L A gl R 3

A Study of Semi-power Dominating Sets

SRR N £ 4

=



A Study of Semi-power Dominating Sets

R N 24 Student: Cheng-Hsun Wu
I BER Advisor: Hung-Lin Fu

A Thesis
Submitted to.Department of Applied Mathematics
College of Science
National Chiao Tung University
InPartial Fulfillment of the Requirements
For the Degree of
Master
In

Applied Mathematics
June 2010

Hsinchu, Taiwan, Republic of China

PERRA LA ER



At

oy
by
=
ﬁ
k
=%
3k
X
R
=

g

P REA R - BER A %w%{f@GJ—§%ﬁ§m$$m;
1\; ﬂaaﬁ;;—éﬁu g‘!;»’l.i-gk; n@,g:

?nbﬁ%}Gm”ﬁ‘Fé K}}‘;gfﬁi s

P2 T T A

ELRGaET A IR Er LizhH cl’*\"Fa;tF"-’pg’?"#mﬁ’Lg‘F\: e L

*"#”'F?%Fp%\m%%h‘o FFo PR T - EETRBlE T4 A B
“53‘§B$ai

E\—ng’*’ #P oy RG AR G“""B‘E@""Ti | il : o

F B ek b Bl v BEEE enfo b BEfcip R o A Py R - vhae g o %
@ﬁwxp © O, XG5 L A B
L ﬁ’»ﬁi\"ru\:ﬁ.»Pxpm—:\‘;’.’;ﬁ:ﬂﬂﬁﬁx")%ﬁ:%F;i\?Eq+l’;E.!v’

":[L;JFZ—I’E%%E $0 Rk e b

2L =)
‘Eﬁ/ﬁ y



A Study of Semi-power Dominating Sets

Student: Cheng-Hsun Wu Advisor: Hung-Lin Fu
Department of Applied Mathematics Department of Applied Mathematics
National Chiao Tung University National Chiao Tung University
Hsinchu, Taiwan 30050 Hsinchu, Taiwan 30050
Abstract

In a semi-power domination set (SPDS) system, we place measurement units on
some vertices of a graph G, and-according to the rule we defined,.if all the edges of G
can be observed, then we say that the vertex set.is a semi-power domination set. In
this thesis, we first'find the relationship between PDS and SPDS, and then we prove
that the minimum size of SPDS of a graph G, denoted by y_(G), is equal to the
minimum size of ithe feedback vertex set of G, provided G is connected and
0(G) > 2. In addition, we bring up.a recursive idea to produce the SPDS of a graph G.

Finally, with the recursive idea, we prove-that" y, (£, x F,) /is‘equal to either F, or

2
F, +1 whereF, = {L;Hﬂ . This improves known results.
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1. Introduction and Preliminaries

Domination problems are the most useful ones in real world which are related to
graph models. Find an efficient way to build hospitals, power plants and control
centers is a typical example. One to the applications with specific needs, the problem
has many variations, e.g. k-domination, independent domination, total domination,
power domination, etc. This thesis provides a different version, called semi-power
domination which has a suitable graph model to fit. We shall explain it in section 1.3.

First, some graph notions are necessary.

1.1. Graph Notions

In this section, we first introduce the terminologies and definitions of graphs. For
details, the readers-may refer to the book "Introduction to' Graph. Theory" by D. B.

West. [18]

A graph G is a triple consisting of a vertex set J/(G), .an edge set E(G), and a
relation that associates with each edge. Twao vertices of an edge are called its
endpoints. A loop is an edge whose endpoints are equal. Multi-edges are edges having

the same pair of endpoints. A simple graph is a graph without loops or multi-edges. In

this thesis, all the graphs we consider are simple. The size of the vertex set V' (G),
[V(G)|, is called the order of G, and the size of the edge set E(G), |E(G)|, is called

the size of G. The neighborhood of v written N_(v), is the set of vertices adjacent to
v. The degree of vertex v in a graph G, deg(v) is the number of edges incident to v, i.e.

deg(v) = |NG (v)|. The maximum degree among all vertices of a graph G is denoted

by A(G), the minimum degree is denoted by o(G), and G is regular if
1



A(G)=0(G). Agraph G is k-regular if the common degree is k. An isolated vertex

is a vertex of degree 0.

A path is a graph whose vertices can be ordered so that two vertices are adjacent

if and only if they are consecutive in the list. A path with » vertices is denoted by P..
In the case that path P starts at » and ends at v, we call P a (u, v)-path. A graph G is
connected if it has a (u, v)-path whenever u,v e V' (G) (otherwise, G is disconnected).
The components of a graph G are its maximal connected subgraphs. A component (or

graph) is trivial if it has no edges; otherwise it is nontrivial.

A subgraph of a graph”G is a graph H.such.that V(H)cV(G) and
E(H) c E(G) and theassignment of endpoints to edges in H'is the same as in G. A

spanning subgraph.of G is a subgraph H with- V' (H) =V (G).

A cycle is a graph with an equal number of vertices and edges whose vertices can
be placed around a circle so that two vertices are adjacent if‘and only if they appear
consecutively along the circle. A cycle with » vertices is denoted by C,. A graph
with no cycle is acyclic. A tree IS a connected-acyclic graph. A spanning tree is a

spanning subgraph that is a tree.

A complete graph is a simple graph whose vertices are pair-wise adjacent; the

complete graph with » vertices is denoted by K,. Agraph G is bipartite if V(G) is
the union of two disjoint independent sets called partite sets of G. A graph G is
m-partite if V(G) can be expressed as the union of m independent sets. A complete
bipartite graph is a bipartite graph such that two vertices are adjacent if and only if

they are in different partite sets. When the sets have the sizes s and ¢, the complete

bipartite graph is denoted by K ,. If the sets have the same size n, the complete
2



bipartite graph is called balanced, which is denoted by K, . Similarly, the complete

m-partite graph is denoted by K -

Sy "

A star S, is the complete bipartite graph KX, ,, i.e., a tree with one internal

node and & leaves. A star with 3 edges is called a claw. Let 7 be the tree formed
from a star by subdividing any number of its edges any number of times; that is, T
has at most one vertex of degree 3 or more. We call such a tree T a spider. A path,

for example, is a special case of a spider.

The corona of two graphs G and H, denoted G °#, is the graph formed from one

copy of G and |V'(G)| copies of # where the ith vertex of G_is adjacent to every

vertex in the ith copy of A.

The diamond s the graph D obtained from the complete graph X, by deleting
one edge. For each positive integer k, let D, “be the connected.claw-free cubic graph

formed from £ disjoint copies.of. D by joining pair-wise 2k vertices of degree two.

Note that D, isjust X,.

Let G be a graph of order m with V(G)={g,:0<i<m-1}, and let H be a

graph of order n with V(H)={h :0<i<n-1}. The Cartesian product GxH is

defined to be the graph with vertex set {(g;,/;):0<i<m-land0<;j<n-1} and

(g h)(g,h)e E(GxH) ifeitherg, =g and h.h, € E(H) or h, =h, and g.g, € E(G).

In the following section, we will introduce the power-dominating set problem.



1.2. Power-dominating Sets

Electric power companies monitor the state of their electric power system by
placing phasor measurement units (PMUSs) in the system. Because of the high cost of
a PMU, we want to minimize the number of PMUs to monitor (observe) the entire
system. A system is said to be observed if all of the state variables of the system can

be determined from a set of measurements.

Let G=(V, E) be a graph representing an electric power system, where a
vertex represents an electrical node and an-edge.represents a transmission line joining
two electrical nodes. The problem of locating a smallest set of PMUs to monitor the
entire system is a graph-model problem closely related to the well-known vertex
covering and domination problems. For a thorough_study of -domination, related

subset problems and terminology, the readers may refer to two books [11, 12].

A PMU measures the state variable for the vertex at which it is placed and its
incident edges and their endvertices. (These vertices and edges are said to be

observed.) The other observation-rules.are as follows:

1. Any vertex that is incident to an observed edge is observed.

2. Any edge joining two observed vertices is observed.

3. If a vertex is incident to a total of £ >1 edges and if £—1 of these edges are

observed, then all £ of these edges are observed.

For a given vertex set P of representing the nodes where the PMUSs are placed, to
solve the power system monitoring problem we want to minimize |P|. This monitoring
problem was introduced and studied in [1, 2, 3 and 17]. We define a set Se V'(G) to be

a power dominating set (PDS) in a graph G =(V, E) if every vertex and every edge

4



in G is observed by S. The cardinality of a minimum power dominating set of G is the

power domination number y,(G). A power dominating set of G with minimum

cardinality is called a y,(G)-set. In [4, 13], it was proved that to obtain power

domination set is NP-complete for planar bipartite graphs, bipartite graphs and

chordal graphs, respectively.

In the following section, we will introduce the semi-power domination set

problem and some observations.

1.3. Semi-power Dominating Sets

In this thesis, we try to examine an electric power system.including edges and
vertices in graph model. Then we place some weak measurement units (WMUS) on
vertices, and we suppose that all the edges connected to the vertices that has place the
WMU can be tested. Furthermore; If there are n—1 edges to be tested in » edges
connected to a vertex, then all of them must be tested. For economic reason, we

minimize the number of WMUSs.

Weak measurement units (WMUs) measure the state variable for the vertex at
which it is placed and its incident edges and their endpoints. (These vertices and

edges are said to be observed.) The other observation rules are as follows:

1. Any vertex that is incident to an observed edge is observed.

2. If a vertex is incident to a total of £ >1 edges and if k-1 of these edges are

observed, then all £ of these edges are observed.

Note that we delete the second rule of a PDS. For a given vertex set P of



representing the nodes where the WMUSs are placed, to solve the semi-power system

monitoring problem we would try to minimize |P).

Aset Se V (G) is a semi-power dominating set (SPDS) ina graph G=(V, E) if
every vertex and every edge in G is observed by S following the rules defined above.

The cardinality of a minimum semi-power dominating set of G is the semi-power

domination number y _(G). A semi-power dominating set of G with minimum

cardinality is called a y,, (G) -set.

We have the following two observations.

Observation 1. For each graph -G, 7, (G) 27,(G) >1.

Observation 2. G__is a graph and # is a subgraph of G, then y_ (H) may be
larger than y, (G).

Example : In Figure 1,/ is asubgraph of G, andy,,(G)=3<y,(H)=4.

G: H:

Figure 1:

While studying SPDS problem, in some conditions, we found semi-power
domination and feedback vertex sets are quite the same. In the following section, we

will introduce feedback vertex sets.



1.4. Feedback Vertex Sets

A feedback vertex set (FVS) of a connected graph G =(V, E) is a subset V'
of V(G) such that the graph G' induced by V' \V'' is a forest. The cardinality of a
minimum feedback vertex set (MFVS) in G is the feedback vertex number z(G).

A feedback vertex set of G with minimum cardinality is called a 7(G) -set.

The problem of finding a minimum feedback vertex set in a graph is one of the
classic NP-complete problems [14] and is NP-hard for general graphs [7]. We refer to

[10] for a rather complete and recent survey on the feedback vertex set problem.



2. Known Results

Some known results on PDS will be introduced as following.

2.1. On Power-dominating Sets

T. W. Haynes, S. M. Hedetniemi, S. T. Hedetniemi and M. A. Henning had

mentioned the following result in [13].

Theorem 2.1.1. [13] For any tree I ;= y,(T) = Lif and only if T is a spider.

Theorem 2.1.2. [13] If T is a tree having k vertices of degree at least 3, then
k+2

7,(T)= and this bound is-sharp.

Theorem 2.1.3. [13)Forany tree T of ordernz=3, y,(T) S% with equality if and

onlyif T isthe corona T °K,, where T isany tree.

M. Dorfling and-M. A. Henning had mentioned- the following results in [8] for
the graph P, x P, .

Theorem 2.1.4. [8] If G is ann X mgrid graph P,xP, where m>n2=1, then

m

[”Tﬂ—l if n=4 (mod8); and

7,(G) =
n .
[——l otherwise.
4

M. Zhao, L. Kang and G. J. Chang had mentioned the following results in [19].
Let F be the family of graphs obtained from connected graphs H by adding
two new vertices v' and " to each vertex v of H and new edges ww' and w",

while vv" may be added or not.



Theorem 2.1.5. [19] If G=(V, E) is a connected graph of order n>3, then

7,(G) S% with equality if and only if G € F O{K,,}.

Corollary 2.1.6. [19] If each component G, of a graph G of order n contains at least

three vertices, then y p(G)S% with equality if and only if each component

G, e FU{K,.}.

Theorem 2.1.7. [19]1If G=(V, E) is a connected claw-free cubic graph of order n,

then y,(G) < % with equality if and onlyif .G € A, where A={D, |k>1}.

C.C. Chuang had mentioned the following results in [6].
Theorem 2.1.8. [6] ‘G=K, =B, 7,(G)=1.

1L n=1 ;) =(2,3).
Theorem 2.1.9. [6} G =K xC, , 7, (G)= s m.) (2.3)
’ 2; otherwise.
Theorem 2.1.10. [6] G =K, xK, , where 2<n<m,y,(G) =n—L
Theorem 2.1.11. [6] G=C, xC,, 3<n<m, then
n .
h}l, if n=2 (mod4).

7,(G) =
n |
[E—l ,  Otherwise.

While studying SPDS problem, we will use some results on feedback vertex sets

and it will be introduced in the following section.

2.2. On Feedback Vertex Sets

In [15], Luccio proved upper and lower bounds on the sizes of minimal feedback
vertex sets in grids. Subsequently, both, Caragiannis, Kaklamanis, Kanellopoulos in
[5] and Madelaine, Stewart in [16] improved the upper bounds, respectively.

9



Theorem 2.2.1. [15] For all n,me N,

[(m_l)(g_l)ﬂkdp" xpm)s[%ﬁtmww(m,n)J-
Theorem 2.2.2. [5] For all n,me N, T(PnXPm)S{%JF%n_SJ'

Lemma 2.2.3. [16] For n,me N, let a,, be the upper bound of t(P,xPF,),
() if n=3k+1,m=2r, k=1, r>2,then a,, =F,,;

(ii) if n=3k+1, m=2r+1, k21, r=3, then a,,=F,, ;

(iii) if n=3k, m=3r or 3r+2, k>3, r 22 and r.is even, then a,,=F, +1;
(vi) if n=3k, m=3r, k>3, ¥23 and7 is odd, then.a,  =rF, +1,

(v) if n=3k, m=3r+2, k23, r >3 andrisodd, then a,, =F, +2;

(vi) if n=3k+2, m=3r.0r 3r+2, k23, r 22 andris even, then a, , =F, +1;

(vii) if n=3k+2, m=3r, k23, r 23 andris odd, then a,, =F, +2;

(viii) if n=3k+2, m=3r+2, k>3, r=22 andris odd, then a,,=F, +2.

Theorem 2.2.4. [16] If (n,m) {(¢, j) | i or j €{2,3,5} ordi; j}<={6,8}},

then ©(P.xP)=F o8 =[(m_1)(g_l)+l1.

n,m!

F, . +1 or  F a2y where

Lemma2.25.[16] If neN, n>2, then t(P,xP)= [nT_l—l

Lemma 2.2.6. [16] For each re N, r>3,

(i) t(BxB, )= [3“2‘1)}.

(i F(r‘ﬂsf@x&)s[@}l.

2
Lemma 2.2.7. [16] Forall p>0 and the grid F,xP, with m>2, we have
t(BxF,)=11p-L o(ExK,,)=11p; ©(ExF,,)=11p+2;
(B xB,.) =11p+3; t(BxB,.,) =11p+5; t(BxB,.;)=11p+6;
(B xPB,.)=11p+8; t(BxB,,,)=11p+9.
10



Consequently, by Theorem 2.2.4, Lemma 2.2.5, Lemma 2.2.6 and Lemma 2.2.7
we have the following theorem.

Theorem 2.2.8. [16] There exists a computable function f(n,m) such that
t(P,xP,) isequaltooneof f(n,m), f(n,m)+1 or f(n,m)+2, where (n, m)e

{(n, m):nZZ, m > 2}.

11



3. Main Results

First, we prove the relationship between SPDS and FVS.

Lemma 3.1. If P is a ysp(G)—Set, then G\P has no cycles, i.e., P is a
feedback vertex set of G. Thus, y,,(G)27(G).

Proof: Suppose not. Then G\ P has a cycle and each edge on the cycle is not

observed. Hence, P isnota y, (G)-set, acontradiction. ]

Lemma 3.2. Let G be a connected graph with 6(G)>2. Then S is a semi-power
dominating set provided that S vis'a_t(G)=set./ Thus, y, (G)<z7(G).

Proof: Let S be a z(G)—set. Then, G\S has no_cycles and thus, every
component in G\S«.is a tree.—Let them be 7, 7,, .., I;. Moreover, let the

maximum height of the above % -trees be 4. We claim that all vertices and edges can

be observed after Zrounds. In the first round, let 7, ={v|v eV (G\S) and deg,,,(v)
=1}. Then V veWV,, vis adjacent to a vertex of S. Clearly, v is observed thus uv
is also observed. Now, consider v'eV(G\(SUY,)) with degree 1 in G\(SUV,).

Since v' is observed, u'v' is<also observed, where #' is a parent of v'. We
continue this step for # times. All-of the vertices and-edges of G are observed, hence

S isalso a semi-power dominating set.

Theorem 3.3. If G is connected with 6(G) 22, then 7(G)=7y,,(G).
Proof: By Lemma 3.1 and Lemma 3.2 we have the proof. ]
Now, we prove the number y, (G) for some special graphs G.

Theorem 3.4. For n>2, y (P)=1
Proof: Let V(P)={v,,v,...v, .} and E(P)={vv,., |0<i<n-2}. Itisclear that

7, (F,)=1. Hence, the proof follows by letting S ={v,}. [ ]

12



Theorem 3.5. For n>3, y, (C,)=1.
Proof: Let V(C,)={vy,%,..,v, .} and E(C,)={vyv,|j=i+1(modn), 0<i<n-1}.

Itis clearthat » (C,)>1. Hence, the proof follows by letting § ={v,}. ]

Theorem 3.6. If T is a spider, then y (T)=1.

Proof: Since T is a spider, 7' has at most one vertex v with deg(v)>3. If T
has no vertex v with deg(v)>3, then T is a path. By Theorem 3.4, we have the
proof. If T has exactly one vertex v with deg(v) >3, then the proof follows by

letting S ={v}. [ |

Theorem 3.7. For n>3y y,,(K,)=n-2.

Proof: Suppose the ‘size of -a 'y (K,)-set *is less than n-2. Then
G\y,(K,)-set contains'a K, which has acycle. This is a contradiction. Hence
the number y (K,) is at least n=2.-0On the other hand, it is clear that

7,,(K,)<n—2. Hence, we have the proof. [ ]

Theorem 3.8. y (K, ,)=n~1 where2<n<m.

n,m

Proof: Let V(K

n,m

)y=VvuV, and E(K,,k)={xy,|0<i<n-10<;<m-1},
where ¥V, ={xy,x;,....x,,} and V, ={yy,»,....»,..}- Since two vertices of /; and

n,m

two vertices of ¥, will induce a cycle, y (K, ,)>min{m—2, n—2}=n-2. Hence,

the proof follows by letting S =7, \{x,}. ]

Theorem 3.9. y (K, xK,)=(n —1)?, where n > 2.
PrOOf Let V(Kn X Kn) :{vi,j | 0 < i’ .] < n _1} and E(Kn X Kn) :{vi,jvk,l | l = k or
Jj=1,0<i,j, k, I<n-1}. First, we prove the lower bound of y (K, xK,). Since

7,(K,)=n-2, y,(K,xK,) <n(n—2). In addition, we know that there are exactly
13



two vertices in each row and each column which has no PMUs. W.L.O.G., let
S={v,;|j=i, i+l .., m+i-3(mod m), 0<i<n-1} with |S|=n(n-2). Then

K,xK,\S hasacycle, S isnotanSPDS. y, (K,xK,)<n(n-2)+1. Hence, the
proof follows by letting S'={v, . |j=i, i+l .., m+i-3(mod m), 0<i<n-1}u

{Vn—Z,n—l} Wlth | S | = n(n - 2) +1 [ |

Theorem 3.10. y, (K, xK,)=n(m—2), where 2<n<m.

Proof: Let V(K,xK,)={v,;|0<i<n-1 0<j<m-1}and E(K,xK,)=4{v, v, |
i=korj=1,0<i, k<n-land 0<j, [ <m-1}. First, we find the lower bound of
7,(K,xK,). Since y (K,)=m=2 y (K /XK )<n(m-2). Hence, the proof
follows by letting S={v |j=i, i+l .., m+i=3(mod m), 0<i<n-1} with

| S| =n(m-2). [ |

Theorem 3.11. y (K, x B,)=m(n—2), where nym=3.

Proof: Let V(K,xPB,)={v,;|0<i<n-1, 0<j<m-1} and E(K,xB,)={v, v ;|
0<i, k<n-land 0L j<m -0 Ay, v, |[0<i<n-land 0<k <n-2}. First, we
find the lower bound of .y (K, xP,). Since y (K )=n-2, y, (K ,xPB,)<
n(m—2). Hence, the proof (follows. by letting S'={v, |i=/, j+1 .., n+ ;-3

(mod n), 0< j<m-1} with |S|=m(n-2). [ |

Theorem 3.12. y (K, xC,)=m(n—-2), where 4<n<m.
Proof: Let V(K,xC,)={v,;|0<i<n-1 0<;j<m-1} and E(K,xC,)={v, v ;|

0<i, k<n-land 0< j<m-Lpu{v,,v, |I=k+1(modn), 0<i<n-land 0<k<m
—1}. First, we prove the lower bound of y (K,xC,). Since y (K, )=n-2,

7, (K, xC,) < m(n—2). Now, we give an upper bound of y, (K, xC,).
Case (a). m=0 (mod n)

Let S={v,;li=j,j+L .., n+j-3(mod n), 0<j<m-2}{y,,,|1<i<n-2}.

14



Case (b). m=1, 2 (mod n)

Let S={v,;|li=j,j+L .., n+j-3(mod n), 0<j<m-2}{y,, ,|2<i<n-1}.
Case (c). m#0, 1, 2 (mod n)

Let S={v,;li=j,j+L .., n+j-3(mod n), 0<j<m-1}. Then K xC,\S has
no cycles. Thus, y, (K,xP,) is at most m(n—-2). Consequently, y, (K,xC,)=

m(n—2), where 4<n<m. ]

Theorem 3.13. y, (K, xC,)=m(n—-2), where 3<m<n.

Proof: Let V(K,xC,)={v,;|0<i<n-1 0<j<m-1} and E(K,xC,)={v, v ;|
0<i, k<n-land 0< j<m—BpU{v v, [I=k+1(modn), 0<i<n-land 0<k<m
—1}. First, we find the lower beund-of 'y, (K, xC,). Since y,(K,)=n-2, y,(K,

xC,)<m(n—-2). Hence;theproof follows by letting S ={v,,|i=j, j+1 ...n+j

—3(modn), 0< j<m—1} with S| =m(n—-2). |

Now, we use the relation between SPDS and F\S to improve the result of FVS
on P xP.

m

Lemma 3.14. Let G be a connected graph with 6(G)>2 and e=xy be an

arbitrary edge of G . Let 6=G—e+xz+zy where z¢V(G). Then T(G):r((N;).
Proof: Let S be a feedback vertex set of G with [S|=7(G). Then G\S is a

forest. So, it follows that G\S isalsoa forest, i.e., S is also a feedback vertex set

of G. Hence, 7(G)=>7(G). On the other direction, let S be a feedback vertex set
of G with W:r(é). First, if ScV(G), then G\S is a forest and thus S is

also a feedback vertex set of G. This implies that 7(G) S‘S":r(é). On the other

hand, zeS. Now, let S =S—z+x. Clearly, S is also a feedback vertex set of
15



G of size ‘3‘ Since S is a feedback vertex set of G, the proof follows by above

argument. Therefore, 7(G) = 7(G). ]

Let n>2. P, xP, is the graph with vertex set V (P, xP,)defined as {v,:0

<i,j<n-1} andedgeset E(P,xP) definedas {(v,

e vi+1lj):0£iﬁn—2, 0<;<

n=10{(v, v, ;4):0<i<n-1 0<j<n-2}
Lemma3.15. y (FxP)=1 y (BxP)=2, y,(P,xP)=4

Proof: (i) Since P, x P, = Cy "y, (BxB)=p,(C;) =1,
(i) Since VvelV(PxP), BxP\{v} always has a cycle, and thus

Vo (BxB)z2. Let-S={v,,,}. Then PBxF\S has no cycles, S is
an SPDS. Hence, y, (B xFB) =2.

(iii) Let V(P xP) =S, wS, 98,08,
S; ={o0r VourVior Yt S =g 20 Vo3 Vg Vighd S5 ={v,0, Vo1r Vaor Vaih
Sy ={Vs2+ Va3, V35, V3ak. Then.each™ S, induces a subgraph of G which
has a cycle. Hence, y, (BxB)>4. Let S={v, v3, V4, V,,}- Then

P, xP,\S hasnocycles, S isanSPDS. Hence, y,  (F,xF)=4. [ |

Lemma3.16. For k, r=1, y (P xB,. ) <kr+y (F.,xP.,).

k+1 r

Proof: Let X, ,={v, i jareodd, 1<i<2k, 1< j<2r}. We have the result

Vop (Pos X Byt \ X1 2040) = 7, (Fy ¥ F,1) by using Theorem 3.3 and Lemma 3.14.

Hence, we have the proof. ]
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Lemma3.17. For k, r21, y (P, xPB,.,) < (k+)(r+1)+y, (B xF).
Proof: Let X,.5010 = 4yrin o2 Y Borinorio Y Copinoir Where

Aypiogrio =1V, 11, jareodd and 1<i <2k -1, 1< j<2r -1},

Boiigoria ={vio, i iseven, 2<i<2k}u{v, . :jiseven,2< j<2r}and

Cori22042 :{Vo,zk ' Vzr,o}'

We have the result y,,(F,,, X B0\ Xopi22,42) = 7, (£, x F,) by using Theorem 3.3

and Lemma 3.14. Hence, we have the proof. ]

2
Theorem 3.18. For n22, . (P,x P)=F,or-F; 41, where Fﬁ[(n 1) +11_

3

Proof: By induction'on n. Let-a- be an upper bound of z(P xP ). By Lemma
2.2.3 and Theorem:3.3. We know that

()n=6k+4, k>0, a, =F; (i)yn=6k+1, k=1, a =F;
(ilyn=6k, k22,va,=F +1;, (V)n=06k+3, k21, a =F +1;

(Vn=6k+2, k>2, a =F +1i (iV)n=6k+5 k=1, ‘a,=F +2.

Now it suffices to prove that' a, = F,+¢, t=0o0r1 when »n=5 (mod6).

By Lemma 3.15, Lemma 3.16 and Lemma 3.17 with direct checking, we have
a,=1=F,, a,=2=F,, a;=6=F,, a,=10=F,+1, a,=18=F,+1. Hence, the
basic cases hold.

By Lemma 3.16.

12
Ugiys < (3k+ 2)2 +a3k+3 = (3k + 2)2 +|7M—I +1

3
2 2 2 2
_ 3Bk+2) +(Bk+2)" +1 1 4(3k+2)° +1 1o (6k+4)"+1 1
3 3 3
This concludes the proof by induction process. [ ]
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Theorem 3.18. If n,m=5 (mod6) then for all n,m>11,

7,(P,xP)=F, OrF, +1 where F,, :[(”—1)(1734—1”11_

Proof: By Lemma 2.2.3, Theorem 3.3 and Lemma 3.16. Let a,,, be an upper bound

of y,(B,xF,). Then

gy 56045 < (Bk+3)(3r +3) +ay.55..5
(3k +3-1)(3r +3-1) +1w+t
3
_ [3(3k +2)Br+2)+(Bk+2)(3r+2) +1—‘ »

= (3k+3)(3r+3)+[

3

|1 4@Bk+2)3Br+2)+1 i ((6k+4)(6r+4)+1 oy
3 3
=Fg 565 +F1, Wherer=0o0rl.

Now, we consider the product of cycles.

Theorem 3.19. For k22, yp(Cy,xCo) S(k+1)° +7,,(Cyx Cpy).
Proof: Let X, ,={v,, %, jareodd, 1<i j<2k+1} < We have the result

Yoo (Copia X Copp \ Xy 5) = 7, (€l XCpip) by using Theorem 3.3 and Lemma 3.14.

Hence, we have the proof. u

Theorem 3.20. For k23, y,,(CyyxCyy) < (k+1)+y,, (B xP).
Proof: Let X, ,=4,,YB, . I{vy,t, where 4,  ={v i, jareevenand0
<i, j<2k-1 and B, ={v,, riisodd, 1<i<2k-2}{v,  :jisodd, 1< <2k

—2}. We have the result y, (Cy,,xCyy\ Xy0) =7, (B xF) by using Theorem

3.3 and Lemma 3.14. Hence, we have the proof. ]

18



4. Concluding Remark

In this thesis, we first introduce a new notion called semi-power dominating set
to relax the well-known power dominating set as a graph model in applications. This
new SPDS turns out to be exactly the same as the feedback vertex set of a connected

graph G with o6(G)>2. Therefore, if the graphs G fit the above conditions

which we can find y,,(G), then we also determine z(G). Indeed, we have done just

that by considering the product of two paths.and we are very close to determine

7, (P, x B,). Hopefully, this can be done in the near future.
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