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Hsinchu, Taiwan 30050 Hsinchu, Taiwan 30050
Abstract

In this thesis we study an oriented version of perfect path double cover (PPDC).
An oriented perfect path double cover (OPPDC) of a graph G is a collection of
oriented paths in the symmetric orientation S(G) of G such that each edge of S(G)
lies in exactly one of the paths and for each vertex v € V(G) there is a unique
path which begins in v (and thus the same holds also for terminal vertices of the
paths). First we show that if G has no components which isomorphism to K3
and G is a 3-degenerate graph, then G has an OPPDC. Next we also construct an
OPPDC for complete bipartite graph K, , and multipartite graph K,,,(n is odd
and m # 3,5),respectively.
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1 Introduction

Graph decomposition is one of the most important topics in the study of graph theory.In
1979, P. D. Seymour [20] conjectured that every bridgeless graph has a cycle double cover,
which is a collection of cycles such that every edge of GG is contained in exactly two cycles
of the cycle collection. The cycle double cover conjecture lies in the very heart of the
graph theory. It seems that this elementary problem has a deep topological background
and only partial results are known. This problem (in the very short time of its existence)
also motivated several related conjectures: J. A. Bondy [3] conjectured that every simple
bridgeless graph has a small cycle double cover, which is a cycle double cover containing
at most n — 1 cycles on a graph that order n. There are a number of classes of graphs
for which the small cycle double cover conjecture has been verified, including complete
graphs [3] (excluding K5), complete bipartite graph [3] (other than K ,,), 4-connected
planar graphs [18], and simple triangulations of orientable surfaces [3, 17]. A common
characteristic of these classes of graphs is that there is.some structure to the graphs that
allows for assumptions about cycles«in the graphs: Thisseems to be a desirable property,
since it is necessary to keep track of themumber of cyclés when constructing small cycle
double covers.

In 1990, Bondy [3] also posed several conjectures about path double covers of graphs.
He conjectured that every simple graph admits a path double cover P such that each
vertex occurs exactly twice as an end of a path in P : a perfect path double cover. This
conjecture was later provey by H. Li [11]. Bondy also conjectured that every k-regular
simple graph admits a path double cover P such that every path in P has length k£ and
each vertex of the graph occurs exactly twice as an end of a path in P : a regular perfect
path double cover. This conjecture has been proved for k < 3 [3] and k = 4 [8] but is still
open for larger values of k. Perfect path double cover for graphs in general is equivalent
to small cycle double cover for bridgeless apex graphs (apex graph = graph with a vertex
joined to all other vertices). To see this, consider a graph G\v where v is a vertex of
degree n — 1 in a bridgeless graph . G has an small cycle double cover if and only if

G\v has a perfect path double cover.



Also unsolved are oriented versions of these problems. In 1988, Jaeger [9] conjectured
that every bridgeless graph has an oriented cycle double cover. No counterexample to the
oriented cycle double cover conjecture is presently known. In 1998, J. Maxovd [12] show
that K3 and K5 have no oriented perfect path double cover. In 2001, J. Maxovd proved
that all 2-connected graph on n vertices with at most 2n—1 edges have an oriented perfect
path double cover(except for K3). In 2004, J. Maxovd conjectured that K3 and K are
the only connected graphs which do not have an oriented perfect path double cover.

In this thesis, the main results are that for every 3-degenerate graph with no compo-
nents isomorphic to K3 has an oriented perfect path double. Furthermore, show that for
all n > 1 the complete bipartite graph K, , has an oriented perfect path double and for

m # 3,5 and n is odd the multipartite graph K,,(,) has an oriented perfect path double.



1.1 Preliminaries

In this section, we first introduce the terminologies and definitions of graphs. For details,
the readers may refer to the book “Introduction to Graph Theory” by D. B. West.[23]

A graph G is a triple consisting of a vertex set V(G), an edge set F(G), and a relation
that associates with each edge two vertices called its endpoints. A loop is an edge whose
endpoints are equal. Multiedges are edges having the same pair of endpoints. A simple
graph is a graph without loops or multiedges. In this thesis, all the graphs we consider
are simple. The size of the vertex set V(G), |V (G)|, is called the order of G, and the size
of the edge set E(G), |E(G)|, is called the size of G.

If e = {u,v} (uv in short) is an edge of G, then e is said to be incident to u and v.
We also say that u and v are adjacent to each other. For every v € V(G), N(v) denotes
the neighborhood of v, that is, all vertices of N(v) are adjacent to v. The degree of v,
deg(v) = |N(v)|, is the number of neighbors of v.

Let G = (V; E) be a undirected simple graph. ‘Arpath of length k in G is a sequence

U1, €1,Va, ..., ek, Ugyy Of its vertices and ledges where e;.= {v;,v;11} for 0 < i < k and
vy, ..., U,y are distinct vertices. A-cycle oflength £k is-a sequence vy, eq,v9, ..., €, Upi1
of its vertices and edges where ¢; = {Wj0:51} for 0 £4 < k, v = vgy1 and vy, ..., vy are

distinct vertices.

The maximum degree is A(G), the minimum degree is §(G), and G is regular if
A(G) = 0(GQ). Tt is k-regular if the common degree is k. A cubic graph is a graph that is
regular of degree 3.

A graph G is connected if it has a wu,v-path whenever u,v € V(G) (otherwise, G is
disconnected). If G has a w,v-path, then u is connected to v in G. The components of
a graph G are its maximal connected subgraphs. A component (or graph) is trivial if it
has no edges; otherwise it is nontrivial. An isolated vertex is a vertex of degree 0.

A directed graph (digraph) is a triple consisting of a vertex set V(G), an edge set
E(G), and a function assigning each edge an ordered pair of vertices. The first vertex of
the ordered pair is the tail of the edge, and the second is the head; together they are the

endpoints. We say that an edge from its tail to its head.



A digraph is a path if it is a simple digraph whose vertices can be linearly ordered so
that there is an edge with tail v and head v if and only if v immediately follows u in the
vertex ordering. A cycle is defined similarly using an ordering of the vertices on a circle.

In our main results, all graph we consider are simple digraph.

A subgraph of a graph G is a graph H such that V(H) C V(G) and E(H) C E(G)
and the assignment of endpoints to edges in H is the same as in G. A spanning subgraph
of G is a subgraph H with V(H) = V(G). A graph G is k — degenerate if every subgraph
of G has a vertex of degree at most k.

A complete graph is a simple graph whose vertices are pairwise adjacent; the complete
graph with n vertices is denoted by K,,. A graph G is bipartite if V(G) is the union of
two disjoint independent sets called partite sets of G. A graph G is m-partite if V(G) can
be expressed as the union of m independent sets. A complete bipartite graph is a bipartite
graph such that two vertices are adjacent if and only if they are in different partite sets.
When the sets have the sizes s and ¢, the'completérbipartite graph is denoted by Kj,. If
the sets have the same size n, the ecomplete -bipartite graph is called balanced, which is
denoted by K, ,. Similarly, the complete m-partite graph is denoted by Kj, 5, 5, and
the balanced complete m-partite graph is'denoted by K, ;) where each partite set has n
vertices.

An isomorphism from a graph G to a graph H is a bijection f : V(G) — V(H) such
that uv € E(Q) if and only if f(u)f(v) € E(H). We say “G is isomorphic to H”, written
G = H, if there is an isomorphism from G to H.

Let G be a graph of order m with V(G) = {g; : 0 < i < m — 1}, and let H ne a
graph of order n with V(H) = {h; : 0 < i < n —1}. The Cartesian product GOH is
defined to be the graph with vertex set {(g;,h;) :0<i<m—1and 0<j<n-—1} and
(9i, hj)(gs, ) € E(GOH) if either g; = g5 and hjh, € E(H) or h; = h; and g;9s € E(G).

The symmetric orientation of G, denoted by S(G), that is an oriented graph obtained
from G by replacing each edge of G by a pair of oppositely directed arcs (i.e. V(S(G)) =
V(G) and E(S(G)) = {(u,v), (v,u)|(u,v) € E(G)}).

We give some important definitions as followings.



A cycle double cover (CDC) of a graph G is a collection of its cycle such that each
edge of G lies in exactly two of the cycles. A small cycle double cover (SCDC) of a graph
on n vertices is a CDC with at most n — 1 circuits.

A perfect path double cover (PPDC) of a graph G is a collection of its paths such that
each edge of G lies in exactly two of the paths and each vertex of G appears precisely
twice as an endpoint of a path.

A regular perfect path double cover (RPPDC) of a k-regular simple graph G is a col-
lection PP of its paths such that every path in P has length k& and each vertex of the graph
occurs exactly twice as an end of a path in P.

For a path double cover P of a graph G, the associated graph Ap(G) of P is defined as
a graph having the same vertex set as G, with two vertices x and y adjacent in Ap(G) if
and only if there is a path in P with endpoints x and y.

A PPDC is called an eulerian perfect path double cover (EPPDC) if its associated graph
is a cycle. If a path double cover is bothséulerian and regular, we call it an ERPPDC.

An oriented perfect path double eover (OPPDC). of & graph G is a collection of paths
on G such that each edge of S(G) lies'in exaetly one of, the paths and each vertex of G

appears just once as a beginning and just once-as-an end of a path.



1.2 Known Results

We consider cycle decomposition and path decomposition on undirected graph. The

following are some results:

Theorem 1.1. [10] (1) For all odd integers n and all non-negative integer r satisfying
3r = @ there is a decomposition of K,, into r 3-cycles which partitions the edge set of
K,. (2) For all even integers n and all non-negative integers r satisfying 3r = @ there

s a decomposition of K,, — F into r 3-cycles which partitions the edges set of K, — F.

We can establish the existence of cycle systems not only the 3-cycle system but also

the m-cycle system for any m. There are some results below:

Theorem 1.2. [16] (1) For all odd integers n and all non-negative integer r and m

n(n—1)
2

satisfying mr = there is a decomposition of K, into r m-cycles which partitions the

edge set of K,,. (2) For all even integers n and all non-negative integers r and m satisfying

n(

mr = %2) there is a decomposition of K,, — F into r=m-cycles which partitions the edges

set of K,, — F.

Theorem 1.3. [1] (1) For all odd integersiandallnon-negative integer r and s satisfying
3r + 5s = @ there is a decomposition-of 455 into r 3-cycles and s 5-cycles which
partitions the edge set of K,. (2) For all even integers n and all non-negative integers r

(

and s satisfying 3r + bs = %_2) there is a decomposition of K, — F into r 3-cycles and

s b-cycles which partitions the edges set of K,, — F'.

Theorem 1.4. [7] (1) For all odd integers n and all non-negative integer v, s and t

satisfying 3r 4+ 4s + 6t = w there is a decomposition of K,, into r 3-cycles, s 4-cycles,

and t 6-cycles which partitions the edge set of K,. (2) For all even integers n and all
n(n—2

non-negative integers r, s and t satisfying 3r +4s+ 6t = T) there is a decomposition of

K, — F into r 3-cycles, s 4-cycles, and t 6-cycles which partitions the edges set of K,, — F'.

Theorem 1.5. [4] (1) For all odd integers n and all non-negative integer r and s satisfying
4r + bs = % there is a decomposition of K, into r 4-cycles and s 5-cycles which

partitions the edge set of K,. (2) For all even integers n and all non-negative integers r

6



n(n—2)

and s satisfying 4r + 5s = —=

there is a decomposition of K, — F into r 4-cycles and

s b-cycles which partitions the edges set of K, — F.
The following useful contains three different lengths which are n,n — 1,n — 2.

Theorem 1.6. [7] Let S = {n—2,n—1,n}. Ifn is odd and a(n—2)+b(n—1)+cn = @,
then K, = aCy_o+bC,_1 +cC,. If n is even and a(n —2)+b(n—1)+cn = M, then
Kn — = aC’n_2 + an—l + CCn.

Alspach Conjecture is also true if the cycles lengths m; are bounded by some linear

function of n and n is sufficiently large.

Theorem 1.7. 2] Assumen must be larger than Ny which is very large absolute constants.

If mq,...,my are integers with 3 < m; < L”IQIOHJ and 23:1 m; = (3) (n odd) or (3)—7% (n

even), then one can pick K, (n odd) or K, — I (n even) with cycles of length my, ..., m,.

Theorem 1.8. [6] Let n be a n even positiveintéger. Then K, can be decomposed into

5 hamiltonian paths.

Theorem 1.9. [15] If n is odd and {a; ;' L<0 < r} is a multiset of r positive integers
satisfying 1 < a; <n—2 and Y ,_, dp=(3). Thends, can be decomposed into {P,,|1 <

i <r}.

Theorem 1.10. [21] Let m|A(3), and m < n — 1. Then AK,, caon be decomposed into

isomorphic paths of length m.

Theorem 1.11. [5] If v is odd. Let my,ma,...,m; be t positive integers such that 1 <
m; <n—2, 3 mi+k(n—1)=(3), and k € {1,2,25}, then K, can be decomposed
into t + k paths P', P?, ... P™* such that the length of Pt is m; fori=1,2,...,t and

the length of P isn — 1 fori > t.

Theorem 1.12. 5] If v is odd. Let n—1 > my > mg > -+~ > my > 1 and h <
my < n—h—1 such that Zz_lmi = (), m = mg = - =my, =n—1 Then
K, can be decomposed into t paths P!, P2, ..., Pt such that the length of P is m; for

1 =1,2,...,t. Moreover, if there exists a h < t' <t such that h < my <n—h—1 or

7



h < Zzzt, m; < n—h—1, then K, can be decomposed into t paths P!, P% ... P such

that the length of P' is m; fori=1,2,...,t.

Theorem 1.13. [5] Ifv is odd. Letn—1>my > mg > -+ >my > 1, my < h, and
my_ym' < n —h—1 such that > ,_ tm; = (), mi =mg = ... =my =n—1. Then
K, can be decomposed into t paths P!, P%, ... P! such that the length of P’ is m; for

i=1,2,...,t

Theorem 1.14. [5] Ifv is odd. Letn—1>m; >mg > -+ >my > 1 andn+h—2 < m;+
mi—1 < 2n—h—3 such that 25_1 m; = (3), my=mg=...=my =n—1. Then K, can be
decomposed into t paths P!, P% ... P! such that the length of P' is m; fori=1,2,...,t.
Moreover, if there exists a h < t' < t such that n + h — 2 < Zzzt, m; < 2n — h — 3,
then K, can be decomposed into t paths P', P%, ... P! such that the length of P is m;

fori=1,2,...t.
Next, we consider some results of RPPDC and"EPPDC.

Proposition 1.15. [19] Suppose thatiG is a graph with an eulerian perfect path double

cover. Then for 1 < d(z) < 3, G + = hastati-eulerian perfect double cover.

Proposition 1.16. [19] For any n > 1, K, ;, has'an RPPDC. Moreover, if n is odd, then
K, , has an ERPPDC.

Proposition 1.17. [19] For any m,n > 1, K,, , has an EPPDC.
Proposition 1.18. [19] If G is a k-regular graph, k£ > 1, then L(G) has an RPPDC.

Proposition 1.19. [19] Let G be a graph with m edges. Suppose 2G has an Euler circuit
€1,€s,...,e, such that S; = {ey,e3,...,e2,_1} and Sy = {eg, €4, ..., €2, } are both the
set E(G) of all edges of G. Furthermore, suppose that for each v € V(G) there is ordering,
C(v), of the edges incident to v such that every pair of consecutive edges inC'(v) occurs

exactly once as a pair of consecutive edges in the Euler circuit. Then L(G) has an EPPDC.

Proposition 1.20. [19] For all m > 2, L(K,,) has an ERPPDC.



Proposition 1.21. [19] For all m,n > 1, L(K,,,) has an RPPDC. Furthermore, if

ged(n,m) =1 or ged(n,n —m + 2) =1, then L(K,,,) has an ERPPDC.
Proposition 1.22. [19] For every positive odd integer n, L(K, ) has an ERPPDC.
Proposition 1.23. [19]

e If G and H have RPPDCs, then GLJH has an RPPDC.

e If G and H have EPPDCs and (|G|, |H|) = 1, then GOH has an EPPDC.

Proposition 1.24. [19] If G has an EPPDC, then the Cartesian product GOK, has an
EPPDC.

Proposition 1.25. [19] For all n > 0, the n-cube, @, has an EPPDC.

In our main result we concentrate on oriented version. Now, we consider some results

below:
Lemma 1.26. [13] Ky, has an OPPDC.

Proof. Let V(Kgn) = {’Uo, Viyeony U2n—1}' For 0 S 1 S 2n—1 set Pz = (’UZ', Vitr1,Vi—1,Vj12,U;_2,
where all subscripts are read modula 2n. ‘It-isreasyito verity that P = {P;]0 <i <2n—1}
is an OPPDC of Ky, [ |

Lemma 1.26 gives an easy construction of OPPDC for all Ky,. Tillson proved in [22]
that all Ks,,1 have an OPPDC for n > 3.

Example 1.27. [13] K7 has an OPPDC as follow:

P, = 1263547 P, = 2731465

P; = 3742516 P, = 4536721

P5; = 5764132 Py = 6175243

P; = 7156234

We can check that the collection P = {P,,..., P;} is an OPPDC of Kj.

Next, we consider the minimal (i.e. , with minimal number of edges) connected graph
G such that G # K3, G # K5 and G has no OPPDC. J. Maxovd had show that G has

no vertices of degree 1,2.

e ,UH_n)



Lemma 1.28. [13] Let G1, Gy be two graphs which have an OPPDC. Suppose that G N
Go = {v}.Then the union G U Gyhas an OPPDC.

Proof. Denote by PB; an OPPDC of G;, i = 1,2. Let P, € 3, be the path that starts in v
and P, € B, be the path that ends at v. Then the collection B, UB, U{PLUPIN\{ P, P}
is an OPPDC of G U Gs. [ |

Corollary 1.29. [13] Let G be a simple graph; G # K3, and v € V{G} a vertex of degree
1. If G\ v has an OPPDC then G has an OPPDC.

By applying this corollary, we get that if we add a new vertex of degree 1 to a graph
with an OPPDC then the resulting graph also has an OPPDC. Hence every tree has an
OPPDC.

Theorem 1.30. [13] Let G be a simple graph; G # Ks,and v € V{G} a vertex of degree
2. If G\ v has an OPPDC then G has an’OPPDE.

By applying Corollary 1.29 and Theorem:1.:30; we 'get that every 2-degenerate graph

has an OPPDC, except K3. The following are some results

Corollary 1.31. [13] If G is a unioniofitwo arbitrary trees; G # Ks; then G has an
OPPDC.

Another construct which preserves the property of having an OPPDC is the so-called

arrow construction.

Definition 1.32. [14] A graph I with two distinguished vertices a, b, a,b ¢ E(I), is called
an indicator. For a given directed graph D = (V, E) and an indicator (I, a,b) we define
an (undirected) graph D x (I, a,b) = (W, F') sa follows:

W= (B x V(1) ~
where the equivalence is generated by the following pairs:

((z,y),0), (z,9),a), ((x,9),0), ((2",9),0), ((x,9),0),((y,2),a).
For a pair (e,x) € E x V(1) its equivalence class is denoted by [e, z].

We put {le,z], [¢/,2']} € F <= e =¢and {x,2'} € E(]).

10



| D D*(l,a,b)
Figure 1: Arrow construction

This arrow construction is schematically indicated in Fig. 1 (One can check that the

indicator [ in Fig. 1 satisfies the assumptions of Theorem1.33 below.)

Theorem 1.33. [14] Suppose an indicator (Lsa,b) has an OPPDC II containing two
paths Py, Py € Il such that Py beginsin a and-ends-an b, and P, begins in b and ends
in a. Further suppose G has an QPPDC. Then for any orientation D of G the graph
D % (1,a,b) has an OPPDC.

Proposition 1.34. [14] If G is a 2-conne¢ted graph with |E(G)| < 2n—1; G # K3; then
G has an OPPDC.

Conjecture 1.35. [14] K3 and Kj are the only connected graphs which do not have an
OPPDC.

11



2 Main Results

In this section, we focus on the minimal degree of a graph G first. We show that if we add
a new vertex of degree 3 to a graph with an OPPDC then the resulting graph also has an
OPPDC. And we use this theorem to prove that if G is a 3-degenerate graph and G has
no components which isomorphism to K3 then GG has an OPPDC. Next, we show that
the complete graph K, , and the multipartite graph K, has an OPPDC by a special

construction.

2.1 3-degenerate graph

Theorem 2.1. Let G be a simple graph; G # Ks,and v € V{G} a vertex of degree 3. If
G\ v has an OPPDC then G has an OPPDC.

Proof. Let N(v) = {a,b,c} be the neighbors of the vertex v. Denote by P an OPPDC
of the graph G'\ v. For u € V(G \ v),detP" (resp.2.P,) denote the path of P beginning
(resp. ending) with u. We call P* (¢esp. B,)ds:the outér (resp. inner) path of u in G\ v.
Case 1. There exists an outer path P*u.€ N(v),P" pass through N(v).
Without loss of generality , we ‘assume P® pass through b and then c.
Subcase 1-1: P¢ # P,
Separate P® into two paths, P, and P,,where P is the path that beginning at a
and ending at b along P* and P, is the path that beginning at b and along P®.
Let P = (¢,v) U (v,a) U Py
P = (a,v) U (v,b) U P;
P =P, U (bv)
P = (v,c) U P¢
Then the collection P\ {P?, By, P°} U{P,*, P"*, P, P**}is an OPPDC of G.
Subcase 1-2: P¢= P,
Subcase 1-2-1: P #£ P,
Separate P® into three paths , P, P», and P;, where P; is the path that

beginning at a and ending at b along P® , P, is the path that beginning at b

12



and ending at ¢ along P® , P is the path that beginning at ¢ and along P®.
Let P** = P, U (b,v) U (v,c) U Ps
P = P, U (c,v) U (v,a)
PY* = (v,b) U P?
P,y =P, U(a,v)
Then the collection P\ {P,, P%, P’ } U {P** P** P"* P,*} is an OPPDC of
G.
Subcase 1-2-2: P* = P,
Let P** = (a,v) U (v,c) U P°
P = (¢,v) U (v,b) U PP
PY = (v,a) U P*
P, = (b,v)
Then the collection P\ {P*, P*, P¢} U{P**, P**, P** P,*} is an OPPDC of G.
Case 2. There is no outer path P" ,u€ N(v),P* pass through N(v).
Without loss of generality , we-assumé £2? doesn’t pass through c.
Subcase 2-1: P¢ doesn’t pass through-a:
Let P* = (¢,v) U (v,a) U P%
= (a,v) U (v c)U Pe
= (v,0)U
= (b,v)
Then the collection P\ {P?, P, P¢} U {P**, P**, P**, P,*} is an OPPDC of G.
Subcase 2-2: P¢ pass through a.
Since P¢ passes through a, it can’t pass through b. If P’ doesn’t pass through c,
it will return to case 2-1. So PP passes through c. If P® passes through a, it will
return to case 1. So PP doesn’t pass through a.
Let P¢* = (¢,v) U (v,a) U P*
= (a,0) U
= (v,c) U P°
= (b, v)

(v,b) U P

13



Then the collection P\ {P?, P, P¢} U {P**, P**, P** P,*} is an OPPDC of G.

Thus, we have the prove. [
Lemma 2.2. G; and Gy has an OPPDC.

G G

1 2

Vi Vv,

Proof. Since degg, (Vi) =3 dege, (V2) = 2 and G1\Vi, G1\V; are paths. By Theorem
1.30 and Theorem 2.1 we know that GG; and G5 has an OPPDC. [

Theorem 2.3. If G has no components which isomorphism to K3 and G is a 3-degenerate

graph, then G has an OPPDC.

Proof. We proceed by induction ot n =_V|(G)|.=:Since G is a 3-degenerate graph,
there is a vertex v € V(G) of degreesat most 3+ We denote that G' = G\ v. If G’ is
isomorphic to K3 then G is isomorphic te K or one of the graphs G, G5 in Lemma 2.2,
that all have an OPPDC. If G is a diseonnected graph with some components which are
isomorphic to K3. Then we choose another vertex v which in K3 and let G' = G\ v'.
Since degg(v') < 3 we know that G’ applies to the induction hypothesis. If degg(v) = 1
by induction hypothesis the graph G’ has an OPPDC. Then by applying Corollary 1.29
the graph G has an OPPDC. If degg(v) = 2 by induction hypothesis the graph G’ has an
OPPDC. Then by applying Theorem 1.30 the graph G has an OPPDC. If deggs(v) = 3
by induction hypothesis the graph G’ has an OPPDC. Then by applying Theorem 2.1 the
graph G has an OPPDC.

Thus, we have the prove. [

Corollary 2.4. Every cubic graph has an OPPDC.

Proof. We know that every cubic graph is 3 — degenerate. By Theorem 2.3 we have the

prove. |
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2.2 OPPDC on K, , and K,

Now, we consider a special construction of OPPDC on complete graph kK, , and multi-

partite graph K, ().
Lemma 2.5. For alln > 1, K, ,, has an OPPDC.

Proof. Assume that K, , has bipartition (X,Y), where X = {z¢,21,...,2,-1} and

Y = {vo0,y1,--,Yn_1}. Suppose that n is odd. For each i, i = 0,1,...,n — 1, let P, =

(fl?i, Yn—14i) Tit1y Yn—2+4is + - - s Y(n—3) /2+i» L(n—1)/2+4i> y(n—l)/2+i)- Then P = {Po, P Pn—l}

is a path decomposition of K, ,,. Let P/ = (Y(n—1)/24i> T(n—1) /2415 Y(n—3)/2+i» - - » it 15 Yn—1+i> Ti),
and let P’ = {Py/, P\,..., P,_1'} .The union of the two path decompositions forms an
OPPDC of K, .

If nis even, let Py = (i, Yn—14i> Tit1s Yn—2+i» - - - » Yn/2+i» Tnjo4i)- Lhen P ={Py, P,..., P}
is a path decomposition of K, ,. Exchanging the z's and y's we obtain a second path

decomposition P’ of K, ,,. The union of these two path decompositions forms an OPPDC

of K, . [

Example 2.6. An OPPDC of Kj .

Assume that K55 has bipartition(X,Y), whereX = {x¢,21, 22,23, 24} and YV =

{yOa Y1,Y2,Ys, y4}

(xo,y4,x1,y3,x2,y2) (yz>$2>y3,$1>y4,$0)
(71, Y0, T2, Y4, T3, Y3) (Y3, 73, Ya, T2, Yo, T1)
P = ($2,y1,563,yo,564,y4) P’ = (y T4, Y0, T3, Y1, T 2)
(23,2, %4, Y1, To, Yo) (Yo, To, Y1, T4, Yo, T3)
(T4, Y35 T0,s Y2, T1, Y1) (Y1, 71, Y25 To, Y3, Ta)

Then P UP’ is an OPPDC of K5 5.
Example 2.7. An OPPDC of K, 4.

Assume that K5 5 has bipartition (X,Y'), where X = {x¢, 21, %2, z3} and Y = {vo, y1, Y2, Y3 }-

(950>y3,931,y2,$2)
(21, Y0, T2, Y3, T3)
(22,91, 3, Yo, To)
( )

T3, Y2, To, Y1, 1

(Yo, T3, Y1, T2, Y2)
(Y1, 70, Y2, T3, Y3)
(y $1,y3,$073/0)
(?Js, T2, Yo, L1, yl)

P =
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Then P UP’ is an OPPDC of Ky 4.

Theorem 2.8. K, has an OPPDC for n is odd, m # 3,5.

2%—1
Proof. Suppose that m is even. Let V(Kpn)) = U Vi where V; = {x;0,%i1, -+, Tin_1}

i=0
and m = 2k. By Lemma 1.26 Ky, has an OPPDC, and by Lemma 2.5 K, , has an

OPPDC.
Then we let
(Pi(l,]i—i-l +P+1lz \+ P 1z+2+“‘+P0 ket Litk)
ok—1 | U (Piéi—i—l + Pzr—Li-_léz 1+ P2 Liq2 Tt p! hrLitk)
Q= U U (Phg+P S+ Pt + P—k+1,z+k)
=0 :
U (Pznz—i-ll + Pl 1+Pn11+2+---+Pnkiu+k)
where Py = (Yig, Tjn—14q Yigt1s Tin—24qs - - - > Tjn= S NI RS 1+q)

and y; , = fj,z'(l"z’,q) by

_ e n—1

Yini_j = Tig, if j <3
. . . . n_l
I Yi,0o = Ligs if,j = 5
— s it n=1
yi73n2—1_j = @y j, iy, 3 5 -

Then Q is an OPPDC of K,
Now, we consider m is odd, m # 375. Let'P={F,, P5..., Py,_1} is an OPPDC of K,
and denote that P; = (v;(0),v;(1), ..., 9(n— 1)), where v;(0) is the beginning at the path

P; and v;(n — 1) is the end at the path P;.

Then we let
0 0 0
(PZI(O) iy T PT(L1)1(2) + Pz’1(2)7i(3) +..t Pil(n—z),i(n_n)
m-1| Y (P22(0) i+ PZT(L1)2(2) + Pi2(2),i(3) +oF Pi2(n—2),i(n—1))
R = U (Bioy) T Pty T Piie T+ Lin—2),itn-1))
=0 :
n—1 n— n— 1
U (PZ 0),i(1) + le(l + PZ z(3 -t PZ 2),i(n— 1))
where Pg] = (yi,qa Tjn—1+q Yi,q+1> Tjn—2+4q - - - >$j7”T*3+qa yi,%—]—q? xj,"T*l-i-q)

and y; 4 = fj,z'(l"z’,q) by

Tig = Yooty i) < nl
f= Tij — Yi0, if j = nT_l
i =Yg, iG> PFE
Then R is an OPPDC of K, ,). [
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Example 2.9. An OPPDC of Ky3).

3
Let V(Kyg)) = U Vi where V; = {x;0,2;1,2;2}. Let

=0

P+ P +1 i1 +P—lz+2)

(
Q:U U (P +P +1z—1+P—1z+2)
U (Phyg+ P 2+1 i—1 T P'—l,i+2)

where Pl = (Yig Tja+q, Yi+g> Tji1q) a0 Yig = fji(Tig) by

Yi1 = T4,0,
[ Yi,o = T4 1,
Yi2 = T4 2.

(370,1, L1,2,20,0, L1,1, L3,2, 1,0, 3,1, L2,2, L3,0, 552,1)
(370,0, Z1,0, 20,2, 1,2, £3,1, L1,1, L3,0, 2,0, 3,2, 552,2)
(330,2, L1,1,%0,15 21,05 L3,0, 1,2, 3,2, L2,1, 3,1, $2,0)

(&)
|

T1,1,%22, 21,0, 2,1, L0,2, L2,0, L0,1, L3,2, L0,0, $3,1)
L1,0, 22,0, 21,2, L2,2, L0,1, L2,1, £0,0, 3,0, L0,2, L32
L1,2,%21,L1,1, L2,0, L0,0,L2,2, L0,2, L3,1, L0,1, L3,0

U
U

L2,2,X3 1, L21;23,0, L1,05 %32, L1,2,5L0,1, L1,1, L0,0

L3115, 20,25 L3705 L0j1sL2:2,-L0:09 L2,17L1,25 L2,0, L1,1
U 3,05 20,05 13,25 £0,25 12,1, L0,1, 22,0, 1,0, L2,2, L1,2
($3,27 T0o,1, T3,1, 0,05 £2,0,40,25L2,2, L1,1, L2,1, L1,0

Then Q is an OPPDC of Ky3).

(
( )
( )
(I2,1, X322, 220,431, L1,2,L3,0,L1,1, 20,2, L1,0, $0,1)
(Izo, T3,0, L2925 13,2, X1;15L3,1521,05 20,05 L1,2, $0,2)
( )
( )
( )
)
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3 Conclusion

In this thesis, we have obtained the following main results:

1. If G has no components which isomorphism to K3 and G is a 3-degenerate graph,

then G has an OPPDC.
2. For alln > 1, K,,,, has an OPPDC.
3. Ky has an OPPDC for n is odd, m # 3, 5.

But, we are still far from verifying the conjectures(Conjecture 1.35). Hopefully, this

task can be done in the near future.

18



References

1]

[10]

[11]

P. Adams, D. E. Bryant and A. Khodkar, (3,5)-cycles decompositions. J. Combin.
Designs, 6 (1998), 91-110.

P. N. Balister. On the Alspach conjecture. Combin., Probability and computing, 10
(2001), 95-125.

J. A. Bondy, Small cycle double cover of graphs, in: G. Hahn, G. Sabidussi,
R.Woodrow (Eds.), Cycles and Rays, NTAO ASI Series C, Kluwer Academic Pub-
lishers, Dordrecht, 1990, pp. 21-40.

D. E. Bryant, A. Khodkar and H. L. Fu, (mn)-cycles systems. J. Statist, Planning
and Inference, 74 (1998), 365-370.

P. K. Chuang, Decomposing Complete Graph into Paths with Prescribed Lengths,
M. Sc. Thesis, National Chiao TungUniversity, 2003.

F. Harary, Graph Theory, Addison-Wesley,' Reading MA, 1972.

K. Heinrich, P. Horak, A. Rosa; On'Alspachs-eonjecture, Discrete Math., 77 (1989),
97-121.

K. Heinrich, P. Horak, W.D. Wallis, Q. Yu, Perfect double covers with paths of length
four, J. Graph Theory 21 (1996) 187-197.

F. Jaeger, Nowhere-zero Pow problems, in: L.W. Beineke, R.J. Wilson (Eds.), Se-
lected Topics in Graph Theory 3, Academic Press, London, 1988, pp. 71V95.

Rev. T. P. Kirkman, On the problem in combinations, Cambr. and Dublin Math. J.,
2 (1847), 191-204.

H. Li, Perfect path double covers in every simple graph, J. Graph Theory 14 (1990)
645-650.

J. Maxovd, Oriented perfect path double cover, Diploma Thesis, Charles University,
Prague, 1998 (in Czech).

19



[13]

[14]

[15]

[16]

[17]

[18]

[21]

[22]

23]

J. Maxova, J. Nesetril, On oriented path double covers, Discrete Math. 233 (2001)
371-380.

J. Maxovd, J. Nesetril, On covers of graphs, Discrete Math. 276 (2004) 287-294.

K. W. P. Ng, On Path decompositions of Complete Graphs, M. Sc. Thesis, Simon

Fraser University, 1985.

M. Sajna, Cycle decompositions III : complete graphs and fixed length cycles, J.
Combin. Designs, 10 (2002), 27-78.

K. Seyffarth, Maximal planar graphs of diameter two, J. Graph Theory 13 (1989)
619V648.

K. Seyffarth, Small cycle double covers of 4-connected planar graphs, Combinatorica

13 (1993) 477V482.

K. Seyffarth, Chengde Wang, On‘eulerian and regular perfect path double covers of
graphs, Discrete Math. 293 (2005).237-250.

P. D. Seymour, Sums of circuitsyin: J.A. Boudy, U.S.R. Murty (Eds.), Graph Theory
and Related Topics, Academic Press; New:York, 1979, pp. 341-355.

M. Tarsi, Decomposition of a Complete Multigraph into Simple Paths: Nonbalanced
Handcuffed Designs, J. Combin. Theory, A 34 (1983), 60-70.

T.W. Tillson, A Hamiltonian decomposition of K;  2m > 8,J. Combin. Theory Ser.

2m»

B 29 (1) (1980) 68-74.

D. B. West(2001), Introduction to graph theory, Upper Saddle River, NJ :Prentice
Hall.

20



