includes many C-
callable, assembly-optimized, general-purpose signal-processing and image/video
processing routines. These routines are typically used in computationally intensive

real-time applications where optimal execution speed is critical.

TI also supports many optimized DSP functions for the TMS320C64x devices: the
TMS320C64x digital signal processor library (DSPLIB). This source code library in-
cludes C-callable functions (ANSI-C language compatible) for general signal processing
mathematical and vector functions [11]. The routines included in the DSP library are

organized into eight groups:
e Adaptive filtering.

Correlation.

o FFT.

Filtering and convolution.
e Math.

Matrix functions.

e Miscellaneous.

In our project, the FFT and IFFT functions are from this library.

3.4 Code Development Flow to Increase Performance [10]

The recommended code development flow involves utilizing the C6000 code generation
tools to aid in optimization rather than forcing the programmer to code by hand in as-

sembly. These advantages allow the compiler to do all the laborious work of instruction

39

selection, parallelizing, pipelining, and register allocation. These features simplify the
maintenance of the code, as everything resides in a C framework that is simple to main-
tain, support, and upgrade.

The recommended code development flow for the C6000 involves the phases de-
scribed in Fig. 3.5. The tutorial section of the Programmers Guide focuses on phases
1 — 3. These phases will instruct the programmer when to go to the tuning stage of phase
3. What is learned is the importance of giving the compiler enough information to fully
maximize its potential. An added advantage is that this compiler provides direct feedback
on the entire programmers high MIPS areas (loops). Based on this feedback, there are
some very simple steps the programmer can take to pass complete and better information
to the compiler allowing the programmer a quicker start in maximizing compiler perfor-
mance. The following items list goal:for each phase in the 3-step software development

flow shown in Fig. 3.5.

e Developing C code (phase 1) without any knowledge of the C6000. Use the C6000
profiling tools to identify any‘inefficient areas-that we might have in the C code. To

improve the performance of the code, proceed to phase 2.

e Use techniques described in [10] to improve the C code. Use the C6000 profiling
tools to check its performance. If the code is still not as efficient as we would like

it to be, proceed to phase 3.

e Extract the time-critical areas from the C code and rewrite the code in linear assem-

bly. We can use the assembly optimizer to optimize this code.

TI1 provides high performance C program optimization tools, and they do not suggest
the programmer to code by hand in assembly. In this thesis, the development flow is
stopped at phase 2. We do not optimize the code by writing linear assembly. Coding the

program in high level language keeps the flexibility of porting to other platforms.

40

Phase 1:
Develop C Code

Write C code

¥

Compile

¥

Frofile

MNo

Complete)

Refine C code

Phase 2:
Refine C Code

¥

Compile

¥

Frofile

Yes
optimization?,

Complete)

Phase 3:
Write Linear
Assembly

Write linear assembly

Y
Assembly optimize
¥y
Frofile
No
Yes

(Complete)

Fig. 3.5: Code development flow for TI C6000 DSP.

41

3.4.1 Compilier Optimization Options [10]

The compilier supports several options to optimize the code. The compilier options can
be used to optimize code size or executing performance. Our primary concern in this
work is the execution performance. Hence we do not care very much about the code size.
The easiest way to invoke optimization is to use the cl6x shell program, specifying the
-on option on the cl6x command line, where n denotes the level of optimization (0, 1, 2,

3) which controls the type and degree of optimization:

e -00.

Performs control-flow-graph simplification.

Allocates variables to registers.

Performs loop rotation,

Eliminates unused code.

Simplifies expressions-and-statements.

Expands calls to functions declared inline.
e -01. Peforms all -00 optimization, and:

— Performs local copy/constant propagation.
— Removes unused assignments.

— Eliminates local common expressions.

e -02. Performs all -0l optimizations, and:

Performs software pipelining.

Performs loop optimizations.

Eliminates global common subexpressions.

Eliminates global unused assignments.

42

— Converts array references in loops to incremented pointer form.

— Performs loop unrolling.

e -03. Performs all -02 optimizations, and:

Removes all functions that are never called.

Simplifies functions with return values that are never used.

Inlines calls to small functions.

Reorders function declarations so that the attributes of called functions are

known when the caller is optimized.

Propagates arguments into function bodies when all calls pass the same value

in the same argument position.

Identifies file-level vafiable-characteristics:

The -02 is the defaule if -0 is set withoutan-optimization level.

The program-level optimization:can be specified by using the -pm option with the
-03 option. With program-level optimization, all of the source files are compiled into
one intermediate file called a module. The module moves to the optimization and code
generation passes of the compiler. Because the compiler can see the entire program, it

performs several optimizations that are rarely applied during file-level optimization:

o If a particular argument in a function always has the same value, the compiler re-

places the argument with the value and passes the value instead of the argument.

e |f areturn value of a function is never used, the compiler deletes the return code in

the function.

e [f a function is not called directly or indirectly, the compiler removes the function.

43

When program-level optimization is selected in Code composer studio, options that have
been selected to be file-specific are ignored. The program level optimization is the hightest

level optimization option. We use this option to optimization our code.

44

Chapter 4

DSP Implementation

Recall that 802.16a downlink synchronization process is as shown in Fig. 2.14. The pro-
cess includes symbol timing synchronization, fractional frequency synchronization, inte-
ger frequency synchronization and frame synchronization. Our target is to implemente
DL synchroization process on TI TMS32C6416 DSP.

Because of the memory on our platform is quite large, the most important issue to be
optimized on our system is the execution efficiency. This chapter focuses on the perfor-
mance improvement of the DL synchronization code: The DL synchronization programs
developed in [1] employed floating-point computation. The code we implemente on DSP
employs fixed-point computation. The precision of fixed-point numbers that we use is

also discussed.

4.1 Efficiency Enhancement of DL Synchronization Code

The original DL synchronization program is written in C language. It is written without
any knowledge of DSP at beginning. This section introduces the process of maximizing

the performance.

4.1.1 Performance of the Original Program

The compile option that we use to optimize the original DL synchronization program

is the program-level optimization. Tables 4.1 and 4.2 shows the the code size, maxi-

45

mum exection cycles, and minmmum exection cycles of individual function blocks for
the transmitter and the receiver, respectively. Floating-point computation is used in the
program. Because the C6416 is a fixed-point DSP, floating-point operations on it is time-
consuming.

The transmitter consists of several function blocks that are listed in Table 4.1. Mod-
ulation performs the data modulation that IEEE 802.16a supports. The options of data
modulation are QPSK, 16-QAM and 64-QAM. In our program, the modulation is fixed
64-QAM for all burst data. Framing performs the allocations of pilot carriers , guard car-
riers and burst data. Fft_float is the discrete fast fourier transfer from [1]. IFFT function in-
cludes the fft_float with some input data buffer arrangement of fft_float. Tx_mask _satisfaction
performs the 4-times oversample and SRRC filter (from [1]).

The functions that executed in receiver are listed in Table 4.2. SRRC_downsample per-
forms the 4-times downsample and SRRC filter (from [1]). CP_correlation, initial -freq_sync,
integer_fregq_sync, and pilot_corre functions perform the synchronization techniques that
are CP correlation, fractional frequency-synchronization, integer frequency synchroniza-
tion and pilot correlation respectively. “Fft_float in receiver is the same as that in trans-
mitter with different input option. FFT consists of fft_float function and some input data
buffer arrangement of fft_float. In de-framing function, data bursts are extracted from
the received symbols. And finally, de-modulation of the burst data is performed in de-
modulation function.

In our system, one symbol duration is 201.6 us and there are 2304 samples in a sym-
bol. The clock frequency of DSP is 600 MHz. The execution clock cycles is 120960
in a symbol duration and average 52.5 in a sample duration. The average counts of all
transmitter functions are in a symbol duration. Their target counts are 120960 cycles for
real time operation. In the receiver, the average count of fft_float, FFT, de_framing and
de_modulation functions are in a symbol duration and their targets counts are 120960 for

real time operations. For the other funcions in receiver, their average counts are in one

46

Table 4.1: Floating-Point Profile of 802.16a DL Transmitter Function Blocks

Block Code size | Max. count | Min. count | Avg. count | Real time
(Bytes) (Cycles) (Cycles) (Cycles) rate
Modulation 460 4294288 1441061 3058185 3.96%
Framing 2212 188125 188091 188110 64.30%
fft_float 1328 23487728 | 23476418 | 23481019 0.52%
IFFT 676 23491380 | 23480070 | 23484737 0.52%
Tx_mask_satisfaction 1852 46471084 | 46460414 | 46465084 | 0.26%

Table 4.2: Floating-Point Profile of 802.16a DL Receive Function Blocks

Block Code Size | Max. count | Min. count | Avg. count | Real time
(Bytes) (Cycles) (Cycles) (Cycles) rate

SRRC_downsample 608 23283 16387 21233 0.25%
CP_correlation 1188 185559 43 645 8.14%
initial_freq_sync 420 184 52 57 92.11%
integer_freq_sync 1228 23484952 40 2078 2.53%
pilot_corre 2972 24057628 48 167290 0.03%
sync 1132 47393690 56192 228702 0.02%
fft_float 1328 23258068 | 23250546 | 23254032 | 0.52%
FFT 420 23456722 | 23451576 | 23453957 | 0.52%
de_framing 948 1626187 1626187 1626187 7.44%
de_modulation 904 1883132 637124 1352664 8.94%

sample duration and their target counts are 52.5 cycles for real time operation. The real
time rate listed in Table 4.1 and 4.2 show that the rate that average counts compared with
real time requirement of individual function.

In this thesis, we will optimize the synchronization related functions. They are CP _correlation
(CP correlation), initial_freq_sync (initial frequency synchronization) , integer_freq_sync
(integer frequency synchronization) , pilot_corre (pilot correlation) and sync (synchro-

nization). The sync function is the top-level function of synchronization.

4.1.2 Fixed-Point Number System Consideration

The C6416 is a fixed-point DSP. Floating-point operations on it are inefficient. We should

realize the transmission system using fixed-point arithmetic to maximize the performance.

47

TI’s programmer guide [10] recommands the user to use the short data type (16 bits) for
fixed-point multiplication inputs whenever possible. Because this data type provides the
most efficient use of the 16-bit multiplier in the C6416. Besides changing the data type,
some sub-functions in this system such as FFT, IFFT, sine and cosine should be replaced

by fixed-point version.
4.1.2.1 On the Precision of Fixed-Point Computation

The fixed-point number format that we use in the system to do arithmetic operations is
Q.15. We choose the format because the most efficiency data format for the multiply
operation is 16 bits, and the data used in synchronization process are less than 1 in their
numerical values. Now, we evaluate whether the precision is enough for the synchroniza-
tioni work.

For this, we allocate 6 bursts (users) in.the downlink part of one 802.16a frame. Source
data are generated randomly, and'are modulated to 64 QAM symbols. There are 12
OFDMA symbols in one DL frame and 4 OFDMA symbols in UL frames. The TTG
and RTG are 136 samples. The frame structure and the bursts allocation are shown in
Fig. 4.1. The frame is repeated several times in transmission.

In the simulation environment, we employ the multipath ETSI “Vehicular A” channel
model [1]. The time-varying channel impulse response for these models can be described
by

h(r,t) =Y a;(t)6(T — 73), (4.1)
which defines the channel impulse response at time ¢ as a function of the lag 7. The chan-
nel taps «a;(t) are independent complex stochastic variables, fading with Jakes” Doppler
spectrum, with a maximum Doppler frequency of 240 Hz, reflecting a mobile speed of
approximately 120 km/h (and scatterers uniformly distributed around the mobile). The
real-valued 7; and the variance of the complex-valued «; are given in [13] and repeated in

Table 4.3.

48

OFDMA symbol number

vy

D|l|2 3|4|5I6|7|8|9|10|11
48
2 g FCH DL Burst #1
k-
E 4
= -
E| BE DL Burst #2
g = £ urst DL Burst #4
2
& —
5 g DL Burst #3 DL Burst 5
\J
- > -
TTG RTG
Fig. 4.1: The bursts-allocation in a frame.
Table 4.3: Characteristics of the ETSI “Vehicular A” Channel Environment
tap | relative delay (nsec or sample number) average power
(nsec) (4 oversampling) (normal) | (dB) (normal scale) (normalized)
1 0 0 0 0 1.0000 0.4850
2 | 310 14 4 -1.0 0.7943 0.3852
3 710 32 8 -9.0 0.1259 0.0610
4 | 1090 50 12 -10.0 0.1000 0.0485
5 | 1730 79 20 -15.0 0.0316 0.0153
6 | 2510 115 29 -20.0 0.0100 0.0049

49

Table 4.4: Relations Between Spreed and Maximum Doppler Shift at Carrier Frequency
6 GHz and Subcarrier Spacing 5.58 kHz

| Speed (km/hr) | Doppler shift (Hz) | f.7, |

0 0 0
20 111 0.0224
40 222 0.0448
60 333 0.0672
80 444 0.0896

100 556 0.112
120 557 0.134

The SNR is set to 10 dB in the fading chnanel. The receiver SNR specified in 802.16a
test condition is from 9.4 to 24.4 dB, so 10 dB, which is almost the worst condition, is
a reasonable value for simulation. The maximum Doppler shifts of our simulation are
shown in Table 4.4 for the speed from 0 to-120 km/hr.

The goals of synchronization-are to compensate the frequency offset and to find the
frame start time. To evaluate the precision-of fixed-point format, we compare the fre-
quency lock and frame lock performance between floating-point system and fixed-point
system. The frequency offset is estimated and compensated in the synchronization pro-
cess. The frequency lock condition is achievd when the frequency offset is compensated.
The frame lock condition is achieved when the three successive preamble symbols are
identified. The simulation transmits 5 802.16a frames every time. If the frequency lock
and frame lock are not obtained in these 5 frames, the synchronization is declared to fail.
The current symbol number is recorded when the frequency is locked, and the current
frame number is recorded when the frame is locked. The average symbol number of fre-
quency lock and frequency lock fail rate is used to measure the performance of frequency
lock, and the average frame number of frame lock and the frame lock fail rate is used to
measure the performance of frame lock. Tables 4.5 and 4.6 show the simulation result.

The frequency offset is always locked in 5 frames duration. And it takes on average

no more than 6 symbols to achieve the frequency lock. The performance is not clearly

50

Table 4.5: Performance Comparision of Frequency Lock Between Floating-Point and
Fixed-Point Implementation

Doppler shift Lock fail rate Average lock symbol number

faTs Floating-point | Fixed-point | Floating-point | Fixed-point
0 0 0 2.99 2.98
0.0224 0 0 2.66 2.69
0.0448 0 0 2.36 2.39
0.0672 0 0 2.30 2.32
0.0896 0 0 2.61 2.57
0.112 0 0 3.23 3.42
0.134 0 0 5.15 5.14

Table 4.6: Performance Comparision of Frame Lock Between Floating-Point and Fixed-
Point Implementation

Doppler shift Lock fail rate Average lock frame number

faTs Floating-point | Fixed-point | Floating-point | Fixed-point
0 0.001 0.001 1.00 1.00
0.0224 0.057 0.074 1.98 1.94
0.0448 0.008 0.100 1.26 1.24
0.0672 0.027 0.032 1.65 1.70
0.0896 0.136 0.140 2.59 2.59
0.112 0.107 0.135 2.14 2.19
0.134 0.063 0.069 1.50 1.47

o1

Table 4.7: Q16.15 Bit Fields
Bits {3130 |29 |..|15]| 14 |..| 1 | O

Value | S | 115 [114 | .. | 10 |Q14 | .. | Q1 | QO

Table 4.8: Q.15 Bit Fields
Bits |15 14 | 13 |..| 1 | O
Value | S | Q14 | Q13| .. | Q1| QO

dependent on Doppler shifts. The performance of fixed-point system is very close to that
of the floating-point system. The probability of frame locking in 5 received frames is
not very high when the Doppler shift exists. But the frame can be locked quickly when
Doppler shift is 0. This is because the IEEE 802.16a is designed for fixed environments.
The useable information is useful when. the:Doppler shift is small. Comparing the simu-
lation results, we see that the perfermance of frame lock is close in floating-point and in
fixed-point systems. The Q.15 format fixed-point computation is precise enough for the

synchronization process.
4.1.2.2 Fixed-Point Data Formats

In the transmitter (TX) side, as Fig. 2.2 shows, multiplication only exists in modulation,

IFFT and the 4-times upsample SRRC filter. The data formats we set in the TX side are:
e The data format before IFFT is Q16.15.
e The data format after IFFT is Q.15.

Q16.15 format places the sign bit in the leftmost, followed by 16 integer bits and 15 bits
fraction component (Table 4.7). Q.15 format places the sign bit in the leftmost, and the
remainder 15 bits are fraction component (Table 4.8).

The range of data values before IFFT is [—2, 2], and the data after IFFT is less than

1 in their numerical values. The critical functions in TX are FFT and SRRC filter. We

can get the FFT/IFFT code from TI TMS320C64x DSP library (DSPLIB). This library

52

supports two types of FFT/IFFT. They are 16 bits input/output data type and 32 bits in-
put/output data type. The inputs of the FFT/IFFT must be scaled by the FFT length to
prevent overflow. In our 802.16a system, the FFT/IFFT length is 2048. If we use the 16
bits type FFT/IFFT, the input data format of FFT/IFFT must be scaled by 2048. In this
case, only 4 bits can be used to represent the fixed-point value. Intuitively, 4 bits is not
enough in our system. For this reason, we choose the 32 bits FFT/IFFT DSP _fft32x32
and DSP_ifft32x32.

DSP_fft32x32 is the complex mixed radix 32-x32-bit FFT with rounding, while in-
verse FFT version of the same type is DSP_ifft32x32. It computes an extended precision
complex forward mixed radix FFT with rounding and digital reversal. Input data x|, out-
put data y[] and coefficients w|] are 32-bit. The output is returned in the separate array y[
] in normal order. The FFT coefficients (twiddle factors) are generated using the program
“tw_fft32x32”. No scaling is done with the routine; thus the input data must be scaled
by 2!°82 N to completely prevent overflow. The routine-uses log, N — 1 stages of Cooley
Tukey radix-4 DIF FFT and performs eitheraradix-2.or radix-4 DIF FFT on the last stage
depending on N. If N is a power of 4, then this last stage is also a radix-4 transform, oth-
erwise it is a radix-2 transform. In our work, we have 5 stages of radix-4 transform and 1
stage radix-2 transform.

Table 4.9 shows the comparisons of computational complexity for different FFT al-
gorithm. The mixed radix FFT needs 19203 real multiplications and 64259 real addi-
tions theoretically in our application. Practically, the time DSP_fft32x32/DSP _ifft32x32
needed is 2811 clock cycles. The complexity and performance of IFFT/FFT are listed in
Table 4.10. The efficiency of DSP _fft32x32 is quiet high because the code is assembly-
optimized. The software pipeline is well scheduled as show in Fig. 4.2,

We set the data format before IFFT as Q16.15 rather arbitrarily. The most critical
arithmetic operation in TX side is the SRRC filter. We set the data format after IFFT as

Q.15 so that the inputs of multiplication in SRRC filter is 16 bits. This is the most efficient

53

Table 4.9: Comparisons of Computational Complexity for Different FFT Algorithms

| Complexity | No. of Real Multiplications | No. of Real Additions |

Radix-2 FFT 2Nlog, N —IN +38 3Nlog, N —IN +38
Radix-4 FFT 2Nlog, N —3N +3 ZNlog, N —3N +3
Radix-8 FFT 2N(og,N—3)+4 |[ZNlog,N—2N+1
Split-radix-4/2 FFT Nlog, N — 3N +14 3Nlog, N —3N +4
Simplified FFT AN 6N

Table 4.10: Complexity and Performance of IFFT/FFT Implementation

Needed Number of | Actual Number of | Performance
Clock Cycles Clock Cycles

[IFFT/FFT | 20311 | 28811 [705% |

['A pro]STDW .D2Tz B v 12 1:B v 12 0, *B % [B 121 :[25,2]

I SUE .L1 A pze, L pie, Ly 111 :[25,217[11+1] =coz0%ytO-

I ADDAH .D1 AL v 11 0, b p23r, Ay 110 :[25,2] siz0*xt0)>>15

I ADD .L2X B por, L plr, B y hz O :[25,2]v[h2] = (sil0*yci+

I MPYHIR .Mz B co30, B yrz, E p4c :[15,3] colO*xtl)>>15

I MPYHIR .M1X L 5110, B xtl, L ple :[15,3]

I PACKZ .32 B_silo, E_col0, E silOcold :[15,3] ()»»16

I SUE .31 A xho, L xh20, & xtd :[15,3] xtO=xh0-xhz0
ADDAH .D2 B vy hz 0, B pOir, B y hz O 1 [26,2]

[I[!'B_proz]STDW .D1T1 & ¥ hl 1:4 ¥ hl O, *4 x 1[0] :[16,3]

I MPYHIR .Mz B _si30, B xt2, B pS5ec :[16,3]

I MPYHIR .M1 L cozO, i yt0, L pze :[16,3]

I PACKZ .31 & sizo, L o020, A sizlco2d :[16,3] ()»»16

I PACKZ .Lz B_eo30, E_si30, B co30si30 :[16,3] ()»»16

I SUE .L1X B _fft Jmp, & 1, L ifj i 6,4] ifj = (3 - fft_Jmp)

I vy 32X A 1, E i i 6,4]
BEDEC .51 LOOP_Y, i 1 [37,1]

I MPYHIR .Mz B co30, B xtz, B _p4r :[17,3]

I MPYHIR .M1 L siz0, L yr0, L p3r :[17,3]

I PACKHZ .32 B wyrz, B xtz, B yrixez :[17,3]

I LDDW .D2T1 *B_wi[B_ 31, A coz0:h siz0 i 7,41

I LDDW .DiT2 *A wO[A 41, B _col0:B sil0 i 7,41

I SUE .L2X B xpil, L xlipl, B xl1 i 7.4] xll=x[1]-x[1l1lpi]

I ADD .L1X B _xpo, L x11p0, L xh0 i 7,4] xhO=x[0]+x[11]

['A prol]STDW .D2Tz B v h2 1:B v hz 0O, *B % [B h2] ;[28,2]

I ADDAH .D1 A ¥ 11 1, & p23c, Ay 11 1 :[28,2]

I DOTPRSUZ.M2 B ytZxtZ, B =i30co30, B _p4Sr :[18,3]

I MPYHIR .M1 L cozO, i xtD, A pir : [18,3]

I PACKHZ .L1 L wytO, i xt0, A ytOxtO : [18,3]

I PACKZ .32 B_ecolo, E_sil0, E co10sild ;[18,3] ()»»16

I SUE .L2X B_xpo, L x11p0, B _x10 :[8,4] x10=x[0]-x[11]

I ADD .31X B_xpl, L xllpl, & xhi ;[8,4] xhl=x[1]+x[1l1lpi]

Fig. 4.2: A part of assembly code for DSP_fft32x32.

o4

use of the 16-bit multiplier in C6416. The output of SRRC is Q.15 for the arithmetic

operations of RX side are 16 bits fixed-point. Fig. 4.3 shows the data format of TX side.

Binary ~ | Q16.15 Q.15 _
Source —— Modulation fF——— IFFT > ?4 SRRC —» Q.15

Fig. 4.3: The fixed-point data formats at the TX side.

In the RX side, the operation is much more complex than in TX side. The main
consideration of setting fixed-point data format is that the multiplier operations are always

16 x 16. The data formats we set in the RX'side'are:
e The data format of SRRC filter input:1s Q.15.
e The data format after SRRC filter.is Q.15.
e The data format after FFT is Q16.15.
e The data format of estimated frequency offset is Q16.15.

Fig. 4.4 shows the data formats at RX side. The stages after FFT are de-framing and
de-modulation. The range of data values after FFT is [—%, 3] and the Q.15 format can
not cover this range. The performance of these functions is not discussed in this thesis,
and we set the fractional part of fixed-point data after FFT to be 15 bits for simplifying
the data format transformation. For these reasons, the data format after FFT is set to be
Q16.15. The fractional part of fixed-point number in this system in 15 bits. Hence the

finest fractional resolution is 2= = 3.05 x 1072,

55

Synchronization Function
Q.15 i
A
Pilot |
Correlation [~ &
II\
SRRC (;l;lput s .15 | -
= @ 2 Data Buffer |/ [nteger Frequency & '
Z A offset Hstimation
|
|
Q.15 L ———
CF Correlation Q45 D;:J;m
Phase
Detection
Q16.15
QI5 Q615 K,
-EXP(.)
N

Ql6.15

Q16.15

De-framing

-

Fig. 4.4: The fixed=point data formats at the RX side

4.1.2.3 Fixed-Point Sine and Cosine Functions

The sine and cosine functions in RX side are used to compensate the frequency offset.

The library of TI C compiler only supports the floating-point version. We have to replace

these two functions by fixed-point version for efficiency. There are several methods that

can be used to accomplish these two functions. The table look-up method is faster than

the series expansion [12]. The former stores values of the function and the values of the

slope used to interpolate between the table entries. If we let the constants in the table be

represented by C;, and the interpolation values (multipliers) by M;, a function table might

appear as shown in Table 4.11, and
sin(z) = C; + Mz

where
Ci = sm(@z) — 1 X (sin(0i+1) — sin(&i)),

56

(4.2)

(4.3)

Table 4.11: Sine/Cosine Look-Up Table
0 | sinO | cosO
6 | sinf; | cosb,
B, | sinfy | cosb,

0, | sinf, | cosf,

M, = sin(6;41) — s1n(0i)' (4.4)
0i+1 - 01’

Once the program has been written to use the table look-up method, it can be used to

generate any function required by changing the values in the table. So the equation for
cosine is the same as that for sine.

In this thesis, the table length is 512 and its data type is Q.15. The §; = gli; and

2T
(0ir1 —0;) = =5l
The input data can be normized by.a factor 27 for convenience. Then (4.4) can be modi-
fied to

M; = (sin(f;41) — sin(6;)) x 512. (4.5)

The error mean of the fixed-point sine/cosine function is 2.07 x 10~5 and the mean square

error is 5.99 x 10719, The precision is close to the resolution of the system.
4.1.2.4 Performance of Fixed-Point System

After the data format is changed to fixed-point, the operation performance is shown in
Tables 4.12 and 4.13. The performance is much better than the floating-point in the
synchronization related functions which including CP_correlation, initial freq_sync, pi-
lot_corre and sync. Some other functions such as framing and de_framing are not much
enhanced because the arthimetic operations are not the critical factors of their execution

efficiency. The critical factors of these functions are the interface of input and output data.

S7

Table 4.12: Fixed-Point Profile of 802.16a DL Transmitter Function Blocks

Block Code Size Max. Min. Avg. Improvement Real
(Bytes) count count count | (compare with time
(Cycles) | (Cycles) | (Cycles) | floating-point rate
operations)
Modulation 616 2716875 | 906088 | 1932318 36.81% 6.26%
Framing 1624 191530 | 191496 | 191515 -1.81% 53.16%
IFFT 964 37528 37528 35728 99.85% 338.56%
Tx_mask_satisfaction 1624 6199459 | 6199459 | 6199459 86.55% 1.95%
Table 4.13: Fixed-Point Profile of 802.16a DL Receiver Function Blocks
Code Size | Max. Min. Avg. Improvement Real
(Bytes) count count count | (compare with time
(Cycles) | (Cycles) | (Cycles) | floating-point rate
operations)
SRRC_downsample 700 8942 1175 1301 93.87% 4.01%
CP_correlation 1040 376 37 80 87.60% 65.63%
initial_freq_sync 312 179 32 38 33.33% 138.16%
integer_freg_sync 1276 65128 39 42 97.98% 125%
pilot_corre 2400 638902 38 8462 94.94% 0.62%
sync 1132 713535 9759 18114 92.08% 0.29%
FFT 276 32259 32259 32259 99.86% 374.96%
de_framing 1036 1225985 | 1225985 | 1225985 24.61% 9.87%
de_modulation 460 755037 | 252196 | 537886 60.24% 22.49%

The performance of these functions should be fine-tuned but we have not worked on it in

this thesis.

The synchronization related functions can be further improved by refining the program

code.

4.1.3 Code Refinement

4.1.3.1 Recursive DFT in Pilot Correlation Function

In pilot correlation fucntion, the FFT is executed several times in one symbol duration.

FFT should be done 64 times in initial condition and 10 times in normal condition during

58

lwvoid Recursive DFT(FIZED DOUBLE *fft Out, FIZED x old real, FIZED x old imag,

z FIZED x new real,FIZED x new imag){

3 FIXED DOUELE temp real,temp imag;

4 int 1ir

5 for (i=0;1i<2048; i++){

[temp_real=fft Out[Z¥i]-x _old real+x new_real; /016,15

7 temp_imag=fft Out[2¥i+1]-x old imag+x_new_ imag: //0Q16.15

g fft Cut[Z2*i]={(temp_real) *rcos[i] - (temp_imag) Fisin[i] j »>15;

] fft Cut[2*i+1]={ (temp real) *isin[i]+(temp imag) *rcos[i])>>15;
10 3 e e i

11 %

Fig. 4.5: C code of recursive DFT.

Table 4.14: Comparison Between FFT and Recursive DFT
| | Code Size (Bytes) | Clock Cycles |
DSP_fft32x32 932 28811
Recursive_ DFT 652 6172

one symbol time. These FFT can be calculated recursively as discussed before as

27k

Xn(k) =[Xn1(k) =€h- v+, e/ V.

The input 2 to sine and cosine in this‘equation is'not a random number. We can store
these sine and cosine values in a table to'simplify the calculation. The resulting C code is
shown in Fig. 4.5, and Table 4.14 shows the profile of the recursive DFT.

The recursive DFT calculates 2048 complex multiplications. One complex multi-
plication needs 4 real multiplications and 2 additions. The recursive DFT thus takes
2048 x 4 = 8192 multiplications and 2048 x 2 = 4096 additions. There are 2 multipliers
and 6 ALUs in Tl C6416 DSP, so the lower-bound execution time of recursive DFT is
% + 40% = 4779 clock cycles. The efficiency of the recursive DFT implementation
IS 77.4% as Table 4.15 shows. The software pipeline information of the recursive DFT

program is shown in Fig. 4.6. The resource is partitioned equally and software pipeline is

well scheduled. Fig. 4.7 shows a part of the assembly code.

59

SOFTWARE PIPELINE INFORMATION

Loop source line - 23
Loop opening brace source line @ 23
Loop closing brace source line : 31
Loop Tnroll Multiple i 2X
Enown Hinimuwwn Trip Count v 1024
Enown Maximwuwwn Trip Count r 1loz4
Enown Max Trip Count Factor 1 1024
Loop Carried Dependency Bound(*) : 2
Unpartitioned Eesource Bound HE -t
Partitioned Resource EBound(¥) HEN

Resource FPartition:
b-=z=ide E-=ide

.L units a a
.3 units 5 43
I units a* a¥
.M units g, g,
. % cross paths 3 3

. T addresz paths *

f
Long read paths u]
Long write paths a
Logical ops (.L3) 1 [.L or .3 unirt)
Addition ops | .L3D) 5 ([.L or .3 or .D unit)
Bound(.L .3 .LS3) 3

3

Bound({.L .3 .D .L3 .L3D) *

Ty W N OO m

Searching for software pipeline schedule at
ii = 6 3Gchedule found with 5 iterations in parallel
done

Epilog not remowved
Collapsed epilog stages Hamn'

FProlog not entirely removed
Collap=ed prolog stages HE]

Miniwum required mwemory pad @ O bytes

For further improvement on this loop, try option -mwhi32

Minimum =safe trip count i 4 j(after unrolling)

Fig. 4.6: The software pipeline information of recursive DFT.

Table 4.15: Efficiency of Recursive DFT Implementation
Lower-Bound of | Actual Execution | Efficiency
Execution Cycles Cycles

Recursive DFT | 4778 | 6172 | 774% |

60

L2 P e

13374 L40:
13375
13376
13377
13378
13379
13380
13381
13382
13383
L3384
13385 | |
13386 | |
13387 | |
13388 | |

I

I

I

[a0]

13359
13390
RELETE
L339z
13393
13354 | |
13395 | |
13396 | |
13337 | |

I

I

I

['EO]

['EO]
13398
123299
13400
13401
12402
123403
13404

[l [!a1]
I
13405 | |
I
I

['i1]

12405
13407
12408

I3

PIFPED LOCF EEENEL

BDEC .51 L40, A0
SUB Lz E6,B4,EBS

SHR .82 Bz3,13,E4
MPYLI .M1 221, L47,R7: 05
SUB .L1X BZz,Ll19, 422
LDH .D2T2z *++B16(4),E9
LDU .DIT1 #+A3 (12}, A9
SUB .51 116, L6, L

LDD .L1 LS, k4, AS

SHR .82 ES,13,E5
MPYLI .M1X 221,B21,A5: L4
MPYLI .M2X B7,kz0,B5:B4
SUE L2 BE6,B19,E22
LDH .D2T1 *+B16(2),Az21
LD .D1TZ *+43(4),B22
SHR .81 16,13, A5
MPYLI .Mi AD, 27, A9 AT
MPYLI .M2X B9, k20,B5:54
LDD .L1 118, 422, LB
LDH .DZT1 *+B17(2), A%
SHR .52 BS,z,B22

LDD Lz E18,B22,E7
LD .D1TZ *+A3(8),E6
SHR .81 4,13, 49

STH LDITL A6, *-A3(36)
STU .DZTZ BS, *++B20(16]
MPYLI .MiX i9,B21, 217: 116
LDD L1 118, L5, L4

SHR .82 B7,2,B21

|28]
129]
Blz28]
BE| 25|
BE |z
BEE[Z5]

25|
129]
25|
Blza|
Blzg|
BE|Z4|
BE |28
BER|E5]

129]
B|29|
B|za|
BE|z25]
BE|Z2E|
BE |28
BE|z4|
BER| 24|

|28
|29
| 28]
Bz2g)|
BE|25|
BE |28

Fig. 4.7: Assembly code of recursive DFT.

61

Table 4.16: The Execution Cycles of Pilot Correlation Loop
Original Code | Refined Code
(Cycles) (Cycles)
| Pilot Correlation Loop | 76293 | 1013 |

4.1.3.2 Pilot Correlation Function Refinement

In pilot correlation function, the locations of pilots are found in the frequency domain and
then they are used to be the reference of correlation. The pilot locations in OFDMA sym-
bol has only 4 types depending on the symbol index L. We can store the pilot locations
instead of calculating them time after time. Besides, the values of the pilots are either %
or —%. We do not need to do multiplications to find the maximum of pilot correlation. We
can replace the multipliers by additions,

The revised code is shown in Fig. 4.8.=The-pilot-locations are stored in var_pilot_loc
array and no multiplication is néeded. The most important enhancement of the perfor-
mance is that the loop count is reduced frem-1-702 (the useful carriers number) to 144
(the variable carriers number), as shown.in Table4.16. Fig 4.9 shows the partial assembly
code of original pilot correlation loop. It is a disqualified loop and the software pipeline
is not scheduled. The software pipeline information of revised code is shown in Fig. 4.10,
which shows that the software pipline is well scheduled. Fig 4.11 shows a part of the

assembly code.
4.1.3.3 Using Intrinsics

The C6000 compiler provides intrinsics, which are special functions that map directly to
inlined C62x/C64x/C67x instructions, to optimize the C/C++ code quickly. The intrinsic
function we used in synchronization code is the integer absolute value instruction _abs().
The absoulate value function used originally was fabs(). In TI’s CCS library, it takes 70
clock cycles to perform the absolute value computation through fabs(). Replacing the

library function by the instrinsic enhances the execution performance. Fig. 4.12 shows

62

L// it

2// The original piloct correlation code £/

3/ L

4 for (used carrier=0;used carrier<l170Z;used carrier++j

5

3 if {{{used carrier-3*L+12)%12==0})

7 {

g

9

10 if {used carrier<851)

11 fft carrier=used carrier+1197;

1z else

13 fft carrier=used carrier-850;

14 if{ {{wk[used carrier/8]<<{used carrier%f))a{0x80}))==0x80)}

15 freq_corre[preamble][L]:freq_corre[preamble][L]—fft_Out[fft_carrier*Z];
16 else

17 freq corre[preamble] [L]=freq corre[preamble] [L]+fft_Out [fft carrier*Z];
18 }

19}
z0
o
zz /) £
23 // The refined pilot correlation code i
24 /7 Iy
25 for (i=0;i<corr_pilot cnt;i++] |
26 used carrier= var pilot loc[i] [L];
27 if {used carrier<851)
28 fft carrier=used carrier+1197;
29 else
30 fft carrier=used_carrier-850;
hE
32 if{ {{wklused carrier/8]<<{used_carrier%8}):c (0x80))==0x80 }
33 freq corre[preamble] [L]=freq corre[preamble] [L]-fft Out[fft carrier*Z];
34 elze
35 freq corre[preamble] [L]=freq corre[preamble] [L]+fft Cut[fft carrier*Z];
36)

Fig. 4.8: C code of revised pilot correlation loop.

63

;531 | for(used carrier=0;used carrier<l170Z;used carrier++)
;* __
i SOFTWARE PIPELINE IMFOREMATICN
H Discqualified loop: bhad loop structure
e e e e e e e e e — — — — ————— o — ——
L45
B .ol _ remi ;1533
SUE .D1 L3, A5, b4 ;1533
ADDEPC .52 RL14s,B3,1 ;1533
ADD .D1 12,44, b4
MVE D2 Oxc, B4 ;1533
EL146: ; CALL ©CZCURS ;1533
M .D1 A4 RO HERR=cich |
[&a0] BNOP .51 L50O, 4
['a0] MVE .3l 0«50, A4
; BRANCH OCCURS ;1533
CMPLT L1 L3, a17, 00 ;1537
['a0] MVE .02 850, B4 ;1537
|| [&AO] MVE .ol 1197, 45 ;1537
[&a0] ADD LDl A5, A3, A5 ;1537
[&a0] EXT .3l A5,16,16, 45 ;1537

Fig. 4.9: Partial assembly code of original pilot correlation loop.

64

Loop source line 1 574
Loop opening brace source line : 574
Loop closing brace source line : 585

Enown Minimum Trip Count : 142
Enown Maximum Trip Count : 142
Enown Max Trip Count Factor : 142
Loop Carried Dependency EBoundi(®) : 6
Unpartitioned Resource Eound HEN
Partitioned Resource EBound(*) HEN

Resource Partition:
bL-z=ide B-=ide

.L units u] 1

.3 units 6% =]

.I units 2 2,

.M units a o

.%Z cross paths = 5

.T addres=z paths 2 2

Lonyg read paths o]

Long write paths o]

Logical ops (.L3) 1] [.L or .2 unit)
Addition ops [.L3D) g8 5] [.L or .3 or .D unit)
Bound(.L .5 .L3) 4 3

Bound(.L .5 .DI .L5 .L3IM 6% =]

Searching for software pipeline schedule at

ii = 6 Did not find schedule

ii = 7 &Schedule found with 4 iterations in parallel
done

Epilog not removed
Collapsed epilog stages HEi|

Prolog not removed
Collapsed prolog stages HEi|

Minimwum regquired memory pad : 0 bytes

For further improvement on this loop, try option -mhdd

Miniwum safe trip count : 4

Fig. 4.10: The software pipeline information of pilot correlaton loop

65

14865 2 & F

14867 LE7: : PIPED LOOP KERMEL

lages

14353 ['&0] LDW LDETZ *B19,B7 PO 111
14370 | | CMFLT e A4, EBS5, EO : B e83)
14871 | | SHRU .3z B17,23,B17 : Ble33)
1487z | | LDEU .D1T1 #*+A1G[A16], AZ2 : B8589
142732

14374 [EB1] EDEC .52 L57,B1 :

14875 || [AO] LDW .D2TZ #*B18,B16 ;| 694
14875 || [!EO] EXT .31 L5, 16,16, 421 : @633
14877 | | ADD LL2x E17,419,B17 : B1659]
14873

14879 [EO] EXT .51 b3,16,16,421 ; B1688]
14230 | | AMDHN .D2 B17,B6,B17 ; @689
14331 | | ADD D1 L3, A4, L6 : BR| 658
14382 | | m L1 L4, 418 ; BR| 639
145883

laza4 ADD .D1 17, 44, 43 : [E| 635
14335 | | mv .L1 14,419 ; [E|689]
14236 | | SHR .51 L15,2, 416 : BR| 689
14887

l4gas SHL L82% A21,3,E17 : Bl696]
lag89 | | SUE LL1E 49,B17, 416 : @889
lagsn | | SHRU .81 116,29, 49 : [E| 639
14891 | | LDH LD1T1 F++A5(16) , Ag : BEE| 657
14892

14893 ['&0] LDD .LzZ BE7,BS,BS E A 1=
14594 | | SHL L8523 421,3,E17 : B 694
14235 | | ADD .0z E4,B17,EB19 : Bl696]
14336 | | SHL .31 LZZ,R16, 418 ;@639
14837 | | ity D1 h19, A3 ; @BInserted to split & long life
14393 | | ADD L1 L3, 418, k16 ; BR| 639

Fig. 4.11: Partial assembly code of revised pilot correlation loop.

66

14/ I
z// The original code, link to library function I
3/ I
4
Eif{ (fabs(fft Out[S549%2])»check null threshold 2) || (fabs(fft Ouc[850%2])>check null threshold 2) ||
[(fabs (fftv_Out[851%2]) »check null threshold 2) || (fabs(ffc_Ouc[1157%2])>check_null threshold 2 ||
o) (faba (ffr_Out[1195%2]) >check null threshold 2) || (fabsiffr_Out[1199%2])>check null threshold 2))
g
2
1o
St
1z
1z
14
154/ I
16 // The refined code, using instrinsics I
17447 I
1s
19 if({ (_abs(fft_Out[B49%2])rcheck null_threshold 2) || (_abs(fft_Ouc[850%2])>check null threshold 2) ||
di} (_shs(f£fr_Out[851%2]) »>check null threshold 2) || (_absi(ffc_Ouc[1197%2])>check null threshold 2) ||
21 (_sbs(ffr_0Out[1195%2]) >check null threshold 2) || (_absiffr_Out[1159%2])>check null threshold 2))
zz
23
Z4
Z5 1

Fig. 4.12: The abs() function is replaced by instrinsic _abs() in C code.

the change in program.
4.1.3.4 Synchronization Buffer Arrangement

Table 4.13 shows that the minimum clock cycle of sync function is 9759. The minimum
condition should be much faster ‘because the-minimum condition of sync is almost idle.
The inefficiency in sync code is caused:-by that the original code uses the shift-register
buffer. Whenever a new data is received, the data in buffer are shifted left, and the new
data is put in the rightmost position. If the shift-register buffer had been implemented
in hardware, then the shift operation can be done in one clock cycle. But in the DSP
software, shifting all the data in the buffer, as shown in Fig. 4.13, is time-consuming.
After changing the buffer to a circular buffer, the new data input is kept in the buffer in
circular order. So the code used to handle buffer like Fig. 4.13 is no more needed.

The minimum count of sync function should close to idle. Table 4.17 lists the ex-
ecution profile of sync functions which use different buffer arrangements. It shows that
the performance is much enhanced by using a circular buffer in place of a shift-register

buffer.

67

{

¥

for (i=huffer max num;i>0:i--)

sync buffer Z real[0]=temp real;
gync_buffer Z imag[0] =temp iwmag:?

temp real=sync buffer 1 real[buffer max num] ;
temp imag=sync buffer 1 imag[buffer max num] ;

sync huffer 1 real[i]=sync buffer 1 real[i-1]:
sync buffer 1 imag[i] =sync buffer 1 imag[i-1]:

sync buffer 2 real[i]=sync buffer 2 reall[i-1]:
sync buffer 2 imag[i] =sync buffer 2 imag[i-1]:

Fig. 4.13: Shift-register buffer arrangement.

Table 4.17: Profile-of the sync Function

Shift buffer | Circular buffer
(Cycles) (Cycles)
Minimum countofsync | 9759 | 312 |

Table 4.18: Profile of CP Correlation Function Loop Using Different Buffer Types

Code Size | Maximum count | Minimum Count | Average Count
(Bytes) (Cycles) (Cycles) (Cycles)
CP_correlation 1040 376 37 80
(Shifted Buffer)
CP_correlation 844 1329 37 99
(Circular Buffer)

68

4.1.3.5 Loop Unrolling

The maximum count of CP correlation is increased when using circular buffer as shown in
Table 4.18. The maximum count occurs when the CP correlation is caculated for the first
time. The method of calculation is given in (2.3). The code of CP correlation functions
using two different buffer types are shown in Fig. 4.14. When using shift-register buffer,
the data used to calculate correlation are obtained from fixed memory addresses. It is
much easier for compiler to optimize the code. When using the circular buffer, the data
used to calculate correlation are from a different memory address each time. And the
pointer of circular buffer must be checked whether or not it arrives the end of buffer. The
conditional statement in loop is very difficult for compiler to do optimization.

The software pipeline scheduling of CP correlation function using shifted-register
buffer is shown in Fig. 4.15, and that of using circular buffer is shown in Fig. 4.16.
Resource partition for shift-register_buffer type CP.correlation is apparently better than
for circular buffer type correlation. And the loop. is unrolled automatically in the case of
shift-register buffer type of CP correlation, but notin‘the case of circular buffer type. This
is because the compiler does not know how to unroll the loop with conditional operation
in it. We unrolled the loop 4 times by hand as shown in Fig. 4.17. The software pipeline
information is as shown in Fig. 4.18. The resource partition is better than before and the
software pipeline is well scheduled.

The C6416 DSP has 2 .M units, and each unit can execute dual 16 x 16 multiply
operation. Because our data formats are 16 bits and C6416 has 6 ALUs, 4 multiply
operations and 6 additions can be executed simultaneously. The CP correlation in the
first step calculates a total of 256 samples times another 256 samples separated by 2048
samples. It is the maximum count condition. The CP correlation needs 256 complex
number multiply operations, and 255 complex number add operations. The number of
real multiply operations is 256 x 4 = 1024, and the number of real addition operations

IS 256 x 2 + 255 x 2 = 1022. The minimum required number of execution cycles is

69

1//==})
z// CP correlation code, shifted buffer W
3 //==s===m==ss=msmsmsmmsmmmmmmmmm oo smmsmssmsmsmssossssssossssssossssososssssssssssssy
4 for {i=0; i<CP_downsampling samples;it++) 1
3 *CP_real=*CF_real+
& sync_buffer 1 real[i] *syne_buffer 1 real[i+2048]+
i sync_buffer 1 iwag[i] *sync buffer 1 imag[i+2048]
2 *CP_immg=*CFP_imag+
3 sync_buffer 1 real[i] *sync buffer 1 imag[i+Z048] -
10 sync buffer 1 imag[i] *sync buffer 1 real[i+2048]:
113 - - - -
1z
1z
14
1t
1&
17 /f=======================s==s=ss-s=ssosso s
18 // CP correlation code, Circular huffer W
19 f/==================================s===s===s=s=====s=s==s==s=s=s==s==s=s=s=====s=s=s===s=ss==s=s==s=s
20 for (1=0; i<CP_downsawpling sawples:i++){
z1 operand locationl=((cirbufprr-2048)>=0) ? (cirbufprr-20458) : [(cirbufprr-2048) +2304%2) ;
zz *CP_real=*CP_real+
23 sync_buffer[cirbufprr*Z] *sync_buffer[operand locationl®a]+
24 sync_buffer[cirbufptr¥2+1] *sync_buffer[operand locationl®i+1]:
ZE *CP_imag=*CF_imag+
Z6 gync_buffer[cirbufptr¥*2] fsyne buffer[operand locationl®Z+1]-
27 sync_buffer[cirbufptr*2+1] *sync_buffer [operand locationl®Z];
zZ8 cirbufptr--:
29 if {cirbufptr<0) cirbufptr=2304%2Z-1; ffpoint to the last of sync buffer:
20}

Fig. 4.14: Code of CP correlation functionswusing shift-register buffer and circular buffer.

256. The performance of CP correlation-functions are shown in Table 4.19, . After the
first time calculation, the CP correlation. is caleulated by (2.6). The equation includes
2 complex number multiplications and 2 complex number additions. The number of real
multiply operations is 8 and that of real addition operations is 8. In this stage, the absolute
value should be calculated and then the maximum found. The absolute value calculation
requires 2 real number multiplications and 1 real number addition. In total, the number of
real multiply operations is 10 and the number of real addition operations is 5. This stage
should be finishable in 3 cycles ideally.

The performance of CP correlation is shown in Table 4.19. After changing the buffer
to circular buffer, the performance can be increased by unrolling the loop by hand. The
efficiency of stage Il is very low. In C6416 DSP, all instructions executing in parallel
constitute an execute packet. An execute packet can contain up to eight instructions. Be-
sides, the .M unit can executes dual 16 x 16 multiply operations simultaneously. In stage

I, the software pipeline can be well scheduled, and an execute packet can contain several

70

Loop source line r 174
Loop opening brace source line : 175
Loop closing brace source line @ 182
Loop Unroll Multiple odx
Enown Minimm Trip Count HE S
Known Maximwww Trip Count : 64
Enown Max Trip Count Factor B4
Loop Carried Dependency Bound(*) a
Unpartitioned Resource EBound s 5
Partitioned Resource EBound(¥) 5
Resource Partition:

A-=ide B-=ide
units a a
units a
units 5%
units 43
cross paths 1
.T addre=ss paths

W
*
*
W
*
W
*
*
W
*
*
W
*
*
W
*
*
*
*
W
e Lonhg read paths
*
W
*
*
W
*
*
W
*
*
*
*
W
*
*
W
*
*
W
*
*

MR DD

*

=
o
Long write paths u]
Logical ops (.L3) o [.L or .3 unit)
Addition ops [.L3D) =] [.L or .3 or .D unirt)
Bound(.L .53 .LS3) o

=

Bound(.L .3 .D .L3 .L3D)

IO O o B e N 7 T T TN S T Y

*

Searching for software pipeline schedule at
ii = 5 &chedule found with 3 iterations in parallel
done

Epilog not remowved
Collapsed epilog stages HE |

Prolog not entirely remowved
Collapsed prolog stages i ¢

Miniwum regquired wemory pad : 0 hytes

For further improvement on this loop, try option -mhd

2= Minirmwn safe trip count : 2 [(after unrolling)

Fig. 4.15: Software pipeline information of shift-register buffer type CP correlation loop.

71

+*

+*

x Loop source line 1 201
* Loop opekhing brace source line @ 201
* Loop closing brace source line @ 209
* Enown Minimun Trip Count : 256

* Enown Maximun Trip Count 1 256

x Enown Max Trip Count Factor 1 256

* Loop Carried Dependency Boundi(™) : 4

x Unpartitioned Resource EBound : 3

* Partitioned Resource Boundi(?*)]

* Resource Partition:

x L-=ide E-=ide
* units u]
* units

x units

* units

* cross paths

* .T address paths
g Long read paths
*

+*

*

+*

+*

T

+*

+*

*

+*

T

+*

+*

*

+*

*

+*

+*

T

+*

o

be Do

Logical ops [(.L3)
Lddition ops [.L3D)
Bound({.L .3 .L3)
Bound({.L .53 .D .L3 .L3D)

[.L or .53 unit)
{.L or .3 or .D unit)

o HE =100 0MNRBM WD

2
1
3
1
u}
Long write paths o
u}
3
1
Z

Searching for software pipeline schedule at ...

ii = 4 Did not find schedule

ii = 5§ BSchedule found with 4 iterations in parallel
done

Epilog not entirely remowved
Collapsed epilog stages i

Prolog not entirely remowved
Collapsed prolog stages HE

Miniwum required wemory pad : 0 bhytes

Minirwwum safe trip count o

Fig. 4.16: Software pipline information of circular buffer type CP correlation loop.

Table 4.19: Multiply-Add Efficiency of CP Correlation Functions

Stage | Stage Il
Cycles | Multiply-Add | Cycles | Multiply-Add
Efficiency efficiency
Shift-register buffer 372 68.8% 159 1.89%
type
Circular buffer type 1329 19.3% 174 1.72%
without loop unrolling
Circular buffer type 395 64.8% 177 1.69%
with loop unrolling

72

L //==//
z// CP correlation code, circular buffer, loop unrolling 4 times L
3/ /=====s==ssssssssssssssSsSssSSSSSSSSSSSSSSSSSSSSSssSSsSSSssssssssssssssssssssssssssssssss//
4 for (i=0; i<CP_downseamwpling seamples/4;it++) {

£ operand locationl=((cirbufptr-2045)>=0) ? (cirbufptr-2048) : [(cirbufptr-2048)+2304%2) ;
3 TCP_real=*CF_real+

7 syne_buffer [cirlbufptr®Z] *gync_buffer[operand locationl®Z]+

g sync_buffer[cirbufptr®2+1] *sync_buffer [operand locationl®Z+1];

] *CP_imag=*CF_imag+

10 sync_buffer[cirbufptr*2] *sync_buffer[operand locationl®Z+1]-

11 synce_buffer[cirbufptr*2+1] *sync_buffer[operand locationl®2]:

1z cirbufptr--;

1z if (cirbufpte<0) cirbufptr=2304%2-1: ffpoint to the last of syne buffer:

14 i4+;

18

16 0 smwwwmwws

I pewwsses // Code rewrite 3 times

18 e

19 }

Fig. 4.17: Hand-unrolled code of circular buffer type CP correlation.

instructions. But in stage 11, multiplications and additions that we used to measure the
computing power of DSP are minor portion of CP correlation operations. The most com-
puting power in stage Il is contributed to handle. that.the operations of program branches
into CP correlation function. Hence.the code efficiency that obtained by caculating mul-
tiplications and additions is unreasonable‘in this-stage.' This is why the efficiency shown

in stage Il is much lower than in stage l, as Table 4.19 shows.

4.2 Performance Discussion

Fig. 4.19 shows that the performance of synchronization function is much better after the
code is refined. The sub-functions of framing, de_framing, modulation, and de _modulation
are not optimized in this thesis. The critical factor that affects the performance of these
functions is not complexity of arithmetics. In this system, the input data of these functions
are read from files, and the results are output to files. We use the library functions fread
and fwrite functions to access the data. This is not good in terms of speed because the
fread and fwrite function calls are very slow on the DSP card. If we want improve the
system efficiency, then the data interface should be replaced by a more efficient method.
The profile of refined code is shown in Table 4.20. The performance of pilot corre-

lation function is much enhanced after we refined the code. The performance of initial

73

o e e Yt e e Y Yt ot Wt et Yt Yt Yt Yt et Y e e W Yt Yt Y e Yt Yt e Y Yt et Y Yot Wt Y e Y e e St Yt Wt e Yt Yot Yt Yt Yt Y ot st W e Yt et Y *
o SOFTWARE PIPELINE INFORMATION

=%

L Loop sSource line 1 202

Rty Loop opening hrace source line @ 202

e Loop closing bhrace source line @ 238

h Enown Minimum Trip Count : 16

Rty Enown Maxiruam Trip Count : 16

Rty Enown Max Trip Count Factor : 16

i Loop Carried Dependency Bound(™) : 17

i Inpartitioned Resource EBound r 14

Rty Partitioned Resource Bound(¥) 5 5

45 Resource Partition:

i h-zide B-=zide

e .L units a =1

i .5 ounits 1 a

4 D ounits 5% 1z

i LM ounits g g

L .X cross paths =] 3

i .T address paths =] 7

m Long read paths u} u]

h Long write paths u} u]

Rty Logical ops [(.L3) a u} [.L or .53 unit)
Rty Addition ops | .L3D) 22 24 [.L or .5 or .D unit)
i Bound{.L .3 .L3) 1 4

i Bound{.L .3 .DI .L3 .L3ID) 13 15+#

;‘k

Rty Searching for software pipeline schedule at

i ii = 17 DIid not find schedule

h ii = 18 Begister is liwve too long

i ii = 18 DIid not find schedule

i ii = 19 Fegister is live too long

i ii = 19 DIid not find schedule

e ii = Z0 Register is liwve too long

L ii = 20 Sechedule found with 2 iterations in parallel
o done

'-1?

L Collapsed epiloy stages H

i Prolog not remowved

m Collapsed prolog stages Han|

=%

Rty Minimum reguired memory pad @ 0 bytes

- %

h Hinimum safe trip count HEa
R R e e e e *

Fig. 4.18: Software pipline information of hand-unrolled circular buffer type CP correla-
tion loop.

74

Clock Cycles

O Flaoting-point
1.00E+06 version D
=] Fim_dfpoint
1.00E+05] O Fized-point
refined version
1.00E+04
1.00E+03
1.00E+02 — .
1.00E+01] W
1.00E+00 — ' ' ' —
Ly]) 3} 5
S § & £ £
& b o L]
a-r q?'; qc}fj" "6-' ?
5 & & 5
U}‘ ...&f q:_(}')
s § 4
§ 3

Fig. 4.19: Execution cycles of synchronization functions.

75

frequency synchronization is little enhanced by using intrinsics. The efficiency of CP
correlation is decreased after refining the code because of the conditional operations are
added in the correlation loop after the buffer type is modified to circular buffer. We have
maximized the efficiency of CP correlation by unrolled the loop by hand. In spite of
the efficiency of CP correlation is decreased, the efficiency of synchronization top-level
function sync is much increased after we refine the code. That is, the overall efficiency is
much increased. Recall that the clock cycle counts of real time requirement is 120960 in
one symbol duration and 52.5 in on sample duration. The overall synchronization func-
tion does not meet the requirement when executing on one DSP chip. Table 4.21 shows
the estimated performance of bottleneck functions of synchronization. The initial con-
dition of CP correlation is the first time that we find the symbol start time. Because the
next symbol start time is about 2048 away from the current symbol start time, we do not
need to do CP correlation immediately. e can start the CP correlation at location that
256 samples before the possible Start time of the next symbol. Hence performance of CP
correlation in tracking stage meets.the real time requirement. The reason why complex-
ity of pilot correlation in initial condition’is more complex than in tracking condition is
given before. The performance of overall synchronization reachs real time requirement of
8.96% in initial condition and 24% in tracking condition. Hence the real time requirement
can not be fulfilled in both condition. To meet the real time requirement, we can partition
the synchronization function into sub-functions that are either executed on more DSPs or

implemented on FPGA.

76

Table 4.20: Profile of Refined Code of 802.16a DL Receiver Function Blocks

Code Size | Avg. Count | Improvement Improvement Real time
(Bytes) (Cycles) | (compare with (compare with rate
floating-point fixed-point
operations operations
before refinement)
SRRC_downsample 700 1301 93.87% 0% 4.04%
CP_correlation 1320 101 84.34% -26.25% 51.98%
initial_freq_sync 300 29 49.12% 23.68% 181.03%
integer_freg_sync 932 42 97.98% 0% 125.00%
pilot_corre 2824 234 98.56% 97.23% 22.44%
sync 784 560 99.76% 96.91% 9.38%
FFT 276 32259 99.86% 0% 374.97%
de_framing 988 1225991 24.61% 0% 9.87%
de_modulation 460 528672 60.92% 1.71% 22.88%

Table 4.21: Performances Estimation in Separate Initial and Tracking Condition

Initial Avg. Tracking Avg.
Clock Cnt. | Real time | Clock Cnt. | Real time
rate rate
CP_correlatior 177 29.66% 39 133.15%
pilot_corre 544 9.60% 103 50.97%
sync 585 8.96% 215 24.42%

77

Chapter 5

Conclusion and Future work

5.1 Conclusion

We considered implementation of 802.16a TDD OFDMA downlink synchronization tech-
niques on TI’s C6416 digital signal processor. The complete TDD OFDMA DL system is
also implemented for verifying the.accuracy:-The implementation is based on the simula-
tion program from [1], which is floating-point version.WWe modified the original program
to fixed-point version and increased the efficiency. of Synchronization code.

The scheme that we used divides DL synchronization into four stages [1], which
are symbol time synchronization, fractional frequency synchronization, integer frequency
synchronization and frame synchronization. The recommended data type for fixed-point
multiplication on TI’s C6000 DSP is 16-bit [10] because this data type provides the most
efficient use of 16-bit multiplication in the C6000. Hence the data format that we used
in DL synchronization is Q.15 which is 16-bit fixed-point data format. The precision of
using Q.15 data format in DL synchronizaiton was proved enough in this thesis. To in-
crease the efficiency of synchronization code, we used intrinsics to replace the inefficient
function calls, modified the shift-register buffers to circular buffers for simplifying data
buffer operations, stored the pilot location in memory to simplify the pilot correlation
loop, and unrolled the loop in CP correlation function to make the software pipeline be
well scheduled. We also used the FFT/IFFT functions which had been optimized by TI

from TI’s DSP library to increase the execution efficiency.

78

After the optimization, the efficiency of CP correlation was increased 84.34%, frac-
tional synchronization was increased 49.12%, integer synchronization was increase 97.98%,
pilot correlation (frame synchronization) was increase 98.56%, and the overall synchro-
nization function was increased 99.76%. The individual function such as fractional fre-
guency synchronization, integer frequency synchronization, and FFT has met the real time
operations requirement. The execution speed of total synchronization function is 9.38%
of real time requirement. We estimated the performances in initial condition and tracking
condition. The performance of overall synchronization reachs real time requirement of
8.96% in initial condition and 24% in tracking condition. The execution speed in tracking
condition is better than in initial condition, but the real time requirement is not fulfilled in

tracking condition.

5.2 Potential Future Work

We have been optimized the efficiency of arithmetic functions of synchronization. The
real time requirement can not be fulfilled after the optimization. To fulfilled the real time
requirement, we can make more effort to improve the synchronization program. One
way we can consider is that skipping a function call when it is idle operation. In most
time, program enters and then exits synchronization function without doing anything.
In tracking condition, the idle time of synchronization operation can be predited. We
can let the program skip the idle synchronization function to save the time of branching.
The other way is increasing the efficiency of doing a function call. There are quite a
few of delivered parameters in synchronization function and its sub-functions. The more
parameters delivered by a function the more stack operations in the branching process, and
the less efficiency of a function call. If the real time requirement can not be fulfilled after
all the optimization methods are applied, We must partition the synchronization function
into sub-functions that are either executed on more DSPs or implemented on FPGA to

meet the real time requirement.

79

Bibliography

[1]

[2]

3]

[4]

[5]

[6]

M.-T. Lin, “Fixed and mobile wireless communication based on IEEE 802.16a TDD
OFDMA: transmission filtering and synchronization,” M.S. thesis, Department of
Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.,

June 2003.

J. J. van de Beek et al., “ML estimation of time and frequency offset in OFDM

systems,” IEEE Trans. Signal Processing, vol. 45, no. 7, pp. 1800-1805, July 1997.

P. H. Moose, “A technique for orthogonal frequency-division multiplexing fre-
quency offset correction,” IEEE Trans.-Commun., vol. 42, no. 10, pp. 2908-2914,
Oct. 1994.

Y.-L. Huang, C.-R. Sheu, and C.-C. Huang, “Joint synchronization in Eureka 147
DAB system based on abrupt phase change detection,” IEEE J. Select. Areas com-

mun., vol.17, no.10,0ct 1999.

IEEE Std 802.16a-2003, IEEE Standard for Local and Metropolitan Area Networks
— Part 16: Air Interface for Fixed Broadband Wireless Access Systems — Amend-
ment 2: Medium Access Control Modifications and Additional Physical Layer Spec-

ifications for 2-11GHz. New York: IEEE, April 1, 2003.

Texas Instruments, TMS320C64x Technical Overview. Literature number

SPRU395B, Jan. 2001.

80

[7] Texas Instruments, TMS320C6000 DSP Peripherals Overviews Reference Guide.
Literature number SPRU190F, Apr. 2004.

[8] J. J. van de Beek, P. O. Borjesson, M. L. Boucheret, D. Landstrom, J. M. Arenas,
P. Odling, C. Ostberg, M. Wahlgvist, and S. K. Wilson, “A time and frequency
synchronization scheme for multiuser OFDM,” IEEE J. Select. Areas Commun.,

vol. 17, pp. 1900-1914, Nov. 1999.

[9] Texas Instruments, TMS320C6000 CPU and Instruction Set. Literature number
SPRU189F, Oct.2000

[10] Texas Instruments, TMS320C6000 Programmer’s Guide. Literature number
SPRU198G, Oct.2002

[11] Texas Instruments, TMS320C64x DSPiLibrary.Programmer’s Reference. Literature
number SPRU565B, Oct.2003

[12] M. E. Frerking, Digital Signal Processingin Communication Systems, Van Nostrand

Reinhold, 1994.

[13] ETSI SMG, “Overall requirements on the radio interface(s) of the UMTS,” Techni-
cal Report ETR/SMG-21.02, v.3.0.0., ETSI, Valbonne, France, 1997.

[14] Innovative Integration, Quixote User’s Manual, Dec. 2003.

[15] Innovative Integration, Quixote Data Sheet, http://www.innovative-

dsp.com/support/datasheets/quixote.pdf.

[16] Texas Instruments, Code Composer Studio User’s Guide. Literature number

SPRU328B, Feb. 2000.

[17] Texas Instruments, TMS320C6000 Code Composer Studio Getting Started Guide.
Literature number SPRU509D, Aug. 2003.

81

	Study and DSP Implementation of IEEE 802.16a TDD OFDM Downli
	Study and DSP Implementation of IEEE 802.16a TDD OFDM Downli
	A Thesis

	Submitted to Degree Program of Electrical Engineering Comput
	Master of Science
	ABSTRACT.pdf
	Degree Program of Electrical Engineering Computer Science

