
Redundancy design for a fault tolerant systolic
array

J.-J. Wang
C.-W. Jen

Indexing term: Array processing

Abstract: A systematic design methodology for
redundant systolic arrays is proposed.
Redundancies consisting of space-shift, time-shift
and space-time-shift schemes are applied suc-
cessfully to detect or mask permanent faults, tran-
sient faults or both. Various redundancy designs
for different utilisation efficiencies of processor ele-
ments can be obtained at the design stage by a
dependent graph and its associated algebraic
transformation. A customised optimal redundant
systolic array design can be achieved for various
performance requirements, including throughput
rate, latency, average computation time, hardware
cost and capabilities of fault detection and fault
masking.

1 Introduction

A systolic array [l] is a computing network that is com-
posed of many processor elements (PES) and local inter-
connections between them. It maximises computation
concurrences, including multiple processing and pipeline
processing; it is therefore suitable for the computation-
intensive problems existing frequently in image and
digital-signal processing. However, a major difficulty with
such high degrees of integration is that a single flaw in a
PE will lead to an erroneous result and render the entire
array useless. Therefore, fault-tolerance techniques must
be incorporated.

Various fault-tolerance techniques on systolic arrays,
such as static redundancy and dynamic reconfiguration,
have been proposed [2-131. For conventional static
redundancy, three techniques can be applied : fault detec-
tion (duplication and RESO [3]), fault masking (TMR)
and algorithm-based fault tolerance [4, 51. RESO is
useful for detecting transient faults in PE, but strictly it
causes time redundancy. Algorithm-based fault tolerance
has the advantages of lower hardware and time over-
heads, but the drawbacks of algorithm-specific design
and arithmetic errors, including truncations and over-
flows.

In general, replicated computation in a systolic array
can repeat the PE processing and then make a matching
or voting test, which is a recognised, effective means of
concurrent error detection or masking in real-time fault
tolerance applications [9, lo]. Duplication, TMR or time
redundancy at PE level all belong to this class. The
design objective is to maximise the fault coverages while

Paper 7138E (C2, C3), first received 7th October 1988 and in revised
form 25th September 1989
The authors are with the Institute of Electronics, National Chiao Tung
University, 75 Po-Ai St., Hsinchu, Taiwan, Republic of China

218

minimising the corresponding hardware and time over-
heads.

Transient faults and permanent faults both occur in
real-time environments. For detecting purpose, a per-
manent fault can be resolved by comparing the comput-
ing results from different PES assuming that only single
fault exists in systolic array. A transient fault can be
detected by comparing the results from same PE at a dif-
ferent time. Of course, comparison of results from differ-
ent PES executed at different times will detect both
permanent and transient faults. Therefore, the replicated
computation techniques working on array structure can
be summarised into three operating modes : space-shift,
time-shift and space-time-shift, as shown in Table 1. The
enhanced RESO technique [l l , 123 is one specific design
example. In this paper, a systematic and more generalised
redundant design approach for systolic array is provided.

Table 1 : Three operating modes of the replicated computa-
tion in space-time domain

operating modes

space-shift

I

time-shift

k space-

t ime-sh i f t

I

fau l t detected structure

permanent fault

PE12

i transient fault

I permanent fault

and I transient fault

The systolic array can be characterised by the follow-
ing attributes [14] : (1) synchronicity, (2) regularity and
modularity, (3) spatial and temporal locality and (4)
pipelinability. Regular, modular design and spatial local-
ity will improve space-shift, while synchrony and tempo-
ral locality will benefit time-shift. Pipeline design gives
the system high throughput rate, but the PES often lie
idle in some nonfull pipelining cases. Nonfull pipeline
often occurs because of the synchronous systolisation or
limited input/output bandwidth [l5, 161. These idle PES
can be seen as the pseudohardware to be used for
redundancies. Hence the effective redundancy design in
systolic arrays is a kind of space-time management
problem. And, as we know, the synthesis procedure of a
systolic array can be seen as a space-time transform-
ation. Therefore it will be the most effective to consider
redundancies in design stage for a systolic array.

I E E PROCEEDINGS, Vol. 137, P t . E, No. 3, M A Y 1990

2

In this Section, a systematic design method for a systolic
array is introduced. It is a two-step procedure. The first
step is to construct a dependence graph from the algo-
rithm expression. The dependence graph approach is an
effective way to maximise the parallelisms in temporal
and spatial domains [14]. The second step is a space-
time transformation from the dependence graph to a
systolic array.

2.1 Dependence graph
The dependence graph (in short DG) is the 'unrolling' of
an algorithm, which exposes the inherent data depen-
dencies so that the concurrences can be easily extracted.
The DG can be easily constructed from an indexed and
localised single assignment form of an algorithm expres-
sion. The formal definition can be described as

Design methodology for a systolic array

Dejinition 1: A dependence graph is a directed graph
composed of nodes and directed arcs. Nodes locate at
some index points in n-dimensional index space, and each
node associates with a function whose operands reside in
incoming arcs while the computing results reside in out-
going arcs. Therefore, the directed arcs represent the data
flow dependencies. The DG can be expressed as an alge-
braic structure

DG = (J" , D), where
J" is the set of triples (j , cj,fj), where j is an index point
from a finite integer set Z", c j is the function associated
with the index point and& is the set of data associated
with the index point j .

D is the set of triples (d , e(d),f,), where d is the data-
dependent vector in n-dimensional index space and e(d)
the data-dependent edges or arcs in the graph along the
direction specified by d . f , is the set of data associated
with e(d).

2.2 Space-time transformation
Given a DG, a systolic array can be derived by a linear
transformation. This transformation matrix, which maps
the DG into a systolic array can be expressed as

where the 1 x n vector W , termed the time-schedule func-
tion, maps the index space into time sequence, and the
(n - 1) x n submatrix S, termed the space-transformation
function, maps n-dimensional index space into an (n - 1)-
dimensional systolic array. This transformation T , com-
prising time schedule and node assignment to array
space, is sometimes called the space-time transformation.

To determine W and S , we first have to choose arbi-
trarily a projection direction Pd on the DG. The space-
transformation function S can be obtained by the chosen
Pd [SI. For correct timing scheduling, W has to obey the
following conditions :

(1) W . d i 2 1 for any dependent vector di on the
DG.

(2) w ' P d # 0.
If W and S are determined through this space-time trans-
formation T , a systolic array can be derived. The systolic
array can be abstracted by a model defined as follows:

Dejinition 2: A systolic array model can be expressed as
a structure SA = (I " - ' , L) where: In-' is the set of triples
(i, Ci, Fi), where i is the index point in (n - 1) dimension

space where PE is located. Ci and Fi are the function and
the set of data streams associated with the index point i.

L is the set of triples (I , De(l), F',), where 1 is the physi-
cal directed links connected between processors. De(l) is
the delay elements on the physical directed link 1. F , is
the set of data streams associated with the physical
directed link 1.

The PE space and physical directed link of a systolic
array are therefore easily obtained by:

(1) Node transformarion: an index point j E J" (index in
DG) is mapped by

which means that the index point j is executed in index
point io') of the corresponding In-' PE space in systolic
array at time to').

(2) Link transformation: a data-dependent vector d in
DG is mapped to a physical directed link

The 1 is a physical directed link in systolic array and De(l)
is the delay associated with the link 1. Actually, the
number of extra delay units inserted between PES is

One important performance parameter for the designed
systolic array is the pipeline period a, which is the time
interval in clock units between two successive input data.
It also indicates the time interval between two successive
activities of a processor. By our transformation, U = W .
p d . a = 1 means that the processor is busy in every clock
and U = 2 means the processor is activated in every other
clock, i.e. busy and idle alternately.

Taking an example of band matrix-vector multiplica-
tion, DG is shown in Fig. la while two array designs

(De([) - 1).

a l l 0 0 0 0

b

a Dependence graph for band matrix-vector multiplication
b Systolic array with pipelining period a = 1
c a = 2

Fig. 1

IEE PROCEEDINGS, Vol. 137, Pt. E, No. 3, M A Y 1990 219

which are projected along two projection directions [0,
11 and [l, 11 are shown in Figs. l b and c, respectively.
In these designs, time schedule function W is selected as
[I, 11. For [0, I] projection, S = [I , 01, then c1 = 1 is
obtained. For [l, 11 diagonal projection, S = [l, - 11, U
is 2 and so the data throughput rate and the utilisation
efficiency of processor would be halved.

2.3 Pipeline period scaling and delay transfer
As described in Section 2.2, various transformations may
be found by choosing different projection directions,
which will result in different designs. Meanwhile, some
rules may be applied on the algebraic transformation
matrix to get new transformations, which will be useful
for fault-tolerant systolic array design.

2.3.1 Pipeline period scaling: If a new transformation
obtained by the time schedule function is multiplied by

a positive integer k, i.e. wk = kW, this is termed pipeline
period scaling. For this new transformation, not only U
but also delay elements on the links have to be scaled up
by a factor of k. Incidentally, the PE is idle more fre-
quently and more delay elements are needed. Therefore, a
time schedule function wk is called a scaled time-schedule
function if it can be described by wk = k . W where k is a
positive integer.

2.3.2 Delay transfer: Given any cutset that partitions a
systolic array into two parts, we can group the edges of
the cutset into two sets: inbound and outbound edges. As
we know, on systolisation [13], the advancing k time
units on all the outbound edges would pause k time units
on the inbound edges, or vice versa. This procedure of
delay transfer can be described mathematically by

T , . D = _ _ _ _ _ m_ _ _ _ _ _ _ . D f o r m = 1 , 2 ,..., n - 1 [" + ","-.
where s, is any row vector of S and h, is any integer.

The new transformation T, is obtained by transferring
h, . s, . di delay time units to each directed link li.

Two examples follow. Fig. 2a is a systolic array design as
shown in Fig. lb for band matrix-vector multiplication in
which the corresponding transformation is described by
T . D. The first element of each column in T . D rep-
resents the delay element De(Z) in each directed link 1. The
other elements represent the existing direction of 1. In

+EEEE
T O =) : : I J b 3) = 1 ; 1)

a

cutset

b
Fig. 2
a Systolic array for band matrix-vector multiplication
b Delay transfer for systolic array

Fig. 2a, there are (De(l) - 1) delay elements shown in
physical link because one delay element is included in
PE. If we select h, = 1 and add h , . s1 to W , then one
extra delay element is transferred to I , which constitute
the cutset shown in the Fig. 2b. In Fig. 3a, it shows one
assumed systolic array whose directed links construct a
loop. By selecting different T, s corresponding to different
cutsets, different delay transfers between directed links
are resulted, which are shown in Figs. 3b, c and d respec-
tively.

I

2 2 2

-1 0 1
T D - 1 0 1 - 1 1

a

cutset 1

b

cutset 2

1 1 4

-1 0 1
,/ Tc2 D= 1 0 1 - 1 1

/
/

C

Fig. 3
a Systolic array whose directed links construct a loop
b, c, d Delay transfers for systolic array

Note that the pipelining period c(does not change
after delay transfer. This means that the data throughput
rate remains the same but the computation latency may
be changed.

3 Redundancy design

In Section 2, we proposed a systematic way to design an
algorithm-specific systolic array. In practice, by this
method, various architectures for an algorithm can be

220 I E E P R O C E E D I N G S , Vol. 137, P t . E , No. 3, M A Y 1990

explored by varying W and S, resulting in different pipe-
line periods, a. The pipeline period a, means that each PE
activates for one clock cycle and idles for the next a - 1
clock cycles. A systolic array is nonfull pipelining and
hence is not efficient if a > 1. Methods of increasing the
utilisation of systolic arrays have been proposed in some
papers. One is to execute simultaneously two or more
problem instances at a systolic array so that the effective
throughput rate can increase [lS, 161. Another is to
perform replicated computations in systolic array to form
a fault-tolerant systolic array (FTSA) [S, 141.

3.1

A systolic array with pipeline period a can perform an
original DG (ODG) and a - 1 (or less) redundant DGs
(RDGs) concurrently. These RDGs can be executed by
idle PES at idle clock cycles. We use a general transform-
ation Tk to describe the relation between RDG, and
ODG. The node transformation and link transformation
associated with TL are shown as follows:

Design methodology for systolic array with
redundant scheme

node transformation

Tk . J = [y] . j + kl, . [y] . di + k2,. [A] (2)

where kl, and k2, are integers and di is any dependent
vector, but S . di # 0.

link transformation

T:, . d = [y] . d (3)

In eqn. 2, the first term on the right-hand side is the orig-
inal node transformation. The second term means that
RDG, is shifted kl, units from ODG along the direction
di. Now, when two DGs are put together, there may be
many nodes residing at same index point. Therefore, the
result is still not correct, because one PE may need to
execute two computations at a clock cycle. So we have to
use the third term to split them by delaying k2, time
units. Using the new transformation, a redundant systolic
array (RSA) can be split from an original systolic array
(OSA) by space-shift, time-shift or space-time-shift, and
then both SAS can be merged and implemented into one
physical systolic array. The details of these three
redundant schemes are described below.

3.1. I Space-shift scheme: If the replicated computa-
tions of different DGs are performed simultaneously by
different PES, this is a space-shift scheme. When a = 1,
there are no idle PES or idle time cycles, so different DGs
have to be executed by different systolic arrays like con-
ventional DMR or TMR.

For a > 1, the replicated computations associated with
m different DGs (m < a) can be executed simultaneously
by different PES if there are transformation TL for each
DG, n = 1, . . . , in where TL should have the form of eqn.
2 and satisfy the following three conditions:

3

(i) values of k l , are different from each other
(ii) the time shift t , = k2, + (kl, . W . di) = 0, for

each n
(iii) values off, are different from each other, if f , =

k2, mod a.

The t , is the time shift between transformations T:, and
the original T. If t , is zero, there is no time shift. When
two DGs are put together and two f , s have the same
value, there may be many nodes at the same place. Con-
dition (iii) is used to prevent one PE from executing two

I E E PROCEEDINGS, Vol. 137, P t . E , N o . 3, M A Y 1990

computations at one cycle. After the transformation,
every systolic array is shifted by (kl, . S . di) PE posi-
tions from original systolic array. They can be merged
into one systolic array and executed simultaneously. By
this scheme, the permanent fault can be detected or
masked.

3.1.2 Time-shift scheme: If the replicated computations
associated with different DGs are computed by the same
PE at different times, this is a time-shift scheme. For m
different DGs (m < a), the replicated computations in dif-
ferent DGs can be computed by same PE at different
time if there exist a transformation TL for each DG,
n = 1, . . . , m where TL should have the form of eqn. 2 and
satisfy the following two conditions :

(i) kl, = 0
(ii) values off, are different from each other, iff. = k2,

mod a.

The starting computation time corresponding to each
node in DG, has been delayed by k2, time units. The
transient fault can be detected or masked when this
scheme is used. No hardware overhead is needed. The
other advantage is that it needs no extra communication,
because results can be compared or voted in the same
PE.

3.1.3 Space-time-shift scheme: If the replicated com-
putations corresponding to different DGs are computed
by different PES at different times, this is a space-time-
shift scheme. For the replicated computations corre-
sponding to m different DGs, they can be executed by
different PES at different time if there is a transformation
T:, for each DG,, n = 1, . . ., m, where T:, should have the
form of eqn. 2 and satisfy the following three conditions:

(i) values of kl, are different from each other
(ii) t , = k2, + (kl, . W . di) and t , is different from each

other
(iii) values off, are different from each other, if f , =

k2, mod a.

Once this scheme is used to design a FTSA, both per-
manent and transient faults can be detected or masked. If
we have to keep spatial locality and temporal locality of
systolic array characteristics, the variable kl, and k2,
must be as small as possible. Therefore, communications
between PES will be simple.

We illustrate these three schemes by taking the same
example of band matrix-vector multiplication. If we select
W = [l , 13, Pd = [l , 11' and S = [l , - 11 for ODG, then
the pipeline period a of systolic array is 2. If we select
kl = 1 , k2 = - 1 and di = [l , 01' for RDG, the space-
shift scheme is obtained and shown in Fig. 4a. At time 1,
PE, and PE, perform the same computation. It is similar
to the DMR scheme, except that we use only one systolic
array instead of two. The hardware overhead is only one
PE. When kl = 0 and k2 = 1 are selected for RDG, it
shows the time-shift scheme in Fig. 4b. Computation 1 is
executed repeatedly by PE, at time 1 and time 2; this is
similar to a time-redundancy scheme, but the time over-
head is only one clock cycle. In another case, the space-
time-shift scheme is obtained if we select kl = 1 and
k2 = 1 for RDG. This is shown in Fig. 4c. Computation 1
is performed by PE, at time 1 and repeated by PE, at
time 3. This scheme has also been called TRIFT (time-
redundancy with interleaving for fault-tolerance) [141.

One assumption made in some fault-tolerant architec-
tures is that there is no need for roll-back to minimise the
error latency. Using this assumption, the computed

22 1

results must be checked before they are sent to the next
PE. This assumption constrains the applications of time-
shift and space-time-shift. A result generated in time-shift
or space-time-shift schemes can be checked and cor-
rected before being passed to the next PE, if the time shift
t , = (I k2, + k l , . W . di I) is not greater than (I W . d , 1
- l) , which is the number of delay elements in the com-
putational link d , . By using delay transfer or pipeline
period scaling, one can increase delay elements in the
computational link so that roll-back is avoided.

Finally, the major concern of redundancy design is to
minimise the hardware or time overhead. The time over-
head, according to the new transformation, is minimised

I'
I time= 1

space-sh i f t

Fig. 4a Space-shqt scheme for systolic array with pipelining period a = 2

, / /

/
/

Fig. 46
a = 2

Time-shqt scheme for systolic array with pipelining period

when kl,s and k2,s are selected that max {t,,) is
minimal for n, m = 1, . . . , a, where t,, = I k2, + k l , . W
.di - k2, - kl, . W . diI is the difference of time shift

between transformations Tk and T:, . The hardware over-
head according to the new transformation is minimal if
d , , k l , and k2, are selected such that .the number of
overlap PES between SAS is maximum.

In the following Sections, concurrent error-detection
and error-masking techniques will be discussed for fault-
tolerant systolic arrays with different pipeline periods.
For each case, three redundancy schemes (space-shift,
time-shift and space-time-shift) will be applied to obtain
fault-tolerant systolic arrays with different performances.

11

\

$y
space-t ime-sh i f t

Fig. 4c
period a = 2

Space-time-shift scheme for systolic array with pipelining

3.2 Fault-tolerant systolic array design with
concurrent error detection

To detect an error, it is necessary to duplicate computa-
tions (one ODG and one RDG) and compare the results.
The two replicated computations may be executed by
two PES simultaneously, one PE at different times or by
two PES at different times. So, three redundancy schemes
can be used to design FTSA with concurrent error detec-
tion.

3.2.1 ci = I case: A space-shift scheme is like a conven-
tional DMR scheme, in which a duplicated PE is tightly
coupled to every PE. A time-shift scheme cannot be used,
because each PE is active in every clock cycle for CI = 1.
This leaves a space-time-shift scheme.

Using a DMR scheme and then shifting the RSA by k2
time units from OSA, a space-time-shift FTSA can be
obtained. There is a roll-back problem to be solved when
an error occurs. By the time that a PE of the RSA per-
forms the replicated computation 1 and finds an error,
computation 2 has already been executed in the OSA.
The result of computation 1 in the OSA may be erron-
eous, and therefore it needs to roll-back and recompute.
The problem can be solved if a delay transfer rule is
applied such that there are at least k2 delay elements in
the computational link. Therefore, results have been
checked and corrected before being passed to next PE.
An example of band matrix-vector multiplication is

I E E PROCEEDINGS, Vol. 137, Pt . E , No. 3, M A Y 1990 222

shown in Fig. 5, which uses the design shown in Fig. 2b.
One extra delay element is added to computational link
I , so that roll-back can be avoided. After delay transfer,
the latency increases but data throughput rate does not
change. In fact, this scheme is the best choice when data
throughput rate is the most important factor to be con-
cerned. If a = 1, whichever scheme is selected, the hard-
ware overhead is 100% over original SA but performance
will be unaffected.

I

t i m e L l 2 3

Fig. 5 Space-time-shqt scheme for systolic array with pipelining
period a = I
N matcher 0 delay element

3.2.2 IX = 2 case: For a transformation T which results
the pipeline period a 2 2, the time schedule function W
has two alternatives. One can be described for k . W’
(scaled W) and the other cannot be scaled. In the first
case, all PES simultaneously activate for one clock cycle
and idle for the next, alternately. In the latter case, PE,
activate alternate clock cycles exactly out of phase with
their neighbours.

A space-shift scheme can only be used in the unscaled-
W case. A space-shift FTSA is usually obtained by
finding a suitable Tn. For some algorithms, for example
(Fig. 4a), only one PE overhead is needed and the
resulting computing latency will not be different from
that in the a = 1 case when this scheme is applied.

A time-shift scheme is like a conventional time-
redundancy scheme if the original W is a scaled time
schedule function. In the band matrix-vector multiplica-
tion example, when W = [2, 21 = 2 . [l, 11, S = [l, 01
are selected and kl = 0, k2 = 1 are chosen, a time-shift
FTSA is accomplished. Note that it does not need to roll
back and recompute when an error occurs. In the
unscaled W case, a time-shift FTSA can still be obtained.
An example is shown in Fig. 4b. A drawback of this
scheme is that a roll-back is necessary to correct faults
and the error latency will increase. The latency is,
however, smaller than the space-shift scheme in general
cases.

I E E PROCEEDINGS, Vol. 137, P t . E , N o . 3, M A Y 1990

A space-time-shift scheme can be applied to both
scaled and unscaled time schedule functions. An example
for unscaled W is shown in Fig. 4c. This scheme needs
only one PE and k2 time units overheads, but it can
detect both transient and permanent faults.

3.2.3 a 3 3 case: Any systolic array with a 3 3 can be
designed as an error-detectable FTSA with any of the
three types of schemes. An error-masking FTSA which
offers better fault-tolerance capability can also be
obtained with only a small hardware or time overhead,
which will be described later. The time and hardware
overheads for different error detection schemes are sum-
marised in Table 2.

Table 2: T ime and hardware overheads for different error
detection schemes

error detection time overhead hardware overhead
~~ _____

a = 1 space-shift 0
space-time-shift tot
(no delay transfer)
space-time-shift t ,
(delay transfer)

a = 2 space-shift 0

time-shift K2
space-time-shift t,,

a > 3 space-shift 0

time-shift K2

space-time-shift tst

N,,,
N d

0
Ntot
N,,,
N d

0

N A
Ntot -

1. NtOt is the total number of processor elements.
2. Nd is the number of PES along one direction.
3. td is the number of additional delay time units along the computa-
tional direction d, after delay transfer.
4 . K Z = l k 2 1 .
5 . t S , = l k 2 + k l W . d , I .

3.3 Fault-tolerant systolic array design with
concurrent error masking

In the error masking approach, which is known as
N-tuple modular redundancy, N copies (N odd) of a
module and a majority voter are used to mask the error
from failed module. At least three modules are necessary
in a voting system which is typically called a triple
modular redundancy (TMR). It seems that we need at
least 200 percent hardware overhead for fault tolerance.
In practice, it needs to put triplicate computations to the
voter and then gets a correct result. The triplicate compu-
tations (ODG and 2 RDGs) may be computed in differ-
ent PES and/or at different time. Using space-shift,
time-shift or space-time-shift, we may obtain a better
FTSA whose performance is acceptable. For example, an
error masking systolic array which corresponds to a
space-shift scheme with a = 2 systolic array has been
proposed, and this hardware overhead is about 50
percent [SI. When space-shift scheme is used to a systolic
array with a = 3 it needs only a very small amount of
hardware overhead for a 1-dimensional array, i.e.
O(l/N,,,), where N,,, is total number of PES. Surely, the
time overhead increases. But in some applications, time
overhead may not be over 100 percent. The kind of array
structures and redundancy schemes that are chosen
depend on the user’s requirements for hardware and time
cost. In the following, three redundancy schemes will be
investigated to design FTSA with error masking for dif-
ferent a.

223

3.3.1 a = 1 case: A space-shift scheme is like the con-
ventional TMR scheme in which triplicated PES are
tightly coupled.

A time-shift scheme cannot be used because each PE is
active in any clock cycle.

A space-time-shift FTSA is obtained by shifting RSAl
by k2, time units and RSA2 by k2, time units from OSA.
If the results of OSA and RSAl are not correct before
being used by next PES, the rollback problem occurs.
This problem can be solved if delay transfer rule is
applied such that at least K2 = Max { I k2,I, I k2, I }
delay elements existing in computational link. No matter
whatever scheme is selected, the hardware overhead is
200%.

3.3.2 cx = 2 case: In this case, the utilisation of the PE is
half so that RSAl and OSA can merge into one SA and
execute RDGl and ODG correctly. Another SA is neces-
sary to execute RDG2.

A space-shift scheme shifts RDGl with respect to
ODG and then transforms them into a FTSA, thereafter,
an extra redundant PE is tightly coupled to FTSAs PE
whose sum of indexes is odd (or even). This result is
similar to that in Reference 8 of which the hardware
overhead is 50 percent only. Meanwhile, there may be no
time overhead in some applications, for example, band
matrix-vector multiplication.

There is no time-shift scheme because an extra systolic
array is always necessary for a = 2 case.

The space-time-shift used as in subsection 3.2.2 and
then adding extra SA, obrains a pseudo space-time-shift
scheme. It is called pseudo because some replicated com-
putations are executed simultaneously and some are
executed at different time.

3.3.3 a = 3 case: For a given non-full pipelining systolic
array with a = 3, for example, banded matrix-matrix
multiplication [l], each PE activates one clock cycle and
idles the next 2 clock cycles alternatively. Using these idle
resources to execute two replicated computations pipelin-
ing can be filled, the efficiency of SA increased, and there-
fore the time and hardware overhead will become small.

In a space-shift scheme, a space-shift FTSA is obtained
by suitably shifting RDGl and RDG2 to ODG. The
band matrix multiplciations is taken as an example. Fig.

O23

a12 a22

a32

Fig. 6

6 shows the systolic array with space-shift scheme while
Fig. 7 show the operations in three consecutive cycles. In
the original design [l], the gray PES are active and the
other PES are idle in each cycle. In our design, one gray
PE and two redundant PES execute the same computa-
tions to perform a TMR scheme. In this example, it needs
only 2N extra PES instead of 2N2 PES to perform TMR
scheme. The detail architecture of this array is shown in
Fig. 8. The voter takes the three results to vote and
broadcast the result to three multiplexers. Note that each
multiplexer takes the data from there different voters at
three different cycles under the control signal, cycle,
respectively.

The time-shift scheme is only applied in the case which
has a computational link including Max { I k2,I, I k2, I }
or more delay elements. Otherwise, the erroneous result
may be passed to next PE before being corrected.

This space-time-shift scheme can also be applied by
selecting suitable transformation T:, . As a summary, the
time and hardware overheads for different error masking
schemes are listed in Table 3.

Table 3: Time and hardware overheads for different error
masking schemes

error masking time overhead hardware overhead

a = 1 space-shift 0 2NtOt
space-time-shift t,, 2Ntot

space-time-shift f d 2Nmt
(no delay transfer)

(delay transfer)
N t o t

a = 2 space-shift 0 - + N t o t

space-time-shift ts, N t o t

Nd
time-shift X X

2N,,,
a 2 3 space-shift 0

Nd

time-shift K2 0
N t o t space-time-shift t,, -
Nd

1. N,,, is the total number of processor elements.
2. N, is the number of PES along one direction.
3. t , is the number of additional delay time units along the compu-
tational direction d, after delay transfer.
4. K2 = Max {lk2,1, lk2,I. lk2, -k2,I}.
5. t,, = Max { t , . I , , t12}, where tl = lk2, + k l . W . d, 1 , t z = lk2,
+ k l , . W . d , I a n d t l , = l k 2 , + & l , ~ W ~ d l - k 2 , - k l , W . d , I .

0

b 2 l b22

a21

0 ‘31 c22 c21 ‘12

0 ‘32 c31 c22 ‘13 c12

Systolic arrayfor band matrix multiplications with space-shft scheme

b 2 2

b 2 2

0 0

0

b12

redundant processor element

224 IEE PROCEEDINGS, Vol. 137, Pt . E , N o . 3, M A Y 1990

! cycle 1

cycle 2 cycle 3

‘T‘
Fig. 7 Three operation cycles f o r band matrix multiplications

cyc le

-

‘Y ‘

PE14 U+ 1

I VOTER VOTER I I

1 1

‘€31 PE34 PE35 I I

t t
C b C i f c v c l e = l

c’= c l ,

e l s e i f cyc le=2

c‘= c2 ,

e l se cycle=3 + ’ C’=C3

a b - b c y c l e

c ’=c+ab

c3 c 2 c l
a = a

c b

Fig. 8 Detailed architecture ofsystolic array f o r band matrix multiplications

IEE PROCEEDINGS, Vol. 137, P t . E, N o . 3, M A Y 1990 225

4 Conclusions

A systematic design methodology for a redundant systo-
lic array has been proposed. Redundancy schemes which
consist of i) a space-shift, ii) a time-shift and iii) a space-
time-shift schemes can be applied to fault tolerant systo-
lic array design in order to detect (or mask) permanent
fault, transient fault or both. By this design method,
various redundancy designs for different utilisation efi-
ciency, a, of PE in systolic array can result. According to
the performance requirements including throughput rate,
latency, block pipeline period, capability of fault detec-
tion (or masking) and hardware cost, a customised
optimal redundant systolic array design can be achieved.

5 Acknowledgment

This work was supported by the National Science
Council, Taiwan ROC, under grant NSC 77-0404-EO09-
04.

References

KUNG, H.T.: ‘Why systolic architectures?, Computer, 1982, 15, 1,
pp. 3 7 4 6
FORTES, J.A.B., and RAGHAVENDRA, C.S. : ‘Gracefully Degrad-
able Processor Arrays’, IEEE Trans., 1985, C-34, 11, pp. 1033-1044
KOREN, I.: ‘A Reconfigurable and Fault-Tolerant VLSI Multipro-
cessor Array’. Proc. 8th Int. Symp. Computer Architecture, 1981, pp.
4 2 5 4 2
HUANG, K.H., and ABRAHAM, J.A. : ‘Algorithm-Based Fault Tol-
erance for Matrix Operations’, IEEE Trans., 1984, C-33, 6, pp.
5 18-528

5

6

7

8

9

10

11

12

13

14
15

16

LIU, C.M., and JEN, C.W.: ‘On the Design of Algorithm-Based
Fault-Tolerant VLSI Array Processor’, IEE Proc. E, 1989, 136, (6),

SAMI, M.G., and STEFANELLI, R.: ‘Reconfigurable Architecture
for VLSI Processing Array’. National Computer Conf., 1983, pp.

ROSENBERG, A.L.: ‘The Diogenes Approach to Testable Fault-
Tolerant Arrays of Processors’, IEEE Trans., 1983, C-32, 10, pp.
902-9 10
KIM, J.H., and REDDY, S.M.: ‘A Fault-Tolerant Systolic Array
Using TMR method’. Proc. IEEE Internat. Conference Computer
Design: VLSI in Computers, 1985, pp. 769-773
PATEL, J.H., and FUNG, L.Y.: ‘Concurrent Error Detection in
ALUs by Recomputing with Shifted Operands’. IEEE Trans., 1982,

JEN, C.W., KUNG, S.Y., and CHANG, C.W.: ‘Fault-Tolerant
Design for VLSI Array Processors’. Proc. of Real-Time System
Symp., 1987, pp. 4 6 6 4
CHAN, S.W., LEUNG, S.S., and WEY, C.L.: ‘Systematic Design
Strategy for Concurrent Error Diagnosable Iterative Logic Arrays’,
Proc. IEE P t . E, 135, 2, 1988, pp. 87-94
CHAN, S.W., and WEY, C.L.: ‘The Design of Concurrent Error
Diagnosable Systolic Arrays for Band Matrix Multiplications’. Proc.
IEEE Trans. on CAD, 1988, pp. 21-37
KUNG, H.T., and LAM, M.S.: ‘Wafer-Scale Integration and Two-
Level Pipelined Implementations of Systolic Arrays’, J . Parallel and
Distributed Computing, 1984, pp. 32-63
KUNG, S.Y.: ‘VLSI Array Processors’, Prentice-Hall, 1988
NAVARRO, J.J., LLABERIA, J.M., and VALERO, M.: ‘Solving
Matrix Problems with no Size Restriction on a Systolic Array Pro-
cessor’. Proc. of Internat. Conf. on Parallel Processing, 1986, pp.
676683
NAVARRO, J.J., LLABERIA, J.M., and VALERO, M.: ‘Computing
Size-Independent Matrix Problems on Systolic Array Processors’.
Proc. 13th Internat. Symp. Computer Architecture, 1986, pp.
27 1-278

pp. 539-547

565-577

C-31,7, pp. 589-595

226 IEE PROCEEDINGS, Vol. 137, P t . E, N o . 3, M A Y 1990

