






















6 2. THEORETICAL FRAMEWORK

(1) (Comparability) For all X and Y are in X , one of X � Y , Y � X or X ∼ Y

must be hold.

(2) (Transitivity) For all X, Y and Z are in X , if X � Y and Y � Z then

X � Z. In other words, if X is better than Y , and Y is better than Z,

then X must be better than Z.

(3) (Independence) For all X, Y and Z are in X and for all α ∈ (0, 1), if X � Y

then αX + (1− α)Z � αY + (1− α)Z must be true.

(4) (Continuity) For all X, Y and Z are in X , if X � Y and Y � Z then there

are α and β in (0, 1) such that αX +(1−α)Z � Y and Y � βX +(1−β)Z.

We can reject or accept above axioms. However, if all of these axioms are ac-

cepted, there exists a von Neumann-Morgenstern representation.

Definition 2. (1) If there exists a function U : X → R such that

(2.1) X � Y ⇐⇒ U(X) > U(Y ),

we call it a numerical representation of preference relation �. Moreover

such function U is called a utility function.

(2) Let M be the collection of all probability distributions on a space (S, s),

and there is u : S → R. A von Neumann-Morgenstern representation is a

numerical representation of a preference relation �, satisfying

U(µ) =

∫
S

u(x)µ(dx),

for all µ ∈ M. Moreover such u is called the von Neumann-Morgenstern

utility function.

In addition, if the above function u satisfies the conditions, strictly increasing,

strictly concave and continuous on S, (2.1) can be written as

X � Y ⇐⇒ E[u(X)] > E[u(Y )],
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called expected utility representation. Moreover, the conditions of u, strictly concave

and strictly increasing, means that the preference relation � has the properties, risk

averse and monotone, respectively.

Therefore when there are two alternative investments X, Y in X , and there

exists expected utility representation of a preference relation �, we will choose X

rather than Y if the expected utility of X is greater than the expected utility of Y .

In other words, we conclude that

X � Y ⇐⇒ E[u(X)] > E[u(Y )]

and

X % Y ⇐⇒ E[u(X)] ≥ E[u(Y )].

This standard of making decision is called expected utility theory. Under expected

utility theory our main goal is to find out X ∈ X such that E[u(X)] reaches the

maximal value.

2.2. Prospect Theory

Expected utility theory has been used popularly for investors to make decision

under risk; however it still has some serious shortcomings. For instance, it can

not explain the behavior of investor correctly. Many investors would not obey the

principle of the expected utility theory, usually. And there exist many counterexam-

ples, the best famous, was called Allais’ parodox, which was introduced by French

economist Maurice Allais (1953). The example is given as following:

Problem 1: Choose between

A :


2500 with probability 0.33

2400 with probability 0.66

0 with probability 0.01

B : 2400 with certainty
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Problem 2: Choose between

C :

 2500 with probability 0.33

0 with probability 0.67

D :

 2400 with probability 0.34

0 with probability 0.66

The statistic shows that 82 percent of subjects chose B in Problem 1, and 83

percent of subjects chose C in Problem 2. The main result of this example is that in

problem 1, investment B is better than investment A, and in problem 2, investment

C is better than investment D. The first preference implies

0.33u(2500) + 0.66u(2400) + 0.01u(0) < u(2400).

Without loss of generality, suppose that u(0) = 0 and rearranging above inequality

we obtain

0.33u(2500) < 0.34u(2400).

However, the second preference implies

0.33u(2500) > 0.34u(2400).

Thus we get a contradiction.

In order to modify the expected utility theory, Kahneman and Tversky (1979)

proposed the prospect theory. They found out that investor’s attitude toward risk

of gains is different from that of losses. Therefore they used value function, which

is concave for gains and convex for losses, to instead of utility function that is

concave everywhere. The implication of this transformation was that investors are

not always risk aversion, they are risk seeking of losses. Moreover, in prospect theory

it transfers probability into decision weight, called probability weighting function.



2.2. PROSPECT THEORY 9

However, decision weights are not probabilities, since it does not keep the axioms of

probability measure.

Under prospect theory we use value function v, and probability weighting func-

tion w to replace utility function and probability measure in expected utility theory,

respectively. And then consider a prospect (X, P ) = (x1, p1; x2, p2; ...; xm, pm) which

means that yield outcome xi with probability pi, where p1 + p2 + · · · + pm = 1. To

simplify the notation, we omit null outcomes and use (x, p) to indicate (x, p; 0, 1−p);

furthermore, the riskless prospect with outcome x is denoted by (x). Then the value

of this prospect is defined by

V (X,P ) = w(p1)v(x1) + w(p2)v(x2) + · · ·+ w(pm)v(xm) =
m∑

i=1

w(pi)v(xi),

where v(0) = 0, w(0) = 0, and w(1) = 1. More precisely, if we consider a prospect

(X, P ) = (x−m, p−m; x−m+1, p−m+1; ...; x−1, p−1; x0, p0; x1, p1; ...; xn, pn), with p−m +

· · ·+ pn = 1, the value of this prospect is defined by

V = V + + V −,

where

V +(X, P ) = w+(p0)v
+(x0) + w+(p1)v

+(x1) + · · ·+ w+(pn)v+(xn)

and

V −(X,P ) = w−(p−m)v−(x−m) + w−(p−m+1)v
−(x−m+1) + · · ·+ w−(p−1)v

−(x−1).

Definition 3. For all prospects (X, P ), if (X, P ) is indifference of (c) for an

investor, then for all k ∈ R+, (kX, P ) is indifference to (kc) for an investor. we call

an investor exhibits preference homogeneity.

The main point of prospect theory is that value function is concave for gains and

convex for losses. In other words, investors are risk-averse and risk-seeking when

facing gains and losses, respectively.
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In the rest of this section we introduce the value function and probability weight-

ing function of prospect theory more precisely.

2.2.1. Value Function. The most important feature of prospect theory is that

investors evaluate the value of prospects depend on the change of wealth rather than

final wealth. Therefore there are two main viewpoints of value function: takes the

current wealth as a reference point, and the size of change from that reference point.

In other words, we separate value function into two parts, gains and losses, which

above the reference point and below the reference point, respectively.

For many investors the difference in value between a gain of 100 and a gain of

200 becomes more attractive than the difference between a gain of 1000 and a gain of

1100. Hence Kahneman and Tversky (1979) applied this principle to the evaluation

of monetary changes. They proposed that the value function is concave above the

reference point and convex below it. That is, the value function is concave for gains

and convex for losses.

Moreover, the characteristic of attitudes of investors toward the change of wealth

is that losses loom larger than gains. In other words, for many investors the degree

of miserable in losing a sum of money is greater than the degree of happy in gaining

the same amount of money. This is because that most investors are not interesting

in symmetric bets with the form (x, 0.5;−x, 0.5). Thus Kahneman and Tversky

(1979) proposed that the value function for losses is steeper than that for gains.

Definition 4. Value function v satisfies v(0) = 0, strictly increasing and if

|v(−x)| > v(x) for x > 0, then v has the property, called loss aversion.

In summary, we point out the properties of value function that Kahneman and

Tversky (1979) proposed. First, value function is defined on deviations from the

reference point. Second, it is concave for gains and convex for losses. Third, value

function is steeper for losses than for gains. Furthermore, we can find out the
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value function that satisfies above properties is a S-shaped value function which

is steepest at the neighborhood of reference point. Furthermore, Kahneman and

Tversky suggested that the form of value function is

v(x) =


xα x ≥ 0

−λ(−x)β x < 0

.

The estimations of α, β and λ are given by α = β = 0.88 and λ = 2.25. In addition,

if value function takes the form as above, preference homogeneity must be true for all

prospects (X, P ). However, for the purpose of computing easily, we often consider

the other useful value function given by

v(x) =


1− exp(−θx) x ≥ 0

−λ(1− exp(θx)) x < 0

.

It is easy to check that such function satisfies all properties of value function.

2.2.2. Probability Weighting Function. In this subsection we introduce the

other major opinion of prospect theory, called probability weighting function.

First, we introduce an example, based on Maurice Allais, that violate the ex-

pected utility theory.

Problem 1: Choose between

A :

 4000 with probability 0.8

0 with probability 0.2

B : 3000 with certainty

Problem 2: Choose between
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C :

 4000 with probability 0.2

0 with probability 0.8

D :

 3000 with probability 0.25

0 with probability 0.75

The data shows that 80 percent of subjects choose B in problem 1, and 65 percent

of subjects choose C in problem 2. But in fact, we only reduce the probability by

equal proportion. Hence we can obtain a result that reducing the probability from 1

to 0.25 makes greater influence than reducing the probability from 0.8 to 0.2. And

we call this phenomenon common-ratio effect.

Thus Kahneman and Tversky (1979) explained the common-ratio effect by the

method of a nonlinear transformation of probabilities, called ”probability weighting

function”. Next, we illustrate the properties of probability weighting function as

follows:

(1) First, the regressive property, explains the attitudes toward risk. For many

investors are risk aversion for gains with large probability and for losses with

small probability. In addition, they are risk seeking for gains with small

probability and for losses with large probability. Moreover the transforma-

tion of probabilities into probability weighting function is overweighting for

small probabilities and underweighting for large probabilities.

(2) Second, changes in probabilities have greater influence on the boundary of

probability interval. That is, increasing the probability from 0 to 0.1 have

greater effect than increasing the probability form 0.5 to 0.6.

The probability weighting function satisfying above two properties is given by

w+(p) =
pγ

(pγ + (1− p)γ)
1
γ
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and

w−(p) =
pδ

(pδ + (1− p)δ)
1
δ

,

where γ = 0.61 and δ = 0.69 for gains and losses, respectively.

Under prospect theory, probability weighting function for gains and for losses

may be different. But if preference homogeneity and loss aversion both hold for all

prospects, then the probability weighting function for gains and for losses are the

same, i.e., w+ = w−.

Although prospect theory asserts that we replace utility function with value func-

tion which is concave for gains and convex for losses and transform probability into

probability weighting function which is nonlinear. There are still some drawbacks.

For example, it only works with prospects that have at most two different nonzero

outcomes, and stochastic dominance does not still hold. In order to modify the

drawbacks of prospect theory Kahneman and Tversky (1992) proposed cumulative

prospect theory.

2.3. Cumulative Prospect Theory

Though prospect theory explained the major violations of expected utility theory

in decision making under risk, there still exist two problems. First, it does not always

satisfies stochastic dominance. Second, it can not be extended to prospects with a

large number of outcomes. In order to modify the drawback of prospect theory,

Kahneman and Tversky (1992) proposed cumulative prospect theory. The most

important element of this theory is that instead of transforming each probability

separately, this model transforms the entire cumulative distribution function, called

cumulative weighting function or weighting function for short. Further this theory

applies the cumulative functional separately to gains and to losses.

We first rearrange the outcomes of each prospect in increasing order, such as

(X,P ) = (x−m, p−m; x−m+1, p−m+1; ...; x−1, p−1; x0, p0; x1, p1; ...; xn, pn),
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with x−m < x−m+1 < · · · < x−1 < x0 < x1 < · · · < xn, and p−m + · · · + pn = 1.

Without loss of generality, we suppose that x0 = 0 and take x0 as a reference

point. We interpret x−m, ..., x−1 as losses and x1, ..., xn as gains. Then cumulative

prospect theory asserts that there exist a strictly increasing value function, satisfying

v(0) = 0, and probability weighting function w+(p) and w−(p) such that the value

of this prospect is defined by

V (X, P ) = V +(X,P ) + V −(X,P ),

where

V +(X, P ) = π+
0 v+(x0) + π+

1 v+(x1) + · · ·+ π+
n v+(xn) =

n∑
i=0

π+
i v+(xi)

and

V −(X, P ) = π−
−mv−(x−m) + π−

−m+1v
−(x−m+1) + · · ·+ π−

−1v
−(x−1) =

−1∑
i=−m

π−
i v−(xi).

The decision weights are defined by

π+
i =


w+(pn) , i = n

w+(pi + · · ·+ pn)− w+(pi+1 + · · ·+ pn) , 0 ≤ i ≤ n− 1

and

π−
i =


w−(p−m) , i = −m

w−(p−m + · · ·+ pi)− w−(p−m + · · ·+ pi−1) , 1−m ≤ i ≤ −1

.

where w+ and w− are strictly increasing functions from the unit interval to itself

satisfying w+(0) = w−(0) = 0, and w+(1) = w−(1) = 1.

Since we transform the entire cumulative distribution function rather than trans-

form each probability separately, and consider the rank-dependent models, rear-

ranging the outcomes in increasing order, cumulative prospect theory can extend

the original version of prospect theory in several respects. First, it can work with

prospects that have infinite outcomes and extend to continuous model. Second, it
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allows different decision weights for gains and losses. Furthermore in the version

of cumulative prospect theory it no longer violets stochastic dominance. Therefore,

cumulative prospect theory has nowadays become one of the most famous version

for investors to make a decision under risk.





CHAPTER 3

Comparison of Optimization in the Sense of Expected

Utility Theory and Cumulative Prospect Theory I:

A Model without Transaction Cost

Since expected utility theory can not provide an adequate description of individ-

ual choice, Kahneman and Tversky proposed cumulative prospect theory to explain

the major violations of expected utility theory in choices between risky prospects.

In this chapter, we interest in seeking out optimal strategies, which make us

to gain the maximal profit, in the sense of expected utility theory and cumulative

prospect theory, respectively. Our main goal is to compare the optimal strategies in

the sense of expected utility theory and cumulative prospect theory. Moreover, we

also discuss the difference of optimal hedging strategies in these two senses.

3.1. Optimal Trading Strategy in One Period Model

A fundamental problem in the financial mathematics is to find out the opti-

mal trading strategies which can reach the maximal profit. In this section, we are

interesting in comparing the optimal trading strategies under two different senses:

expected utility theory and cumulative prospect theory.

In the beginning, we set up the market model as follow: Consider a one-period

market model in which time points are denoted by 0 and 1, and the market model

has one risky asset (stock) and one riskless asset (bond). In time 1 there exist two

market states: ω1 and ω2, with probability p1 and p2, respectively. The current bond

price B0 is 1, and the stock price S0 is s, and in time 1, the stock price denoted by

17
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S1 is given by S1(ω1) = l and S1(ω2) = u where l < s < u.

Suppose that the interest rate at time 1 is 0, and initial wealth is x.

Let h = (h0, h1) be the trading strategy at time 0, where h0 and h1 means the

number of shares invested in bond and stock, respectively. And denote the optimal

strategy by h
∗

= (h∗
0, h

∗
1).

Theorem 1. In the sense of expected utility theory, if the mean of gains is

greater than the mean of losses, the optimal inveatment amount of stock is greater

than 0, i.e., h∗
1 > 0 provided that p2(u − s) > p1(s − l). Moreover, the converse is

also true. That is, h∗
1 > 0 if and only if p2(u− s) > p1(s− l).

PROOF. Without loss of generality, suppose that the initial wealth is equal to 0.

In order to get the optimal trading strategy under expected utility theory, we must

to find the strategy h = (h0, h1) such that f(h0, h1) = p1U(h0+ lh1)+p2U(h0+uh1),

reaches the maximal value, subjected to h0 + sh1 = 0, and where U is a concave

function. Thus we can transform f(h0, h1) into

f(h1) = p1U((l − s)h1) + p2(U(u− s)h1),

then by first order derivative, we have

f ′(h1) = p2(u− s)U ′((u− s)h1)− p1(s− l)U ′((l − s)h1).

Thus, if f ′(h1) = 0,

p2(u− s)

p1(s− l)
=

U ′((l − s)h1)

U ′((u− s)h1)
.

Since p2(u− s) > p1(s− l), we get

U ′((l − s)h1)

U ′((u− s)h1)
> 1.

Hence h1 > 0 because of the property of concave function U . Moreover by second

order derivative we acquire

f ′′(h1) = p1(l − s)2U ′′((l − s)h1) + p2(u− s)2U ′′((u− s)h1) < 0.
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Therefore the optimal trading strategy is obtained as h∗
1 > 0.

Next, we want to show that if h∗
1 > 0 then p2(u − s) > p1(s − l). Suppose not,

if p2(u− s) ≤ p1(s− l) and h1 > 0, then

f ′(h1) = p2(u− s)U ′((u− s)h1)− p1(s− l)U ′((l − s)h1) ≤ 0.

This implies that f(h1) is a nonincreasing function, thus h1 > 0 can not be the

optimal trading strategy which contradicts to h∗
1 > 0. Therefore if optimal trading

strategy occurs when h∗
1 > 0 then p2(u− s) > p1(s− l). We complete the proof.

If a investor makes the decision under expected utility theory, he prefers risky

asset to riskless asset only as the mean of gains is greater than the mean of losses.

After that we take cumulative prospect theory into account, and assume that the

probability weighting functions of gains and losses are the same with form

w+(p) = w−(p) =
pr

(pr + (1− p)r)
1
r

.

Theorem 2. In the version of cumulative prospect theory, if

(3.1) (w(p2)(u− s)− λw(p1)(s− l))(λw(p1)− w(p2)) > 0

holds, the optimal amount of stock is greater than 0. In fact, the converse is also

true, i.e., h∗
1 > 0 if and only if (3.1) must be hold.

Remark 1. We can separate (3.1) into two cases:

(3.2) w(p2)(u− s) > λw(p1)(s− l), where
λw(p1)

w(p2)
> 1

and

(3.3) w(p2)(u− s) < λw(p1)(s− l), where
λw(p1)

w(p2)
< 1.

PROOF. (Proof of theorem 2) Without loss of generality, suppose that the initial

wealth is equal to 0. In the sense of cumulative prospect theory, if we want to
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acquire the optimal trading strategy, we need to find out the strategy h = (h0, h1)

such that

f(h1) = w(p1)v
−((l − s)h1) + w(p2)v

+((u− s)h1)

reaches the maximal value, where w is a probability weighting function and v−, v+

are the value functions of gains and losses, respectively. That is, v− is a convex

function and v+ is a concave function. Use the property of value function, we can

get

f(h1) = −λw(p1)v
+((s− l)h1) + w(p2)v

+((u− s)h1).

For simplicity, we denote v+ = v. Then by first order derivative, we have

f ′(h1) = −λw(p1)(s− l)v′((s− l)h1) + w(p2)(u− s)v′((u− s)h1),

and f ′(h1) = 0, which implies

(3.4)
λw(p1)(s− l)

w(p2)(u− s)
=

v′((u− s)h1)

v′((s− l)h1)
.

If (3.2) holds ,

v′((u− s)h1)

v′((s− l)h1)
< 1.

This indicates that (u − s)h1 > (s − l)h1. Moreover, due to u − s > s − l, we can

get h1 > 0. Use the same argument we have if (3.3) holds, h1 > 0. Finally, we can

check that

f ′′(h∗
1) = −λw(p1)(s− l)2v′′((s− l)h∗

1) + w(p2)(u− s)2v′′((u− s)h∗
1) < 0,

where h∗
1 satisfies the equation (3.4). Thus such h∗

1 is the optimal trading strategy.

Conversely, since h∗
1 > 0 is the optimal strategy, h∗

1 must satisfies the equation

λw(p1)(s− l)

w(p2)(u− s)
=

v′((u− s)h∗
1)

v′((s− l)h∗
1)

.

And we separate it into two cases.
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Case 1: If u − s > s − l holds, v′((u − s)h∗
1) < v′((s − l)h∗

1) must be true. This

implies

λw(p1)(s− l) < w(p2)(u− s).

Case 2: If u − s < s − l holds, v′((u − s)h∗
1) < v′((s − l)h∗

1) must be true. This

implies

λw(p1)(s− l) > w(p2)(u− s).

We complete the proof.

In this theorem, we have a result that if a investor makes a decision in the sense

of cumulative prospect theory, he is willing to buy the stock only when (3.1) holds.

However, it is independent of the form of vale function.

Next, we give a one-period model example that was given as above. Our main

goal is that find out the optimal strategies in the senses of expected utility theory

and cumulative prospect theory. The results of this example support Theorem 1

and Theorem 2, stated before.

Example 1. Consider the market model, sat up as before in the beginning of

this section. For simplicity we denote it by b =

1

s

 and D =

1 1

l u

 where b

and D are called price vector and payoff matrix, respectively. Moreover, let p1 = p

and then p2 = 1− p.

Suppose that the value function which an investor takes is given by

v(x) =


1− exp(−θx) x ≥ 0

−λ(1− exp(θx)) x < 0

Furthermore we assume that the probability weighting functions of gains and losses

are the same, with form

w+(p) = w−(p) =
pr

(pr + (1− p)r)
1
r
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In the sense of expected utility theory, we want to find out the strategy h = (h0, h1)

such that

f(h0, h1) = p(1− exp(−θ(h0 + lh1))) + (1− p)(1− exp(−θ(h0 + uh1))),

to reach the maximal value that subjects to h0 + sh1 = 0. It is not difficult to get

that

h1 =
1

θ(u− l)
ln

(1− p)(u− s)

p(s− l)
.

By second order derivative test, we have

f ′′(h1) = −θ2(p(s− l)2 exp(θh1(s− l)) + (1− p)(u− s)2 exp(−θh1(u− s))) < 0.

Therefore, the optimal trading strategy is

h
∗

= (− s

θ(u− l)
ln

(1− p)(u− s)

p(s− l)
,

1

θ(u− l)
ln

(1− p)(u− s)

p(s− l)
).

And we can find out that if (1 − p)(u − s) > p(s − l) holds, the optimal trading

strategy h∗
1 > 0, that is, an investor is willing to buy the stock if and only if the

average of gains is greater than that of losses.

Next, we consider the same market model under cumulative prospect theory. Since

in the version of cumulative prospect theory, it is defined over gains and losses

relative to a specific reference point instead of final wealth. In this case, the optimal

trading strategy is h = (h0, h1) such that

f(h1) = c(p)(1− p)r(1− exp(−θ(u− s)h1))− λc(p)pr(1− exp(θ(l − s)h1)),

where

c(p) =
1

(pr + (1− p)r)
1
r

,

to reach the maximal value that constrains to h0+sh1 = 0. By first order derivative,

we have

f ′(h1) = c(p)θ((1− p)r(u− s) exp(−θ(u− s)h1)− λpr(s− l) exp(−θ(s− l)h1)),
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and if f ′(h1) = 0 implies

ln (1− p)r(u− s)− θ(u− s)h1 = ln λpr(s− l)− θ(s− l)h1.

Thus the optimal trading strategy is

h
∗

= (− s

θ(u + l − 2s)
ln

(1− p)r(u− s)

λpr(s− l)
,

1

θ(u + l − 2s)
ln

(1− p)r(u− s)

λpr(s− l)
).

And we can find out that if

(3.5) ((1− p)r(u− s)− λpr(s− l))(λpr − (1− p)r) > 0

holds, h∗
1 > 0. In this case, it is easy to check f ′′(h∗

1) < 0.

Remark 2. If (3.5) holds, one of

(1− p)r(u− s)− λpr(s− l) > 0 where
λpr

(1− p)r
> 1

or

(1− p)r(u− s)− λpr(s− l) < 0 where
λpr

(1− p)r
< 1

must be true.

According to this example, the results support the above two theorems. For

investor who uses the version of expected utility theory to make a decision, he is

willing to buy the risky asset if (1 − p)(u − s) > p(s − l) holds. In the sense of

cumulative prospect theory, if (3.5) holds, the investor is willing to buy the risky

asset more than riskless asset. Moreover, if we know the form of value function and

probability weighting function that the investor takes, we can compute the optimal

trading strategy. Then we want to find out the relation of optimal trading strategies

in the sense of expected utility theory and cumulative prospect theory.

Remark 3. Suppose that we take the probability weighting function with the

form given by

w+(p) = w−(p) =
pr

(pr + (1− p)r)
1
r
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where r < 1, and assume that the sensitivity of losses is about 2.25, which proposed

by Kahneman and Tversky. If
1

3
< p <

1

2
holds, we have

λw(p)

w(1− p)
= λ(

p

1− p
)r > 1.

In this situation, if w(1− p)(u− s) > λw(p)(s− l) holds, (1− p)(u− s) > p(s− l)

must hold at the same time.

The main result is that if w(1 − p)(u − s) > λw(p)(s − l) where
1

3
< p <

1

2
,

an investor is willing to buy the risky asset in the sense of expected utility theory.

That is, an investor is willing to buy the stock in these two senses.

Up to now we only consider the market model with two states space, then we

take four states market into account. And give an example as following.

Example 2. Suppose the market model is similar to the above example, that the

value function and probability weighting function are the same as above, respectively.

But in this example we may assume that there are four states in time 1, called ω1,

ω2, ω3 and ω4, with probability p1, p2, p3 and p4, respectively. The stock price at

time 0 is S0 = s and price in time 1 is S1(ω1) = l1, S1(ω2) = l2, S1(ω3) = u1 and

S1(ω4) = u2, where l1 < l2 < s < u1 < u2.

(1) In the sense of expected utility theory, let

f(h0, h1) = p1(1− exp(−θ(h0 + l1h1))) + p2(1− exp(−θ(h0 + l2h1)))

+p3(1− exp(−θ(h0 + u1h1))) + p4(1− exp(−θ(h0 + u2h1)))

we want to find h = (h0, h1) such that f(h0, h1) reaches the maximum, which sub-

jects to h0 + sh1 = 0. Then we transfer f(h0, h1) into

f(h1) = 1−exp(−θsh1)(p1 exp(−θl1h1)+p2 exp(−θl2h1)+p3 exp(−θu1h1)+p4 exp(−θu2h1)).
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By first order derivative we have

f ′(h1) = −θseθsh1(p1e
−θl1h1 + p2e

−θl2h1 + p3e
−θu1h1 + p4e

−θu2h1)

+θeθsh1(l1p1e
−θl1h1 + l2p2e

−θl2h1 + u1p3e
−θu1h1 + u2p4e

−θu2h1)

= θeθsh1((l1 − s)p1e
−θl1h1 + (l2 − s)p2e

−θl2h1

+(u1 − s)p3e
−θu1h1 + (u2 − s)p4e

−θu2h1).

In order to obtain the extreme vale, f ′(h1) = 0 must hold. In other words, if h∗
1 is

optimal strategy, it needs to satisfy the equation

(u1 − s)p3e
−θu1h∗1 + (u2 − s)p4e

−θu2h∗1 = (s− l1)p1e
−θl1h∗1 + (s− l2)p2e

−θl2h∗1 .

Finally, we only need to check f ′′(h∗
1) < 0. Since

f ′′(h1) = θ2seθsh1(−θ)((l1 − s)l1p1e
−θl1h1 + (l2 − s)l2p2e

−θl2h1

+(u1 − s)u1p3e
−θu1h1 + (u2 − s)u2p4e

−θu2h1)

and l1 < l2 < s < u1 < u2, we have f ′′(h∗
1) < 0. Therefore h∗

1 which satisfies the

equation

(u1 − s)p3e
−θu1h∗1 + (u2 − s)p4e

−θu2h∗1 = (s− l1)p1e
−θl1h∗1 + (s− l2)p2e

−θl2h∗1

is the optimal trading strategy.

(2) Under cumulative prospect theory, we add the assumption, u1 − s > s − l1, to

this market model. Our main goal is to find the strategy h = (h0, h1) such that

f(h1) = (w(p1))(−λ(1− eθ(l1−s)h1)) + (w(p1 + p2)− w(p1))(−λ(1− eθ(l2−s)h1))

+(w(p3 + p4)− w(p4))(1− e−θ(u1−s)h1) + (w(p4))(1− e−θ(l1−s)h1)

reaches the maximal value, subjected to h0 +sh1 = 0. For convenience we give some

notations as following: w(p1) = p1, w(p1 + p2)− w(p1) = p2, w(p3 + p4)− w(p4) =
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p3, and w(p4) = p4. By first order derivative, we have

f ′(h1) = λp1θ(l1 − s)eθ(l1−s)h1 + λp2θ(l2 − s)eθ(l2−s)h1

+p3θ(u1 − s)e−θ(u1−s)h1 + p4θ(u2 − s)e−θ(l1−s)h1 .

Moreover, f ′(h1) = 0 only if h1 satisfies the equation

p3(u1 − s)e−θ(u1−s)h1 + p4(u2 − s)e−θ(u2−s)h1

= λp1(s− l1)e
−θ(s−l1)h1 + λp2(s− l2)e

−θ(s−l2)h1 .

At last, we need to check that if h∗
1 such that

p3(u1 − s)e−θ(u1−s)h∗1 + p4(u2 − s)e−θ(u2−s)h∗1

= λp1(s− l1)e
−θ(s−l1)h∗1 + λp2(s− l2)e

−θ(s−l2)h∗1

holds, implies f ′′(h∗
1) < 0. By second order derivative, we have

f ′′(h1) = θ2(λp1(s− l1)
2e−θ(s−l1)h1 + λp2(s− l2)

2e−θ(s−l2)h1

−p3(u1 − s)2e−θ(u1−s)h1 − p4(u2 − s)2e−θ(u2−s)h1).

Since u1 − s > s− l1 implies s− l2 < s− l1 < u1 − s < u2 − s, we can get that

p3(u1 − s)2e−θ(u1−s)h1 + p4(u2 − s)2e−θ(u2−s)h1

> λp1(s− l1)
2e−θ(s−l1)h1 + λp2(s− l2)

2e−θ(s−l2)h1 ,

i.e. f ′′(h∗
1) < 0. Therefore h∗

1 which satisfies the following equation

p3(u1 − s)e−θ(u1−s)h∗1 + p4(u2 − s)e−θ(u2−s)h∗1

= λp1(s− l1)e
−θ(s−l1)h∗1 + λp2(s− l2)e

−θ(s−l2)h∗1

is the optimal trading strategy.
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The main point of this section is that when we are making decision under ex-

pected utility theory, the optimal strategy is different from the optimal strategy

in the sense of cumulative prospect theory. Under expected utility theory we only

concern about the final wealth and it says that investors are risk aversion in choice

between risky investments. On the other hand, in the sense of cumulative prospect

theory the investor’s evaluation of risk depends on gains or losses relative to a refer-

ence point; furthermore, the value function is concave for gains and convex for losses,

and steeper for losses than for gains. In other words, investors are risk aversion for

gains and risk seeking for losses. Further, investors are more sensitive for losses then

for gains. Therefore the optimization strategy in the sense of cumulative prospect

theory depends on the degree of sensitivity of losses.

3.2. Reference Point Effect

Since the investor evaluates the prospect in the sense of cumulative prospect

theory depending on gains and losses relative to a reference point rather than on

final wealth; moreover, the investor’s attitudes toward risk are different from gains

and losses. Therefore the reference point would affect the investor’s trading strategy.

Furthermore, the reference point is decided by investor’s subjective feeling, such as

the past experience, and different from people to people. In this section we talk

about the influence of reference point on trading strategy.

Consider a one-period market model in which time points are denoted by 0 and

1. Suppose there are two kinds of investors: A and B. Both of them take the same

form of value function v(x) which is concave for gains and convex for losses, and x is

the wealth change. Assume that before time 0, both A and B made wrong decisions

and suffered a loss of w0. Furthermore suppose that both of them make decision

under cumulative prospect theory. However, they take different attitude toward this

prior loss. Investor A only takes the current wealth X0 into account and takes X0

as the reference point. But investor B cares about the prior loss and tries to make
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up for the prior loss with gains in time 1. Hence investor B takes X0 + w0 as the

reference point.

In such financial market model, there exists a simple lottery, denoted by (−x, p; y, 1−

p), where x > 0, y > 0, and 0 < p < 1. This means that the lottery has probability

p to lose x, and gain y with probability 1− p.

Then the value of this lottery for investor A, who takes the current wealth as

the reference point is

F = w(p)v(−x) + w(1− p)v(y),

where w(p) is a probability weighting function. If investor A does not take any

action, his wealth change is 0 and thus v(0) = 0.

For investor B who takes the prior loss into account, in other words the reference

point, he takes, is X0 + w0. The value of this lottery for investor B is

F−w0 = w(p)v(−x− w0) + w(1− p)v(y − w0)− v(−w0) if y − w0 ≥ 0,

or

F−w0 = w(p)v(−x− w0) + (1− w(p))v(y − w0)− v(−w0) if y − w0 < 0,

where v(−w0) is the value when investor B does not take any action.

The main point of this section is to compare the optimal amount of lotteries that

investor A and investor B are willing to hold, respectively.

Theorem 3. If the gain of lottery is greater than two times of the prior loss, the

value of this lottery for investor B is greater than for investor A. That is, if y > 2w0

holds, we can get F−w0 > F .

PROOF. Since y > 2w0, we have

F−w0 = w(p)v(−x− w0) + w(1− p)v(y − w0)− v(−w0).
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And because of the property of probability weighting function

w(p) + w(1− p) ≤ 1,

we can get

F−w0 ≥ w(p)v(−x− w0) + w(1− p)v(y − w0)− (w(p) + w(1− p))v(−w0)

= w(p)(v(−x− w0)− v(−w0)) + w(1− p)(v(y − w0)− v(−w0)).

Without loss of generality, let v(0) = 0.

If w0 ≤ x, we can get

v(−x− w0)− v(−w0)− v(−x) = v(−x− w0)− v(−x)− v(−w0) + v(0).

By mean value theorem, there exist c1, c2, where −x − w0 < c1 < −x and −w0 <

c2 < 0 such that

v(−x− w0)− v(−x) = (−w0)v
′(c1)

and

v(−w0)− v(0) = (−w0)v
′(c2).

Since w0 ≤ x implies c2 > c1 and the value function is convex for losses, i.e. v′ > 0

and v′′ > 0, we can acquire

v(−x− w0)− v(−x)− v(−w0) + v(0) = w0(v
′(c2)− v′(c1)) > 0.

Therefore we have the main result

v(−x− w0)− v(−w0) > v(−x).

If w0 > x, we have

v(−x− w0)− v(−w0)− v(−x) = v(−x− w0)− v(−w0)− v(−x) + v(0).
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Buy the same way, we can find c∗1 and c∗2, where −x − w0 < c∗1 < −w0 and −x <

c∗2 < 0, such that

v(−x− w0)− v(−w0) = (−x)v′(c∗1)

and

v(−x)− v(0) = (−x)v′(c∗2)

Since w0 > x and the value function is convex for losses, we obtain

v(−x− w0)− v(−w0) > v(−x).

Next use the similar argument and loss aversion property, −v(−w0) ≥ v(w0), we

have

v(y − w0)− v(−w0)− v(y) = v(y − w0)− v(y)− v(−w0)

≥ v(y − w0)− v(y) + v(w0) = v(y − w0)− v(y) + v(w0)− v(0)

= v′(c3)(−w0) + v′(c4)(−w0) = w0(v
′(c4)− v′(c3)),

where y − w0 < c3 < y and 0 < c4 < w0. Owing to y > 2w0 we have c4 < c3, and

besides v is concave for gains. Then we can get

v(y − w0)− v(−w0) > v(y).

Therefore

F−w0 = w(p)v(−x− w0) + w(1− p)v(y − w0)− v(−w0)

≥ w(p)v(−x) + w(1− p)v(y) = F.

We complete the proof.

The main point of this theorem is that if the gain of the lottery is large enough,

the value of this lottery for investor B who does not want to accept the reality of

the prior loss is greater than for investor A who accepts the reality and takes the

current wealth as the reference point.
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Then we interest in seeking out the difference of optimal trading strategies for

investor A and investor B that takes different reference point into consideration.

Suppose that h∗ > 0 is the optimal amount of risky assets that investor A is

willing to buy, and h∗
−w0

is the optimal amount of risky assets that investor B is

willing to hold. Our main goal is to compare the number of h∗ and h∗
−w0

. Before

this we first give a lemma which describes one property of h∗
−w0

. The statement is

as following.

Lemma 1. If the optimal amount of risky asset that investor B is willing to

hold is greater than 0, i.e. h∗
−w0

> 0, −w0 + yh∗
−w0

≥ 0 must hold.

PROOF. Suppose that −w0 + yh∗
−w0

< 0 holds, and we define ∆ > 0 to be a

small unit of asset such that yh∗
−w0

+ ∆y − w0 < 0. Then we compare the profit of

portfolio h∗
−w0

−∆ with h∗
−w0

. Since h∗
−w0

is the optimal strategy, we have

w(p)v(−xh∗
−w0

+ ∆x− w0) + (1− w(p))v(yh∗
−w0

−∆y − w0)

≤ w(p)v(−xh∗
−w0

− w0) + (1− w(p))v(yh∗
−w0

− w0)

By rearrangement, we get

(1− w(p))(v(yh∗
−w0

− w0)− v(yh∗
−w0

−∆y − w0))

≥ w(p)(v(−xh∗
−w0

+ ∆x− w0)− v(−xh∗
−w0

− w0)).

Because yh∗
−w0

+ ∆y − w0 < 0 and v(x) is a convex function defined on x < 0, by

the property of convex function and mean value theorem we have

v(yh∗
−w0

− w0)− v(yh∗
−w0

−∆y − w0)

≤ v(yh∗
−w0

+ ∆y − w0)− v(yh∗
−w0

− w0)
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Therefore, h = −1 is the optimal strategy for the hedger in the sense of expected

utility theory.

When the investor evaluates the value of prospects in the sense of expected utility

theory, he would accept the prior loss and only cares about the final wealth. Besides,

his attitude toward risk is risk aversion. Hence, under expected utility theory the

optimal strategy for the hedger is full hedging.

Unlike conventional expected utility theory, cumulative prospect theory replaced

the utility function with the value function, v(x). Moreover, it used decision weight-

ing function, π(p), instead of probability measure. In the following we discover that

under cumulative prospect theory the optimal strategy for the hedger is much more

complicated.

Theorem 6. Under cumulative prospect theory, the optimal strategy for the

hedger is as following:

(1) In the case h ≤ −1,

(i) if E(S1) > w0,

h∗ =


−1− 1

θ(u−l)
ln pw(1−p)

(1−p)(1−w(1−p))
when w(1− p) ≥ (1− p)

−1 when w(1− p) < (1− p)

(ii) if E(S1) ≤ w0,

h∗ =


l − w0

p(u− l)
when θ(−2w0 + wu + wl) + ln

λ(1− p)w(p)

pw(1− p)
≥ 0

−∞ when θ(−2w0 + wu + wl) + ln
λ(1− p)w(p)

pw(1− p)
< 0

.

(2) In the case h ≥ −1,

(i) if E(S1) > w0,

h∗ =


−1 + 1

θ(u−l)
ln (1−p)w(p)

p(1−w(p))
when w(p) ≥ p

−1 when w(p) < p
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(ii) if E(S1) ≤ w0,

h∗ =


w0 − u

(1− p)(u− l)
when θ(−2w0 + wu + wl) + ln

λpw(1− p)

(1− p)w(p)
≥ o

∞ when θ(−2wo + wu + wl) + ln
λpw(1− p)

(1− p)w(p)
< 0

.

PROOF. Suppose that h ≤ −1 and given that E(S1) ≤ w0. When h ∈ {h |

wl − w0 ≤ 0},

F−w0 = w(p)(−λ(1− exp(θ(wu − w0)))) + (1− w(p))(−λ(1− exp(θ(wl − w0))))

+λ(1− exp(−θw0))

= −λ(w(p) + w(p) exp(θ(wu − w0)) + (1− w(p))) + λ((1− w(p)) exp(θ(wl − w0)))

+λ(1− exp(−θw0))

By first order derivative, we have

dF−w0

dh
= λw(p)θ(1− p)(u− l) exp(θ(wu − w0)) + λ(1− w(p))θ(−p)(u− l) exp(θ(wl − w0))

= λθ(u− l) exp(−θw0)((1− p)w(p) exp(θwu)− p(1− w(p)) exp(θwl)).

Moreover, in order to guarantee
dF−w0

dh
= 0, h must satisfies the following equation

(1− p)w(p) exp(θ(u + h(1− p)(u− l))) = p(1− w(p)) exp(θ(l − hp(u− l))).

And this implies

(3.8) h = −1− 1

θ(u− l)
ln

(1− p)w(p)

p(1− w(p))
.

However, by second order derivative, we can obtain

d2F−w0

dh2
= λθ(u−l) exp(−θw0)((1−p)2w(p)θ(u−l) exp(θwu)+p2(1−w(p))θ(u−l) exp(θwl)) ≥ 0.

Thus (3.8) is the utility minimizing point. Moreover, we can get that the maximum

of F−w0 in the set {h | wl − w0 ≤ 0} is reached on the boundary. When h ∈ {h |
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wl − w0 ≥ 0},

F−w0 = w(p)(−λ(1− exp(θ(wu − w0)))) + w(1− p)(1− exp(−θ(wl − w0)))

+λ(1− exp(−θw0))

= −λw(p)(1− exp(θ(wu − w0))) + w(1− p)(1− exp(−θ(wl − w0)))

+λ(1− exp(−θw0)).

By first order derivative, we get

dF−w0

dh
= θ(u− l)(λ(1− p)w(p) exp(θ(wu − w0))− pw(1− p) exp(−θ(wl − w0))).

Case 1: When

(3.9) θ(−2w0 + wu + wl) + ln
λ(1− p)w(p)

pw(1− p))
≥ 0,

dF−w0

dh
≥ 0, that is, F−w0 is increasing corresponding to h. Thus the maximum of

F−w0 in the set {h | wl −w0 ≥ 0} is reached on the boundary wl −w0 = 0. In other

words, the optimal hedging strategy is

h∗ =
l − w0

p(u− l)
.

Case 2: When

(3.10) θ(−2w0 + wu + w0) + ln
λ(1− p)w(p)

pw(1− p)
< 0,

F−w0 is decreasing corresponding to h. Thus the maximum of F−w0 in the set

{h | wl − w0 ≥ 0} is h∗ = −∞.
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Given that E(S1) ≥ w0. When h ∈ {h | wu − w0 ≥ 0},

F−w0 = w(1− p)(1− exp(−θ(wl − w0))) + (1− w(1− p))(1− exp(−θ(wu − w0)))

+λ(1− exp(−θw0))

= −w(1− p) exp(−θ(wl − w0)) + 1− exp(−θ(wl − w0)) + w(1− p) exp(−θ(wu − w0))

+λ(1− exp(−θw0)).

By first order derivative, we acquire

dF−w0

dh
= θ(u−l)(−pw(1−p) exp(−θ(wl−w0))+(1−p)(1−w(p)) exp(−θ(wu−w0))).

In order to ensure
dF−w0

dh
= 0, h must satisfies the following equation

pw(1−p) exp(−θ(l−hp(u− l))) = (1−p)(1−w(1−p)) exp(−θ(u+h(1−p)(u− l))).

This equation implies

h = −1− 1

θ(u− l)
ln

pw(1− p)

(1− p)(1− w(1− p))
.

In order to ensure such h ≤ −1, we must add a condition w(1 − p) ≥ (1 − p).

Moreover, by second order derivative we have

d2F−w0

dh2
= −θ(u− l)(p2w(1− p)θ(u− l) exp(−θ(wl − w0)))

−θ(u− l)((1− p)2(1− w(1− p))θ(u− l) exp(−θ(wu − w0)))

≤ 0.

Therefore the optimal strategy for the hedger is

(3.11) h∗ = −1− 1

θ(u− l)
ln

pw(1− p)

(1− p)(1− w(1− p))

as w(1−p) ≥ (1−p). However, if w(1−p) < (1−p) hold, optimal hedging strategy

is reached on the boundary h ≤ −1. In other words, optimal hedging strategy is

h∗ = −1.
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Suppose h ≥ −1 and given that E(S1) ≤ w0. When h ∈ {h | wu − w0 ≤ 0},

F−w0 = w(1− p)(−λ(1− exp(θ(wl − w0)))) + (1− w(1− p))(−λ(1− exp(θ(wu − w0))))

+λ(1− exp(−θw0)).

By first order derivative, we obtain

dF−w0

dh
= λθ(u− l) exp(−θw0)((1− p)(1−w(1− p)) exp(θwu)− pw(1− p) exp(θwl)),

and
dF−w0

dh
= 0 only if

(3.12) h = −1 +
1

θ(u− l)
ln

pw(1− p)

(1− p)(1− w(1− p))

holds. In addition, by second order derivative we get

d2F−w0

dh2
= λθ2(u− l)2((1− p)2(1− w(1− p)) exp(θwu) + p2w(1− p) exp(θwl)) ≥ 0.

Hence, (3.12) is utility minimizing point. So we can get that the maximum of F−w0

in the set {h | wu−w0 ≤ 0} is reached on the boundary, that is, wu−w0 = 0, which

implies that the optimal strategy for the hedger is

h∗ =
w0 − u

(1− p)(u− l)
.

When h ∈ {h | wu − w0 ≥ 0},

F−w0 = w(1− p)(−λ(1− exp(θ(wl − w0)))) + w(p)(1− exp(−θ(wu − w0)))

+λ(1− exp(−θw0)).

By first order derivative, we have

dF−w0

dh
= θ(u− l)(w(p)(1− p) exp(−θ(wu − w0))− λpw(1− p) exp(θ(wl − w0))).
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Case 1. When

(3.13) θ(−2w0 + wu + wl) + ln
λpw(1− p)

(1− p)w(p)
≥ 0,

we know that F−w0 is a decreasing function corresponding to h. Therefore, the

maximum of F−w0 in the set {h | wu − w0 ≥ 0} is reached on the boundary, which

means that

h∗ =
w0 − u

(1− p)(u− l)

is the optimal strategy for the hedger in the futures market.

Case 2. When

(3.14) θ(−2w0 + wu + wl) + ln
λpw(1− p)

(1− p)w(p)
< 0,

we get that F−w0 is an increasing function corresponding to h. Hence the maximum

of F−w0 in the set {h | wu − w0 ≥ 0} is h∗ = ∞.

Given that E(S1) ≥ w0 and h ∈ {h | wl − w0 ≥ 0}, then we have

F−w0 = w(p)(1− exp(−θ(wu − w0))) + (1− w(p))(1− exp(−θ(wl − w0)))

+λ(1− exp(−θw0)).

By first order derivative, we obtain that
dF−w0

dh
= 0 implies

h = −1 +
1

θ(u− l)
ln

(1− p)w(p)

p(1− w(p))
.

In order to ensure such h ≥ −1, w(p) ≥ p must hold. Then by second order

derivative, we get

d2F−w0

dh2
= −θ2(u−l)2 exp(θw0)((1−p)2w(p) exp(−θwu)+p2(1−w(p)) exp(−θwl)) ≤ 0.

Therefore

(3.15) h∗ = −1 +
1

θ(u− l)
ln

(1− p)w(p)

p(1− w(p))
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is the optimal strategy for the hedger in the futures market as w(p) ≥ p. However,

if w(p) < p holds, optimal hedging strategy is h∗ = −1.

According to this theorem, we obtain that under cumulative prospect theory

there exists three cases. If the prior losses w0 are not sufficiently large, w0 < ES1,

the optimal strategy for the hedger is h∗ given in (3.11) in the case h ≤ −1 and

w(1 − p) ≥ (1 − p), and in the case h ≥ −1 and w(p) ≥ p the optimal strategy h∗

of the form (3.15). If the losses before time 0 satisfy (3.9) or (3.13) , the investor

will change his hedging strategy. If the prior losses are sufficiently large, and (3.10)

or (3.14) holds, the investor will go crazy, and take large positions showing no

consideration of risks.

Corollary 1. Optimal strategy for the hedger in the sense of expected utility

theory is full hedging. Besides, under expected utility theory the optimal hedging

strategy does not depend on the prior losses. On the other hand, in the view of

cumulative prospect theory the optimal strategy for the hedger is more complicated

and is related to the losses before time 0.



CHAPTER 4

Comparison of Optimization in the Sense of Expected

Utility Theory and Cumulative Prospect Theory II:

A Model with Transaction Cost

In this chapter we introduce trading strategy with transaction costs in one pe-

riod market model, which is derived from the model specified by Kabanov (2002).

Suppose that the financial market is one period model, and our portfolio is (h0, h1),

which means that the number of shares of assets invested in bond and stock, respec-

tively. Moreover, we assume that the initial wealth is x0 = h0 + sh1, composed of

bond and stock.

Suppose that the investor need to pay the transaction costs when they sell the

stock, and consider the model with constant proportional transaction costs, denoted

by λ. Therefore, we find out that if we buy the stock at time 0, the value of the

portfolio at time 0 after trading is v0 = h0 + sh1, and in this situation h1 > h1 must

hold. If we sell the stock at time 0, the value of the portfolio at time 0 after trading

is v∗0 = h0 + sh1 − λs(h1 − h1), and in this situation h1 < h1 must hold.

In the following of this section we assume that in this market model our portfolio

values are only affected by the asset price fluctuation and transaction costs. Thus

we get v0 = x0 and v∗0 = x0 − λs(h1 − h1). Our main task is to find out optimal

trading strategy with transaction costs in the sense of expected utility theory and

cumulative prospect theory, respectively.

43
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Example 3. (Constant absolute risk aversion CARA)

Under expected utility theory, we consider the risk-averse utility function given by

U(x) = 1− exp(−θx),

where θ > 0 is absolute risk aversion and be a constant. Moreover, the market

model is sat up as the first section in chapter 3.

(1)If we buy the stock at time 0, then the final wealth is

w =


wl = x0 + h1(l − s) with probability p

wu = x0 + h1(u− s) with probability 1− p.

Under expected utility theory, we have to maximize the function f(h1), defined by

f(h1) = pU(x0 + h1(l − s)) + (1− p)U(x0 + h1(u− s)),

to get the optimal strategy h∗
1. Using first order derivative, we have

f ′(h1) = pθ(l− s) exp(−θ(x0 + h1(l− s))) + (1− p)θ(u− s) exp(−θ(x0 + h1(u− s))),

and let f ′(h1) = 0 we get

(4.1) h1 =
1

θ(u− l)
ln

(1− p)(u− s)

p(s− l)
.

In order to guarantee h1 > 0, we should add the condition, (1− p)(u− s) > p(s− l),

to this market model. Moreover, by second order derivative, we get

f ′′(h1) = −θ2(p(s− l)2 exp(−θwl) + (1− p)(u− s)2 exp(−θwu)) ≤ 0.

Therefore we can get that if we buy the stock at time 0, the optimal trading strategy

is

h∗
1 =

1

θ(u− l)
ln

(1− p)(u− s)

p(s− l)
> h1.
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(2) If we sell the stock at time 0, then the final wealth is

w =


wl = x0 + h1(l − s)− λs(h1 − h1) with probability p

wu = x0 + h1(u− s)− λs(h1 − h1) with probability 1− p

Suppose that l − s + λs ≤ 0. Under expected utility theory, we have to maximize

the function f(h1), defined by

f(h1) = pU(x0 + h1(l− s)− λs(h1 − h1)) + (1− p)U(x0 + h1(u− s)− λs(h1 − h1)),

to acquire the optimal strategy h∗∗
1 . Using first order derivative, we have f ′(h1) = 0

(4.2) h1 =
1

θ(u− l)
ln

(1− p)(u− s + λs)

p(s− l − λs)
.

Moreover, by second order derivative, we get

f ′′(h1) = −θ2(p(s− l − λs)2 exp(−θwl) + (1− p)(u− s + λs)2 exp(−θwu)) ≤ 0.

Therefore we can get that if we sell the stock at time 0, the optimal trading strategy

is

h∗∗
1 =

1

θ(u− l)
ln

(1− p)(u− s + λs)

p(s− l − λs)
< h1.

From (1), (2), we conclude that if an investor who wants to buy the stock at time

0, he may choose the strategy h∗
1 = (4.1) at time 0 to reach the maximum profit,

and if an investor who wants to sell the stock at time 0 he may choose the strategy

h∗∗
1 = (4.2) at time 0 to reach the maximum profit.

Remark 4. From above example, we have a result that if h1 > h∗
1 , the investor

will not buy the stock at time 0, and if h1 < h∗∗
1 , the investor is not willing to sell

the stock at time 0. Moreover, because of (1− p)(u− s) > p(s− l) and

(1− p)(u− s + λs)

p(s− l − λs)
>

(1− p)(u− s)

p(s− l)
,
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we have h∗∗
1 > h∗

1. Thus we can conclude that the investor will neither buy nor sell

the stock at time 0 when the number of shares of the stock of their initial wealth is

in the interval

[
1

θ(u− l)
ln

(1− p)(u− s)

p(s− l)
,

1

θ(u− l)
ln

(1− p)(u− s + λs)

p(s− l − λs)
],

called ”no trading” interval.

The main point of this remark is that if the optimal trading strategy in the case

of selling the stock at time 0 , h∗∗
1 , is no less than the optimal strategy in the case

of buying the stock at time 0, h∗
1, then there must exist a ”no trading” interval.

The following theorem shows that no matter which utility function we choose in

the sense of expected utility theory there must exist a ”no trading” interval, however

there is not a specific form of utility function. In other words, even though the forms

of value function which an investor takes are different, there is a interval in which

an investor will neither buy nor sell the stock at time 0.

Theorem 7. Assume that l − (1 − λ)s < 0. Under expected utility theory, if

h∗
1 and h∗∗

1 exist, the inequality h∗∗
1 > h∗

1 must be true. Thus there exists a ”no

trading” interval.

PROOF. Suppose that h∗
1 ≥ h∗∗

1 . If we buy the stock at time 0 and the optimal

strategy is h∗
1, under expected utility theory, we have

pU(x0 + h∗
1(l − s)) + (1− p)U(x0 + h∗

1(u− s))

≥ pU(x0 + h∗∗
1 (l − s)) + (1− p)U(x0 + h∗∗

1 (u− s)),

where U is a concave function. Rearranging the inequality, we have

(1− p)(U(x0 + h∗
1(u− s))− U(x0 + h∗∗

1 (u− s)))

≥ p(U(x0 + h∗∗
1 (l − s))− U(x0 + h∗

1(l − s))).
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Because of h∗
1 ≥ h∗∗

1 , h∗
1 > h1 and h∗∗

1 < h1, we have

U(x0 + h∗
1(u− s)− λs(h1 − h∗

1))− U(x0 + h∗
1(u− s)) = U ′(c1)λs(h∗

1 − h1) > 0,

and

U(x0 +h∗∗
1 (u− s)−λs(h1−h∗∗

1 ))−U(x0 +h∗∗
1 (u− s)) = U ′(c2)(−λs(h1−h∗∗

1 )) < 0,

where

c1 ∈ (x0 + h∗
1(u− s), x0 + h∗

1(u− s)− λs(h1 − h∗
1))

and

c2 ∈ (x0 + h∗∗
1 (u− s)− λs(h1 − h∗∗

1 ), x0 + h∗∗
1 (u− s)).

Hence we obtain the following inequality

U(x0 + h∗
1(u− s)− λs(h1 − h∗

1))− U(x0 + h∗∗
1 (u− s)− λs(h1 − h∗∗

1 ))

> U(x0 + h∗
1(u− s))− U(x0 + h∗∗

1 (u− s)).

Next, use the similar argument, we have

U(x0 + h∗∗
1 (l − s))− U(x0 + h∗

1(l − s))

> U(x0 + h∗∗
1 (l − s)− λs(h1 − h∗∗

1 ))− U(x0 + h∗
1(l − s)− λs(h1 − h∗

1)).

Therefore, we can get that

(1− p)(U(x0 + h∗
1(u− s)− λs(h1 − h∗

1))− U(x0 + h∗∗
1 (u− s)− λs(h1 − h∗∗

1 )))

> (1− p)(U(x0 + h∗
1(u− s))− U(x0 + h∗∗

1 (u− s)))

≥ p(U(x0 + h∗∗
1 (l − s))− U(x0 + h∗

1(l − s)))

> p(U(x0 + h∗∗
1 (l − s)− λs(h1 − h∗∗

1 ))− U(x0 + h∗
1(l − s)− λs(h1 − h∗

1))).
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That is,

pU(x0 + h∗
1(l − s)− λs(h1 − h∗

1)) + (1− p)U(x0 + h∗
1(u− s)− λs(h1 − h∗

1))

> pU(x0 + h∗∗
1 (l − s)− λs(h1 − h∗∗

1 )) + (1− p)U(x0 + h∗∗
1 (u− s)− λs(h1 − h∗∗

1 ))

which is contradicted to that h∗∗
1 is optimal strategy in the case of selling the stock

at time 0. Thus we can obtain h∗∗
1 > h∗

1.

This theorem shows that if the initial wealth is composed of bond and stock, and

investors also take transaction costs into account. For the investor who wants to

find out the optimal strategy in the sense of expected utility theory, should consider

two cases, buying or selling the stock at time 0. Furthermore, we know that in this

situation there exists a ”no trading” interval.

Next, we discuss the optimal strategy with transaction costs in the version of

cumulative prospect theory. Suppose that the market model is the same as before.

Example 4. We consider the value function given by

v(x) =


1− exp(−θx) if x ≥ 0

−λ(1− exp(θx)) if x < 0

,

where θ > 0 and λ ≥ 1.

(1) If we buy the stock at time 0, h1 > h1 and the final wealth is

w =


wl = x0 + h1(l − s) with probability p

wu = x0 + h1(u− s) with probability 1− p

.

Under cumulative prospect theory, the value function is defined over gains and losses

relative to reference point instead of final wealth. In this example we take initial

wealth as reference point. Thus when we want to acquire the optimal strategy in

the version of cumulative prospect theory, we need to maximize f(h1) to get the
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optimal strategy h∗
1, where

f(h1) = w(p)(−λ(1− exp(θh1(l − s)))) + w(1− p)(1− exp(−θh1(u− s))).

Due to first order derivative we have

f ′(h1) = θ(λw(p)(l − s) exp(θh1(l − s)) + w(1− p)(u− s) exp(−θ(h1(l − s)))),

and if f ′(h1) = 0 we have

h∗
1 =

1

θ(u + l − 2s)
ln

w(1− p)(u− s)

λw(p)(s− l)
.

Moreover, it is easy to check f ′′(h∗
1) < 0. Hence we can guarantee that h∗

1 > h1 is

optimal strategy if we buy the stock at time 0 in the sense of cumulative prospect

theory.

(2) If we sell the stock at time 0, h1 < h1 and the final wealth is

w =


wl = x0 + h1(l − s)− λs(h1 − h1) with probability p

wu = x0 + h1(u− s)− λs(h1 − h1) with probability 1− p

.

Suppose that l− (1−h1)s ≤ 0 and we take initial wealth as the reference point. We

can transfer the final wealth, w, into

w∗ =


w∗

l = h1(l − s)− λs(h1 − h1) with probability p

w∗
u = h1(u− s)− λs(h1 − h1) with probability 1− p

,

where w∗
l and w∗

u represent losses and gains, respectively. Thus in the sense of

cumulative prospect theory our main goal is to figure out h∗∗
1 which maximize the

function

f(h1) = pv(h1(l − s)− λs(h1 − h1)) + (1− p)v(h1(u− s)− λs(h1 − h1)).
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By first order derivative, we have

f ′(h1) = θ(λw(p)(l − s + λs) exp(θh1(l − s)− λs(h1 − h1))

+w(1− p)(u− s + λs) exp(−θ(h1(u− s)− λs(h1 − h1))))

and if f ′(h1) = 0 we have

h∗∗
1 =

1

θ(u + l − 2(1− λ)s)
ln

w(1− p)(u− s + λs)

λw(p)(s− l − λs)
+

2λsh1

u + l − 2(1− λ)s
.

Moreover we can get the inequality, f ′′(h∗∗
1 ) < 0, thus h∗∗

1 < h1 is the optimal

strategy if we sell the stock at time 0 in the sense of cumulative prospect theory.

By this example we conclude that if the investor wants to buy the stock at time

0 he may choose the strategy

h∗
1 =

1

θ(u + l − 2s)
ln

w(1− p)(u− s)

λw(p)(s− l)

to reach the maximum profit, and if the investor wants to sell the stock at time 0

he may choose the strategy

h∗∗
1 =

1

θ(u + l − 2(1− λ)s)
ln

w(1− p)(u− s + λs)

λw(p)(s− l − λs)
+

2λsh1

u + l − 2(1− λ)s

to reach the maximum profit.

Remark 5. Different from expected utility theory, we discover the fact that

under cumulative prospect theory, the optimal strategy with transaction costs in

the case of selling the stock at time 0 is relative to h1.

Remark 6. Due to rearrange the following inequality

1

θ(u + l − 2(1− λ)s)
ln

w(1− p)(u− s + λs)

λw(p)(s− l − λs)
+

2λsh1

u + l − 2(1− λ)s
< h1,

we have

1

θ(u + l − 2(1− λ)s)
ln

w(1− p)(u− s + λs)

λw(p)(s− l − λs)
<

u + l − 2s

u + l − 2(1− λ)s
h1
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and implies

(4.3)
1

θ(u + l − 2s)
ln

w(1− p)(u− s + λs)

λw(p)(s− l − λs)
< h1.

Thus in above example if (4.3) holds, the investor will sell the stock at time 0 and

the optimal strategy is

h∗∗
1 =

1

θ(u + l − 2(1− λ)s)
ln

w(1− p)(u− s + λs)

λw(p)(s− l − λs)
+

2λsh1

u + l − 2(1− λ)s
.

Moreover we get that the investor will neither buy nor sell the stock when h1 is in

the interval

[
1

θ(u + l − 2s)
ln

w(1− p)(u− s)

λw(p)(s− l)
,

1

θ(u + l − 2s)
ln

w(1− p)(u− s + λs)

λw(p)(s− l − λs)
].

Following, we discuss the same question. If there exists a ”no trading” interval

in the sense of cumulative prospect theory, without specific form of value function ?

Theorem 8. Assume that l− (1− λ)s < 0. Under cumulative prospect theory,

if h∗
1 and h∗∗

1 exist, the inequality h∗∗
1 > h∗

1 must be true. Therefore there exist a

”no trading” interval.

PROOF. Suppose that h∗
1 ≥ h∗∗

1 . If we buy the stock at time 0 and the optimal

strategy is h∗
1, we have

w(p)v−(h∗
1(l − s)) + w(1− p)v+(h∗

1(u− s))

≥ w(p)v−(h∗∗
1 (l − s)) + w(1− p)v+(h∗∗

1 (u− s)),

where v− is a convex function and v+ is a concave function. Rearranging the above

inequality, we get

w(1− p)(v+(h∗
1(u− s))− v+(h∗∗

1 (u− s)))

≥ w(p)(v−(h∗∗
1 (l − s))− v−(h∗

1(l − s))).
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Due to h∗
1 ≥ h∗∗

1 , h∗
1 > h1 and h∗∗

1 < h1, we obtain

−λsh1 + h∗
1(u− s + λs) > h∗

1(u− s)

and

h∗∗
1 (u− s) > −λsh1 + h∗∗

1 (u− s + λs).

By mean value theorem, we have

v+(−λsh1 + h∗
1(u− s + λs))− v+(h∗

1(u− s))

> v+(−λsh1 + h∗∗
1 (u− s + λs))− v+(h∗∗

1 (u− s)).

That is,

v+(−λsh1 + h∗
1(u− s + λs))− v+(−λsh1 + h∗∗

1 (u− s + λs))

> v+(h∗
1(u− s))− v+(h∗∗

1 (u− s)).

Similarly, since l − (1− λ)s < 0 we have

h∗∗
1 (l − s) > −λsh1 + h∗∗

1 (l − s + λs)

and

−λsh1 + h∗
1(l − s + λs) > h∗

1(l − s).

Using mean value theorem, we get

v−(h∗∗
1 (l − s))− v−(h∗

1(l − s))

> v−(−λsh1 + h∗∗
1 (l − s + λs))− v−(−λsh1 + h∗

1(l − s + λs)).
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Combining above inequality, we can obtain

w(1− p)(v+(−λsh1 + h∗
1(u− s + λs))− v+(−λsh1 + h∗∗

1 (u− s + λs)))

> w(1− p)(v+(h∗
1(u− s))− v+(h∗∗

1 (u− s)))

≥ w(p)(v−(h∗∗
1 (l − s))− v−(h∗

1(l − s)))

> w(p)(v−(−λsh1 + h∗∗
1 (l − s + λs))− v−(−λsh1 + h∗

1(l − s + λs))).

Thus we have

w(p)v−(−λsh1 + h∗
1(l − s + λs)) + w(1− p)v+(−λsh1 + h∗

1(u− s + λs))

> w(p)v−(−λsh1 + h∗∗
1 (l − s + λs)) + w(1− p)v+(−λsh1 + h∗∗

1 (u− s + λs))

which is contradicted to that h∗∗
1 is optimal strategy if we sell the stock at time 0.

Therefore h∗∗
1 > h∗

1 must hold.

This theorem shows that under cumulative prospect theorem there exists a ”no

trading” interval, too.

Corollary 2. When we want to find out the optimal strategy with transaction

costs in the sense of expected utility theory or cumulative prospect theory, there

exists a ”no trading” interval, in which we will neither buy nor sell the stock at time

0, no matter which value function we choose.

Next, we talk about the length of ”no trading” interval. If we consider the value

function given by

v(x) =


1− exp(−θx) if x ≥ 0

−λ(1− exp(θx)) if x < 0

,

we are able to contrast two lengths of ”no trading” interval in the sense of expected

utility theory and cumulative prospect theory, respectively.
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Remark 7. The length of the ”no trading” interval in the version of cumulative

prospect theory is no less than which in the version of expected utility theory.

PROOF. Under expected utility theory, the ”no trading” interval is

[
1

θ(u− l)
ln

(1− p)(u− s)

p(s− l)
,

1

θ(u− l)
ln

(1− p)(u− s + λs)

p(s− l − λs)
].

Hence the length of ”no trading” interval is

1

θ(u− l)
ln

(u− s + λs)(s− l)

(s− l − λs)(u− s)
.

And under cumulative prospect theory, the ”no trading” interval is

[
1

θ(u + l − 2s)
ln

w(1− p)(u− s)

λw(p)(s− l)
,

1

θ(u + l − 2s)
ln

w(1− p)(u− s + λs)

λw(p)(s− l − λs)
].

Thus the length of ”no trading” interval is

1

θ(u + l − 2s)
ln

(u− s + λs)(s− l)

(s− l − λs)(u− s)
.

Since
(u− s + λs)(s− l)

(s− l − λs)(u− s)
> 1 and

1

u + l − 2s
>

1

u− l
, therefore

1

θ(u + l − 2s)
ln

(u− s + λs)(s− l)

(s− l − λs)(u− s)
>

1

θ(u− l)
ln

(u− s + λs)(s− l)

(s− l − λs)(u− s)
.

Then we complete the proof.

The main point of this remark is that if we consider the specific form of value

function, we are able to find out the ”no trading” interval so as to calculate the

length of ”no trading” interval. Moreover if the form of value function given by

v(x) =


1− exp(−θx) if x ≥ 0

−λ(1− exp(θx)) if x < 0

,

the attitude of an investor toward risk bases on cumulative prospect theory is more

conservative than which bases on expected utility theory.
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Then let us consider another value function, which Kahneman and Tversky sug-

gested, given by

v(x) =


xα , x ≥ 0

−λ(−x)α , x < 0

.

In this case we take constant relative risk aversion (CRRA) function given by

U(x) = xα,

as a utility function.

Example 5. Under expected utility theory, suppose that x0+h1(l−s)−λs(h1−

h1) ≥ 0 and l − s + λs ≤ 0

(1) If we buy the stock at time 0, our task is to compute

max
h1

p(x0 + h1(l − s))α + (1− p)(x0 + h1(u− s))α.

By first order derivative, we have

h∗
1 =

x0(a− 1)

u− s + a(s− l)
> h1,

where

a = (
(1− p)(u− s)

p(s− l)
)

1
1−α .

(2) If we sell the stock at time 0, our task is to compute

max
h1

p(x0 − λsh1 + h1(l − s + λs))α + (1− p)(x0 − λsh1 + h1(u− s + λs))α.

By first order derivative, we have

h∗∗
1 =

(b− 1)(x0 − λsh1)

u− s + λs + b(s− l − λs)
< h1,

where

b = (
(1− p)(u− s + λs)

p(s− l − λs)
)

1
1−α .
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Moreover h∗∗
1 < h1 implies

(b− 1)x0

u− s + b(s− l)
< h1.

Therefore we have a conclusion that if
x0(a− 1)

u− s + a(s− l)
> h1, the investor is willing

to buy the stock at time 0 and the optimal strategy is

h∗
1 =

x0(a− 1)

u− s + a(s− l)
.

If
(b− 1)x0

u− s + b(s− l)
< h1, the investor is willing to sell the stock at time 0 and the

optimal strategy is

h∗∗
1 =

(b− 1)(x0 − λsh1)

u− s + λs + b(s− l − λs)
.

Moreover, there is a ”no trading” interval

[
x0(a− 1)

u− s + a(s− l)
,

x0(b− 1)

u− s + b(s− l)
].

Under cumulative prospect theory, suppose that the financial market is no lend-

ing and l − s + λs ≤ 0.

(1) If we buy the stock at time 0, our task is to compute

max
h1

f(h1) := −λw(p)(h1(s− l))α + w(1− p)(h1(u− s))α.

By first order derivative, we have

f ′(h1) = αhα−1
1 (−λw(p)(s− l)α + w(1− p)(u− s)α).

Case 1: If

w(1− p)(u− s)α > λw(p)(s− l)α,

f(h1) is an increasing function. So the optimal strategy is

h∗
1 = h1 +

h0

s
.

Case 2: If

w(1− p)(u− s)α < λw(p)(s− l)α,
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f(h1) is a decreasing function. So the optimal strategy is

h∗
1 = h1.

The main point is that if w(1−p)(u−s)α > λw(p)(s−l)α holds, transforming

all our money into stock makes the maximal profit. On the other hand, if

w(1−p)(u− s)α < λw(p)(s− l)α holds, we would not buy the stock at time

0.

(2) If we sell the stock at time 0, our task is to compute

max
h1

−λw(p)(λsh1 + h1(s− l − λs))α + w(1− p)(λsh1 + h1(u− s + λs))α.

By first order derivative, we have

h∗∗
1 =

λs(c + 1)h1

u− s + λs− c(s− l − λs)
< h1,

where

(4.4) c = (
w(1− p)(u− s + λs)

λw(p)(s− l − λs)
)

1
1−α .

Moreover h∗∗
1 < h1 implies u− s > c(s− l).

Therefore if w(1 − p)(u − s)α > λw(p)(s − l)α holds, the investor is willing to buy

the stock at time 0 and optimal strategy is h∗
1 = h1 +

h0

s
. If u− s > c(s− l) holds,

the investor is willing to sell the stock at time 0 and the optimal strategy is

h∗∗
1 =

λs(c + 1)h1

u− s + λs− c(s− l − λs)
.

Moreover if

u− s

s− l
≤ min{( λw(p)

w(1− p)
)

1
α , (

w(1− p)(u− s + λs)

λw(p)(s− l − λs)
)

1
1−α},

the investor will neither buy nor sell the stock at time 0.
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When investors evaluate investments based on different value functions, the port-

folio they choose may be distinct. If the value function is given by

v(x) =


1− exp(−θx) if x ≥ 0

−λ(1− exp(θx)) if x < 0

,

the optimal strategy in the case, buying the stock at time 0, is

h∗
1 =

1

θ(u + l − 2s)
ln

w(1− p)(u− s)

λw(p)(s− l)
,

and in the case, selling the stock at time 0, the optimal strategy is

h∗∗
1 =

1

θ(u + l − 2(1− λ)s)
ln

w(1− p)(u− s + λs)

λw(p)(s− l − λs)
+

2λsh1

u + l − 2(1− λ)s
.

Moreover, there exists a ”no trading” interval. If the value function is given by

v(x) =


xα , x ≥ 0

−λ(−x)α , x < 0

,

the result is much more complicated and there exists boundary condition of market

model. Furthermore, if we buy the stock at time 0 and w(1−p)(u−s)α > λw(p)(s−

l)α, the optimal strategy is

h∗
1 = h1 +

h0

s
.

If we sell the stock at time 0 and u − s > c(s − l) where c = (4.4), the optimal

strategy is

h∗∗
1 =

λs(c + 1)h1

u− s + λs− c(s− l − λs)
.

In financial market if we take transaction costs into consideration, we have to

talk about two situations, buying the stock at time 0 and selling the stock at time

0. Furthermore, we find out under some restrictions there is a ”no trading” interval

in which we will neither buy nor sell the stock at time 0.



CHAPTER 5

Conclusion

Cumulative prospect theory modifies the drawbacks of expected utility theory.

Under cumulative prospect theory we replace objective probability with probability

weighting function which is nonlinear. Moreover, we replace utility function with

value function which is concave for gains and convex for losses.

In the sense of expected utility theory if the mean of gains is greater than the

mean of losses, optimal amount of risky asset is greater than 0. However, in the sense

of cumulative prospect theory optimal strategy depends on the degree of sensitivity

in facing loss, denoted by λ. The larger λ is, the more conservative the investors are.

If the investor who does not accept the prior loss he will become risk seeking as the

gain of lottery is large enough. Furthermore if the prior loss is sufficiently large, the

hedger who take the prior loss into account will take very large positions showing no

consideration of risks in the sense of cumulative prospect theory. But full hedging

is the optimal strategy for a hedger in the sense of expected utility theory.

Finally, we consider the market model with transaction cost. An investor must

to pay constant proportional transaction cost when he sells the stock. In the sense of

expected utility theory and cumulative prospect theory there exists a ”no trading”

interval. And the length of the ”no trading” interval in the version of cumulative

prospect theory is no less than which in the version of expected utility theory.

Therefore the attitude of an investor toward risk bases on cumulative prospect theory

is more conservative than which bases on expected utility theory.
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