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Abstract: A systematic design methodology for 
redundant systolic arrays is proposed. 
Redundancies consisting of space-shift, time-shift 
and space-time-shift schemes are applied suc- 
cessfully to detect or mask permanent faults, tran- 
sient faults or both. Various redundancy designs 
for different utilisation efficiencies of processor ele- 
ments can be obtained at the design stage by a 
dependent graph and its associated algebraic 
transformation. A customised optimal redundant 
systolic array design can be achieved for various 
performance requirements, including throughput 
rate, latency, average computation time, hardware 
cost and capabilities of fault detection and fault 
masking. 

1 Introduction 

A systolic array [l] is a computing network that is com- 
posed of many processor elements (PES) and local inter- 
connections between them. It maximises computation 
concurrences, including multiple processing and pipeline 
processing; it is therefore suitable for the computation- 
intensive problems existing frequently in image and 
digital-signal processing. However, a major difficulty with 
such high degrees of integration is that a single flaw in a 
PE will lead to an erroneous result and render the entire 
array useless. Therefore, fault-tolerance techniques must 
be incorporated. 

Various fault-tolerance techniques on systolic arrays, 
such as static redundancy and dynamic reconfiguration, 
have been proposed [2-131. For conventional static 
redundancy, three techniques can be applied : fault detec- 
tion (duplication and RESO [3]), fault masking (TMR) 
and algorithm-based fault tolerance [4, 51. RESO is 
useful for detecting transient faults in PE, but strictly it 
causes time redundancy. Algorithm-based fault tolerance 
has the advantages of lower hardware and time over- 
heads, but the drawbacks of algorithm-specific design 
and arithmetic errors, including truncations and over- 
flows. 

In general, replicated computation in a systolic array 
can repeat the PE processing and then make a matching 
or voting test, which is a recognised, effective means of 
concurrent error detection or masking in real-time fault 
tolerance applications [9, lo]. Duplication, TMR or time 
redundancy at PE level all belong to this class. The 
design objective is to maximise the fault coverages while 
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minimising the corresponding hardware and time over- 
heads. 

Transient faults and permanent faults both occur in 
real-time environments. For detecting purpose, a per- 
manent fault can be resolved by comparing the comput- 
ing results from different PES assuming that only single 
fault exists in systolic array. A transient fault can be 
detected by comparing the results from same PE at a dif- 
ferent time. Of course, comparison of results from differ- 
ent PES executed at different times will detect both 
permanent and transient faults. Therefore, the replicated 
computation techniques working on array structure can 
be summarised into three operating modes : space-shift, 
time-shift and space-time-shift, as shown in Table 1. The 
enhanced RESO technique [ l l ,  123 is one specific design 
example. In this paper, a systematic and more generalised 
redundant design approach for systolic array is provided. 

Table 1 : Three operating modes of the replicated computa- 
tion in space-time domain 

operating modes 

space-shift 

I 

time-shift 

k space- 

t ime-sh i f t  

I 

fau l t  detected structure 

permanent fault 

PE12 

i transient fault 

I permanent fault 

and I transient fault 

The systolic array can be characterised by the follow- 
ing attributes [14] : (1)  synchronicity, (2) regularity and 
modularity, (3) spatial and temporal locality and (4) 
pipelinability. Regular, modular design and spatial local- 
ity will improve space-shift, while synchrony and tempo- 
ral locality will benefit time-shift. Pipeline design gives 
the system high throughput rate, but the PES often lie 
idle in some nonfull pipelining cases. Nonfull pipeline 
often occurs because of the synchronous systolisation or 
limited input/output bandwidth [l5, 161. These idle PES 
can be seen as the pseudohardware to be used for 
redundancies. Hence the effective redundancy design in 
systolic arrays is a kind of space-time management 
problem. And, as we know, the synthesis procedure of a 
systolic array can be seen as a space-time transform- 
ation. Therefore it will be the most effective to consider 
redundancies in design stage for a systolic array. 
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In this Section, a systematic design method for a systolic 
array is introduced. It is a two-step procedure. The first 
step is to construct a dependence graph from the algo- 
rithm expression. The dependence graph approach is an 
effective way to maximise the parallelisms in temporal 
and spatial domains [14]. The second step is a space- 
time transformation from the dependence graph to a 
systolic array. 

2.1 Dependence graph 
The dependence graph (in short DG) is the 'unrolling' of 
an algorithm, which exposes the inherent data depen- 
dencies so that the concurrences can be easily extracted. 
The DG can be easily constructed from an indexed and 
localised single assignment form of an algorithm expres- 
sion. The formal definition can be described as 

Design methodology for a systolic array 

Dejinition 1:  A dependence graph is a directed graph 
composed of nodes and directed arcs. Nodes locate at 
some index points in n-dimensional index space, and each 
node associates with a function whose operands reside in 
incoming arcs while the computing results reside in out- 
going arcs. Therefore, the directed arcs represent the data 
flow dependencies. The DG can be expressed as an alge- 
braic structure 

DG = ( J" ,  D), where 
J" is the set of triples ( j ,  cj,fj), where j is an index point 
from a finite integer set Z", c j  is the function associated 
with the index point and& is the set of data associated 
with the index point j .  

D is the set of triples (d ,  e(d),f,),  where d is the data- 
dependent vector in n-dimensional index space and e(d) 
the data-dependent edges or arcs in the graph along the 
direction specified by d .  f ,  is the set of data associated 
with e(d). 

2.2 Space-time transformation 
Given a DG, a systolic array can be derived by a linear 
transformation. This transformation matrix, which maps 
the DG into a systolic array can be expressed as 

where the 1 x n vector W ,  termed the time-schedule func- 
tion, maps the index space into time sequence, and the 
(n - 1) x n submatrix S,  termed the space-transformation 
function, maps n-dimensional index space into an ( n  - 1)- 
dimensional systolic array. This transformation T ,  com- 
prising time schedule and node assignment to array 
space, is sometimes called the space-time transformation. 

To determine W and S ,  we first have to choose arbi- 
trarily a projection direction Pd on the DG. The space- 
transformation function S can be obtained by the chosen 
Pd [SI. For correct timing scheduling, W has to obey the 
following conditions : 

(1) W . d i  2 1 for any dependent vector di on the 
DG. 

(2) w ' P d  # 0. 
If W and S are determined through this space-time trans- 
formation T ,  a systolic array can be derived. The systolic 
array can be abstracted by a model defined as follows: 

Dejinition 2: A systolic array model can be expressed as 
a structure SA = ( I " - ' ,  L) where: In-'  is the set of triples 
(i, Ci, Fi),  where i is the index point in (n  - 1) dimension 

space where PE is located. Ci and Fi  are the function and 
the set of data streams associated with the index point i. 

L is the set of triples ( I ,  De(l), F',), where 1 is the physi- 
cal directed links connected between processors. De(l) is 
the delay elements on the physical directed link 1. F ,  is 
the set of data streams associated with the physical 
directed link 1. 

The PE space and physical directed link of a systolic 
array are therefore easily obtained by: 

(1) Node transformarion: an index point j E J" (index in 
DG) is mapped by 

which means that the index point j is executed in index 
point io') of the corresponding In-'  PE space in systolic 
array at time to'). 

(2) Link transformation: a data-dependent vector d in 
DG is mapped to a physical directed link 

The 1 is a physical directed link in systolic array and De(l) 
is the delay associated with the link 1. Actually, the 
number of extra delay units inserted between PES is 

One important performance parameter for the designed 
systolic array is the pipeline period a, which is the time 
interval in clock units between two successive input data. 
It also indicates the time interval between two successive 
activities of a processor. By our transformation, U = W . 
p d .  a = 1 means that the processor is busy in every clock 
and U = 2 means the processor is activated in every other 
clock, i.e. busy and idle alternately. 

Taking an example of band matrix-vector multiplica- 
tion, DG is shown in Fig. la  while two array designs 

(De([) - 1). 

a l l  0 0 0 0 

b 

a Dependence graph for band matrix-vector multiplication 
b Systolic array with pipelining period a = 1 
c a = 2  

Fig. 1 
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which are projected along two projection directions [0, 
11 and [l, 11 are shown in Figs. l b  and c, respectively. 
In these designs, time schedule function W is selected as 
[I,  11. For [0, I] projection, S = [I ,  01, then c1 = 1 is 
obtained. For [l, 11 diagonal projection, S = [l, - 11, U 
is 2 and so the data throughput rate and the utilisation 
efficiency of processor would be halved. 

2.3 Pipeline period scaling and delay transfer 
As described in Section 2.2, various transformations may 
be found by choosing different projection directions, 
which will result in different designs. Meanwhile, some 
rules may be applied on the algebraic transformation 
matrix to get new transformations, which will be useful 
for fault-tolerant systolic array design. 

2.3.1 Pipeline period scaling: If a new transformation 
obtained by the time schedule function is multiplied by 

a positive integer k,  i.e. wk = kW, this is termed pipeline 
period scaling. For this new transformation, not only U 
but also delay elements on the links have to be scaled up 
by a factor of k. Incidentally, the PE is idle more fre- 
quently and more delay elements are needed. Therefore, a 
time schedule function wk is called a scaled time-schedule 
function if it can be described by wk = k . W where k is a 
positive integer. 

2.3.2 Delay transfer: Given any cutset that partitions a 
systolic array into two parts, we can group the edges of 
the cutset into two sets: inbound and outbound edges. As 
we know, on systolisation [13], the advancing k time 
units on all the outbound edges would pause k time units 
on the inbound edges, or vice versa. This procedure of 
delay transfer can be described mathematically by 

T , . D =  _ _ _ _ _  m_ _ _ _ _ _ _  . D  f o r m = 1 , 2  ,..., n - 1  [" + ","-. 
where s, is any row vector of S and h,  is any integer. 

The new transformation T,  is obtained by transferring 
h, . s, . di delay time units to each directed link li. 

Two examples follow. Fig. 2a is a systolic array design as 
shown in Fig. lb  for band matrix-vector multiplication in 
which the corresponding transformation is described by 
T . D. The first element of each column in T . D rep- 
resents the delay element De(Z) in each directed link 1. The 
other elements represent the existing direction of 1. In 

+EEEE 
T O = )  : : I  J b 3 )  = 1 ;  1 )  

a 

cutset 

b 
Fig. 2 
a Systolic array for band matrix-vector multiplication 
b Delay transfer for systolic array 

Fig. 2a, there are (De(l) - 1) delay elements shown in 
physical link because one delay element is included in 
PE. If we select h,  = 1 and add h ,  . s1 to W ,  then one 
extra delay element is transferred to I ,  which constitute 
the cutset shown in the Fig. 2b. In Fig. 3a, it shows one 
assumed systolic array whose directed links construct a 
loop. By selecting different T,  s corresponding to different 
cutsets, different delay transfers between directed links 
are resulted, which are shown in Figs. 3b, c and d respec- 
tively. 

I 

2 2 2  

-1 0 1 
T D - 1  0 1 - 1  1 

a 

cutset  1 

b 

cutset 2 

1 1 4  

-1 0 1 
,/ Tc2 D= 1 0 1 - 1  1 

/ 
/ 

C 

Fig. 3 
a Systolic array whose directed links construct a loop 
b, c, d Delay transfers for systolic array 

Note that the pipelining period c( does not change 
after delay transfer. This means that the data throughput 
rate remains the same but the computation latency may 
be changed. 

3 Redundancy design 

In Section 2, we proposed a systematic way to design an 
algorithm-specific systolic array. In practice, by this 
method, various architectures for an algorithm can be 
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explored by varying W and S, resulting in different pipe- 
line periods, a. The pipeline period a, means that each PE 
activates for one clock cycle and idles for the next a - 1 
clock cycles. A systolic array is nonfull pipelining and 
hence is not efficient if a > 1. Methods of increasing the 
utilisation of systolic arrays have been proposed in some 
papers. One is to execute simultaneously two or more 
problem instances at a systolic array so that the effective 
throughput rate can increase [lS, 161. Another is to 
perform replicated computations in systolic array to form 
a fault-tolerant systolic array (FTSA) [S, 141. 

3.1 

A systolic array with pipeline period a can perform an 
original DG (ODG) and a - 1 (or less) redundant DGs 
(RDGs) concurrently. These RDGs can be executed by 
idle PES at idle clock cycles. We use a general transform- 
ation Tk to describe the relation between RDG, and 
ODG. The node transformation and link transformation 
associated with TL are shown as follows: 

Design methodology for systolic array with 
redundant scheme 

node transformation 

Tk . J  = [ y ] .  j + kl, . [ y ] .  di + k2,. [A] (2) 

where kl, and k2, are integers and di is any dependent 
vector, but S . di # 0. 

link transformation 

T:, . d = [ y ] .  d (3) 

In eqn. 2, the first term on the right-hand side is the orig- 
inal node transformation. The second term means that 
RDG, is shifted kl, units from ODG along the direction 
di. Now, when two DGs are put together, there may be 
many nodes residing at same index point. Therefore, the 
result is still not correct, because one PE may need to 
execute two computations at a clock cycle. So we have to 
use the third term to split them by delaying k2, time 
units. Using the new transformation, a redundant systolic 
array (RSA) can be split from an original systolic array 
(OSA) by space-shift, time-shift or space-time-shift, and 
then both SAS can be merged and implemented into one 
physical systolic array. The details of these three 
redundant schemes are described below. 

3.1. I Space-shift scheme: If the replicated computa- 
tions of different DGs are performed simultaneously by 
different PES, this is a space-shift scheme. When a = 1, 
there are no idle PES or idle time cycles, so different DGs 
have to be executed by different systolic arrays like con- 
ventional DMR or TMR. 

For a > 1, the replicated computations associated with 
m different DGs (m < a) can be executed simultaneously 
by different PES if there are transformation TL for each 
DG, n = 1, . . . , in where TL should have the form of eqn. 
2 and satisfy the following three conditions: 

3 

(i) values of k l ,  are different from each other 
(ii) the time shift t ,  = k2, + (kl, . W . di) = 0, for 

each n 
(iii) values off, are different from each other, if f ,  = 

k2, mod a. 

The t ,  is the time shift between transformations T:, and 
the original T.  If t ,  is zero, there is no time shift. When 
two DGs are put together and two f , s  have the same 
value, there may be many nodes at the same place. Con- 
dition (iii) is used to prevent one PE from executing two 
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computations at one cycle. After the transformation, 
every systolic array is shifted by (kl, . S . di) PE posi- 
tions from original systolic array. They can be merged 
into one systolic array and executed simultaneously. By 
this scheme, the permanent fault can be detected or 
masked. 

3.1.2 Time-shift scheme: If the replicated computations 
associated with different DGs are computed by the same 
PE at different times, this is a time-shift scheme. For m 
different DGs (m < a), the replicated computations in dif- 
ferent DGs can be computed by same PE at different 
time if there exist a transformation TL for each DG, 
n = 1, . . . , m where TL should have the form of eqn. 2 and 
satisfy the following two conditions : 

(i) kl, = 0 
(ii) values off, are different from each other, iff. = k2, 

mod a. 

The starting computation time corresponding to each 
node in DG, has been delayed by k2, time units. The 
transient fault can be detected or masked when this 
scheme is used. No hardware overhead is needed. The 
other advantage is that it needs no extra communication, 
because results can be compared or voted in the same 
PE. 

3.1.3 Space-time-shift scheme: If the replicated com- 
putations corresponding to different DGs are computed 
by different PES at different times, this is a space-time- 
shift scheme. For the replicated computations corre- 
sponding to m different DGs, they can be executed by 
different PES at different time if there is a transformation 
T:, for each DG,, n = 1, . . ., m, where T:, should have the 
form of eqn. 2 and satisfy the following three conditions: 

(i) values of kl, are different from each other 
(ii) t ,  = k2, + (kl, . W . di) and t ,  is different from each 

other 
(iii) values off, are different from each other, if f ,  = 

k2, mod a. 

Once this scheme is used to design a FTSA, both per- 
manent and transient faults can be detected or masked. If 
we have to keep spatial locality and temporal locality of 
systolic array characteristics, the variable kl, and k2, 
must be as small as possible. Therefore, communications 
between PES will be simple. 

We illustrate these three schemes by taking the same 
example of band matrix-vector multiplication. If we select 
W = [l ,  13, Pd = [l ,  11' and S = [l ,  - 11 for ODG, then 
the pipeline period a of systolic array is 2. If we select 
kl = 1 ,  k2 = - 1  and di = [l ,  01' for RDG, the space- 
shift scheme is obtained and shown in Fig. 4a. At time 1, 
PE, and PE, perform the same computation. It is similar 
to the DMR scheme, except that we use only one systolic 
array instead of two. The hardware overhead is only one 
PE. When kl = 0 and k2 = 1 are selected for RDG, it 
shows the time-shift scheme in Fig. 4b. Computation 1 is 
executed repeatedly by PE, at time 1 and time 2; this is 
similar to a time-redundancy scheme, but the time over- 
head is only one clock cycle. In another case, the space- 
time-shift scheme is obtained if we select kl = 1 and 
k2 = 1 for RDG. This is shown in Fig. 4c. Computation 1 
is performed by PE, at time 1 and repeated by PE, at 
time 3. This scheme has also been called TRIFT (time- 
redundancy with interleaving for fault-tolerance) [ 141. 

One assumption made in some fault-tolerant architec- 
tures is that there is no need for roll-back to minimise the 
error latency. Using this assumption, the computed 
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results must be checked before they are sent to the next 
PE. This assumption constrains the applications of time- 
shift and space-time-shift. A result generated in time-shift 
or space-time-shift schemes can be checked and cor- 
rected before being passed to the next PE, if the time shift 
t ,  = ( I  k2, + k l ,  . W . di I )  is not greater than ( I  W . d ,  1 
- l ) ,  which is the number of delay elements in the com- 
putational link d , .  By using delay transfer or pipeline 
period scaling, one can increase delay elements in the 
computational link so that roll-back is avoided. 

Finally, the major concern of redundancy design is to 
minimise the hardware or time overhead. The time over- 
head, according to the new transformation, is minimised 

I' 
I time= 1 

space-sh i f t  

Fig. 4a Space-shqt scheme for  systolic array with pipelining period a = 2 

, / / 

/ 
/ 

Fig. 46 
a = 2  

Time-shqt scheme for systolic array with pipelining period 

when kl,s  and k2,s  are selected that max {t,,) is 
minimal for n, m = 1, . . . , a, where t,, = I k2, + k l ,  . W 
.di - k2, - kl,  . W . diI is the difference of time shift 

between transformations Tk and T:, . The hardware over- 
head according to the new transformation is minimal if 
d , ,  k l ,  and k2, are selected such that .the number of 
overlap PES between SAS is maximum. 

In the following Sections, concurrent error-detection 
and error-masking techniques will be discussed for fault- 
tolerant systolic arrays with different pipeline periods. 
For each case, three redundancy schemes (space-shift, 
time-shift and space-time-shift) will be applied to obtain 
fault-tolerant systolic arrays with different performances. 

11 

\ 

$y 
space-t ime-sh i f  t  

Fig. 4c 
period a = 2 

Space-time-shift scheme for  systolic array with pipelining 

3.2 Fault-tolerant systolic array design with 
concurrent error detection 

To detect an error, it is necessary to duplicate computa- 
tions (one ODG and one RDG) and compare the results. 
The two replicated computations may be executed by 
two PES simultaneously, one PE at different times or by 
two PES at different times. So, three redundancy schemes 
can be used to design FTSA with concurrent error detec- 
tion. 

3.2.1 ci = I case: A space-shift scheme is like a conven- 
tional DMR scheme, in which a duplicated PE is tightly 
coupled to every PE. A time-shift scheme cannot be used, 
because each PE is active in every clock cycle for CI = 1.  
This leaves a space-time-shift scheme. 

Using a DMR scheme and then shifting the RSA by k2  
time units from OSA, a space-time-shift FTSA can be 
obtained. There is a roll-back problem to be solved when 
an error occurs. By the time that a PE of the RSA per- 
forms the replicated computation 1 and finds an error, 
computation 2 has already been executed in the OSA. 
The result of computation 1 in the OSA may be erron- 
eous, and therefore it needs to roll-back and recompute. 
The problem can be solved if a delay transfer rule is 
applied such that there are at least k2 delay elements in 
the computational link. Therefore, results have been 
checked and corrected before being passed to next PE. 
An example of band matrix-vector multiplication is 
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shown in Fig. 5, which uses the design shown in Fig. 2b. 
One extra delay element is added to computational link 
I ,  so that roll-back can be avoided. After delay transfer, 
the latency increases but data throughput rate does not 
change. In fact, this scheme is the best choice when data 
throughput rate is the most important factor to be con- 
cerned. If a = 1, whichever scheme is selected, the hard- 
ware overhead is 100% over original SA but performance 
will be unaffected. 

I 

t i m e L l  2 3 

Fig. 5 Space-time-shqt scheme for systolic array with pipelining 
period a = I 
N matcher 0 delay element 

3.2.2 IX = 2 case: For a transformation T which results 
the pipeline period a 2 2, the time schedule function W 
has two alternatives. One can be described for k . W’ 
(scaled W )  and the other cannot be scaled. In the first 
case, all PES simultaneously activate for one clock cycle 
and idle for the next, alternately. In the latter case, PE, 
activate alternate clock cycles exactly out of phase with 
their neighbours. 

A space-shift scheme can only be used in the unscaled- 
W case. A space-shift FTSA is usually obtained by 
finding a suitable Tn. For some algorithms, for example 
(Fig. 4a), only one PE overhead is needed and the 
resulting computing latency will not be different from 
that in the a = 1 case when this scheme is applied. 

A time-shift scheme is like a conventional time- 
redundancy scheme if the original W is a scaled time 
schedule function. In the band matrix-vector multiplica- 
tion example, when W = [2, 21 = 2 . [l,  11, S = [l,  01 
are selected and kl = 0, k2 = 1 are chosen, a time-shift 
FTSA is accomplished. Note that it does not need to roll 
back and recompute when an error occurs. In the 
unscaled W case, a time-shift FTSA can still be obtained. 
An example is shown in Fig. 4b. A drawback of this 
scheme is that a roll-back is necessary to correct faults 
and the error latency will increase. The latency is, 
however, smaller than the space-shift scheme in general 
cases. 
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A space-time-shift scheme can be applied to both 
scaled and unscaled time schedule functions. An example 
for unscaled W is shown in Fig. 4c. This scheme needs 
only one PE and k2 time units overheads, but it can 
detect both transient and permanent faults. 

3.2.3 a 3 3 case: Any systolic array with a 3 3 can be 
designed as an error-detectable FTSA with any of the 
three types of schemes. An error-masking FTSA which 
offers better fault-tolerance capability can also be 
obtained with only a small hardware or time overhead, 
which will be described later. The time and hardware 
overheads for different error detection schemes are sum- 
marised in Table 2. 

Table 2:  T ime and hardware overheads for  different error 
detection schemes 

error detection time overhead hardware overhead 
~~ _____ 

a = 1 space-shift 0 
space-time-shift tot 
(no delay transfer) 
space-time-shift t ,  
(delay transfer) 

a = 2 space-shift 0 

time-shift K2 
space-time-shift t,, 

a > 3 space-shift 0 

time-shift K2 

space-time-shift tst 

N,,, 
N d  

0 
Ntot 
N,,, 
N d  

0 

N A  
Ntot - 

1.  NtOt is the total number of processor elements. 
2. Nd is the number of PES along one direction. 
3. td is the number of additional delay time units along the computa- 
tional direction d,  after delay transfer. 
4 . K Z = l k 2 1 .  
5 . t S , = l k 2 + k l  W . d , I .  

3.3 Fault-tolerant systolic array design with 
concurrent error masking 

In the error masking approach, which is known as 
N-tuple modular redundancy, N copies ( N  odd) of a 
module and a majority voter are used to mask the error 
from failed module. At least three modules are necessary 
in a voting system which is typically called a triple 
modular redundancy (TMR). It seems that we need at 
least 200 percent hardware overhead for fault tolerance. 
In practice, it needs to put triplicate computations to the 
voter and then gets a correct result. The triplicate compu- 
tations (ODG and 2 RDGs) may be computed in differ- 
ent PES and/or at different time. Using space-shift, 
time-shift or space-time-shift, we may obtain a better 
FTSA whose performance is acceptable. For example, an 
error masking systolic array which corresponds to a 
space-shift scheme with a = 2 systolic array has been 
proposed, and this hardware overhead is about 50 
percent [SI. When space-shift scheme is used to a systolic 
array with a = 3 it needs only a very small amount of 
hardware overhead for a 1-dimensional array, i.e. 
O(l/N,,,), where N,,, is total number of PES. Surely, the 
time overhead increases. But in some applications, time 
overhead may not be over 100 percent. The kind of array 
structures and redundancy schemes that are chosen 
depend on the user’s requirements for hardware and time 
cost. In the following, three redundancy schemes will be 
investigated to design FTSA with error masking for dif- 
ferent a. 
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3.3.1 a = 1 case: A space-shift scheme is like the con- 
ventional TMR scheme in which triplicated PES are 
tightly coupled. 

A time-shift scheme cannot be used because each PE is 
active in any clock cycle. 

A space-time-shift FTSA is obtained by shifting RSAl 
by k2, time units and RSA2 by k2, time units from OSA. 
If the results of OSA and RSAl are not correct before 
being used by next PES, the rollback problem occurs. 
This problem can be solved if delay transfer rule is 
applied such that at least K2 = Max { I k2,I, I k2, I } 
delay elements existing in computational link. No matter 
whatever scheme is selected, the hardware overhead is 
200%. 

3.3.2 cx = 2 case: In this case, the utilisation of the PE is 
half so that RSAl and OSA can merge into one SA and 
execute RDGl and ODG correctly. Another SA is neces- 
sary to execute RDG2. 

A space-shift scheme shifts RDGl with respect to 
ODG and then transforms them into a FTSA, thereafter, 
an extra redundant PE is tightly coupled to FTSAs PE 
whose sum of indexes is odd (or even). This result is 
similar to that in Reference 8 of which the hardware 
overhead is 50 percent only. Meanwhile, there may be no 
time overhead in some applications, for example, band 
matrix-vector multiplication. 

There is no time-shift scheme because an extra systolic 
array is always necessary for a = 2 case. 

The space-time-shift used as in subsection 3.2.2 and 
then adding extra SA, obrains a pseudo space-time-shift 
scheme. It is called pseudo because some replicated com- 
putations are executed simultaneously and some are 
executed at different time. 

3.3.3 a = 3 case: For a given non-full pipelining systolic 
array with a = 3, for example, banded matrix-matrix 
multiplication [l], each PE activates one clock cycle and 
idles the next 2 clock cycles alternatively. Using these idle 
resources to execute two replicated computations pipelin- 
ing can be filled, the efficiency of SA increased, and there- 
fore the time and hardware overhead will become small. 

In a space-shift scheme, a space-shift FTSA is obtained 
by suitably shifting RDGl and RDG2 to ODG. The 
band matrix multiplciations is taken as an example. Fig. 

O23 

a12 a22 

a32 

Fig. 6 

6 shows the systolic array with space-shift scheme while 
Fig. 7 show the operations in three consecutive cycles. In 
the original design [l], the gray PES are active and the 
other PES are idle in each cycle. In our design, one gray 
PE and two redundant PES execute the same computa- 
tions to perform a TMR scheme. In this example, it needs 
only 2N extra PES instead of 2N2 PES to perform TMR 
scheme. The detail architecture of this array is shown in 
Fig. 8. The voter takes the three results to vote and 
broadcast the result to three multiplexers. Note that each 
multiplexer takes the data from there different voters at 
three different cycles under the control signal, cycle, 
respectively. 

The time-shift scheme is only applied in the case which 
has a computational link including Max { I k2,I, I k2, I } 
or more delay elements. Otherwise, the erroneous result 
may be passed to next PE before being corrected. 

This space-time-shift scheme can also be applied by 
selecting suitable transformation T:, . As a summary, the 
time and hardware overheads for different error masking 
schemes are listed in Table 3. 

Table 3: Time and hardware overheads for different error 
masking schemes 

error masking time overhead hardware overhead 

a = 1 space-shift 0 2NtOt 
space-time-shift t,, 2Ntot 

space-time-shift f d  2Nmt 
(no delay transfer) 

(delay transfer) 
N t o t  

a = 2 space-shift 0 - + N t o t  

space-time-shift ts, N t o t  

Nd 
time-shift X X 

2N,,, 
a 2 3 space-shift 0 

Nd 

time-shift K2 0 
N t o t  space-time-shift t,, - 
Nd 

1. N,,, is the total number of processor elements. 
2. N, is the number of PES along one direction. 
3. t ,  is the number of additional delay time units along the compu- 
tational direction d, after delay transfer. 
4. K2 = Max {lk2,1, lk2,I. lk2, -k2,I}. 
5. t,, = Max { t , .  I , ,  t12}, where tl  = lk2, + k l  . W . d, 1 ,  t z  = lk2, 
+ k l , .  W . d , I a n d t l , = l k 2 , + & l , ~  W ~ d l - k 2 , - k l ,  W . d , I .  

0 

b 2 l  b22 

a21  
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! cycle 1 

cycle 2 cycle 3 

‘T‘ 
Fig. 7 Three operation cycles f o r  band matrix multiplications 
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c3 c 2  c l  
a = a  

c b  

Fig. 8 Detailed architecture ofsystolic array f o r  band matrix multiplications 
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4 Conclusions 

A systematic design methodology for a redundant systo- 
lic array has been proposed. Redundancy schemes which 
consist of i) a space-shift, ii) a time-shift and iii) a space- 
time-shift schemes can be applied to fault tolerant systo- 
lic array design in order to detect (or mask) permanent 
fault, transient fault or both. By this design method, 
various redundancy designs for different utilisation efi- 
ciency, a, of PE in systolic array can result. According to 
the performance requirements including throughput rate, 
latency, block pipeline period, capability of fault detec- 
tion (or masking) and hardware cost, a customised 
optimal redundant systolic array design can be achieved. 
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