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摘 要 

 
 

在這篇論文裡，我們研究完全路徑雙覆蓋的有向形式。一個圖的有向路徑雙覆

蓋是在圖的對稱賦向裡的一個有向路徑集合，其中這個圖的對稱賦向裡的每一個

邊都要恰好出現在一個路徑裡，而且對圖裡的每一個點而言都會有唯一一條路徑

以此點當作起點以及會有唯一一條路徑以此點當作終點。在這篇論文中，首先我

們證明了如果一個圖形沒有包含連通部份為點數3的完全圖且為3退化圖則這個

圖就存在有向路徑雙覆蓋。再來我們也找出了完全二分圖Kn,n與完全多分圖Km(n)(n

為奇數,m≠3,5)的有向路徑雙覆蓋。 
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Covering Graphs with Directed Paths

Student: Chi-Tsung Hsieh
Department of Applied Mathematics

National Chiao Tung University

Hsinchu, Taiwan 30050

Advisor: Hung-Lin Fu
Department of Applied Mathematics

National Chiao Tung University

Hsinchu, Taiwan 30050

Abstract

In this thesis we study an oriented version of perfect path double cover (PPDC).
An oriented perfect path double cover (OPPDC) of a graph G is a collection of
oriented paths in the symmetric orientation S(G) of G such that each edge of S(G)
lies in exactly one of the paths and for each vertex v ∈ V (G) there is a unique
path which begins in v (and thus the same holds also for terminal vertices of the
paths). First we show that if G has no components which isomorphism to K3

and G is a 3-degenerate graph, then G has an OPPDC. Next we also construct an
OPPDC for complete bipartite graph Kn,n and multipartite graph Km(n)(n is odd
and m 6= 3, 5),respectively.
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1 Introduction

Graph decomposition is one of the most important topics in the study of graph theory.In

1979, P. D. Seymour [20] conjectured that every bridgeless graph has a cycle double cover,

which is a collection of cycles such that every edge of G is contained in exactly two cycles

of the cycle collection. The cycle double cover conjecture lies in the very heart of the

graph theory. It seems that this elementary problem has a deep topological background

and only partial results are known. This problem (in the very short time of its existence)

also motivated several related conjectures: J. A. Bondy [3] conjectured that every simple

bridgeless graph has a small cycle double cover, which is a cycle double cover containing

at most n − 1 cycles on a graph that order n. There are a number of classes of graphs

for which the small cycle double cover conjecture has been verified, including complete

graphs [3] (excluding K2), complete bipartite graph [3] (other than K1,m), 4-connected

planar graphs [18], and simple triangulations of orientable surfaces [3, 17]. A common

characteristic of these classes of graphs is that there is some structure to the graphs that

allows for assumptions about cycles in the graphs. This seems to be a desirable property,

since it is necessary to keep track of the number of cycles when constructing small cycle

double covers.

In 1990, Bondy [3] also posed several conjectures about path double covers of graphs.

He conjectured that every simple graph admits a path double cover P such that each

vertex occurs exactly twice as an end of a path in P : a perfect path double cover. This

conjecture was later provey by H. Li [11]. Bondy also conjectured that every k-regular

simple graph admits a path double cover P such that every path in P has length k and

each vertex of the graph occurs exactly twice as an end of a path in P : a regular perfect

path double cover. This conjecture has been proved for k ≤ 3 [3] and k = 4 [8] but is still

open for larger values of k. Perfect path double cover for graphs in general is equivalent

to small cycle double cover for bridgeless apex graphs (apex graph = graph with a vertex

joined to all other vertices). To see this, consider a graph G\v where v is a vertex of

degree n − 1 in a bridgeless graph G. G has an small cycle double cover if and only if

G\v has a perfect path double cover.
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Also unsolved are oriented versions of these problems. In 1988, Jaeger [9] conjectured

that every bridgeless graph has an oriented cycle double cover. No counterexample to the

oriented cycle double cover conjecture is presently known. In 1998, J. Maxová [12] show

that K3 and K5 have no oriented perfect path double cover. In 2001, J. Maxová proved

that all 2-connected graph on n vertices with at most 2n−1 edges have an oriented perfect

path double cover(except for K3). In 2004, J. Maxová conjectured that K3 and K5 are

the only connected graphs which do not have an oriented perfect path double cover.

In this thesis, the main results are that for every 3-degenerate graph with no compo-

nents isomorphic to K3 has an oriented perfect path double. Furthermore, show that for

all n ≥ 1 the complete bipartite graph Kn,n has an oriented perfect path double and for

m 6= 3, 5 and n is odd the multipartite graph Km(n) has an oriented perfect path double.
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1.1 Preliminaries

In this section, we first introduce the terminologies and definitions of graphs. For details,

the readers may refer to the book “Introduction to Graph Theory” by D. B. West.[23]

A graph G is a triple consisting of a vertex set V (G), an edge set E(G), and a relation

that associates with each edge two vertices called its endpoints. A loop is an edge whose

endpoints are equal. Multiedges are edges having the same pair of endpoints. A simple

graph is a graph without loops or multiedges. In this thesis, all the graphs we consider

are simple. The size of the vertex set V (G), |V (G)|, is called the order of G, and the size

of the edge set E(G), |E(G)|, is called the size of G.

If e = {u, v} (uv in short) is an edge of G, then e is said to be incident to u and v.

We also say that u and v are adjacent to each other. For every v ∈ V (G), N(v) denotes

the neighborhood of v, that is, all vertices of N(v) are adjacent to v. The degree of v,

deg(v) = |N(v)|, is the number of neighbors of v.

Let G = (V ; E) be a undirected simple graph. A path of length k in G is a sequence

v1, e1, v2, . . . , ek, vk+1 of its vertices and edges where ei = {vi, vi+1} for 0 ≤ i ≤ k and

v1, . . . , vk+1 are distinct vertices. A cycle of length k is a sequence v1, e1, v2, . . . , ek, vk+1

of its vertices and edges where ei = {vi, vi+1} for 0 ≤ i ≤ k, v1 = vk+1 and v1, . . . , vk are

distinct vertices.

The maximum degree is △(G), the minimum degree is δ(G), and G is regular if

△(G) = δ(G). It is k-regular if the common degree is k. A cubic graph is a graph that is

regular of degree 3.

A graph G is connected if it has a u, v-path whenever u, v ∈ V (G) (otherwise, G is

disconnected). If G has a u, v-path, then u is connected to v in G. The components of

a graph G are its maximal connected subgraphs. A component (or graph) is trivial if it

has no edges; otherwise it is nontrivial. An isolated vertex is a vertex of degree 0.

A directed graph (digraph) is a triple consisting of a vertex set V (G), an edge set

E(G), and a function assigning each edge an ordered pair of vertices. The first vertex of

the ordered pair is the tail of the edge, and the second is the head; together they are the

endpoints. We say that an edge from its tail to its head.
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A digraph is a path if it is a simple digraph whose vertices can be linearly ordered so

that there is an edge with tail u and head v if and only if v immediately follows u in the

vertex ordering. A cycle is defined similarly using an ordering of the vertices on a circle.

In our main results, all graph we consider are simple digraph.

A subgraph of a graph G is a graph H such that V (H) ⊆ V (G) and E(H) ⊆ E(G)

and the assignment of endpoints to edges in H is the same as in G. A spanning subgraph

of G is a subgraph H with V (H) = V (G). A graph G is k−degenerate if every subgraph

of G has a vertex of degree at most k.

A complete graph is a simple graph whose vertices are pairwise adjacent; the complete

graph with n vertices is denoted by Kn. A graph G is bipartite if V (G) is the union of

two disjoint independent sets called partite sets of G. A graph G is m-partite if V (G) can

be expressed as the union of m independent sets. A complete bipartite graph is a bipartite

graph such that two vertices are adjacent if and only if they are in different partite sets.

When the sets have the sizes s and t, the complete bipartite graph is denoted by Ks,t. If

the sets have the same size n, the complete bipartite graph is called balanced, which is

denoted by Kn,n. Similarly, the complete m-partite graph is denoted by Ks1,s2,...,sm
and

the balanced complete m-partite graph is denoted by Km(n) where each partite set has n

vertices.

An isomorphism from a graph G to a graph H is a bijection f : V (G) → V (H) such

that uv ∈ E(G) if and only if f(u)f(v) ∈ E(H). We say “G is isomorphic to H”, written

G ∼= H , if there is an isomorphism from G to H .

Let G be a graph of order m with V (G) = {gi : 0 ≤ i ≤ m − 1}, and let H ne a

graph of order n with V (H) = {hi : 0 ≤ i ≤ n − 1}. The Cartesian product G�H is

defined to be the graph with vertex set {(gi, hj) : 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1} and

(gi, hj)(gs, ht) ∈ E(G�H) if either gi = gs and hjht ∈ E(H) or hj = ht and gigs ∈ E(G).

The symmetric orientation of G, denoted by S(G), that is an oriented graph obtained

from G by replacing each edge of G by a pair of oppositely directed arcs (i.e. V (S(G)) =

V (G) and E(S(G)) = {(u, v), (v, u)|(u, v) ∈ E(G)}).

We give some important definitions as followings.
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A cycle double cover (CDC) of a graph G is a collection of its cycle such that each

edge of G lies in exactly two of the cycles. A small cycle double cover (SCDC) of a graph

on n vertices is a CDC with at most n − 1 circuits.

A perfect path double cover (PPDC) of a graph G is a collection of its paths such that

each edge of G lies in exactly two of the paths and each vertex of G appears precisely

twice as an endpoint of a path.

A regular perfect path double cover (RPPDC) of a k-regular simple graph G is a col-

lection P of its paths such that every path in P has length k and each vertex of the graph

occurs exactly twice as an end of a path in P.

For a path double cover P of a graph G, the associated graph AP (G) of P is defined as

a graph having the same vertex set as G, with two vertices x and y adjacent in AP (G) if

and only if there is a path in P with endpoints x and y.

A PPDC is called an eulerian perfect path double cover (EPPDC) if its associated graph

is a cycle. If a path double cover is both eulerian and regular, we call it an ERPPDC.

An oriented perfect path double cover (OPPDC) of a graph G is a collection of paths

on G such that each edge of S(G) lies in exactly one of the paths and each vertex of G

appears just once as a beginning and just once as an end of a path.
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1.2 Known Results

We consider cycle decomposition and path decomposition on undirected graph. The

following are some results:

Theorem 1.1. [10] (1) For all odd integers n and all non-negative integer r satisfying

3r = n(n−1)
2

there is a decomposition of Kn into r 3-cycles which partitions the edge set of

Kn. (2) For all even integers n and all non-negative integers r satisfying 3r = n(n−2)
2

there

is a decomposition of Kn − F into r 3-cycles which partitions the edges set of Kn − F .

We can establish the existence of cycle systems not only the 3-cycle system but also

the m-cycle system for any m. There are some results below:

Theorem 1.2. [16] (1) For all odd integers n and all non-negative integer r and m

satisfying mr = n(n−1)
2

there is a decomposition of Kn into r m-cycles which partitions the

edge set of Kn. (2) For all even integers n and all non-negative integers r and m satisfying

mr = n(n−2)
2

there is a decomposition of Kn−F into r m-cycles which partitions the edges

set of Kn − F .

Theorem 1.3. [1] (1) For all odd integers n and all non-negative integer r and s satisfying

3r + 5s = n(n−1)
2

there is a decomposition of Kn into r 3-cycles and s 5-cycles which

partitions the edge set of Kn. (2) For all even integers n and all non-negative integers r

and s satisfying 3r + 5s = n(n−2)
2

there is a decomposition of Kn − F into r 3-cycles and

s 5-cycles which partitions the edges set of Kn − F .

Theorem 1.4. [7] (1) For all odd integers n and all non-negative integer r, s and t

satisfying 3r + 4s + 6t = n(n−1)
2

there is a decomposition of Kn into r 3-cycles, s 4-cycles,

and t 6-cycles which partitions the edge set of Kn. (2) For all even integers n and all

non-negative integers r, s and t satisfying 3r+4s+6t = n(n−2)
2

there is a decomposition of

Kn−F into r 3-cycles, s 4-cycles, and t 6-cycles which partitions the edges set of Kn−F .

Theorem 1.5. [4] (1) For all odd integers n and all non-negative integer r and s satisfying

4r + 5s = n(n−1)
2

there is a decomposition of Kn into r 4-cycles and s 5-cycles which

partitions the edge set of Kn. (2) For all even integers n and all non-negative integers r
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and s satisfying 4r + 5s = n(n−2)
2

there is a decomposition of Kn − F into r 4-cycles and

s 5-cycles which partitions the edges set of Kn − F .

The following useful contains three different lengths which are n, n − 1, n − 2.

Theorem 1.6. [7] Let S = {n−2, n−1, n}. If n is odd and a(n−2)+b(n−1)+cn = n(n−1)
2

,

then Kn = aCn−2 + bCn−1 + cCn. If n is even and a(n− 2) + b(n− 1) + cn = n(n−2)
2

, then

Kn − F = aCn−2 + bCn−1 + cCn.

Alspach Conjecture is also true if the cycles lengths mi are bounded by some linear

function of n and n is sufficiently large.

Theorem 1.7. [2] Assume n must be larger than N2 which is very large absolute constants.

If m1, . . . , mt are integers with 3 ≤ mi ≤ ⌊n−112
120

⌋ and
∑t

i=1 mi = (n
2 ) (n odd) or (n

2 )− n
2

(n

even), then one can pick Kn (n odd) or Kn − I(n even) with cycles of length m1, . . . , mt.

Theorem 1.8. [6] Let n be a n even positive integer. Then Kn can be decomposed into

n
2
hamiltonian paths.

Theorem 1.9. [15] If n is odd and {ai : 1 ≤ i ≤ r} is a multiset of r positive integers

satisfying 1 ≤ ai ≤ n − 2 and
∑r

i=1 ai = (n
2 ). Then Kn can be decomposed into {Pai

|1 ≤

i ≤ r}.

Theorem 1.10. [21] Let m|λ(n
2 ), and m ≤ n − 1. Then λKn caon be decomposed into

isomorphic paths of length m.

Theorem 1.11. [5] If v is odd. Let m1, m2, . . . , mt be t positive integers such that 1 ≤

mi ≤ n − 2,
∑t

i=1 mi + k(n − 1) = (n
2 ), and k ∈ {1, 2, n−1

2
}, then Kv can be decomposed

into t + k paths P 1, P 2, . . . , P t+k such that the length of P i is mi for i = 1, 2, . . . , t and

the length of P i is n − 1 for i > t.

Theorem 1.12. [5] If v is odd. Let n − 1 ≥ m1 ≥ m2 ≥ · · · ≥ mt ≥ 1 and h ≤

mt ≤ n − h − 1 such that
∑t

i−1 mi = (n
2 ), m1 = m2 = · · · = mh = n − 1. Then

Kv can be decomposed into t paths P 1, P 2, . . . , P t such that the length of P i is mi for

i = 1, 2, . . . , t. Moreover, if there exists a h < t′ ≤ t such that h ≤ mt′ ≤ n − h − 1 or

7



h ≤
∑t

i=t′ mi ≤ n − h − 1, then Kv can be decomposed into t paths P 1, P 2, . . . , P t such

that the length of P i is mi for i = 1, 2, . . . , t.

Theorem 1.13. [5] If v is odd. Let n − 1 ≥ m1 ≥ m2 ≥ · · · ≥ mt ≥ 1, mt < h, and

mt−1m
t ≤ n − h − 1 such that

∑

i=1 tmi = (n
2 ), m1 = m2 = . . . = mh = n − 1. Then

Kv can be decomposed into t paths P 1, P 2, . . . , P t such that the length of P i is mi for

i = 1, 2, . . . , t.

Theorem 1.14. [5] If v is odd. Let n−1 ≥ m1 ≥ m2 ≥ · · · ≥ mt ≥ 1 and n+h−2 ≤ mt+

mt−1 ≤ 2n−h−3 such that
∑t

i−1 mi = (n
2 ), m1 = m2 = . . . = mh = n−1. Then Kv can be

decomposed into t paths P 1, P 2, . . . , P t such that the length of P i is mi for i = 1, 2, . . . , t.

Moreover, if there exists a h < t′ ≤ t such that n + h − 2 ≤
∑t

i=t′ mi ≤ 2n − h − 3,

then Kv can be decomposed into t paths P 1, P 2, . . . , P t such that the length of P i is mi

for i = 1, 2, . . . , t.

Next, we consider some results of RPPDC and EPPDC.

Proposition 1.15. [19] Suppose that G is a graph with an eulerian perfect path double

cover. Then for 1 ≤ d(x) ≤ 3, G + x has an eulerian perfect double cover.

Proposition 1.16. [19] For any n ≥ 1, Kn,n has an RPPDC. Moreover, if n is odd, then

Kn,n has an ERPPDC.

Proposition 1.17. [19] For any m, n ≥ 1, Km,n has an EPPDC.

Proposition 1.18. [19] If G is a k-regular graph, k ≥ 1, then L(G) has an RPPDC.

Proposition 1.19. [19] Let G be a graph with m edges. Suppose 2G has an Euler circuit

e1, e2, . . . , e2m such that S1 = {e1, e3, . . . , e2m−1} and S2 = {e2, e4, . . . , e2m} are both the

set E(G) of all edges of G. Furthermore, suppose that for each v ∈ V (G) there is ordering,

C(v), of the edges incident to v such that every pair of consecutive edges inC(v) occurs

exactly once as a pair of consecutive edges in the Euler circuit. Then L(G) has an EPPDC.

Proposition 1.20. [19] For all m ≥ 2, L(Km) has an ERPPDC.
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Proposition 1.21. [19] For all m, n ≥ 1, L(Km,n) has an RPPDC. Furthermore, if

gcd(n, m) = 1 or gcd(n, n − m + 2) = 1, then L(Km,n) has an ERPPDC.

Proposition 1.22. [19] For every positive odd integer n, L(Kn,n) has an ERPPDC.

Proposition 1.23. [19]

• If G and H have RPPDCs, then G�H has an RPPDC.

• If G and H have EPPDCs and (|G|, |H|) = 1, then G�H has an EPPDC.

Proposition 1.24. [19] If G has an EPPDC, then the Cartesian product G�K2 has an

EPPDC.

Proposition 1.25. [19] For all n ≥ 0, the n-cube, Qn, has an EPPDC.

In our main result we concentrate on oriented version. Now, we consider some results

below:

Lemma 1.26. [13] K2n has an OPPDC.

Proof. Let V (K2n) = {v0, v1, . . . , v2n−1}. For 0 ≤ i ≤ 2n−1 set Pi = (vi, vi+1, vi−1, vi+2, vi−2, . . . , vi+n)

where all subscripts are read modulo 2n. It is easy to verity that P = {Pi|0 ≤ i ≤ 2n−1}

is an OPPDC of K2n.

Lemma 1.26 gives an easy construction of OPPDC for all K2n. Tillson proved in [22]

that all K2n+1 have an OPPDC for n ≥ 3.

Example 1.27. [13] K7 has an OPPDC as follow:

P1 = 1263547 P2 = 2731465

P3 = 3742516 P4 = 4536721

P5 = 5764132 P6 = 6175243

P7 = 7156234

We can check that the collection P = {P1, . . . , P7} is an OPPDC of K7.

Next, we consider the minimal (i.e. , with minimal number of edges) connected graph

G such that G 6= K3, G 6= K5 and G has no OPPDC. J. Maxová had show that G has

no vertices of degree 1, 2.

9



Lemma 1.28. [13] Let G1, G2 be two graphs which have an OPPDC. Suppose that G1 ∩

G2 = {v}.Then the union G1 ∪ G2has an OPPDC.

Proof. Denote by Pi an OPPDC of Gi, i = 1, 2. Let P1 ∈ P1 be the path that starts in v

and P2 ∈ P2 be the path that ends at v. Then the collection P1∪P2∪{P1∪P2}\{P1, P2}

is an OPPDC of G1 ∪ G2.

Corollary 1.29. [13] Let G be a simple graph; G 6= K3, and v ∈ V {G} a vertex of degree

1. If G \ v has an OPPDC then G has an OPPDC.

By applying this corollary, we get that if we add a new vertex of degree 1 to a graph

with an OPPDC then the resulting graph also has an OPPDC. Hence every tree has an

OPPDC.

Theorem 1.30. [13] Let G be a simple graph; G 6= K3,and v ∈ V {G} a vertex of degree

2. If G \ v has an OPPDC then G has an OPPDC.

By applying Corollary 1.29 and Theorem 1.30, we get that every 2-degenerate graph

has an OPPDC, except K3. The following are some results

Corollary 1.31. [13] If G is a union of two arbitrary trees; G 6= K3; then G has an

OPPDC.

Another construct which preserves the property of having an OPPDC is the so-called

arrow construction.

Definition 1.32. [14] A graph I with two distinguished vertices a, b, a, b /∈ E(I), is called

an indicator. For a given directed graph D = (V, E) and an indicator (I, a, b) we define

an (undirected) graph D ∗ (I, a, b) = (W, F ) sa follows:

W = (E × V (I))/ ∼,

where the equivalence is generated by the following pairs:

((x, y), a), ((x, y′), a), ((x, y), b), ((x′, y), b), ((x, y), b), ((y, z), a).

For a pair (e, x) ∈ E × V (I) its equivalence class is denoted by [e, x].

We put {[e, x], [e′, x′]} ∈ F ⇐⇒ e = e′ and {x, x′} ∈ E(I).

10



Figure 1: Arrow construction

This arrow construction is schematically indicated in Fig. 1 (One can check that the

indicator I in Fig. 1 satisfies the assumptions of Theorem1.33 below.)

Theorem 1.33. [14] Suppose an indicator (I, a, b) has an OPPDC Π containing two

paths P1, P2 ∈ Π such that P1 begins in a and ends in b, and P2 begins in b and ends

in a. Further suppose G has an OPPDC. Then for any orientation D of G the graph

D ∗ (I, a, b) has an OPPDC.

Proposition 1.34. [14] If G is a 2-connected graph with |E(G)| ≤ 2n− 1; G 6= K3; then

G has an OPPDC.

Conjecture 1.35. [14] K3 and K5 are the only connected graphs which do not have an

OPPDC.
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2 Main Results

In this section, we focus on the minimal degree of a graph G first. We show that if we add

a new vertex of degree 3 to a graph with an OPPDC then the resulting graph also has an

OPPDC. And we use this theorem to prove that if G is a 3-degenerate graph and G has

no components which isomorphism to K3 then G has an OPPDC. Next, we show that

the complete graph Kn,n and the multipartite graph Km(n) has an OPPDC by a special

construction.

2.1 3-degenerate graph

Theorem 2.1. Let G be a simple graph; G 6= K3,and v ∈ V {G} a vertex of degree 3. If

G \ v has an OPPDC then G has an OPPDC.

Proof. Let N(v) = {a, b, c} be the neighbors of the vertex v. Denote by P an OPPDC

of the graph G \ v. For u ∈ V (G \ v), letP u (resp. Pu) denote the path of P beginning

(resp. ending) with u. We call P u (resp. Pu) is the outer (resp. inner) path of u in G \ v.

Case 1. There exists an outer path P u,u ∈ N(v),P u pass through N(v).

Without loss of generality , we assume P a pass through b and then c.

Subcase 1-1: P c 6= Pb

Separate P a into two paths, P1 and P2,where P1 is the path that beginning at a

and ending at b along P a and P2 is the path that beginning at b and along P a.

Let P c∗ = (c, v) ∪ (v, a) ∪ P1

P a∗ = (a, v) ∪ (v, b) ∪ P2

Pv
∗ = Pb ∪ (b, v)

P v∗ = (v, c) ∪ P c

Then the collection P \ {P a, Pb, P
c} ∪ {Pv

∗, P v∗, P c∗, P a∗}is an OPPDC of G.

Subcase 1-2: P c = Pb

Subcase 1-2-1: P b 6= Pa

Separate P a into three paths , P1, P2, and P3, where P1 is the path that

beginning at a and ending at b along P a , P2 is the path that beginning at b

12



and ending at c along P a , P3 is the path that beginning at c and along P a.

Let P a∗ = P1 ∪ (b, v) ∪ (v, c) ∪ P3

P b∗ = P2 ∪ (c, v) ∪ (v, a)

P v∗ = (v, b) ∪ P b

Pv
∗ = Pa ∪ (a, v)

Then the collection P \ {Pa, P
a, P b, } ∪ {P a∗, P b∗, P v∗, Pv

∗} is an OPPDC of

G.

Subcase 1-2-2: P b = Pa

Let P a∗ = (a, v) ∪ (v, c) ∪ P c

P c∗ = (c, v) ∪ (v, b) ∪ P b

P v∗ = (v, a) ∪ P a

Pv
∗ = (b, v)

Then the collection P \ {P a, P b, P c}∪{P a∗, P c∗, P v∗, Pv
∗} is an OPPDC of G.

Case 2. There is no outer path P u,u ∈ N(v),P u pass through N(v).

Without loss of generality , we assume P a doesn’t pass through c.

Subcase 2-1: P c doesn’t pass through a.

Let P c∗ = (c, v) ∪ (v, a) ∪ P a

P a∗ = (a, v) ∪ (v, c) ∪ P c

P v∗ = (v, b) ∪ P b

Pv
∗ = (b, v)

Then the collection P \ {P a, P b, P c} ∪ {P a∗, P c∗, P v∗, Pv
∗} is an OPPDC of G.

Subcase 2-2: P c pass through a.

Since P c passes through a, it can’t pass through b. If P b doesn’t pass through c,

it will return to case 2-1. So P b passes through c. If P b passes through a, it will

return to case 1. So P b doesn’t pass through a.

Let P c∗ = (c, v) ∪ (v, a) ∪ P a

P a∗ = (a, v) ∪ (v, b) ∪ P b

P v∗ = (v, c) ∪ P c

Pv
∗ = (b, v)

13



Then the collection P \ {P a, P b, P c} ∪ {P a∗, P c∗, P v∗, Pv
∗} is an OPPDC of G.

Thus, we have the prove.

Lemma 2.2. G1 and G2 has an OPPDC.

Proof. Since degG1
(V1) = 3 degG1

(V2) = 2 and G1\V1, G1\V1 are paths. By Theorem

1.30 and Theorem 2.1 we know that G1 and G2 has an OPPDC.

Theorem 2.3. If G has no components which isomorphism to K3 and G is a 3-degenerate

graph, then G has an OPPDC.

Proof. We proceed by induction on n = V |(G)|. Since G is a 3-degenerate graph,

there is a vertex v ∈ V (G) of degree at most 3. We denote that G′ = G \ v. If G′ is

isomorphic to K3 then G is isomorphic to K4 or one of the graphs G1, G2 in Lemma 2.2,

that all have an OPPDC. If G′ is a disconnected graph with some components which are

isomorphic to K3. Then we choose another vertex v′ which in K3 and let G′ = G \ v′.

Since degG(v′) ≤ 3 we know that G′ applies to the induction hypothesis. If degG(v) = 1

by induction hypothesis the graph G′ has an OPPDC. Then by applying Corollary 1.29

the graph G has an OPPDC. If degG(v) = 2 by induction hypothesis the graph G′ has an

OPPDC. Then by applying Theorem 1.30 the graph G has an OPPDC. If degG(v) = 3

by induction hypothesis the graph G′ has an OPPDC. Then by applying Theorem 2.1 the

graph G has an OPPDC.

Thus, we have the prove.

Corollary 2.4. Every cubic graph has an OPPDC.

Proof. We know that every cubic graph is 3− degenerate. By Theorem 2.3 we have the

prove.
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2.2 OPPDC on Kn,n and Km(n)

Now, we consider a special construction of OPPDC on complete graph Kn,n and multi-

partite graph Km(n).

Lemma 2.5. For all n ≥ 1, Kn,n has an OPPDC.

Proof. Assume that Kn,n has bipartition (X, Y ), where X = {x0, x1, . . . , xn−1} and

Y = {y0, y1, . . . , yn−1}. Suppose that n is odd. For each i, i = 0, 1, . . . , n − 1, let Pi =

(xi, yn−1+i, xi+1, yn−2+i, . . . , y(n−3)/2+i, x(n−1)/2+i, y(n−1)/2+i). Then P = {P0, P1, . . . , Pn−1}

is a path decomposition of Kn,n. Let Pi
′ = (y(n−1)/2+i, x(n−1)/2+i, y(n−3)/2+i, . . . , xi+1, yn−1+i, xi),

and let P′ = {P0
′, P1

′, . . . , Pn−1
′} .The union of the two path decompositions forms an

OPPDC of Kn,n.

If n is even, let Pi = (xi, yn−1+i, xi+1, yn−2+i, . . . , yn/2+i, xn/2+i). Then P = {P0, P1, . . . , Pn−1}

is a path decomposition of Kn,n. Exchanging the x′s and y′s we obtain a second path

decomposition P′ of Kn,n. The union of these two path decompositions forms an OPPDC

of Kn,n.

Example 2.6. An OPPDC of K5,5.

Assume that K5,5 has bipartition (X, Y ), where X = {x0, x1, x2, x3, x4} and Y =

{y0, y1, y2, y3, y4}.

P =























(x0, y4, x1, y3, x2, y2)
(x1, y0, x2, y4, x3, y3)
(x2, y1, x3, y0, x4, y4)
(x3, y2, x4, y1, x0, y0)
(x4, y3, x0, y2, x1, y1)























P′ =























(y2, x2, y3, x1, y4, x0)
(y3, x3, y4, x2, y0, x1)
(y4, x4, y0, x3, y1, x2)
(y0, x0, y1, x4, y2, x3)
(y1, x1, y2, x0, y3, x4)























Then P ∪ P′ is an OPPDC of K5,5.

Example 2.7. An OPPDC of K4,4.

Assume that K5,5 has bipartition (X, Y ), where X = {x0, x1, x2, x3} and Y = {y0, y1, y2, y3}.

P =















(x0, y3, x1, y2, x2)
(x1, y0, x2, y3, x3)
(x2, y1, x3, y0, x0)
(x3, y2, x0, y1, x1)















P′ =















(y0, x3, y1, x2, y2)
(y1, x0, y2, x3, y3)
(y2, x1, y3, x0, y0)
(y3, x2, y0, x1, y1)














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Then P ∪ P′ is an OPPDC of K4,4.

Theorem 2.8. Km(n) has an OPPDC for n is odd, m 6= 3, 5.

Proof. Suppose that m is even. Let V (Km(n)) =

2k−1
⋃

i=0

Vi where Vi = {xi,0, xi,1, · · · , xi,n−1}

and m = 2k. By Lemma 1.26 K2k has an OPPDC, and by Lemma 2.5 Kn,n has an

OPPDC.

Then we let

Q =
2k−1
⋃

i=0















(P 0
i,i+1 + P 0

i+1,i−1 + P 0
i−1,i+2 + . . . + P 0

i−k+1,i+k)
∪ (P 1

i,i+1 + P n−1
i+1,i−1 + P 1

i−1,i+2 + . . . + P 1
i−k+1,i+k)

∪ (P 2
i,i+1 + P n−2

i+1,i−1 + P 2
i−1,i+2 + . . . + P 2

i−k+1,i+k)
...

∪ (P n−1
i,i+1 + P 1

i+1,i−1 + P n−1
i−1,i+2 + . . . + P n−1

i−k+1,i+k)















where P q
i,j = (yi,q, xj,n−1+q, yi,q+1, xj,n−2+q, . . . , xj, n−3

2
+q, yi, n−1

2
+q, xj, n−1

2
+q)

and yi,q = fj,i(xi,q) by

f :







yi, n−1

2
−j = xi,j, if j < n−1

2

yi,0 = xi,j , if j = n−1
2

yi, 3n−1

2
−j = xi,j , if j > n−1

2
.

Then Q is an OPPDC of Km(n).

Now, we consider m is odd, m 6= 3, 5. Let P = {P0, P1, . . . , Pm−1} is an OPPDC of Km

and denote that Pi = (vi(0), vi(1), . . . , vi(n− 1)), where vi(0) is the beginning at the path

Pi and vi(n − 1) is the end at the path Pi.

Then we let

R =

m−1
⋃

i=0















(P 0
i(0),i(1) + P 0

i(1),i(2) + P 0
i(2),i(3) + . . . + P 0

i(n−2),i(n−1))

∪ (P 1
i(0),i(1) + P n−1

i(1),i(2) + P 1
i(2),i(3) + . . . + P 1

i(n−2),i(n−1))

∪ (P 2
i(0),i(1) + P n−2

i(1),i(2) + P 2
i(2),i(3) + . . . + P 2

i(n−2),i(n−1))
...

∪ (P n−1
i(0),i(1) + P 1

i(1),i(2) + P n−1
i(2),i(3) + . . . + P n−1

i(n−2),i(n−1))















where P q
i,j = (yi,q, xj,n−1+q, yi,q+1, xj,n−2+q, . . . , xj, n−3

2
+q, yi, n−1

2
+q, xj, n−1

2
+q)

and yi,q = fj,i(xi,q) by

f =







xi,j → yi, n−1

2
−j , if j < n−1

2

xi,j → yi,0, if j = n−1
2

xi,j → yi, 3n−1

2
−j, if j > n−1

2
.

Then R is an OPPDC of Km(n).
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Example 2.9. An OPPDC of K4(3).

Let V (K4(3)) =
3

⋃

i=0

Vi where Vi = {xi,0, xi,1, xi,2}. Let

Q =
3

⋃

i=0





(P 0
i,i+1 + P 0

i+1,i−1 + P 0
i−1,i+2)

∪ (P 1
i,i+1 + P 2

i+1,i−1 + P 1
i−1,i+2)

∪ (P 2
i,i+1 + P 1

i+1,i−1 + P 2
i−1,i+2)





where P q
i,j = (yi,q, xj,2+q, yi,1+q, xj,1+q) and yi,q = fj,i(xi,q) by

f :







yi,1 = xi,0,
yi,0 = xi,1,
yi,2 = xi,2.

⇒

Q =







(x0,1, x1,2, x0,0, x1,1, x3,2, x1,0, x3,1, x2,2, x3,0, x2,1)
(x0,0, x1,0, x0,2, x1,2, x3,1, x1,1, x3,0, x2,0, x3,2, x2,2)
(x0,2, x1,1, x0,1, x1,0, x3,0, x1,2, x3,2, x2,1, x3,1, x2,0)







⋃







(x1,1, x2,2, x1,0, x2,1, x0,2, x2,0, x0,1, x3,2, x0,0, x3,1)
(x1,0, x2,0, x1,2, x2,2, x0,1, x2,1, x0,0, x3,0, x0,2, x3,2)
(x1,2, x2,1, x1,1, x2,0, x0,0, x2,2, x0,2, x3,1, x0,1, x3,0)







⋃







(x2,1, x3,2, x2,0, x3,1, x1,2, x3,0, x1,1, x0,2, x1,0, x0,1)
(x2,0, x3,0, x2,2, x3,2, x1,1, x3,1, x1,0, x0,0, x1,2, x0,2)
(x2,2, x3,1, x2,1, x3,0, x1,0, x3,2, x1,2, x0,1, x1,1, x0,0)







⋃







(x3,1, x0,2, x3,0, x0,1, x2,2, x0,0, x2,1, x1,2, x2,0, x1,1)
(x3,0, x0,0, x3,2, x0,2, x2,1, x0,1, x2,0, x1,0, x2,2, x1,2)
(x3,2, x0,1, x3,1, x0,0, x2,0, x0,2, x2,2, x1,1, x2,1, x1,0)







Then Q is an OPPDC of K4(3).
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3 Conclusion

In this thesis, we have obtained the following main results:

1. If G has no components which isomorphism to K3 and G is a 3-degenerate graph,

then G has an OPPDC.

2. For all n ≥ 1, Kn,n has an OPPDC.

3. Km(n) has an OPPDC for n is odd, m 6= 3, 5.

But, we are still far from verifying the conjectures(Conjecture 1.35). Hopefully, this

task can be done in the near future.
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