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the (positive) bent function f + ( x )  = tr (ux”-’), with 
UEG’ and K ( a ) = - l ;  
the (positive) difference set fl’ = (x E GF(2”)lf’(x) = 0) = 

with r =  2*‘-’ +2‘-’, which is a union of (0) and 2‘-’  + 1  
classes mod G’; 
the code D +  =((tr(uO,);. .,tr(uO,- ,))[U E GF(2”)), which is a 
two-weight projective code with (2‘ - 1)(2‘-’ + 1 )  words of weight 
221-2 and 22‘-’ -2l-l words of weight 22‘-’ +2‘-’; 
the corresponding strongly regular graph, which is a positive 
latin square graph. 

(o ,~ , , - . , e , - , )  

B 

The cyclic multiplicative subgroup G- of order 2‘ + 1 generated 
by /3 in GF(2”); 
the (negative) bent function f-(x)= tr(bx2‘’’), with b E G-  
and b # 1; 
the (negative) difference set fl- = (x E GF(22‘)lf-(x) = 0) = 

with s = 2*‘-’ -2‘-l, which is a union of (0) and 2‘- I - 1 
classes mod G -; 
the code 
D -  = {(tr(uS,); * . , tr(u6,-,))lu E CF(2”)), which is a two- 
weight projective code with (2‘ + 1 ) Q - I  - 1) words of weight 

the corresponding strongly regular graph, which is a negative 
Latin-square graph. 

(O,S,,. . . , S s - J  

words of weight 2“-* -2l-l; 221-2 and 22t-1 +2l-l 
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On High-speed Decoding of the (23,12,7) 
Golay Code 

SHYUE-WIN WE1 A N D  CHE-HO WEI, SENIOR MEMBER, IEEE 

Abstract --An algebraic decoding method for triple-error-correcting 
binary BCH codes applicable to complete decoding of the (23,12,7) 
Golay code has been proved recently. A modified step-by-step complete 
decoding algorithm of this Golay code is introduced, which needs less 
shift-operations than Kasami’s error-trapping decoder. Based on the 
algorithm, a high speed hardware decoder of this code is proposed. 

I. INTRODUCTION 

The (23,12, 7) Golay code is the only known triple-error-cor- 
recting binary perfect code, thus a complete decoding algorithm 
can be easily achieved if any combination of three or fewer 
errors can be corrected. Since this Golay code is known as a 
cyclic code, the algebraic method for decoding cyclic codes, such 
as Kasami’s error-trapping decoder and systematic-search de- 
coder [1], can be applied to decode this Golay code. Another 
algebraic method, known as thc step-by-step decoding algo- 
rithm, was proposed by Massey in 1965 for BCH codes [2]. This 
method involves changing the received symbols one at a time 
with testing to determine whether the weight of the error 
pattern has been reduced. By the step-by-step decoding method 
for the (23,12,7) Golay codc first proposed in 1966 [3], this 
method cannot tell the difference between the cases of two 
errors and three errors. Thus, this method has two disadvan- 
tages: a) the need to consider the temporary correction of two 
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the remainder polynomial of K ( x ) x "  divided by g ( x ) .  The 
roots of this generator polynomial are confirmed as (a ,a ' ,a3,  

root of unity [5]. The received polynomial is expressed as r ( x )  = 

r,)  + r I x  + . . . + r22x22.  By using three roots a ,  a', and a y ,  we 

obtain 

a4,ah,~X,a0 ,a 'IZ, (y ' ' ,a 'h ,a1X) ,  where a is the primitive 23rd T i  = (Si ) '+  SA 

T<; = ( S y +  S i  

can compute threesyndrome values [4]: 

SI = r ( a ) ,  

S, = r ( a 3 ) ,  

S, = r(  a " ) .  

\ 

Similarly, some decision-bits can be given in the following: 

ht = I  if S,' = O 

h i  = 1 if T; = 0 (or, h i  = I if T: = 0) 

h i  = 1 if F' = 0 

(12) 

(13) 

HI = ( h \ , h i , h i ) .  (14) 

Clearly, T, = Ty = 0, if the number of errors is less than two, 
where T, = (SI), + S, and Ty =(SI)' + S,. Property 4' of [2] 

SI # 0 if the weight of error pattern is 1 or 2. Moreover, as 
confirmed by computer simulation, we observe that T, and SI 

(41 also proved that S, + Sl[(T,)2 + Ty/T,]"3 = 0 if two errors 
have occurred. Therefore, if  a new variable F E GF(2") is 
defined as 

shows that T,  # 0 if the weight of error pattern is 2 or 3, and 

are not equal to zero when the number of errors is three. Elia 

and, 

Theorem 1: If the weight of a received error pattern of the 
(23,12,7) Golay code is three or less, then the error pattern can 
be corrected by a step-by-step decoding algorithm. 

(2) F = S, + [ ( T 3 ) z +  T Y /  T 3 ]  ' I 3 ?  for T3 # i 0, for T3 = 0 

then, the different weights of error patterns can be distinguished 
from one another in terms of the relations among SI, T3 (or TJ  
and F .  That is, 

if there is no error, then SI = T, = Tc) = F = 0; 
if there is one error, then SI # 0, T, = Ty = 0 and F = 0; 
if there are two errors, then SI # 0, T3 # 0, T , # 0  and 

if there are three errors, then SI # O ,  T, #0,  T,#O and 

To abridge the decoding algorithm, according to these results, 
three decision-bits can also be defined in the following: 

F = 0; 

F # 0 .  

hy = 1 ,  if SI = 0, ( 3 )  

h! = I ,  if T, = 0, (or, h! = I if T, = 0),  (4) 

h:=1, i f F = O .  (5) 
Furthermore, these decision-bits can be included in a decision 
vector as 

H " =  (hy ,h ; ,h ; ) .  (6) 
Then, the number of errors can be correctly determined in 
terms of the pattern of vector H" if and only if the weight of the 
received error pattern is three or less. That is, H " = ( l , l , l )  
indicates that no errors have occurred; H "  = (0,1, I )  indicates 
that one error has occurred; H"=(O,O,I) indicates that two 
errors have occurred; and H "  = (0,0,0) indicates that three 
errors have occurred. Since the Golay code is a cyclic code, the 
received word can be cyclically shifted without changing the 
relationship among its syndrome values. That is, the decision 
vector H "  is changed only by changing the weights of the error 
patterns. Also, it has been shown that if the first position of r ( x )  
can be decoded correctly for all correctable error patterns, then 
the entire word can be decoded correctly with the same circuitry 
[61. Thus, we define 

Proof: 
Case 1 )  If the weight of the received error pattern is I, then 

H "  = (0, I, I). Consider temporarily changing the received infor- 
mation digits r 2 2 , r 2 1 , ' .  . , r g  one at a time. Suppose r, is an 
erroneous bit, then changing r, will reduce the weight of the 
error pattern and hence H '  = (I, I, I). Conversely, suppose r, is 
correct, then changing rl will increase the weight of the error 
pattern to two and hence, HI = (0,0, 1). 

Case 2) If the weight of the received error pattern is 2, then 
H "  = (O,O, 1). Consider temporarily changing the received infor- 
mation digits rZ2,  rZl; . ' , r I  one at a time. Suppose rI is the first 
met erroneous bit, then changing r, will reduce the weight of 
the error pattern and hence, H '  = (0, I, I). Conversely, suppose 
r, is correct, then changing r, will increase the weight of the 
error pattern to 3 and hence, H '  = (0,0,0). As the first met 
erroneous bit is found and corrected, then this case becomes 
Case 1. 

Case 3) If the weight of the received error pattern is 3,  then 
H" = (0, 0,O). Consider temporarily changing the received infor- 
mation digits r2*,  r21, .  . . , r2 one at a time. Suppose r, is the first 
met erroneous bit, then changing r, will reduce the weight of 
the error pattern and hence, HI = (0,0, 1). Conversely, suppose 
r, is correct, then changing rl will increase the weight of the 
error pattern to 4. If c ( x )  is the sent word and e ( x )  the error 
pattern, then r ( x ) +  XI = c ( x ) +  e ( x ) +  XI, and the weight of 
e ( x ) +  XI is 4. Due to the Golay code G being a 3-perfect one, 
there is a unique word c , ( x )  in G such that r ( x ) +  XI = c , ( x ) +  
e , ( x )  where the weight of e , (x )  is at most 3 and the information 
on that weight is given by H I .  It follows that the word c , ( x ) =  
e ( x ) +  e , ( x ) +  X I  belongs to G because it is equal to c ( x ) +  c , ( x ) .  
Considering the weightsof c , ( x ) ,  e ( x ) +  XI and e , ( x )  we deduce 
that the only possible weight for e , ( x )  is 3 because the minimum 
weight of G is 7. So we get H '  = (O,O,O). (The fact is also given 
by [7]J As the first met erroneous bit is found and corrected, 
then this case becomes Case 2. 0 

In summary, a received word can be correctly decoded if the 

Using the previous theorem, the complete decoding algorithm 
weight of its received error pattern is three or less. 

of the (23,12,7) Golay code is described as follows. 
S ; = S , + l  i = 1 , 3 , 9 ,  (7) 

where S,' are the syndrome values of r ( x ) +  1. From S,', we can 
1) Calculate initial syndrome values S, ( i  = 1,3,9) and then 

obtain HI'. 
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2) If H o = ( l , l , l ) ,  read out r ( x )  and end this algorithm; 
otherwise, go to next step. 

3) Shift r ( x ) ,  and calculate S,' ( 1  = 1,3,9) and H I .  
4) If H" = (0,1,1) and HI = (1,1, l), then change the magni- 

tude of the first position of shifted r ( x ) ,  refresh S, and 
H 0  by setting SI = S,' and HI'= H I ,  and go to Step 2); 
otherwise, go to next step. 

5 )  If H" = (O,O, 1) and HI = (0,1, l), then change the magni- 
tude of the first position of shifted r ( x ) ,  refresh SI and 
HI' by setting SI = S,' and H O =  H I ,  and go to Step 7); 
otherwise, go to next step. 

6) If H o  = (O,O, 0) and H = (O,O, I), then change the magni- 
tude of the first position of shifted r ( x ) ,  refresh SI and 
H "  by setting SI  = S: and H" = H I .  Go to next step. 

7) If all the 12 information digits have been decoded, then 
the decoding of r ( x )  is completed; otherwise, go to 
Step 3). 

The modified step-by-step algorithm needs only 35 shift-oper- 
ations for decoding one received word, where 23 shift-oper- 
ations are used for calculating the initial syndrome values SI in 
Step 1) and the other 12 shift-operations are used for correcting 
the errors in information part. 

111. HARDWARE DECODER 

This modified step-by-step decoding algorithm can be easily 
implemented by hardware circuits. Fig. 1 shows the functional 
block diagram of the hardware decoder. It is partitioned into 
three parts: syndrome calculation circuit, comparison circuit and 
decision circuit. The decoder is similar to a new decoder of 
binary BCH codes presented recently [SI. The syndrome calcula- 
tion circuit is used to calculate the syndrome values Sl ( I  = 0 , l ;  

%UT + 

SYNDROME I 
CALCULATION CIRCUIT rm 

E c f 4  COMPARISON CIRCUIT 

E, 

I f 
Fig. 1. Functional block diagram of decoder. + is I I-bit bus line, # is 

3-bit bus line, + is I-bit signal line. 

i = 1,3,9), and the comparison circuit is used to determine the 
decision bits h: ( I  = 0 , l ;  j = 1,2,3). The decision circuit is used 
to perform the operations in Steps 4-6. It can be realized by a 
logical circuit or a read-only-memory (ROM) circuit of size 
2' X 1 bits. Table I shows the truth table of the decision circuit. 
According to the decision bits, the decision circuit can tell 
whether the decoding bit of r ( x )  is erroneous or not. If the 
corresponding bit is judged to be an erroneous bit, the decoder 
sends a correcting-bit E,. to change its magnitude, and then 
refresh the syndrome values and decision bits. The syndrome 
calculation circuit and decision circuit are quite simple. The 
design of the comparison circuit is described as follows. 

TABLE I 
TRLJTII TAHI r: OF- T I IE  DECISION C I R W I T  

Input Output  Comment  
h': h'; h': h \  h i  h \  E,  

0 1 1 1 I I I Find the  first e r ror  
0 0 1 0 1 1 1 Find the  second error 
0 0 0 0 0 1 I Find the  third e r ror  

O t h e r  cases 0 

h: h; 
Fig. 2. Comparison circuit of (23.12,7) Golay code. ---f is 1 I-bit bus line, 

+ is I-bit signal line, €3 is cellular-array multiplier, @ is adder in GF(2") .  

To determine these decision bits, the values of Ti,  7'& and F' 
( I  = 0, l )  in GF(2") must be computed first. The add operation 
in GF(2") is quite simple which can be accomplished by using a 
set of 11 pieces of 2-input Exclusive-OR gates. To perform the 
multiplication operation in GF(2I1), a static cellular-array multi- 
plier can be cmployed [9], where the computation time of a 
multiplication for cellular-array multiplier needs 22 gate delays. 
Moreover, the calculation of power of an element in GF(2") 
(e.g., can be implemented by using ROM circuits of 
2" X 11 bits with table-lookup. The ROM circuits can reduce 
the computation time and may be easily implemented in VLSI 
circuits. At the present time, the access time of a ROM can be 
reduced to under 35 ns (e.g., XL46HC64 SpeedPROM). Simi- 
larly, functions ( - ) I / '  and ( . ) - I  can also be implemented by 
ROM circuits since the cubic root and the inverse of any 
element in GF(2") are also in GF(2"). Furthermore, to shorten 
the computation path, we define F' = F ' / S i  (since Si # 0 when 
errors have occurred, F' = 0 implies F'=  0). Then, the block 
diagram of the comparison circuit can be implemented as Fig. 2. 
Finally, after finding the values of Si, T i  and F', the decision 
bits h: can be dctcrmined by using three simple zero-checkers, 
one of which consists of one 11-input NOR gate. In Fig. 2, the 
decision bits h; must be refreshed if an erroneous bit is found. 
Therefore, three refresh circuits are cascaded with the zero- 

U 
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chcckers. In the refresh circuits, gatc 4 is used to save the initial 
decision bits in the storage stage while gate 5 is used to do the 
refreshing operation. 

The proper operation sequence of the decoder is similar to 
the new decoder of [8]. Since the comparison and decision 
circuits are static logic circuits, only 35 clock cycles are required 
for decoding a received word. The decoding speed of this 
decoder is determined by the period of the clock, which is 
dominantly determined by the propagation time (i.e., calculation 
time) of the comparison circuit. In the longest computation path 
in Fig. 2, it needs to access ROM circuits three times and to 
perform three additions and one multiplication. Assume the 
delay time of a multiplication for a cellular-array multiplier is 
100 ns and the access time for a ROM circuit is 50 ns. Then, 
the calculation time of the comparison circuit can be accom- 
plished within 300 ns and thus, a clock rate at 3 MHz can be 
achieved. This means that the decoder can work at  a rate up to 
(23/35) X 3 = 2 Mb/s. 

IV. CONCLUSION 

Kasami’s error-trapping decoder is one of the best known 
decoders for decoding the (23,12,7) Golay code. In Kasami’s 
decoder 46 shift-operations are required for decoding one com- 
pleted received word, while the new step-by-step method only 
requires 35 shift-operations if the code word is in systematic 
form. Thus, this new step-by-step decoder is faster than the 
Kasami’s decoder with the same clock rate. Consequently, this 
new decoding algorithm is suitable for hardware implementa- 
tion, and a high speed decoder of this code is presented. This 
decoder requires also 35 clock cycles for decoding one word, 
and can work at a data rate up to 2 Mb/s. If the Chien’s search 
method is employed, it needs two circuits to calculate the 
syndrome values and the coefficients of the error location poly- 
nomial. The complexities of these circuits are comparable to the 
syndrome calculation circuit and the comparison circuit of the 
new step-by-step decoder. However, the Chien’s search method 
still needs a complex circuit to  search or solve for the roots of 
the error location polynomial [5 ,  101. Therefore, the new step- 
by-step decoder is less complex than the Chien’s-search method 
implemented by hardware circuits. 
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There is No Binary [25,8,10] Code 
DYVIND YTREHUS A N D  TOR HELLESETH 

Abstract-The existence of a binary [25,8,10] code is  considered. It is 
shown that such a code must have a generator matrix of a specific form. 
However, all generator matrices of this form were tested and none 
generated a [25,8,10] code. 

I. Is THERE A [25,8,10] CODE? 

An [ n , k , d ]  code is a binary linear block code with block 
length n,  dimension k, and minimum Hamming distance d. 
Define 

n( k ,  d )  min (nl an [ n ,  k ,  d ]  code exists}. 
A strongly related quantity is 

d ( n , k ) P m a x { d l a n [ n , k , d ]  code exists} 

Although general lower and upper bounds on n ( k , d )  exist, it 
can sometimes be hard to determine n ( k , d )  exactly. [ l ]  gives a 
table of bounds on d(n ,  k )  for 1 I k I n I 127. For k I 7, n(k ,  d )  
is completely determined for any d. However, for d I 80, n(8, d )  
remains undetermined for a number of values of d [2]. In 
particular, the smallest unsolved case is n(8,lO) where it is 
known [ l ]  that 

The question to be considered in the following is: 
25 I n(8,lO) I 26. (1)  

Is there a [25,8,10] code? 

11. No 

Main Assumption: 
8 is a [25,8,10] code. (2) 

Lemma 1: There is a generator matrix G‘ for 8 of the form 

I 1  0 0 11 .;\ 
( 0  1 0 11 . $ I  

(3) 

where r /  E (0, 1}21, i = 1,2,3, and GI is a generator matrix of a 
[21,5,10] code. 

Proof Let G”’ be a generator matrix of 6, let 6l  be the 
dual code of 8, and let d be the minimum distance of t I. 
Since, from [l], n(17,5) 2 26, it is clear that d I 4. Then there 
exist d L  columns of G”’, say, col,,col,;~ . , c o I ~ L  such that 

d l  

1 col;= [ j. 
i = l  
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