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摘  要 

 
環狀網路是最簡單的網路架構，然而，環狀網路的可靠度低、傳輸延遲高，因此，

以環狀網路為基礎的混合式環狀網路相繼被提出，以提高其可靠度與降低傳輸延

遲。Arden 和 Lee [1]在 1981 年提出了以環狀網路延伸而成的弦環式網路。弦環

式網路是在環狀網路的結構中增加弦，使得其可靠度提高、直徑降低。更具體的

來說，一個弦環式網路 ( , )CR N w 具有 N 個點( N 為偶數，點的編號為0 至 1N − )
與 23N 條邊，邊的連線方式為： 

i連至 Ni mod)1( + ， 0,1, , 1i N∀ = −… ，及 
i連至 Nwi mod)( + ， 1,3, , 1i N∀ = −… ， 

其中w為不大於 2N 的奇數。弦環式網路為 3-正則圖，它與環狀網路一樣具有漢

彌爾頓圈，而且比環狀網路擁有更好的直徑。在 1987 年，Lee 和 Tanoto [14 , 15]
提出了邊刪除直徑不變圖的概念。令 )(GD 為圖 G 的直徑。一個圖 G 為

diameter-edge-invariant 若它滿足 )()( GDeGD =− ， )(GEe∈∀ 。本篇論文之目的

在於研究弦環式網路 ( , )CR N w 的邊刪除直徑不變性質，特別是在 {3,5,7,9}w∈
時，我們判斷出所有的 ( , )CR N w 是否為邊刪除直徑不變圖。 
 
 
關鍵詞：環狀網路、弦環式網路、連接網路、直徑、邊刪除、正則圖。 
 
 
 
 

中 華 民 國 九 十 八 年 一 月 



The Diameter-edge-invariant Property

of Chordal Ring Networks

Student: Hsin-Chang Huang Advisor: Chiuyuan Chen

Department of Applied Mathematics

National Chiao Tung University

Hsinchu, Taiwan 30050

Abstract

One of the simplest topologies for interconnection networks is the ring network.
However, the ring network has poor reliability (any failure in a node or link destroys
the function of the network) and it has high transmission delay (large diameter). As
a result, hybrid topologies utilizing the ring network as a basis for synthesizing richer
interconnection schemes have been proposed to improve the reliability and reduce
the transmission delay. The chordal ring network, proposed by Arden and Lee [1] in
1981, is a commonly used extension for the ring network. The chordal ring network
is considered to be obtained by adding chords to a cycle (a ring network) so that
the diameter can be reduced and the reliability can be increased. More specifically,
a chordal ring network CR(N,w), where N is a positive even integer and w is a
positive odd integer such that w ≤ N/2, is a graph with N nodes 0, 1, . . . ,N − 1
and 3N/2 links of the form:

(i, (i + 1) mod N), i = 0, 1, 2, . . . ,N − 1,

(i, (i + w) mod N), i = 1, 3, 5, . . . ,N − 1.

The chordal ring network is 3-regular, preserves the Hamiltonian cycle from the ring
network, and has a better diameter than the ring network. In 1987, Lee and Tanoto
[14, 15] proposed diameter-edge-invariant graphs. Let D(G) denote the diameter of
a graph G. G is diameter-edge-invariant (dei) if D(G− e) = D(G) for all e ∈ E(G).
The purpose of this thesis is to study the dei property of chordal ring networks. In
particular, we determine if CR(N,w) is dei for all w ∈ {3, 5, 7, 9}.

Keywords: ring network, chordal ring network, interconnection network, di-

ameter, edge deletion, regular graph.
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1 Introduction

Our graph terminology and notation are standard; see [3] and [21] except as indicated.

In this thesis, a graph is always undirected, without multiple edges and loops. For con-

venience, vertices of a graph are also called nodes. Let G be a graph with vertex set

V (G) and edge set E(G). The distance dG(u, v) between two nodes u, v ∈ V (G) is the

length of a shortest path joining u, v. The eccentricity e(v) of a vertex v ∈ V (G) is the

distance between v and a farthest node from v. The diameter D(G) and the radius r(G)

of G are the maximum and the minimum eccentricities of all nodes of G, respectively. Let

e ∈ E(G) and v ∈ V (G). G − e, G + e and G − v denote the graph obtained by deleting

e, adding e, and deleting v, respectively.

Ore [17] first considered graphs G with the property D(G) > D(G+e) for all e 6∈ E(G).

Almost at the same time, Glivjak [6] initiated the study of graphs G with the property

D(G − e) > D(G) for all e ∈ E(G). G is called diameter-minimal if D(G − e) > D(G)

for all e ∈ E(G). A lot of researches have been done on the above two concepts; see

[7, 8, 9, 10, 18]. In particular, Glivjak showed that every graph can be embedded as

an induced subgraph in a diameter-minimal graph with diameter 2 [6]; thus finding a

forbidden subgraph characterization for diameter-minimal graphs becomes impossible.

A network can be modeled by a graph. The diameter of a network represents the

maximum transmission delay between two nodes. In general, the failure of a link will

increase the diameter of the network. It is therefore an interesting problem to design a

network such that the diameter is invariant under any link failure. Based on this idea,

in [14], Lee proposed the the definition: A graph G is diameter-edge-invariant (dei) if

D(G − e) = D(G) for all e ∈ E(G). For convenience, in this thesis, if G is not dei, then

we simply write G is non-dei.

It is clear that there is no dei graphs with diameter 1. It is also clear that if a graph

is dei, then it is 2-edge-connected. However, there exists 2-edge-connected graphs that

are non-dei; K2 × C3 is an example. In [14], Lee proposed some constructions for dei

graphs: the Zykov sum construction, the Sabidussi sum construction, the Cartesian prod-
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uct method and the edge expansion construction. Lee also proved that every connected

graph is an induced subgraph of a dei graph with diameter ≥ 2. Thus finding a forbidden

subgraph characterization for dei graphs becomes impossible. In [15], Lee and Tanoto

constructed three classes of planar dei networks: the young tableau graphs, the young

tableau graphs with diagonal crossing and the reverse young tableau graph with diagonal

crossing. Recently, in [20], Walikar et al. proved that for any two nonnegative integers

n and q, where 0 ≤ n ≤ q, there exists a connected graph G having q edges, precisely

n of which are diameter-increasing except for some n, q. They proved that every graph

can be embedded as an induced subgraph in a diameter-edge-invariant graph. They also

provided a characterization for dei graphs that has diameter 2 and a characterization for

dei graphs that has radius 1.

The following variations of dei graphs have been discussed in the literatures: critical

dei graphs, cocritical dei graphs, radius-edge-invariant graphs, diameter-vertex-invariant

graphs and diameter-adding-invariant graphs. More precisely, a graph G is critical dei

(resp. cocritical dei) if G is dei and G − v is non-dei (resp. still dei) for all v ∈ V (G);

see [16]. A graph G is radius-edge-invariant if r(G − e) = r(G) for all e ∈ E(G); see

[5, 20]. A graph G is diameter-vertex-invariant if D(G− v) = D(G) for all v ∈ V (G) and

diameter-adding-invariant if D(G + e) = D(e) for all edges e of the complement of G; see

[19].

The ring network is one of the simplest topologies for interconnection networks. It

has many attractive properties such as simplicity, extendibility, low degree, and ease

of implementation. It has drawbacks as well: it has poor reliability (any failure in an

interface or communication link destroys the function of the network) and it has high

transmission delay. As a result, a lot of hybrid topologies utilizing the ring network as a

basis for synthesizing richer interconnection schemes have been proposed to improve the

reliability and reduce the transmission delay [1, 2, 4, 11, 12, 22]. One example of the

commonly used extensions for the ring network is the multi-loop network, which was first

proposed by Wong and Coppersmith in [22] for organizing multi-module memory services.
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Another example of the commonly used extensions for the ring network is the chordal ring

network and is formally defined below.

The chordal ring network was first proposed by Arden and Lee [1]. It is considered

to be obtained by adding chords to a cycle (a ring network) so that the diameter can be

decreased and the reliability can be increased. More specifically, a chordal ring network

CR(N, w), where N is a positive even integer and w is a positive odd integer such that

w ≤ N/2, is a graph with N nodes 0, 1, . . . , N − 1 and 3N/2 links of the form:

(i, (i + 1) mod N), i = 0, 1, 2, . . . , N − 1,

(i, (i + w) mod N), i = 1, 3, 5, . . . , N − 1.

See Fig. 1 for an example. The chordal ring network is 3-regular. It preserves the Hamil-

tonian cycle from the ring network and has a better diameter than the ring network.
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Figure 1: CR(26, 11): the chordal ring with N = 26 and w = 11. The number inside
parentheses is the distance to node 0.

A network is usually been evaluated by its maximum transmission delay (diameter)

and by it fault-tolerant capability. Therefore a network with the dei property is preferred

than those without the property. The purpose of this thesis is to study the dei property

of chordal ring networks CR(N, w). So far as we know, nobody has ever studied the dei

property for this kind of networks. In particular, we will determine if CR(N, w) is dei for

all w ∈ {3, 5, 7, 9}. In [1], Arden and Lee proposed a formula for computing the diameter

of CR(N, w). Unfortunately, their formula is not always correct. In this thesis, we will
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prove that for each N ≥ 26, there exists a w such that Arden and Lee’s formula is not

correct. We will also fix the formula for two of the faulty cases.

This thesis is organized as follows. Section 2 gives some preliminaries. Section 3 gives

counterexamples for Arden and Lee’s diameter formulas. Section 4 contains our dei results

for chordal ring networks. The concluding remarks are given in the last section.

2 Preliminaries

Throughout this thesis, nodes in a graph are assumed taken modulo N . As an example,

u + v is the node (u + v) mod N and u− v is the node (u− v) mod N . An edge between

nodes u and v is denoted by (u, v). The following definitions will be used throughout this

thesis. For each odd-numbered node i, we call a chordal traversal from node i to node

i + w a clockwise chordal traversal. Similarly, for each even-numbered node j, we call a

chordal traversal from node j to node j −w a counterclockwise chordal traversal. A path

from node u to node v is called a clockwise path if it consists of clockwise chordal traversals

(possibly zero) plus appropriate ring-edge traversals. Similarly, a path from node u to

node v is called a counterclockwise path if it consists of counterclockwise chordal traversals

(possibly zero) plus appropriate ring-edge traversals. Let distG,R(u, v) (resp. distG,L(u, v))

denote the length of a shortest clockwise (resp. counterclockwise) path from u to v in G.

In [1], Arden and Lee had proven that

dG(u, v) = min{distG,R(u, v), distG,L(u, v)}.

Take CR(26, 11) in Fig. 1 as an example. Then distG,R(0, 11) = 3 and two clockwise

paths with such a distance are 0 → 1 → 12 → 11 and 0 → 25 → 10 → 11. Also,

distG,L(0, 11) = 5; three counterclockwise paths with such a distance is 0 → 15 → 14 →

13 → 12 → 11, 0 → 25 → 24 → 23 → 22 → 11, and 0 → 25 → 24 → 13 → 12 → 11.

Form the above, dG(0, 5) = 3.

It is obvious that in a chordal ring network, all even-numbered nodes are symmetric;

also, all odd-numbered nodes are symmetric. If we flip a chordal ring network vertically,

4



then it is not difficult to see that node 1 is symmetric to node 0, node 2 is symmetric to

node N − 1, node 3 is symmetric to node N − 2, and so on. Thus a chordal ring network

is vertex-transitive and consequently,

D(G) = max{dG(0, v)}.

By using the vertex-transitive property, we obtain the following identities, which will be

used in the remaining proof.

• distG,R(u, v) = distG,L(v, u).

• For u even, dG(u, v) = dG(0, v − u).

• For u even, distG,R(u, v) = distG,R(0, v − u) and distG,L(u, v) = distG,L(0, v − u).

• For u odd, dG(u, v) = dG(0, u − v).

• For u odd, distG,R(u, v) = distG,L(0, u − v) and distG,L(u, v) = distG,R(0, u − v)

In [1], Arden and Lee provided the following formula for computing distG,R(0, v).

Theorem 1. [1] Suppose G = CR(N, w) and v is a node in G. Let g = ⌈ v
w+1

⌉, △v =

v mod (w + 1), and define ϕ(v) = 0 if v is even and ϕ(v) = 1 if v is odd. Then

(i) When g ≥ w−1
2

, distG,R(0, v) =

{

2g − 1 if △v = 1,

2g + ϕ(v) if △v = 0 or 2 ≤ △v ≤ w.

(ii) When g < w−1
2

, distG,R(0, v) =















2(g−1)+△v if 1 ≤ △v ≤ w+1
2

− g,

w + 1 −△v if w+3
2

− g ≤ △v ≤ w − 2g,

2g + ϕ(v) if △v = 0 or w−2g+1 ≤ △v ≤ w.

Arden and Lee did not provide an explicit formula for computing distG,L(0, v) and the

readers are asked to refer to the dissertation in [13]. For completeness of this thesis, we

now provide such a formula.

Theorem 2. Suppose G = CR(N, w) and v is a node in G. Then

(i) When N − w + w−1
2

+ 1 ≤ v ≤ N − 1, distG,L(0, v) = N − v.

5



(ii) When N − w ≤ v ≤ N − w + w−1
2

, distG,L(0, v) = 1 + v − (N − w).

(iii) When v < N − w, distG,L(0, v) = min{v, 1 + distG,R(0, N − w − v)}.

Proof. To calculate distG,L(0, v), we divide the nodes in CR(N, w) into several counter-

clockwise intervals each of size w +1 (except possibly the last interval). The first interval

contains node 0, N−1, N−2, . . . , N−w. Obviously, the length of a shortest counterclock-

wise path from node 0 to node N −w is 1. The length of a shortest counterclockwise path

from node 0 to any node v ∈ {N−1, N−2, . . . , N−w+w−1
2

+1} is N−v and one such path is

0 → N −1 → N −2 · · · → v. On the other hand, the length of a shortest counterclockwise

path from node 0 to any node v ∈ {N−w+w−1
2

, N−w+w−1
2
−1, . . . , N−w} is 1+v−(N−w)

and one such path is via the chord (0, N − w) and then follows the ring-edges, that is,

0 → N − w → N − w + 1 · · · → N − w + 2 → v. Since a chordal ring network is vertex-

transitive, by Theorem 1 and by the observation that distG,L(u, v) = distG,R(0, u− v) if u

is odd, we have distG,L(N −w, v) = distG,R(0, N −w − v). When v < N −w, node 0 can

get to node v by using only ring-edges or by using the chord (0, N − w) and appropriate

ring-edges; therefore distG,L(0, v) = min{v, 1 + distG,R(0, N − w − v)}.

In [1], Arden and Lee also provided a formula for computing the diameter of a chordal

ring network; see the following theorem. For convenience, call this theorem the Diameter

Theorem.

Theorem 3. [1] (The Diameter Theorem)

Suppose G = CR(N, w), i = ⌈ N
2(w+1)

⌉, and △ = N
2

mod (w + 1). Then

Case 1. When i ≥ w−1
2

, D(G) =















2i − 1 if △ = 1,

2i if 2 ≤ △ ≤ w+3
2

,

2i + 1 if △ = 0 or w+3
2

≤ △ ≤ w.

Case 2. When i = w−3
2

, D(G) =

{

w − 3 if 1 ≤ △ ≤ 2,

w − 2 if △ = 0 or 3 ≤ △ ≤ w.

Case 3. When i ≤ w−5
2

, D(G) =

{

i+ w−3
2

if 1≤△≤ w+1
2

−i or w+5
2

−i ≤△≤w − i,

i+ w−1
2

if △=0 or △= w+3
2

−i or w−i+1≤△≤w.

6



Before closing this section, we have to mention that Theorems 1 and 2 hold when

2w ≤ N ≤ 2w + 2 and when N ≥ (w−1
4

)(w + 1)− 2; for 2w + 4 ≤ N ≤ (w−1
4

)(w + 1) − 4,

these two theorems may not hold. The incorrectness of the Diameter Theorem might

come from the use of Theorem 1 for N such that 2w + 4 ≤ N ≤ (w−1
4

)(w + 1) − 4.

3 Counterexamples for Theorem 3

Let Ni denote the set of nodes in a chordal ring network whose distance to node 0

is i. We now give a counterexample for the Diameter Theorem. Consider CR(26, 11)

shown in Fig. 1. It is not difficult to see that CR(26, 11) has N0 = {0}, N1 = {1, 15, 25},

N2 = {2, 10, 12, 14, 16, 24}, N3 = {3, 5, 9, 11, 13, 17, 23}, N4 = {4, 6, 8, 18, 20, 22}, and

N5 = {7, 19, 21}. Since
⋃5

i=1 Ni = {0, 1, . . . , 25}, D(CR(26, 11)) = 5. However, the

Diameter Theorem obtains D(CR(26, 11)) = 6.

We have run computer programs to obtain the diameters of chordal ring networks

CR(N, w) for N = 6, 8, . . . , 5000, and for each N , we test all possible chord lengths w.

Our experimental results show that the Diameter Theorem is correct if w ∈ {3, 5, 7, 9},

the first fault occurs at CR(26, 11), and for each N ≥ 26 (and N even), there exists a

chord length w such that the Diameter Theorem is wrong for CR(N, w). For example,

the Diameter Theorem is wrong for CR(28, 11), CR(30, 13), CR(32, 13), CR(34, 15), and

so on. Moreover, our experimental shows that Cases 1 and 2 of the Diameter Theorem

are correct and faults occur in Case 3.

Recall that the Diameter Theorem is correct if w ∈ {3, 5, 7, 9} and the first fault of the

Diameter Theorem occurs at CR(26, 11). The chordal ring network CR(26, 11) satisfies

N = 2w + 4. While we are unable to fix all the faults in the Diameter Theorem, we do

fix this theorem for the N = 2w + 4 and N = 2w + 6 cases. See the following for details.

For G = CR(2w + 4, w), the Diameter Theorem obtains D(G) = w+1
2

. However, in

Theorem 4, we show that this result is incorrect. For G = CR(2w + 6, w), the Diameter

Theorem obtains D(G) = w+1
2

. In Theorem 5, we show that this result is also incorrect.

Do notice that Theorems 4 and 5 together show that for all N ≥ 26, there exists a w such
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that the Diameter Theorem is incorrect.

Theorem 4. Suppose N = 2w + 4 and w ≥ 11. Write w in the form w = 12t + p, where

t is a positive integer and p is an odd integer such that −1 ≤ p ≤ 9. Then

D(CR(N, w)) =

{

w+3
2

− 2t if −1 ≤ p ≤ 3
w+1

2
− 2t if 5 ≤ p ≤ 9.

Proof. Let G = CR(N, w). Then N0 = {0}, N1 = {1, w + 4, 2w + 3}, N2 = {2, w −

1, w + 1, w + 3, w + 5, 2w + 2}, and N3 = {3, 5, w− 2, w, w + 2, w + 6, 2w + 1}. Each node

in N3 (except w + 2) has at least one neighbor v such that node 0 can not reach node v

in three edges. In particular, node 0 can reach node 4 via node 3, reach node 6 via node

5, reach node w − 3 via node w − 2, reach node w + 7 via node w + 6, and reach node

2w via node w or 2w + 1. Thus N4 = {4, 6, w − 3, w + 7, 2w − 2, 2w}. In general, we can

obtain Ni for i ≥ 4 + 4j as follows. Let j ≥ 0. Then

N4+4j = {4 + 6j, 6 + 6j, w − 3 − 6j, w + 7 + 6j, 2w − 2 − 6j, 2w − 6j},

N5+4j = {7 + 6j, w − 4 − 6j, w + 8 + 6j, w + 10 + 6j, 2w − 1 − 6j, 2w − 3 − 6j},

N6+4j = {8 + 6j, w − 7 − 6j, w − 5 − 6j, w + 9 + 6j, w + 11 + 6j, 2w − 4 − 6j}, and

N7+4j = {9 + 6j, 11 + 6j, w − 8 − 6j, w − 6 − 6j, w + 12 + 6j, 2w − 5 − 6j}.

We now calculate D(G) according to the value of p.

(i) Suppose p = −1. Then w = 12t − 1. Let j = w−11
12

. Then

N4+4j = {w−3
2

, w+1
2

, w+5
2

, 3w+3
2

, 3w+7
2

, 3w+11
2

} and N5+4j = {w+3
2

, 3w+5
2

, 3w+9
2

}.

Since N6+4j = {w−3
2

, w+1
2

, w+5
2

, 3w+7
2

, 3w+3
2

}, clearly N6+4j ⊆ N4+4j and therefore D(G) ≤

5 + 4j. Since {w+3
2

, 3w+5
2

, 3w+9
2

} 6⊆
⋃4+4j

i=1 Ni, Thus D(G) = 5 + 4j = w+3
2

− 2t.

(ii) Suppose p = 1. Then w = 12t + 1. Let j = w−13
12

. Then

N4+4j = {w−1
2

, w−5
2

, w+7
2

, 3w+1
2

, 3w+9
2

, 3w+13
2

} , N5+4j = {w+1
2

, w+5
2

, 3w+3
2

, 3w+7
2

, 3w+11
2

} ,

N6+4j = {w−1
2

, w+3
2

, 3w+1
2

, 3w+5
2

, 3w+9
2

} and N7+4j = {w−3
2

, w+1
2

, w+5
2

, w+9
2

, 3w+3
2

, 3w+11
2

}.
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Note that {w−3
2

, w+9
2
} ⊆ N7+4j and {w−3

2
, w+9

2
} 6⊆ N5+4j . Since {w−3

2
, w+9

2
} ⊆ N3+4j ,

dG(0, w−3
2

) = dG(0, w+9
2

) = 3 + 4j, therefore D(G) ≤ 6 + 4j. Since {w+3
2

, 3w+5
2

} ⊆ N6+4j

and {w+3
2

, 3w+5
2

} 6⊆
⋃5+4j

i=1 Ni, Thus D(G) = 6 + 4j = w+3
2

− 2t.

(iii) Suppose p = 3. Then w = 12t + 3. Let j = w−15
12

. Then

N5+4j = {w−1
2

, w+7
2

, 3w+1
2

, 3w+5
2

, 3w+9
2

, 3w+13
2

} , N6+4j = {w+1
2

, w+5
2

, 3w+3
2

, 3w+7
2

} ,

N7+4j = {w−1
2

, w+3
2

, w+7
2

, 3w+5
2

, 3w+9
2

} and N8+4j = {w−3
2

, w+5
2

, w+9
2

, 3w−1
2

, 3w+11
2

, 3w+3
2

}.

Note that {w−3
2

, w+9
2

, 3w−1
2

, 3w+11
2

} ⊆ N8+4j and {w−3
2

, w+9
2

, 3w−1
2

, 3w+11
2

} 6⊆ N6+4j . Since

{w+9
2

, w−3
2

, 3w+11
2

} ⊆ N4+4j , dG(0, w+9
2

) = dG(0, w−3
2

) = dG(0, 3w+11
2

) = dG(0, 3w−1
2

) =

4 + 4j, therefore D(G) ≤ 7 + 4j. Sincew+3
2

∈ N7+4j and w+3
2

6∈
⋃6+4j

i=1 Ni, Thus D(G) =

7 + 4j = w+3
2

− 2t.

(iv) Suppose p = 5. Then w = 12t + 5. Let j = w−17
12

. The proof is similar to case (i).

The farthest nodes from node 0 is in N7+4j and D(G) = w+4
3

= w+1
2

− 2t.

(v) Suppose p = 7. Then w = 12t + 7. Let j = w−19
12

. The proof is similar to case (ii).

The farthest nodes from node 0 is in N4+4j and D(G) = w+5
3

= w+1
2

− 2t.

(vi) Suppose p = 9. Then w = 12t + 9. Let j = w−21
12

. The proof is similar to case

(iii). The farthest nodes from node 0 is in N5+4j and D(G) = w+6
3

= w+1
2

− 2t.

Theorem 5. Suppose N = 2w + 6 and w ≥ 11. Write w in the form w = 8t + p, where

t is a positive integer and p is an odd integer such that −1 ≤ p ≤ 5. Then

D(CR(N, w)) =

{

2t + 2 = w+9
4

if p = −1

2t + 3 = w−p+12
4

if 1 ≤ p ≤ 5.

Proof. Similar to that of Theorem 4.

4 The dei property of chordal ring networks

In this section, we will discuss the dei property of chordal ring networks. Notice that

N satisfies Case 1 of Theorem 3 if N ≥ (w − 3)(w + 1) + 2, Case 2 of Theorem 3 if

(w − 5)(w + 1) + 2 ≤ N ≤ (w − 3)(w + 1), and Case 3 of Theorem 3 if 2w ≤ N ≤
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(w − 5)(w + 1). The discussions in this section are grouped according to the value of the

chord length w and the above ranges of N .

The following lemma provides a sufficient condition for a chordal ring network to be

dei. For convenience, call this lemma the DEI Lemma.

Lemma 6. (The DEI Lemma) Let G = CR(N, w). If for all v ∈ V (G), there are

always two edge-disjoint paths P1, P2 between node 0 and node v such that |Pi| ≤ D(G)

for i = 1, 2, then G is dei.

Proof. Since CR(N, w) is vertex-transitive and there are always two edge-disjoint paths

P1, P2 between node 0 and node v such that |Pi| ≤ D(G) for i = 1, 2, deleting any edge

will not raise the diameter. Hence we have this lemma.

Let e be an edge of G = CR(N, w) and H = G − e. To prove that G is non-dei, it

suffices to prove that

D(G − e) ≥ dH(0, x) > D(G). (1)

This inequality is used heavily in the remaining proofs.

Before going further, we introduce the triangular grid representation for a chordal ring

network CR(N, w). See Fig. 2 for an illustration. Consider the triangular grid on the

plane. We associate CR(N, w) a labeling on the cells of the triangular grid as follows

(all the labels are assumed taken modulo N). Label 0 to an arbitrary downward triangle.

Once a downward triangle is labeled i, label its three neighboring triangles by i+1, i−1,

and i − w in such a way that the triangle to the right of it receives i + 1, to the left of it

receives i − 1, and above it receives i − w. Once a upward triangle is labeled j, label its

three neighboring triangles by j + 1, j − 1, and j + w in such a way that the triangle to

the right of it receives j + 1, to the left of it receives j − 1, and below it receives j + w.

Note that in this thesis, only nodes within distance D(CR(N, w)) will be shown in the

triangular grid representation.

For clarity, the remaining part of this section is divided into subsections.

Subsection 4.1 considers CR(N, w) with w = 3.
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Figure 2: CR(22, 9) and its associated triangular grid representation.

Subsection 4.2 considers CR(N, w) with (N = 2w or 2w + 2) and w ≥ 5.

Subsection 4.3 considers CR(N, w) with 2w + 4 ≤ N ≤ (w − 5)(w + 1) and w = 9.

Subsection 4.4 considers CR(N, w) with (w − 5)(w + 1) + 2 ≤ N ≤ (w − 3)(w + 1).

Subsection 4.5 considers CR(N, w) with N ≥ (w − 3)(w + 1) + 2.

4.1 CR(N, w) with w = 3

For chordal ring networks with w = 3, we have the following result.

Theorem 7. CR(N, 3) is non-dei if N = 4k + 6 and dei if N = 4k + 8, where k ≥ 0.

Proof. Let G = CR(N, 3). First assume that N = 4k + 6. Let e denote the edge

(0, N − 3) and let H = G− e. Consider the node x = N
2

+ 1 if k is odd and x = N
2

if k is

even. Since any shortest clockwise path from 0 to x in G does not use the edge e,

distH,R(0, x) = distG,R(0, x)
by Theorem 1

= k + 3.

Since any shortest counterclockwise path from 0 to x in H must traverse via node N − 2,

distH,L(0, x) = 2 + distH,L(N − 2, x)

= 2 + distG,L(0, x − (N − 2))
by Theorem 2

= k + 3.

Thus dH(0, x) = min{distH,R(0, x), distH,L(0, x)} = k + 3. By Theorem 3, D(G) = k + 2.

By (1), G is non-dei.

Now assume that N = 4k + 8. Then G can be drawn as two concentric circles in such

a way that half of the nodes are on the inner circle and half of them, the outer circle. (See

Fig. 3 for an example.) By Theorems 1 and 2, when k is even (resp. odd), the node that
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is farthest from node 0 is N
2
− 1 (resp. N

2
). By Theorem 3, D(G) = k + 3. We now prove

that for all v ∈ V (G), there are two edge-disjoint paths P1, P2 between 0 and v such that

|Pi| ≤ D(G) for i = 1, 2. See Fig. 3 for an illustration.

Figure 3: CR(16, 3).

Depending on which node is v, there are four possibilities. (i) If v = N
2
− 1 (resp. N

2
),

then let P1 be path that follows edge (0, N − 1) and edges on the inner circle until v is

reached; let P2 be the path that follows edges on the outer circle until N
2

(resp. N
2
− 1)

is reached, and then, follows edge (N
2
, N

2
− 1). (ii) If v = N

2
(resp. N

2
− 1), then the

outer circle provides P1, P2. (iii) If v = N − 1, then let C be the circle formed by the

four edges (0, 1), (1, 2), (2, N − 1), and (N − 1, 0); clearly, C provides P1, P2. (iv) If

v ∈ V (G) − {N
2
− 1, N

2
, N − 1}, then let u = v + 1 if v is odd and let u = v − 1 if v

is even. Let C be the circle formed by the edges (0, N − 1), (u, v), and the portions of

the inner and the outer circles between (0, N − 1) and (u, v); clearly, C provides P1, P2

(Fig. 3 shows an example of C with v = 9). It is not difficult to verify that P1, P2 are two

edge-disjoint paths between 0 and v and |Pi| ≤ D(G) for i = 1, 2. Hence G is dei.

4.2 CR(N, w) with (N = 2w or 2w + 2) and w ≥ 5

For chordal ring networks with N = 2w or 2w + 2, we have the following result.

Theorem 8. CR(N, w) is non-dei if (N = 2w or 2w + 2) and w ≥ 5.

Proof. Let G = CR(N, w). First assume that N = 2w and w ≥ 5. Set e = (0, 1) and

H = G − e for easy writing. Consider the node x = w−1
2

. Since any shortest clockwise
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path from 0 to x in H must use the edges (0, N − 1) and (N − 1, w − 1),

distH,R(0, x) = 2 + distG,R(w − 1, x) = 2 + distG,R(0, x − (w − 1))
by Theorem 1

= 2 + w−1
2

.

Since any shortest counterclockwise path from 0 to x in G does not use the edge e,

distH,L(0, x) = distG,L(0, x)
by Theorem 2

= w+3
2

.

Thus dH(0, x) = w+3
2

. By Theorem 3, D(G) = w+1
2

. By (1), G is non-dei.

Now assume that N = 2w+2 and w ≥ 5. Let e = (0, N −1) and H = G−e. Consider

the node x = w+3
2

. Since any shortest clockwise path from 0 to x in H must use the edges

(0, 1) and (1, 2) or the edges (0, 1) and (1, 1 + w),

distH,R(0, x) = 2 + min{distH,R(2, x), distH,R(1 + w, x)}

= 2 + min{distG,R(2, x), distG,R(1 + w, x)}
by Theorem2

= w+3
2

.

Since any shortest counterclockwise path from 0 to x in G must use the edge (0, N −w),

distH,L(0, x) = 1 + distH,L(N − w, x) = 1 + distG,R(0, N − w − x)
by Theorem 1

= w+3
2

.

Thus dH(0, x) = w+3
2

. By Theorem 3, D(G) = w+1
2

. By (1), G is non-dei.

4.3 CR(N, w) with 2w + 4 ≤ N ≤ (w − 5)(w + 1) and w = 9

For chordal ring networks with w = 9, we have the following result.

Theorem 9. CR(N, 9) is dei if N ∈ {22, 24, 40} and non-dei if N ∈ {26, 28, 30, 32, 34,

36, 38}.

Proof. First assume that N ∈ {22, 24, 40}. Let G = CR(22, 9). By Theorem 3,

D(G) = 5. All the nodes that can be reached from node 0 in D(G) edges are shown in

the triangular grid representation in Fig. 2. As was shown in this figure, for all v ∈ V (G),

there are always two paths P1, P2 satisfying the DEI Lemma. Hence G is dei. Similarly,

we can prove that CR(24, 9) and CR(40, 9) are dei.

Now assume N ∈ {26, 28, 30, 32, 34, 36, 38}. Let G = CR(N, 9). There are three cases.

13



Case 1: N ∈ {26, 28, 30, 32, 34}. Let e = (0, N − 1) and H = G − e. Consider the

node x = N − 4. Since any shortest clockwise path from 0 to x in H must use the edges

(0, 1) and (1, 2) or the edges (0, 1) and (1, 10),

distH,R(0, x) = 2 + min{distH,R(2, x), distH,R(10, x)}

= 2 + min{distG,R(2, x), distG,R(10, x)}
by Theorem 1

= 6.

Since any shortest counterclockwise path from 0 to x in G must use the edge (0, N − 9),

distH,L(0, x) = 1 + distH,L(N − 9, x) = 1 + distG,L(0,−5)
by Theorem 2

= 6.

Thus dH(0, x) = 6. By Theorem 3, D(G) = 5. By (1), CR(N, 9) is non-dei if N ∈

{26, 28, 30, 32, 34}.

Case 2: N = 36. Let e = (0, 1) and H = G − e. Consider the node x = 13. Since any

shortest clockwise path from 0 to x in H must use the edges (0, 35) and (35, 8),

distH,R(0, x) = 2 + distG,R(8, x) = 2 + distG,R(0, 5)
by Theorem 1

= 7.

Since any shortest shortest counterclockwise path from 0 to x in G does not use edge e,

distH,L(0, x) = distG,L(0, x)
by Theorem 2

= 7.

Thus dH(0, x) = 7. By Theorem 3, D(G) = 6. By (1), CR(36, 9) is non-dei.

Case 3: N = 38. Let e = (0, 37) and H = G − e. Consider the node x = 15. Since

any shortest clockwise path from 0 to x in H must use the edges (0, 1) and (1, 2) or the

edges (0, 1) and (1, 10),

distH,R(0, x) = 2 + min{distH,R(2, x), distH,R(10, x)}

= 2 + min{distG,R(2, x), distG,R(10, x)}
by Theorem 1

= 7.

Since any shortest counterclockwise path from 0 to x in G must use the edge (0, 29),

distH,L(0, x) = 1 + distH,L(29, x) = 1 + distG,L(0, 14)
by Theorem 2

= 7.

Thus dH(0, x) = 7. By Theorem 3, D(G) = 6. By (1), CR(38, 9) is non-dei.
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4.4 CR(N, w) with (w − 5)(w + 1) + 2 ≤ N ≤ (w − 3)(w + 1)

When (w − 5)(w + 1) + 2 ≤ N ≤ (w − 3)(w + 1), Case 2 of the Diameter Theorem

occurs and we have the following result.

Theorem 10. For (w − 5)(w + 1) + 2 ≤ N ≤ (w − 3)(w + 1), we have:

(A) CR(18, 7) is non-dei.

(B) CR(N, w) is dei if N = (w − 5)(w + 1) + 2 and w ≥ 9.

(C) CR(N, w) is non-dei if N = (w − 5)(w + 1) + 4 and w ≥ 7.

(D) CR(N, w) is dei if N = (w − 5)(w + 1) + 2t, w ≥ 7 and 3 ≤ t ≤ w+3
2

.

(E) CR(N, w) is non-dei if N = (w − 5)(w + 1) + 2(w − t), w ≥ 7 and 0 ≤ t ≤ w−5
2

.

(F) CR(N, w) is non-dei if N = (w − 3)(w + 1) and w ≥ 7.

Proof. Let G = CR(18, 7), e = (0, 11), and H = G − e. By Fig. 4, dH(0, 11) = 5. By

Theorem 3, D(G) = 4. By (1), CR(18, 7) is non-dei.

(5)

(4)

(4)

(4)
(4)

(3)

(3)

(3)
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(0)

8
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 3

16
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1
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13

 4

Figure 4: The graph H = G − e, where G = CR(18, 7) and e = (0, 11). The number
inside parentheses is the distance to node 0.

We now prove (B). Let G = CR(N, w). By Theorem 3, D(G) = w − 3, which is an

even number. The triangular grid representation of G is of the form shown in Fig. 5(a). In

the following, we will consider the triangular grid representation of G as the combination

of several shaded areas. For each shaded area, we will prove that for each node v in that
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shaded area, there are always two paths P1, P2 satisfying the DEI Lemma. See also Fig. 6

for a specific triangular grid representation.

First consider the shaded area shown in Fig. 5(a). Since D(G) ≥ 6, for each node v

in this shaded area, there are always two paths P1, P2 satisfying the DEI Lemma. Now

consider the shaded area shown in Fig. 5(b). Obviously, for each node v in in this shaded

area, there are always two paths P1, P2 satisfy the DEI Lemma.

0 0

(a) (b)

Figure 5: (a) The triangular grid representation and the first shaded area. (b) The second
shaded area.

Figure 6: The triangular grid representation of CR(42, 9).

Consider the shaded area shown in Fig. 7(a). For convenience, let a denote the node

w + 1. Clearly, dG(0, a) = 2. Each node v in this shaded area has dG(0, v) = dG(a, v)

and the distance from node 0 to any node in this shaded area is at most D(G) − 2.
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Consequently, for each node v in in this shaded area, there are always two paths P1, P2

satisfy the DEI Lemma. Consider the shaded area shown in Fig. 7(b). For convenience,

let b denote the node N − w − 1. Clearly, dG(0, b) = 2. Each node v in this shaded area

has dG(0, v) = dG(b, v) and the distance from node 0 to any node in this shaded area is

at most D(G)− 2. Consequently, for each node v in in this shaded area, there are always

two paths P1, P2 satisfy the DEI Lemma.

a

0

b

0

(a) (b)

Figure 7: (a) The third shaded area. (b) The fourth shaded area.

By similar arguments, for each node v, except those in the shaded area of Fig. 8, there

are always two paths P1, P2 satisfying the DEI Lemma. We now consider nodes in the

shaded area of Fig. 8. See Figs. 9-13 for an illustration.

First consider Fig. 9 and the cells labeled i1, i2, u1, u2, v1, v2, in this figure. The label

i1 is in the leftmost cell of the first row; thus i1 = N − (w+1
2

)(w−3) = w2
−6w−3

2
. Therefore

i2 = i1 + 2 = w2
−6w+1

2
. The label u1 is in the leftmost cell of the last row; thus u1 =

(w−1
2

)(w − 3) = w2
−4w+3

2
. The label u2 is in the rightmost node of the reciprocal second

row; therefore u2 = u1 − (w + 1) = w2
−6w+1

2
. The label v1 is in the rightmost cell of the

last row; thus v1 = (w+1
2

)(w − 3) = w2
−2w−3

2
. The label v2 is in the rightmost node of the

reciprocal third row; therefore v2 = v1 − 2(w − 1) = w2
−6w+1

2
. From the above,

i2 = u2 = v2. (2)
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Figure 8: Those shaded boundary nodes need additional discussion.

v4

j

3v

3u

3i

2

j 1

1v

2v

u2

1u

2i1i

0

v4

j

3v

3u

3i

2

j 1

1v

2v

u2

1u

2i1i

0

(a) (b)

Figure 9: The shaded nodes in (a) are identical; those in (b) are also identical.

Since i2 = v2, in Fig. 9(a), the set of nodes in the shaded area of the first row is identical to

the set of nodes in the shaded area of the reciprocal third row. Since i2 = u2, in Fig. 9(b),

the set of nodes in the shaded area of the first row is identical to the set of nodes in the

shaded area of the reciprocal second row. By similar arguments, the sets of nodes in the

two shaded areas in Figs. 10(a), 10(b), 11(a) and 11(b) are identical, too.

Now consider Fig. 12 and the cells labeled i3, j1, j2, v4 in this figure. The label i3 is

in the leftmost cell of the third row; thus i3 = i1 + 2(w − 1) = w2
−2w−7

2
. The label j1 is

in the rightmost cell of the first row; thus j1 = N − (w−1
2

)(w − 3) = w2
−4w−9

2
. Therefore
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Figure 10: The shaded nodes in (a) are identical; those in (b) are also identical.
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v4
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(a) (b)

Figure 11: The shaded nodes in (a) are identical; those in (b) are also identical.

j2 = j1 +(w+1) = w2
−2w−7

2
. Since v1 = w2

−2w−3
2

, v4 = v1−2 = w2
−2w−7

2
. From the above,

i3 = j2 = v4. (3)

Thus the sets of nodes in the two shaded areas in Figs. 12(a), 12(b), 13(a) and 13(b) are

identical, too.

From the above discussion, for each node v in the shaded area of Fig. 8, except the

five nodes in {i2 −1, i2, i2 +1, u3, i3}, there are always two paths P1, P2 satisfying the DEI

Lemma. For each of the five nodes in the set, we now use (i)-(v) to prove that there are

also two paths P1, P2 satisfying the DEI Lemma.
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Figure 12: The shaded nodes in (a) are identical; those in (b) are also identical.
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Figure 13: The shaded nodes in (a) are identical; those in (b) are also identical.

(i) Consider node i2 −1. By (2), i2 −1 = v2 −1. Let P1 = 0
−w
→ N −w

−1
→ N − (w +1)

−w
→

N − (2w + 1)
−1
→ N − (2w + 2)

−w
→ N − (3w + 2)

−1
→ N − (3w + 3)

−w
→ · · ·

−1
→

N − (w−5
2

)(w + 1)
−w
→ N − (w−5

2
)(w + 1) − w = i2 − 1. Let P2 = 0

+1
→ 1

+w
→

w + 1
+1
→ w + 2

+w
→ 2w + 2

+1
→ 2w + 3

+w
→ 3w + 3

+1
→ · · ·

+w
→ (w−7

2
)(w + 1)

+1
→

(w−7
2

)(w + 1) + 1
+1
→ (w−7

2
)(w + 1) + 2

+1
→ (w−7

2
)(w + 1) + 3 = v2 − 1. See Fig. 6

for an illustration. Then i2 − 1 = 13, P1 = 0 → 33 → 32 → 23 → 22 → 13 and

P2 = 0 → 1 → 10 → 11 → 12 → 13.

(ii) Consider node i2. By (2), i2 = v2. Let P1 = 0
−w
→ N − w

−1
→ N − (w + 1)

−w
→
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N − (2w + 1)
−1
→ N − (2w + 2)

−w
→ N − (3w + 2)

−1
→ N − (3w + 3)

−w
→ · · ·

−1
→

N − (w−7
2

)(w + 1)
−w
→ N − (w−7

2
)(w + 1) − w

+1
→ N − (w−7

2
)(w + 1) − w + 1

−w
→

N − (w−7
2

)(w + 1) − 2w + 1
−1
→ N − (w−7

2
)(w + 1) − 2w = i2. Let P2 = 0

+1
→

1
+w
→ w + 1

+1
→ w + 2

+w
→ 2w + 2

+1
→ 2w + 3

+w
→ 3w + 3

+1
→ · · ·

+w
→ (w−7

2
)(w + 1)

+1
→

(w−7
2

)(w + 1) + 1
+1
→ (w−7

2
)(w + 1) + 2

+1
→ (w−7

2
)(w + 1) + 3

+1
→ (w−7

2
)(w + 1) + 4 = v2.

Again, see Fig. 6. Then i2 = 14, P1 = 0 → 33 → 32 → 23 → 24 → 15 → 14 and

P2 = 0 → 1 → 10 → 11 → 12 → 13 → 14.

(iii) Consider node i2 +1. By (2), i2 +1 = u2 +1. Let P1 = 0
−w
→ N −w

−1
→ N −(w+1)

−w
→

N − (2w + 1)
−1
→ N − (2w + 2)

−w
→ N − (3w + 2)

−1
→ N − (3w + 3)

−w
→ · · ·

−1
→

N − (w−7
2

)(w + 1)
−w
→ N − (w−7

2
)(w + 1) − w

+1
→ N − (w−7

2
)(w + 1) − w + 1

−w
→

N − (w−7
2

)(w + 1) − 2w + 1 = i2 = 1. Let P2 = 0
−1
→ N − 1

+w
→ w − 1

−1
→ w − 2

+w
→

2w − 2
−1
→ 2w − 3

+w
→ 3w − 3

−1
→ · · ·

+w
→ (w−5

2
)(w − 1)

−1
→ (w−5

2
)(w − 1) − 1 = u2 + 1.

See Fig.6 for an example. Then i2 + 1 = 15, P1 = 0 → 33 → 32 → 23 → 24 → 15

and P2 = 0 → 41 → 8 → 7 → 16 → 15.

(iv) Consider node u3. By (2), i2 + 1 = u2 + 1; thus u3 = v3. Let P1 = 0
+1
→ 1

+1
→ 2

+1
→

3
+1
→ 4

+1
→ 5

+w
→ 5+w

+1
→ 5+(w+1)

+w
→ 5+(2w+1)

+1
→ 5+(2w+2)

+w
→ 5+(3w+2)

+1
→

5 + (3w + 3)
+w
→ · · ·

+1
→ 5 + (w−9

2
)(w + 1) = v3. Let P2 = 0

−1
→ N − 1

+w
→ w − 1

−1
→

w− 2
+w
→ 2w− 2

−1
→ 2w− 3

+w
→ 3w− 3

−1
→ · · ·

+w
→ (w−7

2
)(w− 1)

−1
→ (w−7

2
)(w− 1)− 1

−1
→

(w−7
2

)(w − 1) − 2
−1
→ (w−7

2
)(w − 1) − 3 = u3. Again, see Fig. 6. Then u3 = 5,

P1 = 0 → 1 → 2 → 3 → 4 → 5 and P2 = 0 → 41 → 8 → 7 → 6 → 5.

(v) Consider node i3. By (3), i3 = v4. Let P1 = 0
−w
→ N −w

−1
→ N − (w+1)

−w
→ N − (2w+

1)
−1
→ N − (2w + 2)

−w
→ N − (3w + 2)

−1
→ N − (3w + 3)

−w
→ · · ·

−1
→ N − (w−7

2
)(w + 1)

−1
→

N−(w−7
2

)(w+1)−1
−1
→ N−(w−7

2
)(w+1)−2

−1
→ N−(w−7

2
)(w+1)−3

−1
→ N−(w−7

2
)(w+

1) − 4 = i3. Let P2 = 0
+1
→ 1

+w
→ w + 1

+1
→ w + 2

+w
→ 2w + 2

+1
→ 2w + 3

+w
→ 3w + 3

+1
→

· · ·
+w
→ (w−5

2
)(w + 1)

−1
→ (w−5

2
)(w + 1)− 1

+w
→ (w−5

2
)(w + 1)− 1 + w = v4. Take Fig. 6

for an example again. Then i3 = 28, P1 = 0 → 33 → 32 → 31 → 30 → 29 → 28

and P2 = 0 → 1 → 10 → 11 → 20 → 19 → 28.
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In (i)-(iii) and (v), P1 is a counterclockwise path, P2 is a clockwise path and P1, P2 are

edge-disjoint. In (iv), P1 and P2 are both clockwise paths and they are edge-disjoint. It

is not difficult to verify that P1, P2 satisfy the DEI Lemma. We now complete the proof

of (B).

Consider (C). Let G = CR(N, w), e = (0, 1), and H = G − e. Consider the node

x = N
2
− 1. Note that dH(0, x) = min{distH,R(0, x), distH,L(0, x)}. Since any shortest

counterclockwise path from 0 to x in G will not use the edge e,

distH,L(0, x) = distG,L(0, x)
by Theorem 2

= w − 2.

Since any shortest clockwise path from 0 to x in H must use the edge (0, N − 1),

distH,R(0, x) = 2 + distG,R(w − 1, x) = 2 + distG,R(0, x − (w − 1))
by Theorem 1

= 2 + w − 4.

Thus dH(0, x) = w − 2. By Theorem 3, D(G) = w − 3. By (1), G is non-dei.

Consider (D). Let G = CR(N, w). By Theorem 3, D(G) = w − 2, which is an

odd number. The proof of (D) is similar to that of (B) except that the triangular grid

representation is of the form shown in Fig. 14 and the nodes corresponding to those in

Fig. 8 are those shown in Fig. 14.

0

Figure 14: Those shaded boundary nodes need additional discussion.

Consider (E). Let G = CR(N, w), e = (0, 1), and H = G − e. Consider the node

x = N
2

+ t + 2 − w. Since any shortest counterclockwise path from 0 to x in G will not
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use the edge e,

distH,L(0, x) = distG,L(0, x)
by Theorem 2

= w − 1.

Since any shortest clockwise path from 0 to x in H must use the edge (0, N − 1),

distH,R(0, x) = 2 + distG,R(w − 1, x) = 2 + distG,R(0, x − (w − 1))
by Theorem 1

= 2 + w − 3.

Thus dH(0, x) = w − 1. By Theorem 3, D(G) = w − 2. By (1), CR(N, w) is non-dei.

Consider (F). Let G = CR(N, w), e = (0, N −w), and H = G− e. Consider the node

x = N
2
− 2. Since any shortest clockwise path from 0 to x in G will not use the edge e,

distH,R(0, x) = distG,R(0, x)
by Theorem 1

= w + 2k.

Since any shortest counterclockwise path from 0 to x in H must travel via node N − 2,

distH,L(0, x) = 2 + distH,L(n − 2, x) = 2 + distH,L(0, x − (n − 2))
by Theorem 2

= 2 + w − 3.

Thus dH(0, x) = w − 1. By Theorem 3, D(G) = w − 2. By (1), CR(N, w) is non-dei.

4.5 CR(N, w) with N ≥ (w − 3)(w + 1) + 2

When N ≥ (w − 3)(w + 1) + 2, Case 1 of the Diameter Theorem occurs and we have

the following result.

Theorem 11. For N ≥ (w − 3)(w + 1) + 2, we have:

(a) CR(N, w) is non-dei if N = (w − 3)(w + 1) + 2 + 2k(w + 1), w ≥ 5 and k ≥ 0.

(b) CR(16, 5) is non-dei.

(c) CR(N, w) is dei if N = (w − 3)(w + 1) + 4 + 2k(w + 1) and (w = 5 and k ≥ 1) or

(w ≥ 7 and k ≥ 0).

(d) CR(N, w) is non-dei if N = (w − 3)(w + 1) + 2t + 2k(w + 1), w ≥ 5, 3 ≤ t ≤ w+3
2

and k ≥ 0.

(e) CR(N, w) is dei if N = (w − 3)(w + 1) + (w + 5) + 2k(w + 1), w ≥ 5 and k ≥ 0.
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(f) CR(N, w) is non-dei if N = (w−3)(w+1)+2(w−t)+2k(w+1), w ≥ 7, 0 ≤ t ≤ w−7
2

and k ≥ 0.

(g) CR(N, w) is non-dei if N = (w − 1 + 2k)(w + 1), w ≥ 5 and k ≥ 0.

Proof. Consider (a). Let G = CR(N, w), e = (0, 1), and H = G − e. Consider the

node x = N
2
− 1. Since any shortest counterclockwise path from 0 to x in G will not use

the edge e,

distH,L(0, x) = distG,L(0, x)
by Theorem 2

= w − 1 + 2k.

Since any shortest clockwise path from 0 to x in H must use the edge (0, N − 1),

distH,R(0, x) = 2+distG,R(w−1, x) = 2+distG,R(0, x− (w−1))
by Theorem 1

= 2+w−3+2k.

Thus dH(0, x) = w − 1 + 2k. By Theorem 3, D(G) = w − 2 + 2k. By (1), G is non-dei.

Consider (b). Let G = CR(16, 5), e = (0, 1), and H = G − e. It is not difficult to see

from Fig. 15 that dH(0, 1) = 5. By Theorem 3, D(G) = 4. By (1), CR(16, 5) is non-dei.

Figure 15: The graph H = G − e, where G = CR(16, 5) and e = (0, 1). The number
inside parentheses is the distance to node 0.

The proofs of (c) and (e) are similar to that of Theorem 10(B) and we omit them.

Consider (d). Let G = CR(N, w), e = (0, N −w), and H = G− e. Consider the node

x = N
2
− t + 3. Since any shortest clockwise path from 0 to x in G does not use edge e,

distH,R(0, x) = distG,R(0, x)
by Theorem 1

= w + 2k.
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Since any shortest counterclockwise path from 0 to x in H must travel via node N − 2,

distH,L(0, x) = 2 + distH,L(N − 2, x) = 2 + distH,L(0, x − (N − 2))
by Theorem 2

= 2 + w − 2 + 2k.

Thus dH(0, x) = w + 2k. By Theorem 3, D(G) = w − 1 + 2k. By (1), G is non-dei.

Consider (f). Let G = CR(N, w), e = (0, N −w), and H = G− e. Consider the node

x = N
2

+ t+3. Since any shortest clockwise path from 0 to x in G will not use the edge e,

distH,R(0, x) = distG,R(0, x)
by Theorem 1

= w + 2k.

Since any shortest counterclockwise path from 0 to x in H must travel via node N − 2,

distH,L(0, x) = 2 + distH,L(N − 2, x) = 2 + distH,L(0, x − (N − 2))
by Theorem 2

= 2 + w − 1 + 2k.

Thus dH(0, x) = w + 2k + 1. By Theorem 3, D(G) = w + 2k. By (1), G is non-dei.

Consider (g). Let G = CR(N, w), e = (0, N −w), and H = G− e. Consider the node

x = N
2

+ 2. Since any shortest clockwise path from 0 to x in G will not use the edge e,

distH,R(0, x) = distG,R(0, x)
by Theorem 1

= w + 2k.

Since any shortest counterclockwise path from 0 to x in H must travel via node N − 2,

distH,L(0, x) = 2 + distH,L(N − 2, x) = 2 + distH,L(0, x − (N − 2))
by Theorem 2

= 2 + w − 1 + 2k.

Thus dH(0, x) = w + 2k + 1. By Theorem 3, D(G) = w + 2k. By (1), G is non-dei.
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5 Concluding remarks

The purpose of the thesis is to discuss the dei property of chordal ring networks. The

chordal ring network is a commonly used extension of the ring network. In [1], Arden and

Lee proposed a formula for computing the diameter of a chordal ring network CR(N, w).

In this thesis, we have shown that this formula is incorrect. We have successfully de-

termined if CR(N, w) is dei for all w ∈ {3, 5, 7, 9}. Arden and Lee’s formula actually

contains three cases: Cases 1 and 2 are correct and Case 3 is incorrect (see the Diameter

Theorem for details). In this thesis, we have successfully determined if CR(N, w) is dei

for Cases 1 and 2 and some special cases of Case 3.

Before ending this thesis, we list the dei results for chordal ring networks CR(N, w)

with N ≤ 200 and w ≤ 11 in the following table. For clarity, we omit the word “non-dei”,

and “?” means “not determined yet”. From this table, it is easy to see that

when w = 3 and N ≥ 8, there is a dei graph whenever N increases w + 1;

when w = 5 and N ≥ 22, there is a dei graph whenever N increases w + 1; and

when w ≥ 7 and N ≥ (w − 3)(w + 1) + 4, there is a dei graph if N increased w + 1.
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N \ w 3 5 7 9 11

6 Thm 7

8 dei Thm 7

10 Thm 7 Thm 8

12 dei Thm 7 Thm 8

14 Thm 7 Thm 11 Thm 8

16 dei Thm 7 Thm 11 Thm 8

18 Thm 7 Thm 11 Thm 10 Thm 8

20 dei Thm 7 Thm 11 Thm 10 Thm 8

22 Thm 7 dei Thm 11 dei Thm 10 dei Thm 9 Thm 8

24 dei Thm 7 Thm 11 dei Thm 10 dei Thm 9 Thm 8

26 Thm 7 Thm 11 dei Thm 10 Thm 9 ?

28 dei Thm 7 dei Thm 11 Thm 10 Thm 9 ?

30 Thm 7 Thm 11 Thm 10 Thm 9 ?

32 dei Thm 7 Thm 11 Thm 10 Thm 9 ?

34 Thm 7 dei Thm 11 Thm 11 Thm 9 ?

36 dei Thm 7 Thm 11 dei Thm 11 Thm 9 ?

38 Thm 7 Thm 11 Thm 11 Thm 9 ?

40 dei Thm 7 dei Thm 11 Thm 11 dei Thm 9 ?

42 Thm 7 Thm 11 Thm 11 dei Thm 10 ?

44 dei Thm 7 Thm 11 dei Thm 11 Thm 10 ?

46 Thm 7 dei Thm 11 Thm 11 dei Thm 10 ?

48 dei Thm 7 Thm 11 Thm 11 dei Thm 10 ?

50 Thm 7 Thm 11 Thm 11 dei Thm 10 ?

52 dei Thm 7 dei Thm 11 dei Thm 11 dei Thm 10 ?

54 Thm 7 Thm 11 Thm 11 Thm 10 ?

56 dei Thm 7 Thm 11 Thm 11 Thm 10 ?

58 Thm 7 dei Thm 11 Thm 11 Thm 10 ?

60 dei Thm 7 Thm 11 dei Thm 11 Thm 10 ?

62 Thm 7 Thm 11 Thm 11 Thm 11 ?

64 dei Thm 7 dei Thm 11 Thm 11 dei Thm 11 ?

66 Thm 7 Thm 11 Thm 11 Thm 11 ?

68 dei Thm 7 Thm 11 dei Thm 11 Thm 11 ?

70 Thm 7 dei Thm 11 Thm 11 Thm 11 ?

72 dei Thm 7 Thm 11 Thm 11 Thm 11 ?

74 Thm 7 Thm 11 Thm 11 dei Thm 11 dei Thm 10

76 dei Thm 7 dei Thm 11 dei Thm 11 Thm 11 Thm 10

78 Thm 7 Thm 11 Thm 11 Thm 11 dei Thm 10

80 dei Thm 7 Thm 11 Thm 11 Thm 11 dei Thm 10

82 Thm 7 dei Thm 11 Thm 11 Thm 11 dei Thm 10

84 dei Thm 7 Thm 11 dei Thm 11 dei Thm 11 dei Thm 10

86 Thm 7 Thm 11 Thm 11 Thm 11 dei Thm 10

88 dei Thm 7 dei Thm 11 Thm 11 Thm 11 Thm 10

90 Thm 7 Thm 11 Thm 11 Thm 11 Thm 10

92 dei Thm 7 Thm 11 dei Thm 11 Thm 11 Thm 10

94 Thm 7 dei Thm 11 Thm 11 dei Thm 11 Thm 10

96 dei Thm 7 Thm 11 Thm 11 Thm 11 Thm 10

98 Thm 7 Thm 11 Thm 11 Thm 11 Thm 11

100 dei Thm 7 dei Thm 11 dei Thm 11 Thm 11 dei Thm 11

102 Thm 7 Thm 11 Thm 11 Thm 11 Thm 11
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N \ w 3 5 7 9 11

104 dei Thm 7 Thm 11 Thm 11 dei Thm 11 Thm 11

106 Thm 7 dei Thm 11 Thm 11 Thm 11 Thm 11

108 dei Thm 7 Thm 11 dei Thm 11 Thm 11 Thm 11

110 Thm 7 Thm 11 Thm 11 Thm 11 Thm 11

112 dei Thm 7 dei Thm 11 Thm 11 Thm 11 dei Thm 11

114 Thm 7 Thm 11 Thm 11 dei Thm 11 Thm 11

116 dei Thm 7 Thm 11 dei Thm 11 Thm 11 Thm 11

118 Thm 7 dei Thm 11 Thm 11 Thm 11 Thm 11

120 dei Thm 7 Thm 11 Thm 11 Thm 11 Thm 11

122 Thm 7 Thm 11 Thm 11 Thm 11 Thm 11

124 dei Thm 7 dei Thm 11 dei Thm 11 dei Thm 11 dei Thm 11

126 Thm 7 Thm 11 Thm 11 Thm 11 Thm 11

128 dei Thm 7 Thm 11 Thm 11 Thm 11 Thm 11

130 Thm 7 dei Thm 11 Thm 11 Thm 11 Thm 11

132 dei Thm 7 Thm 11 dei Thm 11 Thm 11 Thm 11

134 Thm 7 Thm 11 Thm 11 dei Thm 11 Thm 11

136 dei Thm 7 dei Thm 11 Thm 11 Thm 11 dei Thm 11

138 Thm 7 Thm 11 Thm 11 Thm 11 Thm 11

140 dei Thm 7 Thm 11 dei Thm 11 Thm 11 Thm 11

142 Thm 7 dei Thm 11 Thm 11 Thm 11 Thm 11

144 dei Thm 7 Thm 11 Thm 11 dei Thm 11 Thm 11

146 Thm 7 Thm 11 Thm 11 Thm 11 Thm 11

148 dei Thm 7 dei Thm 11 dei Thm 11 Thm 11 dei Thm 11

150 Thm 7 Thm 11 Thm 11 Thm 11 Thm 11

152 dei Thm 7 Thm 11 Thm 11 Thm 11 Thm 11

154 Thm 7 dei Thm 11 Thm 11 dei Thm 11 Thm 11

156 dei Thm 7 Thm 11 dei Thm 11 Thm 11 Thm 11

158 Thm 7 Thm 11 Thm 11 Thm 11 Thm 11

160 dei Thm 7 dei Thm 11 Thm 11 Thm 11 dei Thm 11

162 Thm 7 Thm 11 Thm 11 Thm 11 Thm 11

164 dei Thm 7 Thm 11 dei Thm 11 dei Thm 11 Thm 11

166 Thm 7 dei Thm 11 Thm 11 Thm 11 Thm 11

168 dei Thm 7 Thm 11 Thm 11 Thm 11 Thm 11

170 Thm 7 Thm 11 Thm 11 Thm 11 Thm 11

172 dei Thm 7 dei Thm 11 dei Thm 11 Thm 11 dei Thm 11

174 Thm 7 Thm 11 Thm 11 dei Thm 11 Thm 11

176 dei Thm 7 Thm 11 Thm 11 Thm 11 Thm 11

178 Thm 7 dei Thm 11 Thm 11 Thm 11 Thm 11

180 dei Thm 7 Thm 11 dei Thm 11 Thm 11 Thm 11

182 Thm 7 Thm 11 Thm 11 Thm 11 Thm 11

186 dei Thm 7 dei Thm 11 Thm 11 dei Thm 11 dei Thm 11

186 Thm 7 Thm 11 Thm 11 Thm 11 Thm 11

188 dei Thm 7 Thm 11 dei Thm 11 Thm 11 Thm 11

190 Thm 7 dei Thm 11 Thm 11 Thm 11 Thm 11

192 dei Thm 7 Thm 11 Thm 11 Thm 11 Thm 11

194 Thm 7 Thm 11 Thm 11 dei Thm 11 Thm 11

196 dei Thm 7 dei Thm 11 dei Thm 11 Thm 11 dei Thm 11

198 dei Thm 7 Thm 11 Thm 11 Thm 11 Thm 11

200 dei Thm 7 Thm 11 Thm 11 Thm 11 Thm 11

28



References

[1] B. W. Arden and H. Lee, Analysis of chordal ring network networks, IEEE Trans.

Comput. C-30 (1981) 291-295.

[2] J. C. Bermond, F. Comellas, and D. F. Hsu, Distributed loop computer-networks - a

survey, J. Parallel and Distrib. Comput. 24(1) (1995) 2-10.

[3] G. Chartrand and L. Lensniak, Graph and Digraphs, Wadsworth, Monterey, CA, 1981.

[4] S. K. Chen, F. K. Hwang, and Y. C. Liu, Some Combinatorial Properties of Mixed

chordal ring networks, Journal of Interconnection Networks 4 (2003) 3-16.

[5] R. D. Dutton, S. R. Medidi, R. C. Brigham, Changing and unchanging of the radius

of a grapg, Linear Algebra Appl. 217 (1995) 67-82.

[6] F. Glivjak, On certain classes of graphs of diameter two without superfluous edges,

Acta F.R.N. Univ. Comen. Math. 21 (1968) 39-48.

[7] F. Glivjak, On certain edge-critical graphs of a given diameter, Mat. Casopis Sloven

Akad Vied. 25 (1975) 249-263.

[8] F. Glivjak, On the impossibility to construct diametrically critical graphs by exten-

sions, Arch. Math. (Brno) 11 (1975) 131-137.

[9] D. Greenwill and P. Johnson, On subgraphs of critical graphs of diameter k, Proc.

10th S-E Conf. Combinatorics, Graph Theory and Computing (1979) 465-467.

[10] J. Hartman and I Rubin, On Diameter Stability of graphs, in Theory and Applica-

tions of Graphs, Eds. Y. Alavi and D. R. Lick, Springer Lecture Notes in Mathematics,

vol. 642 (1978) 247-254.

[11] F. K. Hwang, A complementary survey on double-loop networks, Theor. Comput.

Sci. 263(1-2) (2001) 211-229.

29



[12] F. K. Hwang and P. E. Wright, Survival reliability of some double-loop networks and

chordal ring networks, IEEE Trans. Comput. 44(12) (1995) 1468-1471.

[13] H. Lee, Modeling of multi-microcomputer networks, Ph. D. dissertation, Princeton

Univ., Princeton NJ, Nov. 1979.

[14] S. M. Lee, Design of diameter e-invariant networks, Congr. Numer. 65 (1988) 89-102.

[15] S. M. Lee and R. Tanoto, Three classes of diameter edge-invariant graphs, Commen-

tationes Mathematics Univ. Carolinae 28 (1987) 227-232.

[16] S. M. Lee and A. Y. Wang, On critical and cocritical diameter edge-invariant net-

works, in Graph Theory, Combinatorics and Applications, vol. 2, Kalamazoo 1988,

Wiley, New York, 1991, 753-763.

[17] O. Ore, Diameter in graph, J. Comb. Theory Ser. B 5 (1968) 75-81.

[18] A. A. Schone, H. L. Bodlaender and J. van Leeuwen, Diameter increase caused by

edge deletion, J. Graph Theory 11 (1987) 409-427.

[19] O. Vacek, Diameter-invariant graphs, Mathematica Bohemica 130(4) (2005) 355-370.

[20] H. B. Walikar, F. Buckley, and M. K. Itagi, Radius-edge-invariant and diameter-

edge-invariant graphs, Discret. Math. 272 (2003) 119-126.

[21] D. B. West, Introduction to Graph Theory, 2nd ed. Prentice Hall, Upper Saddle

River, NJ, 2001.

[22] C. K. Wong and D. Coppersmith, A combinatorial problem related to multimodule

memory organizations, J. ACM 21(3) (1974) 392-402.

30


	封面
	內頁2
	sign
	中文摘要
	DEI_0105.pdf
	感謝
	DEI_0105

