量化姿態角及訊號傳播之誤差於福爾摩沙衛星三號之軌道求定

研究生: 曾子榜

指導教授: 黃金維

國立交通大學土木工程學系

摘要

福爾摩沙衛星三號(FORMOSAT-3/COSMIC, F3/C)發射於 2006 年 4 月 15 日,為台美 合作的衛星任務。此任務共有 6 顆微衛星被發射升空,每顆衛星均裝載 2 個 POD GPS 天線。本研究使用 GPS 無差分觀測量與利用減動力法與動態法進行 LEO 軌道的解算, 並且將 F3/C 與 GRACE 衛星進行 GPS 觀測量品質分析比較。對於 F3/C 與 GRACE 衛 星,其電碼觀測量之多路徑效應的影響分別為 P1 (MP1),0.77 m 和 0.35 m; P2 (MP2) 1.06 m 和 0.57 m; 週波脫落發生的頻率分別為 1/29 和 1/84; 後驗單位權標準偏差分別為 4 cm 和 1 cm; 動力軌道與動態軌道之差異分別為, 10 cm 和 2 cm。

本文進行 F3/C 衛星質量中心(COM)的變化、衛星姿態、GPS 天線相位中心的變化 和纜線延遲影響之相關性的研究。在本研究中, nominal 姿態給定出的 F3/C 軌道優於 observed 姿態給定的軌道。數值的測試顯示出,為了不破壞軌道的求定,F3/C 的 COM 必須精準地被率定。 兩條不同的 30 小時軌道弧長被使用於 5 小時和 6 小時之軌道重疊 分析,而動力軌道與動態軌道之精度幾近相同,且落於 2-3 cm 的精度。本研究的軌道 與 UCAR(near real-time)和 WHU (post-processed)比較,差異大約為 10 cm,其原因為力 模式、GPS 軌道與 GPS 時錶改正之不同所致。而本研究的 F3/C 動態軌道將被使用於地 球時變重力場之反衍。利用 F3/C GPS 資料進行重力場的求定,仔細的選擇 GPS 資料是 必須的。然而由於 F3/C 共有 6 顆衛星,其大量的軌道資料量將可以補足 GPS 資料品質 的缺陷。

而另一個評估定位品質的方法,就是利用量化姿態誤差。姿態轉換矩陣主要用於座標框架之間的轉換,而當中之間的軌道精度損失可能發生於不穩定的姿態控制時段。使用時間段 DOY 118 to 336, 2008 的 GPS 資料進行評估,可得 F3/C 定位精度依序為 FM1 (2.72 cm), FM2 (2.62 cm), FM3 (2.37 cm), FM4 (1.90 cm), FM5 (1.70 cm), and FM6 (1.99 cm).

Quantification of attitude error and signal propagation error in the GPS orbit determination of FORMOSAT-3/COSMIC

Student : Tzu-Pang Tseng

Advisor : Cheinway Hwang

Department of Civil Engineering National Chiao Tung University

Abstract

The joint Taiwan-US mission FORMOSAT-3/COSMIC (F3/C) was launched on April 15, 2006. Each of the six satellites is equipped with two precise orbit determination (POD) antennas. The POD antennas of F3/C and GRACE-A satellites are from the same manufacturer, but are installed in different configurations. The LEO satellites are determined from GPS data using undifference carrier-phase measurements by the reduced dynamic and kinematic methods. This study compares the qualities of GPS observables from F3/C and GRACE. Using selected satellites and time spans, the following average values for the satellite F3/C and satellite A of GRACE are obtained: multipath effect on the pseudorange P1 (MP1), 0.77 m and 0.35 m; multipath effect on the pseudorange P2 (MP2), 1.06 m and 0.57 m; occurrence frequency of cycle slip, 1/29 and 1/84; standard error of unit weight, 4 cm and 1 cm; dynamic-kinematic orbit difference, 10 cm and 2 cm.

The effects of satellite center of mass (COM) variation, satellite attitude, GPS antenna phase center variation (PCV), and cable delay difference on the F3/C orbit determination are studied. Nominal attitudes estimated from satellite state vectors deliver a better orbit accuracy when compared to observed attitude. Numerical tests show that the F3/C COM must be precisely calibrated in order not to corrupt orbit determination. Based on the analyses of the 5-h and 6-h orbit overlaps of two 30-h arcs, orbit accuracies from the reduced dynamic and

kinematic solutions are nearly identical and are at the 2-3 cm level. The mean RMS difference between the orbits from this study and those from UCAR (near real-time) and WHU (post-processed) is about 10 cm, which is largely due to different uses of GPS ephemerides, high-rate GPS clocks and force models. The kinematic orbits of F3/C are expected to be used for recovery of temporal variations in the gravity field. For gravity determination using F3/C GPS data, a careful selection of GPS data is critical. With six satellites in orbit, F3/C's large amount of GPS data will make up the deficiency in data quality

An alternative assessment of the positioning quality is made by propagating attitude error to orbit error. The attitude transformation matrix is responsible for coordinate frame conversions, and a degraded orbit accuracy in the F3/C satellites might occur under an unstable attitude control. This assessment, using GPS data of DOY 118 to 336, 2008, leads to the following 3-D positioning accuracies: 2.72, 2.62, 2.37, 1.90, 1.70, and 1.99 cm for FM1, ..., and FM6.

Table	of	Contents
-------	----	----------

Abstract (in Chinese)	I
Abstract	III
Table of Contents	V
List of Tables	VIII
List of Figures	X
Acronyms	XIII
Chapter 1 Introduction	1
1.1 Motivation	1
1.2 Review of recent LEO missions	
1.2.1 CHAMP mission	
1.2.2 GRACE mission	5
1.2.3 GOCE mission	7
1.3 Literature review	9
1.4 Outline of thesis	
Chapter 2 GPS observables for orbit determination	
2.1 Observation types	12
2.1.1 Code pseudorange	
2.1.2 Phase pseudorange	14
2.2 Linear combination of observations	16
2.2.1 Ionosphere-free linear combination	16
2.2.2 Geometry-free linear combination	17
2.2.3 Multipath equation	17
Chapter 3 F3/C spacecraft and GPS payload	19
3.1 Spacecraft geometry	19
3.2 Satellite center of mass and variation	

3.3 Gain pattern, phase center offset and variation of antenna	24
3.3.1 Gain pattern	25
3.3.2 Phase center offset and variation	27
3.4 Cable delay difference between two GPS antennas	29
Chapter 4 Quality analysis of GPS data for orbit determination	31
4.1 Status and acquisition of F3/C GPS POD data	31
4.2 Code multipath	35
4.3 Ionospheric delay and cycle slip	46
Chapter 5 Attitude determination and control system for F3/C	54
5.1 Spacecraft attitude definition	54
5.2 Attitude determination and control system	58
5.3 Stabilize/Safehold mode in ARS	62
5.4 Nadir mode in ARS	65
5.5 Nadir-Yaw mode in ARS	66
5.5.1 Nadir Yaw-Fixed	66
5.5.2 Nadir Yaw-Steering	67
5.5.2.1 Optimal Yaw-Steering	68
5.5.2.2 Inverse Yaw-Steering	70
5.6 Analysis of attitude control based on ground test	72
Chapter 6 Precise orbit determination for FORMOSAT-3/COSMIC	80
6.1 GPS ephemeris and clock correction products	80
6.2 Reduce-dynamic orbit determination	84
6.3 Kinematic orbit determination	89
6.4 Effect of PCV and COM on F3/C orbit	92
6.4.1 Effect of satellite COM on orbit	92
6.4.2 Effect of PCV on orbit	94

6.5 Analysis of phase residuals	95
6.6 Quality assessment for differences between kinematic and reduce-dyn	namic
orbits	99
6.7 Assessment of orbit accuracy	101
6.7.1 Assessment based on orbit overlaps	101
6.7.2 Comparison with UCAR and WHU orbits	103
Chapter 7 Attitude control effect on orbit determination and quantification of at	titude
error	105
7.1 Effect of attitude error and choice of attitude data	105
7.2 Data size and β angle	108
7.3 Residuals in the eclipse and sun acquisition	109
7.4 Quantification of attitude error based on kinematic orbit determination	112
7.4.1 Procedure of estimated baseline between POD antenna phase center and sa	ıtellite
COM	112
7.4.2 Quantification of attitude error	113
7.4.3 Assessment of positioning accuracy	115
Chapter 8 Conclusions and outlook	117
8.1 Conclusions	117
8.2 Future work	118
Reference	120
Curriculum Vitae	128

List of Table

Table 2-1: Differences between reduced-dynamic and kinematic orbits using raw and
smoothed code observations in the earth-fixed frame14
Table 3-1: Coordinates of the two POD antennas (in m) in the spacecraft coordinate frame for F3/C
Table 3-2: Boresight vector of the two POD antennas (in m) in the spacecraft coordinate
frame for F3/C21
Table 3-3: Coordinates of center of mass (in mm) in the spacecraft coordinate frame at
different masses of propellant23
Table 3-4: Antenna phase center offsets (in mm) from the anechoic chamber test
Table 3-5: Maximum PCV of L3 for different solar array drive (SAD) angles
Table 4-1: A summary report of TEQC for FMs and GRACE-A based on GPS data over 126
days since DOY 240, 2008
Table 4-2: Number of daily cycle slips and outliers of F3/C and GRACE satellites over 126
days since DOY 240, 2008
Table 4-3: Number of average daily GPS ambiguity parameters 53
Table 5-1: Attitude errors and attitude-induced coordinate errors (in x , y , z) in the inertial
frame
Table 5-2: The mean attitude excursion associated with Fig. 5-10
Table 6-1: The comparison of GPS orbit and clock products from CODE and IGS
Table 6-2: RMS differences (in cm) between orbits with and without COM bias; (a) FM5 (2
cm bias in spacecraft Z); (b) GRACE-B (1 cm bias in spacecraft Z)93
Table 6-3: RMS overlap differences of orbits (in cm) with and without PCV (FM5, Day 214
to 220, 2006
Table 6-4: Average daily number of GPS observations (0.1 Hz) and a posteriori standard error
of unit weight (cm) for six F3/C satellites over 300 days since DOY 100, 200798
Table 6-5: Statistics of daily RMS values (in cm) of the dynamic - kinematic orbit differences

in the earth-fixed system over 300 days since DOY 100, 2007100
Table 6-6: RMS overlap differences of orbits (in cm) based on 5-h and 6-h overlaps using
kinematic approach for 25 days102
Table 6-7: RMS overlap differences of orbits based (in cm) on 5-h and 6-h overlaps using
dynamic approach for 25 days102
Table 6-8: RMS orbit differences (in cm) between NCTU and UCAR and between NCTU
and WHU, FM5, Days 216 to 218, dynamic orbit104
Table 7-1: Statistics of observed attitudes (in degree), FM5, Day 214 to 220, 2006106
Table 7-2: RMS overlap differences of orbits (in cm) computed with observed and nominal
attitudes, FM5, Day 214 to 220, 2006108
Table 7-3: Mean and standard deviation (STD) of the differences between estimated and
given baseline lengths
Table 7-4: Average RMS difference over 249 days from the baseline-difference
method116

List of Figures

Fig. 1-1: F3/C spacecraft
Fig. 1-2: CHAMP satellite body
Fig. 1-3: EIGEN-CHAMP03S Gravity Anomalies in mgal
Fig. 1-4: EIGEN-CHAMP03S Geoid in meter
Fig. 1-5: GRACE satellite body
Fig. 1-6: EIGEN-GRACE02S Gravity Anomalies
Fig. 1-7: EIGEN-GRACE02S Geoid model
Fig. 1-8: GOCE satellite body
Fig. 3-1: F3/C spacecraft and its payloads20
Fig. 3-2: Side view of satellites (a) F3/C and (b) GRACE, showing the normal (central axis of
boresight) of the GPS antenna for each
Fig. 3-3: Picture of F3/C spacecraft mockup mounted upside down in the anechoic chamber
the solar arrays are oriented at 90 degrees
Fig. 3-4: Gain pattern for (a) L1 and (b) L2 with the SAD angle of 0°
Fig. 3-5: Maximum and minimum gain for L1 and L2 within FOV of 120° from boresight27
Fig. 3-6: Phase center variations of L3 as a function of azimuth (0°-360°) and zenith angle
(0°-90°). The zenith angle is 0° at the center and 90° at the edge
Fig. 3-7: Average phase center variations of a POD antenna for L1 and L2 from the anechoic
chamber test
Fig. 3-8: Differences between clock corrections for the POD+X and -X antennas of FM5, Day
216, 2006
Fig. 4-1: Orbit maneuver schedule of F3/C. The day is counted since January 1, 200631
Fig. 4-2: The numbers of tracked GPS satellites at the two POD antennas for satellite FM2
and FM4 on Day 178, 2008
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Fig. 4-3: Example of sky plots of the default antenna for F3/C and GRACE35
Fig. 4-4: (a) MP1 of FM3; (b) MP2 of FM3; (c) MP1 of GRACE-A (d) MP2 of GRACE-A
(in m)
<b>Fig. 4-5:</b> C/N0 values for S23 associated with Fig. 4-4 (c) (d)
Fig. 4-6: Mean elevation angle and RMS values of MP1 and MP2 for (a) FM3 and (b)
GRACE-A40
<b>Fig. 4-7:</b> MP1 of F3/C and GRACE satellites
Fig. 4-8: MP2 of F3/C and GRACE satellites
<b>Fig. 4-9:</b> Daily mean elevation angle for F3/C and GRACE satellites
<b>Fig. 4-10:</b> Number of daily observation of F3/C and GRACE satellites
Fig. 4-11: Noises of GPS phase observations for FM4 on DOY 27, 200847
Fig. 4-12: Variations of IOD (shifted by 50 m) and C/N0 and elevation angle in the antenna
frame for S20 on DOY 27, 200847
Fig. 4-13: Time-derivative of ionospheric delay (IOD) for (a) FM3 and (b) GRACE-A and (c)
SNR of S06 for FM3 associated with Fig 4-13(a) on DOY 201, 200850
Fig. 4-14: Number of daily cycle slips and outliers of F3/C and GRACE satellites
Fig. 4-15: (a) Number of daily GPS observation epochs and (b) number of daily ambiguity
parameters for satellites FM3, FM4 and GRACE-A, since DOY 10053
Fig. 5-1: Spacecraft coordinate frame of a F3/C satellite, +X points to the direction of flight
and +Z points to the nadir direction
Fig 5-2: ADCS functional block diagram60
<b>Fig. 5-3:</b> Mode transition diagram of ADCS in the mode logic block
Fig. 5-4: F3/C in the safehold/stabilized mode63
<b>Fig. 5-5:</b> $\beta = 0^{\circ}$ (left) and $\beta = 90^{\circ}$ (right)
<b>Fig. 5-6:</b> The angle of the solar array at $\beta$ =75.01°69
<b>Fig. 5-7:</b> (a) The SAD angle and (b) yaw attitude angle of F3/C at $\beta$ =43° for FM1 DOY 108, XI

2008
<b>Fig. 5-8:</b> angle of the solar array at $\beta$ =2.21°
Fig. 5-9: The yaw variation in eclipse for FM4 DOY 178, 200875
Fig. 5-10: Daily attitude excursion of each F3/C (a) FM1 (b) FM2 (c) FM3 (d) FM4 (e) FM5
(f) FM6 in 2008
Fig. 6-1: Flowchart for POD procedure
Fig. 6-2: 1-day residuals of FM6 using 30s (blue) and 5s (red) HRC
Fig. 6-3: Differences between two dynamic orbits determined from two different force modes
in the along-track direction for FM1, DOY 360, 2008
Fig. 6-4: Phase residuals (for one day) from the dynamic orbit determination for (a) FM3 and
(b) GRACE-A, in different color scales
Fig. 6-5: The a posteriori standard error of unit weight for F3/C satellites, beginning from
DOY 100, 2007
Fig. 6-6: RMS differences in the earth-fixed system XYZ between kinematic and dynamic
orbits, since DOY 100, 2007
<b>Fig. 7-1:</b> Observed attitudes of FM5 from Day 214 to 220, 2006106
Fig. 7-2: Differences between orbits using nominal and observed attitudes, FM5, Day 214 to
220, 2006
<b>Fig. 7-3:</b> Data volume of both POD antennas as a function of $\beta$ angle for FM4109
Fig. 7-4: (a) Right-hand circular polarization system and (b) linear polarization system111
Fig. 7-5: Residuals associated with yaw variation for FM4 DOY 148, 2008111
<b>Fig. 7-6:</b> The procedure of estimating the baseline
Fig. 7-7: Differences between estimated and given baselines in the spacecraft frame for FM3
DOY 209, 2008114
Fig. 7-8: Daily RMS difference between estimated and given baseline lengths for FM5

# Acronyms

ACS	Attitude Control System
ADCS	Attitude Determination and Control System
ARS	Attitude Reference System
ATM	Attitude Transformation Matrix
BRE	Broad Reach Engineering
C/N0	Carrier-to-Noise ratio
CHAMP	Challenging Minisatellite Payload
CODE	Center for Orbit Determination in Europe
СОМ	Center Of Mass
ESA	European Space Agency
F3/C	FORMOSAT-3/COSMIC
GOCE	Gravity field and steady-state Ocean Circulation Explorer
GOX	GPS Occultation Experimental Receiver
GPS	Global Positioning System
GRACE	Gravity Recovery and Climate Experiment
HRC	High-Rate Clock
IGOR	Integration GPS and Occultation Receiver
IGS	International GNSS Service
IOD	Ionospheric Delay
JPL	Jet Propulsion Laboratory
KBR	K-Band Ranging
LEO	Low Earth Orbiter
LVLH	Local Vertical-Local Horizontal
MIT	Massachusetts institute of Technology

NRCan	Natural Resources Canada
NRL	Naval Research Laboratory
NRT	Near-Real Time
NSPO	National Space Organization
PCO	Phase Center Offset
PCV	Phase Center Variation
POD	Precise Orbit Determination
PPP	Precise Point Positioning
QC	Quality Check
RINEX	Receiver Independent Exchange
SAD	Solar Array Drive
SLR	Satellite Laser Ranging
STD	Standard Deviation
TBB	Tri-Band Beacon
TEC	Total Electron Content
TEQC	Translation, Editing and Quality Checking
TIP	Tiny Ionospheric Photometer
UCAR	University Corporation for Atmospheric Research