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摘 要 
 

 快速傅利葉轉換處理器是許多通訊系統中的關鍵元件，利用快速傅利

葉轉換處理器的設計自動化，可減輕系統設計的時程壓力。在設計管線

化快速傅利葉轉換處理器時，處理級(Process Element)的字元長度是重要

的參數。在本篇論文中，我們提出關於管線化快速傅利葉轉換處理器每

一級的字元長度對訊號對量化雜訊比(SQNR)的統計學模型。更進一步

地，提出透過混合使用統計與模擬誤差分析的管線化快速傅利葉轉換處

理器字元長度的最佳化流程。在系統設計者所提供的快速傅利葉處理器

點數、訊號對量化雜訊比和處理器速度限制條件下，本方法可於數秒內

自動地產生一組最佳化的字元長度參數。實驗的結果顯示，此快速的最

佳化流程可縮小 8192點管線化快速傅利葉轉換處理器面積達 24%。 
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Abstract 

 
 The Fast Fourier Transform (FFT) processor is a key component in many 

communication systems. To reduce design time of FFT processors through design 

automation is to reduce the time pressure of system designers. When implementing a 

pipelined FFT processor the wordlength is of great importance. This thesis describes a 

statistical error model of pipelined FFT processors that calculates the signal to 

quantization noise ratio (SQNR) with wordlength of each process element (PE) stage. 

Furthermore, to speed up the design of specified FFT processor, a hybrid optimization 

method with statistical and simulation-based error analysis is presented. Under 

constraints of the number of FFT points, SQNR, and required processors speed, the 

optimized wordlength set for each PE stage can be generated within several seconds. 

The experimental results designate that this speedy flow can reduce 24% area of 

8192-point pipelined FFT processors. 
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Chapter 1 
 
Introduction 
 

The FFT is one of the most widely used digital signal processing algorithms. Recently, 

attention has been returned to real-time FFT processors in many communication systems. 

For example, FFT is one of the major building blocks in an Orthogonal Frequency 

Division Multiplexing (OFDM) based system, as shown in Figure1.1 [3], like HDTV, 

xDSL modems, and wide band mobile terminals.  

S/P Signal
Mapper IFFT

x bits

Serial
Data
Input

P/S

d(0)

d(1)

d(N-1)

Guard
Interval

Insertion

D/A
LPF

Up
Converter

Channel

Down
Converter

LPF
A/D

Guard
Interval

Remo val
S/PFFTOne-tap

Equalizer
Signal

MapperP/S

x bits

Serial
Data

Output

S/P Signal
Mapper IFFT

x bits

Serial
Data
Input

P/S

d(0)

d(1)

d(N-1)

Guard
Interval

Insertion

D/A
LPF

Up
Converter

Channel

Down
Converter

LPF
A/D

Guard
Interval

Remo val
S/PFFTOne-tap

Equalizer
Signal

MapperP/S

x bits

Serial
Data

Output

 

Figure 1.1  Architecture View of OFDM  

There are many possible architecture choices for FFT processors. Among them, the 

pipelined FFT architectures that are particularly suitable for real-time applications since it 
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can easily be merged with the sequential nature of sampling. It is suitable for VLSI 

technology progresses because it is regular and its control circuit is easy to implement. 

In the pipelined FFT architectures, the most research effort has been relative to the 

regular module implementations, which uses fixed wordlength for both data and 

coefficients for each stage. The possibility to use different wordlength is often ignored to 

achieve modulized solutions. However the fast growing use of Intellectual Property (IP) 

makes the non-module implementation viable, which allows us to exploit the pipeline 

architectures further. The wordlength may affect the precision, quantization error, and 

complexity of hardware. The increased wordlength will increase the precision and decrease 

the quantization error at the cost of area and power. On the other hand, to maintain a lower 

hardware cost, a shorter wordlength may be chosen at the sacrifice of the precision.  

In general, a FFT can’t be implemented exactly. Each multiplier and adder in 

pipelined FFT architectures may introduce an error caused by the rounding or truncation of 

the arithmetic results. Errors will accumulate successively over the FFT stages. The error 

introduced at the early stages may influence the performance in the later stages. Therefore, 

it is required to find an optimized solution of wordlength in pipelined FFT processors. 

The statistical method and simulation-based method are popular for FFT error 

analysis between signal-to-quantization-noise ratio (SQNR) and wordlength. The SQNR 

can be calculated quickly by statistical model. With the advent of more powerful 

computers recently, SQNR of different algorithms and different architectures can be 

accurately simulated.  

    Stage level statistical error analysis method of pipelined FFT processor will be 

presented in this thesis. Furthermore, a hybrid wordlength optimization method of 

pipelined FFT processor will be introduced. The wordlength parameters of each stage are 
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generated automatically by using the constraints of point of FFT, SQNR, and throughput of 

processors.  

The rest of this thesis is organized as follows. In Chapter 2, a brief review of FFT 

algorithms and architectures is given. Error analysis methods are introduced in Chapter 3.  

In Chapter 4, the wordlength optimization of our approach is presented step-by-step. The 

experimental results are then presented in Chapter 5. Finally, the conclusions and the future 

works are given in Chapter 5. 
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Chapter 2 
 
Review of FFT 
 

    Substantial literatures are available on algorithm and architecture of FFT. In this 

chapter, we will briefly review some popular types of algorithms of FFT. And we will 

introduce architectures of FFT.  

 

2.1  FFT Algorithms 
    The Discrete Fourier Transform (DFT) plays a significant role in the region of digital 

signal processing (DSP) and communications. However, the computational complexity of 

direct evaluation of an N-point DFT is , which costs a long computation time and 

large power. Thus, there is a great requirement to develop a fast DFT algorithm. Many FFT 

algorithms have been derived to reduce computation complexity, such as Cooley-Turkey 

algorithm [1] [2], Rader algorithm [2], and Winograd algorithm [2]. Among them, the 

Cooley-Turkey algorithm is very popular because it can reduce the computational 

complexity from  to , and the regularity of the algorithm makes it 

suitable for VLSI implementation. It will be discussed in this section.  

)( 2NO

)( 2NO )log( 2 NNO
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2.1.1  Basic Concepts of FFT Algorithms 

    FFT algorithms are approaches to compute DFT. The formulation of N length DFT is 

define as equation (2.1).  

                    , nk
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N
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WnxkX ∑
−

=

=
1

0

)()( 1,.......,1,0 −= Nk                 (2.1) 

where the coefficient  is defined as equation (2.2) and is called twiddle factor, and the  nk
NW

)2sin()2cos(
2
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nkeW N

nkj
nk

N
πππ
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               (2.2) 

symmetric property is showed in Figure 2.1. The  is in frequency domain, and 

 is in time domain. Algorithms in which the decomposition is based on decomposing 

 term are called decimation-in-time (DIT) algorithms. On the other hand, algorithms 

in which the decomposition is based on decomposing  are called 

decimation-in-frequency (DIF) algorithms.  

)(kX

)(nx

)(nx
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Figure 2.1  Symmetric Property of Twiddle Factor 
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2.1.2  Fixed-Radix FFT Algorithms 

    Fixed-Radix algorithms include the radix-2, radix-4/radix-22, radix-8/radix-23, etc. 

Among them, the radix-2 algorithm is the simplest one. The radix-4 algorithm has the 

smallest multiplicative complexity. And the radix-22 has benefits of radix-2 and radix-4. 

They will be reviewed in this section. 

 

2.1.2.1 Radix-2 Algorithm 

    The radix-2 algorithm is using the divide-and-conquer approach with which algorithm 

is dividing the problem of N point FFT, where N is power-of-2, by factor of 2. With the 

symmetric property of equation (2.2), , the equation (2.3) will be founded.  2/Nnk
N

nk
N WW +−=

nk
N

nk
N

N
N

Nnk
N

nk
N WBAWWBAWBWA ×−=××+=×+× + )()( 2/2/            (2.3) 

By using the property of equation (2.3), the summation of equation (2.1) can be divided 

into two summations in equation (2.4), and it is the equation of radix-2 DIF.   

           ∑
−

=

++=
12/

0
2/)]2/()([)2(

N

n

nr
NWNnxnxrX

       ,   ∑
−
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12/
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N
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N
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The addition and the subtraction operation of  and )(nx )2/( Nnx +  in equation (2.4) are 

called the butterfly (BF) operation as shown in Figure 2.2. After log2N - times recursive 

decomposing, the complete radix-2 DIF algorithm can be obtained. Figure 2.3 shows the 

Signal Flow Graph (SFG) of N=16 radix-2 DIF algorithm FFT.  

 

 
Figure 2.2  Butterfly Graph of the Radix-2 DIF FFT 

 6



 
 

 

        Figure 2.3  SFG of 16 Point Radix-2 DIF FFT 

 

2.1.2.2 Radix-4 Algorithm 

There is another symmetry property of equation (2.2) shown in equation (2.5).  

nk
N

Nnk
N

Nnk
N jWWW −=−= ++ 4/34/                         (2.5) 

Because of the –j term, we only need to exchange 2’s complement of real part data and 

image part data instead of applying multiplication operation. The arithmetic cost can be 

reduced. The equation of radix-4 DIF [4] is shown in equation (2.6).  
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The mapping butterfly graph of equation (2.6) is shown in Figure 2.4. 
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      Figure 2.4  Butterfly Graph of Radix-4 DIF FFT 

 

2.1.2.3 Radix-22 Algorithm 

If we further divide the equation (2.6), we can get the equation (2.7) of radix-22 [4]. It 

implements the radix-4 BF by two radix-2 BFs. The mapping butterfly graph of equation 

(2.7) is shown in Figure 2.5. 
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Figure 2.5  Butterfly Graph of Radix- DIF FFT 22
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2.1.3  Split-Radix FFT Algorithms 

    The computation cost of the Fixed-Radix algorithm FFT can be further reduced by 

combining radix-2 and radix-4 or radix-2 and radix-8, called Split-Radix algorithm. It has 

fewer multiplications and additions. So, they have advantage on computational complexity. 

But, they are not regular as radix-2r algorithms and seldom used in ASIC design. The most 

popular split-radix algorithms are proposed by Duhamel et al. [5]. 

 

2.2  FFT Architectures 
    The FFT is one of the most widely used digital signal processing algorithms. Recently, 

attention has been returned to real-time processors in many communication systems. There 

are many architecture choices for these processors. Among them, the pipelined 

architectures are particularly suitable for real-time applications since they are easily 

merged with the sequential nature of sampling. And they are popular for large FFT VLSI 

realization too, due to their high regularity.  

    In this section, we will introduce the pipeline-based architecture. The architecture that 

we want to discuss is used to implement DIF FFT algorithms. Similar structures can be 

designed for DIT FFT algorithms, too. 

    Several architectures for pipelined FFT processors have bean proposed. There are 

Radix-2 Multi-path Delay Commutator (R2MDC) [6], Radix-2 Single-path Delay 

Feedback (R2SDF) [7], Radix-22 Single-path Delay Feedback (R22SDF) [8][9], Radix-4 

Single-path Delay Feedback (R4SDF) [6], Radix-4 Multi-path Delay Commutator 

(R4MDC) [6], etc. They will be introduced in this section. 
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 R2MDC 

It is the most straightforward way to reorganize the data for FFT algorithms. At each 

stage half the data stream is delayed via the memory and processed with the second 

half data stream. An 16-point R2MDC is shown in Figure 2.6.  
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Figure 2.6  R2MDC Architecture (N=16) 

 

 R2SDF 

Since memory in R2MDC is idle at 50% of time, it can be reused as shown in Figure 

2.7 This scheme utilizes the different arrival time of input data and processed data. 

The utilization of the memory is 100%.  

32

PE x x x x -j

16

PE

8

PE

4

PE

2

PE

1

PE

32

PE x x x x -j

16

PE

8

PE

4

PE

2

PE

1

PE
 

                       Figure 2.7  R2SDF Architecture (N=64) 

 

 R4MDC 

It is similar with R2MDC, but it utilizes only 25% of time for memory. A 256-point 

R4MDC is shown in Figure 2.8.  

192

PE x 16C4
128
64 x 32

x 48

48

PE x 4C4
32
16 x 8

x 12

12

PE x 1C4
8
4 x 2

x 3

3

PEC4
2
1

192

PE x 16C4
128
64 x 32

x 48

48

PE x 4C4
32
16 x 8

x 12

12

PE x 1C4
8
4 x 2

x 3

3

PEC4
2
1

 

Figure 2.8  R4MDC Architecture (N=256) 
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 R4SDF 

It is a radix-4 version of R2SDF. It is as efficient as R2SDF in terms of memory 

utilization and the utilization of multipliers increases from 50% to 75% at a cost of 

only 25% utilization of the BF element. A 64-point R4SDF is shown in Figure 2.9. 

x

4

PE

4
4

16

PE

16
16

x

1

PE

1
1

x

4

PE

4
4

16

PE

16
16

x

1

PE

1
1

 

Figure 2.9  R4SDF Architecture (N=64) 

 

 R22SDF 

It breaks one radix-4 BF operation into two radix-2 BF operation with trivial 

multiplications of  and 1± j± . With a feedback mechanism, the memory is fully 

utilized as R2SDF and R4SDF. A 64-point R22SDF is shown in Figure 2.10. 
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Figure 2.10  R2 SDF Architecture (N=64) 2

 

 

Table 2.1  Summary of N Point Pipelined FFT Architectures 
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Summary of these architectures are shown in Table 2.1 [5]. The delay feedback 

approached are always more efficient than corresponding delay commutator approaches in 

terms of memory requirements. The Radix-4 algorithm based single-path architectures 

have fewer multipliers than those of radix-2 algorithm. However, radix-2 algorithm based 

architectures have properties of simple and regular. And radix-22 algorithm is characterized 

with the trait that it has same multiplicative complexity as radix-4 algorithms but still 

retains the radix-2 butterfly structure. In this thesis we will focus on R2SDF and R22SDF 

architectures.  

The detail architecture with control unit of R2SDF and R22SDF is shown in Figure 

2.11(a). The butterfly process element (PE) has two kinds of operation modes. Mode 1 is 

used to store the data in the shift register, wait several cycles to compute and multiply with 

twiddle factors, while mode 2 is responsible for butterfly computation, showed in Figure 

2.11(b). 

 

(a) 

           

                                           (b) 

Figure 2.11  Units of R2SDF and R22SDF (N=16) 
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Chapter 3 
 
Error Analysis 
 

    Fixed-point arithmetic is popular for FFT hardware implementation for its simplicity. 

Because of the finite wordlength in the computation, we have to truncate or round the 

answers when overflow occurs after addition or multiplication; thus, errors are produced. 

The statistical error analysis and simulation-based error analysis are the two most popular 

methods for FFT error analysis. Many papers about statistical and simulation-based error 

analysis of fixed-point FFT have been published [10-14]. The previous statistical error 

analysis is not sufficient for our purpose of choosing the required wordlength stage by 

stage. We derive a simplified statistical error model to meet the requirement.  

    In this chapter, we will briefly review the quantization error analysis first. Second, we 

will introduce the statistical error models in which wordlength can be freely chosen stage 

by stage. Third, the simulation environment will be briefly reviewed. Then accuracy of our 

error models will be evaluated by comparing it with that of the simulation-based error 

analysis.  

 

3.1  Error Analysis of Quantization 
    The basic formula for the quantization error analysis is shown below. Let X be a 
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finite-length sequence  ; )}({ nx 1,...,2,1,0 −= Nn . The expected value of X is shown in 

equation (3.1). It is zero-mean random sequence at the quantizer input. The variance of X is 

denoted by  and is shown in equation (3.2).  2
xσ
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where the  in equation (3.1) and (3.2) is the expected value operator.  ][⋅E

A quantizer  maps X into the discrete-valued Y. Thus, the quantization error 

. Denote the boundaries by  and the reconstruction levels by , 

then the output of this quantizer is shown in equation (3.3) and the quantization error 

variance, denoted by , is then given by equation (3.4).  
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Finally, the equation of SQNR is shown in equation (3.5) 

                          2

2

q

xSQNR
σ
σ

=                                (3.5) 

    For example, if the input is uniformly distributed in the interval (-1, 1) and the output 

is 2 + 1 bits sign-fractional discrete-valued data. The input-output mapping is shown in 

Figure 3.1(a). It is shown that, if the input data are in the interval  then the output 

data of them are all have the same value as 0. If the input data are in the interval  

then the output data of them are 0.25, and so on. The related quantization error mapping is 

shown in Figure 3.1(b).  

)25.0,0[

)5.0,25.0[
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(a) 

 

 
(b) 

Figure 3.1 Information of 2+1 Bits Quantizer 

 

3.2  Statistical Error Models of FFT 

    The previous FFT error analysis and model of DIF radix-2 algorithm have been 

presented by Sundaramurthy et al. [12] . They assume that all the wordlength of all PE 

stages is the same. This is insufficient for applications that allow the different wordlength 
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between PE stages.  

Due to the finite wordlength in the computation, we have to truncate or round the 

answers after calculation. And the FFT computation is an iterative process and the value 

increases in magnitude. The problem of overflowing should be concerned.  

In order to prevent overflow and to ensure output accuracy, data need to be scaled. 

There are two scaling methods to prevent FFT from overflow. One is overall scaling and 

the other is stage-by-stage scaling [2]. The input constraint of FFT with overall scaling is 

N
nx 1)( < , and there is no need to divide the input of each butterfly by two. The input 

constraint of FFT with stage-by-stage scaling is 1)( <nx , and the input data should be 

divided by 2 for each butterfly. Due to the noise consideration [14] the stage-by-stage 

scaling will be used in this thesis.  

    In this section we aim on delivering statistical FFT error models for DIF radix-2 and 

radix-4 algorithms with stage-by-stage scaling scheme. These models are useable for case 

having the different wordlength stage by stage.  

 

3.2.1 Definitions and Constraints 

     In these analyses, we assume fixed-point arithmetic with  bit wordlength 

and signed fraction, where k is the stage number of PE stage. The input of N-point FFT, 

denoted by  where 

)1( +kb

)(mx 1,...,2,1,0 −= Nm , is a sequence of finite valued complex 

numbers. Numbers are consisted by 2N real random variable and they are uncorrelated. 

And they are distributed uniformly in )
2

1,
2
1( − . Note the range of )

2
1,

2
1( −  is 

consistent with the condition that 1)( <mx  for all m. The effect of the inaccuracy in the 

twiddle factor, , is not treated here. The truncation operations are all modeled as 

mutually uncorrelated.  

pW

 16



 
 

k o

3.2.2 Expected Noise Sources 

Figure 3.2 shows the error model of PE stage with stage-by-stage scaling by 2. There are 

several noise sources having been considered. They are the quantization error of 

wordlength difference between PE stages, denote by , the quantization error of scaling, 

denoted by , the quantization error of complex multiplication of twiddle factor, 

denoted by , and the insufficient output wordlength error, denoted by . 

2
kqσ

2
ksσ

2
mσ 2

Qσ

 
Figure 3.2  Error Model of PE Stage 

 

  and  
2

kqσ 2
ksσ

The  is produced when the wordlength of stage k-1, denoted by , is greater 

then that of stage k, denoted by .  is the variance of truncated bits from  to . 

The scaling error is produced when 

2
kqσ 1-kb

kb 2
kqσ 1-kb kb

11- +< kk bb . A complex scaling consists of two real 

scaling, i.e., the real and imaginary parts of the number are scaled separately. Scaling by a 

factor 
2
1  involves a 1-bit right shift and truncation of the last bit.  is the variance of 

this bit.  

2
ksσ

The sum of errors  and  can be replaced as the error of directly scaling the 

data of stage k-1 then truncate to . This new error is denoted by  to replace the 

combination error of old  and . It is shown in equation (3.6). 

2
kqσ 2

ksσ

kb 2
ksσ

2
sσ

k k

2
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    It is assumed that a complex multiplication is implemented by four real 

multiplications and each real multiplication is truncated separately. The complex 

multiplication error variance, denoted by , is equal to the variance of truncated bits of 

the result of multiplication. It is shown in equation (3.7). 
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    If the output wordlength is small then the output wordlength of the last PE stage the 

quantization error will be produced. The variance  is shown in equation (3.8), where 

the  is the wordlength of the last PE stage and the  is the FFT output wordlength. 
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3.2.3 Output Signal to Quantization Noise Ratio (SQNR) 

   Since all the noise sources are assumed to be uncorrelated, the variance of the noise at 

output node of the SFG of Figure 2.5 is the sum of contributions from all the individual 

noise sources that propagate to that output node. Some of noise variance of output nodes 
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that is contributed by  is denoted by , and the contribution of  is denoted by 

.  

2
ksσ 2

Sσ 2
kmσ

2
Mσ

    From Figure 3.3, the propagation of  in 8-point DIF Radix-2 it can be found. The 

number of error source  propagating to any output node from the first, second, and 

third stage are 8, 4, and 2, respectively. And the equation of  is shown below, equation 

(3.9), where the total stage number n is equal to log

2
ksσ

2
ksσ

2
Sσ

2N, and the factor of kn−)
4
1(  is the 

effect of scaling on the error propagating at stage k.  

The  of DIF Radix-22
Sσ 2 algorithm is the same as DIF Radix-2. 

 

 

Figure 3.3  Propagating Flow of Quantization and Scaling Errors 
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It can be assumed that all the complex multiplications are noisy for convenience of 

derivation. Figure 3.4 show that the propagation of  in 8-point DIF Radix-2 algorithm 2
mσ

k
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SFG. In general, there are four, half of 8,  in each stage, and each  from the first 

(k=1), second (k=2), and third (k=3) stage propagates to 4, 2, and 1 output nodes. Hence it 

is easy to show  in equation (3.10). 

2
kmσ 2

kmσ
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     Figure 3.4  Propagating Flow of Mutiplication Errors 
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The corresponding expression of  of Radix-22
Mσ 2 algorithm is shown in equation (3.11) 
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 In obtaining equation (3.10) and (3.11), it is assumed that all complex multiplications 

are noisy. But multiplications associated with twiddle factor  or  

introduce no errors. Figure 3.5 shows the position of noiseless twiddle factors of 8-point 

Radix-2 algorithm. The propagation of these noise sources is identical to that in the . 

1±=pW jW p ±=

2
Mσ
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Thus, denoting the noise variance contribution of these multiplications by , and the 

expression of  is shown in equation (3.12). The corresponding expression of Radix-2

2
Cσ

2
Cσ 2 

algorithm is shown in equation (3.13). 

 

Figure 3.5  Propagating Flow of Noiseless Mutiplication 
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The average output signal variance is in equation (3.14) [2].  

                 
Nx 3
12 =σ                                (3.14) 

Finally, the SQNR expression is shown in equation (3.15). 
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3.3  Simulation-Based Error Analysis of FFT 

     There are many papers about simulation-based error analysis being published.  

Johansson et al. published a paper on simulation-based error analysis [17] in 1999. The C 

model is used to perform the simulation. User can get the proper result under their 

constraints. The wordlength of each stage, rounding or truncation for each stage, number of 

stages to do scaling, and the number of bits are parameters which can be chosen by users. 

Figure 3.6 shows the simulation environment of SQNR. It compares the outputs of 

fixed-point FFT and floating-point FFT to calculate the SQNR. The SQNR calculation 

expression is shown in equation (3.16).  

 
Figure 3.6  Simulation Environment of SQNR 
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3.4  Verifications 

    Since the SQNR can be calculated by simulation-based error analysis the simulation 

setup can be used to verify our new error models too.  

    The wordlength 8 to 32 bits is the popular selection to implement fixed-point FFT 

architectures. In this section, we will calculate the SQNR by statistical and 

simulation-based methods for 8, 16, …, 8192 points DIF Radix-2 FFT and 16, 64,…, 4096 

points DIF Radix-22 FFT with the freely chosen wordlength from 8 to 32 bits for each PE 
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stage. Then, we will compare the results to verify statistical error models.  

    First, we choose wordlength, 8 to 32 bits, for each PE stage randomly. Second, we 

will compare all wordlength set in a special range.  

 

3.4.1  Random Verification 

    For example, we randomly generate 20 wordlength sets of 1024 points DIF Radix-2 

FFT. The input worldlength is equal to that of the first PE stage, and the output wordlength 

is equal to that of the last PE stage. Then, calculate the SQNR by statistical and 

simulation-based methods, respectively. Then, the SQNR difference between them can be 

calculated. Table 3.1 shows the results. The first column shows the number of wordlength 

sets, next column shows the wordlength of each PE stage, column 3 shows the result 

SQNR of simulation-based error analysis, column 4 shows the SQNR result of statistical 

error analysis, and the last column is the difference of SQNR.  

 
    Table 3.1  Examples of Random Verification (N=1024) 
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    We had compared 10000 wordlength sets for 1024-point FFT of Radix-2 and Radix-22 

algorithm. The maximum difference of Radix-2 is almost within 1± dB. The maximum 

difference of Radix-22 for each FFT is almost within 1.1± dB. Fig. 3.7(a) shows the 

distribution of difference of 1024-point Radix-2 FFT, Fig. 3.7(b) shows the 1024-point 

Radix-22 FFT.  

 

 

(a) 

 

(b) 

    Figure 3.7  Results of Random Verification of Radix-2 and Radix22  
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3.4,2  Partial Exhaustive Verification 

    To exhaustively compare all wordlength sets of 8 to 32 bits is not practical because 

the simulation time is not endurable. However we can do exhaustive comparison in some 

special range, maybe some of the solution space, to verify. We had chosen the wordlength 

11 to 18 bits to do partially exhaustive comparison of 64 points DIF Radix-2 and Radix-22 

FFT. They spent about 130 hours comparison time, and the results are shown in Figure 3.8. 

The difference is within dB.  1.1±

 

 (a) 

 
(b) 

            Figure 3.8  Results of Partial Exhaustive Verification of Radix-2 and Radix22  

Section 3.4.1 and 3.4.2 clearly show that the result obtained from the statistical error 

model can be very close to that obtained from the simulation-based approach. 
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Chapter 4 
 
Wordlength Optimization 
 

    The wordlength is an important design parameter. It will affect both the performance 

and complexity. Longer wordlength is preferred for good precision. But, increase 

wordlength will increase the complexity. It will increase the size of memory and 

computational units and thereby increase power consumption and decrease performance. 

Hence, the wordlength requires careful optimization.  

    In this chapter, we will briefly review the design flow of FFT processor first. Then, 

we will describe our approach, hybrid wordlength optimization method. Finally, two 

examples are shown.  

 

4.1 FFT Processor Design Flow 
    There are many factors have to be considered o design the FFT processor. Figure 4.1 

shows the over all design flow of FFT processor. First, system requirements need to be 

specified. They are points of FFT, SQNR, throughput, area, power, …, etc. Then, the 

proper FFT algorithm and FFT architecture need to be chosen. Finally, the wordlength of 

architecture need to be analyzed.  
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 Figure 4.1  Design Flow of FFT Processors 

    When the FFT is implemented as a fully custom ASIC, the wordlength of each stage 

can be freely chosen except input and output wordlengths of FFT processor, which are 

system specified. Internal wordlengths of FFT processor can be chosen to decide the 

precision and complexity. In general, longer wordlength is preferred for better precision of 

numbers. On the other hand, increase the wordlength will increase the complexity, it will 

increase the hardware cost, power consumption, and decrease the speed. Thereby, the 

optimization is a trade-off between precision and complexity. 

    To reduce the time of over all system design, the automatic wordlength optimization 

solution is preferred. A simulation-based method on pipelined FFT had presented by Lin 

[3]. We will present a faster hybrid method in this thesis. Figure 4.2 outlines the 

automation flow. There are four steps in sequence, i.e., upper bound wordlength evaluation, 

lower bound wordlength evaluation, optimized wordlength candidate searching, and 

optimized wordlength selection. Additionally, there are some tables and libraries built 

offline to speed up this flow.  
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Figure 4.2  Over All Flow of Wordlength Optimization 

 

4.2 Wordlength Generation 
    Items in Fig. 4.2 will be introduced in this section. This flow is to optimize the area 

under input constraints. Input constraints include points of FFT, SQNR, throughput, FFT 

input and output wordlength, SQNR simulation confidence interval, and SQNR simulation 

error. The output data are wordlengths of each PE stage. 

 

4.2.1 Library and Table 

    Since we optimize hardware cost, the relative hardware library needs to be chosen.  

Adder, multiplier, multiplexer, read only memory (ROM), and shift register are five basic 

elements of FFT. Hardware library decides the area and critical path to wordlength table 

for these components [3]. 

    PE stages are hardware blocks in the wordlength generation flow, which is built by 
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the basic components. We need a table that stores the information of area and critical path 

for each PE stage to speed up the automation flow, PE stage table [3].  

    In Figure 4.2, the mean of SQNR variance table is used to calculate the simulation 

times of different confidents of simulation [3].  

 

4.2.2 Upper Bound Wordlength Evaluation 

    Throughput is one of the input constraints. Satisfy the throughput constraint implies 

that the critical path must be short enough to meet equation (4.1). In other words, it means 

that some stages violate the timing of pipeline if there are critical paths greater then 

throughput
1 .  

throughput
pathcritical 1

<                               (4.1) 

The upper bound wordlength(UBW) is defined as the largest possible wordlength 

such that the critical path of the corresponding PE stage satisfies equation (4.1). And, the 

upper bound wordlength set (UBW) is defined as a set which includes all wordlength of 

PE stages and each wordlength is UBW. Note that we use bold print to denote a set and 

light print to denote the element in a set. For example, if the UBW of 1024-point FFT (10 

PE stages) is {14 15 15 16 17 18 18 18 19 20} then the UBW of stage 1 (UBW1) is 14, 

UBW2 is 15, UBW3 is 15, and so on.  
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Figure 4.3  Flow of Upper Bound Wordlength Evaluation 

    Fig. 4.3 shows the flow of UBW evaluation. There are three conditions to stop the 

evaluation. Condition 1, the UBW is founded if SQNR and throughput constraints are both 

met. Condition 2, the optimization is failed if the SQNR constraint can’t be met. The 

maximum possible SQNR will be reported before stop. Condition 3, the optimization is 

failed if throughput constraint can’t be met. The maximum possible throughput will be 

proposed before stop.  

 

4.2.3 Lower Bound Wordlength Evaluation 

    The lower bound wordlength (LBW) is defined such that if any wordlength of PE 

stage is equal to LBW, the SQNR of new set is just small than the SQNR of input 

constraint. The lower bound wordlength set (LBW) is defined as }1,|{ nxNxLBWx ≤≤∈ , 
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x means the xth PE stage. Based on the definition of LBW, it is easy to see that SQNR of 

LBW is small then the SQNR of input constraint.  

    Fig. 4.4 shows the flow of LBW evaluation. The input are N (point of FFT), SQNR, 

input and output wordlength, and UBW. Then, the output is LBW 

 

 

     Figure 4.4  Flow of Lower Bound Wordlength Evaluation 

Fig. 4.5 shows an example of LBW evaluation. Where the iSQNR is the input 

SQNR constraint. The step of Fig. 4.5 is top to bottom and left to right. The arrow shows 

the detail steps. And the more than,“>”, and small than, “<”, mean the comparison results 

between SQNR of statistical error analysis and SQNR of input constraint.  
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   Figure 4.5  Example of Lower Bound Wordlength Evaluation (N=64) 

 

4.2.4 Optimized Wordlength Candidate (OWC) Searching 

 

4.2.4.1 Optimization Format 

    Since the FFT processor uses large memories especially in the early stages. Figure 4.6 

shows the area increment of each PE stage when the wordlength of each stage was added 

by 1 bit. Therefore, to keep the wordlength short in the early stages is a good choice for 

area optimization.  

    The property of output SQNR of pipeline FFT processor is shown in equation (4.2). 
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where  is constant of PE stage n,  are wordlength of PE stage n. It is easy to see 

that if there exists one 

na nb

nxNxx ≤≤∈ 1 , ,  such that 

, then, the PE stage x will be the bottleneck of  xmnmNmaa mb
m

xb
x

mx ≠≤≤∈>> ++ ,1,   22

output SQNR. In the other word, the value of  will be 

dominated by . So, the wordlength of each stage is efficient when they are close.  
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     Figure 4.6  Area Increment of Add Wordlength 1 Bit of Each Stage (N=8192) 

    Due to upon properties the expected optimization wordlength set will be sorted in 

ascending order from stage 1 to stage n, and the wordlength is closed stage by stage. {11 

11 12 13 13 14} and {14 14 14 14 15 16} for examples. We refer these schemes of 

wordlegth set as optimization format for simplicity in the remaining section.  

 

4.2.4.2 OWC Searching Flow 

The optimized wordlength set candidates (OWC) have three properties. (1) It is 

between LPW and UBW. (2) It is in optimization format. (3) The SQNR of FFT processor 

meets the input SQNR constraint when the wordlength scheme is the same as that of any 
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OWC.  

To search the OWC, we scan the wordlength set from LBW to UBW and compare 

SQNR of each set with the input SQNR constraint. Figure 4.7 shows the flow of OWC 

searching. The output of this flow is the OWC Array. It contains all the information of 

OWC and is sorted by area size. 

 

 

 

Figure 4.7  Flow of Optimized Wordlength Candidate Searching 

 

4.2.5 Optimized Wordlength (OW) Selection 

    The OW is an OWC which has the smallest area size and good SQNR. There are two 

methods to get the optimized wordlength in OWC Array. Method 1, the optimized 

wordlength set will be found by simulation-based method if user’s SQNR error constraint 

is under 1 dB. Method 2, the optimized wordlength set will be found by statistical 

method if users SQNR error constraint is more than 

±

± 1 dB.  
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    Figure 4.8 shows the flow of OW selection. In Method 1, we simulate all OWC of 

OWC Array one by one from the one with the smallest area size until the SQNR of 

simulation meets the SQNR of the input constraint. In Method 2, we judge all the OWC in 

OWC Array by a benefit function to get the OWC with the best benefit. The benefit 

function is shown in equation (4.3).  

increamentsizearea
increamentSQNRBenefit

 
 

=                              (4.3) 

where the increment is the difference between the SQNR or area size of LBW and those of 

OWC.  

 

 

 

Figure 4.8  Flow of Optimized Wordlength Selection 
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4.3 Examples of Wordlength Optimization 

 

4.3.1 Hybrid Method  

    Input constraints of this example are {N=1024(n=10), SQNR=45 dB, 

input_wordlength=output_wordlength=18, throughput=50MHz, and SQNR_error=0.1 dB}. 

Since the SQNR_error constraint is smaller than 1±  dB, the hybrid method will be used. 

Figure 4.9 shows the steps of this example. The “sim_SQNR” means the result of 

simulation and the “iSQNR” means the SQNR of input constraint.  

 

 

Figure 4.9  Example of Hybrid Wordlength Optimization Method 
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4.3.2 Pure Statistical Method  

        Input constraints of this example are {N=1024 (n=10), SQNR=45 dB, 

input_wordlength=output_wordlength=18, throughput=50MHz , and SQNR_error=1.1 

dB}. Since the SQNR_error constraint is more than 1±  dB the pure statistical method 

will be used. Figure 4.10 shows the steps of this example.  

 

 
Figure 4.10  Example of Pure Statistical Method 
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Chapter 5 
 
Experimental Results 
 

5.1 Introduction 

We implement two FFT architectures, including DIF R2SDF and DIF R2 SDF. The 

range of N can be adjusted from 8 to 8192 points, and wordlength from 8 to 32 bits in each 

stage. We pipe each PE stage of FFT architectures and apply stage-by-stage scaling.  

2

In order to compare the performance with previous work [3], the same hardware 

libraries are used here.  

Logic gate model includes adder, multiplier, and multiplexer. We conduct synthesis 

without any constraints by Synopsys Design Analyzer [19] and the TSMC 0.25um cell 

library and Synopsys DesignWare [18] are used. The fast carry look-ahead synthesis model 

for adder, Booth-encoded Wallace tree synthesis model for multiplier, and universal 

multiplexer synthesis model for multiplexer are adopted and area and timing reports of 

Synopsys Design Analyzer are used for these models. Memory model includes shift 

register and ROM also use TSMC 0.25um cell library.  

    The SQNR range between 40 to 60 dB had been used in most system. It is for our 

experimentations too. Two common FFT design specifications that are typically used in 

OFDM systems [22] had been summarized in Table 5.1.  
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Complex, word-sequential50MHz16-256Short Length

Complex, word-sequential20MHz256-8192Long Length

I/OOperating freq.Size

Complex, word-sequential50MHz16-256Short Length

Complex, word-sequential20MHz256-8192Long Length

I/OOperating freq.Size

 
Table 5.1  Specification of Common FFT for OFDM 

    To implement the proposed flow, the C++ language with SystemC library is used. The 

SystemC library is used for fixed-point type to model the behavior of fixed-point hardware. 

The quantization mode is always truncation (SC_TRN) and the overflow mode is 

saturation (SC_SAT) in our experimentations.  

    Finally, the platform is built in a PC with Intel 2.4GHz CPU and 768M Memory. The 

operation system is Microsoft Windows 2000. The Visual C++ 6.0 is used for compiler.  

 

5.2 Results 
     The experimental results of R2SDF and R22SDF wordlength optimization will be 

showed in this section.  

 

5.2.1 Optimization of Different Constraint 

    Results of experiments with different constraints will be introduced in this 

sub-section.  

 

5.2.1.1 FFT Point Constraint 

    Experimental result of area optimization for point from 8 points to 8192 points is 

presented in Table 5.2. Table 5.2(a) is for DIF R2SDF and Table 5.2(b) is for DIF R22SDF. 

Constraints include: SQNR is 45(dB), SQNR error is 0.1(dB), SQNR simulation 

confidence interval is at the level of 95%, the throughput is 50MHz, and the input and 

output wordlengths are 18 (bits). Since the constraint of maximum allowable SQNR error 

is small then 1 dB, the hybrid method will be used. In these tables, the first column “Point” 
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presents the point of FFT processor. The column of “Pre-Post” represents that parameters 

in the row with “Pre” belong to traditional design, without optimization, or parameters in 

the  row with “Post” are optimized.  

 

(a) 

 

(b) 

Table 5.2  Area Optimization of Different FFT Point (IO Wordlength=18)  
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The column of “Area Reduction” presents the reduction rate of area, calculated by 

%100
_

__
×

−
areapre

areapostareapre . The last column “Time” shows the computer time of 

optimization. It can be see that the greater N with the greater area reduction rate, generally. 

The maximum and minimum area reduction rates for DIF R2SDF are 24% and 9% and 

those are 23% and 6% for DIF R22SDF.  

 

5.2.1.2 Input Wordlength and Output Wordlength 

 Table 5.3 introduces the experimental results with different input and output 

wordlength constraints to those of Table 5.2. The input wordlength is 14 bits and the output 

wordlength is 14 bits. The area reduction rate is still the same when point range in 8 to 

1024. There is no solution when the point number is greater than 1024.  

 
(a) 
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(b) 

Table 5.3  Area Optimization of Different FFT Point (IO Wordlength=14)  

Figure 5.1 shows the difference of area reduction rate between these two input and output 

wordlengths.  

 

 
(a) 
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(b) 

Figure 5.1  Area Reduction Rate of IO Wordlength=18 and 14 Bits 

 

5.2.1.3 SQNR 

    Figure 5.3 presents the area reduction rate for different SQNR constraint of DIF 

R2SDF and DIF R22SDF. Constraint of SQNR error is 0.1(dB), SQNR simulation 

confidence interval is at the level of 95%, the throughput is 50MHz, and the input and 

output wordlengths are 18.The SQNR of traditional design increases 6 dB if all wordlength 

increases 1 bit. It can be found that 6 dB is a cycle of area reduction rate for different 

SQNR constraint, too. The range of area reduction rate is from 12% to 20%.  
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Figure 5.2  Area Reduction Rate vs. SQNR Constraint  

 

5.2.1.4 SQNR Error 

   Table 5.4 shows the experimental results with the same constraints except SQNR error 

is 1.1 dB as that in Table 5.2(a). Since the allowable SQNR error is great than 1 dB, the 

pure statistical error analysis method will be used. The SQNR of these optimized 

wordlength sets had been verified by simulation based-method for accuracy, introduced in 

column “Post-SQNR”. The maximum insufficient error of SQNR is 0.18 dB. In other 

words, it is -0.4% of SQNR constraint. 

 44



 
 

 

Table 5.4  Area Optimization of Different FFT Point (SQNR Error = 1.1dB)  

 

5.2.2 Special Cases of Optimization 

 

5.2.2.1 Absolute Constraint Over  

    There is only one advice for conditions that are scaling down to meet the constraint of 

hardware library. There are two conditions about these cases. First, the throughput 

constraint is great then the maximum throughput of hardware library. The maximum 

throughput of hardware library is the throughput for the wordlength set with the minimum 

wordlength of hardware library for all stages. If 2 is the minimum wordlength of hardware 

library, then the {2 2 2 2 2 2 …} is the wordlength set of maximum throughout. Second, 

the SQNR constraint is great than the maximum SQNR of hardware library. The maximum 

SQNR of hardware library is the SQNR for the wordlength set with maximum wordlength 

of hardware library for all stages. If 32 is the maximum wordlength of hardware library 

then the {32 32 32 32 32 32 …} is the wordlength set of maximum SQNR.  
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 Figure 5.3 shows the output messages. Figure 5.3 (a) is the output message when the 

related user constraints are N=1024, SQNR=45dB, the input wordlength and output 

wordlength are 18, and the throughput constraint is 200MHz. The throughput constraint, 

200MHz, is over the maximum throughput, 171MHz, of hardware library. Figure 5.3(b) is 

the output message when the related user constraints are N=1024, SQNR=80dB, the input 

wordlength and output wordlength are 18, and the throughput constraint is 50MHz. The 

SQNR constraint, 80dB, is over the maximum SQNR, 69dB, of hardware library.  

 

(a) 

 

(b) 

Figure 5.3  Output Message of Generator when There is No Solution   

 

5.2.2.2 Partial Constraint Over 

    This case happens when some constraints are over and all constraints are within 

hardware library constraints. The proper ranges will be presented for tread-off. Figure 5.4 

is the output message when the related user constraints are N=1024, SQNR=68dB, the 

input wordlength and output wordlength=18, and the throughput constraint is 77MHz. The 

SQNR constraint, 68dB, with the throughput constraint, 77MHz, can’t be met. The output 

message is to advise user how to trade off.  

 

Figure 5.4  Output Message of Generator when There is No Solution   
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5.2.3 Methods Comparison 

The area reduction and the computation time of optimization will be compared in this 

sub-section. First, the comparison between previous work [3] and our hybrid method will 

be shown. Then, the comparison between our hybrid method and the pure statistical 

method will be introduced.  

 

5.2.3.1 Previous Work vs. Our Work 

    The previous work [3] is to optimize wordlength by the pure simulation-based method. 

And our hybrid method is combined with simulation-based and statistical method. Figure 

5.5 presents the post area and computing time of these methods. It shows that results of 

optimized area of these methods are equally. But the computing time of our method is 

much faster especially when the FFT length is longer.  

   

    Figure 5.5  Comparison Result between Pure Simulation-Based and Hybrid Method  
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5.2.3.2 Our Hybrid Method vs. Our Pure Statistical Method 

    There are two kinds of optimization methods in our work. The hybrid method is the 

first one, used whenever the allowable maximum SQNR error constraint is less than 1 dB. 

Second, the pure statistical method is used whenever the allowable maximum SQNR error 

constraint is greater than 1 dB. The comparison result of these methods is presented in 

Figure 5.6. It is the figure of the area reduction rate and computing time. It can be found 

that the area reduction rates of these two method are equally but the computing time of 

pure statistical method is much faster. 

   It is interesting to note that the area reduction rate is better when there are insufficient 

SQNR error occurred in optimizations of 128, 512 and 2048 point FFT, in Table 5.4, of 

pure statistical method.  

    

       Figure 5.6  Comparison Result between Hybrid and Pure Statistical Method 
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Chapter 6 
 
Conclusions and Future Works 
 

    In this thesis, a statistical error analysis method between SQNR and wordlength of 

each PE stage of pipelined FFT processors is presented. New hybrid wordlength 

optimization method on area reduction for pipelined FFT processors based on statistical 

and simulation-based error analysis is introduced, which is fast then the pure 

simulation-based method. We also presented a pure statistical wordlength optimization 

method. It generates the optimized wordlength of FFT processors just in several seconds 

even the point number of FFT is 8192. With our generator, the advice will still be given 

even there are no solution under user constraints.  

    Increase wordlength of FFT processors will increase the power consumption. 

Therefore, wordlength optimization for power consumption is another attractive topic. 

Actually, the accuracy of our optimization method depends on the accuracy of the given 

hardware library. And to build a precise hardware library for area or power is a difficult 

challenge. 
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