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摘  要 

 

  近年來，隨著深次微米時代的來臨，製程變異對於系統的穩健帶來了極大的挑戰。

其中，軟性電子錯誤率在先進電路的設計上被發現的機率也愈來愈高，對電路之可靠度

而言又變成一個重要的研究題目。然而，在前人的研究中，並無一個可有效地估計在製

程變異下之軟性電子錯誤率。因此，在本論文中建立出一個準確且快速的方法來有效地

估計在製程變異下，軟性電子錯誤率對電路可靠度之影響，其中主要包涵有以下二個部

分(1) 資料重建及改良式機器學習方法 (2) 粒子電量邊界選擇自動化。透過改良式機

器學習配合資料重建，我們可快速建構出精確的軟性電子錯誤率模型。在建構精確模型

後，此方法會自動選擇所需計算之粒子電量，並排除掉其它不需計算電量，以逵加速計

算軟性電子錯誤率之目的。實驗結果證明，此方法在 ISCAS 電路中與蒙地卡羅電路模擬

相比可加速約 10
7

倍，且只有 0.8%的平均誤差。 
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Abstract 

 

This thesis re-examines the soft error effect caused by radiation-induced particles 

beyond the deep sub-micron regime. Soft error has become one of critical reliability concerns 

due to the continuous technology scaling. Hence, it is necessary to develop an approach to 

accurately estimate soft error rate (SER) integrated with the process-variation impact. Due to 

inaccuracy of previously published approaches, an accurate-and-efficient framework is 

proposed in this thesis to perform statistical soft error rate (SSER) analysis considering 

full-spectrum charge collection. This framework mainly consists of two components (1) 

intensified learning with data reconstruction and (2) automatic bounding-charge selection. 

Experimental results show that the proposed framework can speed up SER estimation at the 

order of 107X with only 0.8% accuracy loss compared to Monte-Carlo SPICE simulation. 
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Chapter 1

Introduction
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Soft errors have emerged to be one of the dominant failure mechanisms for reliability

in modern CMOS technologies. Soft errors result from radiation-induced transient faults

latched by memory elements and used to be of concern only for memory units but now

becomes commonplace for logic units beyond deep sub-micron technologies. As predicted

in [28] [8] [1], the soft error rate (SER) in combinational logic will be comparable to that

of unprotected memory cells in 2011. Therefore, numerous studies have been proposed

to modeling of transient faults [6] [30] [23] [11], propagation and simulation/estimation

of soft error rates [35] [33] [25] [27] and circuit hardening techniques including detection

and protection [20] [2] [18] [34]. Numerous previous works such as [23] [19] transient

faults are propagated through one gate according to the logic function and in the meantime

use analytical models to evaluate the electrical change of their pulse widths. A refined

model presented in [11] to incorporate non-linear transistor current is further applied to

different gates with different charges deposited. A static analysis is also proposed in [14]

for timing masking by computing backwards the propagation of the error-latching win-

dows efficiently. Moreover, in recent years, circuit reliability in terms of soft error rate

(SER) has been extensively investigated. SERA [35] computes SER by means of a wave-

form model to consider the electrical attenuation effect and error-latching probability while

ignoring logical masking. Whereas FASER [33] and MARS-C [16] apply symbolic tech-

niques to logical and electrical maskings and scale the error probability according to the

specified clock period, AnSER [14] applies signature observability and latching-window

computation for logical and timing maskings to approximate SER for circuit hardening.

SEAT-LA [25] and the algorithm in [27] simultaneously characterize cells, flip-flops, de-

scribe transient-fault propagation by waveform models and result in good SER estimate

when comparing to SPICE simulation. However, all of these techniques are determinis-

tic and may not be capable of explaining more sophisticated circuit behaviors due to the

growing process variations beyond deep sub-micron era.

Process variations including numerous manufacturing defects have grown to be one of

the major challenges to scaled CMOS designs [5] [4]. From [22] [4], 25%-30% variation on

chip frequency are observed. For design reliability, 15%-40% SER variations are reported

in [26] under the 70nm technology. Also, authors in [17] propose an symbolic approach to

propagate transient faults considering process variations.
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Figure 1.1: SER discrepancies between static and Monte-Carlo SPICE simulation w.r.t.

different process variations

Using the 45nm Predictive Technology Model (PTM) [21], the impact of process vari-

ations on circuit reliability is illustrated in Figure 1.1, where SERs are computed by SPICE

simulation on a sample circuit c17 from ISCAS’85 under different rates for process-variation

(σproc’s) applied to perturbing the W/L ratio of each transistor in each cell’s geometry. The

X-axis and Y-axis denote σproc and SER, respectively, where FIT (Failure-In-Time) is de-

fined by the number of failures per 109 hours. Nominal settings without variation are used

in static SPICE simulation, whereas Monte-Carlo SPICE simulations are used to approxi-

mate process-variation impacts under different σproc’s.

As a result, SER from static SPICE simulation is underestimated. Considering dif-

ferent σproc’s in Monte-Carlo SPICE simulation, all SERs are higher than that from static

SPICE simulation. As process variations deteriorate, the discrepancy between Monte-Carlo

and static SERs further enlarges. In Figure 1.1, (SERmonte− SERstatic)/SERstatic under

σproc = 1%, 2%, 5% and 10% are 6%, 19%, 46% and 117%, respectively. Such result

suggests that the impact of process variations to SER analysis may no longer be ignored in

scaled CMOS designs.

For considering process variation, authors in [24] propose an accurate statistical soft

error rate (SSER) framework based on learning-based statistical models for transient-fault

3



(a) (b)

Figure 1.2: (a) Soft error rate comparison between two different analyses with different

latching window(b) Soft error rate under different levels of charge collection

distributions. Using statistical tables for cell models in Monte-Carlo simulation, another

SSER approach is also investigated in [15], which is more accurate but runs slower than

the previous work. However, both works [24] [15] simplify their SER analysis by only

injecting only four levels of electrical charges, and therefore motivate us to pose a funda-

mental but important question: Are four levels of electrical charges enough to converge

SER computation and completely explain the process-variation impact?

Figure 1.2(a) illustrates the comparison of SERs from two SPICE simulations using

different level of charges onto a sample circuit c17. The line with square symbol and

the line with circle symbol represent the soft error rates under a 5% process variation by

injecting only four levels of charges and full-spectrum charges, respectively. Actually,

effective charge collection for SER analysis ranges from 35fC to 132fC, and SER difference

from statistical analysis (with only four levels of charges) can go up to 69% (latching

window = 150 ps). Therefore, one more question comes up: If four levels of charges are

not sufficient to explain the behavior of SER, how many levels of charges is sufficient?

Figure 1.2(b) suggests the answer. Since the SER is increasing significantly until full-

spectrum charges are considered, all of charges should be included. The cause of the SER

difference can be further explained by an example shown in Figure 1.3 where the upper

and lower parts of Figure 1.3 indicate the distribution of SSER induced by only four levels

of charges and SSER induced by full levels of charges, respectively. X-axis and Y-axis

4
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Figure 1.3: SER distributions induced by four levels of charges and by full-spectrum

charges

denote the pulse width of the transient faults and effective frequency for a particle hit of

charges. For SSER induced by four-level charges, only four transient-fault (TF) distribu-

tions are generated and contribute the final soft error rate. In other words, the soft errors

will be concentrated in four blocks and may result in a misleading SER. For example, as

the latching-window boundary of one flip-flop is far away from the first TF distribution,

all soft errors induced by this TF distribution are masked due to timing masking as illus-

trated in Figure 1.3. But, in fact, only a part of them should be masked. Accordingly, SER

analysis is no longer valid with only four levels of collection charges and instead should be

comprehensively assessed by full-spectrum charge collection.

In this thesis, we present an efficient-and-accurate framework which integrates the im-

pact of process variation and considers full levels of charges during SER analysis for com-

binational circuits. In addition, a bounding technique is proposed for accelerating SER

computation and determines the necessary set of charges to apply statistical analysis. Ad-

vanced learning technique (i.e. support vector machine (SVM)) is also used to derive qual-

ity cell models for fast and accurate SER computation. The rest of the thesis is organized as

follows: Chapter 2 describes the background of the generation and propagation of transient

5



faults and two related phenomena. Chapter 3 describes the formulation of the statistical

soft error rate (SSER) problem. Chapter 4 presents the an intensified-learning framework

including the automatic bounding-charge selection. Chapter 5 shows experimental results

while Chapter 6 draws the conclusion.

6



Chapter 2

Background
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In this chapter, the background of soft errors will be reviewed. First, radiation-induced

transient faults and three masking mechanisms will be described in section 2.1 and 2.2,

respectively. Then, two particular natures beyond deep sub-micron technologies will be

illustrated in section 2.3 and 2.4, respectively. One makes the faults more unpredictable

whereas the other causes the discrepancy in Figure 1.1. In these two sections, discussions

are associated with the three masking mechanisms.

2.1 Radiation-induced Current Pulses

When a neutron particle strikes the silicon bulk of a device, it leads to the generation

of electron-hole pairs. These freeing electron-hole pairs will result in a transient fault and

may cause the operational failures. However, not each energy levels of particle strikes can

result in a soft error. The transient fault induced by a low energy-level particle strike does

not cause the soft error due to its output voltage changes less than Vdd/2. High energy-level

particle strikes can also be ignored because the lower flux of neutrons (10X less than low

energy-level particle strikes) [12].

Additionally, the transient fault can be modeled as a current source generated by the

charge of particle. In [10], the author proposed a single exponential current source model

to represent the transient current induced by a neutron particle as follows:

I(t) =
Q

τ

√
t

τ
e−t/τ (2.1)

,where Q is the amount of injected charge deposition, τ is charge collection time constant.

Based on the (2.1), the deposited charge of neutron particle range from 35fC to 132fC

is found by our extensive SPICE simulation. Note that, the energy levels of neutron particle

were mapped into deposited charge using JEDEC89 Standard [12].

2.2 Three Masking Mechanisms

The transient fault propagating through a path to the flip-flop is affected by three mask-

ing mechanisms which collectively prevent the circuit to have a failure due to such transient

glitches.

8
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Figure 2.1: Three masking mechanisms for soft errors

Three masking mechanisms shown in Figure 2.1 from [28] are indicated as the key fac-

tors to determine if one transient fault can be latched by the memory elements to become

a soft error. Logical masking occurs when the input value of one gate blocks the propa-

gation of the transient fault under a specific input pattern. One transient fault attenuated

by electrical masking may disappear due to the electrical properties of the gates. Tim-

ing masking represents the situation that the transient fault propagates to the input of one

memory element outside the window of its clock transition.

2.3 To Be Electrically Better Or Worse?

The first observation is conducted by running static SPICE simulation on a path con-

sisting of various gates (including 2 AND, 2 OR and 4 NOT gates) in the 45nm PTM

technology. As shown in Figure 2.2, the radiation-induced particle first strikes on the out-

put of the first NOT gate with a charge of 32fC, and then propagates the transient fault

along other gates with all side-inputs set properly. The pulse widths (pwi’s) in voltage of

the transient fault starting at the struck node and after passing gates along the path in order

are 171ps, 183ps, 182ps, 177ps, 178ps, 169ps, 166ps and 173ps, respectively. Each pwi and

pwi+1 can be compared to show the changes of voltage pulse widths during propagation in

Figure 2.2.

As we can see, the voltage pulse widths of such transient fault go larger through gate

#1, #4, and #7 while gate #2, #3, #5 and #6 attenuate such transient fault. Further-

more, gates of the same type behave differently when receiving different voltage pulses.

To take AND-type gates for example, the output pw1 is larger than the input pw0 on gate
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Figure 2.2: Static SPICE simulation of a path in the 45nm technology

#1 while the contrary situation (pw3 < pw2) occurs on gate #3. This result suggests that

the voltage pulse width of a transient fault is not always diminishing, which contradicts to

some assumptions made in traditional static analysis. A similar phenomenon called Propa-

gation Induced Pulse Broadening (PIPB) was discovered in [9] and states that the voltage

pulse width of a transient fault widens as it propagates along the long inverter chain.

2.4 When Error-Latching Probability Meets Process Vari-

ations

The second observation is dedicated to the timing-masking effect under process varia-

tions. In [16] [33], the error-latching probability (PL) for one flip-flop is defined as

PL =
pw − w
tclk

(2.2)

where pw, w and tclk denote the pulse width of the arrival transient fault, the latching win-

dow of the flip-flop, and the clock period, respectively. However, process variations make

pw and w become random variables. Therefore, we need to redefine Equation (2.2) as the

following.

Definition (Perr−latch, error-latching probability)

Assume that the pulse width of one arrival transient fault and the latching window (tsetup+

thold) of the flip-flop are random variables and denoted as pw and w, respectively. Let

x = pw − w be another random variable and µx and σx be its mean and variance. The

10



10060 140

0
.0
2

0
.0
6

10060 140

0
.0
2

0
.0
6

10060 140
0
.0
2

0
.0
6

     x>0 = 1

     x>0 = 13

     x>0 = 26

p
ro
b
a
b
ili
ty
 (
%
)

P(pw>w) 

=17%

10060 140

0
.0
2

0
.0
6

10060 140

0
.0
2

0
.0
6

10060 140

0
.0
2

0
.0
6

P(pw>w) 

=40%

P(pw>w) 

=49%

p
ro
b
a
b
ili
ty
 (
%
)

voltage pulse width (ps)

proc = 1%

proc = 5%

proc = 10%

(a) (b)

voltage pulse width (ps)

Figure 2.3: Process variations vs. error-latching probabilities

latch probability is defined as:

Perr−latch(pw,w) =
1

tclk

∫ µx+3σx

0

x× P(x > 0)× dx (2.3)

With the above definition, we further illustrate the impact of process variations on SER

analysis. Figure 2.3(a) shows three transient-fault distributions with the same pulse-width

mean (95ps) under different σproc’s: 1%, 5% and 10%. A fixed latching window w = 100ps

is assumed as indicated by the solid lines. According to Equation (2.2), static analysis result

in zero SER under all σproc’s because 95− 100 < 0.

From a statistical perspective, however, these transient faults all yield positive and dif-

ferent SERs. It is illustrated using two terms: P(x > 0) and x in Equation (2.3). First,

in Figure 2.3(a), the cumulative probabilities for pw > w under three different σproc’s are

17%, 40%, and 49%, respectively. The largest σproc corresponds to the largest P(x > 0)
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term. Second, in Figure 2.3(b), we compute the pulse-width averages for the portion

x = pw − w > 0 and they are 1, 13 and 26, respectively. Again, the largest σproc cor-

responds to the largest x term.

These two effects jointly suggest that a larger σproc lead to a larger Perr−latch, which has

been neglected in traditional static analysis, and also explained the increasing discrepancy

shown in Figure 1.1. In summary, process variations make traditional static analysis no

longer effective and should be considered in accurate SER estimation for scaled CMOS

designs.
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Chapter 3

Problem Formulation of Statistical Soft

Error Rate (SSER)
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In this chapter, we formulate the statistical soft error rate (SSER) problem for general

cell-based circuit designs. Figure 3.1 illustrates a sample circuit subject to process varia-

tions, where the geometries of each cell vary [22]. Once a high-energy particle strikes the

diffusion region of these varying-size cells, according to Figure 1.1, 2.2 and 2.3, the electri-

cal performances of the resulted transient faults also vary a lot. Accordingly, to accurately

analyze the soft error rate (SER) of a circuit, we need to integrate both process-variation

impacts and three masking effects simultaneously, which bring about the statistical soft

error rate (SSER) problem.

The SSER problem is composed of three blocks: (1) electrical probability computa-

tion, (2) propagation probability computation and (3) overall SER estimation. A bottom-up

mathematical explanation of the SSER problem will start reversely from overall SER esti-

mation to electrical probability computation.

3.1 Overall SER Estimation

The overall SER for the circuit under test (CUT) can be computed by summing up the

SERs originated from each individual struck node in the circuit. That is,

SERCUT =

Nnode∑
i=0

SERi (3.1)

where Nnode denotes the total number of possible nodes to be struck by radiation-induced

particles in the CUT and SERi denotes the SERs from node i, respectively.

Each SERi can be further formulated by integrating over the range q = 0 to Qmax (the

maximum collection charge from the environment) the products of particle-hit rate and the

total number of soft errors that q can be induced from node i. Therefore,

SERi =

∫ Qmax

q=0

(Ri(q)× Fsoft−err(i, q))dq (3.2)

In a circuit, Fsoft−err(i, q) represents the total number of expected soft errors from each

flip-flop that a transient fault from node i can propagate to. Ri(q) represents the effective

frequency for a particle hit of charge q at node i in unit time according to [28] [35]. That
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Figure 3.1: An illustrative example for the SSER problem
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is,

Ri(q) = F ×K × Ai ×
1

Qs

e
−q
Qs (3.3)

where F , K, Ai and Qs denote the neutron flux (> 10MeV), a technology-independent

fitting parameter, the susceptible area of node i in cm2, and the charge collection slope,

respectively.

3.2 Logical Probability Computation

Fsoft−err(i, q) depends on all three masking effects and can be decomposed into

Fsoft−err(i, q) =
Nff∑
j=0

Plogic(i, j)× Pelec(i, j, q) (3.4)

whereNff denotes the total number of flip-flops in the circuit under test. Plogic(i, j) denotes

the overall logical probability of successfully generating a transient fault and propagating

it through all gates along one path from node i to flip-flop j. It can be computed by multi-

plying the signal probabilities for specific values on target gates as follows.

Plogic(i, j) = Psig(i = 0)×
∏
k∈i j

Pside(k) (3.5)

where k denotes one gate along the target path (i  j) starting from node i and ending

at flip-flop j, Psig denotes the signal probability for the designated logic value, and Pside
denotes the signal probability for the non-controlling values (i.e. 1 for AND gates and 0

for OR gates) on all side inputs along such target path.

Figure 3.2 illustrates an example where a particle striking net a results in a transient

fault that propagates through net c and net e. Suppose that the signal probability of being 1

and 0 on one arbitrary net i is Pi and (1-Pi), respectively. In order to propagate the transient

fault from a towards e successfully, net a needs to be 0 while net b, the side input of a, and

net d, the side input of c, need to be non-controlling, simultaneously. Therefore, according
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Figure 3.2: Logical probability computation for one sample path

to Equation (3.5),

Plogic(a, e) = Psig(a = 0)× Pside(a)× Pside(c)

= Psig(a = 0)× Psig(b = 1)× Psig(d = 0)

= (1− Pa)× Pb × (1− Pd)

3.3 Electrical Probability Computation

Electrical probability Pelec(i, j, q) comprises the electrical- and timing-masking effects

and can be further defined as

Pelec(i, j, q) = Perr−latch(pwj, wj)

= Perr−latch(λelec−mask(i, j, q), wj) (3.6)

While Perr−latch accounts for the timing-making effect as defined in Equation (2.3),

λelec−mask accounts for the electrical-masking effect with the following definition.

Definition (λelec−mask, electrical masking function)

Given the node i where the particle strikes to cause a transient fault and flip-flop j is the

destination that the transient fault finally ends at, assume that the transient fault propagates

along one path (i  j) through v0, v1, ..., vm, vm+1 where v0 and vm+1 denote node i and

17



flip-flop j, respectively. Then the electrical-masking function

λelec−mask(i, j, q) =

δprop(· · · (δprop(δprop︸ ︷︷ ︸
m times

(pw0, 1), 2), · · · ),m) (3.7)

where pw0 = δstrike(q, i) and pwk = δprop(pwk−1, k) ∀k ∈ [1,m]

In the above definition, two undefined functions, δstrike and δprop, respectively, represent

the first-strike function and the electrical propagation function of transient-fault distribu-

tions. δstrike(q, i) is invoked one time and maps the deposited charge q at node i into a

voltage pulse width pw0. δprop(pwk−1, k) is invoked m times and iteratively computes the

pulse width pwk after the input pulse width pwk−1 propagates through the k-th cell from

node i. These two types of functions are also the most critical components to the success of

a statistical SER analysis framework due to the difficulty from integrating process-variation

impacts.

The theoretical SSER in Equation (3.5) and Equation (3.7) is expressed from a path

perspective. However, in reality, since both the signal probabilities and transient-pulse

changes through a cell are independent to each other, SSER is processed stage by stage and

can be implemented in a block-based fashion. Next, Chapter 4 follows such notions and

presents the proposed intensified-learning framework for computing SSERs.
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Chapter 4

A Statistical SER Analysis Framework
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The table-lookup Monte-Carlo framework is inherently limited in execution efficiency

because it computes δstrike and δprop indirectly using extensive samplings of Monte-Carlo

runs. In this chapter, we propose an alternative learning-based framework directly on the

basis of support vector regression (SVR) and is found more efficient and accurate than the

previous method.

4.1 A Baseline Learning Framework

Figure 4.1 shows our SVR-learning framework with respective learning models (δstrike
and δprop).

By definition, δstrike and δprop are functions of pw that is a random variable. From

Figure 2.2 and Figure 2.3, we assume pw follows the normal distribution, which can be

written as:

pw ∼ N(µpw, σpw) (4.1)

Therefore, we can decompose δstrike and δprop into four models: δµstrike, δ
σ
strike, δ

µ
prop, and

δσprop where each can be defined as:

δ : ~x 7→ y (4.2)

where ~x denotes a vector of input variables and y is called the model’s label or target value.

Integrating the impact of process variations, four models are traditionally built using

look-up tables. However, look-up tables have two limitations on applicability: (1) inac-

curate interpolation and (2) coarse model-size control. First, look-up tables can take only

finite table indices and must use interpolation. However, interpolation functions are of-

ten not accurate enough or difficult to obtain, especially as the table dimensionality grows.

Second, a look-up table stores data samples in a grid-like fashion, where the table will grow

prohibitively large for a fine resolution. Meanwhile, the information richness often differs

across different parts of a table. For example, we observe that pulse widths generated by

strong charges behave much simpler than weaker charges do. Naturally, simple behaviors

can be encoded with fewer data points in the model, whereas complicated behaviors need

to be encoded with more.
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In statistical learning theory, such models can be built using regression, which can be

roughly divided into linear [32] and non-linear [3] methods. Among them, Support Vector

Regression (SVR) [31] [29] combines linear methods’ efficiency and non-linear methods’

descriptive power. It has two advantages over a look-up table: (1) It gives an explicit

function and does not need interpolation. (2) It filters out unnecessary sample points and

yields compact models.

In the following, we propose a methodology which comprises training sample prepara-

tion, SVR model training, parameter selection, and data reconstruction.

4.1.1 Training Sample Preparation

SVR models differ from lookup tables on the way we prepare training samples for

them. For look-up tables, one starts from selecting a finite set of points along each table

dimension. On one hand, they should be chosen economically; on the other hand, it is

difficult to cover all corner cases with only limited numbers of points. For SVR models,

we do not need to select these points. Instead, we provide a large set of training samples,

and let the SVR algorithm do the selection task.

A training sample set S of m samples is defined as:

S ⊂ ( ~X × Y )m = {(~x1, y1), . . . , (~xm, ym)} (4.3)

where m pairs of input variables ~xi’s and target values yi’s are obtained from massive

Monte-Carlo SPICE simulation. For δµstrike, δ
σ
strike, we use input variables including charge

strength, driving gate, input pattern, and output loading; for δµprop, δ
σ
prop, we use input vari-

ables including input pattern, pin index, driving gate, input pulse-width distribution (µi−1pw

and σi−1pw ), propagation depth, and output loading.

In our training samples, we denote output loading using combinations of input pins of

arbitrary cells. Doing so preserves additional information of the output loading status and

saves the labor (and risk) of characterizing the capacity of each cell’s input pin. Although

the number of such combinations can easily explode, there are usually only a limited num-

ber of representatives, which are automatically identified by SVR. Furthermore, from a

learning perspective, since both peak voltage and pulse width are the responses of current
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formulated in Equation (2.1), they are highly correlated. Empirically, using pulse-width

information solely is sufficient to yield satisfactory SSERs and thus in our framework, we

do not build models for peak voltages.

4.1.2 Support Vector Machine and Its Extension to Regression

Support vector machine (SVM) is one of the most widely used algorithms for learning

problems [31] and can be summarized with the following characteristics:

• SVM is an efficient algorithm and finds a global minimum (or maximum) for a con-

vex optimization problem formulated from the learning problem.

• SVM avoids the curse of dimensionality by capacity control and works well with

high-dimensional data.

• SVM automatically finds the decision boundary for a collection of samples using a

small subset where each sample is called a support vector.

The basic idea behind SVM is to find a function as the decision boundary with minimal

errors and a maximal margin to separate data in multi-dimensional space. Given a training

set S, with ~xi ∈ Rn, yi ∈ R, the SVM learning problem is to find a function f (first assume

y = f(~x) = 〈~w·~x〉+b) that models S properly. Accordingly, the learning task is formulated

into a constrained optimization problem as follows,

minimize ‖~w‖2 + C(
∑m

i=1 ξi)
k

subject to

yi(〈~w · ~xi〉+ b) ≥ 1− ξi, i = 1, . . . ,m,

ξi ≥ 0, i = 1, . . . ,m,

(4.4)

ξi is a slack variable providing an estimate of the error induced by the current decision

boundary; C and k are user-specified parameters indicating the penalty of function errors

in control. Later, the Lagrange multiplier method can efficiently solve such a constrained

optimization problem [31] and finds ~w and b for f(~x) = 〈~w ·~x〉+ b with a maximal margin

2/|~w| between 〈~w · ~x〉 + b = +1 and 〈~w · ~x〉 + b = −1. Figure 4.2 and 4.3 shows an
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Figure 4.2: Many possible decision boundaries for a two-class data

example for a two-dimensional data set containing samples of two different classes. Figure

4.2 illustrates many possible decision boundaries to separate the data set whereas Figure

4.3 shows the one with the maximal margin and the minimal errors that the user can tolerate

among all boundaries.

One SVM algorithm can be applied to regression problems with three steps: (1) pri-

mal form optimization, (2) dual form expansion, and (3) kernel function substitution. The

primal form presents the nature of the regression whereas the dual form provides the key

to the later non-linear extension using kernel functions. In our framework, ε-SVR [31] is

implemented to realize a family of highly non-linear regression models f(~x) : ~x 7→ y for

δµstrike, δ
σ
strike, δ

µ
prop, and δσprop for pulse-width mean and sigma of first-strike functions and

pulse-width mean and sigma of propagation functions, respectively.

Primal Form Optimization

The regression’s goal is to derive a function that minimizes slacks and meanwhile to

make f as smooth as possible. The corresponding constrained optimization problem for
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Figure 4.3: One with the maximal margin and the minimal errors that the user can tolerate

among all boundaries

ε-SVR is modified as follows,

minimize ‖~w‖2 + C
∑m

i=1(ξ
2
i + ξ̂i

2
)

subject to


(〈~w · ~xi〉+ b)− yi ≤ ε+ ξi, i = 1, . . . ,m,

yi − (〈~w · ~xi〉+ b) ≤ ε+ ξ̂i, i = 1, . . . ,m,

ξi, ξ̂i ≥ 0, i = 1, . . . ,m,

(4.5)

where the two slack variables ξi and ξ̂i represent variations of the error exceeding and

below the target value by more than ε, respectively. The parameter C determines the trade-

off between the smoothness of f(~xi) and the variation amount of errors (ξi and ξ̂i) to be

tolerated. Equation (4.5) is termed the regression’s primal form.

Dual Form Expansion

Instead of finding ~w directly, the Lagrange multiplier method transforms the optimiza-

tion problem from the primal form to its dual form and derives f as,

f(~x) =
m∑
i=1

(αi − α∗i )〈~x · ~xi〉+ b (4.6)

where αi, α∗i are Lagrange multipliers and b is a function of ε, C, α’s and α∗’s [29].
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Several findings can be inferred from Equation (4.6). First, the only inner product 〈~x·~xi〉
implies that only an unseen sample ~x and a training sample ~xi, are sufficient to predict a

new unseen target value y. Second, only training samples ~xi’s that correspond to nonzero

(αi−α∗i )’s contribute to the prediction outcome. All other samples are unnecessary for the

model and are filtered out during the training process. Third, the inner product operation is

a form of linear combination. As a result, the predicted target values of such a model are

all linear combinations of training samples and thus f is a linear model. In practice, SVR

often keeps only few samples (i.e., ~xi’s with nonzero coefficients) in its models and thus

benefits from both smaller model size and faster prediction efficiency.

Kernel Function Substitution

According to the statistical learning theory [31], SVM remains valid if the inner product

operation 〈~u · ~v〉 in Equation (4.6) is substituted by a kernel function K(~u,~v) [7]. That is,

f(~x) =
m∑
i=1

(αi − α∗i )K(~x, ~xi) + b (4.7)

Radial Basis Function (RBF) is one kernel function used in our framework and can be

formulated as K(~u,~v) = e−γ·‖~u−~v‖
2 where γ is a controlling parameter. Unlike the inner

product operation, the RBF kernel is highly non-linear. This enables the SVM algorithm to

produce families of non-linear models that are suitable to capture complicated behaviors,

like that of generation and propagation of pulse-width distributions of transient faults.

4.2 Intensified Learning with Data Reconstruction

Although the Support-vector-regression learning provides accurate and efficient models

to estimate the SER, there still remains two problems: (1) the training time for preparation

data and (2) parameter search for high quality models. To resolve these two problems,

traditional brute-force search cannot be effective and thus in our framework, a new meta-

heuristic, particle swarm optimization (PSO), is employed to find the optimized training

parameters.
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Figure 4.4: Quality comparison of 200 models using different parameter combinations

4.2.1 Parameter Search

Now we face the issue of selecting parameters (ε, C, γ) that have an unbounded number

of combinations and is critical to achieving fine model quality. Figure 4.4 illustrate 200

models built from the same training sample set; each point represents one model using a

distinct parameter combination. Their quality is measured along two coordinates: Y-axis

denotes the error rate for prediction; X-axis denotes the sample compression ratio, the ratio

between the number of samples kept by the model and the original size of S. Figure 4.4

shows that while it is possible to obtain an ideal model that is small and accurate (indicated

by the circle), it is also possible to obtain a large and inaccurate model (indicated by the

square). The differences are 20X in both axes, and there is so far no deterministic method

to find the best combination.

In our framework, a meta-heuristic, particle swarm optimization (PSO), is employed to

find the optimized training parameters. PSO is one of evolutionary computation techniques

developed by James Kennedy and Russell Eberhart in 1995 [13]. PSO adopts a strategy to

search the potential solution based on the behavior of particle swarm which is inspired by

swarm intelligent of insects, such as bird flock, fish school, etc. Initially, PSO generates a
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set of random particles in the multidimensional search space. Each particle is represented

by its position and velocity, where the position indicates a possible solution of the opti-

mization problem and the velocity is used to determine the searching direction. During

each iteration, particles update their positions by tracking the best positions of all particles

(Gbest) and their own best positions (Pbest). The velocity and position of particle i is

manipulated by following equation:

V k+1
i = wV k

i + c1r1(Pbest−Xk
i ) + c2r2(Gbest−Xk

i )

Xk+1
i = Xk

i + V k+1
i (4.8)

,where k is the iteration index, w is the inertia weight, c1 and c2 are the learning factor, and

r1 and r2 are random numbers among range [0,1].

The advantages of PSO are that it is easy to implement, requires only a few setting

parameters to be adjusted and is capable of avoiding trapping at a local optimum solution

more easily when compared with other evolutionary algorithms, like genetic algorithm

(GA).

Figure 4.5 illustrates our intensified SVM-learning framework with the incorporating

of PSO. First, PSO generates a set of training parameters for SVM to train the behavior

models. After training models, the SVM reports the model accuracy to PSO as its fitness

function. Based on the model accuracy, PSO will breed a new generation and generate

better parameters for training again. This process iterates for a designated number of gen-

erations or until achieving stopping criteria.
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Figure 4.6: An example for data construction

4.2.2 Data Reconstruction

Although the support-vector-regression (SVR) learning provides accurate and efficient

models to estimate the SER, there still remains one more problem: the training time for

data preparation. A technique for data reconstruction is proposed to reduce the size of

training data and then enhances the training time and the compression ratio of models. Our

data reconstruction calculates the average value of training data in a user-specified range as

illustrated in Figure 4.6. The red points represent the raw data generated by SPICE simula-

tion and the average values of each block are calculated as green points as shown in Figure

4.6. After reconstructing training data, the size of training data is reduced to the number

of blocks. Combining the intensified learning with data reconstruction, our framework can

systematically finds a set of high quality parameter to build accuracy models. Furthermore,

the training time is also reduced from the order of months to the order of hours.

4.3 Automatic Bounding-Charge Selection

However, Computing SER with full-spectrum charge collection is still challenging even

after applying SVM. Hence, a technique of automatic bounding-charge selection is pro-

posed to determine the charges that can be simply applied the traditional static analysis to
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save time from statistical SER computation. In this section, a phenomenon on the variation

of pulse width induced by different electrical charges is first reported. Then, the algorithm

for automatic bounding-charge selection is described.

4.3.1 Variation of Pulse Width Induced by Different Charges

Figure 4.7 shows the mean, sigma, lower bound (mean-3*sigma) and upper bound

(mean+3*sigma) of pulse widths which are induced by different electrical charges. Such

results show that the mean of pulse widths increases rapidly as the deposited charge be-

comes larger. Meanwhile, a larger deposited charge also leads to a smaller sigma of its

pulse width. Hence, bigger lower and upper bounds of the pulse widths can be observed

along with the increasing deposited charge.

sigma

Figure 4.7: The mean, sigma, lower bound (mean-3*sigma) and upper bound

(mean+3*sigma) of pulse widths which are induced by different electrical charges.

According to this phenomenon, an approach of bounding-charge selection is proposed

to accelerate the overall SSER estimation. For computing overall SSER, we only need to

consider the distribution of a pulse width which overlaps the latching window as illustrated
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Figure 4.8: Different pulse-width distribution versus varying latching-window size

in Figure 4.8. The pulse-width distributions in blue and in red will be masked and result

in SER, respectively. In other words, as the lower bound of a pulse width is bigger than

the latching-window size, SER estimation for such distribution can be replaced by the

corresponding static results. On the contrary, SERs for the distribution in green induced by

a smaller charge will be masked completely and can be ignored when its upper bound is

smaller than the latching-window size.
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4.3.2 Automatic Bounding-charge Selection Algorithm

Figure 4.9 shows our algorithm for bounding-charge selection. First, a deposited charge

q is picked to strike a gate in the circuit and then the algorithm computes the upper and

lower bound of each latched pulses. If the upper bound of the pulse is smaller than the

latching-window size, then the minimum charge (Qmin) is obtained. On the other hand, the

maximum charge (Qmax) can be decided when the lower bound of the pulse width is bigger

than the latching-window size. As a result, we only need to calculate the range of charges

(Qmin, Qmax) to derive SERs for a gate in the circuit.

While Qmin and Qmax are decided

1)   Pick a charge q

2)   Obtain the pulses which are latched in FFs

3)   MaxUpperBound = max(latched pulses)

4)   MinLowerBound = max(latched pulses)

5)   If MaxUpperBound < latching window then

6)   If MinLowerBound > latching window then

    Qmin = q;

    Qmax = q;

End

Figure 4.9: Algorithm for bounding-charge selection
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Chapter 5

Experimental Results

In this chapter, the accuracy of statistical cell models from the intensified learning with

data reconstruction is first verified. Then, the SSER obtained by Monte-Carlo SPICE simu-

lation is compared on four sample circuits with SSER obtained by our proposed framework.

Finally, SSERs for other benchmark circuits are evaluated based on our approach. The pro-

posed framework is implemented in C++ and run on a Linux machine with a Pentium Core

Duo (2.4GHz) processor and 4GB RAM. The technology used is 45nm, Predictive Tech-

nology Model (PTM) [21] and the neuron flux rate at sea-level is assumed 56.5m−2s−1. In

addition, the size of latching window is set to be 120ps.

Table 5.1: Model quality w.r.t. model type

Error Rate (%)

Cell µfirst σfirst µprop σprop

INV 0.38% 4.45% 1.66% 2.42%

AND 0.39% 3.91% 1.09% 2.27%

OR 0.44% 3.95% 1.51% 2.05%
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Figure 5.1: Three small circuits in our experiment

5.1 Model Accuracy

Table 5.1 shows the accuracy of built models including three types of cells and full

levels of charge collection. From Table 5.1 we can find that the error rates of all models

are less than 4.5%. Especially, error rates of mean values for the generated models are less

than 0.45%. Such results demonstrate the effectiveness of the intensified learning and data

reconstruction which collectively provide quality models for later SSER estimation.

Second, SSERs for c17 from ISCAS’85 and the other three sample circuits as shown

in Figure 5.1 are derived from Monte-Carlo SPICE simulation to validate the accuracy and

efficacy of our method. Considering the extremely long runtime for Monte-Carlo SPICE

simulation, these four small-size circuits can only be affordable to compare SSERs on our

machine. For example, the runtime of Monte-Carlo SPICE simulation for c17 with only 7
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Figure 5.2: Soft error rate comparison between SPICE simulation and the proposed ap-

proach.

gates, 12 vulnerable nodes and 5 inputs takes more than three days.

Figure 5.2 compares the SSER results between SPICE simulation and our approach on

four benchmark circuits. Besides, the SSER induced by only four levels of charges is also

shown. Based on the results, two observations can be concluded: (1) The difference be-

tween SSER induced by four levels of charges and SSER induced by full-spectrum charges

on t4, t6, t18 and c17 are 36.8%, 27.5%, 22%, and 23.9%, respectively. That manifests

that SSER evaluated by four levels of charges is underestimated and not accurate enough.

(2) The error rates between SPICE simulation and our proposed approach on t4, t6, t18

and c17 are 1.0%, 0.7%, 0.9%, and 0.5%, respectively. Such result represents that the our

approach can yield accurate SSER with the maximum error rate as 1.0% and the average

error rate as 0.8% when compared to Monte-Carlo SPICE simulation.

5.2 SER Measurement

Finally, we also apply the proposed framework to all ISCAS’85 circuits and a series

of multipliers. The corresponding SSERs are shown in Table 5.2. Table 5.2 also includes

information about the number of nodes (Column Nnode), number of primary outputs (Col-
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umn Npo), the selected charges range (Column Qrange), runtime using only Qrange (Column

Trange), runtime using full-spectrum charges (Column Tall), and runtime speedup between

Trange and Tall (Column Speedup). Compared with the Monte-Carlo SPICE simulation,

runtime of t4, t6, t18 and c17 are less than 0.1 seconds in our framework, where the

speedup is at the order of 107. Moreover, from Table 5.2, the levels of used charges are

reduced from 98 to 10 and thus SSER estimation is accelerated at least 17.3X due to the

automatic bounding-charge selection.
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Table 5.2: Experimental results of each benchmarks

Circuit Nnode Npo SER (FIT) Qrange (fC) Trange (s) Tall (s) Speed (X)

t4 4 1 4.54E-05 (35,39) 0.002 0.06 30

t6 6 2 6.84E-05 (35,39) 0.004 0.1 25

t18 12 3 1.06E-04 (35,39) 0.012 0.3 25

c17 12 3 1.05E-04 (35,40) 0.016 0.4 25

c432 233 7 1.72E-03 (35,41) 5.6 113.9 20.3

c499 638 32 1.77E-03 (35,42) 30.1 692.3 23.0

c880 443 26 1.93E-03 (35,42) 4.3 138.0 32.1

c1355 629 32 2.24E-03 (35,42) 29.7 779.1 26.2

c1908 425 25 1.78E-03 (35,41) 15.6 307.2 19.7

c2670 841 157 3.95E-03 (35,42) 8.4 193.2 23.0

c3540 901 22 4.10E-03 (35,41) 35.5 753.7 21.2

c5315 1806 123 1.23E-02 (35,41) 30.6 628.0 20.5

c6288 2788 32 5.18E-03 (35,42) 628.3 11778.0 18.7

c7552 2114 126 5.92E-03 (35,44) 53.1 1041.1 19.6

m4 158 8 1.48E-03 (35,40) 2.0 39.2 19.6

m8 728 16 3.80E-03 (35,40) 33.3 699.2 21.0

m16 3156 32 7.92E-03 (35,42) 572.0 11656.4 20.4

m24 7234 48 1.21E-02 (35,42) 3599.3 66330.9 18.4

m32 13017 64 1.64E-02 (35,42) 9049.1 156606.9 17.3
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Chapter 6

Conclusion
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For accurate statistical soft error rate (SSER) analysis, full-spectrum charge collection

should be considered instead of using four levels of charges only. In this thesis, we propose

an accurate and efficient learning-based framework while considering full levels of charges

to estimate SSER. High quality models (only 0.8% error) are built by the intensified learn-

ing and data reconstruction technique. Furthermore, an automatic bounding-charge selec-

tion is integrated into our framework and filters out charges which do not need statistical

analysis to enable an average speedup of 17.3X on experimental circuits.

Statistical soft error rate (SSER) is an emerging topic. As the IC technology keeps

evolving beyond deep sub-micron, we envision SSER analysis to become more critical for

reliable scaled designs. A few future directions of SSER research include: (1) deriving

more accurate learning models for σpw, and (2) applying SSER results to statistical circuit

optimization.
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