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         壹: 顆粒鉻薄膜的電導率及穿隧電子能態密度 
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研 究 生：孫羽澄                  指導教授：林志忠 

 

國立交通大學電子物理研究所博士班 

  

摘 要 

在本篇論文中，共分有兩個主題，在主題一顆粒鉻薄膜的電導率與穿隧電子能態密

度的實驗中，我們在低溫下測量了四個 鋁/氧化鋁/鉻 穿隧接點的穿隧微分電導以及鉻

電極的電導率。我們所製作的鉻薄膜電極為三維，並具有顆粒性，而其顆粒間的無維穿

隧電導 (dimensionless intergrain tunneling conductance spanning) 介於接近一到遠大於

一之間，量測到的穿隧電導曲線在零偏壓附近有一甚大的奇異點，且在低偏壓 (幾個微

電子伏特) 下，與偏壓的對數有正比關係，而過渡到高偏壓時，則轉變為與偏壓的平方

根成正比。同時，鉻電極的電導在某特徵溫度下亦反映了與溫度的對數有對應關係。此

實驗結果可以近年來提出的顆粒金屬理論解釋。此外，在無維穿隧電導介於接近一的樣

品，除了鉻電極的電導反映了與溫度的對數有對應關係外，我們亦觀察到歸一化的微分

電導 ([G(V, T) − G(0, T)]/√T)，與參數 (√e|V|/k𝐵T) 在絕對溫度 2.5 到 32 K 之間有

一統一定比 (universal scaling) 行為，但此結果還需要理論上的解釋 

另一方面，在主題二當中，我們在雙電子垂直雙量子點系統內，觀察到單重態電子

自旋阻滯的現象。相對於之前曾被觀察到因三重態電子所導致的包立自旋阻滯 (Pauli 

spin blockade)，此現象是在高磁場下被觀察到，而其一量子點的雙電子基態在此磁場下

已經過單重態-雙重態轉換 (the singlet-triplet transition)。在菱形庫倫阻滯量測中所觀察

到自旋阻滯所發生的區域範圍與實驗中雙子點能階頻譜的結果一致，更支持單重態電子

自旋阻滯發生於此系統中。此外，我們在單重態自旋阻滯下發現了約為 10 皮安培的漏

電流，此數量級的漏電流與電子單重態在核自旋擾動下的維持時間 (lifetime) 符合。 

關鍵詞   1. 金屬/絕緣體/金屬 結構，共振穿隧，非晶材料電導率與能態 

         2. 量子點內電性傳輸，自旋相關電性傳輸，庫倫阻滯 
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Two topics on mesoscopic electron transport -- Part I：Conductivity and tunneling 

density of states in granular Cr films; Part II： Spin blockade with spin singlet electrons 

Student：Yu-Chen, Sun                    NCTU Advisor：Dr. Juhn-Jong, Lin 

                         Riken Advisor：Dr. Keiji Ono 

 

Department of Electrophysics, National Chiao Tung University 

 

ABSTRACT 

 

     There are two topics in this thesis. In the first topic, conductivity and tunneling density 

of states in granular Cr films, we have measured the tunneling differential conductances, 

G(V), of four Al/AlOx/Cr planar tunnel junctions as well as the conductivities, σ(T), of the Cr 

electrodes at liquid-helium temperatures. The Cr electrodes were made to be granular with 

dimensionless intergrain tunneling conductance spanning from g ≃ 1 to g ≫  1, and the 

dimensionality of the granular array d = 3. For the samples with g ≫  1, we found that 

the measured G(V) curves display large zero-bias singularities which obey a ln V law at 

low bias voltages ( ≲ a few meV), while crossing over to a √V law at high bias voltages. 

Simultaneously, the conductivities of the Cr electrodes reveal lnT dependence below a 

characteristic temperature. These results are explained in terms of the recent theory of 

granular metals. In a sample with g ≃ 1, in addition to the conductivity dependence 

σ(T) ∝ ln T , we observed a universal scaling behavior of the normalized differential 

conductance [G(V, T) − G(0, T)]/√T with the combined parameter √e|V|/kBT in a wide 

temperature interval of 2.5 to 32 K. This result awaits a theoretical interpretation. 

    As for the second topic, spin blockade with spin singlet electrons, we observe a novel 

spin blockade in two-electron vertical double quantum dots where the single electron 

transport is blocked for spin singlet electrons. In contrast to the conventional Pauli spin 

blockade with spin triplet electrons, this singlet spin blockade (SSB) is observed under high 

magnetic field, where the doubly occupied states in one of the dots go beyond the 

singlet-triplet ground-state transition. The SSB region in Coulomb diamond measurements is 

in agreement with the two-electron excitation spectrum. A leakage current of 10 pA order is 

observed in SSB, which is consistent with the spin singlet lifetime due to random nuclear spin 

fluctuations. 

 

Keywords: electron states at surfaces and interfaces，metal-insulator-metal structures, 

amorphous (conductivity)，resonant tunneling，electronic transport in quantum dots 

Coulomb blockade，spin polarized transport through interfaces. 
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Chapter 1 
 

Introduction 

1.1 A Puzzle in Chromium Systems 

A half century ago, Rowell and Shen [1] observed a zero-bias anomaly (a “resistance 

peak”) in Cr/CrOx/Ag tunnel junctions comparatively much larger than the junctions 

composed by other materials (see Fig. 1.1 (a)). Then subsequently, such a giant zero-bias 

anomaly has also been found in experiments involving Cr as the electrodes by other groups 

[2-4]. Rowell and Shen attributed this giant resistance peak (conductance dip) in their 

Cr/CrOx/Ag junctions to the magnetic nature of the insulating barrier, while CrO2 is 

antiferromagnetic and Cr2O3 is ferromagnetic. On the other hand, Mezei and Zawadowski [5] 

suggested that the effect is owing to the Kondo scattering from magnetic moments 

embedded in the Cr electrode or at the electro-insulator interface. However, the main 

difficulty with the explanation is that the magnitude of the anomaly was not satisfactory with 

that stemming from the effect. Thus far, what really accounting for the great zero-bias 

resistance peaks found in many Cr consisted tunnel junctions has remained mysterious.  

On one hand, the Chromium system is antiferromagnetic and its oxide, CrOx, possess 

magnetic nature, while, on the other hand, it often forms a granular-like structure [6-8] if it is 

thermally deposited. The forming of granules brings the disorder to the system. Altshuler 
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and coworkers [9-13] have studied the EEI effect in the presence of weak disorder. They 

found that the EEI effect causes to a suppression in the electron DOS at the Fermi level. And, 

it is also predicted that in the weakly disordered regime the density of states (DOS), 

proportional to the junction conductance, have the dependence on the voltage (energy). 

Meanwhile, McMillan [14, 15] proposed that the correlation on the DOS of a 3-dimentional 

(3D) system on metallic side near the Metal-Insulation transition systems is in the form which 

is similar to the expression given by Altshuler and Aronov [13]: 

          

for E < ∆,         N(E) = N(0)[1 + (E/∆)1/2] 

 

where N(0) is the DOS at the Fermi energy level EF, and  Δ, called “correlation gap”, is 

a characteristic energy scale that vanishes as a power of the distance to the metal-insulator 

transition (for a system crossing over from the metallic side to be the insulator, the 

correlation gap gradually decreases to zero at the Metal-Insulation transition, and raise 

again). And, the comparison between this theory and the experiment results on 

Al/AlOx/granular Al tunnel junction is also made in Ref. [16] (see Fig. 1.1 (b)).  

While the puzzle in tunnel junction of the Cr electrode (with the granular property) has 

not been answered, the theory on granular system is proposed in recently years. Therefore, 

before analyzing the role the granular property may play in Cr system, we start from giving a 

briefly introduction on the relative theory in next section. 
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Fig. 1.1 (a) Conductances versus voltage plot of several normal metal junction exhibiting 

different zero-bias behaviors. The Data were taken at 1 K [17]. 

 

 

 

 

 



 

- 5 - 
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Fig. 1.1 (b) The measured normailized conductance of Al/AlOx/granular aluminum tunnel 

junction. The resistivities of the samples are in a range from 4.26 × 10−2  Ω 𝑐𝑚 (AL6) to 

3.28 × 10−4 Ω 𝑐𝑚 (AL42). The data is taken at 0.95 K, and those at low bias where the 

superconducting energy gap structure dominates is omitted here [16].  
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1.2 The Introduction on Granular Conductors 

The granular conductor here is considered a system with metallic grains embedded in 

dielectric components. The size of the grain is from a few to hundreds of nm, therefore the 

metallic grain is often regarded as an artificial atom with the discrete energy spectrum. On 

the other hand, the tunablity of the electric properties of the whole system via the size of 

the grain, the tunneling coupling between grains, and so on also make the granular 

conductor treated as an artificial solid. The mean energy level spacing in a single granule 

(depending on the granular size), δ, the dimensionless tunneling conductance between 

neighboring granules (i.e. the tunneling coupling), g, and the single-grain Coulomb charging 

energy, Ec characterize granular material. These parameters are relative to the disorder 

effect, the quantum confinement, and the electron correlation. The interplay among those 

effects with tunable parameters we can control brings the attention to the granular 

conductors.   

    There are several ways to fabricate the granular system. Traditionally, the granular 

conductor can be made by sputtering or the thermal evaporation (see Fig. 1.2 (a)). 

Depending on the material such as chromium in our system, as it deposits on the substrate, it 

naturally gather to form the granular structure. However, the size of grains is not uniformed. 

The dielectric component is formed during the evaporation as the surface is oxidized. In 

some systems, the tunneling coupling between grains is determined and adjusted by 

covering the organic or inorganic molecules on grains [18]. The other ways to have granular 

system are, for example, with the self-assembling colloidal nanocrystals or the self-assemble 

semiconductor quantum dot [19]. The variation of particles in size can be controlled to be 

within less than with the thermal evaporation method as the gold nanocrystal colloid in Fig. 

1.2 (b) [18]. The relative standard deviation of the size is about 5%.  As for the self-assemble 

semiconductor quantum dot, it is utilized the different lattice constant of two 
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semiconductors.  

 

(a) 

 

 

 

 

 

 

 

  

 

Fig. 1.2 (a) Electron micrographs of Ag deposited on a bent substrate of amorphous carbon 

(a-C) in a rate of 0.1 pm s-1 at room temperature [20]. 

 

(b)  

 

 

 

 

 

 

 

Fig. 1.2 (b) TEM image of a granular system composed by a gold nanocrystal monolayer 

[18].  
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1.3 Why We Study Granular Cr films? 

In this thesis, we study four the Al/AlOx/Cr planar tunnel junctions comprising of 

granular Cr electrodes. The non-magnetic insulating barrier AlOx was intentionally used, 

instead of the magnetic CrOx, to rule out the possible influence of the magnetic nature of 

barrier on the tunneling signals. Besides, the attempt to answer the puzzle in history, we also 

have a great interest in the granular conductors. 

 Experimentally, it is intriguing that electrical-transport measurements on granular 

systems with strong intergrain coupling often revealed ln T dependence of resistivity [21, 

22], rather than of conductivity [23, 24] as the theory predicted (see Sec.2.4 and Fig. 1.3 (a)). 

Therefore, it still awaits convincing experimental test. Moreover, to the best of our 

knowledge, there is still no experimental observation in three-dimensional (3D) granular 

films concerning the electronic DOS. Thus, we are motived to study Al/AlOx/granular Cr 

tunnel junctions. The dimensionality of the granular arrays (the Cr electrodes) was made to 

have d =  3 , and both conductivities and tunneling DOS of the Cr electrodes (with 

intergrain tunneling conductance spanning from g ≅ 1 to g ≫ 1) are measured to verified 

the recent theory of granular metals [25-27]. We would like to mention that previously in our 

experiment, we found a Efros-Shklovskii type temperature dependence in the nanocontacts 

formed with granular Cr films, where the σ ∝  exp(−√T0/T ) behavior was observed in the 

broad temperature interval of 1 − 100 K [6] (see Fig. 1.3 (b)), while the conductivity at low 

temperatures is theoretically established to possess this type-like dependence in the 

opposite limit of weak intergrain coupling (g ≪  1), for T0 is a characteristic temperature 

[23,28-31]. In that case, we experimentally realized the regime g ≪  1 [32]. 

This thesis is organized as follows: In Chap. 2, besides the granular system, the the EEI 

effects and the property of tunnel junctions are also briefly introduced. We discuss our 

experimental considerations, methods and setups in Chap. 3. Chapter 4 contains our 
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experimental results and discussions. We interpret our measured conductivity and tunneling 

DOS in terms of the theory of granular metals, and rule out the WL and EEI effects developed 

for weakly disordered homogeneous conductors to be the origins of our observations. Finally, 

our conclusion is presented in Chap. 5. 
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Fig. 1.3 (a) The temperature dependence electrical transport behaviors of the granular 

systems in previous studies: (Up) A logarithmic temperature dependence of the resistivity 

of the granular NbN cermet film (in a sample with   (300 K) ~ 100 Ω/ ) [21]. (Down) A 

logarithmic temperature dependence of the conductivity of the granular Pt/C nanowires 

(ρ(300 K) ~ 4 mΩ cm) in a wide range of up to 200 K [24]. 
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Fig. 1.3 (b) Previous,y, the regime g ≪  1 in the granular has been verified to have the 

Efros-Shklovskii type temperature dependence, where the σ ∝  exp(−√T0/𝑇 ) behavior, 

in our experiment. In this experiment, the nanocontacts formed with granular Cr films, and 

the difference between the two curve is the contact resistance. And it was observed in the 

broad temperature interval of 1 − 100 K, log R is a function of T-1/2 [5]. 
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Chapter 2  
 

Background and Theory  

There are three main parts will be introduced in this chapter. In this thesis, we measure 

the differential conductance to investigate the DOSs of the granular Cr electrode, so we start 

with Sec. 2.1 the general tunneling behavior in metal-insulator-metal junctions and Sec. 2.2 

the BDR Model describes the background tunneling conductance in the junctions. Then 

from Sec. 2.3 to 2.4, theoretical predictions related to our system will be introduced. Since 

the granular conductor is also a disorder system, the electron-electron interaction (EEI) 

effects, which have well explained weak disorder systems, will be mentioned in Sec.2.3. And 

finally, the theoretical prediction for the granular electronic system is in Sec. 2.4.  

2.1 Tunneling in Metal-Insulator-Metal Tunnel Junctions 

    In this thesis, we measure the tunneling current through the metal-insulator –metal 

(M-I-M) tunnel junctions to investigate the DOS of granular conductors. In order to know the 

relation between the DOS of electrodes and the tunneling current, we start with the basis of 

the tunneling mechanism and extend to obtain the tunneling current in such a junction 

structure. Then, the relation of the DOS of electrodes and the differential conductance will 

be derived.  

In classical view, we know that there is no way for a particle passing through a barrier 
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with a potential higher than its total energy. However, in quantum mechanism, whenever a 

particle treated as a wave runs into a barrier potential, there will be both probabilities to 

penetrate it and to be reflected. In our cases, we can consider the energy diagram in a M-I-M 

tunnel junction similar to Fig. 2.1 (a): x < 0 (the left of the barrier), 0 < x < t (within the 

barrier), t < x  (the right of the barrier). The wave incident from the left is expressed to be 

e𝑖𝑘𝑥 for k = √2𝑚𝐸𝑥/ℏ (𝐸𝑥: total energy of the tunneling particle in the x direction, m: the 

effective mass) and it decays in an exponential form, e−𝜅𝑥  for κ = √2𝑚(𝜙(𝑥) − 𝐸𝑥) 

(𝜙(𝑥): the barrier potential), inside the barrier. And, the wave penetrated to the right is 

Te𝑖𝑞𝑥. The transmission coefficient, D, is a ratio of the probability flux transmitted through 

the barrier to the probability flux incident upon the barrier. For an extremely small 

transmission [33], D can be reduced to be 

 

D(E𝑥) = ge
−2𝐾, 

 

where g =
16𝑘𝑞𝜘2

(𝑘2+𝜘2)(𝑞2+𝜘2)
 and K = ∫ 𝜘(𝑥, 𝐸𝑥)𝑑𝑥

𝑡

0
. Notice that D is a function of both 

barrier height and thickness.  

If we apply a voltage on this M-I-M junction, the Fermi levels of the two electrodes 

originally aligned will be shifted. The chemical potential in Metal 2 is lowered by eV by 

considering the schematic circuit in Fig. 2.1 (a). For eV >> k𝐵T, the current density flow 

from Metal 1 to Metal 2 can be expressed as [33] 

 

𝐽1,2(V) = −
2e

(2𝜋)3
∫ ∫ ∫ 𝑑𝑘𝑥𝑑𝑘𝑦𝑑𝑘𝑧𝑣𝑥𝐷(𝐸𝑥, 𝑉)

𝑘𝑧𝑘𝑦𝑘𝑥

𝑓(𝐸)(1 − 𝑓(𝐸 + 𝑒𝑉)) 

= −
2e

(2𝜋)3ℏ
∫ ∫ ∫ 𝑑𝐸𝑥𝑑𝑘𝑦𝑑𝑘𝑧𝐷(𝐸𝑥, 𝑉)𝑘𝑧𝑘𝑦𝐸𝑥

𝑓(𝐸)(1 − 𝑓(𝐸 + 𝑒𝑉)) for 𝑣𝑥 =
1

ℏ

𝑑𝐸

𝑑𝑘𝑥
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where  𝑓  is the Fermi-Dirac distribution for 𝑓1 =
1

1+𝑒

𝐸−𝜇1
k𝐵T

= 𝑓(𝐸)  and 𝑓2 =

1

1+𝑒

𝐸−(𝜇1−𝑒𝑉)
k𝐵T

= 𝑓(𝐸 + 𝑒𝑉). 𝑘𝑦 and 𝑘𝑧 are symmetric, and we express 
𝑑𝑘𝑦𝑑𝑘𝑧

(2𝜋)2
= 𝜌𝑟𝑑𝐸𝑟 for 

𝜌𝑟 and 𝐸𝑟 are the DOSs and the energy in the y-z plane. Therefore, 

   

𝐽1,2(V) = −
2e𝜌𝑡

ℎ
∫ ∫ 𝑑𝐸𝑥𝑑𝐸𝑟𝐷(𝐸𝑥, 𝑉)𝐸𝑟𝐸𝑥

𝑓(𝐸)(1 − 𝑓(𝐸 + 𝑒𝑉)), 

 

Similarly, from Metal 2 to Metal 1, 

𝐽2,1(V) = −
2e𝜌𝑡
ℎ

∫ ∫ 𝑑𝐸𝑥𝑑𝐸𝑟𝐷(𝐸𝑥, 𝑉)

𝐸𝑟𝐸𝑥

𝑓(𝐸 − 𝑒𝑉)(1 − 𝑓(𝐸)) 

Then, the net current density would be  

 

 𝐽 = 𝐽2,1(V) − 𝐽1,2(V) 

= −
2e𝜌𝑡
ℎ

∫ ∫ 𝑑𝐸𝑥𝑑𝐸𝑟𝐷(𝐸𝑥, 𝑉)

𝐸𝑟𝐸𝑥

[𝑓(𝐸) − 𝑓(𝐸 + 𝑒𝑉)] 

 

    For T ⟶ 0 K, all electron stay below the Fermi energy, hence, the tunnel only 

involve the electrons of energy within the transport window opened by eV, so  

 

𝐽 = −
2e𝜌𝑡
ℎ

∫ ∫ 𝑑𝐸𝑥𝑑𝐸𝑟𝐷(𝐸𝑥, 𝑉)

𝐸𝑟𝐸𝑥
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Fig. 2.1 (a) The schematic energy diagram of a metal-insulator-metal (M1-I-M2) tunnel 

junction with a finite bias V. ϕ(x) describes the barrier potential. The net tunneling 

current flow through the junction should be the summation of current from left to right 

and that from right to left, i.e. I = I12 + I21. 
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2.2 The BDR Model 

-- the Background Tunneling Conductance in the Metal-Insulator-Metal Tunnel Junction 

Figure 2.2 (a) shows the schematic energy diagram in a metal-insulator-metal tunnel 

junction. As such a structure is made, the Fermi energies of two metals become equal after 

the system reaches the equilibrium, and the barrier is asymmetric due to the different work 

function in the metals. That is, the barrier height seen from two electrodes is different, i.e. 

ϕ1 for Metal 1 and ϕ2 for Metal 2 as showed.  

In order to see how the voltage bias affects the tunneling behavior in this tunnel 

junction, Brinkaman, Dynes and Rowell [34] (BDR model) describe the asymmetric barrier 

height in a simple form (corresponding to Fig. 2.2 (b)): 

 

ϕ(x, V) = 𝜙1 +
𝑥

𝑡
(𝜙2 − 𝑒𝑉 − 𝜙1) 

 

where t is the barrier thickness. And, we can calculate the differential conductance 

G(V) =
𝜕𝐽(𝑉)

𝜕 𝑉
 by integrating 𝐷(𝐸𝑥, 𝑉) with ϕ(x, V) to have  (V). At the low bias, 

 

G(V) = G(0)[1 − (
𝐴0∆𝜙

16𝜙̅
3
2

)eV + (
9𝐴0

2

128𝜙̅
)(eV)2] 

 

    for G(0), the zero-bias conductce, 𝐴0 =
4(2𝑚)1/2𝑡

3ℏ
, Δϕ = 𝜙2 − 𝜙1 and 𝜙̅ =

𝜙1+𝜙2

2
. The 

G(V) depands on the bias approximately in a parabolic form under the BDR model, and we 

notice that the minimum value takes place at the zero bias for Δϕ = 0 or when the barrier 

is symmetric. 
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 (a) 

 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

 

Figs. 2.2 (a-b) The schematic energy diagram of a metal-insulator-metal (M1-I-M2) tunnel 

junction with (a) zero-bias (b) a finite bias V. Under BDR model, the potential of the barrier 

𝜙(𝑥) can be described to be ϕ(x, V) = 𝜙1 +
𝑥

𝑡
(𝜙2 − 𝑒𝑉 − 𝜙1) (so that ) ϕ(x, 0) =

𝜙1 +
𝑥

𝑡
(𝜙2 − 𝜙1) for (a) the zero-bias. 
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2.3 The Electron-Electron Interaction in Disorder System 

The electron-electron interaction (EEI) and weak localization effects in disordered 

systems have been studied for decades [9-13, 35]. Although both the two effects contribute 

significantly to the electrical conduction properties of a given system, it is possible to 

understand the individual contribution. Indeed, the EEI effect can be isolated by studying the 

differential conductances, G(V, T)  =  dI(V, T)/dV , of a metal-insulator-metal tunnel 

junction at low temperatures. Here the (left) reference electrode is made of a clean metal 

while the (right) electrode is often made of a weakly disordered metal to be investigated.  

According to Altshuler and coworkers [9-13], the EEI effect in the presence of weak 

disorder will lead to suppression in the electron density of states (DOS) near the Fermi level. 

Moreover, such a DOS singularity is predicted to be sensitive to both bias voltage and 

temperature. At a low temperature (to ignore the thermal smearing effect), and at the 

weak-disorder limit, i.e., k   ≫  1, where k  is the Fermi wavenumber and   is the elastic 

mean free path of electrons, the EEI-induced correction to the DOS, δNd(E), depends 

strongly on the effective dimensionality d of the sample and has the following forms: 

 for d = 2, the correction is given by [9, 11, 12] 

 

δN2(E)

N2(0)
=
λ2e

2

8π2ℏ
𝑅 ln [

E

ℏD
(
t

2π
)
2

] 

 

where λ2 depends on the form of the effective EEI and for long range Coulomb 

interactions [5] 

 

λ2 =  ln [
ℏDκ2

4t2

(2π)2E
] 
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with κ2  =  
me2k𝐹 t

2𝜋2ℏ2𝜖0
, where 𝜖0 is the permittivity of the vacuum.  

 

for d = 3, the correction is given by [5, 13] 

 

δN3(E)

N3(0)
=

 λ3√𝐸

4√2𝜋2(ℏ𝐷)3/2N3(0)
 

Here N2(0) and N3(0) are the DOS at Fermi level in the d = 2 and d = 3 case 

respectively,    is the sheet resistance, D is the diffusion constant, t is the film thickness, 

and τ is the electron momentum relaxation time. The electron energy E is measured 

relative to the Fermi energy. Besides, the theory predicts that a crossover from two to three 

dimensions should occur at a characteristic bias energy eVc =  Ec ≈ (2π)2(ℏD/t2). This 

critical energy corresponds to an EEI characteristic length of Lc = √ℏD/Ec ≈ t/2π. Notice 

that the characteristic bias voltage Vc  scales with D/t2 , and hence it reduces with 

increasing disorder. 

For a metal-insulator-metal tunnel junction comprised of a clean metal and a disordered 

metal, at low temperatures, the variation in the differential conductance G(V) directly 

reflects the energy dependence of DOS of the disordered metal [33]: 

G(V)  =  PN𝑐(0)N𝑑(eV), where P is the tunneling rate which depends on the barrier 

properties (barrier height and thickness), N𝑐 is the DOS of the clean metal which depends 

weakly on energy and can be approximated as the value at Fermi level N𝑐(0), and N𝑑 is the 

DOS of the disordered metal. Thus, the normalized conductance G(V)/G(0)  =  N𝑑(eV)/

N𝑑(0) can be compared with 
δN2(E)

N2(0)
 and 

δN3(E)

N3(0)
 to study the DOS suppression in 

disordered metals quantitatively. In particular, G(V) obeys a lnV law in two dimensions, 

while it obeys a √V law in three dimensions. 

Experimentally, from measurements of the G(V, T) of metal-insulator-metal tunnel 
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junctions, the DOS singularities have been investigated by several groups. Both weakly [36-41] 

and strongly [15, 16, 42] disordered metal electrodes have been employed. In recent years, 

the EEI theory has further been critically tested by high-resolution photoemission 

spectroscopy measurements [43]. In general, it is found that the EEI theory is fairly successful 

in explaining the experimentally observed DOS singularities in weakly disordered conductors. 

In addition, the EEI prediction of a crossover from the two-dimensional G(V) ∝ lnV law [11, 

12] to the three-dimensional G(V) ∝  √V law [13] as the bias voltage increases has been 

confirmed by several experiments [36-39, 41] where electrodes of metal films in the tunnel 

junctions were used. 

 

 

 

2.4 Theoretical Prediction for Granular Electronic Systems 

    Granular conductors, which are composite materials of metallic granules and dielectric 

components, have recently attracted much renewed theoretical attention as tunable systems 

for addressing mesoscopic physics problems [25, 26]. In contrast to disordered 

“homogeneous systems”, the electronic transport properties of granular conductors are 

largely governed by the strength of the intergrain tunneling [25]. Theoretically, a granular 

conductor is characterized by a number of physical quantities: the mean energy level spacing 

in a single granule, δ, the dimensionless tunneling conductance between neighboring 

granules, g (i.e., the average tunneling conductance between neighboring grains expressed in 

units of 2e2/h), and the single-grain Coulomb charging energy, Ec. For strong intergrain 

coupling (g ≫  1) and in the not-too-low temperature interval g ≪  k𝐵T ≪  Ec (where k𝐵 

is the Boltzmann constant), charging effects are important yet the quantum-interference 

weak-localization (WL) effects are suppressed. This unique regime provides a tempting 



 

- 21 - 
 

opportunity to probe the electronic conduction properties due to the many-body Coulomb 

interaction effects in the presence of granularity. The electrical conductivity σ is predicted 

to obey the law [26, 44] 

 

   σ(T)  = σ(0)[1 −
1

2𝜋𝑔𝑑
ln (

𝑔𝐸𝑐

𝑘𝐵𝑇
)]               

 

where d is the dimensionality of the granular array, and σ(0)  =  2(e2/h)ga2−𝑑 is the 

classical conductivity without the Coulomb interaction (i.e., the system conductivity at 

temperature  k𝐵T ≫  Ec), and a is the radius of the (spherical) grain. It is important to 

note that, unlike that due to the WL and electron-electron interaction (EEI)  effects in 

weakly disordered homogeneous systems [9], this σ ∝ ln 𝑇 law is predicted to hold for all 

dimensions, since the dimensionality d  only enters the prefactor of the logarithmic 

correction term. On contrary, the functional form of the tunneling electronic density of states 

(DOS) is predicted to depend critically on sample dimensionality: 

 for d =  3 [26, 44], 

 

            ν3(ϵ)  =  ν0[1 −
A

4𝜋𝑔
ln (

𝑔𝐸𝑐

max(𝑘𝐵𝑇,𝜖)
)]       

 

where ϵ is the tunneling electron energy measured from the Fermi energy level (EF), 

𝜈0 is the DOS in the absence of Coulomb interaction, and A is a numerical prefactor;    

 

for d =  2 

ν2(ϵ)  =  ν0exp[−
1

16𝜋2𝑔
ln2 (

𝑔𝐸𝑐

max(𝑘𝐵𝑇, 𝜖)
)] 
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The underlying physics which leads to the conductivity and DOS corrections is due to 

the presence of local voltage fluctuations between neighboring granules. 
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Chapter 3 
 

Experimental Method 

3.1 Sample Fabrication 
To study the conductivity and the tunneling DOS of granular Cr films, we fabricated four 

Al/AlOx/Cr planar tunnel junctions by using the standard thermal evaporation method: 

 

1. First, a set of parallel, relatively clean 0.8 or 1 mm wide and 25 nm thick Al films were 

deposited on glass substrates held at room temperature. 

  

2. Then, surfaces of the as-deposited Al films were subsequently oxidized by utilizing 

plasma discharge to produce a ≈  1.5– 2 nm − thick AlOx layer.  

 

3. Finally, a long Cr electrode (1 mm wide, and 15– 30 nm thick) was then deposited 

across the parallel AlOx coated Al strips to complete the tunnel junction geometries. At 

the same time, the Cr electrode was attached with leads appropriate for four-probe 

electrical measurements.  

 

Figures 3.1 (a-c) show the schematic diagrams of our sample during the steps described 



 

- 24 - 
 

above. The resistivities of our Al reference electrodes were typically 13 (16) µΩ cm at 

4 (300) K, corresponding to the product k    ≈  54  at 4 K, where k  is the Fermi 

wavenumber and   is the electron mean free path. The conductivity of the Cr electrode in 

each set of junctions was adjusted by varying the mean Cr film thickness and the deposition 

rate between 0.01 and 1.5 nm/s. To achieve a very low conductivity in the junction D, the 

Cr film was deposited onto a cold substrate held at liquid-nitrogen temperature, by 

employing a very low deposition rate of ∼  0.01 nm/s.  

The reason for selecting Cr as our electrode is because Cr films deposited in a vacuum 

often form granular, rather than uniform and continuous, layers [6-8]. For example, a 

10 − nm− thick Cr film deposited by thermal evaporation on a mica substrate showed a 

distribution of disk-shaped granules with a diameter of ~ a few tens of nanometer and a 

height of ≈  2– 6 nm, as was evidenced from atomic force microscopy (AFM) studies (see Fig. 

3.1 (d) [6]). Varying the deposition rate modified the average grain size [6]. Even thermally 

evaporated in a vacuum having a background pressure as low as ∼  1 × 10−6 mbar, the 

surfaces of Cr granules became oxidized and formed thin dielectric layers of CrOx [8]. In this 

work, we carried out our thermal evaporation deposition at a pressure of ∼  5 × 10−6 mbar 

so that our films were guaranteed to form metallic Cr granules separated by thin CrOx 

dielectric layers. Table 1 lists the values for the relevant parameters of the four Cr electrodes 

comprising the tunnel junctions A–D studied in this work. 
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(a) 

 

 

 

 

(b) 

 

 

 

 

(c) 

 

 

 

 

Figs. 3.1 (a-c) Schematic diagrams of the top views (left) and side views (right) of our sample 

during the fabrication progresses: (a) The evaporated Al film; (b) Utilizing O2 plasma to 

oxidize the surface of the deposited Al film; (c) Depositing Cr film to cross the AlOx/Al 

structure. The side view shows the junction area where the red dotted lines enclose on the 

left top view figure.   
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(d) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1 (d) The AFM image of a thin Cr layer, prepared by thermal evaporation deposition 

on a mica substrate, shows the granular property. The surface profile below is along the 

solid line indicated in the AFM image [6]. 
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Table 1 Values for relevant parameters of the Cr electrodes in Al/AlOx/Cr tunnel junctions.    

is the junction area and    is the junction resistance at 300 K. t is the thickness, ρ (  ) is 

the resistivity (sheet resistance) at 2.5 K, and N𝑐𝑟,𝑑(0) is the DOS at the Fermi energy. k   

was calculated by using the Drude model. The diffusion constant D was evaluated through 

the Einstein relation ρ−1 = N𝑐𝑟,𝑑(0)𝑒
2D. The values of k  ℓ and D were evaluated for 

2.5 K. Ec, σ0, g and a are defined in Sec. 2.4. Notice that the values of a are only listed for 

reference, because our Cr granules are disk-shaped rather than spherical. 

 

Sample              𝐍𝒄𝒓,𝒅(𝟎) 

 (mm2) (kΩ) (nm) (µΩ− cm) (Ω) ( −1 m−3) 

A 0.8 × 1.0 1.0 30 115 38.3 2.4 × 1047 

B 0.8 × 1.0 4.5 25 154 61.6 1.8 × 1047 

C 1.0 × 1.0 11 15 290 193 1.1 × 1047 

D 0.8 × 1.0 4.0 25 5060 2024 2.8 × 1046 

 

  

Sample           𝟎     

  (cm2/s) (meV) (Ω
−1
cm−1)  (nm) 

A 5.1 1.4 5 8690 62 5.5 

B 4.1 1.4 7 6560 42 5.0 

C 2.6 1.3 4 3500 10 2.2 

D 0.23 0.28 22 260 0.96 2.8 
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3.2 Experimental Methods 

In our experiments, we measured the resistivity of Cr films with the four-probe method, 

while the tunneling differential conductances, G(V, T)  =  dI(V, T)/dV, across the junctions 

were measured by utilizing the standard lock-in technique, where I is the tunneling current 

between the Al and Cr electrodes, and V is the voltage dropped across the insulating barrier 

(see Fig. 3.2 (a) for a schematic diagram). Figure 3.2 (b) shows the equivalent circuit of 

measuring the differential conductance to have the DOS of Cr (see Sec. 2.1).   

To ensure the quality of each tunnel junction, we measured the superconducting gap of 

the clean Al electrode at 0.25 K before performing detailed measurements of G(V, T) 

curves. Our Al electrodes became superconducting at ≈  1.8 – 2 K, and Fig. 3.2 (c) shows 

one of the results in Sample D. Due to the great change of the superconducting gap in the 

differential conductance, the experiment, different from measurement for the G(V)  =

 dI(V)/dV of Cr electrodes, is performed by applying V to measure I. The equivalent circuit 

is in Fig. 3.2 (d).  
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Fig. 3.2 (a) Diagrams depicting (up) four-probe resistance measurements of Cr electrodes, 

and (down) differential conductance measurements of Al/AlOx/Cr tunnel junctions. Black 

strips stand for Al films, and green (gray) strips for Cr electrodes. 
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Fig. 3.2 (b) The equivalent circuit for the differential conductance measurements for Cr 

electrodes.  
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(c) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2 (c) The differential conductance measurement of the most disordered Cr electrode, 

sample D, at temperature T =  0.25, 0.5, 1, 2.2 K where the Al electrode has already 

been superconducting. The barrier quantity can be tested and verity by the signature of 

the superconducting gap, since G(V) = dI(V)/dV is a function of N𝐶𝑟(V) and N𝐴𝑙(V). 

The measured result reveals the superconducting gap at T = 0.25 K is ≲ 0.5 meV, while 

the calculated energy gap for Al being superconducting at 1.14 K is 0.34 meV. The data 

(■) shows the superconductivity is destroyed by the applied magnetic field.   
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Fig. 3.2 (d) The equivalent circuit of the G(V) = dI(V)/dV  measurements for the 

superconductor energy gap. Due to the great and sudden change at the edge limit of the 

gap, we send V to measure I in contrary to Fig. 3.2 (b). 
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3.3 Experimental Setups 

In our experiments, we measured and the DOS of Cr electrodes under low 

temperature with 3He cryostats (see Fig. 3.3 (a)) which will be introduced together with the 

superconducting magnet (Fig. 3.3 (b)) in this section. 

Before starting to cool down our system, we first launch our sample on the sample 

holder just below 3He pot, and then seal the parts below IVC (inner vacuum chamber) 

flange with an IVC shell. After pumping out the air inside IVC space (to be vacuum), we put 

some 4He gas utilized to be exchange gas. There are three stages to cool the system: 

 

1. From room temperature to 4.2K 

The cryostats first puts into the LN2 for pre-cooling until T ~ 80 K. Then move the 

cryostats into LHe4 to be T ~ 4.2 K. During this stage, there are only a few exchange gases 

inside the IVC shell, therefore the temperature will not go down too quickly. 

 

 2. From 4.2 K to 1.8 K 

At this stage, we lower the temperature by lowering the pressure above the LHe4 less 

than 1 atm. In Fig. 3.3 (a), 1.5 K condenser is above 3He pot. We pump the LHe4 in and out 

of a small tube attached or connected to the 1.5 K condenser with different pumping rates, 

so that the temperature can be decreased to be ~ 1.5 K  as the pressure is lower. 

Through the thermal contact (from 1.5 K condenser to the sample holder), the sample can 

be cooled down. 

  

3. From 1.8 K to 0.3 K 

This stage uses the same method in stage 2 but with LHe3 to cool the system down to 

0.3 K. Activated carbon, cable of absorbing the gases, is used as the sorption pump, and 
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this ability depends on temperature (the higher temperature it is, the larger kinetic energy 

the gas has, and the poorer ability of the sorption pump to absorb gas). The sorption pump 

is connected to 3He pot (which is just above the sample). At beginning, we control the sorb 

to be ~45 K where 3He should be gas since its condensation point at 1 atm is ~2.8 K. As 

the system cools to be ~1.8 K at stage 2, 3He should be condensed to be liquid. If we 

lower the temperature of the sorb at this time, then it will absorb gas more efficiently, so 

that the gas pressure in 3He pot decreases. It leads to the already condensed LHe3 

evaporate! Then the 3He pot temperature cools downs again until reaches the lowest 

temperature ~ 0.3 K.   
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Fig. 3.3 (a) The photo (left) and schematic figure (right) of He3 cryostats. 
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Chapter 4 
 

Result and Discussion  
In this chapter, we first demonstrate our measured results in Sec. 4.1 temperature 

dependence of conductivity curves and in Sec. 4.2 temperature dependence of differential 

conductance curves. Then we compare our results with available theoretical predictions 

concerning disordered conductors: In Sec. 4.3, a comparison with the conventional EEI 

effect, originally developed for weakly disordered homogeneous conductors by Altshuler and 

coworkers [9, 12, 13], is made. Meanwhile, we try to discuss our observations in terms of the 

recent theory of granular metals, formulated by Efetov and Tschersich [26] and Beloborodov 

and coworkers [25, 44], in both Sec 4.4 logarithmic temperature dependence of conductivity 

and Sec. 4.5 differential conductance curves and tunneling density of states. 

 

4.1 Temperature Dependence of Conductivity Curves 

Figure 4.1 (a) shows the variation in normalized resistivity, ρ(T)/ρ(280 K), with 

temperature for the four Cr electrodes of our tunnel junctions. Except for the junction A, the 

resistivities of all other samples monotonically increase with decreasing temperature. 

However, the amounts of the resistivity rise are much smaller than what would be expected 

for samples falling deep on the insulating side, where resistivity should show 
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ρ ∝  exp(√T0/T) dependence and rapidly increase with decreasing temperature. This result 

immediately reflects that the intergrain tunneling conductances g in our Cr electrodes must 

be large. In particular, a ln T dependence of the conductivity was found in all Cr electrodes 

at liquid-helium temperatures, and this σ ∝  ln T behavior holds for more than one decade 

of temperature in the junctions B and D is shown in Fig. 4.1 (b).  
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Fig. 4.1 (a) Normalized resistivity, ρ(T)/ρ(280 K), as a function of temperature of the Cr 

electrodes in junctions A–D, as indicated.  
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Fig. 4.1 (b) Conductivity as a function of temperature of the Cr electrodes in junction B and 

junction D. The straight solid lines are least-squares fits to the equation of conductivity in 

Sec 2.4. 
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4.2 Temperature Dependence of  

Differential Conductance Curves 

The normalized differential conductances, G(V)/G(70 mV), of these tunnel junctions 

reveal essentially symmetric dips centered at the zero bias voltage as in Fig. 4.2 (a). It is 

clearly seen that the differential conductance dips are markedly more pronounced in 

junctions comprised of more disordered Cr electrodes. The relative changes in G(V) at 

2.5 K are [G(0)  −  G(70 mV)]/G(70 mV)  = −0.27,−0.36, and −0.89 in the junctions A, 

C and D, respectively. These magnitudes of relative change in G(V) are more than one order 

of magnitude larger than what would be expected from the EEI effect in weakly disordered 

homogeneous conductors [9]. 

We further measured the differential conductance curves in external magnetic fields 

applied perpendicular to the junction plane. Figures 4.2 (b)/(c) shows the G(V ) curves of the 

junction A/ D in zero magnetic field (symbols) and in a magnetic field of 4 T (solid curve). 

Figures 4.2 (b-c) firmly demonstrate that the magnetic field caused a negligible change 

(≲ 0.05%) in G(V). A negligible magnetic field effect, together with the strong dependence 

of the magnitudes of G(V) dips on the level of disorder displayed in Fig. 4.2 (a), strongly 

suggests that our observed large conductance dips must be associated with some sort of 

disorder effect in the granular Cr electrodes. In other words, any magnetic origins, which 

have long been suspected to play an important role in Cr comprised junctions, can be ruled 

out [1, 5]. 

Figures 4.2 (d-e) show our voltage-dependent differential conductances of the junctions. 

At low bias regime (V ≲ 10 mV) in junctions A–C, we found that G(V)/G(10 mV)  ∝  lnV 

as in Fig. 4.2 (d), the normalized G(V)/G(10 mV) spectra of the Al/AlOx/Cr junctions at 

2.5 K in the positive bias voltage (recall that our G(V) curves are essentially symmetric 

around the zero-bias voltage). And, the conductances cross over to the G(V)/G(10 mV)  ∝
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√𝑉 law at higher bias voltages in Fig. 4.2 (e). Besides, as for the junction D, the G(V)/

G(10 mV)  ∝ √𝑉 law was obeyed from relatively low bias voltages all the way up to a 

notably high bias voltage of ∼  100 mV (see the inset of Fig. 4.2 (e)). 

 

 (a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2 (a) Normalized differential conductance, G(V)/G(70 mV), as a function of bias 

voltage for junctions A, C and D, as indicated. Notice that the G(V) curves are essentially 

symmetric around the zero bias voltage. Data were taken at 2.5 K. 
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Fig. 4.2 (b) The G(V) curve of junction A in zero magnetic field (symbols) and in a 

perpendicular magnetic field of 4 T (solid curve). Notice that the magnetic field causes a 

negligible change. Data were taken at 2.5 K. 
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Fig. 4.2 (c) The G(V) curve of junction D in zero magnetic field (symbols) and in a 

perpendicular magnetic field of 4 T (solid curve). Data were taken at 2.5 K. 
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(d) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2 (d) Normalized differential conductance, G(V)/G(10 mV), as a function of bias 

voltage for junctions A – D, as indicated. The straight solid lines are least-squares fits to the 

equation of conductivity in Sec.2.4. For clarity, the data for the junctions B, C and D have 

been vertically shifted up by 0.1, 0.2 and 0.8, respectively. Data were taken at 2.5 K. 
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Fig. 4.2 (e) G(V)/G(10 mV) versus √V for junctions A, C and D, as indicated. The straight 

solid lines are guide to the eyes. Data were taken at 2.5 K. 
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4.3 A Comparison with the Conventional EEI Effect 

-- Ruling out the weak-localization and electron-electron interaction effects 

In order to understand our G(V) results in a quantitative manner, we first determine the 

parabolic background tunneling conductance (PBTC) in our junctions (see Sec.2.2) [34]. It is 

known that a PBTC is characteristic of every metal-insulator-metal tunnel junction at high 

bias voltages, where the disorder induced suppression in DOS, regardless of its origin, is 

insignificant [9, 26]. Figures 4.3 (a-b) shows the G(V) curves in a wide range of V for the 

junctions A and D. It is seen that G(V)  ∝ V2 (the solid curves) in the wide interval of 

|V|  ≈  200 − 400 mV. This observation confirms that our measured zero-bias conductance 

dips are superimposed on a PBTC. From this fitted PBTC, we can extrapolate the zero-bias 

conductance, Gpara(0), of an as would be ideal Al/AlOx/Cr tunnel junction consisting of a 

“clean” Cr electrode. The extrapolated value of Gpara(0) contains the information about the 

DOS at the Fermi energy, EF, in a clean Cr electrode, because for small bias voltages and at 

low temperatures, Gpara(0) can be approximated by Gpara(0)  =  PNAl (0)NCr,c(0), where 

P is the electron tunneling rate (which depends on the barrier height and width), and 

NAl (0) and NCr,c(0) are the DOS at EF in the Al and clean Cr electrodes, respectively [33]. 

The DOS at EF in our granular and disordered Cr electrode, NCr,d(0), can then be evaluated 

through the relation NCr,d(0)  =  NCr,c(0)  × [G(0)/Gpara(0)],  where the measured 

zero-bias conductance G(0)  = PNAl (0)NCr,d(0). With the literature value of NCr,c(0)  =

 3.5 × 1047   −1 m−3 in clean Cr metal [45], our extracted magnitudes of NCr,d(0) are 

listed in Table 1. 

As mention in Sec. 2.3, the effective dimensionality of the EEI effect will cross over from 

2D to 3D at |V|  ≳  Vc ≈  (4π2ℏD)/(et2) [36]. In 2D, (δN2 (ϵ))/(N2(0)) has logarithmic 

energy dependence, while (δN3(ϵ))/(N3(0)) is proportional to √ϵ. At first glance, since 

our junctions A and B are nominally weakly disordered (k  ≈ 4 – 5), one might attempt to 
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attribute our G(V)  ∝  ln V results to the 2D EEI effect. However, such an interpretation can 

be ruled out as follows. By comparing our measured  ln V dependence of G(V) in the 

junction A (the least disorder system in our samples) with the prediction of (δN2 (ϵ))/

(N2(0)) (see Sec.2.3), we obtained a value λ2 ≈  448. This value is one order of magnitude 

larger than the theoretical prediction of λ2   =  ln[(ℏDκ
4
 t2)/(4π2ϵ)]  ≈  43 , where 

κ =  (me2 k  t)/(2π
2 ℏ2 ε0), and ε0 is the permittivity of the vacuum [9] (we took a 

typical electron energy ϵ =  5 meV). Furthermore, in the high bias voltage regime, a 

comparison of our measured G(V )  ∝ √V result with (δN3(ϵ))/(N3(0)) yielded a value 

of λ3 ≈  88 , which is also far higher than the theoretical prediction of λ3 ≈   2  [9]. 

Therefore, our observed “giant” G(V) dips cannot be due to the conventional EEI effect in 

weakly disordered homogeneous conductors. Furthermore, the WL effects are even less 

important, because, on one hand, the electron dephasing length is short in granular samples 

[46] and, on the other hand, our Cr electrodes are magnetic [47]. Therefore definitely, the 

granularity in the structure of our Cr electrodes must play an important role [6-8], as to be 

addressed in Sec. 4.4 and Sec. 4.5. 
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Fig. 4.3 (a) G(V) spectra of junctions A at 2.5 K in a wide bias voltage interval, as indicated. 

The symbols are the experimental data and the solid curves are parabolic fits. The solid 

curves in junctions A are described by Gpara (V ) =  848 +  0.067 V +  0.0028 V
2 

where Gpara (V ) is in microsiemens and V in millivolt. 
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Fig. 4.3 (b) G(V) spectra of junctions D at 2.5 K in a wide bias voltage interval, as indicated. 

The symbols are the experimental data and the solid curves are parabolic fits. The solid 

curves in junctions D are described by Gpara =  272 − 0.12V + 0.0026V
2, respectively, 

where Gpara is in microsiemens and V in millivolt. 
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4.4 A Comparison with the Theory of Granular Metals 

-- Logarithmic temperature dependence of conductivity 

Let us discuss that our results can be satisfactorily, but not fully, interpreted in terms of 

the recent theory of granular metals. We have fitted our measured σ ∝  ln T results with 

the predicted σ(T) (see Sec. 2.4). To carry out the least-squares fits, we assume a value of 

the charging energy Ec ≈ 10 k𝐵T
∗ , where T∗  is the temperature below which the 

σ ∝  ln T  law holds. Taking this value of Ec  and the sample dimensionality d =  3 

(because our Cr granules are disk-shaped with a height of ≈  0.5– 2.5 nm, which is much 

smaller than our mean film thickness of 15– 30 nm), we have extracted the values of the 

parameters σ0 and g in our samples (see Table 1). It should be noted that the extracted 

σ0 and g values are insensitive to the choice of Ec value, because Ec appears in the 

argument of a logarithmic function [48]. Inspection of Table 1 indicates that in the junctions 

A–C, we obtained g ≫  1. This result is in good consistency with the prerequisite for the 

predicted σ(T) to be applicable. On the other hand, our extracted value of g ≃  1 in the 

junction D implies that this sample falls marginally inside the regime of validity of the 

predicted σ(T). We notice that the predicted σ(T) was formulated by considering a 

periodic cubic array of uniformly sized grains and neglecting dispersion of the intergrain 

tunneling conductance [25], while our samples contained random arrays of varying-sized, 

disk-shaped granules [6]. Therefore, a close quantitative comparison of our (and other 

groups’ [24, 49, 50]) experiment with theory is not possible at this stage. 

Another important feature of the predictions of the theory of granular metals is that the 

predicted σ(T) should be valid at any magnetic field. This is indeed confirmed by our 

experiment. We have measured σ(T) of the Cr electrode in the junction A between 4 and 

20 K in both zero magnetic field and in a perpendicular magnetic field of 4 T (see Fig. 4.4 

(a)). The measured values are the same to within our experimental uncertainty. On contrary, 
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the WL effect, if any exists, should be very sensitive to and suppressed by even a small 

magnetic field [47]. If the EEI effect were responsible, we should then have observed a √𝑇, 

but not a ln T, dependence in this sample in this temperature interval [51]. Therefore, both 

the WL and EEI effects are irrelevant to our observations in Figs. 4.1 (a-b). 

The mean energy-level spacing δ in our Cr granules may be evaluated as follows. We 

have carried out AFM studies of a film deposited under conditions similar to those used for 

the fabrication of the junction B. We found that the Cr film formed a granular structure 

consisting of disk-shaped grains of ≈ 60 ± 20 nm in diameter and ≈  1.5 ±  1 nm in height, 

along with a few larger aggregations. By taking an average diameter of ∼  60 nm and an 

average height of ∼  1.5 nm, we obtain an estimate of δ = 1/N𝑐𝑟,𝑑(0) V̅  ≈  2 µeV, where 

V̅ is the average granule volume. This δ value in turn suggests a characteristic temperature 

T𝐵  ≈  gδ/k𝐵 ≈  1 K  above which the predicted σ(T)  equation is expected to apply. 

Experimentally, the σ ∝  ln T law in our junction B is observed in the temperature interval 

0.3– 7 K, see Fig. 4.1 (b). This degree of agreement is satisfactory, considering that the 

evaluations of parameters in a granular sample unavoidably involve large uncertainties.  

Using our estimated values of Ec ≈  6 meV  (see Table 1) and δ ≈  2 µeV,  we 

obtained the ratio Ec/δ ≈  3 ×  103. This ratio suggests the existence of a broad range for 

logarithmic corrections to conductivity. However, even under such circumstances, Feigel’man 

et al. have theoretically shown that a simple σ ∝  ln T law should still hold in a wide range 

of temperature [52]. This prediction is confirmed by the present experiment. 
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Fig. 4.4 (a) Plots of temperature-dependent conductivities in Junction A under magnetic 

field H = 0 T (triangles) and H = 4 T (squares). The small difference between two curves is 

within our experimental uncertainty. The results confirm that the WL effect (which is 

sensitive to the magnetic fields) is irrelevant to our system, while the prediction on 

conductivity in the theory of granular metals should be valid at any magnetic field. 
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4.5 A Comparison with the Theory of Granular Metals  

 -- Differential conductance curves and tunneling density of states 

Tuning to the differential conductance curves, we discuss the crossover behavior of 

G(V) from the ln V to √V dependence. This occurs at a characteristic bias voltage of 

Vc ≈  Ec/e ≈ 10k𝐵𝑇
∗/e. Theoretically, the application of the predicted ν3(ϵ) (see Sec. 2.4) 

requires the condition max(T, ϵ)  ≲  Ec to be satisfied. That is, at low temperatures such 

that k𝐵𝑇 <  ϵ, the ν3(ϵ)  ∝  ln ϵ law is predicted for the regime ϵ ≲  Ec. On the other 

hand, the variation in ν3 with ϵ in the opposite limit (ϵ ≳  Ec) has not been calculated. 

Experimentally, in the junctions A–C, we observed G(V)  ∝  ln V in the low bias voltage 

regime (V ≲  Vc ≈  Ec/e ≈  a few to ∼  10 mV). This is qualitatively in line with the 

prediction of ν3(ϵ). However, a close comparison with theory cannot be made at this stage, 

because the numerical prefactor A in the predicted ν3(ϵ) was calculated for the case when 

the logarithmic term is much smaller than 1 [26]. Quantitatively, the magnitudes of the G(V) 

dips we observed are much larger than that predicted by ν3(ϵ) in Sec.2.4. On the other 

hand, our g values are larger than the critical intergrain tunneling conductance g𝑐  =

 (2πd)−1 ln(Ec/δ) (≈  0.4, using the above Ec/δ value) [44]. Therefore, we do not expect 

to find a “hard” gap in our samples [27]. Our G(V)  ∝ √𝑉 results in the high bias voltage 

regime (V ≳  Vc) also have to await a future theoretical explanation [52]. 

Finally, in the junction D, we did not observe any G(V)  ∝  ln V dependence even at 

relatively low bias voltages, which may be due to the fact that g ≃  1 in this sample and 

thus the prediction of ν3(ϵ). is marginally applicable. However, recall that we found the 

σ ∝  ln T behavior, as predicted by the predicted σ(T). In fact, G(V)  ∝ √𝑉 was observed 

in this sample in a wide range of |V |  ≈  1– 100 mV at 2.5 K, the insert of Fig. 4.2 (e). 

Furthermore, we found that in this particular sample, the scaled differential conductance 

[G(V, T)  −  G(0, T)]/√T  versus the combined parameter √e|V|/k𝐵T  for different 
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measurement temperatures between 2.5 and 32 K collapse closely onto a single curve, 

Fig. 4.5 (a). This result strongly suggests the existence of a universal scaling function in the 

g ≃  1 regime. That is, there exists a function f such that G(V, T) − G(0, T)  = √T ×

f(√eV/k𝐵T), where f should depend on the combined parameter eV/k𝐵T, instead of 

depending independently on eV or k𝐵T. For comparison, Fig. 4.5 (b) shows the unscaled 

G(V) versus bias voltage V at five measurement temperatures. Previously, a universal 

scaling behavior of differential conductance has been theoretically predicted for 3D weakly 

disordered homogeneous conductors (Refs. 13 and 36). Our observation of Fig. 4.5 (b) 

demonstrates that a universal scaling phenomenon also exists in the granular case.  
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Fig. 4.5 (a) Normalized differential conductance, (G(V, T) − G(0, T) )/√T, as a function of 

the combined parameter √eV/k𝐵T  for the junction D at five measurement 

temperatures. Notice that the data points collapse closely. 
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Fig. 4.5 (b) Unscaled G(V) versus bias voltage V at (from bottom up) 2.5, 5.0, 9.0, 16 and 32 

K. 
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Chapter 5 

 

Summary  
 

We have measured the conductivities σ(T)  in granular Cr electrodes and the 

differential conductances G(V) in Al/AlOx/Cr tunnel junctions at liquid-helium temperatures. 

In samples with dimensionless intergrain tunneling conductances g ≫  1 , we found 

σ ∝  ln T  and G(V)  ∝  ln V  at low bias voltages. These results are satisfactorily 

understood in light of the recent theory of granular metals. A crossover of G(V) from the 

ln V to √𝑉 dependence was observed at high bias voltages. In a sample with g ≃  1, we 

found σ ∝  ln T and G(V)  ∝ √V in a wide bias voltage interval. Moreover, the normalized 

differential conductance [G(V, T)  −  G(0, T)]/√T reveals a universal scaling behavior with 

the combined parameter√e|V|/k𝐵T in a wide range of temperature. This last observation 

requires a further theoretical explanation. Finally, we would like also to note that, while the 

theory of granular metals considers a periodic array of uniformly sized grains, in real samples 

one often has some distribution in granule size. The effect of such size distribution on our 

results in the present study has yet to be fully addressed. 
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Part II  

 

Spin blockade with spin singlet electrons 
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Chapter 6  
 

Introduction 

6.1. Motivation 

Quantum dot (QD) systems, developed with the growing of the semiconductor device 

fabrication technique, provide a possible candidate for the application on the quantum 

computer area [53-55] and a path to investigate the fundamental physic, especially atomic 

physics, in more easily accomplishable experimental conditions [56,57].  

In classical computers, information is represented by a string of bits indicating as “0” 

and “1”. However, in the quantum world, if a system can be controlled between two states, 

resembling as the mentioned “0” and “1”, the wave property enables the information to be 

computed in a combination or superposition of the two states. And, this so called “quantum 

parallelism” ability makes quantum computers more powerful to solve the problems which 

are considered intractable nowadays [58].   

We can summarize five requirements [59] for establishing quantum computers. And, 

through the introduction on these requirements in the following paragraph, we could know 

how spins are treated as quantum bit (qubit) in double QD systems [53, 54, 59] and what 

kind of roles the spin blockade phenomenon can play [60-63]. These both motive us to 

study our topics in this thesis: 
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1. A system with a few discrete quantum states 

A two-level system is normally ideal for representing the qubit. For a single spin (a 

one-bit operation), the two levels can be spin up and spin down respectively; for a two-bit 

operation, the two-particle spin configuration as spin singlet and spin triplet can be are 

utilized as two discrete levels. 

 

2. Able to accomplish logic gates 

A XOR (or controlled-NOT) gate, known to be employable for any arbitrary quantum 

computation, can be produced by two square roots of the swap operation of a two-qubit 

gate with a set of a one-qubit gate. 

 

3. High coherence time 

Spin state coherence time should be longer enough to execute a logic gate accurately. 

That is, it should be at least 1000 times larger than the logic gate operation time. As we know, 

spin is less sensitive to the environment as comparing with charge. However, according to 

materials composed of the QD systems, the spin orbital interaction and/or the hyperfine 

interaction will play important parts to influence the coherence. 

 

4. Able to initialize the qubit state 

5. Able to measure the qubit state 

Before having a brief illumination on the Pauli spin blockade (SB) in a double QD system 

in Sec. 7.3, we can first consider it just as a spin dependent barrier that only allows electrons 

to flow through if they are spin singlet, whereas spin triplets will lead the system to a 

blockade. This property helps out both the requirement 4 & 5 [60-63], since we can simply 

prepare a two-electron system to stay in triplet spin states for experiments (i.e. to initialize 

the qubit state). Further, we can measure or identify which qubit state the system is by only 
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observing the electron-flow signals or the tunneling current (i.e. to measure the qubit state).   

 

In this work, we observe a novel spin blockade phenomenon in the double QD system -- 

the singlet spin blockade (SSB). In contrast to the Pauli spin blockade resulting from forming 

one of three triplet states randomly, whenever SSB takes place, it blocks with the only state -- 

electron spin singlet. We propose a mechanism to utilize the singlet spin blockade and the 

hyperfine interaction to entangle the nuclear spins in Sec. 6.2. For a two-qubit operation, we 

need to establish links between distant qubits; that is, to entangle states between separated 

quantum systems. In the past studies, the entanglement between electron spins or between 

electron spin and nuclear spin is possible [53, 65]. However, so far the entanglement 

between nuclear spins has not been achieved. In Table 2, the conditions or developments for 

electron spins and nuclear spins as quantum information carriers in GaAs, which composes 

of our QD system, are summarized.  
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Table 2 Electron spins vs. nuclear spins as quantum information carriers  

 Electron Spin in GaAs Nuclear Spins in GaAs 

Two-level system ○ ○(Four level) 

Initialization ○ ○(Polarization ~ 40%) [66] 

Coherence ○(~ µs) [63] ○(~ ms) [67] 

Measurement ○ ○ 

 Unitary operation  

1 qubit operation ○(ESR) ○(NMR) 

2 qubit operation electron-electron 

○ 

     

 

 

 

 

[53] 

electron-nuclear 

○? 
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nuclear-nuclear 
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6.2   ( A Proposal ) 

To Entangle Nuclear Spins with Singlet Spin Blockade  

The singlet spin blockade occurs when there is only one electron staying in each of the 

double QDs and the two-electron spin configuration is singlet. In this section, we propose a 

mechanism that while the singlet spin blockade phenomenon is relieved via the spin flip-flop 

process due to the hyperfine interaction between electron spin and nuclear spin, the nuclear 

spins residing in two QDs are entangled at the same time.  

In Fig. 6.2 (a), each of the two QDs has a single electron interacting with one of 

numerous nuclear spins inside the QDs via the hyperfine interaction, and the Hamiltonian 

can be expressed as 

𝐻ℎ𝑓 =∑𝛼𝑖𝑗
𝑖,𝑗

𝑆𝑖 ∙⃗⃗⃗⃗  ⃗ 𝐼𝑗⃗⃗  

 

where 𝑆 / 𝐼  is the spin operator for electron spin/ nuclear spin, α is the coupling 

strength, and i/ j indicates the QD (QD1 or QD2 ) where the electron/the nuclei stays. The 

cross-dot interactions are tiny, so that the α12 and α21 terms can be dropped. If we further 

assume that α11 and α22 have the same strength as α11 ≈ α22 =  , then the hyperfine 

interaction can be shortened as 

 

𝐻ℎ𝑓 =∑𝛼𝑖𝑗
𝑖,𝑗

𝑆𝑖 ∙⃗⃗⃗⃗  ⃗ 𝐼𝑗⃗⃗  

= 𝛼11(𝑆1+𝐼1− + 𝑆1−𝐼1+ + 𝑆1𝑧𝐼1𝑧) + 𝛼12(𝑆1+𝐼2− + 𝑆1−𝐼2+ + 𝑆1𝑧𝐼2𝑧) 

+ 𝛼21(𝑆2+𝐼1− + 𝑆2−𝐼1+ + 𝑆2𝑧𝐼1𝑧) + 𝛼22(𝑆2+𝐼2− + 𝑆2−𝐼2+ + 𝑆2𝑧𝐼2𝑧) 

 𝒇𝒐𝒓  𝜶𝟏𝟏 ≈ 𝜶𝟐𝟐 = 𝑨; 𝜶𝟏𝟐 = 𝜶𝟐𝟏 = 𝟎 

= 𝐴(𝑆1+𝐼1− + 𝑆1−𝐼1+ + 𝑆1𝑧𝐼1𝑧) + 𝐴(𝑆2+𝐼2− + 𝑆2−𝐼2+ + 𝑆2𝑧𝐼2𝑧) 
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For example, if the hyperfine interaction acts on a state | ⇑1⇑2↑1↓2>, it turns out to 

be | ⇑1⇓2↑1↑2> 

 

 𝐻ℎ𝑓| ⇑1⇑2↑1↓2> 

= {𝐴(𝑆1+𝐼1− + 𝑆1−𝐼1+ + 𝑆1𝑧𝐼1𝑧) + 𝐴(𝑆2+𝐼2− + 𝑆2−𝐼2+ + 𝑆2𝑧𝐼2𝑧)}| ⇑1⇑2↑1↓2> 

= 𝐴| ⇑1⇓2↑1↑2> 

 

Only at the condition that spin directions of the electron and the nucleus within the 

same dot are opposite, the spin flip-flop process is executable to exchange their spin states. 

However, if we only consider the spin states before and after the interaction (such as the 

example above, | ⇑1⇑2↑1↓2> turns to be | ⇑1⇓2↑1↑2>), it looks like that the interaction 

exchange electron and nuclear spin states with each other no matter whether their spins 

direct oppositely or not. Since if the spin states of the electron and the nuclei have the same 

orientation, the states after the interaction will be the same as those after the exchange (if it 

really happens). 

 

 

                     (a) 

 

 

 

 

Fig. 6.2 (a) The schematic diagram of the hyperfine interaction in a double QD 

system, where ⇑/↑ shows the electron/nuclear spin direction and α is the coupling 

strength. 
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Similarly, we can also see what would happen if the hyperfine interaction works on two 

electrons forming the spin singlet state |(⇑1⇓2−⇓1⇑2) ↑1↑2> 

 

𝐻ℎ𝑓|(⇑1⇓2−⇓1⇑2) ↑1↑2>= 𝐻ℎ𝑓| ⇑1⇓2↑1↑2> −𝐻ℎ𝑓| ⇓1⇑2↑1↑2> 

 = 𝐴|⇑1⇑2↑1↓2> −𝐴| ⇑1⇑2↓1↑2> 

 = 𝐴| ⇑1⇑2 (↑1↓2−↓1↑2) > 

    

Again, the spin states of the electrons and the nuclei exchange! Meanwhile, the 

entanglement between electrons as a spin singlet state passes onto the nuclei. Recall that 

the spin flip-flop process, no matter which direction the electron spin and the nuclear spin 

point to, can be retreated as an exchange spin state action within the same dot as just 

mentioned. And further, for the spin singlet state, even though we do not know the electron 

spin direction in one dot but we do know the electron spin in the other dot should direct 

oppositely. Therefore, when two electron spins respectively exchange the state with the 

nuclear spin in its own dots, the connection between nuclei in two separated dots is 

established. The probability of being either | ⇑1⇓2> | ⇓1⇑2> in electrons now passes 

toward an arbitrary nuclear spin pair which is entangled as forming to be the singlet state at 

the same time. 

    Compared with the Pauli spin blockade keeping the system in triplet spin states that we 

cannot determine the precious one, the singlet spin blockade with the aim of the spin 

flip-flop process via the hyperfine interaction provides a way to entangle the nuclear spins 

staying in two dots to be just as one spin state—the singlet spin state. We can also calculate 

how many nuclear spin pair will be entangled under the steady condition if this mechanism 

works repetitively. And, the calculation on the expected value of the entangled nuclear spin 

pairs under the steady condition and a possible verified measurement as our further work 

are introduced in Appendix (A). 
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Chapter 7  
 

Background and Theory  

Basics of the semiconductor QDs and the relative spin-dependent electron transport 

behavior will be introduced in this chapter. We start with the general transport properties of 

Sec. 7.1 single quantum dot systems, and then extend to Sec. 7.2 the vertical double 

quantum dots which we chose as our system in this thesis. In such a system, we control and 

limit the electron number to be within one or two, so that we can see the occurrence of Sec. 

7.3 (Pauli) spin blockade. Further, a more clear vision of this spin blockade behavior will be 

shown with an understanding on the two-electron energy diagram in Sec. 7.4. We introduce 

the singlet spin blockade (SSB) in Sec. 7.5, while the two-electron singlet-triplet ground 

state transition, which we demonstrate in this thesis to achieve SSB, is in Sec. 7.6.  

7.1 Single Quantum Dot Systems  

As the development in the semiconductor device fabrication technique grows, it is 

possible to restrict electrons in a nano- to micro-meter-sized device composed of 103 to 109 

atoms. We call such a small device as Quantum dot (QD) where electrons are confined to a 

dimension close to de Broglie wavelength (~ 100 nm). Therefore, it has two distinct 

well-known features -- the discrete energy spectrum and manifest quantum effects, and is 

often regarded as an artificial atom [68].  
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Since every semiconductor material has different or its own bandgap, the conduction 

band of multilayers of semiconductors can form a potential well with discrete energy levels 

sandwiched between barriers as in Fig. 7.1 (a). In such semiconductor heterostructures, the 

confinement is one dimensional, or along the z-direction in this thesis. All the parameters, 

including electrode reservoirs for electron transport between the external environment and 

QDs, are well-considered so that all the excited states in the z-direction will be empty; that is, 

only the ground state is occupied with electrons. For building a quantum dot, however, it is 

still not enough, and we need to further confine the x-y plane. This can be done just with the 

evaporated metal gates or combining with the etching technique. And, in this way, we will 

have disk-like shaped quantum dots. The metal gates surround the semiconductor dot, so 

that we can control the depletion region by applying the gate voltage, Vg, and the 

confinement in x-y plane or the size of the dot will be changed. That is to say, energy levels of 

the dot with respect to the reservoirs are able to be tuned with Vg. The equivalent circuit 

diagrams of the vertical and lateral QD systems are shown in Figs. 7.1 (b-c). 

 

 

(a) 

 

 

 

 

 

 

Fig. 7.1 (a) Schematic diagrams of semiconductor heterostructures such as 

AlGaAs/GaAs/AlGaAs that confine electrons to a plane. 
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(b) 

 

 

 

 

 

 

(c) 

 

 

 

 

 

 

Figs. 7.1 (b-c) The equivalent circuits for the (b) vertical and (c) lateral quantum dot 

system. The gate couples to the dot capacitively, and barriers between electrode 

reservoirs and the dot can be represented as a parallel connection of resistance and 

capacitor. 

 

In a disk-like shaped QD system, the energy spectrum can be solved with a 2D harmonic 

parabolic confinement, and En, l = (2n + |l| + 1)ℏω0 , for ℏω0 : the electrostatic 

confinement energy, n : the radial quantum number, and l : the angular momentum 

quantum number. When we consider the electron transport conditions through the QD 

system, besides the energy level spectrum, the Coulomb repulsion among electrons also has 

to be taken into account when the total electron number, N > 1. The phenomenon that an 

electron needs to overcome this Coulomb repulsion energy to tunnel into the QD is called 

Coulomb blockade (CB) [57]. The constant interaction (CI) model generalizes both concepts 

of discrete levels and the Coulomb repulsion, which parameterizes the Coulomb interaction 

of an electron on the QD with a constant capacitance C as facing the environment and other 

electrons on dot. The details are in Appendix (B), and we calculate  

 

1. The total energy of the dot, U(N)  
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2. The electrochemical potential, µ(N), which is defined as the energy of adding the N-th 

electron into the dot, and is the difference in the total energy of the dot containing N and 

(N-1) electrons, i.e. 

 

µ(N) = U(N) − U(N − 1)  

 

3. The addition energy, Eadd, the energy needed for adding one more extra electron into 

the system, is the summation of charging energy 𝐸𝑐 =
e2
𝐶⁄ , and the energy spacing 

between two discrete levels, ∆E.  

 

 Eadd = ∆E + Ec = µ(N + 1) − µ(N) = ∆µ(N) 

 

We can express the allowing condition for the current flow via the QD as µs ≥ µ(N) ≥

 µd, where µs/ µd stands for the electrochemical potential of the source/ drain electrode. 

There are two parameters affecting the electron transport: µ(N) for the dot, and µs/ µd 

for the electrode, and both of them are controllable. As in Fig. 7.1 (f), the transport window 

opened by µs, µd is determined by eVsd, or µs − µd = eVsd; meanwhile, µ(N) can be 

tuned by Vg as mentioned in the second paragraph.  

With the basic understanding of the above, we analyze or measure the current 

behaviors in the QD from Figs. 7.1 (d-h). First, in the simplest case Vsd ≈ 0, a series of 

separated current peaks, or Coulomb oscillation peaks, shows up as applying continuously 

Vg (see Fig. 7.1 (d)). Figure 7.1 (e) is the corresponding situation of these peaks: only when 

µ(N) aligns with µs = µd, electrons are able to tunnel through the dot; the distance 

between the peaks is actually the addition energy,  𝐸𝑎𝑑𝑑 . Second, if we apply a finite Vsd 

so that eVsd ≥ E𝑎𝑑𝑑  such as the condition in Fig. 7.1 (f), then the blockade will be 
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completely released. In Fig. 7.1 (g), we sweep Vsd at continuously different Vg to have 

the Vsd − Vg diagram. Along the green line is the condition in Fig. 7.1 (e) and the blue spots 

are the condition in Fig. 7.1 (f). Since Vsd bias will partially cross on barriers and relatively 

tune µ(N), the blockade conditions are diamond-shape current-suppressed areas centered 

to the zero bias, and called to be Coulomb diamond. Alignments between µ(N) and µ𝑠 or 

µ(N) and µ𝑑 construct the edges or the boundary conditions of Coulomb diamonds (see 

Fig. 7.1 (h)). Notice that the size of every Coulomb diamond in Fig. 7.1 (g) [56] is actually 

different and especially large at N = 2,6,12…. This arises from the atom-like property of the 

QD. Or specifically, the shell structure of the first few levels in a 2D atom is revealed -- 1s 

orbit allowing for 2 electrons, 2p (for 4 e-), 3s and 3d (for 6 e-)…. Therefore, we can see that 

the addition energy is especially larger when the electron is going to occupy the next shell.  

 

 

(d)  

 

 

 

 

 

 

 

Fig. 7.1 (d) Coulomb Oscillations, the current peaks measured at Vsd ≈ 0. The peaks only 

happens when µ(N) = µs = µd,  and we can tune µ(N)  with Vg . The difference 

between the two neighboring peaks is the addition energy. 
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(e)                                   (f)  

 

 

 

 

 

 

Figs. 7.1 (e-f) The schematic diagram for (e) Coulomb oscillation occurring (f) releasing the 

blockade situation as eVsd ≥ E𝑎𝑑𝑑. 

  

(g)  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.1 (g) The measured Coulomb diamonds in the Vsd − Vg diagrams revealling the 

shell structures of the dot [56]. 
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Fig. 7.1 (h) the Coulomb diamond boundary conditions are determined by the alignment of 

the chemical potential between either one of the lead and the dot, i.e. µ(N) = µs or µd 
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7.2 Vertical Double Quantum Dots 

In our study, we choose the vertical double QDs to be our system. Comparing with the 

structure of the single QD, there is one more layer inset as center barrier as Fig. 7.2 (a). The 

CI model also suits for the double QD system with the equivalent circuit diagram shown in Fig. 

7.2 (b) (see Appendix (C) for details). And now, besides there is one more extra QD needed to 

be considered, the Coulomb interaction crossing the dots such as the influence of the 

electron on one QD upon the other QD also plays an important role in the electron transport. 

And, we define this interdot Coulomb interaction as E𝑐𝑚.  

 

(a) 

 

 

 

 

 

 

 

 

(b) 

Figs. 7.2 (a-b) (a) A schematic diagram for a vertical double dot system in a crossing-section 

view. Two dots are separated and sandwiched by barriers, and their sizes are controlled by 

the depletion region due to Schottky gates, the drawn golden parts surrounding the dot 

side. (b) The equivalent circuits for the double vertical quantum dot system. Comparing 

with single dot as Fig. 7.1 (b), there is one more parameter as the interdot capacitance, 

which describes the interaction between dots due to the coupling, concluded.  
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To realize the electric properties of double QDs, we can start from the charge stability 

diagram, which ignores the electron spin. Under the condition of  Vsd ≈ 0, we first assume 

that there is almost no coupling between two QDs, or interdot capacitance Cm ≈ 0, so that 

the two gates can control µ(N) of each QD individually. Then, Coulomb oscillation (CO) 

peaks (see Sec. 7.1) can be expressed as a function of (Vg1, Vg2) as in Fig. 7.2 (c). The 

horizontal/ vertical black line means the alignment of µ𝑠(= µ𝑑) and µ(𝑛1, 𝑛2) of QD1/QD2, 

and the CO peaks occur at the crosses of black lines. Between the lines, electrons 

outside/inside the dots do not have enough energy to tunnel in/out of the system, and the 

label (n1, n2) indicates the number of trapped electron in each dot. To be more clearly, the 

corresponding diagrams in the chemical potential are shown in Fig. 7.2 (d).  

  

(c)    

 

 

 

 

 

(d) 

 

 

 

 

Figs. 7.2 (c-d) (c) The charge stability diagram for double quantum dot systems. (d) Three 

corresponding level diagram w.r.t the colored circles in Fig. 7.2 (c). Here, we treat two dots 

as individual ones. Electrons can do the first-order tunneling only at blue point(s). 
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If two QDs couple with each other, or when we consider the cross coupling between 

gate 1(2) and dot 2(1), then not only applying the gate voltage of one dot will affect the 

other dot, but the charging of dot 1(2) will also change the electrostatic energy of dot 2(1). 

Therefore, the charge stability diagram in Fig. 7.2 (c) is deformed to be hexagonal as Figs. 7.2 

(e-f) and also named to be “honeycomb diagram”. Now, the transport occurs at the joined 

points of triple lines like the pair of yellow and red circles in Fig. 7.2 (e); one is going through 

the electron transport, while the other goes like the hole transport. The corresponding 

diagrams of chemical potentials for transport are in Fig. 7.2 (g). In experiments, with the aim 

of the honeycomb diagram, we can detune the wanted experiment condition. Such as the 

Pauli spin blockade occurs at the transport cycle of (0,1)(1,1)(0,2)(0,1), and we tune 

the gates to be along the dotted line in Fig. 7.2 (f) [69] to achieve the conditions. 

Figure 7.2 (h) shows the schematic Vsd − Vg diagram of a double dot system. In single 

QD (such as the inset of Fig. 7.2 (h) or Fig. 7.1 (h) in Sec. 7.1), the CB regions are constructed 

by pairs of boundary conditions as µ(N) = µ𝑠 and µ(N) = µ𝑑. For a double QD system, we 

can consider that there will be two pairs of µ(n1, n2) = µ𝑠 and µ(n1, n2) = µ𝑑. That is, 

two colored (red and blue) lines in Fig. 7.2 (g); one is for QD1, while the other is for QD2. It is 

under the consideration that electrons directly tunnel into or out from QD1/QD2 while 

treating QD2/QD1 as a thick barrier (i.e. cotunneling process). These two colored lines 

provide us the conditions where the first-tunneling process can really occur, i.e. the black 

lines, and further help us to analyze a measured Vsd − Vg diagram.  
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(e) 

 

 

 

 

 

 

(f) 

(g) 

 

 

 

 

 

 

 

Figs. 7.2 (e-f) The (e) schematic and (f) measured honeycomb diagrams [69] revealing the 

coupling between two dots. (g) Diagrams of corresponding chemical potentials of dots and 

leads at the colored circles in (e). Notice that along the line linking up the paired circles, 

states in each dot are tuned simultaneously and equally.  Unlike Fig. 7.2 (c), the chemical 

potentials represented as 𝜇1/2(𝑛1, 𝑛2) here are due to the interdot coupling. 
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(h) 

 

 

 

 

 

 

 

 

 

Fig. 7.2 (h) The Vsd − Vg schematic diagram for the double dot systems. The block lines 

sketch the contours of blockade regions. Within the blockade area, red and blue lines show 

a second-tunneling process. The vertical lines indicate an offset between dots, or the offset 

number is revealed as the numbers of the vertical line.  

 

 

A double dot system as in Figs. 7.2 (h-i), the Vsd − Vg diagram may exhibit not only as 

the grey coulomb diamond shape similar to single dot systems, but also the vertical lines 

indicated by arrows. The vertical lines are due to an offset in the energy levels of two dots. 

This energy offset between two dots can be originally determined by the electron density of 

the source and drain when the device is made. Or, it can be detuned with different gate 
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voltages for systems with more than one gate. In vertical quantum dot systems, both of the 

composition of the chosen wafer and the micro fabrication process will affect the electron 

density of the electrodes, since it is believed [70] that a decrease in electron density in 

cylindrical mesa (drain) is higher than that in the substrate (source) during fabrication 

processes. The interpretative diagram for relative positions between electronic states when 

resonant current occurs for the double dot systems of offset = 1 are shown in Fig. 7.2 (j). 

 

 

(i) 

 

 

 

 

 

 

 

 

Fig. 7.2 (i) The measured Vsd − Vg diagram of the double dot systems in dIsd/dVsd 

plots [71]. The vertical line indicates an offset = 1 and the corresponding positions of 

levels are in Fig. 7.2 (j).  
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(j) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.2 (j) The corresponding energy level diagrams for a double dot system with inderdot 

offset = 1. At condition a, we can clearly see the energy difference between two dots. 

Condition b is along the vertical line, while C is at the kink side. For b electrons tunnel 

through the system via the two aligned ground states at an infinite source-drain bias, The 

applied gate voltages simultaneously and nearly equally tune states in both dots. 

Therefore, we have a vertical line, as the tunneling boundary, along the Vg axis.  
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7.3 Pauli Spin Blockade 

 Pauli spin blockade occurs in double QD systems during the electron transport cycle, 

(0,1)(1,1)(0,2)(0,1) where (n1,n2) indicates the electron number in QD1 and QD2 [71]: 

once an electron tunneling into QD1 is with the spin direction the same as the electron 

originally trapped in QD2, the triplet spin state, T(1,1), is formed and it may have trouble to 

tunnel into QD2. The S(1,1) and T(1,1) are nearly degenerate in energy, but S(0,2) and 

T(0,2) are not. As we know, the Pauli exclusion only allows two electrons with the opposite 

spin direction to share the same orbit, therefore the ground state 1s orbit of QD2 only has 

the singlet spin state, S(0,2). The electron in QD1, which forms T(1,1), cannot tunnel to the 

1s orbit in QD2 to become S(0,2) due to the spin conversion, whereas T(0,2) that one of 

the electrons has to be at the first excited 2p+ orbit may be too high in energy to be within 

the transport window opened by Vsd. so that results in the blockade (see Fig. 7.3 (a)).  

In the Vsd − Vg  charge diagram, spin blockade (SB) demonstrates itself as an 

asymmetric current-suppressed region by the side of Coulomb blockade (CB) of the total 

electron number N = 2. As in Fig. 7.3 (b), SB occurs in the area enclosed by green lines, 

whereas electrons tunnel via (0,1)(0,2)(1,1)(0,1) on the opposite bias side. The 

current in the blue color area is ~ 100 p  and is about 1 p  in the red color region (of the 

SB area and also the cotunneling area). And we can calculate the life time of the triplet spin 

state, T(1,1), for I = 𝑒/𝑡 where e is elementary charge. The T(1,1) lifetime, or the lifting 

of SB, can be influenced by the spin-orbit interaction [72, 73], the hyperfine interaction [63, 

66, 74] and electron spin resonance [60, 62]; once SB is lift, the situation goes back to be in 

Fig. 7.3 (a) until SB takes place again. 

    When we apply Vsd, the bias will drop on the three barriers, and detune the energy 

levels between dots at the same time. Within the SB region in the Fig. 7.3 (d), we have 

current for Vsd ≳ 9mV  : once the detuning due to applied Vsd  is large enough to 
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compensate the energy difference between T(1,1) and T(0,2), SB will be completely 

released, and we see the electron flowing again. The schematic diagram to show this triplet 

tunneling channel (i.e. (0,1) T(1,1)  T(0,2)(0,1)) developing with increasing Vsd is 

shown in Fig. 7.3 (c). The situation for Vsd < the threshold voltage is SB, while for Vsd >

 the threshold voltage, the current flow through the system with the “inelastic” interdot 

tunneling. As a result, what we see is a current peak marked by the arrow in Fig. 7.3 

(d) where T(1,1) just aligns with T(0,2). 

 

 

(a) 

 

 

 

 

 

 

 

 

 

 

Fig. 7.3 (a) Schematic level diagrams of the Pauli spin blockade: During the 

(0,1)(1,1)(0,2)(0,1) cycle, (1,1) has both probability to be either spin singlet or 

triplets, so the electron may transport until SB will eventually occurs.  
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(b) 

 

 

 

 

 

 

Fig. 7.3 (b) In the Vsd −  Vg diagram, SB shows an asymmetric current suppressed region 

at N=2 as the area green lines enclose. The small current in other red color region is due to 

the co-tunneling process [71]. 

 

(c)  

 

 

 

 

 

 

 

 

Fig. 7.3 (c) The schematic diagram of the triplet tunneling channel developed by 

applying Vsd. The Vsd bias crossing on three barriers tunes the relative energy between 

the dots. The energy difference between T(1,1) and T(0,2) is compensated by a finite and 

large enough Vsd bias, and release the spin blockade.  
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(d) 

 

 

 

 

 

 

 

 

 

Fig. 7.3 (d) Spin blockade in the Vsd − Vg diagram. A triplet tunneling channel developed 

at high bias as the arrow marks. 

 

 

 

7.4 The Two-Electron Energy Diagram 

   The relative energy between the two-electron states including S(1,1), T(1,1), S(0,2) 

and T(0,2) plays a determinant role in the occurrence of SB. Hence in this section, we 

introduce the two-electron energy diagram.  

    At first, we consider S(0,2)  and T(0,2)  which are the same as the one-dot 

two-electron states. Remember that in Sec. 7.1, the energy spectrum of the disk-like shaped 

QD is En, l = (2n + |l| + 1)ℏω0 . S(0,2) / T(0,2)  here means the situation that two 

electrons both occupy the ground state(1s orbit)/ one electron stays in the ground orbit 

while the other is at the first excited state(2p orbit). Therefore, we write down the addition 
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energy for these respective states under low magnetic fields as 

 

         S(0,2) = E0,0 + 𝐸𝑐 = ℏω0 + 𝐸𝑐 

T0(0,2) = E0,1 + 𝐸𝑐 = 2ℏω0 + 𝐸𝑐  

T+(0,2) = E0,1 + 𝐸𝑐 + 𝐸𝑧 = 2ℏω0 + 𝐸𝑐 + 𝑔𝜇𝐵𝐵  

 T−(0,2) = E0,1 + 𝐸𝑐 − 𝐸𝑧 = 2ℏω0 + 𝐸𝑐 − 𝑔𝜇𝐵𝐵 

 

Notice that the CI model is only available in low magnetic fields, and under this 

condition we can assume the Coulomb interaction is a constant value as Ec, and is the same 

for S(0,2) and T(0,2); Ez represents the Zeeman splitting term. In our QD system, the 

confinement energy ℏω0 is of meV order, while the Zeeman term is several µeV, thus the 

energy difference between S(0,2) and T(0,2), Est, can be estimated to be around ~ meV.  

    For two electrons residing in QD1 and QD2 respectively, they could form either S(1,1) 

or T(1,1). The energy difference between the two states, J, depends on the coupling 

between the two dots, tc. According to G. Burkard et al. [75], J estimated in Hubbard 

approximation would be equal to 4𝑡𝑐
2

𝐸𝑐 ⁄ . In Fig. 7.4 (a), we put this four states, S(1,1), 

T(1,1), S(0,2) and T(0,2), together to see their relative values. We assume the simplest 

case that tc and the magnetic field, B, is small enough to have degenerated  T(1,1) and 

S(1,1), and Zeeman terms in spin triplet T(0,2) can be ignored. The detuning axis is the 

inter-dot energy difference, which becomes larger as applying higher Vsd. Since S(1,1) and 

T(1,1) have one electron in each dot, the detuning to lift the states in QD1 up while pull 

down the states in QD2 will make no difference on the energy of (1,1) states. However, it will 

result the (0,2) states lower with increasing detuning. Note that J and Est are kept, since 

they are the function of tc, and △ E respectively. 

To understand SB, we can separate Fig. 7.4 (a) into three regions: 
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1. If we set the same orbit levels in each dot nearly align, the system keeps in Coulomb 

blockade.  

2. To increase Vsd so that the detuning is larger enough to overcome the charging energy, 

then we can see the spin blockade phenomenon.  

3. Further applying higher Vsd, the energy difference between T(1,1) and T(0,2) can be 

compensated and SB is released.  

 

The real system case is in Fig. 7.4 (b). Due to the interdot coupling, (0,2) and (1,1) will 

hybridize with each other, so the intersections in Fig. 7.4 (a) turns to be anti-crossings, and 

lead the energy difference between (1,1) and (0,2) to have the maximum value of 2√2𝑡𝑐.  

 

(a) 

 

 

 

 

 

 

 

 

Fig. 7.4 (a) The Energy levels of two-electron states in double QDs as a function of detuning 

under the conditions of tc ~ 0;  H = 0. For H = 0 T, we can ignore the Zeeman splitting 

terms in triplets. The hybridized states are formed at the crossing of singlets and triplets 

due to the coupling tc. 

  



 

- 86 - 
 

 

(b) 

 

 

 

 

 

 

 

 

 

Fig. 7.4 (b) The Energy levels of two-electron states in double QDs as a function of 

detuning under the conditions of tc > 0;  H = 0 

 

 

 

7.5 Introduction to the Singlet Spin Blockade 

In this section, we propose a mechanism to achieve the singlet spin blockade (SSB) in a 

double QD device in our system. 

In the Pauli spin blockade, electrons forming S(1,1) can tunnel through the system via 

the doubly occupied ground state (0, 2) as spin singlet, whereas electron spin triplets T(1,1) 

are blocked for T(0,2) being outside of the bias window. The singlet spin blockade, on the 

contrary, is the phenomenon where the electronic transport blocks at electron spin singlet 

but not at spin triplets. Figures 7.5 (a-b) show the schematic diagrams of the Pauli spin 

blockade and the singlet spin blockade. In this thesis, we demonstrate the singlet spin 
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blockade by performing the singlet-triplet transition of the doubly occupied ground state in 

one of the dots (or QD2 in Sec. 7.3) under high magnetic field: we first find an optimized 

condition for exhibiting the Pauli spin blockade under zero magnetic field; then, while 

keeping the interdot offset the same (offset=1) with two gate voltages [67, 79, 81](or the 

ground state (0,2) always tune to be aligned up with (1,1) of the same spin configuration), we 

increase the magnetic field until the two-electron ground state in the second dot goes 

beyond the singlet-triplet spin transition to have the singlet spin blockade. 

 

 

 

  

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

(b) 

Figs. 7.5 (a-b) Schematic diagrams for the mechanism of (a) a conventional Pauli spin 

blockade and (b) a singlet spin blockade. 
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7.6 The Singlet-Triplet Transition 

                 in a Two-Electron Quantum Dot 

In this chapter, we describe the electron transport behavior with the constant 

interaction mode, which assume that the Coulomb interaction can be treated to be constant, 

while the discrete energy spectrum of a single particle on the dot is not affected by the 

interactions. However, in our experiments, we apply high magnetic fields to a system with 

two electrons. The high magnetic field means that there is an additional confinement 

affecting the discrete levels, and not to mention that the Coulomb interaction between two 

electrons now is not that simple to be a constant.   That is, the CI model is no longer 

suitable here. Therefore, we explain the how the magnetic field plays a role in our system, 

especially on the two-electron states.         

First, the Fock-Darwin spectrum [76] describes the variation of the single-particle 

energy levels, which means the complicated many body interaction or the electron-electron 

interaction can be avoided, under magnetic fields in a system of a 2D parabolic confining 

potential of V(r) = 1 2⁄ m∗ω0
2r2 . Ignoring the Zeeman splitting and the energy can be 

described to be 

 

 En,l = (2n + |l| + 1)ℏ(𝜔0
2 + 1 4⁄ 𝜔𝑐

2)
1/2
− 1 2⁄ l ℏωc 

  

where n stands for the radical number, l is angular momentum and ℏωc = ℏ ∗
eB
m∗⁄  

is the cyclotron energy. Figure 7.2 (a) shows the Fock-Darwin spectrum of  ℏω0 = 3 meV 

[57]. 
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Fig. 7.6 (a) The Fock-Darwin spectrum describes a single electron within a 2D parabolic 

confinement under magnetic fields. At high magnetic field, the Landau levels are formed as 

marked (n,l)=(0,0),(0,1),(0,2),(0,3)…. Note that the spin degeneracy is ignored here [57].  
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(b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.6 (b) The calculated electrochemical potential μ of a two-electron dot as a function 

of magnetic field for ℏω0 = 5.6 meV, Ec =  5 meV at 10 T: The lower solid curve is the 

ground state (GS), while the upper one is the excited state (ES). Dashed lines represent the 

situation involving the B-dependent Coulomb interaction. Due to the larger overlap of W.F. 

when both electrons staying in GS, the dashed line of GS grows faster than that of ES. The 

upper dashed curve with subtraction of a constant exchange energy results in the dotted 

curve. The GS, before and after the S-T transition, is indicated by a dashed-dotted line [77]. 
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For the two-electron states, we can first simply consider the first two lowest states to be 

two electrons staying at the ground (0,0) state of the Fock-Darwin spectrum, while the first 

excited state is one at (0,0) state and the other at (0,1) state. Then, the total energy of the 

system at will be  

Ground state:       E = 2E0,0 = 2 (𝜔0
2 + 1 4⁄ 𝜔𝑐

2)1/2 

1st excited state:    E = E0,0 + E0,1 = (𝜔0
2 + 1 4⁄ 𝜔𝑐

2)
1

2 + 2(𝜔0
2 + 1 4⁄ 𝜔𝑐

2)
1

2 − 1/2 ℏωc 

 

However, the above is actually the non-interacting particle case. We have to further 

consider the magnetic field dependent charge energy between two electrons. That is, 

 

Ground state:       E = 2E0,0 + 𝐸𝑐(𝐵) 

1st excited state:    E = E0,0 + E0,1 + 𝐸𝑐(𝐵) 

 

The Ec(B) term plays an important role in two-electron energy states. As in the 

Fock-Darwin spectrum, the single-particle level spectrum is a function of the magnetic field. 

For two electrons sharing the same 1s orbit ground state, which is the singlet state according 

to the Pauli exclusion, the wave function (W.F.) of the electron state shrinks in the radial 

direction with increasing magnetic fields. This leads to the Coulomb interaction we consider 

now progressively strengthens due to the less spatial extension of the wave function. At the 

same time, the energy of the 2p+ orbit is decreased, because its angular momentum is 

favored in the field. Thus, as enlarging the magnetic fields, the singlet and the triplet will 

approach to each other. Eventually at a certain magnetic field, the two electrons change their 

occupation from the orbit of 1s2 to that of 1s2p+ as the calculated result in Fig. 7.6 (b) [77]. 

Owing to the exchange Coulomb interaction between electrons in 1s and 2p+, the spin triplet 

is the ground state for 1s2p+, so we have the singlet-triplet transition (the S-T transition) as 
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the ground state orbit becomes 1s2p+ from 1s2. In a vertical double QD systems with a 2D 

harmonic confinement of ~ 5 meV, the ground-state transition occurs at the magnetic field 

of ~ 5 T, and the exchange splitting between the 1s2p+ triplet state and the 1s2p+ singlet 

excited state is ~ 2.5 meV [77, 78]. The singlet-triplet transition phenomenon has been 

previously observed in single dot systems [56, 77] as such in Fig. 7.6 (c). 

  

(c) 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 7.6 (c) Plot of Isd(Vg, B) measured in a single QD system with Vsd =  0.1 meV 

which is so small to show only the ground states (of N = 1 to 5). For N = 2, the 

ground-state transition is marked with a triangle. The spin configurations, indicated with 

the arrows, show the transition from spin singlet to be spin triplet as gradually applying 

the magnetic field from 0 to 4.15 T. Note that the system gains additional exchange 

energy when the spins of two electrons are parallel [56]. 
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Chapter 8 

 

Device Fabrication  

and Experimental Setups 

8.1 Structure of Devices  
In this work, we employ two-gate attached vertical double semiconductor quantum dots 

as our system. The system acts as a field-effect transistor with source, drain and gates, and is 

composed of a triplet barrier heterostructure [81], Al0.22Ga0.78As / In0.05Ga0.95As / 

Al0.22Ga0.78As / In0.05Ga0.95As / Al0.22Ga0.78As. The bandgap of AlGaAs is larger than InGaAs, so 

that double quantum wells can be formed separately between the three barriers. The triplet 

barrier structure is clipped by gradiently n-doped GaAs layers, i.e. the source and drain 

electrodes. The bottoms of the conduction band of the wells are lower than the Fermi 

energy of n-AlGaAs. Hence, electrons from electrode contacts may flow to the wells until the 

equilibrium in electrostatic potential is reached as the schematic diagram of Fig. 8.1 (a) (Note: 

the doping of indium in GaAs would further reduce the bottom of conduction band.) The 

relevant parameters of the wafer are listed in Table 3. 

The tunnel barrier has a limit requirement that  t ≫ h e
2⁄ = 25.8 kΩ, where the  𝑡 is 

the tunneling resistance which can clearly define the electrons to be either in the leads or in 

dots. The Heisenberg uncertainty tells us that   ∆E∆t ≥ h , and here ∆t  is the 
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charge/discharge time  tC (C represents the capacitance of the dot), and the uncertainty 

energy ∆E  should be much less than charging energy Ec = e
2/C  for observing the 

quantized charge. Therefore, when designing a QD system,  (e2/C) tC ≥ ∆E∆t ≥ h or 

 t ≫ h e
2⁄ = 25.8 kΩ is the basic requirement.  

                    

 

 

 (a) 

 

 

 

 

 

 

Fig. 8.1 (a) Schematic energy diagram of a double QD device where only the ground state 

in the z-direction occupied. The equilibrium in electrostatic potential among the electrodes 

and well is reached. 
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Table 3 Relevant parameters of the wafer used in our double QD device 

Structures Parameters 

Materials Thickness(Å) Doping Concentration ( 𝐦−𝟑) Al(In) ratio 

N-GaAs 70 2.0X1018 - 

Si 

N-GaAs 

0 

25 

 

2.0X1018 

- 

N-GaAs 175 2.0X1018 - 

N-GaAs 1800 2.0X1017 - 

N-GaAs 1500 1.4X1017 - 

N-GaAs 700 1.2X1017 - 

GaAs 30 - - 

AlGaAs 70 - 0.22 

InGaAs 120 - 0.05 

AlGaAs 80 - 0.22 

InGaAs 120 - 0.05 

AlGaAs 70 - 0.22 

GaAs 30 - - 

N-GaAs 700 1.2X1017 - 

N-GaAs 1500 1.4X1017 - 

N-GaAs 1800 2.0X1017 - 

N-GaAs 5000 2.0X1018 - 

GaAs Substrate 600 µm 
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8.2 Device Fabrication 

Main processes of fabricating a vertical double QD device will be illustrated in this 

section, but we leave the details in Appendix (D): As the wafer is prepared (see Fig. 8.2 (a)), 

the materials of the QDs/barriers and thicknesses of barriers are already decided and we 

continuously construct a 0D structure with electrodes and gates. The schematic figures of 

fabricating devices are in Figs. 8.2 (b-f). Firstly, we deposit Ti(20 nm)/Au(200 nm), used as the 

bottom contact and the top electrode, on the substrate via photolithography and electron 

beam lithography, respectively. To contract the cylindrical structure, we continue to do dry 

etching. During this process, part of metal films and most of semiconductor are removed, but 

those covered by previously deposited Ti/Au will be left. We use BCl3 plasma to etch down 

the wafer, and the embryo pillar structure is formed. Next, we use wet etching till the total 

etching depth is underneath the triplet barrier structure layers. The sulfuric acid etches all 

the semiconductor parts for several hundred angstroms but not the deposited metal. 

Therefore, the pillar is reduced in diameter, and this makes the following deposited Ti(20 

nm)/Au(100 nm) layers, surrounding the pillar as gates, will not contact the top electrode too 

easily during the evaporation. After all the above processes, the vertical QDs system is 

indeed accomplished. However, for the electric transport measurement purpose, we need to 

further build the contact accesses from the device to the outside world. That is, we 

evaporate metal pads for wire bonding as the photos shown in Figs. 8.2  (g-j).  

                 (a) 

                      

 

 

 

Fig. 8.2 (a) A simplified diagram for the wafer structure as in Table 3.  
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 (b) 

 

 

(c) 

 

 

(d) 

 

 

(e) 

 

 

(f) 

 

 

Figs. 8.2 (b-f) The main fabricating process in both aerial view and cross-section figures. (b) 

The first cross-section figure shows the deposited Ti/Au bottom and top contact. Titanium 

here is used for bonding metal electrodes and the substrate more tightly. The second and 

third cross-section figures are steps for the pillar structure. The dry etching process is to 

“sculpt ” the pillar shape and the following wet etching further lessen semiconductor parts 

of the pillar in width and in depth until beneath the layers of three barrier structures. (c) 

Evaporating the metal gates around the pillar. (d-f) are steps for the contact pads for wire 

bonding. In (d), we use wet etching beneath the semi-insulating substrate; (e) step 

smoother with hard bake resist; (f) evaporating the metal contacts. 
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(g) 

 

 

(h) 

 

 

 

 

 

 

(i) 

 

 

 

 

 

 

(j) 

 

 

 

 

 

 

Figs. 8.2 (g-j) Photos of device similar with our samples. (g) A SEM image of a double-gate 

vertical QD device. (h) A image under optical microscope; two devices are included. (i) 

Contact pads for wire bonding. (j) A sample wire bonding to a chip carrier. 

 

 

 

8.3 Low Temperature Measurement 

 All our experiments are performed at low temperature. There are two characteristic 

energy scales in the quantum dot systems, the charging energy Ec and the discreteness in 
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energy states. To observe those in the transport behaviors, the thermal energy should be 

well below the energy scales of the dots, i.e. kBT << EC. Thus, after examining all the 

samples in a cryostat capable to reach 1.5 K, we measured the selected suitable ones in a 

dilution refrigerator with a base temperature of ~ 40 mK with an Oxford IPS 120-10 

superconducting magnet providing a magnetic field, which is along the z-direction of the 

sample or perpendicular to the barriers, up to 16 T. 

In our experiments, the effective electron temperature is around ~ 0.5 K. In order to 

avoid the electron heating, the filters and the shielding room are used to attenuate the noise 

which is one of the sources causing heating. Besides normal RC filters utilized as low pass 

filters, Cu-powder filters (see Fig. 8.3 (a)) are launched between the sample holder and the 

mixing chamber of the fridge. As in the Fig. 8.3 (b), we fill winding Manganin wire and Cu 

powder into 100mm-long Cu tube with 10mm in diameter to make these filters. The 

Manganin wire is composed of Cu (86%), Mn (12%) and Ni (2%) and twists like “∞”as in Fig. 

8.3 (b). The resistance of wire and the capacitance between wires and Cu powers works as an 

effective RC filter which can remove the high frequency of ~ GHz ranges.    
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(a) 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

Figs. 8.3 (a-b) (a) Copper powder filters, which can work well as a low pass filter even at 

low temperatures, are launched between the sample holder and mixing chamber of the 

fridge (b) The structure of the copper powder filter. 
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Chapter 9 

 

Results and Discussions 
In this chapter, we demonstrate the results of the singlet spin blockade occurring at high 

magnetic field in a two-electron vertical double QD device. We first explain the experiment 

conditions in our experiment in Sec. 9.1. Then, the two-electron excitation spectrum is 

followed in Sec. 9.2. In Sec. 9.3, the agreement between the two-electron excitation 

spectrum and the range where the current-suppressed phenomenon takes place in the 

𝑽𝒔𝒅 − 𝑽𝒈 diagram further supports the occurrence of the singlet spin blockade in our 

device. Finally, we discuss the spin singlet lifetime due to random nuclear spin fluctuation in 

Sec. 9.4. This is consistent with a leakage current of ~ 10 p  order we observed in SSB.  

9.1 Experimental Conditions  

As mentioned in Sec. 7.5, under zero magnetic field, we first find an optimized condition 

for the Pauli spin blockade; then, we demonstrate the singlet spin blockade by performing 

the singlet-triplet transition of the doubly occupied ground state in one of the dots.  

In Ref. [61], Ono et. al. shows the development of a triplet channel in the SB region from 

0 to 5 T as in Fig. 9.1 (a). Following this measurement, if we can adjust the detuning to align 

the ground state of (0,2) and (1,1) with the same spin configuration at different magnetic 

fields, then it is predicable that the threshold bias, where the resonance tunneling current 
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via the triplets take places, will approach to the zero bias as increasing the magnetic field. 

And eventually, the SB region will disappear or completely “be covered” when the S-T 

transition occurs. If we continuously enlarge the magnetic field higher than where the S-T 

transition occurs, then what will happen? From Chap. 2, we know that S (0,2) will be higher 

and away from the ground state T(0,2). For S(1,1) ≈ T(1,1) in energy and the ground 

T(0,2) state detuned to align up with T(1,1), the S(0,2) now may be out of the transport 

window and leads to the blockade again. Thus, the spin blockade area shall appear again, 

and the current peak position deviates from Vsd ~ 0 along with the increasing magnetic 

field until it completely moves off the spin blockade region. Notice that the spin blockade 

now is owing to the formation of S(1,1) instead of T(1,1). The figure 9.1 (b) shows the 

ability of detuning the interdot offset with two gates in our device. 

  

 (a) 

 

 

 

 

 

 

 

 

Fig. 9.1 (a) dIsd/dVsd plots under magnetic field from 0 to 5 T. The Spin blockade region 

is indicated by the dotted line at 0 T. The triplet channel which collapses the spin blockade 

is marked by arrows. With increasing the magnetic field, the triplet channel enters into the 

SB region and approaches to the zero bias, but the CB is still left [61].   
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(b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9.1 (b) The Vsd − Vg diagrams measured at 0 T with different gate conditions. The 

upper diagram shows the offset=1 case where µ1(1,1) = µ2(0,2), whereas µ1(1,1) >

µ2(0,2) at the underlying diagram. These two diagrams demonstrate the ability to detune 

the interdot offset in our device.  
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9.2 The Two-Electron Excitation Spectrum 

Similar to the measurement in Fig. 7.6 (c) where the single quantum dot with two 

electrons shows the singlet-triplet ground-state transition in magnetic fields [56], we 

measure the current strip by sweeping gate voltages, VgL/Vg , under various magnetic 

fields from 0 to 10 T with fixed |Vsd|  =  4 mV (see Fig. 9.2 (a)), and the result is in Fig. 9.2 

(b). 

   

(a) 

 

 

 

 

 

 

 

 

 

Fig. 9.2 (a) The Coulomb diamond diagram at 0 T. To measure the two-electron state 

energy spectrum, we sweep gate voltages along the yellow arrow to trace the variation of 

chemical potential of (0,2) states from 0 to 10 T, and the result is shown in Fig. 9.2 (b). 

The yellow line indicated µ2(0,2) is the ground (0,2) state before the S-T transition. 

 

In Fig. 9.2 (b), the 1s2 orbital S(0,2) state (indicated by the solid line) and the 1s2p+ 

orbital T(0,2) state (dashed line) are clearly resolved and show the ground-state transition 

at 5 T. Another excited state appears for H >  7 T (dotted line), and undergoes the second 
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ground-state transition at 9 T. This state is suggested to be the spin singlet state with high 

angular momentum [82]. The energy difference between the triplet ground state and the 

singlet excited state reaches to be maximum at ~ 7.5 T. Zeeman splitting was not observed 

owing to the expected small g-factor of our device. All these behaviors are consistent with 

previous experimental results in vertical single-dot devices [56, 77]. 

 

 (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9.2 (b) The excitation energy spectrum for (0,2) states, measured at Vsd =  − 4 mV. 

The first current strip exhibits the (0,2) state evolution among the solid line of the 1s2 orbital 

(0,2) state with spin singlet, the dashed line of the 1s2p+ orbital (0,2) state with spin triplet, 

and the dotted line for another (0,2) state with spin singlet. 
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9.3 Spin Blockade in the Vsd-Vg Diagram under Magnetic     

Fields Going through the Singlet-Triplet Transition  

The Coulomb diamond in an intensity plot of differential conductance, dIsd/dVsd, is 

measured from 0 to 9 T, and Figs. 9.3 (a-f) show data taken at the condition before, during 

and after the S-T transition. 

Begin with Fig. 9.3 (a) measured at 0 T, the SB appears on the positive Vsd side of the 

Coulomb diamond with the total electron number N = 2. The right corner of the SB region is 

partially cut by a current threshold that runs nearly parallel to the vertical axis and is 

indicated by an arrow. The current-carrying cycle for triplet states, T(1,1) → T(0,2) → (0,1), 

takes place under this condition as previous studies. We also see a “current peak line” 

appears at two borders: between the SB region and the N = 1 Coulomb blockade region and 

between the SB region and the N = 3 Coulomb blockade region. SB is relieved on these two 

borders for T(1,1) aligned with the Fermi energies of the source and drain electrodes, 

respectively. In all measurements in the Vsd − Vg diagram, we tuned both VgL and Vg , 

so that the current peak lines touch Vsd =  0 in the dIsd/dVsd. 

Corresponding to Sec. 9.1, increasing the magnetic field yet further before the S-T 

transition, the current threshold (due to T(1,1) → T(0,2) tunneling) indicated with arrows 

in Figs. 9.3 (a-c) shifts to a lower Vsd, and the current-suppressed area due to SB is 

decreased. At 5.0 T, near the S-T transition, the SB region completely disappears and leaves 

only the N = 2 Coulomb blockade region. Here at this time, both S(1,1) and T(1,1) can 

tunnel into (0,2) states. Further increasing the magnetic field to be at the condition after the 

S-T transition, Coulomb diamond data again show the current threshold, which implies 

tunneling into an (0,2) excited state (indicated by arrows in Figs. 9.3 (e-f)). We observed that 

the current threshold shifts to a higher Vsd with further increasing magnetic field. However, 

this threshold becomes blurred and difficult to trace for H >  8.4 T. 
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Both results of the (0,2) excitation spectrum (Fig. 9.2 (b)) and Vsd values at the current 

threshold (Figs. 9.3 (a-f)) give the magnetic-field-dependent energy difference between the 

ground and excited (0,2) states, Δ𝐸𝑔𝑒 [56, 71]. We summarized them in Fig. 9.3 (g) using 

circles and triangles, respectively, and the results are nearly identical. This agreement 

confirms that SSB can take place in the range below the current threshold for H >  5 T. 

Notice that, in order to have Δ𝐸𝑔𝑒 , we first convert the difference in the vertical Vg axis 

in Fig. 9.2 (b) to Vsd; then, eVsd values from these two results are multiplied by the 

voltage drop proportion on the barriers [83], estimated from the slopes of Coulomb 

diamonds. 
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(a-b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figs. 9.3 (a-b) dIsd/dVsd plots under the magnetic fields of (a) 0.0 T, (b) 2.0 T. The 

arrows mark the threshold of SB. 
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(c-d) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figs. 9.3 (c-d) dIsd/dVsd plots under the magnetic fields of (c) 4.0 T, (d) 5.0 T. The 

arrow marks the threshold of SB. At 5.0 T, SB is completely relieved and only the Coulomb 

blockade region is left. 
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(e-f) 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figs. 9.3 (e-f) dIsd/dVsd plots under the magnetic fields of (e) 6.2 T, (f) 7.4 T. The 

arrow s mark the threshold of SSB. 
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 (g) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9.3 (g) Plots of the energy difference between the ground and 1st excited (0,2) states, 

ΔEge. Circles indicate data extracted from (0,2) excitation spectrum in Fig. 9.2 (b), and 

triangles are data from the series of Coulomb diamond measurements shown in Figs. 9.3 

(a-f). ΔEge measured as VgL/Vg  (Fig. 9.2 (b)) and Vsd (Figs. 9.3 (a-f)) are converted 

to energy using the voltage drop ratio of three tunneling barriers. 
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9.4 Hyperfine Interaction Leads to a Short Lifetime of Spin 

Singlet State 

Figure 9.4 (a) shows the Isd − Vsd curve measured along the dashed line in the insert. 

The current step at Vsd ~ 3 mV is the tunneling threshold of the first excited (0,2) state. 

The “leakage current” of  ~ 10 p  is seen between the Coulomb blockade region and the 

threshold. Although the order of the current level is the same as the one above the threshold 

(~ 15 p ), we consider this value of leakage current consistent with SSB.  

In the SSB region, the blocked S(1,1) state is nearly degenerated with one of the 

unblocked triplets, T0(1,1), where T0 is the zero component of triplet states. In the presence 

of the hyperfine interaction, nuclear spins generate a randomly fluctuating effective 

magnetic field ΔBnuc . Whenever  S(1,1)  and T0(1,1)  are close enough to be ≲

gµ𝐵ΔBnuc, the two states will mix with each other efficiently via the hyperfine interaction. 

The energy difference between S(1,1) and T0(1,1) is introduced in Sec. 7.4. With the result 

of a double-dot device with similar barrier thicknesses, the S(1,1) − T(1,1)  energy 

difference near zero magnetic field is estimated to be 0.42 to 0.83 𝜇eV [84]. For △ Bnuc 

inversely proportional to the square root of the nuclei number, our effective ΔBnuc is 

~ 10 mT [63] (each electron resides in our system confronting 105 nuclei in the GaAs dot 

with an effective diameter ~ 30 nm  and the lattice constant = 0.57 nm ). Thus, the 

hyperfine induced mixing is dominant in our devices. 

The time required for the mixing due to hyperfine interaction was measured in the 

lateral double quantum dots to be ~ 10 ns [63]. Our leakage current of 10 p  suggests 

that the average tunneling interval is e/(10 p ) ~ 10 ns, where e is the elementary charge. 

This time interval is consistent with the expected lifetime of S(1,1)! Notice that the 

S(1,1) − T(1,1) energy difference is a function of tc, therefore diminishing the interdot 

tunnel barrier, less than the 8 nm in our system, will lift the degeneracy of the S(1,1) and 
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T0(1,1) states and decrease the leakage current in SSB. 

 

 

 (a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9.4 (a) The Isd − Vsd curve along the dashed line in the insert Vsd − Vg diagram 

measured at 7.4 T. A leakage current of 10 p  is observed in the SSB region. 
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Chapter 10 

 

Summary and Further Works 

 
In this thesis, we observe the a new form of the spin blockade -- the singlet spin state 

blockade (SSB) in two-electron charge diagrams of a vertical double QD system, where the 

(0,2) state takes the spin triplet as the ground state under high magnetic field. The 

source-drain voltage dependences of the current threshold from the SB and SSB regions are 

consistent with the measured magnetic field dependence of the excitation spectrum of the 

(0,2) states. The leakage current found in SSB gives the lifetime of S(1,1) ~ 10 ns restricted 

by the randomly fluctuating effective magnetic field owing to the hyperfine interaction.   

Under SSB, as proposed in Sec. 6.2 or Appendix (A), two nuclear spins in each of the two 

dots respectively can be entangled whenever spin flip-flop process occurs due to the 

hyperfine interaction. In the further work, we would like to verify the the steady condition 

for the nuclear spins being spin singlet by measuring the nuclear magnetic fields with similar 

devices of a smaller interdot tunnel barrier. To emphasize that the S pumping in Ref. [85] 

successively alters the gate voltage to let the system  be at S(0,2) → S(1,1) →  the 

degeneracy of  S(1,1) − T(1,1) in lateral double QDs. The entanglement in S(1,1) can 

also pass to nuclei at the S(1,1) − T(1,1) degeneracy. However, to generate the nuclei 
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entanglement by repeating the gate-control sequence (via capacitance coupling to the dots) 

takes much longer time than just staying SSB to wait for SSB lifting and taking places 

repeatedly. 
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Appendix (A) The Expected Value of the Entangled Pairs of  

Nuclear Spins under the SSB condition 

    To calculate the steady condition that the system reaches as the singlet electron spin 

state repeatedly passes the entanglement to a nuclear spin pair from each of the two QDs via 

the spin flip-flop interaction, we first consider the simplest case N1 = N2 = 2, where the 

N1/N2 is the total number of the nuclear spins in QD1/QD2 as shown in Fig. A (a). 

 

(a) 

 

 

 

 

 

 

                          

 

 

Fig. A (a) The schematic diagram of the electron/nuclear spins, represented as ⇑/↑, in a 

imaged system that there are only two nuclear spins in each dot. Under SSB, the system is 

blocked with electron spin singlet until it interacts with nuclear spins via the hyperfine 

interaction and release the SSB by spin flip-flop process which passes the entanglement to 

the nuclear pairs. The α indicates the hyperfine interaction strength (see Sec. 6.2).  

 

    In Fig. A (a), we assume N1 = N2 = 2. Since the nuclear spin direction can be either 

spin up or spin down, we express the mixed state of the four nuclear spins to be 
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(α1 ↑1+ β1 ↓1)(α2 ↑2+ β2 ↓2)(α3 ↑3+ β3 ↓3)(α4 ↑4+ β4 ↓4) ≡ mix
2 

 

for |α𝑖|
2 + |β𝑖|

2 = 1, ↑, ↓ standing for the nuclear spin direction. 

    After the first time the singlet electron spin state interacting with the nuclear spins 

under the spin flip-flop process which can be regarded as an exchange states action (see Sec. 

6.2), the nuclear spin state can be rewritten as 

 

(↑1↓2−↓1↑2)(α3 ↑3+ β3 ↓3)(α4 ↑4+ β4 ↓4) ≡ S12𝑚𝑖𝑥34 

 

     this is considering the case that the nuclear spin 1 in QD1 and the nuclear spin 2 in 

QD2 are entangled to be spin singlet. However, we cannot actually distinguish or identify the 

nuclei, so the condition would be the combination of all the possibilities as  

 

1

4
S12𝑚𝑖𝑥34 +

1

4
S14𝑚𝑖𝑥32 +

1

4
S32𝑚𝑖𝑥14 +

1

4
S34𝑚𝑖𝑥12 ≡ 𝑆 ∙ 𝑚𝑖𝑥 

 

   If the same action takes place for the second time, the measured nuclear spin state 

before and after would be  

 

 𝑆 ∙ 𝑚𝑖𝑥 ≡
1

4
S12𝑚𝑖𝑥34 +

1

4
S14𝑚𝑖𝑥32 +

1

4
S32𝑚𝑖𝑥14 +

1

4
S34𝑚𝑖𝑥12 

after 2 𝑛𝑑 time 
→           0 +

1

3
S12𝑚𝑖𝑥34 +

1

3
S12𝑚𝑖𝑥34 +

1

3
S12𝑆34 =

2

3
S12𝑚𝑖𝑥34 +

1

3
S12𝑆34  

 

here, we assume the nuclear spin 1 and 2 are entangled at the (1st and) 2nd time. If one 

of the possible spin pairs has been already entangled, then we can ignore the condition the 

same pair entangled again at the next time. Therefore, the S12𝑚𝑖𝑥34 term become 0; for 
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the S14𝑚𝑖𝑥32/S32𝑚𝑖𝑥14 terms, the entangled nuclear spin pair of 1 and 4/ 3 and 2 are 

broken to have the new entangled spin pair of 1 and 2. Further, we also may have two 

entangled pairs as S12𝑆34. Similarly, if we consider all the probabilities, the condition is 

 

𝑆 ∙ 𝑚𝑖𝑥
after 2 𝑛𝑑 time 
→            

1

4
(
2

3
S12𝑚𝑖𝑥34 +

1

3
S12𝑆34) +

1

4
(
2

3
S14𝑚𝑖𝑥32 +

1

3
S14𝑆32)       

                                       +
1

4
(
2

3
S32𝑚𝑖𝑥14 +

1

3
S32𝑆14) +

1

4
(
2

3
S34𝑚𝑖𝑥12 +

1

3
S34𝑆12) 

                      =
2

3
(
1

4
S12𝑚𝑖𝑥34 +

1

4
S14𝑚𝑖𝑥32 +

1

4
S32𝑚𝑖𝑥14 +

1

4
S34𝑚𝑖𝑥12)  

+
1

3
(
1

4
S12𝑆34 +

1

4
S34𝑆12 +

1

4
S32𝑆14 +

1

4
S34𝑆12) ≡

2

3
𝑆 ∙ 𝑚𝑖𝑥 +

1

3
𝑆2 

 

    For the case N1 = N2 = 2, it can be expected that there are only three possible states 

as mix2 𝑆 ∙ 𝑚𝑖𝑥,  and 𝑆2. Here, we try to see how the 𝑆2 state changes after the spin 

flip-flop process happens again. Say if the nuclear spin 1 and 2 are entangled after one more 

interaction, then similarly 

 

      𝑆2 ≡
1

4
(S12𝑆34 + S34𝑆12 + S32𝑆14 + S34𝑆12) 

after one more interaction

→              
1

2
(0 + S12𝑚𝑖𝑥34 + S12𝑚𝑖𝑥34 + 0) 

 

If we consider all the possibilities, then 

𝑆2
one more interaction
→               

1

4
[
1

2
(S12𝑚𝑖𝑥34 + S12𝑚𝑖𝑥34)] +

1

4
[
1

2
(S14𝑚𝑖𝑥32 + S14𝑚𝑖𝑥32)] 

                  +
1

4
[
1

2
(S32𝑚𝑖𝑥14 + S32𝑚𝑖𝑥14)] +

1

4
[
1

2
(S34𝑚𝑖𝑥12 + S34𝑚𝑖𝑥12)] 

=  𝑆 ∙ 𝑚𝑖𝑥   

 

That is, as the spin flip-flop process exchanges the nuclear spin and electron spin states, 
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the original nuclear spin state will from 

                     mix2 
𝑏𝑒𝑐𝑜𝑚𝑒    
→       𝑆 ∙ 𝑚𝑖𝑥   

                     𝑆 ∙ 𝑚𝑖𝑥 
𝑏𝑒𝑐𝑜𝑚𝑒    
→       

2

3
𝑆 ∙ 𝑚𝑖𝑥 +

1

3
𝑆2  

S2  
 𝑏𝑒𝑐𝑜𝑚𝑒    
→        𝑆 ∙ 𝑚𝑖𝑥 

In Fig. A (b), we express what and the possibilities the nuclear spin state changes to be 

as the spin flip-flop process repeatedly occurs under SSB due to the hyperfine interaction. 

After the nth process or action, the probability of nuclear spins being mix2, 𝑆 ∙ 𝑚𝑖𝑥,  and 

𝑆2  is P0(𝑛), P1(𝑛) and P2(𝑛) respectively (note: P𝑖 (n) for i indicating the number of 

nuclear spin pairs being as spin singlet). And, the matrix form is  

[

P0(𝑛 + 1)

P1(𝑛 + 1)

P2(𝑛 + 1)
] =

[
 
 
 
 
0 0 0

1
2

3
1

0
1

3
0]
 
 
 
 

[

P0(𝑛)

P1(𝑛)

P2(𝑛)
] 

while,  

P0(𝑛) + P1(𝑛) + P2(𝑛) = 1 

 

(b) 

 

 

 

 

 

 

Fig. A (b) The diagram that the nuclear spins change among mix2 𝑆 ∙ 𝑚𝑖𝑥,  and 𝑆2 

condition. The arrow show the change of the direction and the number above is the 

change probability. 
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        Under the steady condition, P𝑖(𝑛 + 1) should be equal to P𝑖(𝑛) for i = 0,1,2. 

Therefore, we can solve the matrix and have P0 = 0, P1 =
3

4
 and  P2 =

1

4
, and the expected 

value 𝑃̅ for nuclear spin pairs being singlet is 

 

𝑃̅ =∑𝑖

2

𝑖=0

∙ P𝑖 = 0 ∙ 0 + 1 ∙
3

4
+ 2 ∙

1

4
=
5

4
 

 

since we cannot distinguish the difference of the nuclear spin in the same dot, the 

results be a half of this value, i.e. 

 

𝑃

2

̅
=
5

8
= 62.5% 

 

With the understanding the N1 = N2 = 2 case, we go further to the case N1 = N2 = 𝑁: 

firstly, we can expect that after Nth interaction, nuclear spins may have  

mix𝑁 , Smix𝑁−1, S2mix𝑁−2, …  or S𝑁  conditions as expressed in Fig. A (c). Besides the mix𝑁 

and S𝑁, being as S𝑛mix𝑚  (n + m = N), there will be three possible results whenever the 

hyperfine interaction again passes the electron singlet state to nuclear spins, and the total 

possibility equals to 1: 

 

(1) S𝑛+1mix𝑚−1: The interaction pairs one of the random nuclear spins in QD1 and that 

in QD2, so that there will be m×m = 𝑚2 possibilities, and we have one more extra 

entangled pair.  

(2) S𝑛mix𝑚: One nuclear spin from the singlet nuclear spin pair entangles one of the 

random nuclear spins. Since one of the original pairs is taken apart to form a new pair, the 

number of the nuclear spin singlet keeps the same.  
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(3) S𝑛−1mix𝑚+1: Two singlet spin pairs are broken and each provides one nuclear spin 

to form a new pair of spin singlet. The possibility will be n × (n − 1) = 𝑛2 − 𝑛. Like in Fig. A 

(b), we also draw a diagram of the change of the nuclear spins among all possible conditions 

in Fig. A (d) for clear.  

  

(c) 

 

 

 

 

 

Fig. A (c) Assuming there are N nuclear spins in both QD1 and QD2, then after nth 

hyperfine interaction to exchange the spin state with electron spin singlet under SSB, the 

nuclear spins have mix𝑁 , Smix𝑁−1, S2mix𝑁−2, …  or S𝑁possible conditions. 

     

(d) 

 

 

 

 

Fig. A (d) The diagram of the nuclear spins changing among the  

mix𝑁 , Smix𝑁−1, S2mix𝑁−2, …  or S𝑁 possible conditions. Whenever the interaction acts 

at the condition of S𝑛mix𝑚 (n + m = N), it may change to be  S𝑛+1mix𝑚−1, S𝑛mix𝑚 

or S𝑛−1mix𝑚+1.  The arrow show the change of the direction and the number above is 

the probability. 
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Similarly, we can also calculate the expected value 𝑃̅ for nuclear spin pair being singlet 

with the following conditions: 

    

(a)   ∑ 𝑃𝑖 = 1
𝑁
𝑖=0  

     

(b)  𝑃𝑖(n + 1) = 𝑃𝑖(n) under the steady condition and 

 

        

=
1

𝑁2
 ∙  

 

 

 

 

 

  

So that, we will have 

(1) For 0:n   0 0P   

 

(2) For 1 1:n N    
2 2

1 12

1
{[ ( 1)] (2 ) [( 1) ( 1)] }n n n nP N n P nm n P n n P

N
           

              
2 2 2

1 1[ (2 )] [ ( 1)] ( )n n nN nm n P N n P n n P         

 

(3) For :n N 12

1
( )N N NP P NP

N
   


1

2
N

N

P
P

N N



  

 

P0(n+1) 

P1(n+1) 

P2(n+1) 

⋮ 

PN-1(n+1) 

PN(n+1) 

0 12-1 0 ⋯       0 0  P0(n) 

N2 2∙1∙(N-1)+1  22 − 2  0 0 P1(n) 

0 (N-1)2 2∙2∙(N-2)+2  0 0 P2(n) 

⋮ ⋮ ⋮ ⋱       ⋮ ⋮ ⋮ 

0 0 0 ⋯ 2∙(N-1)∙1+N N2-N PN-1(n) 

0 0 0 ⋯ 12 N PN(n) 
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By setting the initial conditions, and repeatedly N times of the exchange state action to 

have the 𝑃0, 𝑃1…𝑃𝑁. Then, the expected value for nuclear spin pair being singlet is  

 

𝑃̅

𝑁
=
∑ 𝑛𝑃𝑖
𝑁
𝑖=0

𝑁
 

 

   In the double QD system, if all the nuclear spins residing in each QDs with equal nuclei 

number are paired to be spin singlet, then we can image that the whenever we measured a 

nuclear magnetic field in one dot (for example, the fluctuating effective nuclear magnetic 

field ∆𝐵𝑛𝑢𝑐 is a function of √𝑁, and ∆𝐵𝑛𝑢𝑐 ~10 mT for N = 105 in GaAs dots), there 

should be the same amplitude of a nuclear magnetic field in the other dot. Furthermore, 

these two nuclear magnetic fields direct oppositely due to the spin singlet property. 
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Appendix (B) Constant Interaction Model for Single QD 

To understand the electronic transport properties through the quantum dot systems, we 

introduce the constant-interaction (CI) model. And, there are two assumptions under the CI 

model, and Fig. B (a) shows an equivalent circuit of a single dot system: 

1. The Coulomb interaction of an electron on the dot with the environment and with 

other electrons on the dot can be parameterized with a constant capacitance C. 

2. The influence of interaction on the discrete single-particle energy spectrum is ignored.  

 

(a) 

 

 

 

Fig. B (a) An equivalent circuit for the single-quantum-dot system. The dot connected to 

the leads via tunnel barriers is characterized by parallel series of the resistor Rs/Rd and the 

capacitor Cs/Cd, while it capacitively couples to the gate through a capacitor Cg. 

 

Under the above assumption, we can write down the electrostatic energy U(N) of the 

single dot system as a summation of the charge energy and the sum of electron- occupied 

energy levels:   

 

 U(N) =
{−e (N−N0 )+Cg Vg+Cs Vs+Cd Vd}

2

2C
+ ∑ Ei

N
i=1 , 

 

where N0 is the number of electrons inside the dot without applying Vg, C = Cs +
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Cd + Cg, and E𝑖 represents the i-th single-particle energy level. |e|N0 compensates the 

positive background charge due to the donors in the heterostructure, and 

Cg Vg, Cs Vs , Cd Vd terms represent effective induced charges that changes the electrostatic 

potential in the dot continuously.  

The electron transport condition can be easily exhibited by the electrochemical 

potential, µ(N), defined as the energy needed to add the Nth electron into the dot. µs/µd 

are electrochemical potential of the source/drain, and only when µ(N) is within the bias 

window, i.e. µs ≥ µ(N) ≥ µd (see Fig. B (b)), electrons can flow through the system; beyond 

this condition, the system is in the so-called Coulomb blockade (CB) regions. Since the energy 

needed to add the Nth electron into the dot should be the difference of the total energy of 

the system with N and N-1 electrons, or 𝜇(𝑁) ≡ 𝑈(𝑁) − 𝑈(𝑁 − 1), we write down 𝜇(𝑁) 

as 

 

 𝜇(𝑁) = (𝑁 − 𝑁0 −
1

2
)𝐸𝑐 −

𝐸𝑐

|𝑒|
(Cg Vg + Cs Vs + Cd Vd) + 𝐸𝑁 , 

for Ec = e
2/C is the charging energy.  

 

(b) 

 

 

 

 

 

Fig. B (b) A schematic diagram of the levels in single quantum-dot device, the electron can 

flow via the system only when levels falls within the bias window determined by µs and 

µd [79].  
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With the value of 𝜇(𝑁), we can have the boundary conditions of CB regions as a 

function of Vsd and Vg, i.e. the boundary of white regions in the Vsd − Vg charge 

diagram shown in Figs. B (c-d): First, considering the situation of Vsd  ~ 0. The current only 

flows when µ(N, Vg) = µlead. In another word, along the Vg axis, the current peak can be 

predicted to occur with an interval of ∆Vg = (C/eCg)∆µ(N)  given by µ(N, Vg) =

µ(N + 1, Vg + ∆Vg) = µlead. Note that the addition energy, 𝐸𝑎𝑑𝑑, is defined to be ∆µ(N) 

equal to ∆E + Ec . Second, if we applied ∆Vsd > 0  and assume that  µs = e∆Vsd/2 

and µd = −e∆Vsd/2, then ∆µ(N) can be expressed when µs = µ(N + 1)  and µd = µ(N) 

or ∆µ(N) = e∆Vsd. This is the condition at the yellow crossing point of a pair of two lines in 

Fig. B (c). With the relations of ∆Vg = (C/eCg)∆µ(N) and ∆µ(N) = e∆Vsd, we can analysis 

the spectrum in Fig. B (d). 

 

(c) 

 

 

 

 

 

 

 

Fig. B (c) The schematic diagram for a Coulomb diamond. The alignment between 𝜇(𝑁) 

and at least one of µlead determines the boundaries. 
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(d) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. B (d) The energy spectrum of a single dot represented in dIsd/dVsd on the Vsd − Vg 

plane. The white area is the Coulomb Blockade region where no electron can flow through 

the dot until −|e|Vsd (= µs  − µd ) ≥ Eadd) [56]. 
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Appendix (C) Constant Interaction Model for double QDs 

 

(a) 

 

 

 

Fig. C (a) As single dot in Fig. B (a), a double quantum dot system connected to the leads 

and gates can be also characterized by resistors and capacitors. Besides, the tunnel barrier 

separating two series-connected dots is represented by a resistor Rm and a capacitor Cm, 

while the tiny cross-capacitances (such as between Vg1 and dot 2) are ignored. 

 

An equivalent circuit of a double quantum dot system under CI model is shown in Fig. C 

(a), and the coupling between two dots is assumed to be Cm. In single quantum dot system, 

the chemical potential includes the charge energy and the single-part energy parts: 

 

µ(N) ≡ U(N) − U(N − 1) = (N − N0 −
1

2
) Ec −

Ec

|e|
(Cg Vg + Cs Vs + Cd Vd) + EN  

 

as well as the additional energy, 𝐸𝑎𝑑𝑑 ≡ ∆µ(N) = Ec + ∆E. And, we have similar forms 

for double QD systems. We define µ1(2)(N1, N2) as the energy needed for the N1(2)-th 

electron entering the dot1(2) to occupy discrete level N1/N2, while there are already 

N2(N1) electrons in dot 2(1), i.e. 

 

    µ1(N1, N2) ≡ 𝑈(N1, N2) − 𝑈(𝑁1 − 1, N2) & 
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  µ2(N1, N2) ≡ 𝑈(N1, N2) − 𝑈(𝑁1, N2 − 1)  

 

With respect to the single QD system, we have to further consider the interdot charge 

energy. Therefore, 

 

 µ1(N1, N2) = (N1 −
1

2
) E𝐶1 + N2E𝐶𝑚 −

1

|𝑒|
(Cg1 Vg1E𝐶1 + Cg2 Vg2E𝐶𝑚) + 𝐸𝑁1; 

  µ2(N1, N2) = (N2 −
1

2
) E𝐶2 + N1E𝐶𝑚 −

1

|𝑒|
(Cg1 Vg1E𝐶𝑚 + Cg2 Vg2E𝐶1) + 𝐸𝑁2  

 

where E𝐶1(2) = 𝑒
2 𝐶2(1)

𝐶1𝐶2−𝐶𝑚
2  for C1(2) = Cs(d) + Cg1(2) + C𝑚, and E𝐶𝑚 = 𝑒

2 𝐶𝑚

𝐶1𝐶2−𝐶𝑚
2  is the 

energy change of one dot as an electron entering into another dot. 

As mentioned in Chap. 2.2, electrons can transport through the system via two 

sequences of electron states as though one is going through the electron transport, while the 

other is through the hole transport: 

 

(N1, N2) → (N1 + 1, N2) → (N1, N2 + 1) → (N1, N2) & 

(N1,N2 + 1) → (N1 + 1,N2 + 1) → (N1 + 1,N2) → (N1,N2 + 1) 

 

thus, these two situations construct the boundaries of the CB diamond edges in the 

Vsd − Vg plane. And whenever either of the conditions below is achieved, the current can 

flow through the dots, and the corresponding diagrams of chemical potentials for transport 

are in Figs. C (b-c) : 

 

 µs ≥ µ1(N1 + 1,N2) ≥ µ2(N1, N2 + 1) ≥ µd  
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or  

  µs ≥ µ1(N1 + 1,N2 + 1);  

            µ1(N1 + 1, N2) ≥ µ2(N1, N2 + 1); 

            µ2(N1, N2 + 1) ≥ µd  

 

(b) 

 

 

 

 

(c) 

  

 

Figs. C (b-c) Electrochemical potential levels in a double-dot system. Electrons can tunnel 

through the system via the sequence of  

(b)     (N1, N2) → (N1 + 1, N2) → (N1, N2 + 1) → (N1, N2) or 

(c)  (N1,N2 + 1) → (N1 + 1,N2 + 1) → (N1 + 1,N2) → (N1,N2 + 1). 
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Appendix (D) Device Fabrication 

A. Preparation prepare the suitable size of the wafer, and clean the surface before the 

fabrication. 

 

(a) 

 

 

 

 

(b) 

Figs. D (a-b) (a)The wafer is prepared in a size of 9 × 10 mm (4 x 10 mm chip for test 

samples) for the following fabrication processes (b) The simplified schematic diagram of 

the water structure composed of multilayers as Table 3. 

 

1. Prepare wafer in suitable size:  

Scribe and cut the wafer in a size of 𝟗 × 𝟏𝟎 𝐦𝐦. 

 

2. Clean the surface & Etch the oxide on the surface 

A. Immerse the wafer in a plastic beaker with IPA (Isopropyl alcohol). 

B. Clean the wafer in the beaker with an ultrasonic cleaner for 5 mins (Twice). 

C. Dry the wafer by blowing N2, and check the surface under microscopic. 

D. Put the wafer in a plastic beaker with alkali for 30 secs to remove the oxide on  

the surface. 

E. Rinse the wafer with flowing DI water over than 1 min, and make it dry by 

 blowing N2. 

F. Post-bake for 10 mins under 110℃. 
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B. Back Contact  the back contact and the number are fabricated with photolithography. 

 

(c) 

 

 

 

 

Fig. D (c) Schematic diagrams of the top views (left) and the side views (right) of the wafer 

during the back contact fabrication. 

 

1. Photolithography: Spin coating and Exposure 

A. Drop the photoresist on the center of the surface. 

B. Spin coating in 3 stages:  

500 rpm for 3 secs  slop for 7 secs  4000 rpm for 40 secs. 

C. Pre-bake (soft-bake) for 20mins under 80℃. 

D. Expose with a mercury lamp for 12 secs. 

    

2. Developing: Remove the photoresist 

A. Develop with S351 developer, and sway for 40~60 secs.  

B. Rinse with flowing DI water over than 1 min, and make it dry by blowing N2. 

 

3. Evaporation and Lift off  

A. Deposit 20 nm-thick Ti and then 200 nm-thick Au. 

B. Immerse in Acetone for 5 mins, and spray Acetone to lift the photoresist off.   

C. Immerse in clean Acetone for 1 min and rinse with flowing DI water. 

D. Bake for 10 mins under 110℃.  
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C. Top Contact  In this step, the top contact is fabricated with E-beam lithography. 

 

(d) 

 

 

 

 

Fig. D (d) Schematic diagrams of the top views (left) and the side views (right) of the wafer 

during the top contact fabrication. 

 

1.  E-beam lithography: Spin coating and Exposure 

A. Drop PMMA on the center of the surface. 

B. Spin coating in 3 stages:   

500 rpm for 3 secs  slop for 7 secs  4000 rpm for 60 secs.  

C. Pre-bake for over 1 hour under 170℃. 

D. Expose with E-beam lithography. 

 

2.  Developing 

A. Develop with both IPA and OEBR-1000 under 13.6℃: 

IPA for 1 min  OEBR-1000 for 30 secs  IPA for 1 min. 

B. dry by blowing N2  (note : no DI water) 

 

3.  Evaporation and Lift off  

A. Deposit 20 nm-thick Ti and then 100 nm-thick Au. 

B. Lift off:  

Acetone for 5 mins  spray Acetone  immerse in clean Acetone for 1 min. 
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C. Rinse with flowing DI water and make it dry by blowing N2 

D. Bake for 10 mins under 110℃.  

E. UV Ozone stripper: Purge Ozone for 10 mins under 200℃. 

F. Rinse with flowing DI water and dry by blowing N2. 

G. Bake for 10 mins under 110℃.  

 

D. ECR (electron cyclotron resonance) Dry Etch The embryo pillar structure is sculpted in 

this step: part of metal films and most of semiconductor are removed, but those covered 

by deposited Ti/Au are left. 

 

(e) 

 

 

 

 

Fig. D (e) Schematic diagrams of the top views (left) and the side views (right) of the wafer 

during the dry etch process. 

 

1. Attached to a Si wafer with the photoresist and bake for 10 mins under 110℃. 

 

2. UV Ozone stripper: Purge Ozone for 10 mins under 110℃. 

 

3. Etch the wafer down before the three-barrier structure (about 400 nm) with BCl3 plasma. 

 

4. Rinse with flowing DI water, make it dry by blowing N2 and bake for 10 mins under 110℃, 

and then check with SEM. 
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E. Wet Etch The sulfuric acid etches down the semiconductor parts to the three-barrier 

layers, and the diameter of the pillar is also lessened. 

 

(f) 

 

 

 

 

Fig. D (f) Schematic diagrams of the top views (left) and the side views (right) of the wafer 

during the wet etch process. 

 

1. Etch down the wafer beneath the end of the three barrier structure with the sulfuric acid 

(H2O: H2SO4: H2O2= 25: 5: 1) in three steps: 

  under 10℃  H2O for 1 min  sulfuric acid (about tens of nm)  H2O for 1 min 

 

2. Rinse with flowing DI water, make it dry by blowing N2 and bake for 10 mins under 110℃, 

and then check with SEM. 
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F. Gate  In this step, the gate(s) is fabricated with E-beam lithography. 

 

(g)  

 

 

 

 

Fig. D (g) Schematic diagrams of the top views (left) and the side views (right) of the wafer 

during the gate fabrication.  

 

1.  E-beam lithography: Spin coating and Exposure 

A. Drop PMMA on the center of the surface. 

B. Spin coating in 3 stages:   

500 rpm for 3 secs  slop for 7 secs  4000 rpm for 60 secs.  

C. Pre-bake for over 1 hour under 170℃. 

D. Expose with E-beam lithography. 

 

2.  Developing 

A. Develop with both IPA and OEBR-1000 at room temperature: 

IPA for 1 min  OEBR-1000 for 30 secs  IPA for 1 min. 

B. dry by blowing N2   

 

3.  Evaporation and Lift off  

A. Deposit 20 nm-thick Ti and then 100 nm-thick Au. 

B. Lift off:  

Acetone for over 6 hrs  spray Acetone  immerse in clean Acetone for 1 min. 
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C. Rinse with flowing DI water, make it dry by blowing N2 and bake for 10 mins under 

110℃.  

D. UV Ozone stripper: Purge Ozone for 10 mins under 200℃.  

E. Rinse with flowing DI water, dry by blowing N2 and bake for 10 mins under 110℃.  

F. Check by SEM. 
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G. Mesa  

 

(h) 

 

 

 

 

Fig. D (h) Schematic diagrams of the top views (left) and the side views (right) of the wafer 

during the mesa process.  

 

1.  Photolithography: Spin coating and Exposure 

A. Drop the photoresist on the center of the surface. 

B. Spin coating in 3 stages:  

500 rpm for 3 secs  slop for 7 secs  4000 rpm for 40 secs. 

C. Pre-bake (soft-bake) for 20 mins under 80℃. 

D. Expose with a mercury lamp for 20 secs. 

    

2. Developing: Remove the photoresist 

A. Develop with S351 developer, and sway for 1 min.  

B. Rinse with flowing DI water over than 1 min, and make it dry by blowing N2. 

C. Bake for 10 mins under 110℃. 

 

3. Wet etching 

A. Etch down the wafer beneath the end of the three barrier structure with the sulfuric 

acid (H2O: H2SO4: H2O2= 25: 5: 1) in three steps:  

under 10℃  H2O for 1 min  sulfuric acid  H2O for 1 min. 
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B. Rinse with flowing DI water, make it dry by blowing N2 and bake for 10 mins. under 

110℃. (Repeat A & B until etching to the wanted condition) 

C. Immerse in Acetone for 1 min (Twice). 

D. Rinse with flowing DI water and make it dry by blowing N2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

- 140 - 
 

H. Step Smoother 

 

(i) 

 

 

 

 

Fig. D (i) Schematic diagrams of the top views (left) and the side views (right) of the wafer 

during the step smoother process.  

 

1. Photolithography: Spin coating and Exposure 

A. Drop the photoresist on the center of the surface. 

B. Spin coating in 3 stages:  

500 rpm for 3 secs  slop for 7 secs  4000 rpm for 40 secs. 

C. Pre-bake (soft-bake) for 20 mins under 80℃. 

D. Expose with a mercury lamp for 20 secs. 

 

2. Developing: Remove the photoresist 

A. Develop with S351 developer, and sway for 1 min.  

B. Rinse with flowing DI water over than 1 min, and make it dry by blowing N2. 

C. Bake for more than 30 mins under 170℃. 

D. UV Ozone stripper: Purge Ozone for 10 mins under 200℃. 

E. Rinse with flowing DI water, make it dry by blowing N2 and bake for 10 mins. under 

110℃. 
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I. Bonding Pad 

 

(j) 

 

 

 

 

Fig. D (j) Schematic diagrams of the top views (left) and the side views (right) of the wafer 

during the bonding pad process.  

 

1. Photolithography: Spin coating and Exposure 

A. Drop the photoresist on the center of the surface. 

B. Spin coating in 3 stages:  

500 rpm for 3 secs  slop for 7 secs  4000 rpm for 40 secs. 

C. Pre-bake (soft-bake) for 20mins under 80℃. 

D. Expose with a mercury lamp for 25 secs. 

 

2. Developing: Remove the photoresist 

A. Immerse in Chlorobenzene for 4.5 mins to make the surface of the resist harder. 

B. Blowing with N2. 

C. Bake for more than 5 mins under 80℃ and cool down by blowing N2. 

D. Develop with S351 developer, and sway for 1 min 20 secs. 

E. Rinse with flowing DI water, make it dry by blowing N2.  

 

3.  Evaporation and Lift off  
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A. Deposit 20 nm-thick Ti and then 300 nm-thick Au. 

B. Lift off:  

Acetone for 5 mins spray Acetone  immerse in clean Acetone for 1 min. 

C. Rinse with flowing DI water, make it dry by blowing N2 and bake for 10 mins  

under 110℃.  
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