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Abstract

1896

w'% Vi/s' )

on the structured, collocated grid using a finite volume method. An extended SIMPLE
algorithm for compressible flow simulation is proposed which is based on the
SIMPLE scheme developed by Patankar and Spalidinf [1972]. The flow properties are
solved by a prediction/correction algorithm. Applications with wide range of pressures,
flow speeds, and various species concentrations are demonstrated by comparing with
previous simulations wherever possible. Research in this thesis is divided into three
major phases, which are briefly described in the following in turn.

In the first phase, a parallelized 2D/2D-axisymmetric gas flow model was
developed and verified. The discretized equations, including continuity equation,

momentum equation, energy equation and species equation are solved by the parallel

III



ASM (Additive Schwarz Method) and GMRES or BCGS schemes, which are used as
the preconditioner and linear matrix equation solver, respectively. The developed code
was validated by comparing with previous published simulations wherever available
for both low- and high-speed gas flows. Parallel performance for a micro-scale
supersonic flow problem (800,000 computational cells) is tested on the V’ger cluster
system (Xeon 3GHz dual-core dual-CPU) at National Central University up to 64
processors. Parallel efficiency of the developed gas flow model using 64 processors is
about 70%.

In the second phase, (1) A chamber-scale gas discharge of plasma enhanced

chemical vapor deposition (PECVD) with silane/hydrogen as the precursors, which

was used for depositing hydrogenated amorphous silicon thin film, (2) A helium

significant differences between the cases with and without considering neutral flow and
thermal field.

In the third part, a parametric study was performed to determine the influences of
the system configurations, and the flow conditions on the flow and heat transfer
characteristics of a helium dielectric-barrier discharge atmospheric-pressure plasma jet.

Recommendations of future research are also outlined at the end of this thesis.
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Chapter 1

Introduction

1.1 Background and Motivation

In order to investigate the flow physics under realistic conditions, a numerical
method for compressible, viscous flows with conjugate heat transfer for all-speed
regimes is necessary. There are many numerical methods that used density as one of
the primary variables and extract the static pressure from the equation of state. Such
methods failed in incompressible or low Mach number compressible flows without

special treatment, since in low compressibility limit, the density changes are very

small and the pressure-density weak. Other methods, such as

pressure correction methods, wSe ary variable for solving the

continuity equation, are mostly : ssible flow.
In addition, heat transfer préble inv@lving buoyancy effect were usually
simulated treating the fluid as an incompressible flow by employing Boussinesq
approximation, which assumes small density difference between hot fluid (or surface)
and cold surface (or fluid). However, this assumption is obviously invalid as the
temperature difference becomes large, or equivalently when the buoyancy effect is
strong, especially if gases, rather than liquids, are involved. Nevertheless, most of the
studies published in the literature in the past still applied this assumption even with very
large buoyancy effect present in the flow. That can induce large errors in predicted heat
transfer by adhering to this assumption without considering the compressibility effect

of the gas.

This study represents a parallel compressible pressure-based, cell-centered finite



volume method applicable for all-speed of flows, in which the primary variables are
the Cartesian velocity components, pressure, total enthalpy, and mole fraction of the

species.

1.2 Literature Survey

Numerical methods, which are applicable to flows for all-speed regimes are of
special interest in the present research. Gosman et al. [1969] calculated vorticity and
stream function to substitute for pressure form governing equation. However, this
method is difficult in specifying the vorticity boundary conditions at the wall. Harlow
et al. [1965] presented semi-implicit Marker-and-Cell method (MAC) and Simplified

MAC (SMAC) [1970] applying pre density, velocity components, and

temperature as the primitive variable
In General, primitive va classified into two schemes:

density-based schemes and press

1.2.1. Density-based Schemes

The original mass conservation equation is utilized in the density-based scheme.
Briley and McDonald [1980], Jameson et al. [1981], and Sahu et al. [1985] treat density
as a main dependent variable, and the pressure is calculated by the equation of state.
However, this method is limited in low-speed flow due to weakly linkage between
pressure and density.

Chorin [1967] developed the artificial compressibility method for the
incompressible Euler equations. A scaled pressure time derivative in the continuity
equation is presented. Turkel [1987] extended Chorin’s method to compressible

governing equation. A preconditioning scheme is devised for the Euler equations for



all Mach number.

An improved preconditioning method derived by Merkel and Choi [1988] can
solve problems with Mach number as small as 1076, Hosangadi et al. [1990]
presented a time-accurate density-based method, which used the second-order
three-point backwards method for the physical-time derivative and the first-order
implicit Euler method for the pseudo-time derivative. Choi and Merkel [1991, 1993]
derived a preconditioning method for inviscid and viscous steady flows at all speeds.
Shuen et al. [1992, 1993] extended this preconditioning method to include
non-equilibrium chemistry and applied a dual time-stepping technique to obtain

time-accurate solutions.

1.2.2. Pressure-based Schemn

pressure as a  primary \ /“ e, which are wvalid for
incompressible/compressible flow.

Chorin [1968] developed the pressure-correction method for the incompressible
Navier-Stokes equations. The velocity correction is based on pressure gradients alone.
Parankar and Spalding [1972] developed the SIMPLE (Semi-Implicit Method for
Pressure-Linked Equations) method. The velocity correction equation came from the
full governing equation. In 1971, Harlow and Amsden extend the pressure-correction
method to an all-speed compressible pressure-based scheme. Density was calculated
by the equation of state. A staggered grid is utilized in this method. Issa et al. [1986]
developed the PISO (Pressure-Implicit with Splitting of Operators) method. The
applied an implicit flux-splitting semi-iterative discretization to solve time-ecoling

compressible and incompressible flows. In 1989, Karki and Patankar developed a



fully iterative discretization SIMPLEC method. Rhie [1989] extended this approach to
general fluid flow. The pressure in this scheme depended on the internal energy.
Multigrid techniques were utilized to accelerated the iteration procedure. Shyy and
Chen [1992] also employed the multigrid techniques. They used the second-order
upwind method for the convective terms and the first-order upwind method for the
density gradients at high Mach numbers. Karki and Patankar [1989] and Demirdzic et
al [1993] presented an extended SIMPLE method. A collocated grid and second-order
central-difference/first-order upwind scheme were utilized for the numerical
simulations.

Issa and Javareshkian [1998] implemented total variation diminishing (TVD)

upwind schemes into all-speed pressure-based method. They utilized the PISO

equation for high Mach numbers. Hou and Mahesh [2005] presented a scheme for

all-speed compressible flows.

1.3 Objectives and Organization of this Thesis

The specific objectives of this study are

1. Todevelop a parallelized 2D/2D axisymmetric gas flow model for all-speed gas
flow using finite volume method.

2. To validate the developed gas flow model under low- and high-speed gas flow
by comparing with previous simulations wherever possible;

3. To investigate the flow and thermal characteristics in a silane/hydrogen



discharge inside a typical PECVD chamber by coupling with plasma fluid
modeling.

4. To simulate the flow and heat transfer characteristics in helium dielectric barrier

discharge atmospheric-pressure jet

The thesis is organized as follows:

Chapter 2 describes the governing equations including the continuity, momentum,
energy equation and species equations, and the numerical methods developed by using
the finite volume method.

Chapter 3 presents the validation of the developed gas flow model by several
benchmark problems. The parallel performance is tested by applying GMRES or

BiCGS as the KSP solver and ILU as the sub-domain solver on the V’ger cluster

al Central University.

Chapter 4 presents severalyapp icati [ gas \flow model in low-temperature

fluence on helium dielectric barrier
discharge atmospheric-pressure plasma jet.
Chapter 6 is the summary of this thesis and some recommendations for the future

work.



Chapter 2

Numerical Methods

2.1 Governing Equations

The governing equations for mass, momentum, energy and species conservation
equations in two-dimensional Cartesian coordinates can be written in a differential

equation of general form:

M+i(p[/j¢):£(r %}S“) @-1)

ot ox, ? ox,

where p is the fluid density and ¢ = gh,,Y ) is the dependent variable for the

mass, momentum, total enthalpyai ., Species, respectively. ¢ is the
subscript j can take the value 1 and
2, denoting the two space coordinates. ige-diffusion coefficient T'; and the

source term S, will be described below. The total Enthalpy 7%, is a function of the

static enthalpy 4, and the flow kinetic energy.

2.1.1. Continuity Equation
The continuity equation is based on the law of conservation of mass, which can be

written in a differential form

o, o(pu) N d(pv)
o ox | oy

=0 (2-2)

For any control volume, the conservation of mass means that the net mass flow out of

the control volume must be equal to the time rate of decrease of mass inside the control



volume.
2.1.2. Momentum Conservation Equation

The momentum equation in the direction of x-axis is as follows:

8
a(pu)+5(Puu)+5(P"“):_5_P+%+i+pgx (2-3)

ot ox oy ox Ox oy

where g is the gravitational acceleration in x-direction, and P is the pressure,
respectively. The relationship between the pressure, density and temperature of a fluid
is linked through an equation of state. The ideal gas law, an example of an equation of
state, is applied in this study

P=pRT (2-4)

where R is the gas constant.

Stokes in 1845 obtained the urface for Newtonian fluids

T, (2-5.2)
T, = (2-5.b)
T, =T, = @+8_u (2-5.¢)

xy »x H Ox ay -2.C

where g isthe molecular viscosity coefficient. The viscosity of a pure monatomic gas

can be written in terms of the Lennard-Jones parameters as

Jrmk,T J
_ O NFMEST g 6693x107 YT (2-6)

2

#716 mo0, s

u
in which m is mass, k, is the Boltzmann constant, 7 is the absolute temperature,
and M is molecular weight [Bird et al., 2002]. The characteristic diameter of the
molecular o used in this study is given in Table 1. The collision integral for viscosity

Q, is curve-fitted as follows [Neufeld et al., 1972]:



_LI6145 052487 216178
“OT exp(0.7732077)  exp(2.43787T7)

9 (2-7)

where 7" =k,T /¢ is a dimensionless temperature, and ¢ is the characteristic energy

listed in Table 1.

\% =(§i+§jj is the differential-operator, where i=(1,0) and j=(0,1) are
X

unit vectors in the direction of the x-axis and y-axis respectively. A, the second
L o 2
viscosity coefficient, is frequently assumed to be equal to -3 .

By organizing Eq.(2) to a general form, the momentum equation in the direction of

the x-axis is adapted as

2-8
ot Ox (2-8)
where the source term S, ise
o 0
S, =——+ 2-9
Y ox ox 2-9)

The momentum equation in the direction of y-axis has the same form as that in
x-direction.
2.1.3. Energy Equation

The energy equation is as follows:

0 oT 0 oT 0

Ox[ ax)—i_@y( 8y] o ) (2-10)
_%(vp)+%(ufxx+VTW)+%(Z/ITW+VTW)

+ pug, + pvg,



2
in which e is the internal energy due to random molecular motion, — is the kinetic

energy, and k is the thermal conductivity. The thermal conductivity of a monatomic

gas is

Jzmk,T J
k= 2N o g 31a4x102 YT @-11)

32 70°Q, o°Q,

where C, is the heat capacity at constant volume, and the collision integral for thermal
conductivity, €, , is identical to that for viscosity, Q -

The total enthalpy 4, is the sum of the static enthalpy /4  and the kinetic energy,

h=h +— (2-12)

(2-13)
Here Ahj? is the standard enthalg & standard state (298.15 K and 1
atmosphere), and C, (T ) is the specific "hieat capacity at constant pressure listed in

Table 2.
In this study, the energy equation is rewritten in terms of the total enthalpy as

follows:

0 0 0 o(,oT\ of(,oT
a(pht)+a(puht)+@(pv}lt)_a[ka)+5£k§j+S}l’ (2-14)

For the kaa—T terms in the energy equation, since C, (T ) = i,}]li is still true even if
X

polynomials are used to describe A . Therefore, the following derivation can still be

applied.



2[421)
ox\ Ox
15)

_ 0| Kk oh,
ox\ C, ox
- 2-15
o[k of, | 2[xo(m =
x| C,ox( " 2 x| C, ox{ 2
_ofkan| ok ofr
6x_Cp ox | ox|C, ox\ 2
Hence, the Eq.(2) can be written as
0 0 0 0| k Oh O| k oOh
Z(ph)+—(puh)+ == (pvh) =—| |+ —| a5, (2416)
ot ox oy ox\C, ox ) oy\C, oy '
and the energy source term S, is expressed as
A
ox| Cp oOx
(2-17)
0
+—(uz'xx+vr
Ox
2.1.4. Species Equation
The conservation of mass species equation is
o(pY,) o(puY,) o(pvY. 0 oY, 0 oY,
(pL) ooty | o “)=—[ aeﬁ—“j+— PP, = |+R,  (2-18)
ot ox oy ox  Ox oy oy

Where the mass fraction of ¢, species (Y, ) is defined as the ratio of the mass of the
a,, species to the total mass of the mixture [Patankar, 1980]. R, the rate of formation
of Y, through chemical reactions, is neglected in this modeling. The effective
diffusion coefficient of «,, species in multicomponent gas mixtures [Fairbanks and

Wilke, 1950] is estimated

10



X
D, = «
aeff
X XL (2-19)
Daﬂ Day

where X, =Yav’"” is the mole fraction of «, species. D,,, D, , etc., are the

a

respective binary diffusion coefficients, which is defined by

1.86 x 1077 x T L+L
b - \M, M, (2-20)

b P’ Q

Gaﬂ D,af
1 . . . :
Here o, = 5(0“ +0o ﬂ) is the average collision diameter, Q) , is a
temperature-dependent collision integral
1.06306 0.19300 1.76474
Q (2-21)

Dap = 77015610 " exp(0,4763 *) " exp(3.8941 lT*)

d by the following formula:
(2-22)

Here the dimensionless quantity @, is

M —1/2 1/2 M 1/4 2
cpaﬁzi 1+ 2a || q| He (—/’j (2-23)
'\/g Mﬂ ltlﬂ Ma

, N is the number of species in the mixture, x, is the mole fraction of species «,
u,, 1s the viscosity of pure species « ,and M, is the molecular weight of species « .

The thermal conductivity of gas mixture is analogous to the viscosity, which is

estimated by

o X k
k = E __aa _
mix poi zﬂXﬁ(Daﬂ (2 24)

11



The k, is the thermal conductivity of pure species, and @, is identical to that using

in the viscosity equation.

2.2. Numerical Schemes
2.2.1. Nondimensionalization

Before solving the above equations, a dimensionless process is applied to simplify
and parameterize problems where measured units are involved. The scaling parameters,

utilized in nondimensionalizing the governing equations, are listed in Table 3. The

relevant nondimensional quantities denoted by a symbol (*) are defined as follows:

* X * y
X =— == ;
L, Y L,
* * T
P = P P T =—
U’ T, (2-25)

Then, the transport equations given above are nondimensionalized using the above

dimensionless quantities.

2.2.1.3. Continuity Equation

Substitute the above dimensionless variables into the continuity equation

p.U, o, pU.,° (o) 4 PYs o) _ 0 (2-26)
L, o L, ox” L, o

Multiplying both sides by '02—U°° gives

0

5,0* . a(p*u*) ) 8(,0*\/*) i o)
ot ox o

* *

12



2.2.1.4. Momentum Equation

The momentum equation in the direction of x-axis is used the similar analysis,

pUapw) pUA(puw) puzd(pvi)

* * *

L, ot L, ox L, oy
U, o L ou Uu, o L ou
— /’looz 0 - ILl _* + ﬂwZ 00 - ‘Ll r
L, ox Ox L, oy oy
p U2 op uwU, 0|1 . ou ov
- * + 2 % _ﬂ * 2 *
L, ox L, ox |3 Ox oy
#wa a * av* + p p* *
After some rearrangement,
Y O puu) olp Lo (ou') .
G(P?)Jr ( : )+ ( P b 0 Gu* b (2-29)
ot ox oy !
where the dimensionless diffusion coe is @xpressed as g— The Reynolds
e
number, the ratio of inertial forces té , 1s defined as
UL
H,
The dimensionless source term is expressed as
A e e e (2-31)
ox ox |3 ox oy oy ox Fr
where a dimensionless parameter known as the Froude number
U
Fr=—2= -
Lo (2-32)

is interpreted as the ratio of the inertial to gravity forces in the flow.

13



2.2.1.5. Energy Equation

The energy equation nondimensionalized by the dimensionless variables

pin a a * ok

U? .
)+%—*<pvht>

LR pin a * %k
Pote — (p'h))+ 5= h
L o (ph) L 2 (pu )

kU 8 Lk* ah,*J KU 8 (k* ath
= + — +3S,,

*

(2-33)

TEC,, o \C o ) IEC,, | C oy

0™ p,oo o~ p,o

can be put into the dimensionless form.

O vy, O ( ey @ v O Ol 0f . on) .
at*(ph,)ﬁtg(puh,)+E(pvh,)=§(Fh§j+§[rht$j+bht (2-34)

Here the dimensionless diffusion coefficient of energy equation is defined as

r = . (2-35)

in which the Prandtl number ensionless number interpreted as

the ratio of momentum diffusivity The dimensionless source term

of energy equation S Z is

oo 1 o[k a1 afk o(r
" Re,Pr, x| C ax"( 2 Re,Pr, oy"| C, oy | 2

1 a * % % % 1 5 * % * %
- - 2-
Re. ax (u T +V Txy)+ Re. & (u TtV z'yy) (2-36)
PR ENCIITIN USRI )
Frp Ex Frp & ot

2.2.1.6. Species Equation

The dimensionless variables are substituted into the species equation,

14



p.U, APY) pU, dpuY,)  pU, ApvY,)

L, o L.~ ox L oy

(2-37)
* * * * aY
:ﬂw—f)ooi* pDaeﬂa)IO*‘ +p‘°—f)°° a* pDaeff_D*l
L, ox o ox L, oy oy
then the dimensionless species equation can be obtained.
Y, apu'Y) apv'Y (. or) (. or)
a(p*a)+ (pu* N (/f)v*a)= a*(rY ‘iJ+ a*LFY a*) (2:38)
ot ox oy ox « Ox oy “« 0y

The dimensionless diffusion coefficient for species equation is defined as

*D*
_P Pz,eff (2-39)

r

Ya
where the dimensionless parameter Pe is a measure of the relative magnitude of the

diffusion term in the mass transfer equations,as compared to the convection term.

(2-40)

2.2.2. Spatial Discretization
The transport equations using the cell-centered finite-volume scheme can be

written generally in integral form as

0 -
G_J"OWQJFJ‘[”'" deQ (2-41)
tQ r

Q
where Q is the domain of interest, I" is the surrounding surface, and . is the unit
normal in outward direction. The time derivative is calculated using the first-order

forward difference scheme, and the source term is treated using last time step value.

The flux function i consists of the inviscid and the viscous parts:

b —pry—pyvy (2-42)

The finite volume formulation of flux integral can be evaluated by the summation of the

15



flux vectors over each face,
[/ L RAT, (2-43)
r

where k(i) is a list of faces of cell i, F,, represents convection and diffusion fluxes

through the interface between cell i and j, AT, is the cell-face area. The viscous flux for

the face e between control volumes P an E as shown in Figure 1 can be approximated

as:

V. = Lo (2-44)

(2-45)

V¥, is a flux limiter used to prevent from local extrema introduced by the data
reconstruction. Defining ¢ =max(¢u,¢j) and ¢m=min(¢u,¢j), where ¢, is the

neighbor cell of upwind cell, the ¥, associated with the gradient at cell u due to edge e

is

min[1,¢ma"_¢”j, it ¢°—¢ >0

4. -4,
Y, = min[l, ﬁ_‘f} if ¢°—¢ <0 (2-46)
L, if ¢'-¢,=0

where ¢ is computed without the limiting condition (i.e. ¥, =1)

16



2.2.4. Pressure Smoothing

The cell face velocity u, is usually obtained by linear interpolation as
1
u, :5(“E+“P) (2-47)

In order to avoid the pressure oscillations due to simulation on a collocated grid, the

face velocity can be modified as

© o ET ox A), \ox 4), (2-49)

where A4 is the coefficient in the discretized momentum equation.

The first pressure gradient term is calculated as the mean value of cell P and E,

(2-49)
(2-50)
Set Ox pp =0, ; =20x,,; and
1 1 X
u, = E(ME +up )+ 1o, (71 [PEE —3P,+3P, —PW] (2-51)

which is used to calculate the convection flux through the control volume faces. The
first term is treated as a weighted average, and the second one is kept as it is to deal with

non-equidistant grids.

2.2.5. Velocity-Slip and Temperature-Jump Boundary Conditions

The velocity-slip boundary condition [Cercignani, 1988] is given as:

17



V,-Vv, =0 — (2-52)

where v, is the velocity of gas at the solid wall surface, v, is the velocity of wall,

-0 . . . . .
¢ = ~Kn, o, is the tangential momentum accommodation coefficient, Kn is
o

v

the Knudsen number, and ol

P is the derivative of velocity normal to the wall surface.
n

s

The temperature-jump is treated in a similar way:

7-7,-:5"

~ (2-53)

N

where T, is the temperature of gas at the solid wall surface, 7, is the temperature of

270, hodation coefficient, and Z—T is the
n

s

wall, 7= Kn, o, is the thern

Or

derivative of temperature no

2.3. Solution Procedure

A general implicit discretized time-marching scheme for the transport equations is
employed to solve the discretized equations. It can be written as:

SR o (P8)
[%+APJ¢IJ IZZANB NBI+%+S¢ (2-54)

where the superscripts n and n+/ mean old value (at time 7) and new value (at time ¢+df)
of the variables, respectively. The high order differencing terms and cross diffusion
terms are treated using known quantities and retained in the source term and updated
explicitly.

In an extended SIMPLE [Chen (1989), Shang et al. (1995), Shang and Chen (1997),

and Zhang et al. (2001)] family pressure-correction algorithm, the pressure correction

18



equation for all-speed flows is formulated using the perturbed equation of state,

momentum and continuity equations. The simplified formulations can be written as

o' = IfT (2-55.a)
u,=-DVp' (2-55.b)
W =ut +u’ (2-55.¢)
P = pF e p (2-55d)
op , ' k
Ew(ump)w(pum J==v(ou,) (2-55.0)

where R is the ideal gas constant, u, is the m™ Cartesian component of the velocity,

and D is the pressure-velocity coupling coefficient. Cconsidering

u

”) , the following all-speed

1;7%”(% p'j_v J—v(pum)" (2-56)
where the superscript & represents the last iterative value.
The numerical algorithm for solving unsteady, compressible, viscous and
heat-conducting gas flows consists the following steps:
1. Initialize the u, v, P, T and other parameters. Set time step Az.
2. Set the initial conditions for the calculated time step.
3. Extended SIMPLE algorithm
3.1 Solve the momentum equations at the predictor step.
3.2 Solve the pressure-correction equation.

3.3 Update the velocity, and pressure.

3.4 Solve the secondary pressure-correction equation.

19



3.5 Update the velocity, and pressure again.
3.6 Solve the energy and species conservation equations.
3.7 Check for convergence of the iteration process. Repeat step 3 until a
converged solution is obtained.
4. March to next time step and return to step 2 until a steady-state solution is
obtain.
A basic description of the simulation processes is available in Figure 2-2. In addition,
parallel computing is implemented and tested on distributed-memory machines using

spatial domain decomposition.
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Chapter 3
Verifications and Parallel Performance of the Gas

Flow Model

In order to validate the feasibility of the developed gas flow model, several
simulations from incompressible, low-speed to compressible, high-speed flow and
problems with considering conjugate heat transfer were compared with previous
simulations wherever possible. The weakly compressible lid-driven cavity flow has

been frequently used as the benchmark problem for validation. It was chosen to test the

model applied in a supersonic gas flow past a confined square in a micro-channel is to

demonstrate the ability of the gas flow model in solving high-speed flow problems.

3.1. Lid-driven Cavity Flow

3.1.1. Simulation Conditions

The problem considers the fluid in a two-dimensional square cavity with an upper
wall moving in the x-direction at a velocity u as shown in Figure 3-1. The other walls
are stationary with the no-slip boundary condition. The pressure and temperature at the
boundary are given a neumann boundary condition, meaning that the normal gradients

of pressure and temperature are zero. A wide range of Reynolds numbers has been
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studied. Solutions are obtained for configurations with non-uniform meshes consisting

of 128 by 128 cells.

3.1.2. Validation with Previous Simulations

The streamlines for the driven cavity flow with increasing Reynolds number from
100 to 10,000 along with those by Ghia et al. [1982] are shown in Figure 3-2 and 3-3.
As is well known, the center of primary vortex is offset near the top right corner at Re
=100. It moves towards the geometric center of the cavity with increasing Re. The
simulation results are good agreement with those published in the literature. It is clearly

that the current gas flow model is capable of reproducing the flow fields as Ghia et al.

[1982] at near-incompressible flow limit in the wide range of Reynolds numbers.

the conjugate heat transfer, we have chosen the conjugate heat transfer problem
simulated by Rahman et al. [2008], as shown in Figure 3-4.

The Richardson number ( Ri=gp(7,-T,)L/u’ ), a dimensionless parameter
represents the importance of natural convection relative to the forced convection, for
this investigation is set as 0 to 5, where g is the gravitational acceleration, S is the
thermal expansion coefficient, L is the length of the square cavity, u, is the inlet
velocity, and 7, and 7, are the temperature of heated wall and inlet, respectively. L

and are assumed as the characteristic length, and velocity, and the corresponding
Reynolds number is keeping equal to 100. The inlet width and the square block width
are equal to 0.1L and 0.2, respectively . The solid fluid thermal conductivity ratio
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:—S is equal to 5, where &, and k, are the heat conductivities of the solid and gas,
i

respectively.

The boundary conditions are given as follows:

At the inlet (BC):
u=u, v=0, T=T, P=extrapolation (3-1)
At the outlet ( FE):
o| ¢(=u,v,T
Mzo’ P = fixed (3-2)
n

At the wall boundaries:

o[¢(=P.T)]

AB, CD,and FA: u=0,v=0, p (3-3)
n

DE: u=0, v=0, T=T,, a—P=0/\ (3-4)

on ;

At the solid-fluid interfaces of |

\ ¥
oT oT OP

=0,v=0, |k, | =k |, & 3-5
! ’ ( ! on P on S] n (3-3)

3.2.2. Validation with Previous Simulations

Flow over a solid cylinder in a square cavity is considered. Air is used as the
working fluid in the cavity. 100 x 100 uniform computational cells are used for
simulations throughout the study. Conjugate heat transfer is considered by solving a
steady-state heat conduction equation within the square block and by enforcing the heat
flux continuity at the interfaces between gas and solid.

Figure 3-5 to 3-10 show the stream lines and isotherms at Ri=0, Ri=1, and
Ri=5 for four configurations of the blocks in the cavity along with the data of

Rahman et al. [2008]. The comparisons show good agreement between the two
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simulations while the temperature difference (7, —7,) is small.

At smaller temperature gradient, the stream lines and isotherms are almost the
same as those obtained by Rahman et al.; however, as the temperature difference
becomes large, the flow and thermal patterns shown in Figure 3-11 and 3-12 deviate
greatly from those by Rahman et al. [2008]. The results indicate that the Boussinesq
approximation as often assumed by most of the simulations for mixed convection
problems; especially at high Richardson number is highly questionable. For this type of

flow, a compressible viscous gas flow model is necessary.

3.3. Micro-scale High-Speed Gas Flow with Slip Boundary

Conditions

3.3.1. Simulation Conditions

A 2D compressible lamindf . ) a linder with size a (a=1.4 um)

) ame—— /'

confined in a micro-channel ohitg H , =10a ;dength L, =50a) is simulated to

demonstrate the capability of handling stupetsonic flow with slip boundary conditions
as shown in Figure 3-13.

The reference parameters based on the inlet state for this problem are: F, =P, ,

in

T,=T,, p,=—2>,and V,=,[2RT,, where the subscript in represents the inlet state.

The square size a is chosen as the characteristic length, the corresponding Mach
number and Knudsen number in the study are 2.426/ and 0.05, respectively.
Velocity-slip and temperature-jump boundary conditions are implemented in the study.
The blockage ratio a/H, 1is equal to 0.1 and the distance between square and the
channel inlet (L) 1s equal to 5.5a

The boundary conditions applied in this problem are as follows:
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At the inlet:

u=u,v=0,T=T,P=P (3-6)

1

At the outlet:

6[¢(=u,v,T,P)]

- =0 (3-7)

At the wall boundaries:

o[¢(=P.1)]

=u, v=0, (3-8)
u=u,yv n
At the solid-fluid interfaces of the square:
oT or oP
=0, v=0, |k, —| =k | |, = -
! Y (jﬁnf Sans] on -9

3.3.2. Validation with Previous Si
r/ : H
The distribution of flow prof

results show that there is a strorig hocl b ¢alled a detached shock, forming in
front of the square. Downstream © ¢ bow shock, the pressure, density, and
temperature of the flow rise rapidly; the velocity of the fluid drops from "supersonic"
to "subsonic".

The comparison of the normalization distribution of horizontal velocity and
temperature obtained by Shterev and Stefanov [2010] (steps

A =0.00625, 8000 x 1600 cells), and the present (2000 x 400 cells) are shown in

Figure 3-15 and 3-16. The results obtained that the agreement between gas flow
model and SIMPLE-TS data is very good.
Figures 3-17 to 3-20 show the comparisons of horizontal velocity and temperature

along the center line of the channel (y = H_,/2) with the simulation data [Shterev and
Stefanov, 2010] for different spatial steps. The obtained by the gas flow model with
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much lower resolution (500 x 100 - 2000 x 400 cells) is in a good agreement with
those calculated by the SIMPLE-TS method using much higher resolution
(2000 x 400 - 8000 x 1600 cells). It clearly shows that to obtain a receivable result
by SIMPLE-TS method needs to carry out very long calculations compared to those

of gas flow model.

3.4. Parallel Performance Study

3.4.1. Test Conditions
The two-dimensional micro-scale supersonic gas flow as shown earlier is used

for parallel performance study. 2,000 by 400 uniform computation cells are considered

problems were solved by ILU. onthe V’ger cluster system (Xeon
3GHz dual-core, dual-CPU) at { smputation Geophysics, National

Central University, Taiwan.

3.4.2. Results and Discussion

Figure 3-21 shows the variation of the parallel performance and computation
times per time step as a function of the number of processors. The parallel performance
is tested by applying GMRES or BiCGStab as the KSP solver and ILU as the
sub-domain solver. Result shows speedup is about 46 times as 64 processors are used
for the test case with GMRES as the KSP solver. The parallel speedup using
GMRES-ILU is slightly better than using BiCGStab-ILU, and the absolute runtime of

case using GMRES-ILU is relatively short.

3.5. Summary
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In this chapter, the validations of the gas flow model and parallel performance
were presented. The validation is found to be very good agreement with previous
simulations. Parallel efficiency is reasonably good up to 64 processors with parallel

efficiency of ~70%.
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Chapter 4

Applications in Low-Temperature Plasma Discharge

This chapter presents the gas flow model coupling with the plasma fluid modeling
applied in low-temperature plasma discharge. Figure 4-1 to 4-4 exhibit the plasma
properties include electron number density, electron temperature, and ion number
densities in an atmospheric-pressure plasma jet w/ and w/o considering the neutral gas
flow model. These results demonstrate that influence of gas flow model in the

low-temperature plasma discharge should not be underestimated.

4.1. Simulation of Silane/Hydrogen Gas Discharge in a Plasma

Enhanced Chemical-VaperDepasition (PECVD) Chamber

This phase demonstrates “a) large=scale realistic PECVD using the mixture
Silane/Hydrogen gas. In order to gét a uniférm thickness of coating, optimization of the
flow streamlines with respect to the influence of deposition parameters by using
numerical simulation is necessary. Figure 4-5 show the schematic diagram of the
PECVD chamber. Due to the symmetry of the plasma chamber, only half domain is

considered in this simulation.

4.1.1. Simulation Conditions

Simulation conditions in this study include: (1) chamber pressure (600 mtorr); (2)
a square glass plate (20 A~ 20 cm); (3) substrate temperature (250 °C); (4) gap distance
between shower-head and substrate (14 mm) and (5) inflow rate ratio of silane to

hydrogen (50 : 80 sccm).
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The boundary conditions used in the gas flow model are defined as
At the gas inlet:
u=0,v=v, T'=T, P=extrapolation, Y =Y, 4-1)
where v, is calculated depending on the gas flow rate, the cross section of the shower

head, and background pressure using a temperature of 300 K.

At the outlet:
ol d(=uv,T,Y
|:¢( )] = 05 P = Pﬁxed (4-2)
on :
At the substrate surface:
0 =P)Y
u=0,v=0, TZTS,M (4-3)
on
At the solid-fluid interfaces:
oT
=0,v=0, | k,—| =k — -
u v ( o . (4-4)
The schematic of the computatiofi C 11§ Simulation is shown in Figure 4-6.

4.1.2. Results and Discussion

The steady-state neutral flow field including the distributions of species number
density, temperature and mass-averaged velocities are simulated by using the
developed gas flow model. The applied frequency was 25 kHz and the total gas
pressure was 600 mTorr. These properties were then used in the plasma fluid modeling
as the background gas properties. Figure 4-7 to 4-8 show the distributions of H, and
SiH,4, and gas temperature. In this case, the Reynolds number is small with inflow
velocity of silane/hydrogen and gap distance as the characteristic velocity and length,
respectively. A small Reynolds number leads to a small Peclet number ( Pe =Re-Pr),

which means that the conduction is dominated. This phenomenon is clearly seen in
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Figure 4-7, where the temperature distribution between the electrode and subtract is
almost linear. In addition, the density near the substrate surface decreases greatly
because of the heated substrate at elevated temperature (250 “%C). Non-uniform
background density is important in determining the ionization rate during the

simulation. The detailed flow structure is given by the streamlines in Figure 4-9.

4.2. Simulation of a Helium Micro-Cell Plasma

4.2.1. Simulation Conditions
Figure 4-10 shows the schematic diagram of a micro-cell plasma investigated in

this study. The micro-cell consists of two ring-shaped electrodes made of aluminum

separated by an insulator. The powere e is connected to an RF power source
(f=13.56 MHz) with amplitude er one is grounded. Helium gas
is applied as the working gas c essure condition. This study is
numerically solved in a cylin ‘\ ln’ in/ e right region in Figure 4-10.
40 x 60 uniform computational ce - and y-direction, respectively. Table

4 lists the substance properties used in this study. A gravitational field _ is considered
in the negative y-direction.
The boundary conditions for helium micro-cell plasma include:
At domain boundaries:
T=T, (4-5)
At the solid-fluid interfaces:

oT

u=0,v=0, [kf— or

* on

on on

j, o @6)

S
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4.2.2. Results and Discussion

The present study numerically investigates the characteristics of flow field and
heat transfer in a helium micro-cell plasma at atmospheric pressure. Figure 4-11 and
4-12 show the force due to ion-molecule collisions generated by the plasma fluid model
for x- and y-momentum equations, respectively. And the energy source duo to ion Joule
heating and electron elastic collision is shown in Figure 4-13.

Figure 4-14 shows the temperature distribution without considering the plasma
momentum sources. The helium gas is heated and the maximum temperature in the
plasma region is about 307 K. The increasing temperature produces an increase in the
flow field due to the buoyancy effect. As expected, the buoyancy effect leads a weak

clockwise flow field shown in Figure 4-15. However, the situation is totally different

when the plasma momentum sqQg

reversed into a counter-clockwises fieldushiown %in\ Figure 4-16. There is a large

component of the force ( F,

lasma

shown in Figure 4-17. The intensity 6f ¢ per unit volume is extremely larger
than the buoyancy force, which leads an opposite flow field. The flow is accelerated to

a speed of 0.8 m/s. Figure 4-18 shows the distributions of temperature with considering

the plasma momentum sources.

4.3. Simulation of a Helium Dielectric Barrier Discharge

Atmospheric-Pressure Plasma Jet

In the present study, a helium planar dielectric barrier discharge
atmospheric-pressure plasma jet (APPJ) designed by our group members shown in
Figure 4-19 is simulated using the developed gas flow model coupling with a
two-dimensional parallelized plasma fluid modeling code developed by another group
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member [Lin, 2010]. The converged steady-state results of flow field, temperature, and

other neutral gas properties are present.

4.3.1. Simulation Conditions

The schematic of the helium dielectric barrier discharge atmospheric-pressure
plasma jet used in this study is illustrated in Figure 4-20. This system consists of two
parallel electrodes made of copper and each of the electrodes is cuboid of
25 x 50 x 8 mm’. The lower electrode is connected to an AC power source (=25
kHz) with amplitude of 250 Volt, and the upper one is grounded. Each electrode is
covered with a 35 x 70 x 1 mm’® ceramic plate as the dielectric. The gap spacing

between the two dielectric plates is kept at 1 mm throughout the study. Helium gas with

atmospheric-pressure condition. The
total gas flow rate passing wit Oros 3 50 mm” is fixed at 20 slm.

In addition, the initial backe \\u ] gas tempe e1s assumed to be 300 K, and the
surroundings are filled with air (“78%uNoand{22% O,). The substrate surface is
specified under two kinds of boundary conditions: a) an adiabatic wall (Neumann
boundary) and b) an isothermal wall (dirichlet boundary).

The boundary conditions for the helium dielectric barrier atmospheric-pressure
plasma jet include:

At the gas inlet:
u=u, v=0, T =T, P=extrapolation, ¥ =Y, 4-7)
where u, is calculated depending on the gas flow rate, the cross section of inlet, and

background pressure using a temperature of 300 K.
At the outlet:

If the gas flows out of the domain,
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6[¢(=u,v,T,Y)] 0. p_p

an fixed (4 - 8 )

Otherwise,

a|:¢(= u,V,):' =0.T=T
on ’ ¢

mb, sz(Pt)’ Y:Y;mb (4-9)
where the subscript “amb ” means the state of the surrounding environment.

At the substrate surface:

Isothermal wall:

u=0.v=0, 71, LPCPY)] (4-10)
n

Adiabatic wall:

o, o[¢(=T.P.Y)]

- (4-11)

u=0,v

At the solid-fluid interfaces:

oT

u=0,v=0, (kf— or

=k
s on

(4-12)

on

4.3.2. Results and Discussion

A two-dimensional helium dielectric barrier discharge atmospheric-pressure
plasma jet is investigated by solving the governing conservation equations with the
boundary conditions. According to the gap between the two dielectric layers, the
Reynolds number is estimated to be about 60. The gas flow is assumed to be laminar.
The Knudsen number related to the Mach number and the Reynolds number is less than
0.001, and the gas is treated as continuum. For this reason, the no-slip condition is
imposed at the boundary. The 160 x 160 non-uniform computational cells shown in
the Figure 4-21 are employed in the simulation. The parallelized neutral gas flow model
uses 8 processors in x-direction and 5 processors in y-direction, respectively.
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Figure 4-22 shows the time-history of the velocity and temperature profiles at the
export of helium dielectric barrier discharge at atmospheric-pressure with gas flow rate
of 20 slm under two kinds of boundary conditions of substrate surface. The
computations are continued until it is obtained that the fluid properties have reached a
statistically stationary state. It is seen the gas velocity at the exit of the plasma jet
increase achieved a maximum velocity of about 14 m/s. The result in an adiabatic
substrate surface is quite similar to that in an isothermal substrate surface. The
steady-state solutions of the maximum temperatures at the exit of the plasma jet are 321
K and 322.5 K for the adiabatic and isothermal substrate surfaces, respectively.

The two-dimensional spatial distributions of pressure and over-all density are

shown in Figure 4-23. The inlet pressure is approximately 760.5 torrs. In Figure 4-24,

The velocity components in x- and y-direction are presented in Figure 4-25. Figure

4-26 shows the spatial distributions of the mean-speed, stream lines, and velocity vector.
In the stagnation region, the fluid velocity is zero and the surrounding flow is turning
into the wall direction. Results illustrate that there are several pairs of vortices formed
in the region between the jet exit and substrate and shown almost symmetric pattern.
Figure 1 shows the steady-state velocity vectors and streamlines at Re=060 ,

H/d =10, and gas flow rate of 20 slm. The locations of primary and secondary

vortexes are depicted in Figure 4-27. A counter-clockwise primary vortex is formed
near to the jet exit owing to low-pressure formation near the jet exit. When the

momentum of the jet is unable to overcome retarding effect of the primary vortex and
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the opposing frictional force of the impingement plate, the clockwise secondary vortex
is formed. Figure 4-28 show the numerical simulated stream lines at different time level

for d=1mm, H/d =10, Re=60 and gas flow rate of 20 slm. The results denote

that the primary and secondary vortices glow and move toward the outlet as time
increases. Finally, the flow converges to its steady state.

Figure 4-29 shows the horizontal velocity profiles in the plasma channel at
different x position. The entrance length, a length in the channel until the flow velocity
profile is fully developed, correlation with the Reynolds Number for laminar flow can
be expressed as 0.06Re. It is clear that the flow is nearly fully developed with a
parabolic velocity profile. The temperature profile in the plasma channel at various x

positions is illustrated in Figure 4-30. The, temperature difference between an adiabatic

and an isothermal substrate surfaeé’s
Figure 4-31 shows the he | veloc dtemperature profiles along the

center line of the plasma jet. The SaSaflowsvelocity increases with increasing the

plasma channel. A pronounced reduction in the velocity of the helium gas can be
observed out of the plasma channel. The gas temperature in the plasma region is
continuously increasing due to the electron-neutral elastic collision and ion Joule
heating. The maximum values in the plasma channel, respectively, are about 324.5 K
and 322.8 K for adiabatic and for isothermal boundaries. The gas temperature outside
the plasma region decreases with the distance, as expected. Vertical velocity and
temperature profiles between helium DBD APPJ and substrate at different y positions
for d=1mm, H/d =10, Re=60 and gas flow rate of 20 slmare shown in Figure
4-32 and 4-33.

The local Nusselt number distribution along the isothermal substrate surface for
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d=1mm, H/d=10, Re=60 and gas flow rate of 20 slm is obtained in Figure.

4-34, The local Nusselt number, a ratio of convective to conductive heat transfer

normal to the surface, is defined as:

Nu—ﬂ——L(d—TJ 4-13
k (Eulk_T) dx K (_ )

where 7 is local heat transfer coefficient, and 7,,, 1is the bulk temperature. The bulk
temperature 7, , in this study is defined as follows:
r lk_];):QFM (4-14)

where 7 is the helium mass flow rate, and Q,,, is the heat source generated from the

plasma fluid modeling. The local Nusselt number would not change significantly if the

decreases monotonically.
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Chapter 5
Parametric Study of a Helium Dielectric Barrier Discharge

Atmospheric-Pressure Plasma Jet

The purpose of this parameter study is to determine the influences of the system
configurations, and the flow conditions on the flow and heat transfer characteristics of a
helium dielectric-barrier discharge atmospheric-pressure plasma jet. The parameters
varied in this study are the electrode lengths ( 5mm and 25 mm ), gas flow

rates( 10 — 30 s/m ), and dimensionless jet-to-substrate spacing rates, H/d

(5, 7.5, 10, 12.5, and 15). The simulations are performed using helium with nitrogen

impurity (100ppm) as the workinf flow properties including velocity,

pressure, total enthalpy, and speci at=al., are calculated by using the

co-located cell finite volume dare presented in the following

sections.

5.1 The Effect of Electrode Length

5.1.1 Simulation Conditions
The two systems consist of two parallel electrodes made of copper. The electrodes
of two systems are cuboid of 25 x 50 x 8 mm’ and of 5 x 50 x 8 mm’,

respectively. The powered electrode is connected to an AC power source (f=25 kHz)

with amplitude of 250 Volt. The electrodes of two systems are respectively covered

with 35 x 70 x 1mm’ and 15 x 70 x 1 mm’ ceramic plates. The gap spacing
between the two dielectric plates is kept at I mm throughout the two systems. Helium

gas with nitrogen impurity (100ppm) is applied under the atmospheric-pressure
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condition. The total gas flow rate is fixed at 20 slm.

For studying the influence of electrode length on the heat transfer and flow
characteristics, the electrode length varies from 5 mm to 25 mm and the other
parameters remain the same as in Chapter 4. 140 x 160 and 160 x 160
non-uniform, computational cells are used for the electrode lengths of 5 mm and

25 mm, respectively.

5.1.2 Results and Discussion
In this study, the value of velocity, pressure, total enthalpy, and species
concentration are calculated numerically for two different electrode lengths. Figure 5-1

to 5-3 show the steady-state solutions of flow properties including pressure, over-all

density, temperature, and velocit
plasma will decrease due to redi “
small plasma region, which resuff eCreased-powef source generated by plasma. The
temperature in short electrode leng esfromf300 K to 305.5 K. However, the flow

field and the distributions of species mole fraction are no significant different between

two different electrode lengths.

5.2 The Effect of Jet-to-Substrate Spacing Rate

5.2.1 Simulation Conditions

In order to determinate the effect of the dimensionless jet-to-substrate spacing rats
on the flow and temperature fields in a simulation of helium dielectric barrier discharge
atmospheric-pressure plasma jet, the numerical simulations are performed for five

different H/d =(5, 7.5, 10, 12.5, and 15).

The number of computational cells used in the present calculations for various
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jet-to-substrate spacing rates is list Table 5. The simulations are advanced in time until

the flow properties reach to the steady-state solutions.

5.2.2 Results and Discussion
The influence of the jet-to-substrate spacing rate on the flow and temperature is
determined. Simulations of flow properties are done by setting the dimensionless

jet-to-substrate spacing rates H/d from 5 to 15.

The temperature distributions, respectively, for an adiabatic boundary and for an
isothermal boundary for the effect of various jet-to-substrate spacing rates are plotted in
Figure 5-4 and 5-5. It can be seen that the jet-to-substrate spacing rate has an important

effect on the heat transfer performances. temperature distribution for an adiabatic

boundary is relatively high to the ermél boundary. Figure 5-6 shows the

_§|§,g§~

comparison of the mean speed s jet-to-substrate spacing rates.

The predicted streamlines STy ISnbstrate spacing rates of
H/d =(5, 7.5, 10, 12.5, and 15) at+thigsplasm@{et exit region are shown in Figure 5-7.

It is observed that the size of the primary vortex increases with increasing the
jet-to-substrate spacing ratio. With increasing jet-to-substrate spacing rate, the turning
acceleration and the velocity in the flow transverse direction will decrease. Figure 5-8
to 5-10 show the distributions of species mole fraction.

Variation in the local Nusselt number distribution with dimensionless

jet-to-substrate spacing ( H/d ) can be seen in Figure 5-11. It is clear that the relative

decrease in the local Nusselt number with increasing the dimensionless jet-to-substrate
spacing. This is due to the convection effect. The local Nusselt number at the stationary
point decreases from 3.7 to 1.8 with the dimensionless jet-to-substrate spacing

increasing from 5 to 15.The smallest dimensionless jet-to-substrate spacing rate
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(H/d =5) yielded the largest Nusselt number at the stagnation point for gas flow rate

of 20slm.

5.3 The Effect of Gas Flow Rate

5.3.1 Simulation Conditions

The influence on the flow and heat transfer characteristics of a helium
dielectric-barrier discharge atmospheric-pressure plasma jet is investigated for various
gas flow rates. The parameters used in this study are the same as the Chapter 4, except

the gas flow rate.

5.3.2 Results and Discussion

The fluid flow and heat

brings a lower temperature distribution. This phenomenon can also been discovered at
the temperature distributions for an isothermal substrate shown in Figure 5-13. A
higher gas flow rate is corresponding to a higher gas velocity shown in Figure 5-14. A
constant thermal source provided by the plasma fluid model resisting a higher gas
velocity leads a lower temperature distribution. The predicted streamlines for various

gas flow rates with H/d =10 are presented in Figure 5-15. It is observed that there is a

slight change in position and size of the vortexes as the gas flow rate changes. Figure
5-16 to 5-18 show the comparison of the distributions of species mole fraction for
various gas flow rates.

Figure 5-19 shows the time-histories of velocity at the export of the helium
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dielectric barrier discharge atmospheric-pressure jet for various helium gas flow rates
and for different thermal boundaries. The jet exit velocity increases from 6 to 17 m/s
with increasing the helium gas flow rate from 10 slm to 30 slm for d =1 mm and
H/d =10. The jet exit temperature as a function of time for different helium gas flow

rates for two different thermal boundaries is shown in Figure 5-20. At the plasma jet
exit, the temperatures decrease, respectively, from 342 to 317 K for an adiabatic
boundary and from 329 to 314 K for an isothermal boundary with increasing the gas
flow rate from 10 to 30 slm. Figure 5-21 and 5-22 show the horizontal velocity and
temperature profiles along the center line of the helium DBD APPJ for various gas flow
rates.

The approximated Reynolds numbers based on plasma jet gap distance and inflow

Nusselt number distributions along the substrate surface for various gas flow rates. The
local Nusselt numbers at the stationary point show a maximum value of 38.4 for gas
flow rate of 30 slm, and a minimum value of 10.2 for gas flow rate of 10slm. Higher gas

flow rate generates strong convection effects, which results in higher Nu.

5.4 Summary

Numerical simulations to investigate the flow and heat transfer characteristics in a
helium dielectric barrier discharge atmospheric-pressure jet are carried out for different

electrode lengths, jet-to-substrate spacing rates, and helium gas flow rates.
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Chapter 6

Conclusion and Recommendations for Future Study

6.1 Summaries of This Thesis

In this thesis, a parallelized 2D/2D-axisymmetric pressure-based, finite-volume
gas flow model has been reported. Implementation and validations against earlier
simulations data are described in detail. Developed code is then applied to simulate
two-dimensional silane/hydrogen gas discharge in a PECVD chamber, helium
micro-cell plasma and helium dielectric barrier discharge atmospheric-pressure plasma
jet.

The main conclusions of this study can

1. Parallelized 2D gas flow ahodel ng finite-volume method for simulating

be briefly summarized as follows:

o @=:e[s)r\ |
compressible, viscous, heal Juctive anc ed gas flows at all speeds with

conjugate heat transfer wasdevdlopedand-validated against previous simulations.

800,000 computational cells using 64 processors maintained about 70%.

3. Inthesilane/hydrogen gas discharge in a low-pressure PECVD chamber driven by
a RF power source (27.12 MHz), the conduction is dominated.

4. Helium micro-cell plasma is simulation coupling with a parallelized fluid
modeling code, and a reverse flow field is found with considering the plasma
momentum source.

5. A non-equilibrium atmospheric-pressure helium dielectric barrier discharge
driven by a realistic distorted-sinusoidal voltage power source (25 kHz) is
investigated by using the developed gas flow model coupling with a parallelized

fluid modeling code. Electrode lengths, jet-to-substrate spacing rates, and gas flow
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rates have a remarkable influence on the flow and heat transfer characteristics.

6.2 Recommendations for Future Work

There are several recommendations for further work:

1. To further reduce the computational time in large-scale gas flow problem.

2. To solve the gas flow model in the curvilinear coordinate frame for complex
geometry problem.

3. To involve the turbulent model for complex flows.

4. To add chemical reaction and electrochemistry module

5. To extend the gas flow model into three-dimensional version for realistic

applications
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Table 1. Lennard-Jones potential parameters. [Bird et al., 2002]

Molecular weight o &l kg
Substance
(M) (&) (K)
He 4.003 2.576 38
Ar 39.948 3.432 122.4
N, 28.013 3.667 99.8
0)) 31.999 3.433 113
Air 28.964 3.617 97
Table 2. Constant-pressure spec C and'heatiof formation of various ideal gases.

[Borgnakke & Sonntag, 2008]

C,=C,+CT+C,F (J/kg-K)

Gas AR (kJ/mol)t  C, C, C,

He 0 5193 0 0 0

Ar 0 520 0 0 0

N, 0 1110 -4.8E-04 9.6E-07 -4.2E-10
0, 0 880 -1.0E-07 5.4E-07 -3.3E-10
Air 0 1050 -3.65E-04  8.5E-07 -3.9E-10
H, 0 13460 4.6E-03 -6.85E-06  3.79E-09
SiH, 34.3 1308 - - -

T Chase, M. W. et al., JANAF Thermochemical Tables, Third Edition, J. Phys. Chem. Ref. Data, Vol. 14, Suppl.1, 1985
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Table 3. Scaling parameters used in gas flow model.

Scaling Parameter Description Unit

L, Characteristic length m

U, Characteristic speed mfs

0. Characteristic density kg /m’

T, Characteristic temperature K

U, Characteristic viscosity kg/m-s
k, Characteristic conductivity W/im-s
R, Characteristic gas constant J/mol -K

Characteristic speei

heat capacity Jlkg-K

P

Table 4. Substance parameters inthe

Material C,[J/kg-K] k[W/m-K]
Electrode Al 2750 900 228
Insulator Si0, 2200 703 1.4
Plasma He 0.16 5194 0.15
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Table 5. Test cases and results of a helium dielectric barrier discharge

atmospheric-pressure plasma jet for various H/d for d =1 mm, and gas flow rate

of 20slm.

Case H/d Nx Ny P, [Torr] Nu,,,,
a 5 140 160 760.033 35
b 7.5 150 160 760.027 2.8
c 10 160 160 750.023 2.4
d 12.5 170 160 760.02 2.1
e 15 180 160 760.018 1.8
Table 6. The approximated Rey S-AUMbErs ane temperatures for various gas
flow rates.

Gas flow rate [slm] 25 30

Re 75 90
T K 346.3 330.9 323.2 318.5 3154
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Figure 3-1: Schematic of the computational grid a in two-dimensional lid-driven
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Figure 3-2: Streamlines for driven cavity flow with Reynolds numbers of 100, 400

and 1,000 (top to bottom). Note: Ghia et al. [1982] (left); present (right).
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Figure 3-3: Streamlines for driven cavity flow with Reynolds numbers of 3200, 5000,

and 10000 (top to bottom). Note: Ghia et al. [1982] (left); present (right).
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Figure 3-4: Schematic of the flow in a square cavity with a square block.
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Figure 3-11: Distributions of (a) streamlines and (b) isotherms at Ri =5, Lx=0.25 and

Ly=0.5. Note: AT=50 K (top), 100 K (middle), and 200 K (bottom).
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Figure 3-13: Schematic of the two-dimensional micro-scale channel flow
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>

Figure 3-14: Normalization Distributions of Pressure, Density, Temperature, Velocity

in x- and y-direction in the channel at Ma=2.4261 and Kn=0.05.
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Figure 3-15: Normalization Distribution of horizontal velocity. Note: Shterev and

Stefanov [2 upper); ent (lower).

=%

Figure 3-16: Normalization Distribution of temperature. Note: Shterev and Stefanov

[2010] (upper); present (lower).
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Figure 4-1: Simulated cycle average of electron number density (a) with and (b)

without heating flow field.

71



0.028

0.026

0.024
— Dielectric
E
S
0.022
Dielectric
0.02
0.018
0.06 0.065 0.07 0.075
Xm]
0.028
0.026

0.02

0.018

0.06 0.065 0.07 0.075
Xim]
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and (b) without heating flow field.
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plasma momentum source.
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plasma momentum source.
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plasma momentum source.
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Figure 4-29. Horizontal velocity profiles in the helium DBD APPJ channel at different

x positions for d =1 mm, H/d =10, Re=60 and gas flow rate of 20 slm.
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Figure 4-30. Temperature profiles in the helium DBD APPJ channel at different x

positions for d =1 mm, H/d =10, Re=60 and gas flow rate of 20 slm.
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Figure 5-5. Comparison of the temperature distributions of an isothermal substrate for H/d = (a) 5, (b) 7.5, (¢) 10, (d) 12.5, (e) and 15,

respectively.
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Figure 5-16. Comparison of the distributions of Xy, for various gas flow rates of (a) 10 slm, (b) 15 sim, (c) 20 slm,(d) 25 slm, (e) and

30 s/m , respectively.
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Figure 5-17. Comparison of the distributions of Xy, for various gas flow rates of (a) 10 s/m, (b) 15 sim, (c) 20 sim,(d) 25 sim, (e) and

30 s/m , respectively.
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30 s/m , respectively.

118



30

10slm: BCs:N ; ==fSm— B(Cs:D
155slm: = — - BCs:N; =8== BCs:D
20slm: =.=.= BCs:N; =-&--= BCs:D
25slm: v em— BCs:N; == BCs:D
30sIm: BCs:N ; BCs:D

25

20

Lo —0-—6—©

)= m O = O D
B —A— O B A A=A fr A —A—

U [m/s]

10

II?IIIIIIIIIIIIIIIIIIII

5 = = = = = = =
0 I [ L1 [ L]
0 0.5 1 1.5 2
Time [s]

Figure 5-19. Horizontal velocity profiles at export of helium DBD APPJ as a function

of times for various gas flow rates.
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Figure 5-20. Temperature profiles at export of helium DBD APPJ as a function of

times for various gas flow rates.
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Figure 5-21. Horizontal velocity profiles along the center line of the helium DBD

APPJ for various gas flow rates.
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Figure 5-22. Temperature profiles along the center line of the helium DBD APPJ for

various gas flow rates.
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Figure 5-23. Local Nusselt number profiles along the substrate surface for various gas

flow rates.
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