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ABSTRACT

The mathematical model of the-waterflood problem which is applied in this
paper can be divided into two sections. One 1s the pressure equation and the
other is the saturation equation. And the saturation equation also can be pa-
rtitioned into the transport stage saturation and the diffusive stage saturation.
However, we will pay more attention to solve the transport stage saturation in
this research. Here we construct a 256x256 meters reservoir system for simu-
lation. Anefficient numerical method, locally conservative Eulerian-Lagrangian
methods (LCELM), is developed to compute the transport equation to improve the
conservation of waterflood. From the results of the numerical simulations, we
can realize the relation between temporal variation and the flow condition.
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1 Introduction

In this research, we develop an efficient method for the two-phase incompressible
immiscible flows in porous media. We will consider the waterflooding problem in this
paper. The methods in this paper should also be of value in the numerical simulation
of recently developed double porosity models for swelling clay soils [1]. The numerical
method combines hybridized mixed finite elements, and a new version of the modified
method of characteristics, a sophisticated operator-splitting procedure for separating the

transport part from the diffusion part of the saturation equation.

Our approach is to write the governing equations in terms of a global pressure [2, 3, 4];
this leads to coupled pair of équations, an elliptic equation for the global pressure and a
parabolic equation for the water saturation. The primary operator splitting separates the
computation of the globalpressure from the saturation.“This permits the use of different
time steps for pressure and saturation. The'second operator splitting separates the effect
of transport from diffusion in the saturationm calculation; this allows the use of smaller

steps for the transport than for the diffusion.

In section two, we present the mathematical model of the waterflood problem. Then
the temporal discretization and the spatial discretization are shown in section three and
section four, respectively. And we present an overview process of numerical simulation in
section three. Furthermore, the section five shows how to calculate the pressure and the

saturation. And the numerical results are displayed in section six.



2 The waterflood problem

We discuss the equations for two-phase, incompressible, immiscible flow in porous

media. By mass conservation, we can get the equations form [4]

@(x)% — div(KAN,(S)Vo Wy (2, 1) = Gewtw (2, S), (1)
- @(x)% - dZU<KAAo(S>V:B\IJO(I7 t)) = QGact,o(xa S)7 (2)
Pc(S) = \ch(z7t) + (po - pw)gz7 \I]c(l'vt) = \I]o($a t) - \ij(‘rvt)v (3)

for x € €, where ® is the porosity; 1S is the water saturation, and K is the absolute

permeability tensor of the media. Thetotalanebility«is defined as

Kro(d) 2 Kro(5)7

L Ho

A:

where K, and K,, are the relative‘permeabilities of the water and oil phases, and p,,

and u, are the viscosity of the*water and oil phases. The phase mobilities are

AN, (S) = KT;”(S), AN (S) = KT;(S>,

VU, is the a-phase potential; P. = P.(S) = P, — P, is the capillary pressure ( note that
P! < 0); pa is the ( constant ) density of the a-phase; g is the gravitational constant;

and z is the depth. Pressures are related to potentials by the relations
VU, =P, — pagz, a=w,o

The relative permeability functions K,, and the capillary pressure P, are assumed in this

paper to be independent of x . If the global pressure [2, 3, 4] given by

P=tp 4P+ / (AP0 — Au(PHC)))C) (4)

N| —



is introduced, equations( 1 )-( 3 ) can be written as a uniformly elliptic equation for global

pressure and a convection-dominated parabolic equation for water saturation as follows :

U=—K(@)AS)HVP = (Awpw + Nopo)gVz), (5)
divU = q, (6)
CIJ@ + div(UAy) + div((KAAuA) (VP + (po — po)gV2)) = ¢ — Awq ™, (7)

ot
where ¢ = ezt + Gextos g7 = max(q,0) and ¢~ = max(—q,0). The right-hand side of
equation( 7 ) results from assuming that only water is injected and, at a production point,

the flow splits according to mobility between water and oil.

We shall assume” no flow ”bhoundary conditions on 02 :

U |gq =0, (8)

KANGN, (VP = (Pt po)gV ) - Wloa = 0, (9)

Where 77 is the unit outwardmormalvector to df2 . .Compatibility to the incompressibility

of the fluids requires that

/qux = 0. (10)

The initial condition of the system is determined by the single relation.
S(x,0) = Sinit(z), forx e (11)

It will be convenient in the discussion of MMOC procedures to the saturation equation (

7 ) in nondivergence form; a short calculation show that

@% L AL(S)U - VS — din(KD(x, §)(VS + Lo PIVEy gy 1)

C

where

D(x,S) = —(AA, A, P)(S)



3 Discretization in temporal domain

We shall employ a time-discretization procedure based on operator splitting concepts.
Assume that
At, = 11 A, Aty =i Aty
where i, and iy are positive integers. Let " = mAt, and give a function evaluated at
time ¢™ by f™ . Similarly, let t,, = nAt, and ¢, = t, + kAty and let f, = f(t,) and
for = f(tnr) , respectively.
The pressure will be calculated at t™ , m = 0,1,2--- . At, is the time step for

the diffusive stage saturation calculation. Atgsis the time step for the microstep for the

transport stage saturation caleulation.

The time steps for the pressure and saturation variables will be allowed to be different.
The numerical solution issobtained sequentially, Saturation solutions are computed for
increasing values of the discretized time followed by the solution of the global pressure

system after several saturation steps.

( 1) At the beginning, we can use the initial condition S° = S;,;; to determine {P°, U°}

by solving the pressure equation (in mixed form )
U = =K (@AS")(VP = (Au(S)pu + Ao(5°)p0)gV2)

divU° = ¢°

(2 ) Let E1U denote the extrapolation of U given by

U°, 0<t<t,

(EWU)(t) = (13)
_4m—1 m —_m m— m m
tg;tpU —%U L tm o<t <L




For t™ < t,,; < t™™  'm > 0, solve the saturation equation ( now expressed in

nondivergence, mixed form )

V = —KD(z,S)(VS + M), (14)

s . .
@E—FAw(S)(ElU) VS +divV = (1 —Ay)q™, (15)
S(x, ™) = §™(x), (16)

In (3.4), S™(x) denotes the final values from the [t™! ¢™] . S%(z) is the initial saturation.
(3) For t =™  solve for U™! and P!
Ut = —K (@) ASEN (VP (S pw + Ao(S™) o) gV 2)

diC A gt

(4)If¢tm™ < T go to (+2); otherwise; stop.
In ( 2), the algorithm for this is.as follows:

(i) Let ¢, and assume known {P,U, S} for t <t,, .

(ii) Form =nq, -+« LMo =mnq1 +1; — 1
(a)Fork=0,---,is—1, compute the transport over [t k, t, k1] by solving the system
agn,k / o +
) 5 + A, (Cur)(EVU) - VGr=1—-Ay)g", x€Q (17)
(B\U) -7 =0, z € 0N (18)
Sn(z), k=0,
Gk (@, tn) = (19)
Cn,kfl(xatn,k)a k=1,..9—1.



( b ) Set gﬂ(x) = Cn,iz—l(xatn,iz) = Cn,i2—1(x7tn+1) :

( ¢ ) Compute the diffusive effects over [t,,t,+1] by solving

V= —KD(x,S)(VSJr(’Ow_P%), e
@%—f+divvzo, e
V- =0 x € 082

x €

(22)

(23)



4 Discretization in spatial domain

We get the discretization from [9].

Let us return to the differential system ( 5 )-( 7 ) and restate it completely in mixed
form by introducing a saturation flux variable in addition to the volumetric flow rate

variable U. Then the equations take form

U=—-K(@)AS)VP = (Au(S)pw + Ao(5)p0) gV 2), (24)
divU = q, (25)

V= —K@ S)VS + W), (26)
272 i) S A= S (27)

It should be noted that gravity terms'enter into both flux variables. The no-flow boundary

condition are expressed by
U-n=V-T=0, x € 0. (28)

We wish to approximate each pair, {U, P} and {V, S}, by mixed finite elements. It is com-
pletely feasible and can be computationally advantageous [5, 6] to define the finite element
methods for the pressure equation and saturation equation over different partitions of the
domain, but in order to simplify our presentation we shall restrict our considerations to

the use of the same partition for the two sets of variables. Let
Q0 =1[0,LX] x[0,LY]

and set H = {HX,HY} , where HX = LX/NX and HY = LY/NY . Then let
X, = iHX and Y; = jHY , and define the elements of the partition 7 = 7(H) =

7



{sz D= 1,2,"' ,NX, j: 1,2,"' ,NY} by Bl] = [Xi—laXi] X D/j_l,}/}] ; will serve

for both the pressure and the saturation equations.

Let
n=n(H)={7V € H(dn,Q): Vl|p, € PLox Py and V-7 =0ondQ}

W=WH)={w: w

Bij c Po} C LQ(Q)

Where P, denotes the set of polynomials of total degree k£ and Fj,; denotes the tensor

product of polynomials of degree k in x by those of degree [ in iy . Then set
M=MH)=nxW,

i.e., the lowest index Raviart=Thomas mixed: finite element space over the partition 7 .

We shall seek an approximate solution to the-system ( 24 )-( 27 ) such that

(1) {U™, P™} € M, - s 1E5

(2) {V,,,S,} € M, MR e

In our computation, we let LX = 256, LY = 256, NX = 256 and NY = 256. Then
we can get

Q = [0,256] x [0, 256]

and set H = {HX,HY} , where HX = LX/NX =1 and HY = LY/NY =1 . We let
X; =i and Y; = j , and define the elements of the partition 7 = 7(H) = {B;; : i =

1’2’. .. ’256, j = 1,2,“ . ,256} by Bij = [Xifl,Xl'] X [Y}',l,Y}] )

Y



5 Algorithm

5.1 The pressure equation

By [ 7], we can get the method of solving the pressure equation.

In each block B;; , Ug, [ = L,R,B,T is the out normal component of the total flux
across the edges of the block. H is the side length of block. The equations to be solved
for P™ and U™ are :

Ulr+Ug +Ug +Up =q¢"H,
(1 + Xg58a5) U 6AEBE" 175 —Xo08esUs — Egalh
it KAZL(AZ?pw + Ag”po)gsz "Ng,

where 3 = L, R,B,T, &7 = 2KA{Z)/H;, AT =\, (l7;), a = w0, and ly =

S+KS 77— _ KPYEyP A i
KKig , and Ly = K+I?ia o ?gKH?Z Awpw + Nops) (Lsp)V 7z - ng.

In the above, 155 and [?g indicate the value of “P and K in the element across the
[—interface, respectively.
5.2 The transport equation

The LCELM is the variational type of the MMOC. We shall explain the MMOC

briefly.



5.2.1 MMOC procedure

The MMOC procedure for the waterflood problem is based on introducing a character-
istic derivative for the transport part of the saturation equation written in non-divergence

form.

(z,5,U) = /®(z)2 + |\, (S)U|?, (29)
o) d
— =0+ A (SU-V
@&0 T 1(9) (30)

( Note that the characteristic direction ¢ depends on z , the saturation, and the fluid

velocity.) Thus, equation( 15 ) can be written as

oS
F —_ A +
@&0 +divV = (1 w)q

and equation( 17 ) can be written as

aCn,k
) 0

= (1 . Aw(Cn,k))q+7 HAS Q7 tn,k <t S tn,k—l—l (31)

We compute the transport microstep.hy solving.equation( 31 ) with the initial values given
by equation( 19 ). As seen in Figuwe 1, the fiindamental concept in the MMOC is the
discretization of the characteristic derivative by backwards differencing along the tangent
to the characteristic through the point (z,t, +1) back to the time level t,,; for whatever
x—point arise in the quadratures used in the finite element scheme. If we ignore for the

moment sources and sink and the boundary, the transported values over a micro-step

would be defined by

A (Cua) (BAU ) (2, b oy 1) At gy
)

Tpp(x) =2 — (32)

Cnt1 (%) = Gk (Tne(7)) (33)
The only reasonable criterion | 8 ] for conservation of mass globally is that the map ( 32

) have Jacobian identically one.

10
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Figure 1: The p' 1} to the time level t,, ;.

Recall that the saturation e v en in divergence form as
+divV =q" — Apq

Then the transport equation can be written as

S
Vt’m . = q+ - Awq_

AU
followed by the diffusive part given by

@g—f + divV =0

(35)

(36)

Let I' = Q X [tk, tnit1]. Let G be a reasonable shaped, simply-connected subset of 2 |

and define a subset C' = C,, x(G) of I' as follows. For each # € G , construct the solution

11



y(x;t) of the final value problem

fi_fz _ Aq;“—g, b > €3 o (37)
Y(@itnpi1) = (38)

and set
Tnge(t) = y(; tn k) (39)

Then, let G = G,, 1, be the interior of the set {T, x(r) : = € G} , and let C be the tube
determined by GG ,G and the integer curves ( 37 )-( 38 ); see Figure 2 and Figure 3 for
an example C' in a single space variable setting. ( We let Aty be sufficiently small. Then
the map * — T, is one-to-ene, so that this'construction can be carried out.) Now,

denote the outward normalsto 0C by gz, ) andinotethat it is orthogonal to the vector

oS
on the lateral surface of C' .. Then, integrate, 35 ) over C :

AU

DS dS
/ Vi - dzdt — / odA
© AU 0N AU

:/QS(tn7k+1,x) de — /@S(tnﬁk,x) dx (40)
€ €

= /(qJr — Aypq ™) dxdt
c
Thus, mass is conserved locally in the transport step, as defined in equation( 35 ) or

equations( 17 )-( 19 ) above, if

/@S(tn7k+1,x) de = /@S(tmk,x) dr + /(q+—Awq_) dxdt
a G c

The no-flow boundary condition is handled in a natural way in equation( 40 ), since
the integral curves ( 32 )-( 34 ) do not exit © in this case. In fact, if x € 0Q , then

12



the integral curve remain in 02 and C' has a portion of its lateral surface contained in
' = Q X [ty tnr+1] - Hence, no special cares arise for subsets G close to the boundary

for these boundary conditions.

tn,kH

Figure 2: The space-time domain C'.

13
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Figure 3: The area (Gytnps1) back to the time level ¢, .

5.3 Diffusive fractional step

We shall apply backward differencing in time over [ ¢, t,1 |

= (Pw — Po)gV 2
11 (Sn)(VSni1 o ( 5 %)
Spi1 — S
® zts + divVq = 0,



Thus, the mixed finite element equations take the form

1 .
(F(S_) n+l 77{) - (Sn+1 ) dZWTl))
1 — —
= —(P,(S—) (Pw = Po)gVz , i) , 71 €1
Sn - S_n .
(@Z—t , no) + (divVpgr , ne) =0 [ ng € W.

15



6 Numerical results

The following data and functions are held fixed for the computational results:

Viscosity

Density

Porosity

Residual saturations
Absolute permeability

Relative permeability

Capillary pressure

tw = 0.5 cP o =10 cP
pw=1 g/cm? po = 0.7 g/em3
®=0.2

Spw = 0.2 Sro =0.15

K =6 mdarcy

S_Srw 2
Krw(s) - ((I—Srw))Q

g (1 5 1—55,«0)2

=P 0t)

(=820 55 — Sru)?

7= 3000 dynes/cm?

In this study, the geometric domain is 256 x 256 meters and the grid size of the

model is 1 x 1 meters. In order to solve the transport equation, we use two kinds of

partitions as shown in Figure 4 and Figure 5 to compute the injection and other sections,

respectively. The red line in Figure 4 and Figure 5 represents the computational domain.

In the following figures, water is injected at the lower right corner at a uniform rate and

a mixture of water and oil produced at the top left corner.

16



Figure 4: The kind of partition (black line) is used to calculate the whole domain except

the injection.
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Figure 5: This kind of partition (green line) is used to calculate the injection.
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Figure 6: The_'v&éter Sat.u-l'ra'fl;io_n at the 40th day.
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Figure 7: The water saturation at the 80th day.
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Figure 8: The ,W'e;ter Satl.ll:'aﬁ'OI} at the 120th day.
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Figure 9: The water saturation at the 160th day.
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Figure 10: The,‘v{/‘ater satﬁ'ireition at the 200th day.
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Figure 11: The water saturation at the 240th day.
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