
國 立 交 通 大 學

電機資訊學院電子與光電學程

碩 士 論 文

利用混合方法進行管線化快速傅利葉
轉換處理器的字元長度最佳化之研究

Hybrid Wordlength Optimization Methods

of Pipelined FFT Processors

 研 究 生 : 郭 志 彬

 指導教授 : 周 景 揚 教授

中華民國 九十三 年 八 月

利用混合方法進行管線化快速傅利葉
轉換處理器的字元長度最佳化之研究

Hybrid Wordlength Optimization Methods
of Pipelined FFT Processors

研 究 生: 郭 志 彬 Student : Chih-Bin Kuo
指導教授: 周 景 揚 Advisor : Jing-Yang Jou

國 立 交 通 大 學

電機資訊學院電子與光電學程

碩 士 論 文

A Thesis
Submitted to Degree Program of Electrical Engineering Computer

Science
College of Electrical Engineering and Computer Science

National Chiao Tung University
in Partial Fulfillment of the Requirements

for the Degree of
Master of Science

in
Electronics and Electro-Optical Engineering

August 2004
Hsinchu, Taiwan, Republic of China

中華民國 九十三 年 八 月

利用混合方法進行快速傅利葉轉換
處理器的字元長度最佳化之研究

研究生：郭 志 彬 指導教授：周 景 揚 教授

國立交通大學

電機資訊學院 電子與光電學程 (研究所) 碩士班

摘 要

 快速傅利葉轉換處理器是許多通訊系統中的關鍵元件，利用快速傅利

葉轉換處理器的設計自動化，可減輕系統設計的時程壓力。在設計管線

化快速傅利葉轉換處理器時，處理級(Process Element)的字元長度是重要

的參數。在本篇論文中，我們提出關於管線化快速傅利葉轉換處理器每

一級的字元長度對訊號對量化雜訊比(SQNR)的統計學模型。更進一步

地，提出透過混合使用統計與模擬誤差分析的管線化快速傅利葉轉換處

理器字元長度的最佳化流程。在系統設計者所提供的快速傅利葉處理器

點數、訊號對量化雜訊比和處理器速度限制條件下，本方法可於數秒內

自動地產生一組最佳化的字元長度參數。實驗的結果顯示，此快速的最

佳化流程可縮小 8192點管線化快速傅利葉轉換處理器面積達 24%。

 i

Hybrid Wordlength Optimization Methods
of Pipelined FFT Processors

Student: Chih-Bin Kuo Advisor: Dr. Jing-Yang Jou

Degree Program of Electrical Engineering Computer Science

National Chiao Tung University

Abstract

 The Fast Fourier Transform (FFT) processor is a key component in many

communication systems. To reduce design time of FFT processors through design

automation is to reduce the time pressure of system designers. When implementing a

pipelined FFT processor the wordlength is of great importance. This thesis describes a

statistical error model of pipelined FFT processors that calculates the signal to

quantization noise ratio (SQNR) with wordlength of each process element (PE) stage.

Furthermore, to speed up the design of specified FFT processor, a hybrid optimization

method with statistical and simulation-based error analysis is presented. Under

constraints of the number of FFT points, SQNR, and required processors speed, the

optimized wordlength set for each PE stage can be generated within several seconds.

The experimental results designate that this speedy flow can reduce 24% area of

8192-point pipelined FFT processors.

 ii

Acknowledgement

I would like to express my heartfelt gratitude to my advisor, Professor Dr. Jing-Yang

Jou, for his guidance and encouragement throughout the three-year graduate course. I also

deeply appreciate Assistant Professor Dr. Juinn-Dar Huang for his constructive suggestion

on this thesis. Special thanks to all the EDA members for the wonderful time we share

together. Finally, I display my warmest appreciation to my parents and my dear Juno and

A-Kang for their love and support.

 iii

Contents

摘 要 i

ABSTRACT ii

ACKNOWLEDGEMENT iii

CONTENTS iv

LIST OF TABLES vii

LIST OF FIGURES viii

Chapter 1 Introduction………………………………………………………………. 1

Chapter 2 Review of FFT…………………………………………………….....…..... 4

 2.1 FFT Algorithms……...………………………………………………............ 4

 2.1.1 Basic Concepts of FFT Algorithms……………………….......…..... 5

 2.1.2 Fixed-Radix FFT Algorithms……………………………………..... 6

 2.1.2.1 Radix-2 Algorithm………………………………………..… 6

 2.1.2.2 Radix-4 Algorithm………………………………………...… 7

 2.1.2.3 Radix-22 Algorithm……………………………………….… 8

 2.1.3 Split-Radix FFT Algorithms…………………………………....…... 9

 2.2 FFT Architectures……………………………………………………............ 9

Chapter 3 Error Analysis……….……………………………………………………. 13

 3.1 Error Analysis of Quantization………………………….…………............... 13

 3.2 Statistical Error Models of FFT…..………………...……………………….. 15

 3.2.1 Definitions and Constraints………….……………………………... 16

 3.2.2 Expected Noise Sources…….……….……………………………... 17

 3.2.3 Output SQNR……………….……….……………………………... 18

 iv

 3.3 Simulation-Based Error Analysis of FFT....……….…………..……………. 22

 3.4 Verifications……………………….....…………………………………….... 22

 3.4.1 Random Verification…….………….…………………………..…... 23

 3.4.1 Partial Exhaustive Verification…….…………………………...…... 25

Chapter 4 Wordlength Optimization……….……………………………………….. 26

 4.1 FFT Processor Design Flow…………………………………………............ 26

 4.2 Wordlength Generation………………………………………………….….. 28

 4.2.1 Library and Table…..…….………….………………………….…... 28

 4.2.2 Upper Bound Wordlength Evaluation.……………………………... 29

 4.2.3 Lower Bound Wordlength Evaluation.……………………………... 30

 4.2.4 Optimized Wordlength Candidate (OWC) Searching…………….... 32

 4.2.4.1 Optimization Format…..………………………………….… 32

 4.2.4.2 OWC Searching Flow….…………………………………… 33

 4.2.5 Optimized Wordlength (OW) Selection.………………………….... 34

 4.3 Examples of Wordlength Optimization……………………….…………….. 36

 4.3.1 Hybrid Method.…………………………………………..….……... 36

 4.3.2 Pure Statistical Method.…………………………..…………….…... 37

Chapter 5 Experimatal Results…………………………………………………...…. 38

 5.1 Introduction…………………………………..………………………….….. 38

 5.2 Results…………………………………………………………………...….. 38

 5.2.1 Optimization of Different Constraint……………………..………... 39

 5.2.1.1 FFT Point…..…………………………..………………….… 39

 5.2.1.2 Input Wordlength and Output Wordlength…………..……… 41

 5.2.1.3 SQNR…………………………………………………..…… 43

 v

 5.2.1.4 SQNR Error………………………………………………… 44

 5.2.2 Special Cases of Optimization ……………………..………….…... 45

 5.2.2.1 Absolute Constraint Over …………………...……………… 45

 5.2.2.2 Partial Constraint Over ……………………………...……… 46

 5.2.3 Methods Comparison ……………………..…………………...…... 47

 5.2.3.1 Previous Work vs. Our Work …………………………..…… 47

 5.2.3.2 Our Hybrid Method vs. Pure Statistical Method…….……… 48

Chapter 6 Conclusions and Future Work……………………………………..……. 49

References……….……………………………………………………………………… 50

Vita……..……….…………………..…………………………………………………… 52

 vi

List of Tables

Table 2.1 Summary of N Point Pipelined FFT Architecture…………………… 11

Table 3.1 Examples of Random Verification (N=1024)……….………………. 22

Table 5.1 Specification of Common FFT for OFDM………………………….. 39

Table 5.2 Area Optimization of Different FFT Point (IO Wordlength =18)…… 40

Table 5.3 Area Optimization of Different FFT Point (IO Wordlength =14)…… 42

Table 5.4 Area Optimization of Different FFT Point (SQNR Error = 1.1dB)…. 45

 vii

List of Figures

Figure 1.1 Architecture View of OFDM... 1

Figure 2.1 Symmetric Property of Twiddle Factor.. 5

Figure 2.2 Butterfly Graph of Radix-2 DIF FFT... 6

Figure 2.3 Signal Flow Graph of 16 Point Radix-2 DIF FFT............................... 7

Figure 2.4 Butterfly Graph of Radix-4 DIF FFT... 8

Figure 2.5 Butterfly Graph of Radix- DIF FFT...22 8

Figure 2.6 R2MDC Architecture (N=16).. 10

Figure 2.7 R2SDF Architecture (N=64).. 10

Figure 2.8 R4MDC Architecture (N=256).. 10

Figure 2.9 R4SDF Architecture (N=64).. 11

Figure 2.10 R2 SDF Architecture (N=64)...2 11

Figure 2.11 Units of R2SDF and R22SDF........………………............................... 12

Figure 3.1 Information of 2+1 Bits Quantizer…………....................................... 15

Figure 3.2 Error Model of PE Stage……………………..................................... 17

Figure 3.3 Propagating Flow of Quantization and Scaling Errors........................ 19

Figure 3.4 Propagating Flow of Multiplication Errors……………...................... 19

Figure 3.5 Propagating Flow of Noiseless Multiplication.................................... 21

Figure 3.6 Simulation Environment of SQNR…………….................................. 22

Figure 3.7 Results of Random Verification of Radix-2 and Radix-22.................. 24

Figure 3.8 Results of Partial Exhaustive Verification of Radix-2 and Radix-22... 25

Figure 3.9 Two Examples of Wordlength Optimization.. 37

Figure 4.1 Design Flow of FFT Processors……………............................. 27

Figure 4.2 Over All Flow of Wordlength Optimization.. 28

 viii

Figure 4.3 Flow of Upper Bound Wordlength Evaluation.................................... 30

Figure 4.4 Flow of Lower Bound Wordlength Evaluation.................................... 31

Figure 4.5 Example of Lower Bound Wordlength Evaluation.............................. 32

Figure 4.6 Area Increment of Add Wordlength 1 Bit of Each Stage..................... 33

Figure 4.7 Flow of Optimized Wordlength Candidate Searching......................... 34

Figure 4.8 Flow of Optimized Wordlength Selection... 35

Figure 4.9 Example of Hybrid Wordlength Optimization Method....................... 36

Figure 4.10 Example of Pure Statistical Wordlength Optimization Method........... 37

Figure 5.1 Area Reduction Rate of IO Wordlength 18 and 14 Bits...................... 43

Figure 5.2 Area Reduction Rate vs. SQNR Constraint... 44

Figure 5.3 Output Message of Generator when There is No Solution.................. 46

Figure 5.4 Output Message of Generator when There is No Solution.................. 46

Figure 5.5 Comparison Result between Simulation-Based and Hybrid Method.. 47

Figure 5.6 Comparison Result between Hybrid and Pure Statistical Method....... 48

 ix

Chapter 1

Introduction

The FFT is one of the most widely used digital signal processing algorithms. Recently,

attention has been returned to real-time FFT processors in many communication systems.

For example, FFT is one of the major building blocks in an Orthogonal Frequency

Division Multiplexing (OFDM) based system, as shown in Figure1.1 [3], like HDTV,

xDSL modems, and wide band mobile terminals.

S/P Signal
Mapper IFFT

x bits

Serial
Data
Input

P/S

d(0)

d(1)

d(N-1)

Guard
Interval

Insertion

D/A
LPF

Up
Converter

Channel

Down
Converter

LPF
A/D

Guard
Interval

Remo val
S/PFFTOne-tap

Equalizer
Signal

MapperP/S

x bits

Serial
Data

Output

S/P Signal
Mapper IFFT

x bits

Serial
Data
Input

P/S

d(0)

d(1)

d(N-1)

Guard
Interval

Insertion

D/A
LPF

Up
Converter

Channel

Down
Converter

LPF
A/D

Guard
Interval

Remo val
S/PFFTOne-tap

Equalizer
Signal

MapperP/S

x bits

Serial
Data

Output

Figure 1.1 Architecture View of OFDM

There are many possible architecture choices for FFT processors. Among them, the

pipelined FFT architectures that are particularly suitable for real-time applications since it

 1

can easily be merged with the sequential nature of sampling. It is suitable for VLSI

technology progresses because it is regular and its control circuit is easy to implement.

In the pipelined FFT architectures, the most research effort has been relative to the

regular module implementations, which uses fixed wordlength for both data and

coefficients for each stage. The possibility to use different wordlength is often ignored to

achieve modulized solutions. However the fast growing use of Intellectual Property (IP)

makes the non-module implementation viable, which allows us to exploit the pipeline

architectures further. The wordlength may affect the precision, quantization error, and

complexity of hardware. The increased wordlength will increase the precision and decrease

the quantization error at the cost of area and power. On the other hand, to maintain a lower

hardware cost, a shorter wordlength may be chosen at the sacrifice of the precision.

In general, a FFT can’t be implemented exactly. Each multiplier and adder in

pipelined FFT architectures may introduce an error caused by the rounding or truncation of

the arithmetic results. Errors will accumulate successively over the FFT stages. The error

introduced at the early stages may influence the performance in the later stages. Therefore,

it is required to find an optimized solution of wordlength in pipelined FFT processors.

The statistical method and simulation-based method are popular for FFT error

analysis between signal-to-quantization-noise ratio (SQNR) and wordlength. The SQNR

can be calculated quickly by statistical model. With the advent of more powerful

computers recently, SQNR of different algorithms and different architectures can be

accurately simulated.

 Stage level statistical error analysis method of pipelined FFT processor will be

presented in this thesis. Furthermore, a hybrid wordlength optimization method of

pipelined FFT processor will be introduced. The wordlength parameters of each stage are

 2

generated automatically by using the constraints of point of FFT, SQNR, and throughput of

processors.

The rest of this thesis is organized as follows. In Chapter 2, a brief review of FFT

algorithms and architectures is given. Error analysis methods are introduced in Chapter 3.

In Chapter 4, the wordlength optimization of our approach is presented step-by-step. The

experimental results are then presented in Chapter 5. Finally, the conclusions and the future

works are given in Chapter 5.

 3

Chapter 2

Review of FFT

 Substantial literatures are available on algorithm and architecture of FFT. In this

chapter, we will briefly review some popular types of algorithms of FFT. And we will

introduce architectures of FFT.

2.1 FFT Algorithms
 The Discrete Fourier Transform (DFT) plays a significant role in the region of digital

signal processing (DSP) and communications. However, the computational complexity of

direct evaluation of an N-point DFT is , which costs a long computation time and

large power. Thus, there is a great requirement to develop a fast DFT algorithm. Many FFT

algorithms have been derived to reduce computation complexity, such as Cooley-Turkey

algorithm [1] [2], Rader algorithm [2], and Winograd algorithm [2]. Among them, the

Cooley-Turkey algorithm is very popular because it can reduce the computational

complexity from to , and the regularity of the algorithm makes it

suitable for VLSI implementation. It will be discussed in this section.

)(2NO

)(2NO)log(2 NNO

 4

2.1.1 Basic Concepts of FFT Algorithms

 FFT algorithms are approaches to compute DFT. The formulation of N length DFT is

define as equation (2.1).

 , nk
N

N

n

WnxkX ∑
−

=

=
1

0

)()(1,.......,1,0 −= Nk (2.1)

where the coefficient is defined as equation (2.2) and is called twiddle factor, and the nk
NW

)2sin()2cos(
2

N
nkj

N
nkeW N

nkj
nk

N
πππ

−==
−

 (2.2)

symmetric property is showed in Figure 2.1. The is in frequency domain, and

 is in time domain. Algorithms in which the decomposition is based on decomposing

 term are called decimation-in-time (DIT) algorithms. On the other hand, algorithms

in which the decomposition is based on decomposing are called

decimation-in-frequency (DIF) algorithms.

)(kX

)(nx

)(nx

)(kX

Figure 2.1 Symmetric Property of Twiddle Factor

 5

2.1.2 Fixed-Radix FFT Algorithms

 Fixed-Radix algorithms include the radix-2, radix-4/radix-22, radix-8/radix-23, etc.

Among them, the radix-2 algorithm is the simplest one. The radix-4 algorithm has the

smallest multiplicative complexity. And the radix-22 has benefits of radix-2 and radix-4.

They will be reviewed in this section.

2.1.2.1 Radix-2 Algorithm

 The radix-2 algorithm is using the divide-and-conquer approach with which algorithm

is dividing the problem of N point FFT, where N is power-of-2, by factor of 2. With the

symmetric property of equation (2.2), , the equation (2.3) will be founded. 2/Nnk
N

nk
N WW +−=

nk
N

nk
N

N
N

Nnk
N

nk
N WBAWWBAWBWA ×−=××+=×+× +)()(2/2/ (2.3)

By using the property of equation (2.3), the summation of equation (2.1) can be divided

into two summations in equation (2.4), and it is the equation of radix-2 DIF.

 ∑
−

=

++=
12/

0
2/)]2/()([)2(

N

n

nr
NWNnxnxrX

 , ∑
−

=

+−=+
12/

0
2/)]2/()([)12(

N

n

nr
N

n
NWWNnxnxrX 1)2/(,...,1,0 −= Nr (2.4)

The addition and the subtraction operation of and)(nx)2/(Nnx + in equation (2.4) are

called the butterfly (BF) operation as shown in Figure 2.2. After log2N - times recursive

decomposing, the complete radix-2 DIF algorithm can be obtained. Figure 2.3 shows the

Signal Flow Graph (SFG) of N=16 radix-2 DIF algorithm FFT.

Figure 2.2 Butterfly Graph of the Radix-2 DIF FFT

 6

 Figure 2.3 SFG of 16 Point Radix-2 DIF FFT

2.1.2.2 Radix-4 Algorithm

There is another symmetry property of equation (2.2) shown in equation (2.5).

nk
N

Nnk
N

Nnk
N jWWW −=−= ++ 4/34/ (2.5)

Because of the –j term, we only need to exchange 2’s complement of real part data and

image part data instead of applying multiplication operation. The arithmetic cost can be

reduced. The equation of radix-4 DIF [4] is shown in equation (2.6).

nr
N

nl
N

l
N

n

ll WWWNnxWNnxWNnxnxlrX 4/
3

4

14/

0

2
44])

4
3()

2
()

4
()([)4(×++++×++=+ ∑

−

=

,

 1
4

,...,0 −=
Nr , 3,2,1,0=l (2.6)

The mapping butterfly graph of equation (2.6) is shown in Figure 2.4.

 7

 Figure 2.4 Butterfly Graph of Radix-4 DIF FFT

2.1.2.3 Radix-22 Algorithm

If we further divide the equation (2.6), we can get the equation (2.7) of radix-22 [4]. It

implements the radix-4 BF by two radix-2 BFs. The mapping butterfly graph of equation

(2.7) is shown in Figure 2.5.

nr
N

lln
N

ll
N

n

llll WWWNnxWNnxWNnxnxllrX 4/
)2(36

4

14/

0

24
4

2
412

12121212])
4

3()
2

()
4

()([)24(++
−

=

++ ×++++×++=++ ∑ ,

nr
N

lln
N

ll
N

n

llll WWWNnxWNnxWNnxnxllrX 4/
)2(36

4

14/

0

24
4

2
412

12121212])
4

3()
2

()
4

()([)24(++
−

=

++ ×++++×++=++ ∑

 1
4

,...,0 −=
Nr , 1,0 1,0 21 == ll (2.7)

Figure 2.5 Butterfly Graph of Radix- DIF FFT 22

 8

2.1.3 Split-Radix FFT Algorithms

 The computation cost of the Fixed-Radix algorithm FFT can be further reduced by

combining radix-2 and radix-4 or radix-2 and radix-8, called Split-Radix algorithm. It has

fewer multiplications and additions. So, they have advantage on computational complexity.

But, they are not regular as radix-2r algorithms and seldom used in ASIC design. The most

popular split-radix algorithms are proposed by Duhamel et al. [5].

2.2 FFT Architectures
 The FFT is one of the most widely used digital signal processing algorithms. Recently,

attention has been returned to real-time processors in many communication systems. There

are many architecture choices for these processors. Among them, the pipelined

architectures are particularly suitable for real-time applications since they are easily

merged with the sequential nature of sampling. And they are popular for large FFT VLSI

realization too, due to their high regularity.

 In this section, we will introduce the pipeline-based architecture. The architecture that

we want to discuss is used to implement DIF FFT algorithms. Similar structures can be

designed for DIT FFT algorithms, too.

 Several architectures for pipelined FFT processors have bean proposed. There are

Radix-2 Multi-path Delay Commutator (R2MDC) [6], Radix-2 Single-path Delay

Feedback (R2SDF) [7], Radix-22 Single-path Delay Feedback (R22SDF) [8][9], Radix-4

Single-path Delay Feedback (R4SDF) [6], Radix-4 Multi-path Delay Commutator

(R4MDC) [6], etc. They will be introduced in this section.

 9

 R2MDC

It is the most straightforward way to reorganize the data for FFT algorithms. At each

stage half the data stream is delayed via the memory and processed with the second

half data stream. An 16-point R2MDC is shown in Figure 2.6.

8
PE

x 4
C2

4
PE

x 2
C2

2
PE

-j 1
C2

1
PEC2

8
PE

x 4
C2

4
PE

x 2
C2

2
PE

-j 1
C2

1
PEC2

Figure 2.6 R2MDC Architecture (N=16)

 R2SDF

Since memory in R2MDC is idle at 50% of time, it can be reused as shown in Figure

2.7 This scheme utilizes the different arrival time of input data and processed data.

The utilization of the memory is 100%.

32

PE x x x x -j

16

PE

8

PE

4

PE

2

PE

1

PE

32

PE x x x x -j

16

PE

8

PE

4

PE

2

PE

1

PE

 Figure 2.7 R2SDF Architecture (N=64)

 R4MDC

It is similar with R2MDC, but it utilizes only 25% of time for memory. A 256-point

R4MDC is shown in Figure 2.8.

192

PE x 16C4
128
64 x 32

x 48

48

PE x 4C4
32
16 x 8

x 12

12

PE x 1C4
8
4 x 2

x 3

3

PEC4
2
1

192

PE x 16C4
128
64 x 32

x 48

48

PE x 4C4
32
16 x 8

x 12

12

PE x 1C4
8
4 x 2

x 3

3

PEC4
2
1

Figure 2.8 R4MDC Architecture (N=256)

 10

 R4SDF

It is a radix-4 version of R2SDF. It is as efficient as R2SDF in terms of memory

utilization and the utilization of multipliers increases from 50% to 75% at a cost of

only 25% utilization of the BF element. A 64-point R4SDF is shown in Figure 2.9.

x

4

PE

4
4

16

PE

16
16

x

1

PE

1
1

x

4

PE

4
4

16

PE

16
16

x

1

PE

1
1

Figure 2.9 R4SDF Architecture (N=64)

 R22SDF

It breaks one radix-4 BF operation into two radix-2 BF operation with trivial

multiplications of and 1± j± . With a feedback mechanism, the memory is fully

utilized as R2SDF and R4SDF. A 64-point R22SDF is shown in Figure 2.10.

32

PE x x -j

16

PE

8

PE

4

PE

2

PE

1

PE
-j-j

32

PE x x -j

16

PE

8

PE

4

PE

2

PE

1

PE
-j-j

Figure 2.10 R2 SDF Architecture (N=64) 2

Table 2.1 Summary of N Point Pipelined FFT Architectures

 11

Summary of these architectures are shown in Table 2.1 [5]. The delay feedback

approached are always more efficient than corresponding delay commutator approaches in

terms of memory requirements. The Radix-4 algorithm based single-path architectures

have fewer multipliers than those of radix-2 algorithm. However, radix-2 algorithm based

architectures have properties of simple and regular. And radix-22 algorithm is characterized

with the trait that it has same multiplicative complexity as radix-4 algorithms but still

retains the radix-2 butterfly structure. In this thesis we will focus on R2SDF and R22SDF

architectures.

The detail architecture with control unit of R2SDF and R22SDF is shown in Figure

2.11(a). The butterfly process element (PE) has two kinds of operation modes. Mode 1 is

used to store the data in the shift register, wait several cycles to compute and multiply with

twiddle factors, while mode 2 is responsible for butterfly computation, showed in Figure

2.11(b).

(a)

 (b)

Figure 2.11 Units of R2SDF and R22SDF (N=16)

 12

Chapter 3

Error Analysis

 Fixed-point arithmetic is popular for FFT hardware implementation for its simplicity.

Because of the finite wordlength in the computation, we have to truncate or round the

answers when overflow occurs after addition or multiplication; thus, errors are produced.

The statistical error analysis and simulation-based error analysis are the two most popular

methods for FFT error analysis. Many papers about statistical and simulation-based error

analysis of fixed-point FFT have been published [10-14]. The previous statistical error

analysis is not sufficient for our purpose of choosing the required wordlength stage by

stage. We derive a simplified statistical error model to meet the requirement.

 In this chapter, we will briefly review the quantization error analysis first. Second, we

will introduce the statistical error models in which wordlength can be freely chosen stage

by stage. Third, the simulation environment will be briefly reviewed. Then accuracy of our

error models will be evaluated by comparing it with that of the simulation-based error

analysis.

3.1 Error Analysis of Quantization
 The basic formula for the quantization error analysis is shown below. Let X be a

 13

finite-length sequence ;)}({ nx 1,...,2,1,0 −= Nn . The expected value of X is shown in

equation (3.1). It is zero-mean random sequence at the quantizer input. The variance of X is

denoted by and is shown in equation (3.2). 2
xσ

 ∑
−

=

==
1

0

)(1][
N

n
x nx

N
XEµ =0 (3.1)

 ∑
−

=

−==
1

0

222])([1][
N

n
xx nx

N
XE µσ (3.2)

where the in equation (3.1) and (3.2) is the expected value operator.][⋅E

A quantizer maps X into the discrete-valued Y. Thus, the quantization error

. Denote the boundaries by and the reconstruction levels by ,

then the output of this quantizer is shown in equation (3.3) and the quantization error

variance, denoted by , is then given by equation (3.4).

)(⋅Q

YXQ −= M
kkb 0}{ =

M
kky 1}{ =

2
qσ

 kkk bxbyxQY ≤<== −1 iff)((3.3)

∑ ∫
=

−

−==
M

k

b

b
kq dxyx

N
QE

k

k
1

222

1

][1][σ (3.4)

Finally, the equation of SQNR is shown in equation (3.5)

 2

2

q

xSQNR
σ
σ

= (3.5)

 For example, if the input is uniformly distributed in the interval (-1, 1) and the output

is 2 + 1 bits sign-fractional discrete-valued data. The input-output mapping is shown in

Figure 3.1(a). It is shown that, if the input data are in the interval then the output

data of them are all have the same value as 0. If the input data are in the interval

then the output data of them are 0.25, and so on. The related quantization error mapping is

shown in Figure 3.1(b).

)25.0,0[

)5.0,25.0[

 14

(a)

(b)

Figure 3.1 Information of 2+1 Bits Quantizer

3.2 Statistical Error Models of FFT

 The previous FFT error analysis and model of DIF radix-2 algorithm have been

presented by Sundaramurthy et al. [12] . They assume that all the wordlength of all PE

stages is the same. This is insufficient for applications that allow the different wordlength

 15

between PE stages.

Due to the finite wordlength in the computation, we have to truncate or round the

answers after calculation. And the FFT computation is an iterative process and the value

increases in magnitude. The problem of overflowing should be concerned.

In order to prevent overflow and to ensure output accuracy, data need to be scaled.

There are two scaling methods to prevent FFT from overflow. One is overall scaling and

the other is stage-by-stage scaling [2]. The input constraint of FFT with overall scaling is

N
nx 1)(< , and there is no need to divide the input of each butterfly by two. The input

constraint of FFT with stage-by-stage scaling is 1)(<nx , and the input data should be

divided by 2 for each butterfly. Due to the noise consideration [14] the stage-by-stage

scaling will be used in this thesis.

 In this section we aim on delivering statistical FFT error models for DIF radix-2 and

radix-4 algorithms with stage-by-stage scaling scheme. These models are useable for case

having the different wordlength stage by stage.

3.2.1 Definitions and Constraints

 In these analyses, we assume fixed-point arithmetic with bit wordlength

and signed fraction, where k is the stage number of PE stage. The input of N-point FFT,

denoted by where

)1(+kb

)(mx 1,...,2,1,0 −= Nm , is a sequence of finite valued complex

numbers. Numbers are consisted by 2N real random variable and they are uncorrelated.

And they are distributed uniformly in)
2

1,
2
1(− . Note the range of)

2
1,

2
1(− is

consistent with the condition that 1)(<mx for all m. The effect of the inaccuracy in the

twiddle factor, , is not treated here. The truncation operations are all modeled as

mutually uncorrelated.

pW

 16

k o

3.2.2 Expected Noise Sources

Figure 3.2 shows the error model of PE stage with stage-by-stage scaling by 2. There are

several noise sources having been considered. They are the quantization error of

wordlength difference between PE stages, denote by , the quantization error of scaling,

denoted by , the quantization error of complex multiplication of twiddle factor,

denoted by , and the insufficient output wordlength error, denoted by .

2
kqσ

2
ksσ

2
mσ 2

Qσ

Figure 3.2 Error Model of PE Stage

 and
2

kqσ 2
ksσ

The is produced when the wordlength of stage k-1, denoted by , is greater

then that of stage k, denoted by . is the variance of truncated bits from to .

The scaling error is produced when

2
kqσ 1-kb

kb 2
kqσ 1-kb kb

11- +< kk bb . A complex scaling consists of two real

scaling, i.e., the real and imaginary parts of the number are scaled separately. Scaling by a

factor
2
1 involves a 1-bit right shift and truncation of the last bit. is the variance of

this bit.

2
ksσ

The sum of errors and can be replaced as the error of directly scaling the

data of stage k-1 then truncate to . This new error is denoted by to replace the

combination error of old and . It is shown in equation (3.6).

2
kqσ 2

ksσ

kb 2
ksσ

2
sσ

k k

2
qσ

 17

⎪⎩

⎪
⎨
⎧

∑ >+=⋅⋅

≤+
=

=

++ 1-M

0v
k1-k

b-1)(b21)2(b-

k1-k
2
s b1b ; 2M ,)v2

M
12(

b1b ; 0

k1-k1-kk
σ (3.6)

2

kmσ

 It is assumed that a complex multiplication is implemented by four real

multiplications and each real multiplication is truncated separately. The complex

multiplication error variance, denoted by , is equal to the variance of truncated bits of

the result of multiplication. It is shown in equation (3.7).

2
mσ

k

⎪
⎪
⎩

⎪⎪
⎨

⎧

∑ >+=⋅⋅

∑ ≤+=⋅⋅
=

=

⋅

=

++++⋅

1-M

0v
k1-k

b-2b22b2-

1-M

0v
k1-k

b-)b1(b2)b1(b2-

2
m

b1b ; 2M ,)v2
M
14(

b1b ; 2M ,)v2
M
14(

kkk

kk1-kk1-k

k
σ (3.7)

2
qo

σ

 If the output wordlength is small then the output wordlength of the last PE stage the

quantization error will be produced. The variance is shown in equation (3.8), where

the is the wordlength of the last PE stage and the is the FFT output wordlength.

2
oQσ

Lb ob

⎪⎩

⎪
⎨
⎧

∑ >=⋅⋅

≤
=

=

1-M

0v
oL

b-b22b-

oL
2
q bb ; 2M ,)v2

M
12(

bb ; 0

oLLo
σ (3.8)

3.2.3 Output Signal to Quantization Noise Ratio (SQNR)

 Since all the noise sources are assumed to be uncorrelated, the variance of the noise at

output node of the SFG of Figure 2.5 is the sum of contributions from all the individual

noise sources that propagate to that output node. Some of noise variance of output nodes

 18

that is contributed by is denoted by , and the contribution of is denoted by

.

2
ksσ 2

Sσ 2
kmσ

2
Mσ

 From Figure 3.3, the propagation of in 8-point DIF Radix-2 it can be found. The

number of error source propagating to any output node from the first, second, and

third stage are 8, 4, and 2, respectively. And the equation of is shown below, equation

(3.9), where the total stage number n is equal to log

2
ksσ

2
ksσ

2
Sσ

2N, and the factor of kn−)
4
1(is the

effect of scaling on the error propagating at stage k.

The of DIF Radix-22
Sσ 2 algorithm is the same as DIF Radix-2.

Figure 3.3 Propagating Flow of Quantization and Scaling Errors

2

1
22212

S n21
)

4
1(

2
)

4
1(

2
)

4
1(s

nn
ns

n
s

n NNN σσσσ ⋅++⋅+⋅≈ −
−

−− L (3.9)

It can be assumed that all the complex multiplications are noisy for convenience of

derivation. Figure 3.4 show that the propagation of in 8-point DIF Radix-2 algorithm 2
mσ

k

 19

SFG. In general, there are four, half of 8, in each stage, and each from the first

(k=1), second (k=2), and third (k=3) stage propagates to 4, 2, and 1 output nodes. Hence it

is easy to show in equation (3.10).

2
kmσ 2

kmσ

2
Mσ

 Figure 3.4 Propagating Flow of Mutiplication Errors

])
4
1(

2
)

4
1(

2
)

4
1(

2
[

2
1 2

m
2
m

2
2

2
m

12
M n21

σσσσ ⋅++⋅+⋅≈ −−− nn
n

nn NNNN
N

L

 (3.10)

The corresponding expression of of Radix-22
Mσ 2 algorithm is shown in equation (3.11)

])
16
1(

4
)

16
1(

4
)

16
1(

4
[

4
31 2

m
2
m

2
2

2
m

12
M n21

σσσσ ⋅++⋅+⋅≈ −−− nn
n

nn NNNN
N

L

 (3.11)

 In obtaining equation (3.10) and (3.11), it is assumed that all complex multiplications

are noisy. But multiplications associated with twiddle factor or

introduce no errors. Figure 3.5 shows the position of noiseless twiddle factors of 8-point

Radix-2 algorithm. The propagation of these noise sources is identical to that in the .

1±=pW jW p ±=

2
Mσ

 20

Thus, denoting the noise variance contribution of these multiplications by , and the

expression of is shown in equation (3.12). The corresponding expression of Radix-2

2
Cσ

2
Cσ 2

algorithm is shown in equation (3.13).

Figure 3.5 Propagating Flow of Noiseless Mutiplication

]
22

[1])
4
1(

2
2)

4
1(

2
2)

4
1(

2
2[1 2

m
2
m1

12
m

2
2

22
m

12
C n1-n21

σσσσσ ⋅+⋅++⋅+⋅≈ −
−−−

nn
nnn NN

N
NNN

N
L

 (3.12)

]
416

1
4

)
4
1()

16
1(

4
)

4
1(

)
16
1(

4
)

4
1()

16
1(

4
)

4
1[(

4
31

2
m

2
m1

2
m

2
22

2
m

2
22

2
m

1
1

2
C

n1-n2-n

21

σσσ

σσσ

⋅+⋅⋅⋅+⋅⋅⋅+

+⋅⋅⋅+⋅⋅⋅⋅≈

−−

−
−

−
−

nnn

n
n

n
n

NNN

NNN
N

L

 (3.13)

The average output signal variance is in equation (3.14) [2].

Nx 3
12 =σ (3.14)

Finally, the SQNR expression is shown in equation (3.15).

])([
log10 2

Qo
2
C

2
M

2
S

2

10 σσσσ
σ

+−+
= xSQNR (3.15)

 21

3.3 Simulation-Based Error Analysis of FFT

 There are many papers about simulation-based error analysis being published.

Johansson et al. published a paper on simulation-based error analysis [17] in 1999. The C

model is used to perform the simulation. User can get the proper result under their

constraints. The wordlength of each stage, rounding or truncation for each stage, number of

stages to do scaling, and the number of bits are parameters which can be chosen by users.

Figure 3.6 shows the simulation environment of SQNR. It compares the outputs of

fixed-point FFT and floating-point FFT to calculate the SQNR. The SQNR calculation

expression is shown in equation (3.16).

Figure 3.6 Simulation Environment of SQNR

∑

∑
−

=

−

=

′−
= 1

0

2

1

0

2

10

))()((

)(
log10 N

n
qq

N

n
q

nXnX

nX
SQNR (3.16)

3.4 Verifications

 Since the SQNR can be calculated by simulation-based error analysis the simulation

setup can be used to verify our new error models too.

 The wordlength 8 to 32 bits is the popular selection to implement fixed-point FFT

architectures. In this section, we will calculate the SQNR by statistical and

simulation-based methods for 8, 16, …, 8192 points DIF Radix-2 FFT and 16, 64,…, 4096

points DIF Radix-22 FFT with the freely chosen wordlength from 8 to 32 bits for each PE

 22

stage. Then, we will compare the results to verify statistical error models.

 First, we choose wordlength, 8 to 32 bits, for each PE stage randomly. Second, we

will compare all wordlength set in a special range.

3.4.1 Random Verification

 For example, we randomly generate 20 wordlength sets of 1024 points DIF Radix-2

FFT. The input worldlength is equal to that of the first PE stage, and the output wordlength

is equal to that of the last PE stage. Then, calculate the SQNR by statistical and

simulation-based methods, respectively. Then, the SQNR difference between them can be

calculated. Table 3.1 shows the results. The first column shows the number of wordlength

sets, next column shows the wordlength of each PE stage, column 3 shows the result

SQNR of simulation-based error analysis, column 4 shows the SQNR result of statistical

error analysis, and the last column is the difference of SQNR.

 Table 3.1 Examples of Random Verification (N=1024)

 23

 We had compared 10000 wordlength sets for 1024-point FFT of Radix-2 and Radix-22

algorithm. The maximum difference of Radix-2 is almost within 1± dB. The maximum

difference of Radix-22 for each FFT is almost within 1.1± dB. Fig. 3.7(a) shows the

distribution of difference of 1024-point Radix-2 FFT, Fig. 3.7(b) shows the 1024-point

Radix-22 FFT.

(a)

(b)

 Figure 3.7 Results of Random Verification of Radix-2 and Radix22

 24

3.4,2 Partial Exhaustive Verification

 To exhaustively compare all wordlength sets of 8 to 32 bits is not practical because

the simulation time is not endurable. However we can do exhaustive comparison in some

special range, maybe some of the solution space, to verify. We had chosen the wordlength

11 to 18 bits to do partially exhaustive comparison of 64 points DIF Radix-2 and Radix-22

FFT. They spent about 130 hours comparison time, and the results are shown in Figure 3.8.

The difference is within dB. 1.1±

 (a)

(b)

 Figure 3.8 Results of Partial Exhaustive Verification of Radix-2 and Radix22

Section 3.4.1 and 3.4.2 clearly show that the result obtained from the statistical error

model can be very close to that obtained from the simulation-based approach.

 25

Chapter 4

Wordlength Optimization

 The wordlength is an important design parameter. It will affect both the performance

and complexity. Longer wordlength is preferred for good precision. But, increase

wordlength will increase the complexity. It will increase the size of memory and

computational units and thereby increase power consumption and decrease performance.

Hence, the wordlength requires careful optimization.

 In this chapter, we will briefly review the design flow of FFT processor first. Then,

we will describe our approach, hybrid wordlength optimization method. Finally, two

examples are shown.

4.1 FFT Processor Design Flow
 There are many factors have to be considered o design the FFT processor. Figure 4.1

shows the over all design flow of FFT processor. First, system requirements need to be

specified. They are points of FFT, SQNR, throughput, area, power, …, etc. Then, the

proper FFT algorithm and FFT architecture need to be chosen. Finally, the wordlength of

architecture need to be analyzed.

 26

 Figure 4.1 Design Flow of FFT Processors

 When the FFT is implemented as a fully custom ASIC, the wordlength of each stage

can be freely chosen except input and output wordlengths of FFT processor, which are

system specified. Internal wordlengths of FFT processor can be chosen to decide the

precision and complexity. In general, longer wordlength is preferred for better precision of

numbers. On the other hand, increase the wordlength will increase the complexity, it will

increase the hardware cost, power consumption, and decrease the speed. Thereby, the

optimization is a trade-off between precision and complexity.

 To reduce the time of over all system design, the automatic wordlength optimization

solution is preferred. A simulation-based method on pipelined FFT had presented by Lin

[3]. We will present a faster hybrid method in this thesis. Figure 4.2 outlines the

automation flow. There are four steps in sequence, i.e., upper bound wordlength evaluation,

lower bound wordlength evaluation, optimized wordlength candidate searching, and

optimized wordlength selection. Additionally, there are some tables and libraries built

offline to speed up this flow.

 27

Figure 4.2 Over All Flow of Wordlength Optimization

4.2 Wordlength Generation
 Items in Fig. 4.2 will be introduced in this section. This flow is to optimize the area

under input constraints. Input constraints include points of FFT, SQNR, throughput, FFT

input and output wordlength, SQNR simulation confidence interval, and SQNR simulation

error. The output data are wordlengths of each PE stage.

4.2.1 Library and Table

 Since we optimize hardware cost, the relative hardware library needs to be chosen.

Adder, multiplier, multiplexer, read only memory (ROM), and shift register are five basic

elements of FFT. Hardware library decides the area and critical path to wordlength table

for these components [3].

 PE stages are hardware blocks in the wordlength generation flow, which is built by

 28

the basic components. We need a table that stores the information of area and critical path

for each PE stage to speed up the automation flow, PE stage table [3].

 In Figure 4.2, the mean of SQNR variance table is used to calculate the simulation

times of different confidents of simulation [3].

4.2.2 Upper Bound Wordlength Evaluation

 Throughput is one of the input constraints. Satisfy the throughput constraint implies

that the critical path must be short enough to meet equation (4.1). In other words, it means

that some stages violate the timing of pipeline if there are critical paths greater then

throughput
1 .

throughput
pathcritical 1

< (4.1)

The upper bound wordlength(UBW) is defined as the largest possible wordlength

such that the critical path of the corresponding PE stage satisfies equation (4.1). And, the

upper bound wordlength set (UBW) is defined as a set which includes all wordlength of

PE stages and each wordlength is UBW. Note that we use bold print to denote a set and

light print to denote the element in a set. For example, if the UBW of 1024-point FFT (10

PE stages) is {14 15 15 16 17 18 18 18 19 20} then the UBW of stage 1 (UBW1) is 14,

UBW2 is 15, UBW3 is 15, and so on.

 29

Figure 4.3 Flow of Upper Bound Wordlength Evaluation

 Fig. 4.3 shows the flow of UBW evaluation. There are three conditions to stop the

evaluation. Condition 1, the UBW is founded if SQNR and throughput constraints are both

met. Condition 2, the optimization is failed if the SQNR constraint can’t be met. The

maximum possible SQNR will be reported before stop. Condition 3, the optimization is

failed if throughput constraint can’t be met. The maximum possible throughput will be

proposed before stop.

4.2.3 Lower Bound Wordlength Evaluation

 The lower bound wordlength (LBW) is defined such that if any wordlength of PE

stage is equal to LBW, the SQNR of new set is just small than the SQNR of input

constraint. The lower bound wordlength set (LBW) is defined as }1,|{ nxNxLBWx ≤≤∈ ,

 30

x means the xth PE stage. Based on the definition of LBW, it is easy to see that SQNR of

LBW is small then the SQNR of input constraint.

 Fig. 4.4 shows the flow of LBW evaluation. The input are N (point of FFT), SQNR,

input and output wordlength, and UBW. Then, the output is LBW

 Figure 4.4 Flow of Lower Bound Wordlength Evaluation

Fig. 4.5 shows an example of LBW evaluation. Where the iSQNR is the input

SQNR constraint. The step of Fig. 4.5 is top to bottom and left to right. The arrow shows

the detail steps. And the more than,“>”, and small than, “<”, mean the comparison results

between SQNR of statistical error analysis and SQNR of input constraint.

 31

 Figure 4.5 Example of Lower Bound Wordlength Evaluation (N=64)

4.2.4 Optimized Wordlength Candidate (OWC) Searching

4.2.4.1 Optimization Format

 Since the FFT processor uses large memories especially in the early stages. Figure 4.6

shows the area increment of each PE stage when the wordlength of each stage was added

by 1 bit. Therefore, to keep the wordlength short in the early stages is a good choice for

area optimization.

 The property of output SQNR of pipeline FFT processor is shown in equation (4.2).

)2a2a2a(
alog10 2

n
22

2
12

1

k
10 21 nbbb n

SQNR +−+−+− +++
≈

L
 (4.2)

 32

where is constant of PE stage n, are wordlength of PE stage n. It is easy to see

that if there exists one

na nb

nxNxx ≤≤∈ 1 , , such that

, then, the PE stage x will be the bottleneck of xmnmNmaa mb
m

xb
x

mx ≠≤≤∈>> ++ ,1, 22

output SQNR. In the other word, the value of will be

dominated by . So, the wordlength of each stage is efficient when they are close.

)2a2a2a(2
n

22
2

12
1

21 nbbb n +−+−+− +++ L

xb
x

xa +2

 Figure 4.6 Area Increment of Add Wordlength 1 Bit of Each Stage (N=8192)

 Due to upon properties the expected optimization wordlength set will be sorted in

ascending order from stage 1 to stage n, and the wordlength is closed stage by stage. {11

11 12 13 13 14} and {14 14 14 14 15 16} for examples. We refer these schemes of

wordlegth set as optimization format for simplicity in the remaining section.

4.2.4.2 OWC Searching Flow

The optimized wordlength set candidates (OWC) have three properties. (1) It is

between LPW and UBW. (2) It is in optimization format. (3) The SQNR of FFT processor

meets the input SQNR constraint when the wordlength scheme is the same as that of any

 33

OWC.

To search the OWC, we scan the wordlength set from LBW to UBW and compare

SQNR of each set with the input SQNR constraint. Figure 4.7 shows the flow of OWC

searching. The output of this flow is the OWC Array. It contains all the information of

OWC and is sorted by area size.

Figure 4.7 Flow of Optimized Wordlength Candidate Searching

4.2.5 Optimized Wordlength (OW) Selection

 The OW is an OWC which has the smallest area size and good SQNR. There are two

methods to get the optimized wordlength in OWC Array. Method 1, the optimized

wordlength set will be found by simulation-based method if user’s SQNR error constraint

is under 1 dB. Method 2, the optimized wordlength set will be found by statistical

method if users SQNR error constraint is more than

±

± 1 dB.

 34

 Figure 4.8 shows the flow of OW selection. In Method 1, we simulate all OWC of

OWC Array one by one from the one with the smallest area size until the SQNR of

simulation meets the SQNR of the input constraint. In Method 2, we judge all the OWC in

OWC Array by a benefit function to get the OWC with the best benefit. The benefit

function is shown in equation (4.3).

increamentsizearea
increamentSQNRBenefit

= (4.3)

where the increment is the difference between the SQNR or area size of LBW and those of

OWC.

Figure 4.8 Flow of Optimized Wordlength Selection

 35

4.3 Examples of Wordlength Optimization

4.3.1 Hybrid Method

 Input constraints of this example are {N=1024(n=10), SQNR=45 dB,

input_wordlength=output_wordlength=18, throughput=50MHz, and SQNR_error=0.1 dB}.

Since the SQNR_error constraint is smaller than 1± dB, the hybrid method will be used.

Figure 4.9 shows the steps of this example. The “sim_SQNR” means the result of

simulation and the “iSQNR” means the SQNR of input constraint.

Figure 4.9 Example of Hybrid Wordlength Optimization Method

 36

4.3.2 Pure Statistical Method

 Input constraints of this example are {N=1024 (n=10), SQNR=45 dB,

input_wordlength=output_wordlength=18, throughput=50MHz , and SQNR_error=1.1

dB}. Since the SQNR_error constraint is more than 1± dB the pure statistical method

will be used. Figure 4.10 shows the steps of this example.

Figure 4.10 Example of Pure Statistical Method

 37

Chapter 5

Experimental Results

5.1 Introduction

We implement two FFT architectures, including DIF R2SDF and DIF R2 SDF. The

range of N can be adjusted from 8 to 8192 points, and wordlength from 8 to 32 bits in each

stage. We pipe each PE stage of FFT architectures and apply stage-by-stage scaling.

2

In order to compare the performance with previous work [3], the same hardware

libraries are used here.

Logic gate model includes adder, multiplier, and multiplexer. We conduct synthesis

without any constraints by Synopsys Design Analyzer [19] and the TSMC 0.25um cell

library and Synopsys DesignWare [18] are used. The fast carry look-ahead synthesis model

for adder, Booth-encoded Wallace tree synthesis model for multiplier, and universal

multiplexer synthesis model for multiplexer are adopted and area and timing reports of

Synopsys Design Analyzer are used for these models. Memory model includes shift

register and ROM also use TSMC 0.25um cell library.

 The SQNR range between 40 to 60 dB had been used in most system. It is for our

experimentations too. Two common FFT design specifications that are typically used in

OFDM systems [22] had been summarized in Table 5.1.

 38

Complex, word-sequential50MHz16-256Short Length

Complex, word-sequential20MHz256-8192Long Length

I/OOperating freq.Size

Complex, word-sequential50MHz16-256Short Length

Complex, word-sequential20MHz256-8192Long Length

I/OOperating freq.Size

Table 5.1 Specification of Common FFT for OFDM

 To implement the proposed flow, the C++ language with SystemC library is used. The

SystemC library is used for fixed-point type to model the behavior of fixed-point hardware.

The quantization mode is always truncation (SC_TRN) and the overflow mode is

saturation (SC_SAT) in our experimentations.

 Finally, the platform is built in a PC with Intel 2.4GHz CPU and 768M Memory. The

operation system is Microsoft Windows 2000. The Visual C++ 6.0 is used for compiler.

5.2 Results
 The experimental results of R2SDF and R22SDF wordlength optimization will be

showed in this section.

5.2.1 Optimization of Different Constraint

 Results of experiments with different constraints will be introduced in this

sub-section.

5.2.1.1 FFT Point Constraint

 Experimental result of area optimization for point from 8 points to 8192 points is

presented in Table 5.2. Table 5.2(a) is for DIF R2SDF and Table 5.2(b) is for DIF R22SDF.

Constraints include: SQNR is 45(dB), SQNR error is 0.1(dB), SQNR simulation

confidence interval is at the level of 95%, the throughput is 50MHz, and the input and

output wordlengths are 18 (bits). Since the constraint of maximum allowable SQNR error

is small then 1 dB, the hybrid method will be used. In these tables, the first column “Point”

 39

presents the point of FFT processor. The column of “Pre-Post” represents that parameters

in the row with “Pre” belong to traditional design, without optimization, or parameters in

the row with “Post” are optimized.

(a)

(b)

Table 5.2 Area Optimization of Different FFT Point (IO Wordlength=18)

 40

The column of “Area Reduction” presents the reduction rate of area, calculated by

%100
_

__
×

−
areapre

areapostareapre . The last column “Time” shows the computer time of

optimization. It can be see that the greater N with the greater area reduction rate, generally.

The maximum and minimum area reduction rates for DIF R2SDF are 24% and 9% and

those are 23% and 6% for DIF R22SDF.

5.2.1.2 Input Wordlength and Output Wordlength

 Table 5.3 introduces the experimental results with different input and output

wordlength constraints to those of Table 5.2. The input wordlength is 14 bits and the output

wordlength is 14 bits. The area reduction rate is still the same when point range in 8 to

1024. There is no solution when the point number is greater than 1024.

(a)

 41

(b)

Table 5.3 Area Optimization of Different FFT Point (IO Wordlength=14)

Figure 5.1 shows the difference of area reduction rate between these two input and output

wordlengths.

(a)

 42

(b)

Figure 5.1 Area Reduction Rate of IO Wordlength=18 and 14 Bits

5.2.1.3 SQNR

 Figure 5.3 presents the area reduction rate for different SQNR constraint of DIF

R2SDF and DIF R22SDF. Constraint of SQNR error is 0.1(dB), SQNR simulation

confidence interval is at the level of 95%, the throughput is 50MHz, and the input and

output wordlengths are 18.The SQNR of traditional design increases 6 dB if all wordlength

increases 1 bit. It can be found that 6 dB is a cycle of area reduction rate for different

SQNR constraint, too. The range of area reduction rate is from 12% to 20%.

 43

Figure 5.2 Area Reduction Rate vs. SQNR Constraint

5.2.1.4 SQNR Error

 Table 5.4 shows the experimental results with the same constraints except SQNR error

is 1.1 dB as that in Table 5.2(a). Since the allowable SQNR error is great than 1 dB, the

pure statistical error analysis method will be used. The SQNR of these optimized

wordlength sets had been verified by simulation based-method for accuracy, introduced in

column “Post-SQNR”. The maximum insufficient error of SQNR is 0.18 dB. In other

words, it is -0.4% of SQNR constraint.

 44

Table 5.4 Area Optimization of Different FFT Point (SQNR Error = 1.1dB)

5.2.2 Special Cases of Optimization

5.2.2.1 Absolute Constraint Over

 There is only one advice for conditions that are scaling down to meet the constraint of

hardware library. There are two conditions about these cases. First, the throughput

constraint is great then the maximum throughput of hardware library. The maximum

throughput of hardware library is the throughput for the wordlength set with the minimum

wordlength of hardware library for all stages. If 2 is the minimum wordlength of hardware

library, then the {2 2 2 2 2 2 …} is the wordlength set of maximum throughout. Second,

the SQNR constraint is great than the maximum SQNR of hardware library. The maximum

SQNR of hardware library is the SQNR for the wordlength set with maximum wordlength

of hardware library for all stages. If 32 is the maximum wordlength of hardware library

then the {32 32 32 32 32 32 …} is the wordlength set of maximum SQNR.

 45

 Figure 5.3 shows the output messages. Figure 5.3 (a) is the output message when the

related user constraints are N=1024, SQNR=45dB, the input wordlength and output

wordlength are 18, and the throughput constraint is 200MHz. The throughput constraint,

200MHz, is over the maximum throughput, 171MHz, of hardware library. Figure 5.3(b) is

the output message when the related user constraints are N=1024, SQNR=80dB, the input

wordlength and output wordlength are 18, and the throughput constraint is 50MHz. The

SQNR constraint, 80dB, is over the maximum SQNR, 69dB, of hardware library.

(a)

(b)

Figure 5.3 Output Message of Generator when There is No Solution

5.2.2.2 Partial Constraint Over

 This case happens when some constraints are over and all constraints are within

hardware library constraints. The proper ranges will be presented for tread-off. Figure 5.4

is the output message when the related user constraints are N=1024, SQNR=68dB, the

input wordlength and output wordlength=18, and the throughput constraint is 77MHz. The

SQNR constraint, 68dB, with the throughput constraint, 77MHz, can’t be met. The output

message is to advise user how to trade off.

Figure 5.4 Output Message of Generator when There is No Solution

 46

5.2.3 Methods Comparison

The area reduction and the computation time of optimization will be compared in this

sub-section. First, the comparison between previous work [3] and our hybrid method will

be shown. Then, the comparison between our hybrid method and the pure statistical

method will be introduced.

5.2.3.1 Previous Work vs. Our Work

 The previous work [3] is to optimize wordlength by the pure simulation-based method.

And our hybrid method is combined with simulation-based and statistical method. Figure

5.5 presents the post area and computing time of these methods. It shows that results of

optimized area of these methods are equally. But the computing time of our method is

much faster especially when the FFT length is longer.

 Figure 5.5 Comparison Result between Pure Simulation-Based and Hybrid Method

 47

5.2.3.2 Our Hybrid Method vs. Our Pure Statistical Method

 There are two kinds of optimization methods in our work. The hybrid method is the

first one, used whenever the allowable maximum SQNR error constraint is less than 1 dB.

Second, the pure statistical method is used whenever the allowable maximum SQNR error

constraint is greater than 1 dB. The comparison result of these methods is presented in

Figure 5.6. It is the figure of the area reduction rate and computing time. It can be found

that the area reduction rates of these two method are equally but the computing time of

pure statistical method is much faster.

 It is interesting to note that the area reduction rate is better when there are insufficient

SQNR error occurred in optimizations of 128, 512 and 2048 point FFT, in Table 5.4, of

pure statistical method.

 Figure 5.6 Comparison Result between Hybrid and Pure Statistical Method

 48

Chapter 6

Conclusions and Future Works

 In this thesis, a statistical error analysis method between SQNR and wordlength of

each PE stage of pipelined FFT processors is presented. New hybrid wordlength

optimization method on area reduction for pipelined FFT processors based on statistical

and simulation-based error analysis is introduced, which is fast then the pure

simulation-based method. We also presented a pure statistical wordlength optimization

method. It generates the optimized wordlength of FFT processors just in several seconds

even the point number of FFT is 8192. With our generator, the advice will still be given

even there are no solution under user constraints.

 Increase wordlength of FFT processors will increase the power consumption.

Therefore, wordlength optimization for power consumption is another attractive topic.

Actually, the accuracy of our optimization method depends on the accuracy of the given

hardware library. And to build a precise hardware library for area or power is a difficult

challenge.

 49

Reference

[1] J. W. Cooley and J. W. Turkey, “An Algorithm for Machine Computation of Complex

Fourier Series,” Math. Computation, Vol. 19, pp. 297-301, April 1965.

[2] Oppenheim, Alan V., and Schafer, Ronald W, Discrete Time Signal Processing,
Second Edition, Prentice Hall, 1999.

[3] Tson-Yee Lin, On Wordlength Optimization of Pipelined FFT Processors,
 NCTU, Master Thesis, 2003.

[4] Chao-Kai Chang, Investigation and Design of FFT Core for OFDM Communication
Systems, NCTU, Master Thesis, 2002.

[5] P. Duhamel, H. Hollmann, “Split Radix FFT Algorithm,” Electronics Letters, vol. 20,
pp. 14-16, January 1984.

[6] L.R. Rabiner and B.Gold, Theory and Application of Digital Signal Processing,
Prentice-Hall, Inc., 1975.

[7] E.H. Wold and A.M. Despain, “Pipelined and Parallel-Pipeline FFT Processors for

VLSI Implementation,” IEEE Transactions on Computers, C-33(5):414-426, May
1984.

[8] Shousheng He and Mats Torkelson, “A New Approach to Pipeline FFT Processor,”

Proceeding of International Parallel and Distributed Processing Symposium(IPDPS),
The 10th International, pp. 766-770, 1996.

[9] Shousheng He and Mats Torkelson, “Designing Pipeline FFT Processors for OFDM
(de)Modulation,” Proceeding of 1998 URSI International Symposium on Signals,
Systems, and Electronics, pp. 256-262, 1998.

[10] P. D .Welch, “A Fixed-Point Fast Fourier Transform Error Analysis,” IEEE
Transaction on Audio and Electro Acoustics, vol. AU-17, pp. 151-157, June 1969.

[11] A.V. Oppenheim and C. W. Weinstein, “Effects of Finite Register Length in Digital
Filters and the Fast Fourier Transform,” Proceeding IEEE, vol. 60, pp. 957-976, Aug.
1972.

 50

[12] M. Sundaramurthy and V. Umapathi Reddy, “Some Results in Fixed-Point Fast

Fourier Transform Error Analysis,” IEEE Transactions on Computers, pp. 305-307,
March 1977.

[13] Nuthalapati Chowdary and Willem Steenaart, “Accumulation of Product Roundoff
Errors in Modified FFT’s,” IEEE Transactions on Circuits and Systems, vol. CAS-33,
No.1, pp. 103-107, January 1986.

[14] R. Meyer, “Error Analysis and Comparison of FFT Implementation Structures,” IEEE
Proceeding of 1989 ICASSP, vol. 2, pp. 888-891, 1989.

[15] N. S. Jayant and P. Noll, Digital Coding of Waveforms Principles and Applications to

Speech and Vidio, Prentice Hall, 1984.

[16] K. Sayood, Introduction to Data Compression, Second Edition, Morgan Kaufmann,
2000.

[17] Stefan Johansson, Shousheng He, and Peter Nilsson, “Wordlength Optimization of a
Pipelined FFT Processor,” Proceeding of Midwest Symposium on Circuits and
Systems (MWSCAS), pp. 501-5.3, 1999.

[18] Synopsys DesignWare, http://www.synopsys.com.

[19] Synopsys Design Analyzer, http://www.synopsys.com.

[20] Artisan TSMC 0.25um Process High-Density Dual-Port SRAM (HD-SRAM-DP)

Generator User Manual, Release 1.0, June 2000, http://www.artisan.com.

[21] Artisan TSMC 0.25um Process High-Speed Single-Port SRAM (HD-SRAM-SP)

Generator User Manual, Release 3.0, June 2000, http://www.artisan.com.

[22] W. C. Yeh, “Arithmetic Module Design and Its Application to FFT”, PhD. Dissertation,

National Chiao Tung University, Taiwan, Jul. 1, 2001.

 51

http://www.synopsys.com/
http://www.synopsys.com/
http://www.artisan.com/
http://www.artisan.com/

Vita

Chih-Bin Kuo was born in Miaoli, Taiwan, in 1974. He graduate from National

Yunlin Industrial Junior College, Yunlin, Taiwan, in June 1994 and entered the Institute of

Electronics, NCTU in September 2001. His major studies were computer aided design

(CAD) and electronic design automation (EDA). He received the M.S. degree from NCTU

in August 2004.

 52

93

碩

士

論

文

利

用

混

合

方

法

進

行

管

線

化

快

速

傅

利

葉

轉

換

處

理

器

的

字

元

長

度

最

佳

化

之

研

究

電

子

與

光

電

學

程

電

機

資

訊

學

院

郭

志

彬

	書名頁
	A Thesis
	Submitted to Degree Program of Electrical Engineering Comput
	Master of Science

	Contents.pdf
	LIST OF TABLES

