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摘要 

 

高溫超導的發現有趣地修改了超導體熱擾動性質,尤其是熱力學性質和傳輸性質

(尤其是熱流傳輸)。我們在這工作理考慮在磁場下的超導體的擾動效應。在高溫

擾動的影響下,特別是對一些非傳統超導體中很強的各向非均勻性的磁特性,系

統的熱力學性質和傳輸特性會影響渦流的運動。 

 

高溫超導的 Ginzburg-Landau (GL)現象描述顯著成功地描述各種熱力學和傳輸

特性。在平均場近似下,擾動可以忽略的情況下它變得相當容易。然而當擾動不

可被忽略時,即使是等效描述也會變的相當複雜。當增加需要的假設時,有些進展

已經被達成。額外的假設通常用於解析的計算,只有最低的 Landau 能階顯著的貢

獻到我們關注的物理量上。對最近實驗研究的大範疇外來的參數(磁場,溫度),

這種近似是無效的,因此必須推廣理論到包含所有的 Landau 能階。 

 

過去只有電性傳輸的理論被發展,然而最近實驗已經能夠觀察到磁熱效應和熱流

傳輸現象,像是 Nernst 和熱電功率,我們需要延伸擾動理論去包含這些現象。當

只考慮高斯擾動時,熱電阻率和電阻率在平均場的轉換溫度下是被預測會發散,

這個理論與實驗結果矛盾。其中一個重要的結論是要符合實驗結果必須要考慮擾

動間的交互作用。之前的工作是 S. Ullah 和 A. T. Dorsey 在 GL 方程式中,在最

低的 Landau 能階中應用 Hartree-Fock 近似去處理四次方項計算熱流傳輸問題。 

 

在這個論文中,我的工作使用更有系統的高斯近似法去推廣包含所有 Landau 能

階,並且計算有趣的物理量,像是橫向熱電阻率和Nernst訊號去描述Nernst效應,

也算了在線性響應下的第二類超導體的渦流範疇中之交流電阻率。我們使用包含

雜訊的時變 GL(TDGL)方程式。我們的理論數值結果可以吻合數個高溫超導中的

實驗數據。 

 

我也使用線性響應研究在外加磁場下層狀第二類超導體中的傳輸特性。使用

TDGL 方程式以及熱雜訊可以得到電阻率和霍爾電阻率。我們的理論結果定量上

吻合在強電場下高溫導體的實驗數據。 
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Abstract

The discovery of high-temperature superconductors (HTSC) has revived interest in ther-

mal fluctuation effects in superconductors, both in thermodynamic properties and in

transport properties, with emphasis on the heat transport. In this work we shall be con-

cerned with the effect of fluctuations on the transport properties of a superconductor in

a magnetic field. Under the influence of fluctuations at high temperature, the motions

of vortices are responsible for the thermodynamic properties and transport properties of

systems especially for those unconventional superconductors due to it’s strong anisotropic

magnetic properties.

The Ginzburg-Landau (GL) phenomenological description of high superconductors has

been remarkably successful in describing various thermodynamic and transport properties.

In the mean field approximation, when the fluctuations are neglected, it is relatively sim-

ple. However when fluctuations are not negligible, even this effective description becomes

very complicated. Some progress can be achieved when certain additional assumptions are

added. An additional assumption, often made in analytical calculations, is that only the

lowest Landau level significantly contributes to physical quantities of interest. However,

in a large domain of external parameters (magnetic field, temperature) currently under

experimental investigation, this approximation is not valid and now there is a need to

generalize the theory to include all Landau levels.

In the past only electric transport has been thoroughly developed theoretically. How-

ever recent experimental advance in observing various magnetocaloric coefficient and heat

ii



transport phenomena like the Nernst and thermoelectric power necessitate extension of

the fluctuations theory to include these phenomena. When only the Gaussian fluctuations

are considered, then the thermoelectric conductivity and the electrical conductivity were

predicted to diverge at the mean-field transition temperature, in conflict with the experi-

mental results. One of important conclusions is that interactions between the fluctuations

must be considered in order to obtain even qualitative agreement with the experimental

results. An early work on this subject was application of the Hartree-Fock approxima-

tion to treat the quartic term within the lowest Landau level approximation in the GL

Hamiltonian for heat transport current by S. Ullah and A. T. Dorsey.

In this thesis I have extended the work to include all Landau level, use more system-

atic Gaussian approximation and calculate physical quantities of current interest like the

transverse thermoelectric conductivity and the Nernst signal , describing the Nernst effect,

as well as ac conductivity in linear response in Type-II superconductor in the vortex-liquid

regime. The time-dependent Ginzburg-Landau (TDGL) equation with thermal noise is

used. Our results show a good agreement with several experiment and numerical simula-

tion on HTSC.

I also studied the transport properties in a layered Type-II superconductor under

magnetic field beyond the linear response. By using TDGL equation with thermal noise is

to obtain electrical conductivity and Hall conductivity. Our results are in good qualitative

and even qualitative agreement with experimental data on HTSC in strong electric fields.
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Chapter 1

Introduction

1.1 Superconductivity

Superconductivity was first discovered in 1911 by Heike Kamerlingh Onnes while he was

studying the resistance of mercury. At the temperature of 4.2 K, he observed that the re-

sistance suddenly disappeared and became unmeasurable in a small temperature regime.

For some decades later there was no theoretical understanding of the superconducting

mechanism except the classical interpretation of London’s equations of the Meissner ef-

fect [1], which was able to describe the basic electromagnetic properties of a homogeneous

superconductor. The London theory and its future generalizations introduced two im-

portant scales: the concepts of correlation length ξ and penetration depth λ. Those two

parameter characterize many physical properties of a system. Only in 1950, the first phe-

nomenological theory of superconductivity was proposed by GL [2]. This theory, which

is called GL theory of superconductivity had great success in explaining the macroscopic

properties of superconductors. In particular, Abrikosov [3] showed that the GL theory

predicts the division of superconductors into the two categories now referred to as Type-I

and Type-II. Seven years later, the complete microscopic theory of superconductivity was

finally proposed by Bardeen-Cooper-Schrieffer (BCS) [4]. The BCS theory explained the

superconducting current as a superfluid density of Cooper pairs, i.e., pairs of electrons

1



CHAPTER 1. INTRODUCTION

interacting through the exchange of phonons. This theory is successfully applied to most

superconducting elements which are now called conventional superconductors.

As was shown by Abrikosov [3], two types of superconductors exist, differing by the

value of κ = λ/ξ called the GL parameter and behaving differently in the presence of

a magnetic field. Superconductors with κ < 1/
√

2 are called Type-I, and those with

κ > 1/
√

2 are called Type-II. The values 1/
√

2 is an exact solution where the interface

energy( between superconductivity and normal state) vanished. Type-I superconductors

Figure 1.1: The H-T phase diagram of Type-I and Type-II superconductors.

can exist in one of two thermodynamically stable states - either in the normal, or in the

superconducting state. The superconducting state is energetically favorable at T < Tc

and H < Hc. Hc and Tc are mutually dependent, see Fig. 1.1. Applying an external mag-

netic field to the system turns on the surface supercurrents, which screen the field from

the interior of the superconductor. It does not allow external magnetic field to penetrate

deeper than λ. This phenomenon is called the Meissner effect, and the whole state is

sometimes called the Meissner state. In this state the material has perfect diamagnetism

The magnetization defined as 4πM = B(r)−H( where B = 0 in Meissner state) is neg-

ative and proportional to up to Hc. In idea sample, it has a reversible hysteresis curve.

2



CHAPTER 1. INTRODUCTION

Unlike Type-I, Type-II superconductors have an extra thermodynamically stable state -

Figure 1.2: The order parameter and the magnetic field profiles of a single Abrikosov vortex.

the mixed state [3], in which the external magnetic field partially penetrates the bulk of

the superconductor, locally destroying superconductivity. In this case two critical mag-

netic fields exist, Hc1 and Hc2 (see Fig. 1.1). Hc1 is the lower critical magnetic field, at

which the magnetic field starts penetrating into the bulk of the superconductor and super-

conductivity begins to decline, and Hc2 is the upper critical field, at which the magnetic

field fills the whole sample, i.e. superconductivity is destroyed while the normal metallic

state is recovered . The Hc1 is mainly determined by the London penetration depth λ,

which is the length scale determining the electromagnetic response of the superconductor.

From the London equation set, one got Hc1 = (Φ0/4πλ2)log(κ). The upper critical field

Hc2 is determined by the coherence length ξ of superconductor, which determines the

spatial response of the macroscopic field. The relation between Hc2 and ξ are given by

Hc2 = Φ0/4πξ2, where Φ0 is a fluxon. The transition to normal state is of second order.

The differences in the behavior of Type-I and Type-II superconductors can be ex-

plained if one examines the transitional energy between the normal and the supercon-

ducting domains, which is positive in Type-I and negative in Type-II superconductors.

3



CHAPTER 1. INTRODUCTION

In this study, we have interest on physics of the mixed state. In the mixed state, the

penetration of the magnetic flux into the superconductor takes place in the form of long

thin flux lines, called Abrikosov vortices or fluxons (see Fig. 1.2). At the center of each

vortex a normal core exists, bearing the created by supercurrents moving around the

core. The characteristic radius of the core, i.e., the radius at which the order parameter

decay from its maximal value to zero is ξ, while the magnetic field and the supercur-

rents, which surround the core, spread as far as λ from it. The amount of magnetic flux

Φ carried by each vortex is quantized and equal to an integer number of unit quanta

Φ0 = hc/2e = 2.07× 10−7 (Gcm2) magnetic flux

1.2 Fluctuation phenomena in superconductor

The fluctuation phenomena in clean bulk superconductors become important only in a

very narrow ( 10−12 K) region in the vicinity of the transition temperature [5]. Aslamazov

and Larkin [6] demonstrated that the fluctuation region in dirty superconducting films is

determined by the resistance per film unit square and could be much wider than in bulk

samples. Even more importantly they demonstrated the presence of fluctuation effects

beyond the critical region, and not only in thermodynamic but in kinetic characteristics of

superconductors too. They have discovered the phenomenon which is called paraconduc-

tivity today: the decrease of the resistance of superconductor in the normal phase, still

at T > Tc. Simultaneously this phenomenon was experimentally observed by Glover [7]

and his results were found in perfect agreement with the Aslamazov-Larkin (AL) theory.

Since this time the variety of fluctuation effects have been discovered. Their manifestation

have been investigated also today, especially in new superconducting systems.

The characteristic feature of superconducting fluctuations is their strong dependence

on temperature and magnetic fields in the vicinity of phase transition. This allows us

to definitely separate the fluctuation effects from other contributions and to use them as

the source of information about the microscopic parameters of a material. Accounting

4



CHAPTER 1. INTRODUCTION

for fluctuation effects is necessary in the design of superconducting devices. Many ideas

of the theory of superconducting fluctuations have been used in other fields of condensed

matter theory, e.g. in developing of the theory of quantum fluctuations.

In the fluctuation theory, as in modern statistical physics on the whole, two meth-

ods have been mainly used: they are the diagrammatic technique and the method of

functional (continual) integration over the order parameter. Each of them has its own

advantages and disadvantages [8]. The years of the fluctuation boom coincided with the

greatest development of the diagrammatic methods of many body theory in condensed

matter physics. These methods turned out to be extremely powerful: any physical prob-

lem, after its clear formulation and the writing down of the Hamiltonian, can be reduced

to the summation of some classes of diagrams. The diagrammatic technique allows us in a

unique way to describe the quantum and classical fluctuations, the thermodynamical, and

transport effects. The diagrammatic technique is especially suited to problems containing

a small parameter: in this case it is possible to restrict their summation to the ladder ap-

proximation only. In the theory of superconducting fluctuations one such small parameter

exists: as we will show below, it is the so-called Ginzburg-Levanyuk number Gi(D) which

is expressed as some power of the small parameters Tc/EF . In the vicinity of transition,

superconducting fluctuations in influence different physical properties of metal and lead

to the appearance of small corrections to corresponding physical characteristics in a wide

range of temperatures. Due to the above mentioned smallness of Gi(D) these corrections

can be evaluated quantitatively in the wide enough temperature region. On the other

hand, their specific dependence on the nearness to the critical temperature T − Tc allows

us to separate them in experiments from other effects.

In the description of the effect of fluctuations on thermodynamic properties of the

system the method of functional integration turned out to be simpler. The ladder ap-

proximation in the diagrammatic approach is equivalent to the Gaussian approximation

in functional integration. The method of functional integration turns out to be more

effective in the case of strong fluctuations, for instance, in the immediate vicinity of the
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phase transition. The final equations of the renormalization group carried out by means

of functional integrations turn out to be equivalent to the result of the summation of the

parquet diagrams series. Nevertheless, the former derivation is much simpler.

1.3 Phenomenology of fluctuation thermodynamics

and transport

The problem of fluctuation smearing of the superconducting transition was not even

considered during the first half of the century after the discovery of superconductivity. In

bulk samples of traditional superconductors the critical temperature Tc sharply divides

the superconducting and the normal phases. It is worth mentioning that such behavior of

the physical characteristics of superconductors is in perfect agreement with both the GL

phenomenological theory (1950) [2] and the BCS microscopic theory of superconductivity

(1957) [4].

The characteristics of high temperature and organic superconductors, low-dimensional

and amorphous superconducting systems studied today strongly differ from those of the

traditional superconductors discussed in textbooks. The transitions turn out to be much

more smeared out. The appearance of superconducting fluctuations above the critical

temperature leads to precursor effects of the superconducting phase occurring while the

system is still in the normal phase, sometimes far from Tc. The conductivity, the heat

capacity, the diamagnetic susceptibility, the sound attenuation, etc. may increase consid-

erably in the vicinity of the transition temperature.

The first numerical estimation of the fluctuation contribution to the heat capacity of

a superconductor in the vicinity of Tc was done by Ginzburg in 1960 [5]. In that paper

he showed that superconducting fluctuations increase the heat capacity even above Tc.

In this way fluctuations change the temperature dependence of the specific heat in the

vicinity of the critical temperature where, according to the phenomenological Landau

theory of second-order phase transitions, a jump should take place. The range of temper-
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atures where the fluctuation correction to the heat capacity of a bulk, clean, conventional

superconductor is relevant was estimated by Ginzburg to be

Gi ∼ 10−12 ÷ 10−14, (1.1)

The correction occurs in a temperature range δT many orders of magnitude smaller than

that accessible in real experiments.

In the 1950s and 1960s the formulation of the microscopic theory of superconductivity,

the theory of Type-II superconductors, and the search for HTSC attracted the attention

of researchers to dirty systems, superconducting films and filaments. In 1968, in papers

by Aslamazov and Larkin [6], and Maki [9], and a little later in a paper by Thompson [10],

the fundament of the microscopic theory of fluctuations in the normal phase of a super-

conductor in the vicinity of the critical temperature were formulated. This microscopic

approach confirmed Ginzburg’s evaluation [5] for the width of the fluctuation region in a

bulk clean superconductor. Moreover, it was found that the fluctuation effects increase

drastically in thin dirty superconducting films and whiskers. In the cited papers it was

demonstrated that fluctuations affect not only the thermodynamical properties of a super-

conductor but its dynamics too. Simultaneously the fluctuation smearing of the resistive

transition in bismuth amorphous films was found experimentally by Glover [7], and it was

perfectly fitted by the microscopic theory.

In the BCS theory [4] only the Cooper pairs forming a Bose-condensate are considered.

Fluctuation theory deals with the Cooper pairs out of the condensate. In some phenomena

these fluctuation Cooper pairs behave similarly to quasiparticles but with one important

difference. While for the well defined quasiparticle the energy has to be much larger than

its inverse life time, for the fluctuation Cooper pairs the “binding energy” E0 turns out

to be of the same order. The Cooper pair life time τGL is determined by its decay into

two free electrons. Evidently, at the transition temperature the Cooper pairs start to

condense and τGL = ∞. Therefore it is natural to suppose from dimensional analysis that

7
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τGL ∼ ~/kB(T −Tc). The microscopic theory confirms this hypothesis and gives the exact

coefficient:

τGL =
π~

8kB(T − Tc)
. (1.2)

Another important difference of the fluctuation Cooper pairs from quasiparticles lies

in their large size ξ(T ). This size is determined by the distance by which the electrons

forming the fluctuation Cooper pair move apart during the pair lifetime τGL. In the case

of an impure superconductor the electron motion is diffusive with the diffusion coefficient

Ddiff ∼ v2
F τscatt (τscatt is the electron scattering time), and ξdir(T ) =

√
DdiffτGL ∼

vF
√

τscattτGL. In the case of a clean superconductor, where kBTτscatt À ~ , impurity

scattering no longer affects the electron correlations. In this case the time of electron

ballistic motion turns out to be less than the electron-impurity scattering time τscatt

and is determined by the uncertainty principle: τbal ∼ ~/kBT . Then this time has to

be used in this case for the determination of the effective size instead of τscatt: ξcl(T ) ∼
vF

√
~τGL/kBT . In both cases the coherence length grows with the approach to the critical

temperature as ε−1/2, where

ε = ln
T

Tc

≈ T − Tc

Tc

, (1.3)

is the reduced temperature. The coherence length can be written in the unique way

(ξ = ξcl,dir):

ξ(T ) =
ξ√
ε
. (1.4)

Finally it is necessary to recognize that fluctuation Cooper pairs can really be treated

as classical objects, but that these objects instead of Boltzmann particles appear as clas-

sical fields in the sense of Rayleigh–Jeans. That is why the more appropriate tool to study

fluctuation phenomena is not the Boltzmann transport equation but the GL equation for
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classical fields. Nevertheless, at the qualitative level the treatment of fluctuation Cooper

pairs as particles. it was demonstrated [8], in the framework of both the phenomenological

GL theory and the microscopic BCS theory, that in the vicinity of the transition.

The complete description of its thermodynamic properties can be done through the

calculation of the partition function [8]:

Z = tr

{
exp

(
−Ĥ

T

)}
. (1.5)

In the vicinity of the superconducting transition, side by side with the fermionic electron

excitations, fluctuation Cooper pairs of a bosonic nature appear in the system. As already

mentioned, they can be described by means of classical bosonic complex fields Ψ(r) which

can be treated as “Cooper pair wave functions”. Therefore the calculation of the trace in

(1.5) can be separated into a summation over the “fast” electron degrees of freedom and

a further functional integration carried out over all possible configurations of the “steady

flow” Cooper pairs wave functions:

Z =

∫
DΨDΨ∗(r) exp

(
−F [Ψ(r)]

T

)
, (1.6)

where F [Ψ(r)] is GL functional.

The appearance of fluctuating Cooper pairs above Tc leads to the opening of a “new

channel” for charge transfer. In the Introduction the fluctuation Cooper pairs were treated

as carriers with charge 2e while their lifetime τGL was chosen to play the role of the

scattering time in the Drude formula. The generalization of the phenomenological GL

functional approach to transport phenomena was presented in [8]. Dealing with the

fluctuation order parameter, it is possible to describe correctly the paraconductivity type

fluctuation contributions to the normal resistance and magnetoconductivity, Nernst effect,

Hall effect, thermoelectric power and thermal conductivity at the edge of the transition

[8].
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Chapter 2

Theory of Nernst effect in high-Tc

superconductor

2.1 Introduction

The electric field is induced in a metal under magnetic field by the temperature gradient

∇T perpendicular to the magnetic field H, phenomenon known as Nernst effect [8] (di-

rection of the electric field being perpendicular to both ∇T and H). Recently the Nernst

effect in high-Tc superconductors and low-temperature superconductor attracted atten-

tion both theoretically [8, 11–15] and experimentally [16–24]. In these materials effect of

thermal fluctuations is very strong leading to depinning of Abrikosov vortices created by

the magnetic field in Type-II superconductor below second critical field Hc2 (T ). In the

mixed state the Nernst effect is large due to vortex motion, while in the normal state and

in the vortex lattice or glass states it is typically smaller. The Nernst effect therefore is a

probe of thermal fluctuations phenomena in the vortex matter, but in principle could shed

some light on the underlying microscopic mechanism of superconductivity in cuprates. In

the vortex-liquid state, a gradient −∇T drives the vortices to the cooler end of the sample

because a normal vortex core has a finite amount of entropy relative to the zero-entropy

condensate Fig. 2.1 [25, 26]. Because of the 2π phase singularity at each vortex core,
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Figure 2.1: The vortex-Nernst effect in a Type-II superconductor. Concentric circles represent
vortices.

vortex motion induces phase slippage [27]. By the Josephson equation 2eVJ = ~θ̇, the

time derivative of the phase θ̇ produces an electrochemical potential difference VJ . We

have θ̇ = 2πṄυ, where Ṅυ is the number of vortices crossing a line ‖ŷ. per second. The

Josephson voltage VJ may be expressed as a transverse electric field E = B× v which is

detected as the Nernst signal.

Figure 2.2 shows the setup in the Nernst experiment [23]. One end of the crystal is

glued with silver epoxy onto a sapphire substrate, which is heat-sunk to a copper cold

finger. A thin-film heater, silver-epoxied to the top edge of the crystal, generates the heat

current flowing in the ab plane of the crystal. The temperature difference ∆T is measured

by a pair of fine-gauge Chromel-Alumel thermocouples. A pair of Ohmic contacts are

prepared on the edge of the sample by annealing different kinds of conductive materials.

After the bath temperature is stabilized, the gradient is turned on. The Nernst voltage is

preamplified and measured by a nanovoltmeter as the magnetic field is slowly ramped up.

To remove stray longitudinal signals due to misalignment of the contacts, the magnetic

field is swept in both directions. Only the field-asymmetric part of the raw data is taken

as the Nernst signal.
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Figure 2.2: Crystal mounting geometry in the Nernst experiment.

Measurements of eN in fields H up to 45 T [23] reveal that the vortex Nernst sig-

nal eN has a characteristic “tilted-hill” profile, which is qualitatively distinct from that

of quasiparticles. The hill profile, which is observed above and below Tc, underscores

the continuity between the vortex-liquid state below Tc and the Nernst region above Tc.

Recently, the study of the Nernst effect in NbSe2 reveals a large quasiparticle contribu-

tion with a magnitude comparable and a sign opposite to the vortex signal [24]. A large

negative Nernst coefficient, persisting at temperatures well above Tc=7.2 K, was found

in this metal. However, we will concentrate on the vortex-Nernst effect in Type-II su-

perconductor of the overdoped La2−xSrxCuO4 (LaSCO) [21], underdoped and overdoped

YBa2Cu3Oy (YBCO) [21], where eN is intrinsically strongly nonlinear in H and generally

much larger than in nonmagnetic normal metal.

In this study we revisit the calculation in TDGL originally performed in Ref. [11]

to obtain explicit expressions for the transverse thermoelectric conductivity αxy and the

Nernst signal eN in both a two dimensional 2D) and a three dimensional (3D) model.

Typically only the lowest Landau level (LLL) contribution was investigated [28]. We

extend it to higher Landau levels necessary for exploring the experimentally accessible

parameter region and find range of applicability of the results due to approximations
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made, disorder and crystallization. In this theory the strength of the thermal fluctuations

is described by just one dimensionless adjustable parameter η (closely related to the

Ginzburg number Gi). This parameter determines simultaneously the location of the

melting line measured on the same samples in recent experiments on Nernst effect. The

expression of Ref. [29] for the melting line is in good agreement with many experiments in

very wide range of materials (as was established recently in [30]) and MC simulation. Then

fitting of the transverse thermoelectric conductivity and related quantities practically

has no free parameters (of course there is a certain freedom in determining mean field

parameters like Hc2 and Tc, but the range is limited by experimental values). The value

fitted from the Nernst effect turns out to be consistent with that derived from the melting

line calculated in [29]. We will present the fitting of the melting line for the overdoped

LaSCO [21], underdoped and overdoped YBCO [21].

2.2 Heat transport and Nernst effect

When a temperature gradient exists in a metal, the motion of the conduction electrons

provides the of heat (in the form of kinetic energy) from hotter to cooler regions. In good

conductors such as cooper and silver this transport involves the same phonon collision

processes that are responsible for the transport of electric charge. Hence these metals

tend to have the same thermal and electrical relaxation times at room temperature. An

additional complication in the heat transport case is that the carriers of heat can be either

charge carriers like electrons or electrically neutral phonons, whereas electrical current

arises only from charge carrier transport. The transformation to the superconducting

sate changes the nature of the carriers of the electric current, so it is to be expected that

the transport of heat will be strongly affected.

The thermal current density J is the thermal energy per unit time crossing a unit

area aligned perpendicular to the direction of heat flow. It is a vector representing the
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transport of entropy density Sφ at the velocity v,

J = TSφv, (2.1)

from the hotter to the cooler regions of the material [31]. It is proportional to the gradient

of the temperature ∇T through Fourier’s law,

J = −K∇T, (2.2)

where K is the coefficient of thermal conductivity.

In the normal state, electrical conductors are good conductors of heat in accordance

with the law of Wiedermann and Franz. In the superconducting state, in contrast, the

heat conductivity can be much lower because, as Uher [32] points out, Cooper pairs carry

no entropy and do not scatter phonon.

In normal state, the principal carriers of thermal energy through metals in the normal

state are conduction electrons and phonons. Heat conduction via each of these two chan-

nels acts independently, so that the two channels constitute parallel paths for the passage

of heat. A simple model for the conduction of heat between two points A and B in the

sample is to represent the two channels by parallel resistors with conductivities Ke and

Kph for the electronic and phonon paths, respectively. The conductivities add directly, as

in the electrical analogue of parallel resistors, to give the total thermal conductivity K,

K = Ke + Kph, (2.3)

In superconducting state, thermal conductivity involves the transport of entropy Sφ; super

electrons, however, do not carry entropy nor do they scatter phonons. Thus the thermal

conductivity can be expected to decrease toward zero.

The heat current is sophisticated and has been the subject of a 30 years discussion.

This is due to the fact that the notion of heat itself is not well-defined in the Hamiltonian
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formalism, so in order to be consistent A. Larkin and A. Varlamov defined the heat current,

the heat transport current and the magnetization current from the basic principles of

thermodynamics [8].

The Nernst effect is well-known in semiconductors and turns out to be small in good

metals. The problem of the fluctuation contribution to the Nernst (and also in the re-

lated Ettinghausen) effect attracted special attention after the experiments [16–18] which

demonstrated the appearance of a fluctuation tail above the critical temperature in the

Nernst signal of the high temperature superconductor. More recently, the Nernst effect

again returned to the center of attention with the appearance of measurements showing

a sizeable signal well above Tc, in particular in the underdoped regime [19, 20, 23, 24].

2.3 Nernst effect in superconductor

The appearance of a fluctuation tail above the critical temperature in the Nernst signal

was observed in strongly Type-II superconductors, both low-Tc like NbSe2 and NbSi films

[24] and several different high-temperature materials [17–20, 23]. The related Etting-

shausen effect was detected as well [16]. In particular, the Nernst effect was observed

well above Tc2 (H) and even above Tc in Bi2Sr2CaCu2O8+δ (Bi2212) [23] , strongly un-

derdoped YBCO [20, 21, 23] and LaSCO [19, 20, 22, 23]. With the overdoped regime

(LaSCO with x = 0.20 and Tc=28 K) in Fig. 2.3, the signal rises steeply at each temper-

ature T , attaining a prominent maximum before decreasing. The total data set defines

experimentally the region in H and T where vorticity is strongly present. At high fields,

all the curves below 14 K are observed to follow a common curve towards zero (dashed

line). Hence all the low-T curves vanish at the intercept of the common curve with the

field axis (45-50 T), which corresponds to Hc2(0). Going to higher T , we immediately

encounter an anomaly we immediately encounter an anomaly. Conventionally, the Hc2

line goes linearly to zero at Tc. Hence, ey ought to be finite in a field interval that → 0

as T → Tc. In sharp contrast, we find that, close to Tc, but the magnitude of ey remains
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Figure 2.3: The field dependence of ey at indicated T in samples LaSCO.

large and nearly unchanged up to intense fields for close to Tc. The anomalous features

of the Nernst signal become more pronounced when we go to the underdoped regime.

The results in underdoped YBCO (with y = 6.50 and Tc=50 K) are showed in Fig. 2.4.

As H increases above melting line, ey rises rapidly, but attains a very broad maximum

that extends undiminished to 30 T. These layered materials are highly anisotropic and

Figure 2.4: The field dependence of ey at indicated T in samples YBCO.

can be described by a quasi two dimensional model. Due to reduced dimensionality the
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effect of thermal fluctuations is enhanced. However in less anisotropic materials like the

hole-doped cuprate Nd2−xCexCuO4 (NCCO) [23] and weakly anisotropic and overdoped

or fully oxidized YBCO6.99 [23] the effect persists. Fluctuations in these materials cannot

be described by a 2D model and generalization to anisotropic 3D model is required. The

quasiparticle contribution to the Nernst signal attains a magnitude comparable to the

vortex signal in the superconducting state. More recently, in experiment on amorphous

thin films of the conventional low temperature superconductor Nb0.15Si0.85[24], a Nernst

signal generated by short-lived Cooper pairs in the normal state in Fig. 2.5. In these

Figure 2.5: (Color) Nernst signal (N) as a function of magnetic field for temperatures ranging
from 0.180 K to 0.360 K (upper left panel) and from 0.56 to 4.3 K (upper right panel) measured
on thin films of Nb0.15Si0.85 (with Tc=380 mK and thicknesses 35 nm).

amorphous films, the contribution of free electrons to the Nernst signal is negligible. In-

deed, the Nernst coefficient of a metal scales with electron mobility. The extremely short

mean free path of electrons in amorphous Nb0.15Si0.85 damps the normal-state Nernst ef-

fect and allows a direct comparison of the data with theory. In the zero-field limit and

close to Tc, the magnitude of the Nernst coefficient was found to be in quantitative agree-

ment with a theoretical prediction [12] by Ussishkin et al, invoking the superconducting

correlation length as its single parameter. At high temperature and finite magnetic field,
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the data were found to deviate from the theoretical expression. In electron-doped cuprate

NCCO the quasiparticle contribution to the Nernst signal is large [23]. The quasiparticle

contribution actually dominates the Nernst signal far below Tc. Nevertheless, the vortex

signal retains its characteristic tilted-hill profile which is easily distinguished from the

monotonic quasiparticle contribution.

The observation of the Nernst effect above Tc along with other strong fluctuation

effects was interpreted as a support for the preformed pairs scenario for the mechanism

of the transition to the superconducting state. At the same time thermal fluctuations in

high-Tc materials lead to many other remarkable phenomena, most notably vortex lattice

melting and thermal depinning well studied both experimentally and theoretically over

the last two decades, so that the theory of the Nernst effect should be consistent with the

theory of these phenomena. Most importantly, the material parameters determining the

fluctuation strengths can be determined from these better studied effects since in many

recent experiments at least the melting line was measured on the same samples.

Theory of the electronic and the heat transport (including the Nernst effect) based on

the phenomenological TDGL equations with thermal noise describing strongly fluctuating

superconductors was developed long time ago [8, 11]. More recently within the same

framework I. Ussishkin et al. [12] calculated perturbatively the low-field Nernst effect for

T > Tc due to contribution of Gaussian fluctuations and obtained results in agreement

with a microscopic Aslamazov-Larkin [8] calculation. They obtained the result for αSC
xy ,

which diverges as the conductivity, and in reasonable agreement with experimental data

on LaSCO in Fig. 2.6.

αSC
xy ∝ σSC

xy ∝ 1

(T − Tc)(d−4)/2
. (2.4)

If only Gaussian fluctuations are considered then, αxy, diverges at the mean-field transi-

tion, in conflict with the experimental results. One of important conclusions that inter-

actions between the fluctuations must be considered in order to obtain even qualitative
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Figure 2.6: Points are σxx(ν − νn) for different samples of LaSCO, with x = 0.12 (underdoped,
Tc=29 K), x = 0.17 (near optimal doping, Tc=36 K), and x = 0.2 (overdoped, Tc=27 K). The
solid line is the theoretical value of αxy/B, using ξ=30 Å and an anisotropy of γ = 20. The
dashed line is obtained using a Hartree approximation.

agreement with the experimental results. S. Ullah and A. T. Dorsey [11] applied the

Hartree approximation to treat the quartic term in the GL Hamiltonian within LLL.

In the limit of high magnetic fields, they found a smooth crosser from a regime dom-

inated by two-dimensional Gaussian fluctuation for T > Tc2(H), to mean-field results

for T < Tc2(H), with no intervening divergence, in agreement with the experimental re-

sults. The absence of such a divergence is due to the one-dimensional character of the

fluctuations-fluctuations transverse to the applied magnetic fields.

S. Mukerjee et al. [14] numerically simulated the two dimensional TDGL equation

with Langevin thermal noise for T < Tc and obtained results in reasonable agreement with

experimental data on LaSCO [21] at lower temperature, but the transverse thermoelectric

conductivity became independent of magnetic field at higher temperatures in contrast to

experiment. The simulation of this system, even in 2D, is difficult and it was one of our

goals to supplement it with a reliable analytical expression in the region of the vortex

liquid, namely in the region above the melting line (see Fig. 2.7) at which the vortex

matter becomes homogeneous on a scale of several lattice spacings and the crystalline

symmetry is lost. In this phase the pinning is ineffective and, unlike in the vortex glass
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phase, vortices actively promote the Nernst effect. Recent understanding of the vortex

matter phase diagram is summarized in Fig. 2.7. There are four phases separated by two

transition lines [33]: the first order melting line (sometimes called the order-disorder line at

lower temperatures, Hm(T ) line in Fig. 2.7) and the irreversibility (or glass) continuous

transition. The melting line separates crystalline phases from a homogeneous phases,

Figure 2.7: The thermodynamic phase diagram of BSCCO accommodates four distinct phases,
separated by a first order melting line Hm(T ) (open circles), which is intersected by the second-
order glass line Hg(T ) (solid dots). The inset plots an equivalent phase diagram, calculated
based on Ref. [29], consisting of a second-order replica symmetry breaking lines Hg(T ) both
above (dotted line) and below (dashed line) the first-order transition Hm(T ) (solid line).

while the glass line (Hg(T ) line in Fig. 2.7) separates pinned phases from the unpinned

ones. The mean field Hc2(T ) line in strongly fluctuating superconductors becomes a

crossover. Both pinning and crystalline order lead to a strong reduction of the Nernst

signal and therefore these phases will not be considered here. We concentrate on the

vortex liquid phase (see Fig. 2.7) and discuss the melting line and disorder only as limits of

applicability of the theory and for determining the material parameters. The quantitative

GL theory of the vortex liquid have been developed recently and it was established that

the Hartree-Fock approach for the thermodynamic is close to the convergent Borel-Pade

one in the wide region of the vortex liquid phase [29].
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2.4 The Ginzburg-Landau Model in 2D

2.4.1 Free energy

To describe fluctuation of order parameter in thin films or layered superconductors one

can start with the GL free energy:

F = s′
∫

dr
~2

2m∗ |DΨ|2 + a|Ψ|2 +
b′

2
|Ψ|4, (2.5)

where A = (−By, 0) describes a constant and practically homogeneous magnetic field (we

generally neglect small fluctuations of the magnetic field due to magnetization which are

of order 1/κ2 << 1 in the region of interest) in Landau gauge and the covariant derivative

is defined by D ≡ ∇+i(2π/Φ0)A, with Φ0 = hc/e∗ being the flux quantum, e∗ = 2|e|. For

simplicity we assume linear dependence a(T ) = αTmf
c (tmf − 1), tmf = T/Tmf

c , although

the temperature dependence can be easily modified to better describe the experimental

coherence length. The “mean field” critical temperature Tmf
c depends on the ultraviolet

(UV) cutoff, Λ, specified later. It is higher than measured critical temperature Tc due

to strong thermal fluctuations on the mesoscopic scale. The order parameter effective

“thickness” of a layer, s′, is assumed to be small enough, so that order parameter does not

vary considerably inside the layer (namely does not exceed the coherence length ξz (T )

along the field direction) and layers are nearly independent. We apply this model to

describe experiments not just in BiSCCO and other highly anisotropic materials, but

also in overdoped LaSCO [21] and strongly underdoped YBCO [21]. For more isotropic

optimally doped or fully doped YBCO [21] an anisotropic 3D GL model (neglecting the

layered structure) would be more appropriate. For materials between the two extremes,

a more complicated model like the Lawrence-Doniach one should be used.
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2.4.2 Relaxation dynamics and thermal fluctuations

Since we are interested in transport phenomena, it is necessary to introduce some kind of

dynamics for the order parameter. The simplest is a gauge-invariant version of the “Type

A” relaxational dynamics [8, 34]. In the presence of thermal fluctuations, which on the

mesoscopic scale are represented by a complex white noise [8, 35], it reads:

~2γ′

2m∗DtΨ = − δF

δΨ∗ + ζ, (2.6)

called in the present context TDGL equation. Explicitly the TDGL equation for the

superconducting order parameter is

~2γ′

2m∗DtΨ =
~2

2m∗D
2Ψ− aΨ− b′|Ψ|2Ψ + ζ, (2.7)

where Dt ≡ ∂/∂t − i(e∗/~)Φ is the covariant time derivative with φ (r) = −Ey being

the scalar potential describing electric field. To incorporate the thermal fluctuations via

Langevin method, the noise term ζ (r, t), having Gaussian correlations

〈ζ∗(r, t)ζ(r′, t′)〉 =
~2γ′

m∗s′
Tδ(r− r′)δ(t− t′), (2.8)

is introduced. Here δ(r−r′) is the two dimensional δ function of the in-plane coordinates,

and the inverse diffusion constant γ′/2, controlling the time scale of dynamical processes

via dissipation, is real, although a small imaginary (Hall) part is also generally present

[36].

Throughout most of the thesis we will use the coherence length, ξ = (~2/2m∗αTmf
c )1/2,

the zero-temperature correlation length as a unit of length, and Hc2(0) = Φ0/2πξ2 being

the zero-temperature critical field (extrapolated by the linear formula from Tc, actual

Hc2(T ) at T = 0 is lower) as a unit of magnetic field. After the order parameter field is
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rescaled as Ψ2 → (2αTmf
c /b′)ψ2. The dimensionless Boltzmann factor in these units is:

F

T
=

1

ηmf
2D tmf

∫
dr

[
1

2
|Dψ|2 − (ah +

b

2
) |ψ|2 +

1

2
|ψ|4

]
, (2.9)

where the covariant derivatives in dimensionless units in Landau gauge are Dx = ∂
∂x
− iby,

Dy = ∂
∂y

with b = B/Hc2(0), and the constant is defined as ah = (1 − tmf − b)/2. The

dimensionless fluctuations’ strength coefficient is

ηmf
2D =

√
2Gimf

2D π, (2.10)

where the Ginzburg number is defined by

Gimf
2D =

1

2

(
8e2κ2ξ2Tmf

c

c2~2s′

)2

. (2.11)

In analogy to the coherence length and the penetration depth, one can define a

characteristic time scale. In the superconducting phase a typical “relaxation” time is

tGL = γ′ξ2/2. It is convenient to use the following unit of the electric field and the

dimensionless field: EGL = Hc2ξ/ctGL, E = Ey/EGL. The TDGL Eq. (2.7) written in

dimensionless units reads

∂tψ − 1

2
D2ψ − (ah +

b

2
)ψ + |ψ|2 ψ − iEyψ = ζ, (2.12)

In terms of dimensionless quantities the Gaussian correlations read:

〈ζ∗(r, t)ζ(r′, t′)〉 = 2ηmf
2D tmfδ(r− r′)δ(t− t′), (2.13)

where the thermal noise was rescaled as ζ = ζ(2αTmf
c )3/2/b′1/2.
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2.4.3 The heat and the electric total and transport currents

The total heat current density is written by [8, 11, 37]:

Jh = − ~2

2m∗

〈(
∂

∂t
− i

e∗

~
φ

)
Ψ∗

(
∇− i

2π

Φ0

A

)
Ψ

〉
+ c.c., (2.14)

while the total electric current is

Je = i
e∗~
2m∗

〈
Ψ∗

(
∇− i

2π

Φ0

A

)
Ψ

〉
+ c.c. (2.15)

In terms of dimensionless quantities the currents read:

Jh = Jh
GLj

h, jh = −
〈(

∂

∂t
− iEy

)
ψ∗ (∇− iA) ψ

〉
+ c.c, (2.16)

and

Je = Je
GLj

e, je =
i

2
〈ψ∗Dψ〉+ c.c. (2.17)

with Jh
GL = c~Hc2/(4πξ3γe∗κ2) and Je

GL = cHc2/(2πξκ2) being the unit of the heat and

electric current density, respectively. Consistently the conductivity will be given in units

of σGL = JGL/EGL = c2γ′/(4πκ2). This unit is close to the normal state conductivity σn

in dirty limit superconductors [38]. In general there is a factor k of order one relating the

two: σn = kσGL.

An important aspect of the calculation of the electrothermal conductivity, discussed

in detail [39], is the need to account for bulk magnetization currents. In the presence of

a magnetic field, the system has magnetization current in equilibrium. The total heat

current defined by Eq. (2.14) is thus a sum of transport and magnetization parts,

Jh = Jh
tr + Jh

mag. (2.18)
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The magnetization current is current that circulates in the sample and does not contribute

to the net current which measured in a transport experiment. On the other hand, it does

contribute to the total microscopic current, and it is thus necessary to subtract it from

the total current to obtain the transport current response. In the presence of an applied

electric field, it was shown in Ref. [39] that the magnetization current is given by

Jh
mag = cM× E, (2.19)

where M is the equilibrium magnetization.

Generally, to define the transport coefficients, the electric and heat transport current

densities are related to the applied (sufficiently weak) electric field and the temperature

gradient by

J
(e)i
tr = σijEj − αij∇jT, (2.20)

J
(h)i
tr = α̃ijEj − κij∇jT, (2.21)

where σ, α, α̃, and κ are the electrical, the thermoelectric, the electrothermal, and the

thermal conductivity components of the conductivity tensor (i, j = x, y). The Onsager

relation implies α̃ = Tα. The Nernst coefficient νN , under the condition J
(e)
tr = 0 is

expressed in terms of the above coefficients as

νN =
Ey

(−∇T )xB
=

1

B

αxyσxx − αxxσxy

σ2
xx + σ2

xy

. (2.22)

If the system shows no significant Hall effect (only such systems will be considered), then

σxy = 0 and the expression simplifies:

νN =
αxy

Bσxx

. (2.23)
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The Nernst signal is defined

eN =
Ey

(−∇T )x

= BνN . (2.24)

For comparison with experiment, the fluctuation contribution, σxx and eN , should be

added to the normal sate contribution, σn and en
N . However, the normal state the Nernst

signal en
N is very small in these materials [12, 23] and will be largely ignored in what

follows.

It then follows that the electrothermal conductivity is given by

α̃xy ≡
Jh

(tr)x

Ey

=
Jh

x

Ey

+ cMz. (2.25)

The both terms contribute as will be shown in the following Sections.

2.5 The transverse thermoelectric conductivity in the

vortex liquid phase

2.5.1 Melting of the vortex solid, vortex glass and the range of

validity of the gaussian approximation

At low temperatures vortex matter organizes itself into a (usually, but not always) hexag-

onal vortex lattice. When disorder can be effectively neglected (either in very clean

materials or when thermal depinning occurs), one can consider transport of the vortex

lattice as a whole. Expressions for the electric and the thermal conductivities near Hc2 (T )

neglecting thermal fluctuations were obtained in [11], and according to results the Nernst

effect is generally very small compared to one in the vortex liquid. This can be qualita-

tively understood as a result of rigidity of the lattice. Below the melting line the situation

in this respect does not change much. Moreover due to unavoidable presence of disorder,

the vortex lattice is pinned forming a Bragg glass in most of its domain [33]. However
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in high-Tc superconductors thermal fluctuations are strong enough (especially for high

anisotropy and high magnetic fields) to destroy the expectation value of the condensate

〈ψ〉 = 0. We always assume that thermal fluctuations melted away and in addition tem-

perature is high enough to thermally depin the vortex liquid (avoiding the “vortex glass”).

As a consequence impurities in the vortex liquid are neutralized. To determine the range

of validity of the above assumptions one has to estimate the location of the melting and

the irreversibility lines. Within the LLL approximation (which is valid near melting in

wide range of parameters [29]) the line separating the crystalline and the homogeneous

phases is given in 2D by

a2D
T ≡ − (2Gi2D)−1/4 (

bt
)−1/2 (

1− t− b
)

= −13.6, (2.26)

where t = T/Tc and aT is the dimensionless “LLL scaled” temperature with

Gi2D ≡ 1

2

(
8e2κ2ξ2Tc

c2~2s

)2

, (2.27)

being a 2D analog of the Ginzburg parameter characterizing the strength of thermal

fluctuations on the mesoscopic scale. Eq. (2.26) determines the melting line in Fig.

2.7 and in turn the melting line fixes the Gi in all the fits to experimental data below.

This expression was obtained from the comparison of the calculated free energies of the

vortex lattice (expansion to two loop order) and of the vortex liquid within the Borel-Pade

approach. The corresponding value and definition for 3D are

a3D
T = −21/3 (Gi)−1/3 (bt)−2/3(1− t− b) = −9.5, (2.28)

where the Ginzburg number in 3D is defined as

Gi ≡ 1

2

(
8e2κ2ξTcγ

c2~2

)2

, (2.29)
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and γ ≡
√

mc/m∗ is an anisotropy parameter. Note that here we use the standard

definition of the Ginzburg number different from that in Ref. [29].

In the presence of disorder, vortex matter can be pinned. It leads to several phe-

nomena. On the one hand side the vortex lattice is destroyed effectively at large fields,

but on the other hand side vortices are pinned and cannot take advantage of thermal

fluctuations. The irreversibility or the vortex glass line determining the region in which

thermal fluctuations overpower the quench by disorder is given in 2D by [33]

ag
T ≡ 4

2r − 1√
2r

, (2.30)

where

r =
Gi

−1/2
2D

4t
(1− t)2n, (2.31)

and dimensionless parameter n characterizes the disorder strength (similar formulas exist

in 3D) [29]. This determines the dotted line Hg(T ) in Fig. 2.7.

2.5.2 Magnetization in the vortex liquid within the Gaussian

approximation

In order to calculate magnetization, it is simpler to use the statistical mechanics rather

than the time dependent approach.

f =
F

T
=

1

ηmf
2D tmf

∫
dr

[
1

2
|D|2 ψ − (ah +

b

2
) |ψ|2 +

1

2
|ψ|4

]
, (2.32)

In the framework of this approximation, free energy, Eq. (2.32), is divided into an opti-

mized quadratic part K, and a “small” part V . Then K is chosen in such a way that the

energy of a Gaussian state is minimal [29]. In liquid phase with an arbitrary homogeneous

28



CHAPTER 2. THEORY OF NERNST EFFECT IN HIGH-TC SUPERCONDUCTOR

U(1) symmetric state, one variational parameter ε is sufficient

K =
1

ηmf
2D tmf

∫
dr

[
ψ∗

(
−1

2
D2 − b

2
+ ε

)
ψ

]
. (2.33)

The small perturbation is therefore

V =
1

ηmf
2D tmf

∫
dr

[
(−ah − ε) |ψ|2 +

1

2
|ψ|4

]
. (2.34)

The eigenvalue of nth level is −1
2
D2ϕ = (n + 1

2
)ϕ. For simplified in writing, we introduce

ggauss(ε) = gtrlog(ε) + 〈V (ε)〉K which is relative to the free energy density as feff =

−ηmf
2D tmfggauss, where

gtrlog ≡ − log

[∫
DψDψ∗ exp(−K)

]
=

b

2π

∞∑
n=0

log(nb + ε), (2.35)

〈V 〉K = −(ah + ε)
b

2π

∞∑
n=0

1

nb + ε
+ ηmf

2D tmf

(
b

2π

∞∑
n=0

1

nb + ε

)2

, (2.36)

( Magnetic field independent term appear in the free energy density is dropped because

it is irrelevant to our study on magnetization.) Both terms has ultraviolet divergency,

namely at large n the sums diverge. An UV cutoff Nf + 1 = Λ
b

are introduced for

regularization. To extract the divergent part, one can interpolate the gtrlog to two terms:

gtrlog =
b

2π

{
Nf∑
n=1

[
log (nb + ε)−

∫ n+1/2

n−1/2

log (xb + ε) dx

]

+ log ε +

Nf∑
n=1

∫ n+1/2

n−1/2

log (xb + ε) dx

}
. (2.37)

The last term is divergent and for large n, it can be approximated by log(1 + x) ∼ x:

b

Nf∑
n=1

∫ n+1/2

n−1/2

log (xb + ε) dx

' Λ(log Λ− 1) + (ε− b/2) log Λ + (ε + b/2)− (ε + b/2) log (ε + b/2) . (2.38)
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Therefore one can divided gtrlog to an infinite part with Λ and a finite part, u:

gtrlog =
1

2

[
Λ(log Λ− 1) + (ε− b

2
) log Λ

]
+ u(ε, b). (2.39)

The finite part u can be simplified as

u(ε, b) =
b

2π
fs(ε/b) +

b

2π
(1/2− ε/b) log b, (2.40)

where the function fs is defined as

fs(x) = log x−(x+1/2)(log(x+1/2)−1)+
∞∑

n=1

[
log(n + x)−

∫ n+1/2

n−1/2

log(y + x)dy

]
, (2.41)

which is basically − ln Γ(x) plus a constant.

Turning to the interactions part, we perform the “bubble” integral which diverges

logarithmically:

b

2π

∞∑
n=0

1

nb + ε
=

1

2π
log Λ + u′, (2.42)

where u′ ≡ ∂
∂ε

u(ε, b) = 1
2π

[ f ′s (ε/b)− log b], and the derivative of fs is a polygamma

function, ψp, i.e.

f ′s =
∞∑

n=1

[
1

n + x
−

∫ n+1/2

n−1/2

1

(y + x)
dy

]
+

[
1

x
− log (x + 1/2)

]
= −ψp(x). (2.43)

The total free energy in Gaussian variational approximation for all Landau levels is

obtained,

ggauss(ε) =
1

2π
Λ(log Λ− 1)− η2Dt

(
1

2π
log Λ

)2

− (ar
h + ε)

(
1

2π
log Λ

)

−(ar
h + ε)u′ + u(ε, b) + η2Dt(u′)2. (2.44)

where note that ηmf
2D tmf = η2Dt. Thus, the the temperature Tc will be renormalized: ar

h ≡
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ah− η2Dt
π

log Λ = (1− t− b)/2. The first three terms are divergent, however, they will not

contribute to physical quantities such as magnetization, specific hear ...etc. Minimizing

the energy, we get the gap equation

ε = −ar
h + 2η2Dtu′(ε, b). (2.45)

Substitute the solution εs to ggauss one get the minimized free energy density feff =

−η2Dtg:

g =
1

2π
Λ(log Λ− 1)− η2Dt

(
1

2π
log Λ

)2

− (ar
h + ε)

(
1

2π
log Λ

)

+u(ε, b)|εs − η2Dt(u′)2|εs . (2.46)

Magnetization 2D can be obtained by taking the first derivative of Gibbs energy with

respect to magnetic field b.

M2D = − Hc2

4πκ2
η2Dt∂bg = − T

2Hc2ξ2s′
(∂bu− 2η2Dtu′∂bu

′). (2.47)

Similar calculation, magnetization 3D takes a form

M3D = − Hc2

4πκ2
ηt∂bg = − T

2Hc2ξ2ξz

(∂bu3D − 2ηtu′3D∂bu
′
3D). (2.48)

The function u(ε, b) can be written in the following form

u3D(ε, b) =
1√
2π

b3/2v
(ε

b

)
, (2.49)

where

v (x) =
∞∑

n=0

[√
n + x− 2

3
(x + n +

1

2
)

3
2 +

2

3
(x + n− 1

2
)

3
2

]
− 2

3
(x− 1

2
)

3
2 . (2.50)
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2.5.3 Vortex liquid within the Gaussian approximation

Due to thermal fluctuations the expectation value of the order parameter in vortex liquid is

zero 〈ψ(r, t)〉 = 0. Therefore contribution to the expectation values of physical quantities

like the electric and the heat current come exclusively from the correlations. The most

important is the quadratic one

C(r, t; r′, t′) = 〈ψ(r, t)ψ∗(r′, t′)〉 , (2.51)

called the correlation function of the order parameter. In particular the superfluid density

is

〈|ψ(r, t)|2〉 = C(r, t; r, t). (2.52)

A simple approximation which captures the most interesting fluctuations effects in

the Gaussian approximation (see Refs. [35, 40] and Appendix B for details), in which the

cubic term in the GL equation Eq. (2.12) |ψ|2ψ is replaced by a linear one 2 〈|ψ|2〉ψ

[
∂t − 1

2
D2 + ε− b

2

]
ψ = ζ, (2.53)

leading the “renormalized” value of the coefficient:

ε = −ah + 2〈|ψ|2〉. (2.54)

The formal solution of this equation is

ψ(r, t) =

∫
dr′

∫
dt′G0(r, t; r

′, t′)ζ(r′, t′), (2.55)
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where G0 is the equilibrium Green’s function (GF) which satisfies

[
∂t − 1

2
D2 + ε− b

2

]
G0(r, t; r

′, t′) = δ(r− r′)δ(t− t′). (2.56)

The easiest way to find G0 is by Fourier transformation, which immediately gives

[
iΩ− 1

2
D2 + ε− b

2

]
G0(r, r

′, Ω) = δ(r− r′), (2.57)

where

G0(r, r
′, Ω) =

∫

t′
G0(r, t; r

′, t′)e−iΩ(t−t′). (2.58)

By expanding G0 in term of the Landau eigenfunction one has

G0(r, r
′, Ω) =

∑
n

ϕn(r)ϕ∗n(r′)
iΩ + En

, (2.59)

where ϕn(r) satisfies

[
−1

2

(
∂

∂x
− iby

)2

− 1

2

∂2

∂y2
+ ε− b

2

]
ϕn(r) = Enϕn(r). (2.60)

Equation (2.60) is solved exactly in Quantum mechanics, so one gets

G0(r, t; r
′, t′) =

√
b

4π2

∫

Ω,ỹ0

G0(ỹ, ỹ′, Ω, ỹ0)e
−i
√

bỹ0(x−x′)eiΩ(t−t′), (2.61)

where ỹ =
√

by , and ỹ0 = −kx/
√

b, kx is the x component of the vector momentum and

G0(ỹ, ỹ′, Ω, ỹ0) =

(
b

π

)1/2

exp
[−(ỹ − ỹ0)

2/2− (ỹ′ − ỹ0)
2/2

]∑
n

1

2nn!

Hn(ỹ − ỹ0)Hn(ỹ′ − ỹ0)

(iΩ + En)
,

(2.62)
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with the energy eigenvalues

En = nb + ε, (2.63)

(Hn are the Hermite polynomials).

Averaging over the noise, Eq. (2.13), and Eq. (2.55), the equilibrium correlation

function Eq. (2.51) is

C0(r, t; r
′, t′) = 2ηmf

2D tmf

∫

r1,t1

G0(r, t; r1, t1)G
∗
0(r

′, t′; r1, t1)

= −ηmf
2D tmf

√
b

2π2

∫

Ω,ỹ0

ImG0(ỹ, ỹ′, Ω, ỹo)

Ω
e−i

√
bỹ0(x−x′)eiΩ(t−t′). (2.64)

which enters the self-consistent equation (sometimes called gap equation) Eq. (2.54),

determining ε. In equilibrium, 〈|ψ(r, t)|2〉 is

〈|ψ(r, t)|2〉 =
ηmf

2D tmfb

2π

∑
n

1

En

. (2.65)

Thus Eq. (2.54) becomes

ε = −ah +
ηmf

2D tmfb

π

∑
n

1

nb + ε
= −ah +

ηmf
2D tmfb

π

∑
n

1

nb + ε
, (2.66)

The sum in Eq. (2.66) diverge at large n. An ultraviolet (UV) cutoff Λ was introduced

for regularization in section 2.5.2. The interactions part, the “bubble” integral, was

performed in Eq. (2.42). Thus, the the temperature Tc will be renormalized:

ar
h = ah − η2Dt/π log Λ, (2.67)

where note ηmf
2D = η2D

T mf
c

Tc
, and η2D =

√
2Gi2Dπ with Gi2D = 1

2
(8e2κ2ξ2Tc/c

2~2s′)2
(Tmf

c
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is now replaced by Tc) . The gap equation takes a form

ε = −ar
h + 2η2Dtu′(ε, b). (2.68)

This coincides with the static approach presented in section 2.5.2.

2.5.4 Expectation value of the heat current in linear response

to electric field

The heat and the electric current in section 2.4.3 in the vortex liquid phase can be rewritten

as following:

jh = −
[
D (r)

(
∂

∂t′
− iEy

)
+ D∗ (r′)

(
∂

∂t
+ iEy

)]
C(r, t; r′, t′)|r=r′;t=t′ , (2.69)

je = −i [D (r)−D∗ (r′)] C(r, t; r′, t′)|r=r′;t=t′ , (2.70)

where

C(r, t; r′, t′) = 2η2Dt

∫

r1,t1

G(r, t; r1, t1)G
∗(r′, t′; r1, t1), (2.71)

with G is the GF of the linearized TDGL equation in the presence of the scalar potential.

One finds correction to the Green function to linear order in the electric field

G(r, t; r′, t′) = G0(r, t; r
′, t′)− iE

∫

r1,t1

y1G0(r, t; r1, t1)G0(r1, t1; r
′, t′). (2.72)

The transverse thermoelectric conductivity is obtained by expanding the correlation

function to linear order in the electric field. The correlation function C in terms of the

GF G0 using Eqs. (2.64), ( 2.71) and (2.72) takes a form

C(r, t; r′, t′) = C0(r, t; r
′, t′) + C1 (r, t; r′, t′) , (2.73)
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where

C1(r, t; r
′, t′) = iE

∫

r1,t1

y1 [G0(r, t; r1, t1)C
∗
0(r′, t′; r1, t1)−G∗

0(r
′, t′; r1, t1)C0(r, t; r1, t1)]

= i
Eη2Dt

2π2
√

b

∫
dΩ

Ω

∫

ỹ0,ỹ1

ỹ1[G
∗
0(ỹ

′, ỹ1, Ω, ỹ0)ImG0(ỹ, ỹ1, Ω, ỹ0)

− G0(ỹ, ỹ1, Ω, ỹ0)ImG0(ỹ
′, ỹ1, Ω, ỹ0)]e

−i
√

bỹ0(x−x′)eiΩ(t−t′), (2.74)

C0 is the equilibrium correlation function which do not contribute to the currents take a

form

In order to determine the transverse thermoelectric conductivity, we need to compute

the x component of the heat current to first order in the electric field. In the chosen

gauge, the heat current along the x direction under condition je
tr(x) = 0 also contains two

terms. The term coming from C0 vanishes

jh
0x =

Eη2Dt
√

b

2π2

∫

Ω,ỹ0

(ỹ − ỹ0) ImG0(ỹ, Ω, ỹ0) = 0, (2.75)

because ImG0(ỹ, Ω, ỹ0) is a odd function of Ω. It is possible to interpret easily that C0 is

the equilibrium correlation function which does not contribute to the current. Considering

the C1

jh
1x =

2Eη2Dtb

π2

∑
nm

1

2nn!

1

2mm!

∫ +∞

−∞

dΩ

2π
Ω2 1

(E2
n + Ω2)

1

(E2
m + Ω2)

×
∫ +∞

−∞
dỹ0

∫ +∞

−∞
dỹ1ỹ1 (ỹ0 − ỹ) exp

[−(ỹ − ỹ0)
2 − (ỹ1 − ỹ0)

2
]

×Hn(ỹ − ỹ0)Hn(ỹ1 − ỹ0)Hm(ỹ − ỹ0)Hm(ỹ1 − ỹ0)

=
Eη2Dt(b− 2ε)

2b

[
u′(ε, b)− u′(ε + b, b)

]
. (2.76)

where function u′ was defined in Eq. (2.42).

The heat current in physical units is therefore

jh
x =

cTEy

Hc2ξ2s′

(
1

2
− ε

b

) [
u′(ε, b)− u′(ε + b/2, b)

]
. (2.77)
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Using the Onsager relation and Eqs. (2.25), (2.47) and (2.77) one obtains the trans-

verse thermoelectric conductivity

αxy ≡ α̃xy

T
=

c

2bHc2ξ2s′

{
(b− 2ε) [u′(ε, b)− u′(ε + b/2, b)]−2b∂bu(ε, b)+4bη2Dtu′∂bu

′
}

.

(2.78)

Similar calculation, the electrical conductivity in physical units σyy =
Je

y

Ey
(averaged over

r) takes a form

σyy =
η2Dt

2

σn

k

∑
n

(n + 1)

(
1

nb + ε
+

1

(n + 1)b + ε
− 2

(n + 1/2)b + ε

)

=
η2Dt

4πb2

σn

k
[(b− ε)u′(ε, b)− εu′(ε + b, b)− (b− 2ε)u′(ε + b/2, b)]

=
η2Dt

4πb

σn

k

{
2−

(
1− 2ε

b

)[
ψp

(ε

b

)
− ψp

(
1

2
+

ε

b

)]}
, (2.79)

where ψp is the polygamma function introduced in section 2.5.2.

2.5.5 Extension to anisotropic 3D model

For 3D materials with asymmetry along the z axis the GL model takes a form

F =

∫
dr
~2

2m∗ |DΨ|2 +
~2

2mc

|∂zΨ|2 + a|Ψ|2 +
b′

2
|Ψ|4. (2.80)

which can be again rescaled into

f =
F

T
=

1

ηmf tmf

∫
dr

[
1

2
|Dψ|2 +

1

2
|∂zψ|2 −

(
ah +

b

2

)
|ψ|2 +

1

2
|ψ|4

]
, (2.81)

by x → ξx, y → ξy, z → ξz/γ, Ψ2 → (2αTmf
c /b′)ψ2. The dimensionless coefficient is

ηmf =
√

2Gimfπ. (2.82)
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where the Ginzburg number is defined by

Gimf =
1

2

(
8e2κ2ξTmf

c γ/c2~2
)2

. (2.83)

The gap equation takes a form

ε = −ar
h + 2ηt u′3D. (2.84)

where note ηmf = η T mf
c

Tc
, and η =

√
2Giπ with Gi = 1

2
(8e2κ2ξTcγ/c2~2)

2
(Tmf

c is now

replaced by Tc).

The transverse thermoelectric conductivity is

αxy =
cγ

2bHc2ξ3

{
u3D(ε, b)/2b− u3D(ε + b/2, b)/2b + (b− 2ε)[u′3D(ε, b)− u′3D(ε + b/2, b)]

− 2b∂bu3D + 4bηtu′3D∂bu
′
3D

}
, (2.85)

while the electrical conductivity

σyy =
ηt

4b2

σn

k

[
u3D(ε, b) + u3D(ε + b, b)− 2u3D(ε + b/2, b) + 2(b− ε)u′3D(ε, b)

− 2εu′3D(ε + b, b)− 2(b− 2ε)u′3D(ε + b/2, b)
]
. (2.86)

2.6 Comparison with experiment and MC simulation

Here we compare the results to 2D the simulation results of S. Mukerjee and D.A. Huse

[14] and several recent experiments on high-Tc cuprates.

2.6.1 Two dimensional thermal fluctuations: LaSCO

The experiment results of Y. Wang et al. [21] obtained from the Nernst effect and resis-

tivity measurements on an overdoped LaSCO sample with x = 0.20 and Tc=28 K. The

comparison is presented in Fig. 2.8 (low temperatures in (a) and close to Tc in (b)). The
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Figure 2.8: Points are αxy for different temperatures of LaSCO in Ref. [21], with x=0.2
(overdoped, Tc=28 K). The dashed line is the simulation value of αxy in Ref. [14]. The solid
line is the theoretical value of αxy with fitting parameters (see text).
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Figure 2.9: Comparison of the experimental melting line for overdoped LaSCO in Ref. [21]
with our fitting.

parameters we obtain from the fit are: Hc2(0) = TcdHc2 (T ) /dT |Tc = 55 T (corresponding

to ξ = 24.5 Å), the Ginzburg-Landau parameter κ = 56, the order parameter effective

thickness s′ = 6.8 Å. Using those parameters we obtain Gi2D = 1.1×10−4 (corresponding

to η2D = 0.046) and provides a reasonable quantitative agreement between theory and

experiment. Below irreversibility line where the theory should be modified including both

pining and crystalline phase in Fig. 2.8 (a). The deviation develops roughly at the loca-

tion of the irreversibility line. However, our results are in good quantitative agreement

with experimental data for temperature close to Tc in Fig. 2.8 (b), where the numerical

simulation gives a nearly constant αxy, while the experiment shows more variation. In Fig

. 2.9 the melting line of overdoped LaSCO of Ref. [21] is fitted using Gi2D = 1.49× 10−4,

corresponding to η2D
∼= 0.054 which is consistent with the adjusted value of η2D when we

fit the transverse thermoelectric conductivity. The glass (irreversibility) line in Fig . 2.9

which is estimated from Fig. 2.8 (a), where values of αxy are lower than simulation and

experiment data.
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Figure 2.10: Points are eN for different temperatures of YBCO in Ref. [21], with y=6.5
(underdoped, Tc=50 K). The solid line is the theoretical value of eN with fitting parameters (see
text).

2.6.2 Two dimensional thermal fluctuations: underdoped YBCO

We also compared the results to the experiment on an underdoped YBCO sample with

y = 6.5 and Tc=50 K in Ref. [21], and the normal sate conductivity σn = 7.14 × 105

(Ω m)−1 in Ref. [41]. The best fitting parameters are: Hc2(0)=97 T (thus ξ = 18.4 Å),

κ = 48.2, and s′ = 4.8 Å, and the factor k = σn/σGL = 0.36. Using those parameters

we obtain Gi2D = 2.19 × 10−4 (corresponding to η2D = 0.066). Our values are in good

quantitative agreement with experimental data for temperature close to Tc in Fig. 2.10.

We find that the theoretical value of eN has a characteristic “tilted-hill” profile observed

in experiment [20, 21, 23]. In Fig. 2.11 we present the fitting of the melting line for

underdoped YBCO in Ref. [21] that gives Gi2D = 3.14 × 10−4, η2D
∼= 0.078 which is

consistent with the adjusted value of η2D when we fit the Nernst signal eN .
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Figure 2.11: Comparison of the experimental melting line for underdoped YBCO in Ref. [21]
with our fitting.

2.6.3 Three dimensional thermal fluctuations: overdoped YBCO

We also used the results calculated in the three dimensions to compare to the experiment

on an overdoped YBCO sample with y = 6.99 and Tc=93 K in Ref. [21]. The normal-state

conductivity and the anisotropy parameter the used in the calculation are σn = 9.45×105

(Ω m)−1 in Ref. [41] and γ = 7.8 in Ref. [42], respectively. The best fitting parameters

are: Hc2(0)=210 T (thus ξ = 12.5 Å), κ = 55, k = 0.45. Using those parameters we obtain

Gi = 2.24× 10−3 (corresponding to η = 0.22). Our results are also in good quantitative

agreement with experimental data for temperature close to Tc in Fig. 2.12. In Fig. 2.13

we also present the fitting of the melting line for overdoped YBCO in Ref. [21] that gives

Gi = 4.26× 10−3, η ∼= 0.29 which is also consistent with the adjusted value of η when we

fit the Nernst signal eN .
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Figure 2.12: Points are eN for different temperatures of YBCO in Ref. [21], with y=6.99
(overdoped, Tc=93 K). The solid line is the theoretical value of eN with fitting parameters (see
text)
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Figure 2.13: Comparison of the experimental melting line for overdoped YBCO in Ref. [21]
with our fitting.
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2.7 Summary

Time dependent Ginzburg-Landau equations with thermal noise describing strong thermal

fluctuations on the mesoscopic scale is used to describe strongly Type-II superconductor

in the vortex-liquid regime both in 2D (describing strongly layered high-Tc supercon-

ductors) and 3D (less layered superconductors like optimally doped YBCO). Using GL

theory developed earlier we estimated the region in the parameter space in which, on

one hand vortex crystal is effectively destroyed by thermal fluctuations and, on the other

hand disorder (significantly “weakened” by thermal fluctuations) is not strong enough to

significantly affect the transport. Under these conditions we obtained explicit expressions

for the transverse thermoelectric conductivity αxy and the Nernst signal eN including all

Landau levels were obtained using a gaussian approximation. It is very similar to the

Hartree-Fock approximation utilized in Ref. [11], but has a virtue of being a variational

principle.

The results are presented using both the strength of the thermal fluctuation η and

more often used Ginzburg number Gi in the 2D and 3D. The applicability region con-

sidered coincides with domain on the phase diagram in which the signal is large. We

compared the results to the available 2D numerical simulations of the same model and

the experiments on high-Tc materials. Our results in 2D are significantly lower than the

available numerical simulation in Ref. [14] below the irreversibility line at which theory

should be modified by including both pinning and crystalline correlation effects. How-

ever within the applicability region theory is in good qualitative and even quantitative

agreement with experimental data on both overdoped La1.8Sr0.2CuO4 and underdoped

YBa2Cu3O6.5 Ref. [21] for temperatures close to Tc.

We also compared the values of eN calculated in the three dimensions with experiment

data for temperature close to Tc on overdoped YBa2Cu3O6.99, and this comparison is also

in good quantitative agreement. The Ginzburg numbers Gi were taken out from the

fitting of melting lines of La1.8Sr0.2CuO4, YBa2Cu3O6.5 and YBa2Cu3O6.99 on the same
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samples. The Ginzburg numbers Gi are consistent with the adjusted values of η when we

fit the transverse thermoelectric conductivity and the Nernst signal. The irreversibility

line of La1.8Sr0.2CuO4 was fitted as well with the same set of parameters.
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Chapter 3

Electrical conductivity beyond a

linear response in layered

superconductors under a magnetic

field

3.1 Introduction

Electric response of a HTSC under magnetic field has been a subject of extensive exper-

imental and theoretical investigation for years. Magnetic field in these layered strongly

Type-II superconductors create magnetic vortices, which, if not pinned by inhomogeneities,

move and let the electric field to penetrate the mixed state. The dynamic properties of

fluxons appearing in the bulk of a sample are strongly affected by the combined effect of

thermal fluctuations, anisotropy (dimensionality) and the flux pinning [29, 43]. Thermal

fluctuations in these materials are far from negligible and in particular are responsible

for existence of the first-order vortex lattice melting transition separating two thermo-

dynamically distinct phases, the vortex solid and the vortex liquid. Magnetic field and

reduced dimensionality due to pronounced layered structure (especially in materials like
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Bi2Sr2CaCuO8+δ) further enhance the effect of thermal fluctuations on the mesoscopic

scale. On the other hand the role of pinning in high-Tc materials is reduced significantly

compared to the low temperature one, leading to smaller critical currents. At elevated

temperatures the thermal depinning [43] further diminishes effects of disorder.

Linear response to electric field in the mixed state of these superconductors has been

thoroughly explored experimentally and theoretically over the last three decades. These

experiments were performed at very small voltages in order to avoid effects of nonlinearity.

Deviation from linearity however are interesting in their own right. These effects have also

been studied in low-Tc superconductors experimentally[44, 45] and theoretically [46, 47]

and recently experiments were extended to HTSC compounds [48, 49].

Since thermal fluctuations in the low-Tc materials are negligible compared to the inter-

vortex interactions, the moving vortex matter is expected to preserve a regular lattice

structure (for weak enough disorder). On the other hand, as mentioned above, the vortex

lattice melts in HTSC over large portions of their phase diagram, so the moving vortex

matter in the region of vortex liquid can be better described as an irregular flowing vortex

liquid. In particular the nonlinear effects will also be strongly influenced by the thermal

fluctuations.

A simpler case of a zero or very small magnetic field in the case of strong thermal

fluctuations was in fact comprehensively studied theoretically [8] albeit in linear response

only. In any superconductor there exists a critical region around the critical temperature

|T − Tc| ¿ Gi · Tc, in which the fluctuations are strong (the Ginzburg number charac-

terizing the strength of thermal fluctuations is just Gi ∼ 10−10 − 10−7 for low Tc, while

Gi ∼ 10−5 − 10−1 for HTSC materials). Outside the critical region and for small elec-

tric fields, the fluctuation conductivity was calculated by Aslamazov and Larkin [50] by

considering (noninteracting) Gaussian fluctuations within BCS and within a more phe-

nomenological GL approach. In the framework of the GL approach (restricted to the

lowest Landau level approximation), Ullah and Dorsey [11] computed the Ettingshausen

coefficient by using the Hartree approximation. This approach was extended to other
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transport phenomena like the Hall conductivity [11] and the Nernst effect [51].

The fluctuation conductivity within linear response can be applied to describe suffi-

ciently weak electric fields, which do not perturb the fluctuations’ spectrum [52]. Physi-

cally at electric field, which is able to accelerate the paired electrons on a distance of the

order of the coherence length ξ so that they change their energy by a value corresponding

to the Cooper pair binding energy, the linear response is already inapplicable [8]. The

resulting additional field dependent depairing leads to deviation of the current-voltage

characteristics from the Ohm’s law. The non-Ohmic fluctuation conductivity was calcu-

lated for a layered superconductor in an arbitrary electric field considering the fluctuations

as noninteracting Gaussian ones [53, 54]. The fluctuations’ suppression effect of high elec-

tric fields in HTSC was investigated experimentally for the in-plane paraconductivity in

zero magnetic field [55–57], and a good agreement with the theoretical models [53, 54] was

found. Theoretically the nonlinear fluctuation conductivity in HTSC has been treated by

Puica and Lang [58]. Below we compare their approach and results to ours.

In this study the nonlinear electric response of the moving vortex liquid in a layered

superconductor under magnetic field perpendicular to the layers is investegated using the

TDGL approach. The layered structure is modeled via the Lawrence-Doniach discretiza-

tion in the magnetic field direction. In the moving vortex liquid the long range crystalline

order is lost due to thermal fluctuations and the vortex matter becomes homogeneous on

a scale above the average inter-vortex distances. Although sometimes motion tends to

suppress the fluctuations, they are still a dominant factor in flux dynamics. The TDGL

approach is an ideal tool to study a combined effect of the dissipative (overdamped) flux

motion and thermal fluctuations conveniently modeled by the Langevin white noise. The

interaction term in dynamics is treated in self-consistent Gaussian approximation which

is similar in structure to the Hartree approximation [8, 11, 58, 59].

Firstly the model of Ref. [58], is physically different from ours. The authors in Ref.

[58] believe that the two quantities, layer distance and thickness in the Lawrence-Doniach

for HTSC are equal (apparently not the case in HTSC), while we consider them as two
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independent parameters. Another difference is we use so called self-consistent Gaussian

approximation to treat the model while Ref. [58] used the Hartree approximation.

A main contribution of our paper is an explicit form of the Green’s function incorporat-

ing all Landau levels. This allows to obtain explicit formulas without need to cutoff higher

Landau levels. In Ref. [58], a nontrivial matrix inversion (of infinite matrices) or cutting

off the number of Landau levels is required. Note that the exact analytical expression of

Green function of the linearized TDGL equation in DC field can be even generalized also

to AC field. The method is very general, and it allow us to study transport phenomena

beyond linear response of Type-II superconductor like the Nernst effect, Hall effect. The

renormalization of the models is also different from Ref. [58]. One of the main result of

our work is that the conductivity formula is independent of UV cutoff (unlike in Ref. [58])

as it should be as the standard |Ψ|4 theory is renormalizable. Furthermore self-consistent

Gaussian approximation used in this paper is consistent to leading order with perturba-

tion theory, see Ref. [40] in which it is shown that this procedure preserved a correct the

ultraviolet (UV) renormalization (is RG invariant). Without electric field the issue was

comprehensively discussed in a textbook Kleinert [40]. One can use Hartree procedure

only when UV issues are unimportant. We can also show, if there is no electric field, the

result obtained using TDGL model and self-consistent Gaussian approximation will lead

the same thermodynamic equation using self-consistent Gaussian approximation.

3.2 Thermal fluctuations in the time dependent GL

Lawrence-Doniach model

To describe fluctuation of order parameter in layered superconductors, one can start with

the Lawrence-Doniach expression of the GL free energy of the 2D layers with a Josephson
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coupling between them:

FGL = s′
∑

n

∫
dr

{ ~2

2m∗ |DΨn|2 +
~2

2mcd′2
|Ψn −Ψn+1|2 + a|Ψn|2 +

b′

2
|Ψn|4

}
, (3.1)

where s′ is the order parameter effective “thickness” of layer and d′ distance between

layers labeled by n. The Lawrence-Doniach model approximates paired electrons DOS

by homogeneous infinitely thin planes separated by distance d′. While discussing thermal

fluctuations, we have to introduce a finite thickness, otherwise the fluctuations will not al-

low the condensate to exist (Mermin-Wagner theorem). The thickness is of course smaller

than the distance between the layers (otherwise we would not have layers). The order pa-

rameter is assumed to be non-zero within s′. Effective Cooper pair mass in the ab plane is

m∗ (disregarding for simplicity the anisotropy between the crystallographic a and b axes),

while along the c axis it is much larger-mc. For simplicity we assume a = αTmf
c (tmf − 1),

tmf ≡ T/Tmf
c , although this temperature dependence can be easily modified to better

describe the experimental coherence length. The “mean field” critical temperature Tmf
c

depends on UV cutoff, τcut, of the “mesoscopic” or “phenomenological” GL description,

specified later. This temperature is higher than measured critical temperature Tc due to

strong thermal fluctuations on the mesoscopic scale.

The covariant derivatives are defined by D ≡ ∇+ i(2π/Φ0)A, where the vector poten-

tial describes constant and homogeneous magnetic field A = (−By, 0). The two scales, the

coherence length ξ2 = ~2/(2m∗αTc), and the penetration depth λ2 = c2m∗b′/(4πe∗2αTc)

define the GL ratio κ ≡ λ/ξ, which is very large for HTSC. In this case of strongly Type-II

superconductors the magnetization is by a factor κ2 smaller than the external field for

magnetic field larger than the first critical field Hc1 (T ), so that we take B ≈ H. The

electric current, J = Jn + Js, includes both the Ohmic normal part

Jn = σnE, (3.2)
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and the supercurrent

Js =
ie∗~
2m∗ (Ψ∗

nDΨn −ΨnDΨ∗
n) . (3.3)

Since we are interested in a transport phenomenon, it is necessary to introduce a dynamics

of the order parameter. The simplest one is a gauge-invariant version of the “type A”

relaxational dynamics [8, 34]. In the presence of thermal fluctuations, which on the

mesoscopic scale are represented by a complex white noise [8, 35], it reads:

~2γ′

2m∗DtΨn = − 1

s′
δFGL

δΨ∗
n

+ ζn, (3.4)

where Dt ≡ ∂/∂t − i(e∗/~)Φ is the covariant time derivative, with Φ = −Ey being the

scalar electric potential describing the driving force in a purely dissipative dynamics. The

electric field is therefore directed along the y axis and consequently the vortices are moving

in the x direction. For magnetic fields that are not too low, we assume that the electric

field is also homogeneous [35]. The inverse diffusion constant γ′/2, controlling the time

scale of dynamical processes via dissipation, is real, although a small imaginary (Hall)

part is also generally present [36]. The variance of the thermal noise, determining the

temperature T is taken to be the Gaussian white noise:

〈ζ∗n(r, t)ζm(r′, t′)〉 =
~2γ′

m∗s′
Tδ(r− r′)δ(t− t′)δnm. (3.5)

Keeping the same notation as in section 2.4.2. The dimensionless Boltzmann factor in

these units is:

FGL

T
=

s

ηmf tmf

∑
n

∫
dr

{1

2
|Dψn|2 +

1

2d2
|ψn−ψn+1|2− 1− tmf

2
|ψn|2 +

1

2
|ψn|4

}
, (3.6)

where the covariant derivatives in dimensionless units in Landau gauge are Dx = ∂
∂x
−

iby, Dy = ∂
∂y

, and the order parameter field was rescaled: Ψ2
n = (2αTmf

c /b′)ψ2
n. The
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dimensionless fluctuations’ strength coefficient ηmf was defined in Eq. 2.82.

The relation between parameters of the two models, the Lawrence-Doniach and the

3D anisotropic GL model, is d′ = dξz = dξ/γ, s′ = sξz = sξ/γ. The TDGL Eq. (3.4)

written in dimensionless units introduced in section 2.4.2 reads

Ĥψn +
1

2d2
(2ψn − ψn+1 − ψn−1)− 1− tmf

2
ψn + |ψn|2ψn = ζn, (3.7)

Ĥ = Dt − 1

2
D2,

while the Gaussian white-noise correlation takes a form

〈
ζ
∗
n(r, t)ζm(r′, t′)

〉
=

2ηmf tmf

s
δ(r− r′)δ(t− t′)δnm. (3.8)

The covariant time derivative in dimensionless units is Dt = ∂
∂t

+ ivby with v = E/b being

the vortex velocity and the thermal noise was rescaled as ζn = ζn(2αTmf
c )3/2/b′1/2. The

dimensionless current density is Je
s = JGLj

e
s where

jes =
i

2
(ψ∗nDψn − ψnDψ∗n) . (3.9)

with JGL = cHc2/(2πξκ2) being the unit of the current density was introduced in section

2.4.2.

3.3 Vortex liquid within the gaussian approximation

3.3.1 Gap equation

Thermal fluctuations in vortex liquid frustrate the phase of the order parameter, so that

〈ψn(r, t)〉 = 0. Therefore the contributions to the expectation values of physical quantities

like the electric current come exclusively from the correlations, the most important being

the quadratic one 〈ψn(r, t)ψ∗n(r′, t′)〉. In particular, 〈|ψn(r, t)|2〉 is the superfluid density.
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A simple approximation which captures the most interesting fluctuations effects in the

Gaussian approximation, in which the cubic term in the TDGL Eq. (3.7), |ψn|2ψn, is

replaced by a linear one 2 〈|ψn|2〉ψn

(
Ĥ − b

2

)
ψn +

1

2d2
(2ψn − ψn+1 − ψn−1) + εψn = ζn, (3.10)

leading the “renormalized” value of the coefficient of the linear term:

ε = −ah + 2
〈|ψn|2

〉
, (3.11)

where the constant is defined as ah = (1 − tmf − b)/2. The average 〈|ψn|2〉 is expressed

via the parameter ε below and will be determined self-consistently together with ε. It

differs slightly from a well known Hartree-Fock procedure in which the coefficient of the

linearized term is generally different (see Refs. [35, 40] and Appendix B for details ).

Due to the discrete translation invariance in the field direction z, it is convenient to

work with the Fourier transform with respect to the layer index:

ψn (r,t) =

∫ 2π/d

0

dkz

2π
e−inkzdψkz(r, t),

ψkz (r,t) = d
∑

n

einkzdψn(r, t), (3.12)

and similar transformation for ζ.

In terms of Fourier components, second term of the TDGL Eq. (3.10) can be written

as

2ψn − ψn+1 − ψn−1 =

∫ 2π/d

0

dkz

2π
ψkz(r, t) exp [−inkzd] {2− 2 cos(kzd)}, (3.13)

Then the TDGL Eq. (3.10) becomes

{
Ĥ − b

2
+

1

d2
[1− cos(kzd)] + ε

}
ψkz(r, t) = ζkz

(r, t). (3.14)
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The noise correlation is

〈
ζ
∗
kz

(r, t)ζk′z(r
′, t′)

〉
=

〈
d

∑
n

ζ
∗
n(r, t) exp [−inkzd] d

∑

n′
ζn′(r, t) exp [in′k′zd]

〉

= d2 2ηmf tmf

s
δ(r− r′)δ(t− t′)

∑
n

exp [ind(k′z − kz)]

= 4πηmf tmf
d

s
δ(r− r′)δ(t− t′)δ(kz − k′z), (3.15)

Note that

∑
n

exp [idn(kz − k′z)] =
2π

d
δ(kz − k′z), (3.16)

The relaxational linearized TDGL equation with a Langevin noise, Eq. (3.14), is solved

using the retarded (G = 0 for t < t′) GF Gkz(r, t; r
′, t′):

ψkz(r, t) =

∫
dr′

∫
dτ ′Gkz(r, t; r

′, t′)ζkz
(r′, t′). (3.17)

The GF satisfies

{
Ĥ − b

2
+

1

d2
[1− cos(kzd)] + ε

}
Gkz(r, r

′, t− t′) = δ(r− r′)δ(t− t′). (3.18)

The GF is computed in Appendix A:

Gkz (r, r′, τ) = exp

[
ib

2
X (y + y′)

]
gkz (X,Y, τ) , (3.19)

where

gkz (X,Y, τ) = Ckz(τ)θ (τ) exp

(
−X2 + Y 2

2β
− vX

)
, (3.20)

with X = x− x′ − vτ, Y = y − y′, and τ = t− t′. θ (τ) is the Heaviside step function, C
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and β are coefficients as follows:

C =
b

4π
exp

{
−

(
ε− b

2
+

v2

2
+

1

d2
[1− cos(kzd)]

)
τ

}
sinh−1

(
bτ

2

)
, (3.21)

β =
2

b
tanh

(
bτ

2

)
. (3.22)

The thermal average of the superfluid density (density of Cooper pairs) is

〈|ψn(r, t)|2〉 =

∫ 2π/d

0

dkz

2π

∫ 2π/d

0

dk′z
2π

exp [ind(k′z − kz)]
〈
ψkz(r, t)ψ

∗
k′z(r, t)

〉

=

∫ 2π/d

0

dkz

2π

∫ 2π/d

0

dk′z
2π

exp [ind(k′z − kz)]

∫
dr′

∫ τ

−∞
dt′Gkz(r, t; r

′, t′)

×
∫

dr′′
∫ τ

−∞
dt′′Gk′z(r, t; r

′′, t′′)
〈
ζkz

(r′, t′)ζ
∗
k′z(r

′′, t′′)
〉

. (3.23)

Substituting the noise correlation (3.8) into expression (3.23), one has

〈|ψn(r, t)|2〉 = 4πηmf tmf
d

s

∫ 2π/d

0

dkz

2π

∫ 2π/d

0

dk′z
2π

exp [ind(k′z − kz)]

∫
dr′

∫ t

−∞
dt′

×Gkz(r, t; r
′, t′)

∫
dr′′

∫ t

−∞
dt′′G∗

k′z(r, t; r
′′, t′′)δ(r′ − r′′)δ(kz − k′z)δ(t

′ − t′′)

= 2ηmf tmf
d

s

∫ 2π/d

0

dkz

2π

∫
dr′

∫ τ

−∞
dt′ |Gkz(r, t; r

′, t′)|2 . (3.24)

Substituting the GF (3.19) into expression (3.24), one obtains

〈|ψn(r, t)|2〉 = 2πηmf tmf
d

s

∫ 2π/d

0

dkz

2π

∫ ∞

0

dτC2

∫
dXdY exp

(
−X2 + Y 2

β
− 2vX

)

= 2πηmf tmf
d

s

∫ ∞

0

dτβ exp
(
βv2

) ∫ 2π/d

0

dkz

2π
|C|2. (3.25)

Note that

∫ 2π/d

0

dkz

2π
|C|2 =

(
b

4π

)2 ∫ 2π/d

0

dkz

2π
exp

{
−

(
2ε− b + v2 +

2

d2
[1− cos(kzd)]

)
τ

}

=
1

d

(
b

4π

)2

exp

{
−

(
2ε− b + v2 +

2

d2

)
τ

}
I0

(
2τ/d2

)
. (3.26)

Here I0(x) = (1/2π)
∫ 2π

0
ex cos θdθ is the modified Bessel function. Then the expression
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(3.25) takes form

〈|ψn(r, t)|2〉 =
ηmf tmfb

2πs

∫ ∞

0

f(ε, τ)

sinh(bτ)
(3.27)

where

f(ε, τ) = exp

[
2v2

b
tanh

(
bτ

2

)]
e−(2ε−b+v2)τe−2τ/d2

I0

(
2τ/d2

)
. (3.28)

The first pair of multipliers in Eq. (3.28) is independent of the inter-plane distance d

and exponentially decreases for τ > (2ε− b + v2)
−1

, while the last pair of multipliers

depends on the layered structure. The expression (3.25) is divergent at small τ , so an

UV cutoff τcut is necessary for regularization. Substituting the expectation value into the

“gap equation”, Eq. (3.11), the later takes a form

ε = −ah +
ηmf tmfb

πs

∫ ∞

τ=τcut

f(ε, τ)

sinh(bτ)
. (3.29)

3.3.2 Renormalization

Let us first consider the expression of the superfluid density. In the case v = 0, we shall

obtain the thermodynamic limit

〈|ψn(r, τ)|2〉 =
ηmf tmfb

2πs

∫ ∞

τ=τcut

exp
{− (

2ε− b + 2
d2

)
τ
}

I0

(
2τ
d2

)

sinh(bτ)
. (3.30)

We take b to zero limit:

〈|ψn(r, τ)|2〉 =
ηmf tmf

2πs

∫ ∞

τ=τcut

exp
{− (

2ε + 2
d2

)
τ
}

I0

(
2τ
d2

)

τ

=
ηmf tmf

2πs

∫ ∞

τcut/d2

exp
{− (

2εd2 + 2
)
τ
}

I0 (2τ) d ln τ. (3.31)
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We make an integration by parts

∫ ∞

τcut/d2

exp
{− (

2εd2 + 2
)
τ
}

I0 (2τ) d ln τ

= − exp
{
− (

2εd2 + 2
) τcut

d2

}
I0

(
2τcut/d

2
)
ln

(τcut

d2

)

−
∫ ∞

τcut/d2

d [exp {− (2εd2 + 2) τ} I0 (2τ)]

dτ
ln τdτ. (3.32)

For small τcut, one obtains

∫ ∞

τcut/d2

exp
{− (

2εd2 + 2
)
τ
}

I0 (2τ) d ln τ ' −
∫ ∞

0

d [exp {− (2εd2 + 2) τ} I0 (2τ)]

dτ
ln τdτ

− ln
(τcut

d2

)
. (3.33)

If ε = 0, one has

∫ ∞

τcut/d2

exp {−2τ} I0 (2τ) d ln τ ' −γE − ln
(
τc/d

2
)
, (3.34)

where

∫ ∞

0

d [exp {−2τ} I0 (2τ)]

dτ
ln τdτ = γE = 0.577. (3.35)

Therefore, the expression of the superfluid density in the case ν, b, ε = 0 is

〈|ψn(r, τ)|2〉 ' −ηmf tmf

2πs
{ ln

(
τcut/d

2
)

+ γE}. (3.36)

Physically the renormalization corresponds to reduction of the critical temperature by the

thermal fluctuations from Tmf
c to Tc. The thermal fluctuations occur on the mesoscopic

scale. The critical temperature Tc is defined at ε = 0, and υ = 0, and at low magnetic

field less than Hc1 = Hc2

2κ2 ln (κ) (for a typical high-Tc superconductor, κ ' 50, Hc1 =
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7.8× 10−4Hc2 ), the superconductor is at Meissner phase, b = 0, the Eq. (3.29) leads to

0 =

(
1− Tc

Tmf
c

)
+

2η

πs
{ ln

(
τcut/d

2
)

+ γE}. (3.37)

Then one obtains relation between Tc and Tmf
c :

Tc = Tmf
c

{
1 +

[
2η

πs
ln

(
τcut/d

2
)

+ γE

]}
, (3.38)

where note once again that ηmf = η T mf
c

Tc
, and η =

√
2Giπ with Gi = 1

2
(8e2κ2ξTcγ/c2~2)

2
(Tmf

c

is now replaced by Tc).

In order to absorb the divergence into a “renormalized” value ar
h of the coefficient ah

in the Eq. (3.29), it is convenient to make an integration by parts in the last term for

small τcut:

b

∫ ∞

τ=τcut

f(ε, τ)

sinh(bτ)
= ln[sinh(bτ)]

f(ε, τ)

cosh(bτ)
|∞τcut

−
∫ ∞

0

ln[sinh(bτ)]
d

dτ

[
f(ε, τ)

cosh(bτ)

]
, (3.39)

For small b and τc, the first term in right side of Eq. (3.39) can be made approximative

b

∫ ∞

τ=τcut

f(ε, τ)

sinh(bτ)
' −

∫ ∞

0

ln[sinh(bτ)]
d

dτ

[
f(ε, τ)

cosh(bτ)

]
− ln(bτcut). (3.40)

Then Eq. (3.29) can be rewritten as

ε = −ah − ηmf tmf

πs

{∫ ∞

0

ln[sinh(bτ)]
d

dτ

[
f(ε, τ)

cosh(bτ)

]
+ ln(bτcut)

}

= −ah − ηt

πs

{∫ ∞

0

ln[sinh(bτ)]
d

dτ

[
f(ε, τ)

cosh(bτ)

]
− γE + ln(bd2)

}

− ηt

πs

[
ln

(
τcut/d

2
)

+ γE

]
, (3.41)
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Let’s consider the first and last term in the right hand side of Eq. (3.41)

−ah − ηt

πs

[
ln

(
τcut/d

2
)

+ γE

]
= −1− tmf − b

2
− ηt

πs

[
ln

(
τcut/d

2
)

+ γE

]

= −1− t− b

2
− t

{
1− Tc

T mf
c

2
+

η

πs

[
ln

(
τcut/d

2
)

+ γE

]
}

.

(3.42)

Substituting Eq. (3.38) into Eq. (3.42), then this becomes

−ah − ηt

πs

[
ln

(
τcut/d

2
)

+ γE

]
= −1− t− b

2
. (3.43)

Then Eq. (3.41) becomes

ε = −ar
h −

ηt

πs

{∫ ∞

0

ln[sinh(bτ)]
d

dτ

[
f(ε, τ)

cosh(bτ)

]
− γE + ln(bd2)

}
, (3.44)

where ar
h = 1−t−b

2
. The formula is cutoff independent. In terms of energy UV cutoff Λ,

introduced for example in [51], the cutoff “time” τcut can be expressed as

τcut =
1

2eγEΛ
. (3.45)

This is obtained by comparing a thermodynamic result for a physical quantity like super-

fluid density with the dynamic result (see Appendix C). The temporary UV cutoff used

is completely equivalent to the standard energy or momentum cutoff Lambda used in

thermodynamics (in which the time dependence does not appear). Physically one might

think about momentum cutoff as more basic and this would be universal and independent

of particular time dependent realization of thermal fluctuations (TDGL with white noise

in our case). Roughly (in physical units) Λ ' εF = ~2k2
F /(2m∗). In the next section we

will discuss the estimate of Tmf
c using this value due to the following reason. For high-Tc

materials ordinary BCS is invalid and coherence length is of order of lattice spacing (the

cutoff becomes microscopic) and therefore the energy cutoff is of order εF . Except the
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formula to calculate Tmf
c , all other formulas in this paper is independent of energy cutoff.

3.4 I − V curve

3.4.1 Current density

The supercurrent density, defined by Eq. (3.9), can be expressed via the GF by substi-

tuting Eq. (3.17) and Eq.(3.12) into Eq. (3.9):

js
y =

i

2

∫ 2π/d

0

dkz

2π

∫ 2π/d

0

dk′z
2π

exp [ind(kz − ik′z)]

×
〈∫

r′,t′
G∗

kz
(r, t; r′, t′) ζ

∗
kz

(r′, t′)
∂

∂y

∫

r′′,t′′
Gk′z (r, t; r′′, t′′) ζk′z (r′′, t′′)

〉
+ cc

=
i

2

∫ 2π/d

0

dkz

2π

∫ 2π/d

0

dk′z
2π

exp [ind(kz − ik′z)]
∫

r′,t′,r′′,t′′
G∗

kz
(r, t; r′, t′)

× ∂

∂y
Gk′z (r, t; r′′, t′′)

〈
ζ
∗
kz

(r′, t′) ζk′z (r′′, t′′)
〉

+ cc. (3.46)

Substituting the noise correlation (3.8) into expression (3.46), the supercurrent density

takes form:

js
y = iηt

d

s

∫ 2π/d

0

dkz

2π

∫

r′,t′
G∗

kz
(r, t; r′, t′)

∂

∂y
Gkz (r, t; r′, t′) + c.c. (3.47)

Substituting Eq. (3.19) into Eq. (3.47), one has

js
y = iηt

d

s

∫ 2π/d

0

dkz

2π

∫
dr′

∫ ∞

τ=0

[{
ib

2
X − 1

β
Y

}
g2

kz
(X,Y, τ)

]
+ c.c

= iηbt
d

s

∫ 2π/d

0

dkz

2π

∫ ∞

τ=0

|C|2
∫

dXdY

{
ib

2
X − 1

β
Y

}
exp

[
−X2 + Y 2

β
− 2vX

]
+ cc.

(3.48)

Performing the Gaussian integrals over X and Y , one obtains:

js
y =

ηt

4πs
v

∫ ∞

τ=0

f(ε, τ)

cosh2( bτ
2
)
, (3.49)
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where the function f was defined in Eq. (3.28). Consequently the contribution to the

conductivity is σs = js
y/E . The conductivity expression is not divergent when expressed

as a function of renormalized Tc (the real transition temperature), so it is independent of

the cutoff. This is considered in detail in section 3.3.2 and is indeed different from the

Ref. [58]. In physical units the current density reads

Jy = σnE

[
1 +

ηt

4πs

1

k

∫ ∞

τ=0

f(ε, τ)

cosh2( bτ
2
)

]
. (3.50)

This is the main result of the present paper. We also obtained the conductivity expression

in 2D in linear response which do match the linear response conductivity expression (2.79)

and [51].

σs
2D =

η2Dt

4πb

σn

k

{
2−

(
1− 2ε

b

)[
ψp

(ε

b

)
− ψp

(
1

2
+

ε

b

)]}
. (3.51)

3.4.2 Comparison with experiment

The experiment results of I. Puica et al. [49], obtained from the resistivity and Hall effect

measurements on an optimally doped YBCO films of thickness 50 nm and Tc = 86.8

K. The distance between the bilayers used the calculation is d′ = 11.68 Å in Ref. [60].

The number of bilayers is 50, large enough to be described by the Lawrence-Doniach

model without taking care of boundary conditions. In order to compare the fluctuation

conductivity with experimental data in HTSC, one cannot use the expression of relaxation

time γ′ in BCS which may be suitable for low-Tc superconductor. Instead of this, we use

the factor k as fitting parameter.

The comparison is presented in Fig. 3.1. The resistivity in physical units

ρ =
1

σGLσs + σn

=
1

σn(σs/k + 1)
, (3.52)

curves were fitted to Eq. (3.52) with the normal-state conductivity measured in Ref. [49]
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Figure 3.1: Points are resistivity for different electric fields of an optimally doped YBCO in
Ref. [49]. The solid line is the theoretical value of resistivity calculated from Eq. (3.52) with
fitting parameters (see text).

to be σn = 1.9×104 (Ωcm)−1. The parameters we obtain from the fit are: Hc2(0) = 190 T

(corresponding to ξ = 13.2 Å), κ = 43.6, s′ = 8.5 Å, k = 0.55, where we take γ = 7.8 for

optimally doped YBCO in Ref. [42]. Using those parameters, we obtain Gi = 9.32×10−4

(corresponding to η = 0.136). The order parameter effective thickness s′ can be taken

to be equal to the layer thickness (see in Ref. [61]) of the superconducting CuO2 plane

plus the coherence length 2ξz = 2 ξ
γ

due to the proximity effect: 3.18 Å+213.2
7.8

Å= 6.9 Å,

roughly in agreement in magnitude with the fitting value of s′.

We will now estimate Tmf
c for this sample. For the underdoped YBCO, the radius of

the Fermi surface of YBCO was measured in Ref. [62], kF = 0.7 Å−1, while the effective

mass is m∗ = 1.9me. We will assume that the Fermi energy for underdoped YBCO of Ref.

[62] is εF = ~2k2
F /(2m∗) and is roughly the same for the optimal YBCO studied in this

paper. The cutoff “time” in physical units is then, according to Eq. (3.45), τcut = 2×10−16

s. Equation (3.38) gives then Tmf
c = 101.15 K.

Using the parameters specified above we plot several theoretical I − V curves. As

expected the I − V curve shown in Fig. 3.2 and Fig. 3.3 has two linear portions, the flux
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Figure 3.2: The current-voltage curves calculated from Eq. (3.50) by using the parameters
(see text) for different magnetic fields b = B/Hc2 at temperature t = 0.75.
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Figure 3.3: The current-voltage curves calculated from Eq. (3.50) by using the parameters
(see text) for different temperatures t = T/Tc at magnetic flied b = 0.5.
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Figure 3.4: Points are resistivity for different magnetic fields of Bi2212 in Ref. [48]. The solid
line is the theoretical value of resistivity calculated from Eq. (3.52) in linear case with fitting
parameters (see text).

flow part for E ¿ EGL and the normal Ohmic part for E À EGL. In the crossover region,

E ∼ EGL, a I − V curve becomes nonlinear due to destruction of superconductivity (the

normal area inside the vortex cores increases to fill all the space). In Fig. 3.2 the I − V

curves are shown for different the magnetic fields, at a fixed temperature T = 0.75Tc.

At given electric field, as the magnetic field increases, the supercurrent decreases. When

the magnetic field reaches Hc2, the I − V curve becomes linear. In Fig. 3.3 the I − V

curves are shown for different temperatures, at a fixed magnetic field H = 0.5Hc2. At

given electric field, as the temperature increases, the supercurrent decreases. When the

temperature reaches Tc, the I − V curve becomes linear. With decreasing temperature

the crossover becomes steeper.

Our the results in linear response is also compared to the experiment data on Bi2212

[48] with Tc = 81. The layer distance used the calculation is d′ = 19.6 Å in Ref. [61].

The comparison is presented in Fig. 3.4. The resistivity curves were fitted to Eq. (3.52)

with the normal-state conductivity in Ref. [48] to be σn = 1.42× 104 (Ωcm)−1. The best

fitting parameters are: Hc2(0) = 150 T (corresponding to ξ = 14 Å), κ = 47.8, s′ = 4.31
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Å, k = 0.61, and γ = 25 which give Gi = 0.015. The order parameter effective thickness

s′ can be also roughly estimated: 3.32 Å+214
25

Å= 4.5 Å, consistent with the fitting value

of s′.

3.5 Summary

We calculated electrical conductivity and the I − V curve in a layered Type-II supercon-

ductor in magnetic field in the presence of strong thermal fluctuations on the mesoscopic

scale beyond the linear response. Time dependent Ginzburg-Landau equations with ther-

mal noise describing the thermal fluctuations is used to describe the vortex-liquid regime

and arbitrary flux flow velocities. The nonlinear term in dynamics is treated using the

self-consistent Gaussian approximation. Thus exact analytical expression of Green’s func-

tion of the linearized TDGL equation incorporating all Landau levels was obtained. The

method is very general, and it allow us to study transport phenomena beyond linear

response of Type-II superconductor such as the Nernst effect and Hall effect.

The renormalization of the critical temperature is calculated and is strong in lay-

ered high Tc materials. The results were compared to the experimental data on HTSC.

Our the resistivity results are in good qualitative and even quantitative agreement with

experimental data on YBCO in strong electric fields and Bi2212 in linear case.

65



Chapter 4

Fluctuation Hall conductivity

beyond a linear response in layered

superconductor under a magnetic

field

4.1 Introduction

4.1.1 Hall effect

The Hall effect is the production of a voltage difference (the Hall voltage) across an

electrical conductor, transverse to an electric current in the conductor and a magnetic

field perpendicular to the current. Edwin Hall discovered this effect in 1879. The Hall

effect provides information on the sign, concentration, and mobility of charge carrier in

the normal state. The experimental arrangement illustrated in Fig. 4.1 shows a magnetic

field B applied in the z direction perpendicular to a slab and a battery that establishes

an electric field Ey in the y direction that causes a current I = JA to flow, where J = nev
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Figure 4.1: Experimental arrangement for Hall effect measurements.

is the current density. The Lorentz force

F =qv ×B, (4.1)

of the magnetic field on each moving charge q is in the positive x direction for both

positive and negative charge carriers. This causes a charge separation to build up on

the sides of the plate, which produces an electric field Ex perpendicular to the directions

of the current y and magnetic z fields. The induced electric field is in the negative x

direction for positive q, and in the positive x direction for negative q. After the charge

separation has built up, the electric force qEx balances the magnetic force qv ×B,

qEx = qv ×B, (4.2)

and the charge carriers q proceed along the wire undeflected.

The Hall coefficient RH is defined as a ratio

RH =
Ex

JyBz

= ± 1

ne
, (4.3)
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with a positive sign (+) for holes a negative sign (-) for electrons.

In the superconducting state, the Hall voltage arises from the electric field induced

by flux motion. Perhaps the most important results that has been obtained from Hall

effect measurement above Tc is that the charge carriers in the copper-oxide planes of most

of the HTSC are holes. Included in this group are the lanthanum, yttrium, bismuth,

thallium, and mercury classes of compounds. The major exception is compounds with

the Nd2CuO4, their charge carriers are electron-like. Below Tc, flux flow arising from a

transport current in a superconductor induces an electric field E. The component of this

electric field perpendicular to the direction of the current produces a Hall-effect voltage.

The Hall resistivity ρxy is defined as

ρxy =
Ex

J
, (4.4)

is close to zero for low applied fields in the mixed state below Tc and negative for higher

fields. Thereafter, it becomes positive and increase linearly with further increase in fields

[63–65].

4.1.2 Hall conductivity

The influence of superconducting fluctuations on off-diagonal components of the magne-

toconductivity tensor (usually denoted as the excess Hall effect) in HTSC has received

considerable experimental and theoretical attention over the past few years [8, 63–78] .

Though a general consensus seems to be achieved now regarding the existence and the

temperature dependence of the excess Hall effect, theoretical predictions of its sign are

still controversial. Experimentally, the Hall resistivity shows a peculiar temperature de-

pendence. Specifically, as the temperature is decreased through the fluctuation region,

the Hall resistivity decreases and changes its sign relatively to the normal-state one, ex-

hibits a negative minimum, and eventually reaches zero at low temperatures. This simple

sign change was detected in many different HTSC in Refs. [70, 73, 79, 80] and even in
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conventional superconductors Ref. [71, 72]. Furthermore, a double-sign reversal, which

is a subsequent return of the Hall resistivity to the positive value before vanishing, has

been observed in highly anisotropic HTSC, such as Bi2212 crystals [81] and films [82],

Tl2Ba2CaCu2Ox films [83], or HgBa2CaCu2O6 films [84]. Recently, the existence of the

second sign change was also reported in YBCO films, either at high current densities [85]

or in the strong pinning limit at low magnetic fields [86]. Finally, even a triple-sign rever-

sal was reported in HgBa2CaCu2O6 films with columnar defects induced by high-density

ion irradiation [87].

Several theoretical approaches have attempted to explain the complex features of the

Hall resistivity temperature dependence, but no consensus has been achieved. The Hall

anomaly might originate from the pinning force [66], nonuniform carrier density in the

vortex core [88, 89], or can be calculated in the TDGL model [90, 91]. Most recent

theories claim to predict the double or triple-sign reversal, based either on entirely intrinsic

mechanism of vortex motion and electronic spectrum [92], or on hydrodynamic interaction

between vortices and the superconducting and normal-state fluids [93]. Some theories

invoke superconducting fluctuations alone to account for the Hall effect sign reversal [11,

94], while others present a more extended picture based on the same foundations of TDGL

using both the hydrodynamics and the vortex charging effect, arising from the difference

in electron density between the core and the far outside region of the vortex [88, 89, 95].

Thus, the Hall effect in the mixed state of HTSC reflects a complex interplay between

electronic properties of quasiparticles, thermodynamic fluctuations, hydrodynamic effects

of vortices, and pinning.

From a considerable part of the published theoretical work, it appears that at least

the first sign reversal, which occurs near the critical region, where vortex pinning is

negligible and the superconducting order-parameter fluctuations play an important role,

should be ascribed to a microscopic origin of superconductivity [68, 96, 97]. From the

viewpoint of the TDGL formalism [11, 91, 94], to which any theory of vortex dynamics

must reduce near the critical temperature Tc [92, 98], the Hall anomaly is a consequence
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of the difference in sign between the normal (quasiparticle) part and the superconducting

fluctuation (or vortex flow) part of the total Hall conductivity. These two components

have opposite signs, if the energy derivative of the density of states averaged over the

Fermi surface is positive when the carriers are holes in the normal state [99]. Thus, the

sign reversal can be intrinsic and depends on the details of the structure of the normal-

state electronic spectrum. Such notion is further supported by the fact that in several

HTSC, the sign reversal disappears when the material is strongly overdoped and the band

structure approaches that of a conventional metal [100].

The possibility of the Hall angle sign change in the critical region was first discussed

by Fukuyama, Ebisawa, and Tsuzuki (FET) [101], who pointed out that the origin of a

nonvanishing Hall current due to fluctuating Cooper pairs could come from a hole-particle

asymmetry, which reveals a complex relaxation time in the TDGL theory. In this early

work, it was implicitly assumed that the fluctuations did not interact; that is, only Gaus-

sian fluctuations were considered. Accordingly, the fluctuation parts of the conductivity

tensor elements were predicted to diverge at Tc in the presence of magnetic field. However,

this predicted divergence has not been observed. A great improvement was obtained when

the interaction between fluctuations was taken into account by incorporating the quartic

term |Ψ|4 from the GL expression of the free energy. Such a treatment was performed

by Ullah and Dorsey [11] (UD) in the frame of a simple Hartree approach of the TDGL

theory. More recently, Nishio and Ebisawa [94] (NE) extended the FET calculations

of the weak (Gaussian) fluctuation contribution of the Hall conductivity to the strong

(non-Gaussian) fluctuation regime, based on more sophisticated renormalization theory

by Ikeda, Ohmi, and Tsuneto [102] (IOT). The renormalized, non- Gaussian fluctuation

regime connects therefore the weak (Gaussian) fluctuation regime in the paraconducting

region above Tc2(H) to the vortex liquid (flux-flow) regime below the mean-field transi-

tion, interpolating smoothly without the Tc divergence predicted by the Gaussian theory.

The comparison between experimentally observed Hall anomaly in HTSC and the full

quantitative application of the TDGL theory was done well by Puica et. al. [65].
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However, all theories mentioned above is linear response. Recently, non-Ohmic fluc-

tuation Hall conductivity was treated theoretically [58] and experimentally [49]. The

non-Ohmic fluctuation Hall conductivity calculated in [58] was in good qualitative cor-

respondence with the theoretical one [49], but the magnitude of the effect is somewhat

smaller. The authors in [58] believe that the two quantities, layer distance and thick-

ness in the Lawrence-Doniach for HTSC, are equal. They also made assumption that the

imaginary part of the relaxation time γ1 in the TDGL equation is small in comparison

with the real one γ as calculating the fluctuation Hall conductivity.

In this study the non-Ohmic fluctuation Hall conductivity of the moving vortex liquid

in a layered superconductor under magnetic field perpendicular to the layers is studied

using the TDGL approach. The layered structure is modeled via the Lawrence-Doniach

discretization in the magnetic field direction. We consider layer distance and thickness

in the Lawrence-Doniach as two independent parameters. The self-consistent Gaussian

approximation mentioned in section 3.3.1 is used to treat the model while Ref. [58] used

the Hartree approximation. A main contribution of this study is an explicit form of the

Green’s function incorporating all Landau levels. This allows to obtain explicit formulas

without need to cutoff higher Landau levels and any assumption about the imaginary

part of the relaxation time γ1 in the TDGL equation. In Ref. [58], a nontrivial matrix

inversion (of infinite matrices) or cutting off the number of Landau levels is required. The

renormalization of the models is also different from Ref. [58]. One of the main result of

our work is that the Hall conductivity formula is independent of UV cutoff (unlike in Ref.

[58]).

4.1.3 Dissipative dynamics of vortices and electric fields in the

mixed state for Hall effect

In order to calculate the Hall conductivity the imaginary part of the relaxation time in

the TDGL equation must be introduced to break the particle-hole symmetry and allow
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for a nonvanishing Hall current [8, 11, 58, 94, 101]. The TDGL equation (3.4) then takes

form:

~2(γ′ + iγ′′)
2m∗ DtΨn = − δ

δΨ∗
n

FGL

s′
+ ξn (4.5)

The particle-hole symmetry exists for γ′′ = 0. By particle-hole symmetry we mean that,

under transformation of complex conjugation and H → −H, the equation motion for Ψ∗,

Eq. (4.5), is the same as that for Ψ, provided γ′′ = 0. This result would, in turn, imply that

σxy(H) = σxy(−H); however, we know that, on general grounds, σxy(H) = −σxy(−H),

so that σxy(H) = 0 if γ′′ = 0. Therefore, γ′′ 6= 0 is necessary in order that the Hall

conductivity be nonzero. Such an imaginary relaxation rate can arise from microscopic

considerations [8, 101] or might be generated by coupling the order parameter to conserved

densities, as in critical dynamics of neutral superfluids [103]. Keeping the same notation as

in section 3.2, the TDGL equation in dimensionless units in the Gaussian approximation

reads

(1 + iϑ)Dtψn −
(

1

2
D2 +

b

2

)
ψn +

1

2d2
(2ψn − ψn+1 − ψn−1) + εψn = ζn (4.6)

where ϑ = γ′′/γ′. Usually γ′′ is small in comparison with γ′ by a ratio of the order of

Tc/EF [8].

In a similar way the relaxational linearized TDGL equation with a Langevin noise,

Eq. (4.6), is solved using the retarded (G′ = 0 for t < t′) GF G′
kz

(r, t; r′, t′):

ψn(r, t) =

∫ 2π/d

0

dkz

2π
e−inkzd

∫
dr′

∫
dτ ′G′

kz
(r, t; r′, t′)ζkz

(r′, t′). (4.7)

The GF satisfies

[
(1 + iϑ)Dt − 1

2
D2 − b

2
+

1

d2
[1− cos(kzd)] + ε

]
G′

kz
(r, r′, t−t′) = δ(r−r′)δ(t−t′), (4.8)
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and is computed in Appendix D. The result (see Appendix D) is:

G′
kz

(r, r′, τ) = C ′(kz)θ (τ) exp

[
ib

2
X (y + y′)

]
exp

(
−X2 + Y 2

2β′
− v(1 + iϑ)X

)
, (4.9)

where

C ′(kz) =
b

4π
exp

{
−

(
ε− b

2
+

v2(1 + iϑ)2

2
+

1

d2
[1− cos(kzd)]

)
τ

(1 + iϑ)

}

× sinh−1

(
b

2

τ

(1 + iϑ)

)
, (4.10)

β′ =
2

b
tanh

(
b

2

τ

(1 + iϑ)

)
, (4.11)

with X = x− x′ − vτ ; Y = y − y′; and τ = t− t′.

4.2 The gap equation

In the same way the thermal average of the superfluid density (density of Cooper pairs)

can be expressed via the GF G′
kz

(r, t; r′, t′)

〈|ψn(r, τ)|2〉 = 2ηmf tmf
d

s

∫ 2π/d

0

dkz

2π

∫
dr′

∫ τ

−∞
dt′

∣∣G′
kz

(r, t; r′, t′)
∣∣2

= 2ηmf tmf
d

s

∫ 2π/d

0

dkz

2π

∫
dr′

∫ ∞

0

dτ |C ′|2 exp

(
−X2 + Y 2

β′′
− 2vX

)

= 2πηmf tmf
d

s

∫ ∞

0

dτβ′′ exp
(
β′′v2

) ∫ 2π/d

0

dkz

2π
|C ′|2 , (4.12)

where

β′′ =
2β′β′∗

β′ + β′∗
=

4

b

cosh
(

bτ
(1+ϑ2)

)
− cosh

(
iϑ bτ

(1+ϑ2)

)

cosh
(

bτ
(1+ϑ2)

) , (4.13)
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|C ′|2 =

(
b

4π

)2

exp

{
−

(
2ε− b + v2(1− ϑ2) +

2

d2
[1− cos(kzd)]

)
τ

(1 + ϑ2)

}

× sinh−1

(
b

2

τ

(1 + iϑ)

)
sinh−1

(
b

2

τ

(1− iϑ)

)
. (4.14)

Note that

∫ 2π/d

0

dkz

2π
|C ′|2 =

1

d

(
b

4π

)2

exp

{
−

(
2ε− b + v2(1− ϑ2) +

2

d2

)
τ

(1 + ϑ2)

}

× sinh−1

(
b

2

τ

(1 + iϑ)

)
sinh−1

(
b

2

τ

(1− iϑ)

)
I0

[
2τ

(1 + ϑ2)d2

]
,

(4.15)

where the Gamma function I0 was introduced in section 3.3.2. Then the expression (4.12)

takes form

〈|ψn(r, t)|2〉 =
ηmf tmfb

2πs

∫ ∞

τ=τcut

f ′(ε, τ)

sinh
(

bτ
(1+ϑ2)

) (4.16)

where

f ′(ε, τ) = exp


4v2

b

cosh
(

bτ
(1+ϑ2)

)
− cosh

(
iϑ bτ

(1+ϑ2)

)

cosh
(

bτ
(1+ϑ2)

)

 e−[2ε−b+v2(1−ϑ2)]τ

×e−2τ/(1+ϑ2)d2

I0

(
2τ/(1 + ϑ2)d2

)
. (4.17)

The value of ϑ can be inferred from the microscopical theory if one considers the

energy derivative N ′ of the density of states N at the Fermi level εF , and it writes [8, 94]

ϑ =
kBT

εF

α, (4.18)

where the parameter α amounts in the BCS model to

α = − 4εFN ′

πgBCSN 2
, (4.19)
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with gBCS > 0 the BCS coupling constant [94, 101]. Since εF is for HTSC of the order of

103 K (in kB units) [104], and the hole-particle asymmetry parameter α, inferred from fits

of excess Hall effect data [74] with the models from Refs. [94, 101] its absolute value turns

out to be of the order of 10−2 ÷ 10−1, we conclude that ϑ is a small parameter (the order

of 10−3 ÷ 10−2), reflecting also the small Hall angle. Therefore, the expression (4.16) can

be expanded in first order in small ϑ. Keeping zero order, the expression (4.16) get back

to the expression (3.29). Therefore, the gap equation in this case is the same Eq. (3.44)

after renormalization.

ε = −ar
h −

ηt

πs

{∫ ∞

0

ln[sinh(bτ)]
d

dτ

[
f(ε, τ)

cosh(bτ)

]
− γE + ln(bd2)

}
. (4.20)

4.3 Fluctuation Hall conductivity

4.3.1 Hall current density

In the same way the supercurrent density, defined by Eq. (3.9), can be expressed via the

GF by substituting Eq. (4.7) into Eq. (3.9):

js
x =

i

2

〈
ψ∗n(r, τ)

(
∂

∂x
− iby

)
ψn(r, τ)

〉
+ cc

= iηt
d

s

∫ 2π/d

0

dkz

2π

∫

r′,τ ′
G′∗

kz
(r, r′, τ)

(
∂

∂x
− iby

)
G′

kz
(r, r′, τ) + c.c. (4.21)

Substituting Eq. (4.9) into Eq. (4.21), one has

js
x = −iηt

d

s

∫ 2π/d

0

dkz

2π

∫ ∞

τ=0

|C ′|2
∫

dXdY

{
X

β′
+ v(1 + iϑ)

}

× exp

[
−X2 + Y 2

β′′
− 2vX

]
+ c.c (4.22)

Performing the Gaussian integrals over X and Y , one obtains:

jx = ηt
d

s
πv

∫ ∞

τ=0

β′′
[
2ϑ + iβ′′

(
1

β′
− 1

β′∗

)]
exp(v2β′′)f ′(ε, τ), (4.23)
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where f ′(ε, τ) was introduced in Eq. (4.17).

The expression (4.23) for Hall current is obtained without any assumption about the

imaginary part of the relaxation time γ′′ in the TDGL equation. Under the assumption

ϑ = 0, the hall current density Eq. (4.23) is exactly equal to zero. That is why as the

next step we expand the expression (4.23) up to the first order over small ϑ and obtain:

js
x = 2ηt

d

s
πvϑ

∫ 2π/d

0

dkz

2π

∫ ∞

τ=0

β |C ′|2 [1− b

2

τ [1− tanh2(bτ/2)]

tanh(bτ/2)
] exp(v2β)

=
b

8πs
ηtvϑ

∫ ∞

τ=0

2 tanh(bτ/2)− bτ [1− tanh2(bτ/2)]

sinh2 (bτ/2)
f(τ), (4.24)

where f(τ) was introduced in Eq. (3.28).

The fluctuation Hall conductivity in physical units is given by

σs
xy =

Js
x

E
=

σGLηtϑ

8πs

∫ ∞

τ=0

2 tanh(bτ/2)− bτ [1− tanh2(bτ/2)]

sinh2 (bτ/2)
f(τ), (4.25)

In order to compare with experimental data, normal conductivity σn
xy should be added.

Thus, the total Hall conductivity will be consequently

σxy = σs
xy + σn

xy (4.26)

4.3.2 Comparison with experiment and discussion

Hall effect measurements on an optimally doped YBCO films of thickness 50 nm and

Tc = 86.8 K was done in Ref. [49] in which the resistivity of the same sample was fitted

in section 3.4.2. The parameters, namely, ξ, κ, s′, k, γ, σn, remained the same, as used in

the fits shown in Fig. 3.1 The comparison is presented in Fig. 4.2. The Hall conductivity

curves were fitted to Eq. (4.26) with the normal-state conductivity measured in Ref. [49]

to be σn
xy = 42 (Ωcm)−1. We found that the best fits were obtained with ϑ = −0.0017, and

inferred empirically. The absolute value of ϑ obtained from our fitting is consistent with

its value [74]. The negative value of the hole-particle asymmetry parameter ϑ (this means
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Figure 4.2: Points are Hall conductivity for different electric fields of an optimally doped YBCO
in Ref. [49]. The solid line is the theoretical value of resistivity calculated from Eq. (4.26) with
fitting parameters (see text).

a negative σs
xy) implies a positive energy-derivative of the density of states at εF when

the carriers are holes in the normal state. As suggested by Kopnin and Vinokur [105],one

possibility to explain this behavior is that the Fermi surface of a metal in the normal

state has both hole-like and electronic pockets. The Hall anomaly may thus depend on

the doping level, as it was reported by Nagaoka et al. [100]. Very recently, Angilella

et al. [106] have found that, close to an electronic topological transition of the Fermi

surface, in the hole-like doping range, the fluctuation Hall conductivity has indeed an

opposite sign with respect to the normal-state one, giving additional strong support that

the Hall resistivity sign reversal is intrinsic and depends on the details of the structure of

the electronic spectrum.

4.4 Summary

We have calculated the fluctuation Hall conductivity for a layered superconductor in an

arbitrary in-plane electric field and perpendicular magnetic field in the frame of the TDGL
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theory with thermal noise describing the thermal fluctuations using the self-consistent

Gaussian approximation. We have obtained explicit formulas including all Landau levels

without any assumption about the imaginary part of the relaxation time γ′′ in the TDGL

equation. It is then easy to get the expression for the fluctuation Hall conductivity under

assumption that the imaginary part of the relaxation time is very small.

The renormalization of the critical temperature is calculated and is strong in layered

high-Tc materials. The results were compared to the experimental data on HTSC. Our

the fluctuation Hall conductivity results are in good qualitative and even quantitative

agreement with experimental data on YBCO in strong electric fields.
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Chapter 5

Fluctuation ac conductivity in linear

response

5.1 Introduction

The analysis of fluctuations conductivity has stimulated in the past years a considerable

amount of work. Theoretical investigations of the dc as well as the finite-frequency con-

ductivity have been a subject for years and development of this topic proceeded until the

discovery of HTSC. Experimental investigations have been reported showing clear signs

of fluctuations in both the real and imaginary parts of the ac conductivity in zero mag-

netic field [107–110]. The real part σ1 of the complex conductivity (σ = σ1 + iσ2) has a

sharp peak at Tc , which is not observed in, e.g., Nb as representative of low temperature

classical superconductors [111]. The salient feature of the ac case is that the fluctuation

conductivity does not diverge at Tc because a finite frequency provides a limit to the ob-

servation of the critical slowing down near Tc. The determination of Tc from the peak in σ1

is a reasonable choice [107]. It is also important to note that σ1 and σ2 have individually

different temperature and frequency dependence, even though they result from the same

underlying physics. Testing a given theoretical model becomes more stringent when two

curves have to be fitted with the same set of parameters. Recently, the high-frequency
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electromagnetic response of vortices has been investigated [112–115].

The expressions for the ac fluctuation conductivity in zero magnetic field in the Gaus-

sian regime have been deduced within the TDGL theory of Schmidt [116]. Using general

physical arguments, Fisher, Fisher, and Huse [117] provided a formulation for the scaling

of the complex ac conductivity as

σ(ω) ∝ ξz+2−dS±(ωξz), (5.1)

where ξ is the correlation length, z is the dynamical critical exponent, d is the dimen-

sionality of the system, and S±(ωξz) are some complex scaling functions above and below

Tc, with the correlation length diverging at T = Tc as ξ ∼ ε−ν , where sufficiently close

to Tc, ε = (T/Tc − 1). This form of fluctuation conductivity was claimed to hold in both

the Gaussian and critical regimes. Dorsey [118] has deduced the scaling functions in the

Gaussian regime above Tc and verified the previous results of Schmidt [116]. More re-

cently, Wickham and Dorsey [119] have shown that even in the critical regime, where the

quartic term in the GL free energy plays a role, the scaling functions preserve the same

form as in the Gaussian regime.

In high-Tc cuprates at relatively high temperatures, vortices move and vibrate due to

thermal fluctuations to the extent that the lattice can melt becoming a “vortex liquid”

which was introduced in 2.5.1. Recently, Lin and Lipavsky [120] used the TDGL equation

to calculate the far infrared conductivity in the Abrikosov vortex lattice state of a Type-II

superconductor, and the results were in good agreement with experiment data. Thermal

fluctuations neglected. This work is complementary.

Measurements of the complex conductivity as a function of frequency [108] analyzed

in terms of the above-mentioned theory have revealed a somehow puzzling behavior: in

fact, the complex conductivity σ(ω) does exhibit a scaling behavior close to the expected

one, but the so-obtained critical exponents, ν ' 1.2 and z = 2.6, are quite different

with respect to the Gaussian values, ν = 0.5 and z = 2; the critical exponent ν is
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also in conflict with the prediction for the 3DXY uncharged fluid, ν = 2/3 [121]. The

determination of the critical exponents close to Tc is uncertain: in fact, a different scaling

analysis of measurements of the frequency-dependent conductivity up to 2 GHz in zero

magnetic field gave large exponents, ν ' 1.7 and z = 5.6 [109], in contrast with those

previously obtained. The authors [110] extended the renormalized-fluctuations theory in

zero magnetic field developed by Dorsey [118] by introducing an anisotropic mass tensor,

and they compared the results to resistive transitions in zero field obtained in dc and

at high frequency, above the critical temperature. The temperature dependence of the

resistivity in zero magnetic field at all the frequencies investigated could be well described

by the theory [110] from slightly above Tc, with values of the parameters in good agreement

with common values. Far from above Tc the theory did not apply, and more extensions

are needed.

The electromagnetic response to microwaves in the mixed state of YBCO was mea-

sured [114] in order to investigate the electronic state inside and outside the vortex core.

The magnetic-field dependence of the complex surface impedance at low temperatures

was in good agreement with a general vortex dynamics description assuming that the

field-independent viscous damping force and the linear restoring force were acting on the

vortices. In other words, both real and imaginary parts of the complex resistivity, δρ1, and

δρ2, were linear in B. However, at higher temperatures, there is a clear deviation from the

B-linear behavior. This deviation became more prominent with increasing temperature.

In the high temperature region, thermal effects on the vortices cannot be neglected, and

the low temperature approximation will be no longer accurate. The microscopic calcula-

tion of the Larkin-Varlamov included lowest Landau level and high Landau levels (HLL)

[8], but the result of HLL is cumbersome and cutoff dependence.

In this study we will calculate the complex conductivity and resistivity in linear re-

sponse in a layered superconductor under magnetic field by using TDGL with thermal

fluctuations conveniently modeled by the Langevin white noise. The interaction term in

dynamics is treated in self-consistent Gaussian approximation. The results is compared
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with experimental data [114] at high temperature where thermal effects on the vortices

should be included.

5.2 Dissipative dynamics of vortices and electric fields

in the mixed state

In order to calculate complex conductivity in linear response we also use TDGL Eq. (3.4)

for layered superconductor. However, in this case the scalar potential is function of time.

~2γ′

2m∗DtΨn = − δ

δΨ∗
n

FGL

s′
+ ξn, (5.2)

where the covariant time derivative is

Dt =
∂

∂t
− i

e∗

~
Φt, (5.3)

with Φt = −Ety being the scalar electric potential describing the driving force in a purely

dissipative dynamics. The variance of the thermal noise was introduced in section 3.2.

We assume that the electric field is coordinate independent but is a monochromatic

periodic function of time

E(t) = E exp(−iωt). (5.4)

Keeping the same notation as in previous section, the TDGL Eq. (5.2) in dimensionless

units in the Gaussian approximation reads:

Dtψn −
(

1

2
D2 +

b

2

)
ψn +

1

2d2
(2ψn − ψn+1 − ψn−1) + εψn = ζn. (5.5)

The Gaussian white-noise correlation in dimensionless units
〈
ζ
∗
n(r, t)ζm(r′, t′)

〉
was also

introduced in section 3.2.
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5.3 The gap equation

In linear response regime the electric field is supposed to be small enough, so let us first

solve the TDGL Eq. (5.5) without electric field. The TDGL Eq. (5.5) then become

∂

∂t
ψn −

(
1

2
D2 +

b

2

)
ψn +

1

2d2
(2ψn − ψn+1 − ψn−1) + εψn = ζn, (5.6)

The TDGL Eq. (5.6) is solved using the retarded (G0 = 0 for t < t′) GF G0
kz

(r, t; r′, t′):

ψn(r, t) =

∫ 2π/d

0

dkz

2π
e−inkzd

∫
dr′

∫
dτ ′G0

kz
(r, t; r′, t′)ζkz

(r′, t′). (5.7)

The GF satisfies

[
∂

∂t
− 1

2
D2 − b

2
+

1

d2
[1− cos(kzd)] + ε

]
G0

kz
(r, r′, t− t′) = δ(r− r′)δ(t− t′), (5.8)

It is easy to get G0
kz

(r, t; r′, t′) from Gkz(r, t; r
′, t′) in Appendix A by putting v = 0

corresponding to the linear case. So the GF G0
kz

(r, t; r′, t′) is written as

G0
kz

(r, t, r′, t′) = exp

[
ib

2
X (y + y′)

]
g0

kz
(X,Y, τ) , (5.9)

where

g0
kz

(X,Y, τ) = C0(kz)θ (τ) exp

(
−X2 + Y 2

2β

)
, (5.10)

C0(kz, τ) =
b

4π
exp

{
−

(
ε− b

2
+

1

d2
[1− cos(kzd)]

)
τ

}
sinh−1

(
bτ

2

)
, (5.11)

β =
2

b
tanh

(
bτ

2

)
, (5.12)

with X = x− x′, Y = y − y′, τ = t− t′,
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The superfluid density can be expressed via the GF G0
kz

(r, t; r′, t′) as

〈|ψn(r, τ)|2〉 = 2ηmf tmf
d

s

∫ 2π/d

0

dkz

2π

∫
dr′

∫ τ

−∞
dt′

∣∣G0
kz

(r, t; r′, t′)
∣∣2

= 2ηmf tmf
d

s

∫ 2π/d

0

dkz

2π

∫
dr′

∫ ∞

0

dτ
∣∣C0

∣∣2 exp

(
−X2 + Y 2

β
− 2vX

)

= 2πηmf tmf
d

s

∫ ∞

0

dτβ

∫ 2π/d

0

dkz

2π

∣∣C0
∣∣2 , (5.13)

Note that

∫ 2π/d

0

dkz

2π

∣∣C0
∣∣2 =

(
b

4π

)2 ∫ 2π/d

0

dkz

2π
exp

{
−

(
2ε− b +

2

d2
[1− cos(kzd)]

)
τ

}

=
1

d

(
b

4π

)2

exp

{
−

(
2ε− b +

2

d2

)
τ

}
I0

(
2τ/d2

)
. (5.14)

where I0 is the Gamma function introduced in section 3.3.1. Then the expression (5.13)

takes form

〈|ψn(r, t)|2〉 =
ηmf tmfb

2πs

∫ ∞

τ=τcut

f 0(ε, τ)

sinh(bτ)
, (5.15)

where

f 0(ε, τ) = e−(2ε−b)τe−2τ/d2

I0

(
2τ/d2

)
. (5.16)

The gap equation in this case can be written as

ε = −ah +
ηmf tmfb

πs

∫ ∞

τ=τcut

f 0(ε, τ)

sinh(bτ)
. (5.17)

The equation (5.17) can be obtained easily from Eq. (3.29) by putting v = 0. The

renormalization of the “mean field” critical temperature Tmf
c should be treated the same

as section 3.3.2. The gap equation (5.17) thus reads as

ε = −ar
h −

ηt

πs

{∫ ∞

0

ln[sinh(bτ)]
d

dτ

[
f 0(ε, τ)

cosh(bτ)

]
− γE + ln(bd2)

}
. (5.18)
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5.4 Fluctuation ac conductivity

5.4.1 Linear response to electric field

The supercurrent density, defined by Eq. (3.9), was already expressed via the GF Eq.

(3.47). In a similar manner one also has

js
y = iηt

d

s

∫ 2π/d

0

dkz

2π

∫

r′,t′
G∗

kz
(r, t; r′, t′)

∂

∂y
Gkz (r, t; r′, t′) + c.c. (5.19)

where Gkz (r, r′, τ) as the GF of the linearized TDGL Eq. (5.5) in the presence of the

scalar potential. One finds correction to the GF to linear order in the electric field

Gkz(r, t, r
′, t′) = G0

kz
(r, t, r′, t′) + i

∫
dr1

∫
dt1G

0
kz

(r, t, r1, t1)φ(r1, t1)G
0
kz

(r1, t1, r
′, t′)

= G0
kz

(r, r′, τ)− i

∫
dr1

∫
dt1G

0
kz

(r, r1, τ1)E(t1)y1G
0
kz

(r1, r
′, τ2),(5.20)

where φ(r1, t1) and E(t1) are the scalar electric potential and electric field in dimensionless

units respectively, τ1 = t− t1, and τ2 = t1 − t′.

Substituting the full GF (5.20) into expression (5.19), the supercurrent density takes

form:

js
y = js

y0 + js
y1, (5.21)

where

js
y0 = ηt

d

s

∫ 2π/d

0

dkz

2π

∫
dr′

∫
dt′

[
ib

2
(x− x′)− y − y′

β

]
G0

kz
(r, r′, τ)G0

kz
(r, r′, τ), (5.22)
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and

js
y1 = ηt

d

s

∫ 2π/d

0

dkz

2π

∫
dr′

∫
dt′

∫
dr1

∫
dt1

{[
ib

2
(x− x1)− y − y1

β1

]
G0

kz
(r, r1, τ1)

×E(t− τ1)y1G
0
kz

(r1, r
′, τ2)G

0
kz

(r′, r, τ)−G0
kz

(r′, r1, τ2)G
0
kz

(r1, r, τ1)E(t− τ1)y1

×
[
ib

2
(x− x′)− y − y′

β

]
G0

kz
(r, r′, τ)

}
. (5.23)

Carrying out the integration (5.22) over r′ one obtains

js
y0 = 0, (5.24)

while carrying out the integration (5.23) over r1, r
′ one can find

js
y1 =

b

4πs
ηt

∫ ∞

0

dτ exp

{
−

(
2ε− b +

2

d2

)
τ

}
I0

(
2τ

d2

) ∫ τ

0

dτ1E(t− τ1)

×
tanh

(
bτ
2

)
+ tanh

(
b(τ−τ1)

2

)
− tanh

(
bτ1
2

)− tanh
(

bτ
2

)
tanh

(
bτ1
2

)
tanh

(
b(τ−τ1)

2

)

{
tanh

(
bτ
2

)
+ tanh

(
b(τ−τ1)

2

)
+ tanh

(
bτ1
2

)
+ tanh

(
bτ
2

)
tanh

(
bτ1
2

)
tanh

(
b(τ−τ1)

2

)}2

× 1

cosh
(

bτ
2

)
cosh

(
bτ1
2

)
cosh

(
b(τ−τ1)

2

) . (5.25)

Substituting E(t − τ1) = E exp[−iω(t − τ1)] into the expression (5.25) and carrying out

the integral over τ1, one gets

js(t) =
b

4πs

ηt

b2 + ω2
E exp(−iωt)

∫ ∞

0

dτ exp

{
−

(
2ε− b +

2

d2

)
τ

}
I0

(
2τ

d2

)

× csc2(bτ) {b cosh(bτ)− b cos(ωτ) + i[ω sinh(by)− b sin(ωτ)]} . (5.26)

By putting ω = 0 in the expression (5.26) one gets back to dc current as:

js
y1 =

ηt

4πs
E

∫ ∞

0

dτ
1

cosh2(bτ/2)
exp

{
−

(
2ε− b +

2

d2

)
τ

}
I0

(
2τ

d2

)
, (5.27)

which is consistent with the expression (3.49) in linear response case.

By doing the Fourier transform expression (5.26) with respect to frequency, then one
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obtains complex conductivity as:

σs(ω) =
js(ω)

E(ω)
=

b

4πs

ηt

b2 + ω2

∫ ∞

0

dτ exp

{
−

(
2ε− b +

2

d2

)
τ

}
I0

(
2τ

d2

)

× csc2(bτ) {b cosh(bτ)− b cos(ωτ) + i[ω sinh(bτ)− b sin(ωτ)]} . (5.28)

The complex conductivity (5.28) can be given in terms of the real part and the imaginary

part

σs(ω) = σ1(ω) + iσ2(ω), (5.29)

with

σ1(ω) =
b2

4πs

ηt

b2 + ω2

∫ ∞

0

dτ exp

{
−

(
2ε− b +

2

d2

)
τ

}
I0

(
2τ

d2

)

× csc2(bτ)[cosh(bτ)− cos(ωτ)], (5.30)

σ2(ω) =
b

4πs

ηt

b2 + ω2

∫ ∞

0

dτ exp

{
−

(
2ε− b +

2

d2

)
τ

}
I0

(
2τ

d2

)

× csc2(bτ)[ω sinh(bτ)− b sin(ωτ)]. (5.31)

In limit b → 0, one have

σ1(ω) =
1

4πs

ηt

ω2

∫ ∞

0

dτ exp

{
−

(
2ε +

2

d2

)
τ

}
I0

(
2τ

d2

)
1− cos(ωτ)

τ 2
, (5.32)

σ2(ω) =
1

4πs

ηt

ω2

∫ ∞

0

dτ exp

{
−

(
2ε +

2

d2

)
τ

}
I0

(
2τ

d2

)
ωτ − sin(ωτ)

τ 2
. (5.33)

In 2D case, the expression (5.32) and (5.33) become

σ1(ω) =
1

4πs

ηt

ω2

∫ ∞

0

dτ exp {−2ετ} 1− cos(ωτ)

τ 2

=
ηt

8πs

1

ε

{
ω

ε
arctan

( ω

2ε

)
−

( ε

ω

)2

ln

[
1 +

( ω

2ε

)2
]}

, (5.34)
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σ2(ω) =
1

4πs

ηt

ω2

∫ ∞

0

dτ exp {−2ετ} ωτ − sin(ωτ)

τ 2

=
ηt

4πs

1

ε

{
2
( ε

ω

)2 (
arctan

ω

2ε
− ω

2ε

)
+

ε

2ω
ln

[
1 +

( ω

2ε

)2
]}

, (5.35)

which agree with the results of A.T. Dorsey [118], and A. Larkin and A. Varlamov [8].

This results also agree with the results of Schmidt [116], which were derived by using the

Kubo formula.

5.4.2 Comparison with experiment

Here we compare the results with the experimental results of Y. Tsuchiya et al. [114],

obtained from the the microwave surface impedance measurements at ω/2π=31.7 GHz on

an overdoped YBCO slightly overdoped single crystal with Tc=91.2 K. The layer distance

used the calculation is d′ = 11.68 Å in Ref. [60]. The comparison is presented in Fig. 5.1.

The complex resistivity is

ρs(ω) =
1

σs(ω)
=

σ1

σ2
1 + σ2

2

− i
σ2

σ2
1 + σ2

2

= ρ1 − iρ2, (5.36)

where

ρ1 =
σ1

σ2
1 + σ2

2

, ρ2 =
σ2

σ2
1 + σ2

2

. (5.37)

The change of resistivity from the zero-field is defined as

δρ1 = ρ1(B)− ρ1(0), (5.38)

where returning to physical units

ρ1 =
k

σn

σ1

σ2
1 + σ2

2

, (5.39)
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Figure 5.1: Points are resistivity for different temperatures of an overdoped YBCO in Ref.
[114]. The solid line is the theoretical value of resistivity calculated from Eq. (5.38) with fitting
parameters (see text).

The change of resistivity curves were fitted to Eq. (5.38) with the normal-state conduc-

tivity measured in Ref. [114] to be σn = 3.3 × 106 (Ω m)−1. The parameters we obtain

from the fit are: Hc2(0) = 180 T (corresponding to ξ = 13.5 Å), κ = 47.8, s′ = 5.88 Å,

and k = σn/σGL = 0.74, where we take γ = 7.8 for optimally doped YBCO in Ref. [42].

Using those parameters, we obtain Gi = 1.56 × 10−3 (corresponding to η = 0.176). The

order parameter effective thickness s′ can be taken to be equal to the layer thickness (see

in Ref. [61]) of the superconducting CuO2 plane plus the coherence length 2ξz = 2 ξ
γ

due

to the proximity effect: 3.18 Å+213.6
7.8

Å= 6.96 Å, roughly in agreement in magnitude with

the fitting value of s′.

We also compare the change of resistivity Eq. (5.38) with the experimental results of T.

Hanaguri et al. [115], obtained from the the microwave surface impedance measurements

at 40.8 GHz on a Bi2212 single crystal with Tc=91 K. The layer distance and the normal-

state conductivity used the calculation are d′ = 19.6 Å in Ref. [61] and σn = 1.42 × 104

(Ωcm)−1 in Ref. [48], respectively. The comparison is presented in Fig. 5.2. The best

fitting parameters are: Hc2(0) = 178 T (corresponding to ξ = 13.6 Å), κ = 49.5, s′ = 3.41
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Figure 5.2: Points are resistivity for different temperatures of an overdoped Bi2212 in Ref.
[115]. The solid line is the theoretical value of resistivity calculated from Eq. (5.38) with fitting
parameters (see text).

Å, k = 0.67, and γ = 34 which give Gi = 0.036. The order parameter effective thickness s′

can be roughly estimated: 3.32 Å+213.6
34

Å= 4.11 Å. The fitting parameters of ac resistivity

are consistent with the fitting ones of dc resistivity in section 3.4.2.

5.5 Summary

We calculated the complex conductivity and resistivity in a layered Type-II superconduc-

tor under magnetic field in the presence of strong thermal fluctuations on the mesoscopic

scale in linear response. Time dependent Ginzburg-Landau equations with thermal noise

describing the thermal fluctuations is used to describe the vortex-liquid regime and arbi-

trary flux flow velocities. The nonlinear term in dynamics is treated using the renormalized

Gaussian approximation. The renormalization of the critical temperature is calculated.

We obtained explicit expressions for the complex conductivity σs and resistivity ρs in-

cluding all Landau levels, so that the approach is valid for arbitrary values the magnetic

field not too close to Hc1 (T ).
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The results were compared to the experimental data on HTSC. Our the resistivity

results are in good qualitative and even quantitative agreement with experimental data

on YBCO and Bi2212. We found that the change in the resistivity was linear in magnetic

field at low temperature in YBCO and Bi2212. This linear behavior was was well described

in terms of the Coffey-Clem unified theory [114, 122] of vortex motion with B-independent,

and frequency-independent vortex dynamics parameters, and essentially not different from

that in conventional superconductor. However, there is a clear derivation from the B-

linear behavior due to thermal effect. The thermal fluctuation was included in the present

approach, so that our results should be applicable for above and below Tc.
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Chapter 6

Conclusion and future work

We quantitatively studied electrical transport and thermal transport phenomena in Type-

II superconductor in magnetic field in the presence of strong thermal fluctuations on the

mesoscopic scale in the linear response and also beyond the linear one. While in the

normal state the dissipation involves unpaired electrons, in the mixed phase it takes a

form of the flux flow. Time dependent Ginzburg-Landau equations with thermal noise

describing the thermal fluctuations is used to describe strongly Type-II superconductor

in the vortex-liquid regime in 2D, 3D, and layered superconductor. We avoid assuming

the lowest Landau level approximation, so that the approach is valid for arbitrary values

the magnetic field not too close to Hc1 (T ).

Our main objective is to study layered high-Tc materials for which the Ginzburg num-

ber characterizing the strength of thermal fluctuations is exceptionally high, in the moving

vortex matter the crystalline order is lost and it becomes homogeneous on a scale above

the average inter-vortex distances. This ceases to be the case at very low temperature

at which two additional factors make the calculation invalid. One is the validity of the

GL approach (strictly speaking not far from Tc (H)) and another is effect of quenched

disorder. The later becomes insignificant at elevated temperature due to a very effective

thermal depinning. Although sometimes motion tends to suppress fluctuations, they are

still a dominant factor in flux dynamics. We also estimated the region in the parameter
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space in which, on one hand vortex crystal is effectively destroyed by thermal fluctuations

and, on the other hand disorder (significantly “weakened” by thermal fluctuations) is not

strong enough to significantly affect the transport.

The nonlinear term in TDGL equation is treated using the self-consistent Gaussian

approximation. In linear response we solve the linearized TDGL by expanding Green’s

function to linear order in the electric field. This allows us to obtain explicit expres-

sions for the transverse thermoelectric conductivity αxy, the Nernst signal eN in 2D and

3D, and the ac conductivity in layered superconductor including all Landau levels. In

nonlinear response we also have an explicit form of the Green function incorporating all

Landau levels. This allows to obtain explicit formulas for electrical conductivity and Hall

conductivity beyond linear response without need to cutoff higher Landau levels. The

results are presented using both the strength of the thermal fluctuation η and more often

used the Ginzburg number Gi in 2D and 3D.

We compared the transverse thermoelectric conductivity αxy and the Nernst signal

eN to the available 2D numerical simulation of the same model and the experiments on

LaSCO and YBCO. Our the resistivity and Hall conductivity results were compared with

experimental data on YBCO in strong electric fields as well as on Bi2212 in linear case.

The renormalization of the critical temperature is calculated and is strong in layered

high-Tc materials. The change of ac resistivity was also compared to the experiment on

YBCO and Bi2212. Our comparisons show a good agreement with several experiment

and numerical simulation on HTSC.

Let us compare the present approach with a widely used Londons’ approximation.

Since we haven’t neglected higher Landau levels, as very often is done in similar studies [11,

43], our results should be applicable even for relatively small fields in which the London

approximation is valid and used. There is no contradiction since the two approximations

have a very large overlap of applicability regions for strongly Type-II superconductors.

The GL approach for the constant magnetic induction works for H >> Hc1 (T ), while the

Londons’ approach works for H << Hc2 (T ). Similar methods can be applied to other
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electric transport phenomena like the Hall conductivity and thermal transport phenomena

like the Nernst effect. The results, at least in 2D, can be in principle compared to

numerical simulations of Langevin dynamics. Efforts in this direction are under way.

In the future work, we will calculate ac conductivity beyond linear response and also

consider pinning and crystalline correlation effects on the transport properties in Type-II

superconductors.
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Appendix A

Derivation of Green’s function

In this appendix we outline the method for obtaining the Green’s function in strong

electric field for the linearized equation of TDGL (see Eq. (3.18))

{
Ĥ − b

2
+

1

d2
[1− cos(kzd)] + ε

}
Gkz(r, r

′, t− t′) = δ(r− r′)δ(t− t′), (A.1)

where Ĥ = Dt − 1
2
D2, the covariant time derivative Dt and the covariant derivatives D

in Landau gauge are as follows

Dt =
∂

∂t
+ ivby; Dx =

∂

∂x
− iby; Dy =

∂

∂y
. (A.2)

The Green’s function is a Gaussian

Gkz (r, r′, τ) = exp

[
ib

2
X (y + y′)

]
gkz (X,Y, τ) , (A.3)

where

gkz (X,Y, τ) = Ckz(τ)θ (τ) exp

(
−X2 + Y 2

2β
− vX

)
, (A.4)

with X = x− x′− vτ, Y = y− y′, τ = t− t′. θ (τ) is the Heaviside step function, C and β

are coefficients.
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Substituting the Ansatz (A.3) into Eq. (A.1), one obtains coefficients

DxG =

(
∂

∂x
+ iby

)
G = −

(
X

β
− ibY

2
− v

)
G, (A.5)

D2
xG =

[(
X

β
− ibY

2
− v

)2

− 1

β

]
G, (A.6)

DyG =
∂

∂y
G = −

(
Y

β
+

ibX

2

)
G, (A.7)

D2
yG =

[(
Y

β
+

ibX

2

)2

− 1

β

]
G, (A.8)

D2G =

{
− 2

β
+

(
X

β
− ibY

2
− v

)2

+

(
Y

β
+

ibX

2

)2
}

G, (A.9)

DtG =

{
∂tC

C
+

1

2

(
X2 + Y 2

) ∂tβ

β2
+ v

(
v − X

β

)
+

ivb

2
Y

}
G, (A.10)

Substituting Eq. (A.9) and Eq. (A.10) into Eq. (A.1), one obtains pre-exponential factor

which has only quadratic and constant parts

1

2

(
∂tβ

β2
− 1

β2
+

b2

4

)
(X2 + Y 2) + ε− b

2
+

ν2

2
+

1

d2
[1− cos(kzd)] +

∂tC

C
+

1

β
,

Then one obtains following conditions condition:

ε− b

2
+

ν2

2
+

1

d2
[1− cos(kzd)] +

1

β
+

∂tC

C
= 0, (A.11)

∂tβ

β2
− 1

β2
+

b2

4
= 0. (A.12)

The Eq. (A.12) determines β, subject to an initial condition β(0) = 0,

β =
2

b
tanh (bτ/2) , (A.13)
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while Eq. (A.11) determines C:

C =
b

4π
exp

{
−

(
ε− b

2
+

v2

2
+

1

d2
[1− cos(kzd)]

)
τ

}
sinh−1

(
bτ

2

)
. (A.14)

The normalization is dictated by the delta function term in definition of the Green’s

function Eq. (A.1).

It is easy to obtain the Green’s function G0
kz

(r, r′, τ) for TDGL Eq. (A.1) in case

without electric field by putting v = 0 in Eq. (A.3)

G0
kz

(r, r′, τ) = exp

[
ib

2
X (y + y′)

]
g0

kz
(X,Y, τ) , (A.15)

where

g0
kz

(X,Y, τ) = C0
kz

(τ)θ (τ) exp

(
−X2

0 + Y 2

2β

)
, (A.16)

with X0 = x− x′, and

C0
kz

=
b

4π
exp

{
−

(
ε− b

2
+

1

d2
[1− cos(kzd)]

)
τ

}
sinh−1

(
bτ

2

)
. (A.17)
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Appendix B

Comparison with the Hartree

approach

Here we explain the difference using an example of thermodynamics. The dynamics is

not different since it always can be cast in the Martin-Siggia-Rose form (see [35]).

By using the Hartree approximation, one subsitube |ψ|4 by 2
〈|ψ|2〉 |ψ|2 in the GL free

energy Eq. (3.6) leading the “renormalized” value of the coefficient of the linear term in

the TDGL Eq. (3.10)

ε = −ah +
〈|ψn|2

〉
. (B.1)

In the framework of the variational Gaussian approximation, the GL free energy Eq.

(3.6) is divided into an optimized quadratic part K, and a “small” part V . Then K is

chosen in such a way that the energy of a Gaussian state is minimal [43]. In liquid phase

with an arbitrary homogeneous U(1) symmetric state, just one variational parameter ε is

sufficient. Thus

K =
s

ηmf tmf

∑
n

∫
dr

[
ψ∗n

(
−1

2
D2 − b

2
+ ε

)
ψn

]
, (B.2)
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and the small perturbation becomes

V =
s

ηmf tmf

∑
n

∫
dr

[
(−ah − ε) |ψn|2 +

1

2
|ψn|4

]
. (B.3)

The eigenvalue of N th Landau level is

−1

2
D2ϕn = (N +

1

2
)bϕn. (B.4)

The Gaussian energy which will be minimized therefore is

ggauss ≡ − log

[∫
DψnDψ∗n exp(−K)

]
+ 〈V 〉K , (B.5)

where

〈V 〉K =
∑

n

[
(−ah − ε)

〈|ψn|2
〉

+
〈|ψn|2

〉 〈|ψn|2
〉]

. (B.6)

Minimizing the Gaussian energy with respect to ε

∂ggauss

∂ε
= − ∂

∂ε
log

[∫
DψnDψ∗n exp(−K)

]
+

∂ 〈V 〉K
∂ε

= 0. (B.7)

The derivative of the first term in Eq (B.7) gives

∂

∂ε
log

[∫
DψnDψ∗n exp(−K)

]

=
∂

∂ε
log

{∫
DψnDψ∗n exp

[
− s

ηmf tmf

∑
n

∫
dr (Nb + ε) |ψn|2

]}

=

∫
DψnDψ∗n|ψn|2 exp

[
− s

ηmf tmf

∑
n

∫
dr (Nb + ε) |ψn|2

]

∫
DψnDψ∗n exp

[
− s

ηmf tmf

∑
n

∫
dr (Nb + ε) |ψn|2

]

=
〈|ψn|2

〉
. (B.8)
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while the second term gives

∂ 〈V 〉K
∂ε

= − 〈|ψn|2
〉

+ (−ah − ε)
∂

∂ε

〈|ψn|2
〉

+ 2
〈|ψn|2

〉 ∂

∂ε

〈|ψn|2
〉
. (B.9)

Substituting Eq. (B.8) and Eq. (B.9) into Eq. (B.7) one obtains gap equation

ε = −ah + 2
〈|ψn|2

〉
. (B.10)

While the Hartree method is generally simpler, the Gaussian method applied in it’s con-

sistent form conserves Ward identities (electric current) and its effective energy is positive

definite. In addition it has the correct “large number of components” limit, unlike Hartree

method.
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Appendix C

Comparison with thermodynamics

From TDGL, we obtained the superfluid density Eq. (3.36) in the case b = 0, υ = 0 :

〈|ψn(r, τ)|2〉 ' −ηmf tmf

2πs
{ln (

τcut/d
2
)

+ γE}+ O (τcut) . (C.1)

In the case without external electric field (or v = 0), the equation obtained from

TDGL shall approach the thermodynamics result. In thermodynamics method, we shall

evaluate the partition function Z =
∫

DψnDψ∗ne
−FGL/T where FGL/T is defined in Eq.

(3.6).

The superfluid density in the thermodynamic approach at the phase transition point

〈|ψn(r, τ)|2〉 =
ηmf tmfd

(2π)3 s

∫ kmax

0

dk

∫ 2π/d

0

dkz
1

k2

2
+ 1−cos(kzd)

d2

' ηmf tmf

2πs
{ln Λ + ln

(
2d2

)}+ O
(
Λ−1

)
, (C.2)

where Λ = k2
max/2.

The relation between the cutoff “time” τcut and energy UV cutoff Λ is obtained by

comparing Eq. (C.1) with Eq. (C.2)

τcut ' 1

2ΛeγE
. (C.3)
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We also remark that in thermodynamic approach, if we use the self-consistent Gaussian

approximation, we will get the exact same equation derived in Eq. (3.44) without electric

field derived from TDGL after using Eq. (C.3).
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Appendix D

Derivation of Green’s function of

TDGL for Hall effect

In the same way we outline the method for obtaining the Green’s function in strong

electric field for the linearized equation of TDGL (see Eq. (4.8))

{
(1 + iϑ)Dt − 1

2
D2 − b

2
+

1

d2
[1− cos(kzd)] + ε

}
G′

kz
(r, r′, t−t′) = δ(r−r′)δ(t−t′), (D.1)

In Landau gauge the covariant time derivative Dt and the covariant derivatives D are as

follows

Dt =
∂

∂t
+ ivby; Dx =

∂

∂x
− iby; Dy =

∂

∂y
. (D.2)

The Green’s function is a Gaussian

G′
kz

(r, r′, τ) = exp

[
ib

2
X (y + y′)

]
g′kz

(X,Y, τ) , (D.3)

where

g′ (X,Y, τ) = C ′(kz)θ (τ) exp

[
−X2 + Y 2

2β′
− v(1 + iϑ)X

]
, (D.4)
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EFFECT

with X = x− x′ − vτ, Y = y − y′, τ = t− t′. θ (τ) is the Heaviside step function, C ′ and

β′ are coefficients.

Substituting the Ansatz (D.3) into Eq. (D.1), one obtains coefficients

DxG
′ =

(
∂

∂x
− iby

)
G′ = −

[
X

β′
+

ibY

2
+ v(1 + iϑ)

]
G′, (D.5)

D2
xG

′ =

{[
X

β′
+

ibY

2
+ v(1 + iϑ)

]2

− 1

β′

}
G′, (D.6)

DyG
′ =

∂

∂y
G′ =

(
ibX

2
− Y

β′

)
G′, (D.7)

D2
yG

′ =

[(
ibX

2
− Y

β′

)2

− 1

β′

]
G′, (D.8)

D2
rG

′ =

{
− 2

β′
+

[
X

β′
+

ibY

2
+ v(1 + iϑ)

]2

+

(
ibX

2
− Y

β′

)2
}

G′, (D.9)

DtG
′ =

[
∂tC

′

C ′ +
1

2

(
X2 + Y 2

) ∂tβ
′

β′2
+ v2(1 + iϑ) + v

X

β′
+

ivb

2
Y

]
G′, (D.10)

Substituting Eq. (D.9) and Eq. (D.10) into Eq. (D.1), one obtains pre-exponential

factor which has only quadratic and constant parts

1

2

[
(1 + iϑ)

∂tβ
′

β′2
− 1

β′2
+

b2

4

]
(X2+Y 2)+ε− b

2
+

v2(1 + iϑ)2

2
+

1

d2
[1−cos(kzd)]+(1+iϑ)

∂tC
′

C ′ +
1

β′
,

Then one obtains following conditions condition:

ε− b

2
+

v2(1 + iϑ)2

2
+

1

d2
[1− cos(kzd)] +

1

β
+ (1 + iϑ)

∂tC
′

C ′ = 0, (D.11)

(1 + iϑ)
∂tβ

′

β′2
− 1

β′2
+

b2

4
= 0. (D.12)

The Eq. (D.12) determines β′, subject to an initial condition β′(0) = 0,

β′ =
2

b
tanh

[
b

2

τ

(1 + iϑ)

]
, (D.13)
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while Eq. (D.11) determines C ′:

C ′ =
b

4π
exp

{
−

(
ε− b

2
+

v2(1 + iϑ)2

2
+

1

d2
[1− cos(kzd)]

)
τ

}
sinh−1

(
bτ

2

)
. (D.14)

The normalization is dictated by the delta function term in definition of the Green’s

function Eq. (D.1).
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