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On the Performance of Rate 1/2 Convolutional 
Codes with QPSK on Rician Fading 

Channels 

Abstract-This paper is concerned with the bit error probability per- 
formance of rate lL! convolutional codes in conjunction with quaternary 
phase shift keying (QPSK) modulation and maximum likelihood Viterbi 
decoding on fully interleaved Rician fading channels. Applying the gen- 
erating function union bounding approach, an asymptotically tight ana- 
lytic upper bound on the bit error probability performance is developed 
under the assumption of using the Viterbi decoder with perfect fading 
amplitude measurement. Bit error probability performance of constraint 
length K = three to seven codes with QPSK is numerically evaluated us- 
ing the developed bound. Tightness of the bound is examined by means 
of computer simulation. The influence of perfect amplitude measure- 
ment on the performance of Viterbi decoder is also observed. Finally, 
performance comparison with rate 112 codes with binary phase shift 
keying (BPSK) is also provided. 

I. INTRODUCTION 

IGITAL COMMUNICATIONS over mobile channels of- D ten suffer from multipath effects, which result in sig- 
nal fading. Multipath fading plagues the propagation medium 
by imposing random amplitude and phase variations onto the 
transmitted waveform. For satellite-aided mobile communica- 
tions, the channels can be modeled, in most cases, as non- 
frequency selective Rician channels for which the fading am- 
plitude obeys a Rician distribution. It is known that this fad- 
ing degrades the performance of communication systems. The 
fade margin for uncoded binary phase shifted keying (BPSK) 
and quaternary phase shift keying (QPSK) systems on chan- 
nel impaired by Rician fading has been examined in [l] .  To 
combat Rician fading, convolutional codes with Viterbi de- 
coding and interleaving could be used. The performance of 
short constraint length convolutional codes in conjunction with 
BPSK modulation and various types of maximum likelihood 
(ML) Viterbi decoding on Rician channels has been studied in 
detail [2]-[5]. The studies indicate that, of the various types 
of Viterbi decoder, the one utilizing full channel state infor- 
mation, channel fading amplitude, and phase, contributes the 
best performance. 

With BPSK modulation, the code redundancy introduced 
by convolutional coding represents a bandwidth sacrifice in 
that the ratio of required bandwidth to information rate is in- 
creased. To avoid this sacrifice in bandwidth efficiency and 
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also provide effective error-control protection, convolutional 
codes with multilevel modulation could be used instead. Error 
performance of convolutional codes with M-ary PSK modula- 
tion and Viterbi decoding on RiciadRayleigh fading channels 
has been studied recently [6], [7]. An analytic upper bound on 
the bit error probability performance was developed and eval- 
uated along with the studies. Simulation results show that the 
developed bound is somewhat loose for rate 1/2 convolutional 
codes with QPSK modulation on the mentioned channels. 

In this paper, bit error probability performance of rate 1/2 
short constraint-length convolutional codes with QPSK modu- 
lation and ML Viterbi decoding on Rician fading channels will 
be examined further because: 1) these codes are the most pop- 
ular convolutional codes, and monolithic IC are commercially 
available for Viterbi decoders of constraint length K = six and 
seven codes; 2) rate 1/2 FEC codes with QPSK have been pro- 
posed for the second generation Inmarsat maritime satellite 
communication systems [8]. Our primary interest is in devel- 
oping a tight performance bound on the bit error probability of 
convolutional codes with QPSK and in the performance com- 
parison between convolutional codes with BPSK and QPSK. 
In Section 11, the system under consideration, including the 
channel, is described. In Section 111, applying the generation 
function union bounding approach, an analytic upper bound 
on the bit error probability performance is developed. For the 
convenience of derivation, we assume that the Viterbi decoder 
with perfect fading amplitude measurement is used. In Sec- 
tion IV, bit error probability performance of constraint length 
K = three to seven codes are numerically evaluated using the 
derived bound. Moreover, simulation results are provided for 
examining the tightness of the analytic bound. The influence of 
perfect fading amplitude measurement on the performance of 
Viterbi decoder is also observed. Finally, performance com- 
parison with rate 1/2 convolutional codes with BPSK is made 
in Section V. 

11. SYSTEM DESCRIPTION 

The block diagram of the system under consideration 
is shown in Fig. 1. The data bit U; is encoded into a 
dibit w; = (w;,, w;2) by a rate 1/2 convolutional encoder. 
The dibit is assigned to (using Gray mapping) a phase 
0; E (0 ,  a /2 ,  T, 3 ~ 1 2 )  which is corresponding to a signal 
point xi  = exp(j0;) on the normalized signal space. After 
fully interleaving, the sequencex = { x i }  is transformed into 
a time-domain waveform s ( t )  by the QPSK modulator. The 
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Fig. 1. Block diagram of the system under consideration. 

transmitted signal s ( t )  can be expressed as 

s ( t )  = Re {g(t)ej""}. (1) 

where WO is the carrier frequency, and g ( t )  is the complex 
envelope given by 

g ( t )  = d z C X i g o ( t  -iT,). (2) 
I 

Here X i  represents the interleaved version of x;, g o ( t )  is the 
complex envelope of the transmitted signal with duration T ,  
and unit energy, and E, represents signal energy per channel 
symbol. Since each data bit corresponds to a channel symbol, 
E, equals the signal energy per bit Eb. 

Passing through the Rician channel, transmitted signal s( t) 
is corrupted by multipath fading resultant from the receiv- 
ing of a stable specular (direct) component and a random 
diffuse (multipath) component. This fading, imposes random 
amplitude a( t )  and phase 4(t) onto s( t ) .  Besides fading, the 
transmitted signal is also corrupted by additive white Gaussian 
noise (AWGN) n ( t )  with double-sided power spectral density 
No/2.  The received signal r ( t )  hence can be described by 

r ( t )  = Re {a(t)ei'#@)g(t)ejwo'} + n( t )  (3) 

(4) 

ye'+ is the specular component and c ( t )  is the diffuse com- 
ponent. The specular component is a complex quantity whose 
amplitude y is a fixed deterministic quantity while the phase 
$ is uniformly distributed over [-a, a] .  The diffuse compo- 
nent can be modeled as individual quadrature components that 
are Gaussian with zero mean and common variance a2 .  The 
amplitude process a( t) then possesses the Rician distribution 

= Re {(yej+ + c(t))g(t)e'"'} + n(t) .  

where Io( . ) is the modified Bessel function of the first kind 
of order zero. We will assume that the fading varies slowly 

compared to the signaling rate so that the channel amplitude 
a ( t )  is constant during one signal interval of duration T,. 
Moreover, for the convenience of analysis in the next section, 
we impose the following normalization 

E[a2]  = y2 + 2a2 = 1 (6) 

so that the received energy per channel symbol is E, and 
represents the sum of the corresponding specular and diffuse 
energy. The Rice factor defined by { = y2/2a2 denotes the 
ratio of specular to diffuse energy. It is an important channel 
parameter in describing the channel. The distribution function 
for a( t )  can also be completely characterized in terms of { as 

f ( a >  = 2 a ( l +  Oexp {-(I + r)a2 - a)10(2a&F23) .  

(7) 
The distribution f ( a )  is sufficiently general, since as the pa- 
rameter [ approaches zero we have the Rayleigh channel, 
while if { approaches infinite the Rician channel reduces to 
the nonfading Gaussian channel (AWGN channel) with a = 1. 

The received signal is coherently demodulated by a soft de- 
cision, optimum demodulator under the assumption of perfect 
timing recovery and exact tracking of the carrier phase. The 
output of the deinterleaver, relevant to the transmitted x ; ,  is 
the normalized decision variable y ;  given by 

I 

y ;  = {: -six; + N ; .  

Here { N , }  is an independent identically distributed (iid) se- 
quence of complex Gaussian variates with zero mean and unit 
variance. {a;} is also an iid sequence of Rician variates with 
distribution specified by (5). The decision variable y ;  is sup- 
plied to the Viterbi decoder. In addition t o y  = { y i }  the 
Viterbi decoder with perfect amplitude measurement is also 
supplied with a = {a;}, the channel amplitude estimates, from 
a channel estimator. The Viterbi decoder performs ML decod- 
ing and recovers the transmitted data. 
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111. PERFORMANCE BOUND 
In determining the bit error probability performance bound 

of convolutional codes with Viterbi decoding, it is useful to 
recall the generating function union bounding approach [9]. 
Therefore, the pairwise error probability between the trans- 
mitted sequence and the estimated sequence must be first de- 
veloped. Moreover, for the convenience of deriving the ana- 
lytic expression of the pairwise error probability, we assume 
that the Viterbi decoder with perfect amplitude measurement 
is used. For such an ML Viterbi decoder, the decision rule be- 
tween possible transmitted sequencesx = {x;} andx’ = { x l }  
given the received sequencesy = { y ; }  and a = {a ; }  is (de- 
rived in Appendix I) 

2 = X I ,  i f C n ; y ; ( x ;  -xi>* 
i 

+a;yf(xi -xi)  < O (9) 

where 2 denotes the estimated sequence of the decoder and 
the asterisk denotes the operation of complex conjugate. 

We may assume, without lose of generality, that the se- 
quence x = {x;}, with x; = 1, relevant to the all-zero mes- 
sage is the transmitted sequence. For the estimated sequence 
2 (which differs from the transmitted sequence x in exact k 
symbol positions and of these k symbols there are kl symbols 
with value * j  and k2 symbols with value -l) ,  the uncon- 
ditional pairwise error probability P k l k 2  for such estimated 
sequence is derived in Appendix 11. It is bounded by 

where l ( k l ,  k2, i )  is the number of sequences with both er- 
ror pattern ( k l ,  k2) and i bit error. This information can be 
determined from the augmented generating function associ- 
ated with the particular code employed. To deduce the aug- 
mented generation functions such that it contains a ( k l ,  k2, i ) ,  
the modified state diagram is used and must be properly la- 
beled. For expository purposes, rate 1/2, constraint length 
K = 3, convolutional code with Gray mapping into QPSK is 
given as an example. Figs. 2(a) and 2(b) show the encoder 
and the state diagram of the code. Fig. 2(c) gives the QPSK 
signal space. Modified state diagram of the code is illustrated 
in Fig. 2(d). The branches of this diagram are labeled as ei- 
ther DO = 1, D 1 ,  or D2, if the relevant transmitted symbol 
associated with the particular branch is 1, kj, or - 1, respec- 
tively. If the branch transition was caused by an input data 
“1,” an additional factor Z is introduced to the branch. From 
this labeled state diagram, a set of state equations is obtained 
and the augmented generating function is derived. In general, 
for rate 1/2 convolutional codes with QPSK, the augmented 
generating function can always be expressed as 

T ( D I , D ~ , I )  =CxT~(ki, k2 , i )Z‘Df1Dt2 .  (14) 

Partial derivative of T(D1, D2, Z) with respect to Z at I = 1 
becomes 

i k ,  kz  

where CO depends on the code and the channel used. Z1 and 
2 2  are given by Substituting the result of ( 10) into ( 13) and comparing with 

(15), we obtain the desired bit error probability upper bound 

(1lb) 
For rate 1/2, k = three to eight optimum convolutional codes 
[lo], factor CO obtained in Appendix I1 is given below 

where Q(z )  = 1 / f i  Jz” e - w 2 / 2  dw.  

the bit error probability P b  . We have 
At this point, the union bound is then used to upperbound 

p b  5 7; ia (k l ,  k2, i ) P k , k 2  
i kl ki  

(13) 

81 I = I ,  D I  =Z I, Dz =Z? .  

(16) 
dT(D17  D 2 9  7 p b  <CO 

ZI and 2 2  are given by ( l l a )  and ( l l b ) ,  respectively. For 
constraint length K = three to eight codes, CO is given by 
(12). 

IV. NUMERICAL AND SIMULATION RESULTS 

In evaluating the bit error probability performance we uti- 
lize the analytic bound (16). A computer program has been 
developed to compute numerically d T ( D 1 ,  D2, I)/aZ at Z = 1 
and hence to determine the analytic bound for the selected 
convolutional codes. 

Due to practical interest, only the rate 1/2, constraint length 
K = three to seven, optimum codes with Gray mapping into 
QPSK are evaluated. Figs. 3 and 4 show the computed upper 
bounds for channel with Rice factor ( = 0 and 10 (severe and 
medium fading) respectively. It is found that each increment 
in K provides an improvement in performance and that the 
performance improvement versus K increases with decreasing 
bit error probability. Typical behavior with various !: (from 
severe fading to nonfading case) is given in Figs. 5 and 6 for 
K = four and seven codes, respectively. Comparing with the 
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Fig. 2.  (a) Rate 112, K = three, convolutional encoder. (b)  State diagram of the code. (c) Signal space of QPSK with Gray 
mapping. (d) Modified state diagram and augmented generating function of the code with Gray mapping into QPSK. 

nonfading performance curves, we found that the performance 
degradation is large, medium, and small for { in the range of 
1 < 5, 5 < t < 20, and 20 < t, respectively. 

Tightness of the analytic bound and the influence of channel 
amplitude measurement on the decoder performance are fur- 
ther investigated using Monte Carlo computer simulation. In 
the simulation, the Viterbi decoder is supplied with infinitely 
finely quantized receiver output and the decoding depth of the 
decoder is six times the code memory. Both the Viterbi de- 
coder with perfect amplitude measurement and that without 
amplitude measurement are used. The decoding rule for de- 
coder without amplitude measurement is similar to (9) except 
that the amplitude weighting factor a, is set to 1.  Figs. 7 and 
8 show the simulation results and the corresponding upper 
bounds for K = four and seven codes with QPSK on chan- 
nels with t = 0 and 10, respectively. The following points 
are observed from the performance curves. 

1) The computed upper bounds are in good agreement with 
the simulation results for Pb approaching lop4. The generat- 

ing function bound is asymptotically tight and the performance 
can be ascertained accurately for low Pb even in the absence 
of simulation. 

2 )  Viterbi decoder with perfect amplitude measurement 
has better performance than that without amplitude measure- 
ment. About 1-2 dB relative performance improvement can 
be gained when fading is severe. For medium fading the rela- 
tive improvement is small, hence the Viterbi decoder without 
amplitude measurement is good enough in most cases and the 
generating function bound can be applied as well to evaluate 
the performance of convolutional codes with such decoder. 

V. PERFORMANCE COMPARISON BETWEEN CONVOLUTIONAL CODES 
WITH BPSK AND QPsK 

Bit error performance of rate 1/2 convolutional codes with 
BPSK modulation and ML Viterbi decoding which makes per- 
fect amplitude measurement has been studied 131. For such 
decoder, the generating function bound on the Pb given in 

I 
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Fig. 3. Computed upper bounds for selected rate 1/2 codes with QPSK on 
fully interleaved Rician channel with r = IO. 

Fig. 4. Computed upper bounds for selected rate 1/2 codes with QPSK on 
fully interleaved Rician channel with { = 0. 
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Fig. 5. Computed upper bounds for rate 1/2, K = four, optimum code with 
QPSK on fully interleaved Rician channel with { = 0, 2 ,  5 ,  10, 20, x. 
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Computed upper bounds for rate 1/2, K = seven, optimum code 
with QPSK on fully interleaved Rician channels with { = 0, 2, 5, 10, 20, 
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Fig. 7. Comparison of computer upper bounds and simulation results for 
selected rate 112 codes with QPSK on fully interleaved Rician channel with 
{ = o .  
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- : analytic bound 
: no amplitude 
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measarement 
-**- : perfect amplitude 
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Fig. 8. Comparison of computer upper bounds and simulation results for 
selected rate 112 codes with QPSK on fully interleaved Rician channel with 

= 10. 

Fig. 9. Performance comparison (using upper bounds) between the selected 
rate 112 codes with QPSK and that with BPSK on fully interleaved Rician 
channel with = 0. 

[3] is corrected here as 

where 

1 2Nol+{ 

1f-- 1+-- 
2Nol+{ 2NolSi- 

Z =  Eb 1 [ Eb 1 J * 

(19) 
Here d denotes the minimum free distance of the code em- 
ployed. This analytic bound is also asymptotically tight. Per- 
formance comparison between the selected codes with QPSK 
modulation and that with BPSK are shown in Figs. 9 and 
10 for channels with { = 0 and 10, respectively. Simulation 
results for K = four and seven codes with QPSK and that 
with BPSK are also provided in Fig. 1 1  and 12, respectively, 
for channel with { = 10. It is found that, for severe fading, 
the performance of rate 1/2 convolutional codes with QPSK 
is worse than that with BPSK. However, for medium fading, 
relative performance degradation is slight. Moreover, when 
code constraint length is increased, the relative degradation is 
improved. 
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le in dB 
No 

Fig. 10. Performance comparison (using upper bounds) between the se- 
lected rate 1/2 codes with QPSK and that with BPSK on fully interleaved 
Rician channel with { = 10. 
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Fig. 1 1 .  Performance comparison (using simulation results) between K = 
four, rate 1/2, code with QPSK and that with BPSK on fully interleaved 
Rician channel with < = 10. 
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- in dB 
Fig. 12. Performance comparison (using simulation results) between K = 

seven, rate 1/2, code with QPSK and that with BPSK on fully interleaved 
Rician channel with r = 10. 

VI. CONCLUSION 

In this paper, the bit error probability performance of rate 
1/2 short constraint length optimum codes in conjunction with 
QPSK modulation and maximum likelihood Viterbi decod- 
ing on fully interleaved Rician fading channels has been stud- 
ied. By applying the generating function union bounding ap- 
proach, we have developed an analytic upper bound on the 
bit error probability performance under the assumption of us- 
ing Viterbi decoding which makes perfect channel amplitude 
measurement. Bit error probability performance of selected 
short constraint length codes was evaluated numerically using 
the developed bound. We also provided computer simulation 
results for examining the tightness of the developed bound and 
for observing the influence of perfect amplitude measurement 
on the performance of Viterbi decoder. Results indicate that 
the derived bound is asymptotically tight and the performance 
of Viterbi decoder without amplitude measurement is compa- 
rable to that with perfect measurement in most cases, except 
in the severe fading channels. In comparison with the same 
codes with BPSK modulation, rate 1/2 convolutional codes 
with QPSK modulation and Viterbi decoding can provide ef- 
fective error-control protection without sacrificing bandwidth 
efficiency and the relative performance degradation is slight 
when channel fading is not severe and code constraint length 
is sufficiently long. 

APPENDIX I 

For ML Viterbi decoder with perfect amplitude measure- 
ment, the likelihood function is denoted by Pr (y b, a ) ,  where 

I 1 
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y is the received sequence of decision variables, x is the trans- 
mitted sequence, and a is the measured fading amplitude se- 
quence. The ML decoder compares all the likelihood functions 
and decides in favor of the maximum. Hence the decision rule 
between transmitted sequences x = {xi} and x’ = {xi‘} given 
the received sequencesy = {yi} anda = {a;} is 

I 
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by (23) we have 

C a i y ; ( l  -a;)*  + a ; y t ( l  -a ; )  
k 

i = l  

where 

where x  ̂ denotes the estimated sequence of the decoder. Be- 
cause of statistical independence, this is equivalent to 

With y; specified by (8), the conditional probability density 
function p ( y ;  la;, x;) is given by 

(22) 

For rate 1/2 convolutional codes with Gray mapping into 
QPSK, we have lxil = IX:~. Further simplification of (21) 
leads to the desired result 

X  ̂ =XI, i f C  a;y;(x; -xi>* + a;yf(x; -xi> < o 
i 

(23) 

where the asterisk denotes the operation of complex conjugate. 
This is the form of decision rule that will be used in Appendix 
I1 to derive the pairwise error probability. Another equivalent 
form is given below: 

X  ̂ =XI if E a;[Re ( y ; )  Re (Xi) 
i 

where Re(#) and Im(#) represent the real and imaginary 
parts of the variable #, respectively. With a; = 1, (24) 
becomes the one usually employed in the conventional ML 
Viterbi decoder (decoder without amplitude measurement). 

APPENDIX I1 
If the estimated sequence X  ̂ differs from the transmitted 

sequence x = {x;}, with x; = 1, (corresponding to the all- 
zero message) in exact k symbol positions and there are k l  
symbols with value & j  and k2 symbols with value - 1, then 

Here N,; and N,; are the quadrature com onents of Gaussian 
noise N;. Hence random variable U = EFLl MI +C:=l Mm 
is also Gaussian distributed with mean vu and variance U: 

given by 

vu  = ( e a ;  + 2 ~ a ;  m=l  k 2  ) (27a) 
No 

The conditional pairwise error probability for the incorrect 
sequence with error pattern (k l  , k2) is just 

The unconditional pairwise error probability can then be de- 
termined by averaging over the random variables of a with the 
result 

(29) 

Because (29) is hard to evaluate, further manipulation is re- 
quired. Making use of the inequality Q( &) < 1 /2 exp (-x/2) 
for x 2 0 in (29), we obtain 

k k where, by definition, q1 = a; and qm = a;. 
Since am is Rician distributed, q m  is a noncentral chi-square- 

I 1 
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distributed random variable with characteristic function 

(31) 

Recalling the normalization constraint (6) and the definition 
of parameter r = y 2  /2a2, (30) can be simplified as 

where 

1 

’ 2 N o l + { j  

(33b) 

When (32) is used for deriving the bit error probability per- 
formance bound, a loose bound will result. In order to obtain 
a tighter bound, all the error pattern associated with a convo- 
lutional code are further examined. A computer program has 
been developed for this purpose. For rate 1/2 codes with con- 
straint length K = three to eight, the minimum values of kl  
and k2 denoted by dl and d2, respectively, have been found 
and listed in Table I. 

Making use of the inequality Q ( d m )  5 Q(&) exp 
(-y/2) for x,  y 2 0 in (29), we obtain 

TABLE I 
MINIMUM VALUES OF k ,  AND k2 AND MINIMUM FREE DISTANCE OF 

RATE 112, K = THREE TO EIGHT CONVOLUTIONAL CODES 

Constraint 
Length 

( K  1 

Minimum Value 
of k ,  
(d i )  

Minimum Value 

(d2) 
of k2 

Minimum Free 
Distance 

(4 

5 
6 
7 
8 

10 
10 

Hence the result given below is used instead. 

Co 

(35) 
Since q = C$_I a i  is a noncentral chi-square-distributed 
random variable with 2d2 degree of freedom, distribution 
function of q is given by 

C 
(34) 

Applying (34) to derive the performance bound will result a 
tight bound. However, the evaluation of C is still a problem. 

where I d (  . ) is the modified Bessel function of the first kind 
of order d .  We then have 

(37) 
The integration in (37) can be computed numerically. 
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