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半電力控制集的研究 
 

研究生：吳政軒   指導教授：傅恆霖 

 

國立交通大學    

 

應用數學系 

 

 

摘要 

 

用圖的模型來研究一個半電力控制集問題是在圖G 上一些點放著測試器，依

據我們訂下的規則，若能讓圖G 的所有邊都被觀察到，則我們稱這些點所成的集

合為圖G 的半電力控制集合。在這篇論文中，我們先說明了電力控制集問題與半

電力控制集問題的關聯性。接著，我們證明了一些特殊圖的半電力控制集的最少

點數，也證明當圖G 為連通圖，且G 中每個點所連到的邊數至少為兩邊時，半

電力控制集的最少點數與回饋點集的最少點數相等。我們也提出一遞迴方法，來

建構 n nP P 、 n nC C 的半電力控制集；於是，提供了一個半電力控制集最少點數

的上界。最後我們證出 n nP P 的半電力控制集最少點數為 nF 或 1nF  ，其中

2 2 2

3n

n n
F

  
  
 

，這結果改善了原來文獻中的最佳結論。 
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Abstract 

 
In a semi-power domination set (SPDS) system, we place measurement units on 

some vertices of a graph G, and according to the rule we defined, if all the edges of G 
can be observed, then we say that the vertex set is a semi-power domination set. In 
this thesis, we first find the relationship between PDS and SPDS, and then we prove 
that the minimum size of SPDS of a graph G, denoted by ( ),sp G  is equal to the 

minimum size of the feedback vertex set of ,G  provided G is connected and 
( ) 2.G   In addition, we bring up a recursive idea to produce the SPDS of a graph G. 

Finally, with the recursive idea, we prove that ( )sp n nP P   is equal to either nF  or 

1,nF  where
2 2 2

3n

n n
F

  
  
 

. This improves known results. 
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1. Introduction and Preliminaries 

 

Domination problems are the most useful ones in real world which are related to 

graph models. Find an efficient way to build hospitals, power plants and control 

centers is a typical example. One to the applications with specific needs, the problem 

has many variations, e.g. k-domination, independent domination, total domination, 

power domination, etc. This thesis provides a different version, called semi-power 

domination which has a suitable graph model to fit. We shall explain it in section 1.3. 

First, some graph notions are necessary. 

 
1.1. Graph Notions 
 

In this section, we first introduce the terminologies and definitions of graphs. For 

details, the readers may refer to the book "Introduction to Graph Theory" by D. B. 

West. [18] 

A graph G is a triple consisting of a vertex set ( ),V G  an edge set ( ),E G  and a 

relation that associates with each edge. Two vertices of an edge are called its 

endpoints. A loop is an edge whose endpoints are equal. Multi-edges are edges having 

the same pair of endpoints. A simple graph is a graph without loops or multi-edges. In 

this thesis, all the graphs we consider are simple. The size of the vertex set ( ),V G  

( )V G , is called the order of G, and the size of the edge set ( ),E G  ( ) ,E G  is called 

the size of G. The neighborhood of v written ( ),GN v  is the set of vertices adjacent to 

v. The degree of vertex v in a graph G, deg(v) is the number of edges incident to v, i.e. 

deg( ) ( )Gv N v . The maximum degree among all vertices of a graph G  is denoted 

by ( ),G  the minimum degree is denoted by ( ),G  and G  is regular if 
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( ) ( ).G G   A graph G  is k-regular if the common degree is k. An isolated vertex 

is a vertex of degree 0. 

A path is a graph whose vertices can be ordered so that two vertices are adjacent 

if and only if they are consecutive in the list. A path with n vertices is denoted by .nP  

In the case that path P starts at u and ends at v, we call P a (u, v)-path. A graph G is 

connected if it has a (u, v)-path whenever , ( )u v V G (otherwise, G is disconnected). 

The components of a graph G are its maximal connected subgraphs. A component (or 

graph) is trivial if it has no edges; otherwise it is nontrivial.  

A subgraph of a graph G is a graph H such that ( ) ( )V H V G and 

( ) ( )E H E G  and the assignment of endpoints to edges in H is the same as in G. A 

spanning subgraph of G is a subgraph H with ( ) ( ).V H V G  

A cycle is a graph with an equal number of vertices and edges whose vertices can 

be placed around a circle so that two vertices are adjacent if and only if they appear 

consecutively along the circle. A cycle with n vertices is denoted by .nC  A graph 

with no cycle is acyclic. A tree is a connected acyclic graph. A spanning tree is a 

spanning subgraph that is a tree. 

A complete graph is a simple graph whose vertices are pair-wise adjacent; the 

complete graph with n vertices is denoted by .nK  A graph G is bipartite if ( )V G  is 

the union of two disjoint independent sets called partite sets of G. A graph G is 

m-partite if ( )V G  can be expressed as the union of m independent sets. A complete 

bipartite graph is a bipartite graph such that two vertices are adjacent if and only if 

they are in different partite sets. When the sets have the sizes s and t, the complete 

bipartite graph is denoted by , .s tK  If the sets have the same size n, the complete 
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bipartite graph is called balanced, which is denoted by , .n nK  Similarly, the complete 

m-partite graph is denoted by 
1 2, ,..., ms s sK . 

A star kS  is the complete bipartite graph 1,kK , i.e., a tree with one internal 

node and k leaves. A star with 3 edges is called a claw. Let T  be the tree formed 

from a star by subdividing any number of its edges any number of times; that is, T  

has at most one vertex of degree 3 or more. We call such a tree T  a spider. A path, 

for example, is a special case of a spider. 

The corona of two graphs G and H, denoted G ◦ H, is the graph formed from one 

copy of G and ( )V G  copies of H where the ith vertex of G is adjacent to every 

vertex in the ith copy of H. 

The diamond is the graph D obtained from the complete graph 4K  by deleting 

one edge. For each positive integer k, let kD  be the connected claw-free cubic graph 

formed from k disjoint copies of D  by joining pair-wise 2k vertices of degree two. 

Note that 1D  is just 4K . 

Let G be a graph of order m with ( )V G { : 0 1ig i m   }, and let H be a 

graph of order n with ( )V H  { : 0 1ih i n   }. The Cartesian product G H  is 

defined to be the graph with vertex set { ( , ) : 0 1 and 0 1i jg h i m j n      } and 

( , )( , ) ( ) if either  and ( ) or  and ( ).i j s t i s j t j t i sg h g h E G H g g h h E H h h g g E G     

     

In the following section, we will introduce the power-dominating set problem. 
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1.2. Power-dominating Sets 
 

Electric power companies monitor the state of their electric power system by 

placing phasor measurement units (PMUs) in the system. Because of the high cost of 

a PMU, we want to minimize the number of PMUs to monitor (observe) the entire 

system. A system is said to be observed if all of the state variables of the system can 

be determined from a set of measurements. 

Let ( ,  )G V E  be a graph representing an electric power system, where a 

vertex represents an electrical node and an edge represents a transmission line joining 

two electrical nodes. The problem of locating a smallest set of PMUs to monitor the 

entire system is a graph model problem closely related to the well-known vertex 

covering and domination problems. For a thorough study of domination, related 

subset problems and terminology, the readers may refer to two books [11, 12]. 

A PMU measures the state variable for the vertex at which it is placed and its 

incident edges and their endvertices. (These vertices and edges are said to be 

observed.) The other observation rules are as follows: 

1. Any vertex that is incident to an observed edge is observed. 

2. Any edge joining two observed vertices is observed. 

3. If a vertex is incident to a total of 1k   edges and if 1k   of these edges are 

observed, then all k of these edges are observed. 

For a given vertex set P of representing the nodes where the PMUs are placed, to 

solve the power system monitoring problem we want to minimize |P|. This monitoring 

problem was introduced and studied in [1, 2, 3 and 17]. We define a set SV(G) to be 

a power dominating set (PDS) in a graph ( ,  )G V E  if every vertex and every edge 
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in G is observed by S. The cardinality of a minimum power dominating set of G is the 

power domination number ( ).p G  A power dominating set of G with minimum 

cardinality is called a ( )p G -set. In [4, 13], it was proved that to obtain power 

domination set is NP-complete for planar bipartite graphs, bipartite graphs and 

chordal graphs, respectively.  

In the following section, we will introduce the semi-power domination set 

problem and some observations. 

1.3. Semi-power Dominating Sets 
 

In this thesis, we try to examine an electric power system including edges and 

vertices in graph model. Then we place some weak measurement units (WMUs) on 

vertices, and we suppose that all the edges connected to the vertices that has place the 

WMU can be tested. Furthermore, if there are 1n   edges to be tested in n edges 

connected to a vertex, then all of them must be tested. For economic reason, we 

minimize the number of WMUs. 

Weak measurement units (WMUs) measure the state variable for the vertex at 

which it is placed and its incident edges and their endpoints. (These vertices and 

edges are said to be observed.) The other observation rules are as follows: 

1. Any vertex that is incident to an observed edge is observed. 

2. If a vertex is incident to a total of 1k   edges and if 1k   of these edges are 

observed, then all k of these edges are observed. 

Note that we delete the second rule of a PDS. For a given vertex set P of 
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representing the nodes where the WMUs are placed, to solve the semi-power system 

monitoring problem we would try to minimize |P|. 

A set SV (G) is a semi-power dominating set (SPDS) in a graph ( ,  )G V E  if 

every vertex and every edge in G is observed by S following the rules defined above. 

The cardinality of a minimum semi-power dominating set of G is the semi-power 

domination number ( ).sp G  A semi-power dominating set of G with minimum 

cardinality is called a ( )sp G -set.       

We have the following two observations. 

Observation 1. For each graph ,G  ( ) ( ) 1sp pG G   . 

Observation 2. G  is a graph and H is a subgraph of ,G  then ( )sp H  may be 

larger than ( ).sp G  

Example：In Figure 1, H is a subgraph of ,G  and ( ) 3sp G  ( ) 4sp H  . 

:G                                :H  

         

Figure 1: 

 

 

 

While studying SPDS problem, in some conditions, we found semi-power 

domination and feedback vertex sets are quite the same. In the following section, we 

will introduce feedback vertex sets. 
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1.4. Feedback Vertex Sets 
 

A feedback vertex set (FVS) of a connected graph ( ,  )G V E  is a subset 'V  

of V(G) such that the graph 'G  induced by V \ 'V  is a forest. The cardinality of a 

minimum feedback vertex set (MFVS) in G  is the feedback vertex number ( ).G  

A feedback vertex set of G  with minimum cardinality is called a ( )G -set. 

The problem of finding a minimum feedback vertex set in a graph is one of the 

classic NP-complete problems [14] and is NP-hard for general graphs [7]. We refer to 

[10] for a rather complete and recent survey on the feedback vertex set problem. 
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2. Known Results 

 

Some known results on PDS will be introduced as following. 

 
2.1. On Power-dominating Sets 
 

T. W. Haynes, S. M. Hedetniemi, S. T. Hedetniemi and M. A. Henning had 

mentioned the following result in [13]. 

Theorem 2.1.1. [13] For any tree T , ( )p T  = 1 if and only if T is a spider. 

Theorem 2.1.2. [13] If T  is a tree having k vertices of degree at least 3, then 

2
( )

3p

k
T 

  and this bound is sharp. 

Theorem 2.1.3. [13] For any tree T  of order n ≥ 3, ( )
3p

n
T   with equality if and 

only if T  is the corona T ◦ 2K , where T  is any tree. 

 

M. Dorfling and M. A. Henning had mentioned the following results in [8] for 

the graph n mP P . 

Theorem 2.1.4. [8] If G  is an n × m grid graph n mP P  where 1m n  , then 

                   

1
      4 (mod8);  

4
( )

    
     .                  

4

p

n
if n and

G
n

otherwise



      
 
   

 

 

M. Zhao, L. Kang and G. J. Chang had mentioned the following results in [19].  

Let F  be the family of graphs obtained from connected graphs H  by adding 

two new vertices v  and v  to each vertex v of H  and new edges vv  and vv , 

while v v   may be added or not. 
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Theorem 2.1.5. [19] If ( ,  )G V E  is a connected graph of order n  3, then 

( )
3p

n
G   with equality if and only if 3,3{ }.G F K   

 

Corollary 2.1.6. [19] If each component iG  of a graph G of order n contains at least 

three vertices, then 
    

( )
3p

n
G  with equality if and only if each component 

3,3{ }.iG F K   

 

Theorem 2.1.7. [19] If ( ,  )G V E  is a connected claw-free cubic graph of order n, 

then 
    

( )
4p

n
G   with equality if and only if ,G A  where { | 1}.kA D k   

 

C.C. Chuang had mentioned the following results in [6]. 

Theorem 2.1.8. [6] ,   ( ) 1.n m pG K P G    

Theorem 2.1.9. [6] 
  1,  1  ( , ) (2,3).

,   ( )
 2,           .         n m p

n or n m
G K C G

otherwise


 
   


 

Theorem 2.1.10. [6] ,   2 , ( ) 1.n m pG K K where n m G n       

Theorem 2.1.11. [6] ,  3 ,    n mG C C n m then     

               

 1,   2 (mod 4).
2

( )

,      .         
2

p

n
if n

G
n

otherwise



         
 
   

 

 

While studying SPDS problem, we will use some results on feedback vertex sets 

and it will be introduced in the following section. 

 
2.2. On Feedback Vertex Sets 
 

In [15], Luccio proved upper and lower bounds on the sizes of minimal feedback 

vertex sets in grids. Subsequently, both, Caragiannis, Kaklamanis, Kanellopoulos in 

[5] and Madelaine, Stewart in [16] improved the upper bounds, respectively. 
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Theorem 2.2.1. [15] For all , ,n m N  

( 1)( 1) 1
( ) ( , ) .

3 3 6n m

m n mn m n
P P o m n                

  

Theorem 2.2.2. [5] For all , ,n m N  
5

( ) .
3 6n m

mn m n
P P       

 

 

Lemma 2.2.3. [16] For , ,n m N  let ,n ma  be the upper bound of ( ),n mP P   

(i) if n=3k+1, m=2r, 1,  2k r  , then , ,n m n ma F ; 

(ii) if n=3k+1, m=2r+1, 1,  3,k r   then , ,n m n ma F ; 

(iii) if n=3k, m=3r or 3r+2, 3,  2k r   and r is even, then , , 1n m n ma F  ; 

(vi) if n=3k, m=3r, 3,  3k r   and r is odd, then , , 1n m n ma F  ; 

(v) if n=3k, m=3r+2, 3,  3k r   and r is odd, then , , 2n m n ma F  ; 

(vi) if n=3k+2, m=3r or 3r+2, 3,  2k r   and r is even, then , , 1n m n ma F  ; 

(vii) if n=3k+2, m=3r, 3,  3k r   and r is odd, then , , 2n m n ma F  ; 

(viii) if n=3k+2, m=3r+2, 3,  2k r   and r is odd, then , , 2n m n ma F  . 

 

Theorem 2.2.4. [16] If ( , ) {( , ) |   {2,3,5}  { ,  } {6,8}}n m i j i or j or i j   ,  

then ( )n mP P  = ,n mF , , 1n mF   or , 2n mF  , where ,

( 1)( 1) 1

3n m

m n
F

      
. 

Lemma 2.2.5. [16] If ,n N  2,n   then 2

1
( )

2n

n
P P      

. 

Lemma 2.2.6. [16] For each ,r N 3,r   

(i) 3 2 1

3( 1)
( ) .

2r

r
P P 

     
 

(ii) 3 2

3( 1) 3( 1)
( ) 1.

2 2r

r r
P P             

 

Lemma 2.2.7. [16] For all 0p   and the grid 5 mP P  with 2,m   we have 

5 8 5 8 1 5 8 2

5 8 3 5 8 4 5 8 5

5 8 6 5 8 7

( ) 11 1;     ( ) 11 ;        ( ) 11 2;

( ) 11 3;  ( ) 11 5;   ( ) 11 6;

( ) 11 8;  ( ) 11 9.

p p p

p p p

p p

P P p P P p P P p

P P p P P p P P p

P P p P P p

  

  

 

 

  

 

       

        

     
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Consequently, by Theorem 2.2.4, Lemma 2.2.5, Lemma 2.2.6 and Lemma 2.2.7 

we have the following theorem. 

Theorem 2.2.8. [16] There exists a computable function ( , )f n m  such that 

( )n mP P   is equal to one of ( , ),f n m ( , ) 1f n m   or ( , ) 2,f n m   where  ,  n m  

 { ,  : 2,  2}.n m n m   
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3. Main Results 

 
First, we prove the relationship between SPDS and FVS. 

 

Lemma 3.1. If P  is a ( ) ,sp G set   then \G P  has no cycles, i.e., P  is a 

feedback vertex set of .G  Thus, ( ) ( ).sp G G   

Proof: Suppose not. Then \G P  has a cycle and each edge on the cycle is not 

observed. Hence, P  is not a ( ) ,sp G set   a contradiction.                   ■ 

 

Lemma 3.2. Let G  be a connected graph with ( ) 2G  . Then S  is a semi-power 

dominating set provided that S  is a ( ) .G set   Thus, ( ) ( ).sp G G   

Proof: Let S  be a ( ) .G set   Then, \G S  has no cycles and thus, every 

component in \G S  is a tree. Let them be 1 2,  ,  ...,  .kT T T  Moreover, let the 

maximum height of the above k  trees be h. We claim that all vertices and edges can 

be observed after h rounds. In the first round, let 1 \{ | ( \ ) and deg ( )G SV v v V G S v   

1}.  Then 1 v V  , v is adjacent to a vertex of .S  Clearly, v is observed thus uv  

is also observed. Now, consider 1' ( \ ( ))v V G S V   with degree 1 in 1\ ( ).G S V  

Since 'v  is observed, ' 'u v  is also observed, where 'u  is a parent of '.v  We 

continue this step for h times. All of the vertices and edges of G  are observed, hence 

S  is also a semi-power dominating set.    

                                                                   ■ 

 

Theorem 3.3. If G  is connected with ( ) 2G  , then ( ) ( )spG G  . 

Proof: By Lemma 3.1 and Lemma 3.2 we have the proof.                    ■ 

 

Now, we prove the number ( )sp G  for some special graphs G. 

Theorem 3.4. For 2,n   ( ) 1sp nP  .  

Proof: Let 0 1 1( ) { , ,..., }n nV P v v v   and 1( ) { | 0 2}.n i iE P v v i n     It is clear that 

( ) 1.sp nP   Hence, the proof follows by letting 0{ }.S v                      ■ 
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Theorem 3.5. For 3,n   ( ) 1sp nC  .  

Proof: Let 0 1 1( ) { , ,..., }n nV C v v v   and ( ) { | 1(mod ),  0 1}.n i jE C v v j i n i n       

It is clear that ( ) 1.sp nC   Hence, the proof follows by letting 0{ }.S v         ■ 

 

Theorem 3.6. If T  is a spider, then ( ) 1sp T  . 

Proof: Since T  is a spider, T  has at most one vertex v  with deg( ) 3.v   If T  

has no vertex v  with deg( ) 3,v   then T  is a path. By Theorem 3.4, we have the 

proof. If T  has exactly one vertex v  with deg( ) 3,v   then the proof follows by 

letting { }.S v                                                        ■ 

 

Theorem 3.7. For 3n  , ( ) 2sp nK n   . 

Proof: Suppose the size of a ( )sp nK set   is less than 2.n   Then 

\ ( )sp nG K set   contains a 3K  which has a cycle. This is a contradiction. Hence 

the number ( )sp nK  is at least 2.n   On the other hand, it is clear that 

( ) 2.sp nK n    Hence, we have the proof.                                 ■ 

 

Theorem 3.8. ,( ) 1,   2 .sp n mK n where n m      

Proof: Let , 1 2( )n mV K V V   and ,( ) { | 0 1,0 1},n m i jE K x y i n j m        

where 1 0 1 1{ , ,..., }nV x x x   and 2 0 1 1{ , ,..., }.mV y y y   Since two vertices of 1V  and 

two vertices of 2V  will induce a cycle, ,( ) .{ 2,  2} 2.sp n mK min m n n       Hence, 

the proof follows by letting 1 0\{ }.S V x                                    ■ 

Theorem 3.9. 2( ) ( 1) ,  2.sp n nK K n where n      

Proof: Let ,( ) { | 0 , 1}n n i jV K K v i j n      and , ,( ) { |  or n n i j k lE K K v v i k    

,  0 ,  ,  ,  1 }.j l i j k l n     First, we prove the lower bound of ( )sp n nK K  . Since 

( ) 2sp nK n   , ( )sp n nK K   2n n  . In addition, we know that there are exactly 
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two vertices in each row and each column which has no PMUs. W.L.O.G., let 

,{ | ,  1,  ...,  3(mod  ),  0 1}i jS v j i i m i m i n        with | | ( 2).S n n  Then 

\n nK K S  has a cycle, S  is not an SPDS. ( )sp n nK K   2 1n n   . Hence, the 

proof follows by letting ,' { | ,  1,  ...,  3(mod  ),  0 1}i jS v j i i m i m i n          

2, 1{ }n nv    with | | ( 2) 1.S n n                                           ■ 

 

Theorem 3.10. ( ) ( 2),   2 .sp n mK K n m where n m       

Proof: Let ,( ) { | 0 1,  0 1}n m i jV K K v i n j m        and , ,( ) { |n m i j k lE K K v v   

  ,  0 ,  1 and 0 ,  1}i k or j l i k n j l m        . First, we find the lower bound of 

( ).sp n mK K   Since ( ) 2,sp mK m    ( ) 2 .sp n mK K n m     Hence, the proof 

follows by letting ,{ | ,  1,  ...,  3(mod  ),  0 1}i jS v j i i m i m i n        with 

| | ( 2).S n m                                                         ■ 

 

Theorem 3.11. ( ) ( 2),   ,  3.sp n mK P m n where n m      

Proof: Let ,( ) { | 0 1,  0 1}n m i jV K P v i n j m         and , ,( ) { |n m i j k jE K P v v   

 0 ,  1 and 0 1}i k n j m      , , 1{ | 0 1 and 0 2}i k i kv v i n k n       . First, we 

find the lower bound of ( ).sp n mK P   Since ( ) 2sp nK n   , ( )sp n mK P    

 2 .n m  Hence, the proof follows by letting ,{ | ,  1,  ...,  3i jS v i j j n j       

(mod  ),  0 1}n j m    with | | ( 2).S m n                                     ■ 

 

Theorem 3.12. ( ) ( 2), where 4 .sp n mK C m n n m       

Proof: Let ,( ) { | 0 1,  0 1}n m i jV K C v i n j m         and , ,( ) { |n m i j k jE K C v v   

, , 0 ,  1 and 0 1} { | 1 (mod ), 0 1 and 0i k i li k n j m v v l k n i n k m             

1}.  First, we prove the lower bound of ( )sp n mK C  . Since ( ) 2sp nK n   , 

(sp nK )mC   2m n  . Now, we give an upper bound of ( )sp n mK C  . 

Case (a). 0 (mod )m n  

Let , , 1{ | ,  1,  ...,  3(mod  ),  0 2} { | 1 - 2}.i j i mS v i j j n j n j m v i n            
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Case (b). 1,  2 (mod )m n  

Let , , 1{ | ,  1,  ...,  3(mod  ),  0 2} { | 2 1}.i j i mS v i j j n j n j m v i n              

Case (c). 0,  1,  2 (mod )m n  

Let ,{ | ,  1,  ...,  3(mod  n),  0 1}.i jS v i j j n j j m        Then \n mK C S  has 

no cycles. Thus, ( )sp n mK P   is at most  2m n  . Consequently, ( )sp n mK C                    

( 2), where 4 .m n n m                                                          ■ 

 

Theorem 3.13. ( ) ( 2),   3 .sp n mK C m n where m n       

Proof: Let ,( ) { | 0 1,  0 1}n m i jV K C v i n j m         and , ,( ) { |n m i j k jE K C v v   

, , 0 ,  1 and 0 1} { | 1(mod ),  0 1 and 0i k i li k n j m v v l k n i n k m             

1}.  First, we find the lower bound of ( )sp n mK C  . Since ( ) 2,sp nK n    (sp nK  

 ) 2 .mC m n    Hence, the proof follows by letting ,{ | ,  1,   ...,i jS v i j j n j     

3(mod ),  0 1}n j m     with | | ( 2).S m n                                    ■ 

 

Now, we use the relation between SPDS and FVS to improve the result of FVS 

on m nP P . 

 

Lemma 3.14. Let G be a connected graph with ( ) 2G   and e xy  be an 

arbitrary edge of G . Let G G e xz zy     where ( ).z V G  Then ( ) ( ).G G   

Proof: Let S  be a feedback vertex set of G  with ( ).S G  Then \G S  is a 

forest. So, it follows that  \G S  is also a forest, i.e., S  is also a feedback vertex set 

of .G  Hence, ( ) ( ).G G   On the other direction, let S  be a feedback vertex set 

of G  with  ( ).S G  First, if  ( ),S V G  then \G S  is a forest and thus S  is 

also a feedback vertex set of .G  This implies that  ( ) ( ).G S G    On the other 

hand, .z S  Now, let   .S S z x     Clearly, S  is also a feedback vertex set of 
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G  of size  .S  Since S  is a feedback vertex set of ,G  the proof follows by above 

argument. Therefore, ( ) ( ).G G                                         ■ 

Let n 2. n nP P  is the graph with vertex set ( )n nV P P defined as ,{ : 0i jv  

,  1}i j n    and edge set ( )n nE P P  defined as , 1, {( ,  ) : 0 2,  0i j i jv v i n j       

, , 11} {( , ) : 0 1,  0 2}.i j i jn v v i n j n         

Lemma 3.15. 2 2 3 3 4 4( ) 1,  ( ) 2,  ( ) 4.sp sp spP P P P P P         

Proof: (i) Since 2 2 4 ,P P C   2 2 4( ) ( ) 1.sp spP P C     

      (ii) Since 3 3( ),v V P P    3 3 \{ }P P v  always has a cycle, and thus 

3 3( ) 2.sp P P    Let 0,0 1,1{ , }S v v . Then 3 3 \P P S  has no cycles, S  is 

an SPDS. Hence, 3 3( ) 2.sp P P    

     (iii) Let 4 4 1 2 3 4( )V P P S S S S     ,  

1 0,0 0,1 1,0 1,1 2 0,2 0,3 1,2 1,3 3 2,0 2,1 3,0 3,1{ ,  ,  ,  },  { ,  ,  ,  },  { ,  ,  ,  },S v v v v S v v v v S v v v v  

4 2,2 2,3 3,2 3,3{ ,  ,  ,  }.S v v v v  Then each iS  induces a subgraph of G which 

has a cycle. Hence, 3 3( ) 4sp P P   . Let 1,1 1,3 2,0 2,2{ ,  ,  ,  }.S v v v v  Then 

4 4 \P P S  has no cycles, S  is an SPDS. Hence, 4 4( ) 4.sp P P       ■ 

 

Lemma 3.16. For ,  1,k r   2 1 2 1 1 1( ) ( )sp k r sp k rP P kr P P        .    

Proof: Let 2 1,2 1 ,{ : ,   are odd,  1 2 ,  1 2 }.k r i jX v i j i k j r       We have the result  

2 1 2 1 2 1,2 1 1 1( \ ) ( )sp k r k r sp k rP P X P P          by using Theorem 3.3 and Lemma 3.14. 

Hence, we have the proof.                                              ■ 
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Lemma 3.17. For ,  1k r  , 2 2 2 2( ) ( 1)( 1) ( ).sp k r sp k rP P k r P P         

Proof: Let 2 2,2 2 2 2,2 2 2 2,2 2 2 2,2 2k r k r k r k rX A B C           where 

2 2,2 2 ,{ : ,  are odd and 1 2 1,  1 2 1},k r i jA v i j i k j r          

2 2,2 2 ,2 2 ,{ :  is even , 2 2 } { :  is even , 2 2 } andk r i r k jB v i i k v j j r         

2 2,2 2 0,2 2 ,0{ , }.k r k rC v v     

We have the result 2 2 2 2 2 2,2 2( \ ) ( )sp k r k r sp k rP P X P P        by using Theorem 3.3 

and Lemma 3.14. Hence, we have the proof.                                ■ 

 

Theorem 3.18. For 2,n   ( )   1,sp n n n nP P F or F     where 
2( 1) 1

.
3n

n
F

  
  
 

 

Proof: By induction on .n  Let na  be an upper bound of ( ).n nP P   By Lemma 

2.2.3 and Theorem 3.3. We know that  

(i) 6 4,n k   0k  , n na F ;   (ii) 6 1,n k   1k  , n na F ; 

(iii) 6 ,n k  2k  , 1n na F  ;  (vi) 6 3,n k   1k  , 1n na F  ; 

(v) 6 2,n k   2k  , 1n na F  ;  (iv) 6 5,n k   1k  , 2n na F  . 

Now it suffices to prove that ,n na F t   0 or 1,t   when 5 (mod 6).n   

By Lemma 3.15, Lemma 3.16 and Lemma 3.17 with direct checking, we have 

2 21a F  , 3 32a F  , 5 56a F  , 6 610 1a F   , 8 818 1.a F    Hence, the 

basic cases hold. 

By Lemma 3.16. 

2
2 2

6 5 3 3

2 2 2 2

(3 3 1) 1
(3 2) (3 2) 1

3

3(3 2) (3 2) 1 4(3 2) 1 (6 4) 1
       1 1 1 .

3 3 3

k k

k
a k a k

k k k k

 

   
       

 
            

          
     

 

This concludes the proof by induction process.                                             ■ 
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Theorem 3.18.  If , 5 (mod 6)n m   then for all , 11,n m   

 , ,( )  or 1,sp n m n m n mP P F F     where ,

( 1)( 1) 1

3n m

n m
F

      
. 

Proof: By Lemma 2.2.3, Theorem 3.3 and Lemma 3.16. Let ,n ma  be an upper bound 

of ( )sp n mP P  . Then 

6 5,6 5 3 3,3 3(3 3)(3 3)

(3 3 1)(3 3 1) 1
            (3 3)(3 3)

3

3(3 2)(3 2) (3 2)(3 2) 1
            

3

4(3 2)(3 2) 1 ((6 4)(6 4) 1
             

3 3

k r k ra k r a

k r
k r t

k r k r
t

k r k r
t t

      

           
         
                 

6 5,6 5            ,     where 0 or 1.k rF t t   

 

                                                                  ■ 

 

 

Now, we consider the product of cycles. 

 

Theorem 3.19. For 2,k   2
2 2 2 2 1 1( ) ( 1) ( ).sp k k sp k kC C k C C           

Proof: Let 2 2 ,{ : ,   are odd,  1 ,  2 1}.k i jX v i j i j k      We have the result 

2 2 2 2 2 2 1 1( \ ) ( )sp k k k sp k kC C X C C         by using Theorem 3.3 and Lemma 3.14. 

Hence, we have the proof.                                              ■ 

 

Theorem 3.20. For 3,k   2
2 1 2 1( ) ( 1) ( ).sp k k sp k kC C k P P         

Proof: Let 2 1 2 1 2 1 2 ,2{ },k k k k kX A B v      where 2 1 ,{ : ,   are even and 0k i jA v i j   

,  2 1}i j k   and 2 1 ,2 2 ,{ :  is odd, 1 2 2} { :  is odd, 1 2k i k k jB v i i k v j j k         

2}.  We have the result 2 1 2 1 2 1( \ ) ( )sp k k k sp k kC C X P P       by using Theorem 

3.3 and Lemma 3.14. Hence, we have the proof.                             ■ 
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4. Concluding Remark 

 

In this thesis, we first introduce a new notion called semi-power dominating set 

to relax the well-known power dominating set as a graph model in applications. This 

new SPDS turns out to be exactly the same as the feedback vertex set of a connected 

graph G  with ( ) 2.G   Therefore, if the graphs G  fit the above conditions 

which we can find ( )sp G , then we also determine ( ).G  Indeed, we have done just 

that by considering the product of two paths and we are very close to determine 

( ).sp n mP P   Hopefully, this can be done in the near future. 
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