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The Diameter-edge-invariant Property
of Chordal Ring Networks

Student: Hsin-Chang Huang Advisor: Chiuyuan Chen

Department of Applied Mathematics
National Chiao Tung University
Hsinchu, Taiwan 30050

Abstract

One of the simplest topologies for interconnection networks is the ring network.
However, the ring network has poor reliability (any failure in a node or link destroys
the function of the network) and it hasthigh transmission delay (large diameter). As
a result, hybrid topologies utilizing the ring network as a basis for synthesizing richer
interconnection "sehemes have been proposed.to improve the reliability and reduce
the transmission delay. The chordal ring network, proposed by Arden and Lee [1] in
1981, is a commenly used extension for the ring network. The chordal ring network
is considered to be obtained by adding chords'to a cycle (a ring network) so that
the diameter can be reduced and the reliability'can be increased. More specifically,
a chordal ring network C R(N,w), where 4V is a positive even integer and w is a
positive odd integer such that w < Nj/2,is a graph with N nodes 0,1,...,N — 1
and 3N/2 links'of the form:

(6, ¢+ 1) med'N), 7=0,1,2,... )N - 1,
(@@ +w) mod N), i=1,3,5,...,N=1.

The chordal ring networkiis 3-regular, preserves the'Hamiltonian cycle from the ring
network, and has a better diameter than the ring network. In 1987, Lee and Tanoto
[14, 15] proposed diameter-edge-invariant graphs."Let D(G) denote the diameter of
a graph G. G is diameter-edge-invariant (dei) if D(G —e) = D(G) for all e € E(Q).
The purpose of this thesis is to study the dei property of chordal ring networks. In
particular, we determine if CR(N,w) is dei for all w € {3,5,7,9}.

Keywords: ring network, chordal ring network, interconnection network, di-

ameter, edge deletion, regular graph.

i



o

=1l

0 5% KRR - Ry ORI I R T ORI R
f;[;i;%f_}?fgiﬂml fol WA % F'“?E?%E j“”jj j/ﬁt;;lﬁtpt“l,i/[lﬁmﬁkﬁ&*i F"j

El@?fﬁ‘ﬁ@fﬁxﬁﬁlﬂﬁifﬁﬁ = ” o Jf‘lﬁfﬂ”?’[ HVI o B SE RRLE )]
o S BT = o T R B p@‘?lﬁiil P A i zv—j/ﬂbgnwpﬁFpJ;ks& Fl
ol REE A I %‘EMHW%ZHFE 25 gpjffﬁﬁliﬁ—i"g’ﬂa THe IEI R
FLEI I EY Elﬁl@;ﬁr@[HﬁpJJ ﬂ‘ﬁr‘  BIVEWH T R I—Fu;é%ip

PRI - & s o
R AR S A NI I R
Fuﬁ?@ aﬁﬂpu{u eI ;
f&l—jﬂF’j:*EJr",:’\ﬁfm’i}' :

I&FIJ[HII‘% Bl 2 N (ﬂ-% e =
JESE Y o B R IFEJLF;FM“ I agﬁﬁﬂ
GRY R AU A ’FEJ [-KHE J,rﬁ\.lrrui ,

iR g i R

FAH FlRe e

Ty ISIESEN ?/J

1755255 15 5

ET L

2009 = 1 %]



Contents

Abstract (in Chinese)
Abstract (in English)
A cknowledgement
Contents

List of Figures

1 Introduction

2 Preliminaries

5 Concluding remarks

v

ii

iii

v

11
12
13
15
23

26



List of Figures

© o N O

11
12
13
14
15

CR(26,11): the chordal ring with N = 26 and w = 11. The number inside
parentheses is the distance tonode 0. . . . . . . . . . ... ... ... ...
C'R(22,9) and its associated triangular grid representation. . . . . . . . . .
CR(16,3). «
The graph H = G — e, where G = CR(18,7) and e = (0,11). The number
inside parentheses is the distance tonode 0. . . . . . . . .. .. ... ...
(a) The triangular grid representation and the first shaded area. (b) The

second shaded area. . . . . . . . ..

inside parentheses isithe distan - ...



1 Introduction

Our graph terminology and notation are standard; see [3] and [21] except as indicated.
In this thesis, a graph is always undirected, without multiple edges and loops. For con-
venience, vertices of a graph are also called nodes. Let G be a graph with vertex set
V(G) and edge set E(G). The distance dg(u,v) between two nodes u,v € V(G) is the
length of a shortest path joining w,v. The eccentricity e(v) of a vertex v € V(G) is the
distance between v and a farthest node from v. The diameter D(G) and the radius r(G)
of G are the maximum and the minimum eccentricities of all nodes of G, respectively. Let
e € E(G) and v € V(G). G —e, G+ e and G — v denote the graph obtained by deleting
e, adding e, and deleting v, respectively.

Ore [17] first considered graphs G'with the property D(G) > D(G+-e) for all e € E(G).
Almost at the same time, Glivjak [6] initiated the study of graphs G with the property
D(G —e) > D(G) far.all e € E(G). G is called, diameter-minimal if. D(G — ¢) > D(G)
for all e € E(G). Aot of researches have been done on the abeve two concepts; see
7, 8,9, 10, 18]. In particular, Glivjak showed.that every graph can be embedded as
an induced subgraph in a diameter-minimal graph with diameter 2 [6]; thus finding a
forbidden subgraph characterizationfor diameter-minimal graphs becomes impossible.

A network can beymodeled by & graph.. The diameter of a’ network represents the
maximum transmission "delay between two nodes. In general, the failure of a link will
increase the diameter of the network: It _is thereforeran interesting problem to design a
network such that the diameter is invariant under any link failure. Based on this idea,
in [14], Lee proposed the the definition: A graph G is diameter-edge-invariant (dei) if
D(G —e) = D(G) for all e € E(G). For convenience, in this thesis, if G is not dei, then
we simply write G is non-dei.

It is clear that there is no dei graphs with diameter 1. It is also clear that if a graph
is dei, then it is 2-edge-connected. However, there exists 2-edge-connected graphs that
are non-dei; Ky x C3 is an example. In [14], Lee proposed some constructions for dei

graphs: the Zykov sum construction, the Sabidussi sum construction, the Cartesian prod-



uct method and the edge expansion construction. Lee also proved that every connected
graph is an induced subgraph of a dei graph with diameter > 2. Thus finding a forbidden
subgraph characterization for dei graphs becomes impossible. In [15], Lee and Tanoto
constructed three classes of planar dei networks: the young tableau graphs, the young
tableau graphs with diagonal crossing and the reverse young tableau graph with diagonal
crossing. Recently, in [20], Walikar et al. proved that for any two nonnegative integers
n and ¢, where 0 < n < ¢, there exists a connected graph G having ¢ edges, precisely
n of which are diameter-increasing except for some n,q. They proved that every graph
can be embedded as an induced subgraph in a diameter-edge-invariant graph. They also
provided a characterization for dei graphs that has diameter 2 and a characterization for
dei graphs that has radius 1.

The following variations of dei-graphs have been discussed in.the literatures: critical
dei graphs, cocritical dei graphs, radius-edge-invariant graphs, diameter-vertex-invariant
graphs and diameter-adding-invariant graphs. More precisely, a graph G is critical de:
(resp. cocritical det)-if Gis dei and G' — v is non-dei (resp. still dei) for all v € V(G);
see [16]. A graph'G is radius-edge-invariantif (G — e) = r(G) for all e € E(G); see
[5, 20]. A graph Gis'diameter-vertez-invariant if D(G —v) = D(G) forall v € V(G) and
diameter-adding-invariant if D(G + e)i= D(e) for all'edges e of the complement of G; see
[19].

The ring network is one of the simplest topologies for interconnection networks. It
has many attractive properties such as simplicity, extendibility, low degree, and ease
of implementation. It has drawbacks as well: it has poor reliability (any failure in an
interface or communication link destroys the function of the network) and it has high
transmission delay. As a result, a lot of hybrid topologies utilizing the ring network as a
basis for synthesizing richer interconnection schemes have been proposed to improve the
reliability and reduce the transmission delay [1, 2, 4, 11, 12, 22]. One example of the
commonly used extensions for the ring network is the multi-loop network, which was first

proposed by Wong and Coppersmith in [22] for organizing multi-module memory services.



Another example of the commonly used extensions for the ring network is the chordal ring
network and is formally defined below.

The chordal ring network was first proposed by Arden and Lee [1]. It is considered
to be obtained by adding chords to a cycle (a ring network) so that the diameter can be
decreased and the reliability can be increased. More specifically, a chordal ring network
CR(N,w), where N is a positive even integer and w is a positive odd integer such that
w < N/2,is a graph with N nodes 0,1,..., N — 1 and 3N/2 links of the form:

(t,(i+1) mod N), i=0,1,2,...,N —1,
(7,(i + w) mod N), i=1,3,5,...,N — 1.

See Fig. 1 for an example. The chordal ring network is 3-regular. It preserves the Hamil-

tonian cycle from the ring network and has a better diameter than the ring network.

Figure 1: CR(26,11): the chordalwing with N = 26.and w= 11. The number inside
parentheses is the distance to node 0.

A network is usually been evaluated by its maximum transmission delay (diameter)
and by it fault-tolerant capability. Therefore a network with the dei property is preferred
than those without the property. The purpose of this thesis is to study the dei property
of chordal ring networks C'R(N,w). So far as we know, nobody has ever studied the dei
property for this kind of networks. In particular, we will determine if C R(N, w) is dei for
all w e {3,5,7,9}. In [1], Arden and Lee proposed a formula for computing the diameter

of CR(N,w). Unfortunately, their formula is not always correct. In this thesis, we will
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prove that for each N > 26, there exists a w such that Arden and Lee’s formula is not
correct. We will also fix the formula for two of the faulty cases.

This thesis is organized as follows. Section 2 gives some preliminaries. Section 3 gives
counterexamples for Arden and Lee’s diameter formulas. Section 4 contains our dei results

for chordal ring networks. The concluding remarks are given in the last section.

2 Preliminaries

Throughout this thesis, nodes in a graph are assumed taken modulo N. As an example,
u + v is the node (u 4 v) mod N and u — v is the node (v —v) mod N. An edge between
nodes u and v is denoted by (u, v)«The following definitions will be used throughout this
thesis. For each odd-numbered node i, we call a chordal traversal from node i to node
1+ w a clockwise chordal.traversal. Similarly; for each even-numbered node j, we call a
chordal traversal fromrmode j to node j —wra counterclockwise chordal traversal. A path
from node u to nodew is called a clockwise path'ifit eonsists of elockwise-chordal traversals
(possibly zero) plus_appropriate ring-edge traversals. Similarly, a path from node u to
node v is called a counterclockwise pathif it consists of counterclockwise chordal traversals
(possibly zero) plus appropriate ring=edge traversalss=ket-distc r(u;v) (resp. diste 1 (u,v))
denote the length of ajshortest clockwise (resp.”counterclockwise) path from u to v in G.

In [1], Arden and Lee had proven that
de(u,v) = mip{diste g(w, v), diste 1 (u, v) }.

Take C'R(26,11) in Fig. 1 as an example. Then distg z(0,11) = 3 and two clockwise
paths with such a distance are 0 — 1 — 12 — 11 and 0 — 25 — 10 — 11. Also,
diste (0, 11) = 5; three counterclockwise paths with such a distance is 0 — 15 — 14 —
13—-12—-11,0—-25 —-24 - 23 - 22— 1l,and 0 — 25 — 24 — 13 — 12 — 11.
Form the above, ds(0,5) = 3.

It is obvious that in a chordal ring network, all even-numbered nodes are symmetric;

also, all odd-numbered nodes are symmetric. If we flip a chordal ring network vertically,



then it is not difficult to see that node 1 is symmetric to node 0, node 2 is symmetric to
node N — 1, node 3 is symmetric to node N — 2, and so on. Thus a chordal ring network

is vertex-transitive and consequently,
D(G) = max{dz(0,v)}.

By using the vertex-transitive property, we obtain the following identities, which will be

used in the remaining proof.
o distg g(u,v) = distg, (v, u).

e For u even, dg(u,v) = dg(0,v — u).

e For u even, distg r(u,v) =disteq : (ww) = diste, (0,0 — u).
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29+ ¢(v) if Ay =0 orw—29+1 <A, <w.
Arden and Lee did not provide an explicit formula for computing dist¢ (0, v) and the

readers are asked to refer to the dissertation in [13]. For completeness of this thesis, we

now provide such a formula.
Theorem 2. Suppose G = CR(N,w) and v is a node in G. Then

i) When N —w+ %1 +1 <0< N-—1,distg(0,v) = N —v.
2 s



(i) When N —w <v < N —w+ 221, distg(0,0) =14+v— (N —w).
(i49) When v < N —w, distg, 1(0,v) = min{v, 1 + distg r(0, N —w — v)}.

Proof. To calculate distg (0, v), we divide the nodes in C'R(N, w) into several counter-
clockwise intervals each of size w + 1 (except possibly the last interval). The first interval
contains node 0, N—1, N -2, ..., N —w. Obviously, the length of a shortest counterclock-
wise path from node 0 to node N —w is 1. The length of a shortest counterclockwise path
from node 0 to any nodev € {N—1, N—-2, ..., N—w+w7_1+1} is N —v and one such path is
00— N—1— N—2---— v. On the other hand, the length of a shortest counterclockwise
path from node 0 to any node v € {N—w+21, N—w+21—-1,... N-w}is I4+v—(N-w)
and one such path is via the cherd (0,No— w) and. then follows the ring-edges, that is,
0 —>N—-w—N-w+1%-— N —w+ 2 — v. Since achordal ring network is vertex-
transitive, by Theorenm T and by the observation that-dist: 1 (w,v) = distg z(0,u —v) if u
is odd, we have distg (N — w, v) = diste (0 N = w +—v)."When v < N — w, node 0 can
get to node v by using only ring-edges or by using thé‘chord (0,/V — @) and appropriate

ring-edges; therefore dist (0, v) = min{wv, I fdistg z(0, N — w — v)}. ]

In [1], Arden and Lee also provided.a formula for computing the diameter of a chordal
ring network; see thefollowing theorem. For convenience, call this theorem the Diameter

Theorem.

Theorem 3. [1] (The Diameter Theorem)
Suppose G = CR(N,w), i = [2(10%1’ and /N =5 mod (w+1). Then

2 —1 if A=1,
Case 1. When i >“>1 D(G) =< 2i if2 <A <wds
20+ 1 ZfA—Oor“’TJr?’gAgw.

w—3 if1<A<2,

Case 2. Wheni =3 D(G) =
w—2 ifA=0o0r3<A<w.

z’+wT_3 z'f1<A<erl —7 or¥ 2 —i <A<w —1,

Case 3. Wheni<“3® D(G)={  *
i+t if A=0 or A= —i or w—i+1<A<w.



Before closing this section, we have to mention that Theorems 1 and 2 hold when
2w < N < 2w+ 2 and when N > (“2)(w+1) —2; for 2w +4 < N < (“F)(w+1) — 4,
these two theorems may not hold. The incorrectness of the Diameter Theorem might

come from the use of Theorem 1 for N such that 2w+ 4 < N < (“2)(w+ 1) — 4.

3 Counterexamples for Theorem 3

Let N; denote the set of nodes in a chordal ring network whose distance to node 0
is i. We now give a counterexample for the Diameter Theorem. Consider C'R(26,11)
shown in Fig. 1. It is not difficult to see that C'R(26,11) has Ny = {0}, N; = {1, 15,25},
Ny = {2,10,12,14,16,24}, N3 =a{3,5,9,11,13,17,23}, N, = {4,6,8,18,20,22}, and
N; = {7,19,21}. Since |J; Ny = {0,1,...,25}, D(CR(26511)) = 5. However, the
Diameter Theorem obtains D(C R(26, 11))=6:

We have run comiputer programs to obtain the diameters of chordal ring networks
CR(N,w) for N =46,8,...,5000;-and for each N, we.test all possible;chord lengths w.
Our experimental results show that the Diameter Theorem is correct if w € {3,5,7,9},
the first fault occurs at 'C'R(26, 11), and.for.each N > 26 (and N even), there exists a
chord length w such'that the Diameter-Theorem-is-wrong. for C R(N,w). For example,
the Diameter Theorend'is wrong for CR(28,11); CR(30413), CR(32,13), CR(34,15), and
so on. Moreover, our experimental shows that Cases 1 and 2 of the Diameter Theorem
are correct and faults occur in Case 3.

Recall that the Diameter Theorem is correet if w e {3,5,7,9} and the first fault of the
Diameter Theorem occurs at C'R(26,11). The chordal ring network C'R(26, 11) satisfies
N = 2w + 4. While we are unable to fix all the faults in the Diameter Theorem, we do
fix this theorem for the N = 2w 4+ 4 and N = 2w + 6 cases. See the following for details.

For G = CR(2w + 4,w), the Diameter Theorem obtains D(G) = “f. However, in

Theorem 4, we show that this result is incorrect. For G = CR(2w + 6, w), the Diameter

Theorem obtains D(G) = wT“ In Theorem 5, we show that this result is also incorrect.

Do notice that Theorems 4 and 5 together show that for all N > 26, there exists a w such



that the Diameter Theorem is incorrect.

Theorem 4. Suppose N = 2w + 4 and w > 11. Write w in the form w = 12t + p, where

t is a positive integer and p is an odd integer such that —1 < p < 9. Then

wid _ ot if—1<p<3

D(CR(N,w)) = { :i

9t f5<p<9.

Proof. Let G = CR(N,w). Then Ny = {0}, Ny = {l,w +4,2w + 3}, Ny = {2,w —
Lw+ 1, w+3,w+5,2w+ 2}, and N3 = {3,5,w— 2, w,w+2,w+6,2w+ 1}. Each node
in N3 (except w + 2) has at least one neighbor v such that node 0 can not reach node v

in three edges. In particular, node 0 can reach node 4 via node 3, reach node 6 via node

5, reach node w — 3 via node w —2yteacl 1 via node w + 6, and reach node

2w via node w or 2w + 1. Thy ,2w}. In general, we can

obtain N; for i > 4 + 45 @
Nity; ={4+65,6;

Nsya5 = {7+ 67,

(i) Suppose p = —1. The

N4+4j — {w—3 w+l w45 3w+3 Jw+7 3w+11} and N5+4] _ {w+3 3w+5 3w+9

20 20 29 2 72 27 2 7 2

Since Ngtaqj = “’—3, “’—H “’—+5, SwdT 3w+3 , clearly Ngi4; C Nayaj and therefore D(G) <
5+ 4j. Since {3, 3uts w0y g | Y N, Thus D(G) = 5 + 45 = ¥ — 2t

(ii) Suppose p = 1. Then w = 12¢ + 1. Let j = “513. Then

_ fw—1 w—=5 w47 3w+l 3w+9 3w—|—13 w41 w—|—5 3w+3 3w+7 3w+1l
N4—|—4j - 2 1 9 v 9 T 9 91 9o } N5+4] { ) y T 9 9T 9 9T 9 )
w—1 w+3 3w+1 3w+5 3w+9 _ w 3 w+1 w+5 w49 3w+3 3w+11
N6+4] { ) 9 1 9 } and N7+4j - ) ) » 9 9T 9



Note that { w+9 Q N7+4j and {w— w+9} g N5+4j Since {w— w+9} C N3+4j,
de(0,%52) = de(0,%£2) = 3 4 47, therefore D(G) < 6+ 4j. Since {¥52 345} C Ny, y;
and {4f2, 3wty g | PV N, Thus D(G) = 6 + 45 = 253 — 2.

(iii) Suppose p = 3. Then w = 12t + 3. Let j = “ZL2. Then
N, L {w— w+7 3w+l 3w+45 w49 3w+13} N, _ w+1 w+5 3w+3 3w47
5+45 — ) y T2 1T 9 T 9 6+45 — ) y T 2 17 9 )
w—1 w43 w47 3w+ 3w+9 w—3 w+5 w49 3w-—1 Jw+1ll 3w+3
N7+4] T2 9T v T g } and N8+4J {—7T7T’ 2 0 2 2 ’

w—3 w+9 3w—1 3w+411 w—3 w+9 3w—1 3w+ll :
Note that {%5=, “5=, ==, ===t C Ngiy; and {57, %5~ 25—, 55—} € Ngy4j. Since

{U)T-FQ’U)T%’?)U)——;II} g N4+4j7 dG(vaT—i_g) = dG(()?w—_Es) = dG(()?M) = dG(Ov%) =

4 + 44, therefore D(G) < 7+ 4j. Singe¥t3 & Ny and 252 ¢ |J7FV N;, Thus D(G) =
T4 =8 op
(iv) Suppose p = 5. Then w = 12t + 5. Let j = “’1_—217 The proof is similar to case (i).

The farthest nodes from node 0/is-in - Ni 4y and D(G) = & =Lk ot

(v) Suppose p =7 Then w =12t+ 7. Let j = wl;zlg. The proof is'similar to case (ii).

The farthest nodesgdrominode 0 is in Nyj4; and D(G) = 282 =2 94

(vi) Suppose p = 9. Then w = 12t + 9.7 Let j = “’1;221 The proof.is similar to case

(ili). The farthest nodes from node 08 inNs 4y and D(G) = 0 = £ — 2. ]

Theorem 5. Suppose’ N =2w + 6mand w > 11. Write w in the form w = 8t + p, where

t is a positive integer and pris an-odd integer such that =< p < 5. Then

2t +2 =ut ifp = —

D(CR(N,w)) =
(CRN, w)) {2t+3:%+12 if1<p<5.

Proof. Similar to that of Theorem 4. (]

4 The dei property of chordal ring networks

In this section, we will discuss the dei property of chordal ring networks. Notice that
N satisfies Case 1 of Theorem 3 if N > (w — 3)(w + 1) + 2, Case 2 of Theorem 3 if
(w=5)(w+1)+2 < N < (w—3)(w+1), and Case 3 of Theorem 3 if 2w < N <

9



(w—5)(w + 1). The discussions in this section are grouped according to the value of the
chord length w and the above ranges of N.
The following lemma provides a sufficient condition for a chordal ring network to be

dei. For convenience, call this lemma the DEI Lemma.

Lemma 6. (The DEI Lemma) Let G = CR(N,w). If for all v € V(G), there are
always two edge-disjoint paths Py, Py between node 0 and node v such that |P;| < D(G)

fori=1,2, then G is dei.

Proof. Since CR(N,w) is vertex-transitive and there are always two edge-disjoint paths
Py, P, between node 0 and node v such that |P;| < D(G) for i = 1,2, deleting any edge

will not raise the diameter. Hencetwe have this lemma. ]

Let e be an edge of Gi= CR(N,w) and H = G — e: To preve that G is non-dei, it

suffices to prove that
D(G — e) > du(0,z) > D(G): (1)

This inequality is used heavily in the remaining proofs.

Before going further, we introduce the triangular grid representationdor a chordal ring
network C'R(N,w). See Fig. 2'for an‘illustration. Consider the/triangular grid on the
plane. We associate CR(N;w) a labeling on the cells of thetriangular grid as follows
(all the labels are assumed takemuanodulo N). Label 0 to_an arbitrary downward triangle.
Once a downward triangle is labeled i, label its three neighboring triangles by i +1, 7 —1,
and ¢ — w in such a way that the triangle to the right of it receives i 4+ 1, to the left of it
receives ¢ — 1, and above it receives ¢ — w. Once a upward triangle is labeled j, label its
three neighboring triangles by j 4+ 1, j — 1, and 7 + w in such a way that the triangle to
the right of it receives j 4 1, to the left of it receives j — 1, and below it receives j + w.
Note that in this thesis, only nodes within distance D(CR(N,w)) will be shown in the
triangular grid representation.

For clarity, the remaining part of this section is divided into subsections.

Subsection 4.1 considers CR(N,w) with w = 3.

10
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Figure 2: C'R(22,9) and its associated triangular grid representation.

Subsection 4.2 considers CR(N,w) with (N = 2w or 2w + 2) and w > 5.
Subsection 4.3 considers CR(N,w) with 2w +4 < N < (w — 5)(w+ 1) and w = 9.
Subsection 4.4 considers CR(N,

w1 +2<N < (w=3)(w+1).

Subsection 4.5 considers

4.1 CR(N,w)

Since any shortest counterclockwise path from 0 to x in H must traverse via node N — 2,

diStH’L(O,.T) = 2—|—diStH,L(N—2,$)

= 2+ diStG’L(O, xr — (N _ 2)) by Thezorem 2

k+3.
Thus dg (0, z) = min{disty (0, z), disty (0, 2)} = k + 3. By Theorem 3, D(G) = k + 2.
By (1), G is non-dei.

Now assume that N = 4k + 8. Then G can be drawn as two concentric circles in such
a way that half of the nodes are on the inner circle and half of them, the outer circle. (See

Fig. 3 for an example.) By Theorems 1 and 2, when k is even (resp. odd), the node that

11



is farthest from node 0 is % — 1 (resp. %) By Theorem 3, D(G) = k + 3. We now prove
that for all v € V(G), there are two edge-disjoint paths P;, P» between 0 and v such that

|Pi| < D(G) for i = 1,2. See Fig. 3 for an illustration.

Figure 3: CR(16,3).

Depending on which nede'is v, there are four possibilities. (i)f v = & — 1 (resp. &),
then let P; be path that follows edge-(0, N — 1) and edges on the inner circle until v is
N

reached; let P, be the path that follows.edges on the outer circle until % (resp. 5 —1)

is reached, and then; follows edge (%, % — 1)) o = % (resp. % — 1), then the
outer circle provides Py, P, (iii) If v = N =1, then let C' be the cirele formed by the
four edges (0,1), (152), (2, N — 1), and (N — 1,0); clearly, C' provides P, P,. (iv) If
v e V(G)— {5 — 1,5, N.— 1}, thenilet u = v +.1 if v is odd andglet u = v — 1 if v
is even. Let C' be the girele formed by the edges (0, N — 1); (u, v); and the portions of
the inner and the outer cir¢les between (0, N — 1) and (@, v); elearly, C' provides Py, P;
(Fig. 3 shows an example of C' with v = 9). It is not difficult to verify that Py, P, are two

edge-disjoint paths between 0 and v and |P;| < D(G) for i = 1,2. Hence G is dei. ]

4.2 CR(N,w) with (N =2w or 2w+ 2) and w > 5
For chordal ring networks with N = 2w or 2w + 2, we have the following result.
Theorem 8. CR(N,w) is non-dei if (N = 2w or 2w + 2) and w > 5.

Proof. Let G = CR(N,w). First assume that N = 2w and w > 5. Set e = (0,1) and

w—1

H = G — e for easy writing. Consider the node z = “7=. Since any shortest clockwise

12



path from 0 to x in H must use the edges (0, N — 1) and (N —1,w — 1),

by Theorem 1

disty (0, ) = 2 + distg r(w — 1,2) = 2+ distg r(0,2 — (w — 1)) 2+ 2L

Since any shortest counterclockwise path from 0 to x in G does not use the edge e,

by Theorem 2 ;13

disty (0, z) = distg, (0, z) 5

Thus dy(0,2) = 2. By Theorem 3, D(G) = “+. By (1), G is non-dei.
Now assume that N =2w+2 and w > 5. Let e = (0, N—1) and H = G —e. Consider

the node z = “’TH

. Since any shortest clockwise path from 0 to x in H must use the edges
(0,1) and (1,2) or the edges (0,1) and (1,1 + w),

diStHJg(O,JI) = 2—|—min{distH,R(Z,x),distH,R(l—I—w,m)}

= 2%min{distc (2, 7), diste p(L+w)) ™ T wts

2

Since any shortest counterclockwise path from 0 to # in G must usethe edge (0, N — w),

by Theorem 1 4,13

disty (0, 2) = L +disty (N —w, z) =1 + diste z(0, N —w — x) .

Thus dg(0,z) = wTJF?’ By Theorem 3, D(G) = ’”TH By (1), G'is non-dei. ]

4.3 CR(N,w) with2w +4 <N < (w—5)(w+ 1) and'w =9
For chordal ring netwerks with w = 9, we have the following tesult.

Theorem 9. CR(N,9) is dei if N & {22,24,40} and non-dei if N € {26, 28,30, 32, 34,
36, 38).

Proof. First assume that N € {22,24,40}. Let G = CR(22,9). By Theorem 3,
D(G) = 5. All the nodes that can be reached from node 0 in D(G) edges are shown in
the triangular grid representation in Fig. 2. As was shown in this figure, for all v € V(G),
there are always two paths P;, P, satisfying the DEI Lemma. Hence G is dei. Similarly,
we can prove that C'R(24,9) and C'R(40,9) are dei.

Now assume N € {26, 28, 30, 32, 34, 36,38}. Let G = CR(NN,9). There are three cases.

13



Case 1: N € {26,28,30,32,34}. Let e = (0,N — 1) and H = G — e. Consider the
node x = N — 4. Since any shortest clockwise path from 0 to x in H must use the edges
(0,1) and (1,2) or the edges (0, 1) and (1,10),

distg g(0,2) = 2+ min{disty r(2,z),disty r(10,2)}

2+ min{distgyR(Q, l’), diStG,R(lO, iL‘)} by Thg)rem 1

6.

Since any shortest counterclockwise path from 0 to z in G must use the edge (0, N — 9),

by Theorem 2

diStH’L(O, .T) =1+ diStH’L(N — 9, $) =1+ diStG,L(O, —5) 6.

Thus dy(0,2) = 6. By Theorem 3, D(G) = 5. By (1), CR(N,9) is non-dei if N €
(26,28, 30,32, 341,

Case 2: N = 36. Let e = (0, nsider the node z = 13. Since any

Thus dy(0,2) = 7.

Case 3: N = 38.
any shortest clockwise path'l ; ges (0,1) and (1,2) or the
edges (0,1) and (1, 10),

disty r(0,2) = 2+ min{disty r(2,),disty r(10,2)}

= 2+ min{distg r(2, x), distg (10, z)} by Theorem 1
Since any shortest counterclockwise path from 0 to = in G must use the edge (0, 29),

) by ThE)rem 2

diStH,L(O, $) =1+ diStH’L(29, .T) =1 + diStG,L(O, 14 7.

Thus dg(0,2) = 7. By Theorem 3, D(G) = 6. By (1), CR(38,9) is non-dei. |

14



4.4 CR(N,w) with (w—-5)(w+1)+2< N <(w-3)(w+1)

When (w —5)(w+1)+2 < N < (w—3)(w + 1), Case 2 of the Diameter Theorem

occurs and we have the following result.

Theorem 10. For (w —5)(w+1)+2 < N < (w —3)(w + 1), we have:

(A) CR(18,7) is non-dei.

(B) CR(N,w) is dei if N = (w —5)(w+1)+2 and w > 9.

(C) CR(N,w) is non-dei if N = (w—5)(w+1)+4 andw > 7.

(D) CR(N,w) is dei if N = (w — 5)aid 1) 4 2t fw,> 7 and 3 < ¢ < 213,

(E) CR(N,w) is non-dei if N =(w— 5)(w + 1) + 2(w =#),w"> 7 and 0 < ¢ < 25,
(F) CR(N,w) is non=dei if N =-(w-—=8)(w+ 1) and w >:7.

Proof. Let G = €R(18,7), ¢ =(0;11), and 'H = Gi— e. By Fig! 4,5d;(0,11) = 5. By
Theorem 3, D(G) = 4. By(1), CR(18,7) is non=dei:

Figure 4: The graph H = G — ¢, where G = CR(18,7) and e = (0,11). The number
inside parentheses is the distance to node 0.

We now prove (B). Let G = CR(N,w). By Theorem 3, D(G) = w — 3, which is an
even number. The triangular grid representation of G is of the form shown in Fig. 5(a). In
the following, we will consider the triangular grid representation of G as the combination

of several shaded areas. For each shaded area, we will prove that for each node v in that
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shaded area, there are always two paths P, P, satisfying the DEI Lemma. See also Fig. 6
for a specific triangular grid representation.

First consider the shaded area shown in Fig. 5(a). Since D(G) > 6, for each node v
in this shaded area, there are always two paths P;, P, satisfying the DEI Lemma. Now
consider the shaded area shown in Fig. 5(b). Obviously, for each node v in in this shaded

area, there are always two paths P;, P, satisfy the DEI Lemma.

Figure 5: (a) The triangular grid representation and the first shaded ared. (b) The second
shaded area.

12/\14/\16 /\18
\ 13\ /15\ /17 /
\20 22/\ 24/\ 26 zy
21N/ 23\ /25\ /27
\28 30/\32/\34/\ 36 3y
29\ /31\ /33\ /35\ /37
36/\38/\40/\ 0/\ 2/\ 4/\ 8
37\ /39\ /41N /1\/3\/ 5

NV
NAVAAY,

Figure 6: The triangular grid representation of C'R(42,9).

Consider the shaded area shown in Fig. 7(a). For convenience, let a denote the node
w + 1. Clearly, dg(0,a) = 2. Each node v in this shaded area has dg(0,v) = dg(a,v)

and the distance from node 0 to any node in this shaded area is at most D(G) — 2.
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Consequently, for each node v in in this shaded area, there are always two paths P, P,
satisfy the DEI Lemma. Consider the shaded area shown in Fig. 7(b). For convenience,
let b denote the node N —w — 1. Clearly, du(0,b) = 2. Each node v in this shaded area
has dg(0,v) = dg(b,v) and the distance from node 0 to any node in this shaded area is
at most D(G) — 2. Consequently, for each node v in in this shaded area, there are always

two paths P;, P, satisfy the DEI Lemma.

ol
TR
%&

Figure7: (a) The third shaded area. (b) The fourth shadedlarea.

By similar arguments, for each node v, except these-in the shaded area of Fig. 8, there
are always two paths Pf,; P satisfying the DEI Lemma. We now ¢onsider nodes in the
shaded area of Fig. 8. See Figs. 9213 for an illustration.

First consider Fig. 9 and the cells labeled i1, @5, 21, us,v1, v, in this figure. The label
i1 is in the leftmost cell of the first row; thus i; = N — (2£) (w —3) = %. Therefore
o =11 +2 = %. The label u; is in the leftmost cell of the last row; thus u; =
(%) (w —3) = %. The label uy is in the rightmost node of the reciprocal second

row; therefore uy = u; — (w+1) = %. The label v is in the rightmost cell of the

last row; thus v; = (%) (w — 3) = % The label v, is in the rightmost node of the

1) = %. From the above,

reciprocal third row; therefore vy = v; — 2(w —

7:2 = U9 = V2. (2)
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Figure 8: Those shaded boundary nodes need additional discussion.
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(a) (b)

-

Figure 9: The shaded nodes in:(a) are identical; those in (b) are also identical.

Since iy = vy, in Fig. 9(a), the set of nodes in the shaded arca (;f the first row is identical to
the set of nodes in the shaded area of t‘he reciprocal third row. Since iy = ug, in Fig. 9(b),
the set of nodes in the shaded area of the first row is identical to the set of nodes in the
shaded area of the reciprocal second row. By similar arguments, the sets of nodes in the
two shaded areas in Figs. 10(a), 10(b), 11(a) and 11(b) are identical, too.

Now consider Fig. 12 and the cells labeled i3, 1, j2, v4 in this figure. The label i3 is

2

in the leftmost cell of the third row; thus iz = i; + 2(w — 1) = W The label j; is

in the rightmost cell of the first row; thus j; = N — (1) (w — 3) = W. Therefore
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Figure 10: The shaded nodes in (a) are identical; those in (b) are also identical.
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Figure 11: The shaded nodes in (a) are identical; those in#(b)are also identical.

Jo=J1+(w+1) = % Sincev,, r “’2_3“’_3, L= T B % From the above,
7:3 = j2 = V4. (3)

Thus the sets of nodes in the two shaded areas in Figs. 12(a), 12(b), 13(a) and 13(b) are
identical, too.

From the above discussion, for each node v in the shaded area of Fig. 8 except the
five nodes in {iy — 1,49, 45+ 1, u3, i3}, there are always two paths P;, P, satisfying the DEI
Lemma. For each of the five nodes in the set, we now use (i)-(v) to prove that there are

also two paths Py, P, satisfying the DEI Lemma.
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Figure 12: The shaded nodes in (a) are identical; those in (b) are also identical.
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VAVAVA AVAVAV
\VAVAVANERRWAVAVAY,
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Figure 13: The shaded nodes in ( ) are identical; those i (b) are also identical.

(i) Consider node iy —1. By (2), 1 =l =y = 1. Let PL=0 Y N—w 3 N —(w+1) =¥
N-QQu+1) 3 N-—Qu+2) I N-Buw+2) S N-@Buw+3) =% ...5
N—(w—“”)(w%—l)iﬂ]\f () (w4 1) —w =iy — 1. Let B, = 0 5 1 2%
w+l B wr2 W w+2B 2w+3 W 3w+3 5 W (gDHw 1) B
(wT_)(w—l—l)+1—>(wT_)(w—l—l)+2—>(wT_)(w—l—l)—l—ZS:vg—l. See Fig. 6
for an illustration. Then i —1 =13, P, =0 — 33 — 32 — 23 — 22 — 13 and

PBR=0—-1—-10—11—12 — 13.

(ii) Consider node iy. By (2), 49 = v. Let P, = 0 — N —w =N - (w+1) =
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—

N-QQu+1) 3 N-—Qu+2) ¥ N-QBw+2) = N-(3w+3) =%

N— (D w+1) TN (S (w+1) —w DN (G w+1) —w+1 %
N— (D) (w+1)—2w+1 2 N— (%) (w+1) — 2w =iy Let P, =0 5
1 w+1Bwr2Towt+282w+3% 3w+3—>~-~ﬂ(w27)(w+1)+—1>

(S w4+ 1) +1 2 (S (w+1)+2 52 (S (w+1)+3 5 (D) (w+1) +4 = vy
Again, see Fig. 6. Then i = 14, P, =0 — 33 — 32 — 23 — 24 — 15 — 14 and
BR=0—-1—-10—11—12 — 13 — 14.

(iii) Consider node iy +1. By (2),i9+1=1us+1. Let P, =0 — N—w = N—(w+1) =
N-(Qu+1) 2 N-—Qu+2) Y N-GBuw+2 S N-Bw+3) =%... 2

N — (%) (w+1) = N — — (Y w+1) —w+1 =

1 w15 w—2 ™

2w —2 5 2w — 3% 3w - - )= w—1)—1=uy+1.

(iv) Consider nod 0—-1—-2->

g+l #l g 4

5+ (3w +3) B =9) (i F TP, = 05N —1 8 w—123
w—2 w25 Ty (w—1)— 1
(wT—7)(w —-1) -2 > Fig. 6. Then uz = 5

P=0—1—2—3— 4=

(v) Consider node i5. By (3), i3 =vs. Let P, =0 =% N—w = N —(w+1) =% N—(2w+
DSN-Qu+2) EN-Bw+2) S N-Bw+3) = - SN - (5 (w+1) =
N—(%0)(w+1)— 123 N— () (w+1)— 2 A N— (D) (w+1)— —33 N-— (2=T) (w+
N—d=is. Let =021 w1 B wr2owtr282w+33w+3E
() (w4 1) =3 (U9 (w+1) — 1 8 (252 (w + 1) — 1 +w = v,. Take Fig. 6
for an example again. Then i3 =28, P, =0 — 33 — 32 — 31 — 30 — 29 — 28
and ,=0—1—10— 11 — 20 — 19 — 28.
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In (i)-(ili) and (v), P, is a counterclockwise path, P, is a clockwise path and P, P, are
edge-disjoint. In (iv), P and P, are both clockwise paths and they are edge-disjoint. It
is not difficult to verify that P;, P, satisfy the DEI Lemma. We now complete the proof
of (B).

Consider (C). Let G = CR(N,w), e = (0,1), and H = G — e. Consider the node
z = % — 1. Note that dy(0,z) = min{disty, (0, ), disty 1 (0,2)}. Since any shortest
counterclockwise path from 0 to z in G will not use the edge e,

by Theorem 2

disty (0, z) = distg (0, ) w — 2.

Since any shortest clockwise path from 0 to x in H must use the edge (0, N — 1),

)) by Thg)rem 1

distg (0, ) = 2 + distg g (we="Tsx) = 2+ diste r(0,2 — (w1 24w —4.

Thus dy(0,2) = w — 2.4By Theorem 3, D(G) =w= 3By (1), Giis non-dei.

Consider (D). Leta G = CR(N;w). By Theorem 3, D(G)'=w — 2, which is an
odd number. The proof of (D) is-similar to that of (B) except that the triangular grid
representation is of the form shown in Fig. 14 and. the nodes corresponding to those in

Fig. 8 are those shown in Fig. 14.

Figure 14: Those shaded boundary nodes need additional discussion.

Consider (E). Let G = CR(N,w), e = (0,1), and H = G — e. Consider the node

x = % +t+4 2 — w. Since any shortest counterclockwise path from 0 to z in G will not
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use the edge e,

by Theorem 2

disty,1,(0, z) = dist, (0, z) w — 1.

Since any shortest clockwise path from 0 to z in H must use the edge (0, N — 1),

by Theorem 1

disty (0, ) = 2 + distg r(w — 1,2) = 2 + distg (0,2 — (w — 1)) 2+w-—3.

Thus dg(0,2) = w — 1. By Theorem 3, D(G) = w — 2. By (1), CR(N,w) is non-dei.
Consider (F). Let G = CR(N,w), e = (0, N —w), and H = G — e. Consider the node

N _

r = 5 — 2. Since any shortest clockwise path from 0 to z in G will not use the edge e,

by ThE)rem 1

disty r(0, x) = distg (0, z)

w ~+ 2k.

Since any shortest counterclogkwise ) - I ust travel via node N — 2,

st s (07) — 5 distie (0,2 — (n— 2))

Thus dy(0,2) = w y Theotem.-3, 1 CR(N w) is non-dei. m

When N > (w 3

occurs and we have

the following result.

Theorem 11. For N > (ws w+ 1) + 2, we have:

(a) CR(N,w) is non-dei if N = (w+1), w>5and k> 0.
(b) CR(16,5) is non-dei.

(c) CR(N,w) is dei if N = (w —3)(w+ 1) + 44 2k(w+1) and (w =5 and k > 1) or
(w>T7and k> 0).

(d) CR(N,w) is non-dei if N = (w — 3)(w + 1) + 2t + 2k(w + 1), w > 5, 3 < t < w43
and k > 0.

(e) CR(N,w) is deiif N=(w—3)(w+ 1)+ (w+5)+2k(w+1), w>5 and k > 0.
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(f) CR(N,w) is non-dei if N = (w—3)(w+1)+2(w—1t)+2k(w+1), w > 7,0 <t < 27

and k > 0.
(g) CR(N,w) is non-dei if N = (w—1+2k)(w+1), w>5 and k > 0.

Proof. Consider (a). Let G = CR(N,w), e = (0,1), and H = G — e. Consider the
node r = % — 1. Since any shortest counterclockwise path from 0 to z in G will not use

the edge e,
by Theorem 2

diStHL(O, x) = diStG’L(O, x) w—1+ 2k.

Since any shortest clockwise path from 0 to x in H must use the edge (0, N — 1),

by Theorem 1

distH,R(O,x) = 2—|—diStG7R(w—1,fL’) = 2—|—diStG,R(O,.T— (w— 1)) 24w —3+2k.

Thus dg(0,x) = w — 1 +2k. By Theorem 3, D(G) = w =2+ 2k By (1), G is non-dei.
Consider (b). Let G = CR(16,5);-e;= (0,1), and H =G — e. Itis not difficult to see
from Fig. 15 that dg(0,1) = 5. By-Theorem 3, P(G) =4 By (1), CR(16,5) is non-dei.

Figure 15: The graph H = G — e, where G = CR(16,5) and e = (0,1). The number
inside parentheses is the distance to node 0.

The proofs of (c¢) and (e) are similar to that of Theorem 10(B) and we omit them.
Consider (d). Let G = CR(N,w), e = (0, N —w), and H = G — e. Consider the node

r = % — t + 3. Since any shortest clockwise path from 0 to x in G does not use edge e,

) by The:orem 1 w + 2%

disty (0, ) = distg r(0, z
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Since any shortest counterclockwise path from 0 to x in H must travel via node N — 2,

diStHyL(O, LL‘) = 24+ diStHyL(N — 2, LL‘) =2+ diStH’L(O, r — (N — 2))
by Thg)rem? 2+w—2+2k

Thus dy(0,2) = w + 2k. By Theorem 3, D(G) = w — 1+ 2k. By (1), G is non-dei.
Consider (f). Let G = CR(N,w), e = (0, N —w), and H = G — e. Consider the node

T = % +t+ 3. Since any shortest clockwise path from 0 to x in G will not use the edge e,

by ThE)rem 1

disty z(0, z) = distg (0, x) w + 2k.

Since any shortest counterclockwise path from 0 to x in H must travel via node N — 2,

diStHyL(O, LL‘) = 2+ dis
by Theorem 2

) =24 diStH’L(O,LL‘ — (N — 2))

Thus dy(0,2) = w + 2k + B y " s (1), G is non-dei.
Consider (g). Let ‘ & H

z =4 + 2. Since any s rckwise path fro ‘ 1 will not use the edge e,

Since any shortest gount ise pat ‘ ia node N — 2,

disty 0 (0,2) 0 = Bta p - 2 ist (05w — (N — 2))

Thus dy(0,2) = w + 2k . 1 - w ,. (1), G is non-dei. ]
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5 Concluding remarks

The purpose of the thesis is to discuss the dei property of chordal ring networks. The
chordal ring network is a commonly used extension of the ring network. In [1], Arden and
Lee proposed a formula for computing the diameter of a chordal ring network CR(N, w).
In this thesis, we have shown that this formula is incorrect. We have successfully de-
termined if CR(N,w) is dei for all w € {3,5,7,9}. Arden and Lee’s formula actually
contains three cases: Cases 1 and 2 are correct and Case 3 is incorrect (see the Diameter

Theorem for details). In this thesis, we have successfully determined if CR(N,w) is dei

for Cases 1 and 2 and some special cases of Case 3.
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6 Thm 7
8 | dei Thm 7

10 Thm 7 Thm 8

12 | dei Thm 7 Thm 8

14 Thm 7 Thm 11 Thm 8

16 | dei Thm 7 Thm 11 Thm 8

18 Thm 7 Thm 11 Thm 10 Thm 8

20 | dei Thm 7 Thm 11 Thm 10 Thm 8

22 Thm 7 | dei Thm 11 | dei Thm 10 | dei Thm 9 Thm 8
24 | dei Thm 7 Thm 11 | dei Thm 10 | dei Thm 9 Thm 8
26 Thm 7 Thm 11 | dei Thm 10 Thm 9 ?

28 | dei Thm 7 | dei Thm 11 Thm 10 Thm 9 ?

30 Thm 7 Thm 11 Thm 10 Thm 9 ?

32 | dei Thm 7 Thm 11 Thm 10 Thm 9 ?

34 Thm 7 | dei Thm 11 Thm 11 Thm 9 ?

36 | dei Thm 7 Thm 11y deist Thm, 11 Thm 9 ?

38 Thm 7 Thm 11 Thm 11 Thm 9 ?

40 | dei Thm 7 | dei ' Thm 11 Thm 11 | dei' "Thm 9 ?

42 Thm 7 Thm 11 Thm 11 | dei Thm 10 ?

44 | dei Thm7 Thm 11 |ydein (Thmy 11 Thm10 ?

46 Thm 7 | dei Thm 11 Thm 11 | dei Thm 10 ?

48 | dei Thm 7 Thm 11 Thm 11 | ‘dei. Thm 10 ?

50 Thm 7 Thm 11 Thm 117 dei Thm'10 ?

52 | dei Thm 7 | dei Thm 11 | dei Thm 11| dei Thm 10 ?

54 Thm 7 Thm 11 Thm 11 Thm 10 ?

56 | dei Thm 7 Thm 11 Thm 11 Thm 10 ?

58 Thm 7 | dei Thm 11 Thm 11 Thm 10 ?

60 | dei Thm 7 Thm 11 |-dei  Thm 11 Thm 10 ?

62 Thm 7 Thm 11 Thm 11 Thm 11 ?

64 | dei Thm7 |.dei Thm'11 Thm 11" dei Thm 14 ?

66 Thm 7 Thm 11 Thm 11 Thm 11 ?

68 | dei Thm 7 Thm 11 | dei Thm 11 Thm'11 ?

70 Thm 7 |dei’ Thm 11 Thm 11 Thm 11 ?

72 | dei Thm 7 Thm 11 Thm 11 Thm 11 ?

74 Thm 7 Thmi11 Thm 11| dei Thm 11 | dei Thm 10
76 | dei Thm 7 | dei Thm 11 | dei Thm 11 Thm 11 Thm 10
78 Thm 7 Thm 11 Thm 11 Thm 11 | dei Thm 10
80 | dei Thm 7 Thm 11 Thm 11 Thm 11 | dei Thm 10
82 Thm 7 | dei Thm 11 Thm 11 Thm 11 | dei Thm 10
84 | dei Thm 7 Thm 11 | dei Thm 11 | dei Thm 11 | dei Thm 10
86 Thm 7 Thm 11 Thm 11 Thm 11 | dei Thm 10
88 | dei Thm 7 | dei Thm 11 Thm 11 Thm 11 Thm 10
90 Thm 7 Thm 11 Thm 11 Thm 11 Thm 10
92 | dei Thm 7 Thm 11 | dei Thm 11 Thm 11 Thm 10
94 Thm 7 | dei Thm 11 Thm 11 | dei Thm 11 Thm 10
96 | dei Thm 7 Thm 11 Thm 11 Thm 11 Thm 10
98 Thm 7 Thm 11 Thm 11 Thm 11 Thm 11
100 | dei Thm 7 | dei Thm 11 | dei Thm 11 Thm 11 | dei Thm 11
102 Thm 7 Thm 11 Thm 11 Thm 11 Thm 11
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N\ w 3 5 7 9 11
104 | dei Thm 7 Thm 11 Thm 11 | dei Thm 11 Thm 11
106 Thm 7 | dei Thm 11 Thm 11 Thm 11 Thm 11
108 | dei Thm 7 Thm 11 | dei Thm 11 Thm 11 Thm 11
110 Thm 7 Thm 11 Thm 11 Thm 11 Thm 11
112 | dei Thm 7 | dei Thm 11 Thm 11 Thm 11 | dei Thm 11
114 Thm 7 Thm 11 Thm 11 | dei Thm 11 Thm 11
116 | dei Thm 7 Thm 11 | dei Thm 11 Thm 11 Thm 11
118 Thm 7 | dei Thm 11 Thm 11 Thm 11 Thm 11
120 | dei Thm 7 Thm 11 Thm 11 Thm 11 Thm 11
122 Thm 7 Thm 11 Thm 11 Thm 11 Thm 11
124 | dei Thm 7 | dei Thm 11 | dei Thm 11 | dei Thm 11 | dei Thm 11
126 Thm 7 Thm 11 Thm 11 Thm 11 Thm 11
128 | dei Thm 7 Thm 11 Thm 11 Thm 11 Thm 11
130 Thm 7 | dei Thm 11 Thm 11 Thm 11 Thm 11
132 | dei Thm 7 Thm 11 | dei Thm 11 Thm 11 Thm 11
134 Thm 7 Thm 11 Thm. 11 | dei Thm 11 Thm 11
136 | dei Thm 7 | dei Thm 11 Thm 11 Thm 11 | dei Thm 11
138 Thm 7 Thm 11 Thm 11 Thm 11 Thm 11
140 | dei Thm 7 Thm 11 | dei Thm 11 Thm 11 Thm 11
142 Thm 7| dei .- Thm 11 Thms 11 Thme11 Thm 11
144 | dei Thm 7 Thm 11 Thm 11 | dei Thm 11 Thm 11
146 Thm 7 Thm 11 Thm 11 Thm 11 Thm 11
148 | dei Thm 7 | dei | Thm 11 {~dei Thm 11 Thm'1ll dei Thm 11
150 Thm 7 Thm 11 Thm 11 Thm 11 Thm 11
152 | dei Thm 7 Thm 11 Thm 11 Thm 11 Thm 11
154 Thm 7 | dett Thm 11 Thm 11 | dei 'Thm 11 Thm 11
156 | dei Thm 7 Thm 11 |.dei Thm 11 Thm 11 Thm 11
158 Thm 7 Thm 11 Thm 11 Thm 11 Thm 11
160 | dei Thm 7 | dei Thin 11 Thm 11 Thmi 11l | dei Thm 11
162 Thm.7 Thm 11 Thim “11 Thim 11 Thm 11
164 | dei Thm 7 Thm 11 | det Thm 11 | dei “Thm i1 Thm 11
166 Thm 74 dei® Thm 11 Thm 11 Thm'11 Thm 11
168 | dei Thm 7 Than 11 Thm 11 Thm 11 Thm 11
170 Thm 7 Thm 11 Thm 11 Thm 11 Thm 11
172 | dei Thm 7 | dei Thm11l | dei; Thm 11 Thm 11 | dei Thm 11
174 Thm 7 Thm 11 Thm 11 | dei Thm 11 Thm 11
176 | dei Thm 7 Thm 11 Thm 11 Thm 11 Thm 11
178 Thm 7 | dei Thm 11 Thm 11 Thm 11 Thm 11
180 | dei Thm 7 Thm 11 | dei Thm 11 Thm 11 Thm 11
182 Thm 7 Thm 11 Thm 11 Thm 11 Thm 11
186 | dei Thm 7 | dei Thm 11 Thm 11 | dei Thm 11 | dei Thm 11
186 Thm 7 Thm 11 Thm 11 Thm 11 Thm 11
188 | dei Thm 7 Thm 11 | dei Thm 11 Thm 11 Thm 11
190 Thm 7 | dei Thm 11 Thm 11 Thm 11 Thm 11
192 | dei Thm 7 Thm 11 Thm 11 Thm 11 Thm 11
194 Thm 7 Thm 11 Thm 11 | dei Thm 11 Thm 11
196 | dei Thm 7 | dei Thm 11 | dei Thm 11 Thm 11 | dei Thm 11
198 | dei Thm 7 Thm 11 Thm 11 Thm 11 Thm 11
200 | dei Thm 7 Thm 11 Thm 11 Thm 11 Thm 11
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