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Albstract

In many communication systems, the transmitted data may have a structure
that some parts of the information arermore important than that in the other
parts. Channel coding with unequal error protection (UEP) is usually employed in
such systems so that stronger protection could be applied to the important parts
to enhance the quality of communication. At the earliest, block codes were used
to perform UEP mostly. Recently, studies of UEP have been expanded to convo-
lutional codes. Previous results showed that there exists at least one UEP-optimal
generator matrix with the greatest separation vector for every convolutional code.
However, unfortunately, not all convolutional codes can have a UEP-optimal gen-
erator matrix which also keeps the minimal complexity for both of encoding and
decoding. In this thesis, we show that we can calculate the McMillan degree of a
generator matrix directly without decomposing it by using the Smith Algorithm.
From this result, we also illustrate why the internal degree of a polynomial genera-
tor matrix is not greater than its McMillan degree. Besides, we provide a procedure
for searching an optimal polynomial generator matrix with the lowest McMillan
degree, and also we show that for some classes of convolutional codes there always

exist generator matrices which are both optimal and minimal.

Keywords: Unequal error protection, optimal generator matrix, minimal generator matrix,

noncatastrophic generator matrix, McMillan degree.
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Chapter 1

Introduction

In many communication systems, the transmitted messages may have a structure that the
information included in some parts of the message are more important than that in the other
parts. Often these important parts of the message have to be received more reliably. Therefore,
stronger protection should be applied to these parts than to the other parts. This requirement
is called unequal error protection (UEP). For example, in packet transmission the header
usually needs to be highly protected. Beforestransmitting messages to the channel, we use
the UEP encoders to give different protection levels for different important level parts of the
messages. At the earliest, block codes were mainly used to perform UEP. Dunning and Robbins
[3] introduced a so-called separation vector to measure the error correction capability of a UEP
block code, and in this sense they also proposed that given any linear block code, there exists
an optimal generator matrix which has the greatest separation. For further researches on UEP
block codes, we refer to [1][4][7][12][21].

Recently, more and more researches about UEP had been expanded to convolutional codes.
Most of these researches concentrate on developing new UEP schemes [13][20]. Only few
of them were about the UEP capabilities of ordinary convolutional codes [14][18]. Authors
in [18] showed that for any convolutional code, there exists an optimal generator matrix
which has the greatest separation vector, i.e., the best UEP capability. They also provided

procedures to obtain some UEP generator matrices of special algebraic properties, such as basic



and optimal generator matrices, canonical generator matrices with the greatest separation
vector, and systematic generator matrix with greatest separation vector. Unfortunately, not
all convolutional codes have both the best UEP capability and the minimal property [18].
Although a procedure was provided in [18] to produce an optimal basic generator matrix with
lowest external degree, it may not have the lowest McMillan degree.

The famous decoding scheme for convolutional codes is Viterbi Algorithm [11]. By the algo-
rithm, we know that the number of delay elements in the convolutional encoder will determine
the required decoding complexity. Hence we hope to obtain an optimal generator matrix with
the lowest McMillan degree. In this thesis, we show that we can calculate the McMillan degree
of a generator matrix without decomposing it by the Smith algorithm [15]. From this result,
we also give a simple proof to illustrate why the internal degree of a polynomial generator
matrix (PGM) is not greater than its MeMillan degtee. Also we provide a procedure to obtain
an optimal polynomial generator matrix which-guarantees the noncatastrophic property and
has the lowest McMillan degree. Furthermore; we show that for all (n, 1), (n,2) convolutional
codes, and the (n, k) convolutional codes for £ > 3‘which can be generated by the optimal
generator matrices with single-value separations, there always exist generator matrices which
are both optimal and minimal. And for the (n, k) convolutional codes with & > 3 which can
be generated by the optimal generator matrix G(D) with the separation vector of the form
(a,cr,- -+, 3) where oo < 8 and Gy(D) is basic with the lowest external degree and every row
of Gy(D) has only one row degree position, there exists an optimal PGM which has the lowest
McMillan degree among all optimal generator matrices.

The rest of this thesis is organized as follows. In Chapter 2, we review some definitions
and known results in the algebraic aspect of convolutional codes. Besides, UEP capabilities
of convolutional codes are also described. In Chapter 3, we first show a theory so that we
can understand the relations between the invariant factors of a polynomial generator matrix

in finite field F[D] and in finite field F[D~']. And our work is started from this result. In



Chapter 4, we provide two procedures to obtain the optimal and noncatastrophic PGM with
the lowest McMillan degree based on the different ideas. Finally, we conclude our work in

Chapter 5.




Chapter 2

Preliminaries

2.1 Basics of convolutional codes from an algebraic as-

pect

We first review some definitions and properties‘of convolutional codes from an algebraic

aspect. Let I be a finite field. The power series' of the form > .. a; D' is called an one-sided

i>m
Laurent series with indeterminate 2, where‘a; € K for e=> m, and m € Z. The set of all one-
sided Laurent series is denoted by F((1)). Laurent geties of the form A(D) = ag+a; D+ ...+
ar, D* are called polynomials, where L is a positive integer. The set of all polynomials over F
is denoted by F[D]. Let p(D),q(D) € F[D] and ¢(D) # 0. It is well-known that the rational
function p(D)/q(D) has a unique one-sided Laurent series expansion. For convenience, we call
it a rational Laurent series. The set of all rational Laurent series forms the rational subfield
of F((D)), denoted by F(D). The number of nonzero coefficients of a polynomial y(D) is
called the weight of y(D), denoted by w(y(D)), and the weight of an one-sided Laurent series
is infinite. The weight of a vector of laurent series y(D) = (y1(D), y2(D), ..., y,(D)) is defined
to be the sum of w(y;(D)), i.e., w(y(D)) = > i, w(y;(D)).

We now introduce convolutional codes from a linear block codes aspect. Let C be an (n, k)

linear block code over a finite field F'. Suppose C' is generated by the generator matrix G,

where G is a k x n matrix of rank k with entries from F. Hence G maps a k-dimensional



information word @ into a n-dimension codeword y’ by way of ¥y’ = G. If G is used not
just one information word, but a sequence of information words, say «(0), (1), ..., hence the
i-th codeword y’(7) corresponding to the i-th information word (i) is y’(i) = «(i)G, for all
i. Let the sequence of information vectors x(0),x(1),... be the coefficients of the Laurent
series form X (D) = » . x(i)D'. For convenience, we call X (D) the generating function
of #(0),x(1),... with indeterminate D. We also use generating function on the codeword
sequence, i.e., let Laurent series Y/(D) = >, 4’(4) D’ be the codeword series. Then we get
that 3. 0¥ (0)D" = (X 50 (i)D")G, ie., Y'(D) = X(D)G provided y'(i) = 2'(i)G for
1> 0.

An (n, k) convolutional encoder is a linear device which maps a sequence of k-dimension
information words w(0),u(1),..., into a sequence of n-dimension codewords y(0),y(1),...,
respectively. The difference between convolutional encoder and linear block encoder is that
convolutional encoder has an internal m-dimension state vector, s(i), and the i-th codeword
y(7) not only depends on the i-th input w(i); but also i=th state s(i). And the i-th state s(i)

may be affected by the state s(7 — 1) and input w(i=1) at time i — 1. The formal description

of the encoder is as follows: s(0) = 0 for i < 0, and for i > 0,

s(i+1) = s(i)A+u(i)B, (1.1)

y(i) = s(i)C+u(i)D, (1.2)

where matrices A,B,C,D four matrices have dimensions mxm, kxm, mxn, kxn, respectively.
The integer m is called the degree of the encoder. Also, the ordered quadruple (4, B, C, D)
is called the state space description of a convolutional code. Let generating function S(D) =

> i>08(1)D?, hence we multiply both sides of (1.1) and (1.2) by D', and sum over all i. It



follows that:

dise S+ 1)D' =37 s(i)D'A+ 37, s(i)D'B
= D> s(i)D'D™" = > is0 s(i)D'A + > is0 s(i)D'B,

= S(D)D~' = S(D)A+U(D)B,
and

Ym0y (i)DF =30 s()D'C + Yo u(i)D'D

= Y (D) = S(D)C + U(D)D.
Hence an explicit expression for S(D) and Y (D) in terms of U (D) is as follows:

S(D) = U(D)E(D)=U(D)B(D T —A)™", (1.3)

Y(D) = U(D)G(D)=UDND % B(D ' — A)C). (1.4)

By (1.4), we call G(D) a generator-matrix.of‘a eonvolutional code. From [15], we know that
an (n, k) convolutional code is a k-dimension subspace'of F'(D)". Hence, if a generator matrix
G(D) generates a convolutional code C, then its k rows generate C. In linear algebra, we
know that if a matrix M is multiplied by a nonsingular matrix U such that M’ = UM, then
row space of M = row space of M’.Hence T'(D)G(D) will not change this code space if T'(D)

is a nonsingular matrix. For example, let two generator matrices G(D) and G(D) as:

&) 1 0D
- \14D 1 0)’

oo - (1)1, 2)- (1 )

Since T'(D) is nonsingular, the row spaces of G(D) and G(D) are the same, and hence they
generate the same convolutional code. We can use delay elements, adders, and multipliers
with a shorthand notation for the circuit elements to realize generator matrices [12], which

are described in Figure 2.1. Since we illustrate everything with respect to the field GF'(2), we

6
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@ a atb
split add
a(i) [ a(i-1)
L
delay b
a a
a+b
bypass split/add

Figure 2.1: Notations of the circuit elements.

do not need multipliers. For example, suppose

G(D) = 1 0D
~\1+D 1 0

is a 2 x 3 generator matrix for a given convolutional code C| i.e., two information sequences
are encoded to three codeword sequences. So we use two delay elements to realize G(D),
which is shown in Figure 2.2, where s; and-so-means two delay elements, u; and us; means
two information sequences, and v, y», and y3 means three output sequences. Note that for
a given convolutional code, there are distinct generator matrices which can encode the same
code. Some of them are polynomial generator matrices (PGM), for which the entries are all
polynomials. And the others are rational polynomial generator matrices, for which the entries
are rational polynomials. For any rational polynomial generator matrix G(D), let L(D) be the
least common multiple (l.c.m) of all entries of G(D). This implies that G(D) = ﬁGp(D),
where G,(D) is a polynomial matrix. Since each row of G,(D) corresponds to a row of G(D)
multiplied by L(D), G,(D) is also a generator matrix. So, every convolutional code always has

a polynomial generator matrix. Next, we review several properties of polynomial generator

matrices.
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Figure 2.2: The physical realization of G(D).

2.2 Polynomial generator matrices and their properties

Let G(D) be a k x n polynomial generator matrix for a convolutional code C' with entries
Gi;j(D),V1<i<k andV 1< j <n. Let the i-th row of G(D) be denoted by g;(D), i.e.,
9:(D) = (9i1(D), gi2(D), - .., gin(D)), and the row degree of g;(D) be max{deg(g;;(D))| j =

1,2,...,n}. Also, we define the interndl degree and. external degree [12] as follows:

intdeg(G(D)) = maximum-degree of k x k minors of G(D),

extdeg(G(D)) = sum of the row degrees of G(D).

Note that a k x k minor of G(D) is the determinant of a k x k submatrix of G(D). The follow

theorem provides a useful fact about the internal degree of a PGM.

Theorem 1 [12] Let G(D) be a k x n polynomial generator matriz. If T(D) is any non-
singular k x k polynomial matriz, then intdeg(T'(D)G (D)) = intdeg(G (D)) + deg(detT'(D)).
In particular, intdeg(T(D)G(D))> intdeg(G(D)), with equality holds if and only if T(D) is

unimodular®.

By way of internal degree and external degree, we obtain two PGMs which are basic PGMs

and reduced PGMs.

Definition 1 A k xn PGM is called basic if among all polynomial generator matrices of the

*A polynomial matrix is called unimodular if its determinant is in F’



form T'(D)G(D), where T'(D) is a nonsingular k X k matriz over F(D), it has the minimum

internal degree.

Definition 2 A k x n PGM for a given convolutional code C' is called reduced if among all
polynomial generator matrices of the form U(D)G(D), where U(D) is a unimodular, G(D)

has the minimum external degree.

For a polynomial generator matrix, we can use nonsingular transformations to obtain an
equivalent generator matrix, which generates the same code. We review here that a nonsingular
transformation is a composition of elementary matrices, where an elementary matrix is defined

as one of follows:

e Type 1. Interchange two rows (columns).
e Type 2. Multiply a row (column) with a rational polynomial a(D).

e Type 3. Add a rational polynemial multiple of a row (column) to another row (column).

We use 3 x 3 elementary matrices for. example;mand are shown below, where Type 1 shows
interchange 1st and 3rd rows, Type 2‘shows.multiply 2nd row with a rational polynomial

a(D), and Type 3 means replace 3rd row with (row 3+3(D)x row 1).

0 01 10 0 1 00
Typel: [0 1 0|, Type2:|0 «(D) 0], Type3: 0
1 00 0 0 1 B(D) 0 1

The following result is known as the Invariant Theorem:

Theorem 2 [12] Let G(D) be a k x n polynomial generator matriz. There exist finite num-
ber of elementary row and column operations which reduce G(D) into a diagonal polynomial
matriz. That is, G(D) = W (D)I'(D)V (D), where W (D) and V(D) are unimodular and I'(D)

1s of the form.:

(D) 0 0 ... 0



where v;(D)|vix1(D), fori=1,... k-1, and v;(D) = Ai(D)/A;_1(D), where A;(D) is the great-

est common divisor (g.c.d) of all i X i minors of G(D) fori=1,2,... n.

Here, the diagonal entries of I'(D) are called the invariant factors of G(D). We know that a
basic generator matrix has the fewest internal degree among all polynomial generator matrices.

Therefore, we have:

Theorem 3 [12] A kx n PGM G(D) is basic if and only if one of the following siz conditions

satisfies:
(1) The invariant factors of G(D) are all 1.
(2) The g.c.d of the k x k minors of G(D) is 1.
(3) G(«) has rank k for any o in the.algebraic ¢losure of I
(4) G(D) has a polynomial right muverse.
(5) If y(D)= z(D)G(D), and if (D)€ F[PY* then u(D) € F[D]*.
(6) G(D) is a submatriz of a unimodular matriz.
For example, suppose a convolutional code C' is generated by
&(D) = <1 11 1>.
0 1+D D 1

Then by the Smith decomposition on G(D), we get that

1 1 1 1

1 o\/1t000\|o1+D D1
G(D) =

0 1 01 0O0/f0 O 1 0

0 1 0 0

Hence by (1) of Theorem 3, the invariant factors of G(D) are all 1. Hence G(D) is a basic

generator matrix.

10



There is a special generator matrix which is called noncatastrophic, and now we illustrate
what is the catastrophic phenomenon. Suppose an information word w(D) is encoded by
G(D) into codeword y(D) = u(D)G(D). Let y(D) be transmitted over a noisy channel
and received as y,.(D). The decoder must make an estimate of u(D), based on y,(D). The
decoding job is to find a codeword (D), which is closest to y,.(D), and hope being that
y(D) = y(D). Clearly, if the decoder’s estimate of y(D) is (D), its estimate of u(D) will
be 4(D)= g(D)K (D), where K(D) is an n X k right inverse of G(D). If we define codeword
error by e.(D) = y(D) — g(D), and the information error by er(D) = u(D) — @(D). Hence
we got that er(D) = e.(D)K(D). A decoding catastrophic is said to have occurred if the
codeword error has finite weight, but the corresponding information error has infinite weight.

Since e (D) is a difference of codewords, it is a codeword. Hence have the following definition.

Definition 3 A generator matriz G(D) is_said.to be catastrophic if there is an informa-
tion word of infinite weight w(D) € F(D)* such that-the corresponding codeword y(D) =

u(D)G(D) has finite weight.

For example, let a (2,3) convolutional code he generated by a generator matrix

1 D 1
G(D) = L)
D 14D 1+D

We can find that G(D) is catastrophic since give a infinite weight input w(D) = (

D 1 )
1+D+D?° 1+D+D? />

we will get a finite weight output y(D) = (0,1,1) = u(D)G(D). In 1968, Messey and Sain

proved the following:

Theorem 4 [14] If G(D) is a polynomial generator matriz for a convolutional code C, then

the following three conditions are equivalent.
(1) No infinite weight input w(D) can produce a finite weight output y(D) = w(D)G(D).
(2) The g.c.d of all k x k minors of G(D) is power of D.

(3) G(D) has a right inverse K(D)whose entries are of finite weight.

11



A PGM is said to be noncatastrophic if it satisfied one of these properties. Otherwise, it is

called catastrophic.

Let Gy(D) be a basic generator matrix of a given convolutional code C'.By Theorem 3 and
Theorem 4, the basic generator matrix G(D) has a property that the g.c.d of k X k minors of
Gy(D) is 1. Since 1 = DY which is a power of D. So G4(D) is also a noncatastrophic generator
matrix.

A generator matrix G(D) may have more than one physical realization. Among all of these

realizations, the fewest number of delay elements is called McMillan degree of G(D).
Example 1 Let a (2,3) convolutional code C' be generated by:

oo P 0 D
(D)= 1+D? 1+D D?)°

This implies that there are at least at leastztwo.distinct physical realizations of G1(D), see

Figure 2.3.

Va2 W N Vo Vs
(a) (b)

Figure 2.3: Two physical realizations of G (D).

Also, we call the realization of G(D) is a minimal realization if it contains the minimum
degree among all realizations. A realization of G(D) is called the direct-form realization if it

is realized by realizing every row of G(D) directly and combine them into a circuit. Suppose

12



G(D) has a realization with degree m. So dimension of A is m in the state space description

(A,B,C, D). Let T be an m x m nonsingular matrix, and let
Al = TAT_I, B1 = BT_l,Cl = TC, and D1 = D

This implies that G(D) = D + B(D™'I — A)7'C = D, + BT'T(D'I — A)7'T1TC =
Dy + C(D7'I — A))B;. So, (A1, By, Cy, Dy) is also a state space description of G(D), and
from (Ay, By,C4, D1) we get another physical realization since we know the relations of the
input, the output, and the state. Note that T is called the similar transformation matrix.
Consider a realization for a generator matrix G(D). The realization is called reachable if we
can reach any specified final state s; starting from any arbitrary initial state s; by applying an
appropriate finite length input sequence; and the realization is called observable if the state s;
at time ¢t can be uniquely determined by .observilig a finite length segment of output sequence
starting from time ¢, and knowing .the [input| sequence for the corresponding set of sample

values. For a state space description (A, B, ;D) of a realization with m delay elements, let

B
BA
Rap=| BA?

BAm—l
be a matrix which is obtained by using A and B. By [17], this realization is reachable if and

only if R 4 has full rank m. Also, let
Sea=(C ac xc .. amic)

be a matrix which is obtained by using A and C. Again by [17], this realization is observable
if and only if S¢4 has full rank m. Since a realization is a minimal realization if and only if
it is reachable and observable [17]. We can use similar transformation to obtain a realization
which is reachable and observable, and thus is a minimal realization. For example, Figure

2.3(b) is the direct-form realization of G(D), and we can get its relations of input state and

13



output state:

000
1 00
(s1(i+1),89(i + 1), 83(i +1)) = (s1(d),52(4),83(1)) [0 0 1 [ + (wi(d), ua(d)) (0 ) 0)7
000
1 01
| | . - _ . _ _ 000
(W1(2),92(1), y3(2)) = (s1(2),82(4),83(2)) [ 0 1 0 [ + (wa(2), u2(i)) (1 1 O)‘
1 01
Hence we have a state space description
000 1 01
B 1 00 0 00
(A,B,C,D)=110 0 1 ( > 0 10 ( )
010 110
000 1 01

Let the similar transformation matrix be

T —

1120
TD) =sf01
0.40

By using a similar transformation 7T"/-we obtamranother'state space description (A;, By, C1, D)

as

1 01
A =TAT 1 = B, =BT'= ;
010

(00 0
D, =D = :
110

This implies that the input state and output state are

C,=TC =

- o O o o O
o RO o o O
= o O oS = O

0 00
(5100 +1), 20+ 1), 5300+ 1)) = (s2(0), 52(0), 55(0)) [0 0 1| + (1 (i), ua(3) ((1) (1) (1)>
0 00
0 00 00 0
(0, 200), 35(0)) = (51000, 52(0),55(9)) | 0 10 |+ (w0 (0), () (1 1 o)'
1 01

14



By above, we find that at any time ¢ the output (y;(7),y2(7),y3(7)) is independent of the first

state value s1(i). So we can rewrite the equalities without s; as:

(s2(i+1),s3(04+1)) = (s2(),s3(7)) (8 ;) (i (i), (1)) <(1) (1)> 7

. . ~_5isi010 u(2), ua(t L
(y1(i),y2(7),y3(7)) = (s2(4), s3(7)) <1 0 1>+( 1(7), ua(i)) <1 . 0).

Using the notation of state vector (s, s2) to replace (sg, s3), we can realize this circuit which is
shown in Figure 2.3(a). Since it is reachable and observable, hence it is a minimal realization.

So every generator matrix G(D) has a minimal realization, and the degree of minimal
realization is called McMillan degree of G(D), denoted by Mcdeg(G(D)). Although there are
so many generator matrices can generate the same convolutional code, their McMillan degree
may not equal. For example, suppose a (2,4) convolutional code C' can be generated by two

PGMs as follows: , ,
1 EDEEDESIED? 1+ D
Gl(D = )
D T+ D+D*  D? 1

Tl 180D 0
Go(D) = )
O+ D 1

Thus we realize this two PGMs with their minimal realizations, as shown in Figure 2.4. We find

”1 ° @ ® ® ”1 ® °
Z/l2 ® v ° v ® Z/l2 v ° v °
Sl I S2 Sl ® ®
S3 )
Vi Vo Va3 Vs N Yy V3
(a) (b)

Figure 2.4: Minimal realization of G1(D), (b)Minimal realization of Ga(D).

that although G1(D) and Go(D) generate the same convolutional code, G1(D) has McMillan

degree 3 and Go(D) has McMillan degree 1, hence they have different McMillan degree. For
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a given convolutional code C', there are so many generator matrices can generate C', and
each of them have different McMillan degree. We call G(D) is a minimal generator matrix if

Mecdeg(G(D)) is not greater then all the others. Hence we give a definition as follows:

Definition 4 For a given convolutional code C, generator matriz G,,(D) is called minimal

if among all possible generator matrices, G,,(D) has the fewest McMillan degree.

From Definition 2, we know that a reduced generator matrix has the fewest external degree
among all polynomial generator matrices. With this definition, the reduced generator matrix

is proved to have some equivalent conditions as follows:

Theorem 5 [15] A kx n PGM G(D) is reduced if and only if one of the following three

conditions satisfies:

(1) If we define the indicator matrin'G forthe highest degree terms in each row of G(D) by

Gy = coeft (g;;(D)),

DS

where e; is the row degree of i-th row-of-G(B), then G has rank k.
(2) extdeg(G(D))=intdeg(G(D)).
(3) For any k-dimension polynomial vector w(D) = (uy(D),...,ux(D)),

deg(u(D)G(D)) = max (deg(u;(D)) + deg(g:(D)))-

1<i<k

Example 2 Suppose a given convolutional code C' can be generated by

G(D) = 1 0D
~\1+D 1 0/

Then from Theorem 2, we get that

10 D

1 0\{100
G(D) = 0 1 D+ D?
VAR NUN P

16



Hence we know that all invariant factors of G(D) are all 1; so it is basic and hence noncatas-

(o0 1
G= ,
(100)

has full rank, hence G(D) is also reduced.

trophic. Also, since

A PGM G.(D) is called canonical generator matrix if among all polynomial generator
matrices, G.(D) has the lowest possible external degree. It is proved that a PGM is canonical
if and only if it is basic and reduced [15]. Hence in Example 2, G(D) is canonical since it
is basic and reduced. External degree of a PGM corresponds to the degree of its direct-form
realization, i.e., we can realize every row of a PGM directly with correspondent row degree
and combine them into a circuit. So we know that McMillan degree is smaller than external
degree. And latter, we will illustrate thatrintéfnal degree is smaller than McMillan degree.

Hence every PGM G(D) has the degree property as follows [15]:

intdeg( G (D))< Mcdeg(G(D)) <extdeg(G(D)). (2.5)

By (2.5), we know that a canonical generator matrix G (D) is basic, so intdeg(G(D)) is the low-
est, also it is reduced, so extdeg(G (D)) = intdeg(G(D)). Hence it follows that Mcdeg(G(D))

is the lowest, i.e., G(D) is minimal.

2.3 Convolutional encoders for UEP

For a convolutional code C', we define that free distance of C' is the minimum distance
between codewords of C, denoted by df,... Since a convolutional code is a linear code, hence
if ¢; and ¢y are two codewords in C, then ¢; + ¢, is also a codeword in C'. Suppose a generator
matrix G(D) generate a convolutional code, and let two information vector u;(D) and us(D)

is encoded by G(D) such that u;(D)G(D) = yi(D), and us(D)G(D) = y2(D), where y,(D)

17



and ys(D) are correspondent codeword vectors. So we find that :

Qe =, min | (0((D) +1(D)) : 1s(D) # ua(D))

= {Lr(lli;}(W(y(D)) cu(D) #0)

= win(uw(u(D)G(D)) : u(D) #0),

where w(y;(D) + y2(D)) means weight of y;(D) + ya(D). So dfree is the minimum weight of
nonzero codewords. Similarly to the free distance, the UEP capability of a convolutional code

can be described by the separation vector defined as follows:

Definition 5 Let C be an (n, k) convolutional code over finite field F'. The separation vector

of G(D) is defined as s(G(D)) = (s(G(D))1,s(G(D))a, ..., s(G(D))x), where

S(G(D): = i FBYGED)) (D) # 0},

V1<i<kandI(D)= (L(D),LED):..,Ix(D)) is the input information bits with I,(D) €

F(D),¥1<1<k.

By above definition, the minimum of s(G(D));, V 1 < i < k, is the free distance of the
convolutional code. Besides, let the i-th information sequence [;(D) fed into the i-th input
of the encoder, at high signal-to-noise ratios (SNR) a large value of s(G(D)); implies a small
bit-error-rate (BER) [14]. Hence different values of s(G(D)); will make the different BER.
Hence we can use G(D) for UEP as long as the data of distinct BER requirements are fed into
G(D).

We define two vectors @ = (ay, as, . ..,ax) and b = (by, by, ..., b;) are comparable if a; > b;
ora; <b; fori=1,...,n,denoted by @ > b or a < b. For an (n, k) convolutional code C, if
G(D) has the greatest separation vector among all generator matrices, then we call G(D) is
an optimal generator matrix. So we give a formal definition of the optimal generator matrices

as follows:

18



Definition 6 For a convolutional code C, G(D) is called an optimal generator matriz if

and only if for any other generator matrix G'(D), there exists a permutation ¥ such that

s(G(D)) = ¢(s(G'(D))).

Consider a set of vectors X = {x1(D), z2(D), ...}, where x;(D) € F(D)" for all i, we denote

(X) = {Zai(D)mi(D) - a;(D) € F(D)}

as the vectors pace of all linear combinations of elements in X . Given a convolutional code C'
with a generator matrix G(D). Also we denote C*={c(D) : V¥ ¢(D) € C, w(c(D)) < p}. There
is a theorem about the necessary and sufficient conditions for optimal generator matrices as

follows:

Theorem 6 [18] For a convolutional codex@ydefine w(C) = {w(c(D)) : ¥V ¢(D) € C}. A

generator matriz G(D) is optimal if and only if
Vpew(C), 3 X)) CGED) such that (C?) = (X (D)),
where X (D) C G(D) means that all rows'of X(D) are contained in G(D).

Authors in [18] proved that for every convolutional code, there always exists an optimal
generator matrix to generate the code. To find an optimal generator matrix, we define a

class of generator matrices, which are called monotonically weight retaining matrices below.

Definition 7 A generator matriz G(D) for an (n, k) convolutional code C' is said to be mono-

tonically weight retaining matriz if and only if

wl(gi(D)] = w[C\(g1(D), g2(D), - -, gia(D))], for 1 <i <k

Also from this definition we define a generator matrix to be weight retaining if it is contained
from a monotonically weight retaining matrix. The weight retaining matrices have been proved

to have some properties, which are shown in Theorem 7.
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Theorem 7 (18] Let G(D) be a generator matriz for an (n,k) convolutional code C'. Then

the following statements are equivalent.
(1) G(D) is a weight retaining matriz for C.

(2) Given any other generator matriz A(D) with rows {a1(D),as(D),...,ar(D)} for C,

k k
Y wl{g(D)] <Y w{a(D))].
i=1 =1
(3) s(G(D))=(w[{g1(D)], w[(g2(D))]; - .., wl{gu(D))]).
Hence by Theorem 7, we can find that an optimal generator matrix is also a weight re-
taining generator matrix. Authors in [18] also proved that every retaining matrix for an (n, k)
convolutional code C' is an optimal generator matrix for C'. Hence by this property, they

provide Procedure 1 to obtain a weight:retaining matrix PGM for a given convolutional code,

and hence is optimal.
Procedure 1 [1§]

Step 1 Given an (n, k) convolutional code C.

Step 2 Choose a polynomial codeword ¢(D) € C\(g1(D), g2(D), ..., gi—1(D)) such that
w(c(D)) = wlC\{g1(D), g2(D), - - -, gia(D))]-

Step 3 Set g;(D) = ¢(D).
Step 4 If i < k, then replace ¢ = 7 + 1 and go to Step 2, else go to next step.
Step 5 Set G(D) be the generator matrix with rows g;(D), ga(D), . .., gx(D), which will be

the desired optimal generator matrix of C'.

In order to achieve UEP performance, we should use optimal generator for encoding. It is

proved that two optimal generator matrices are related by effectively lower-triangular matrix,

which is defined as:
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Definition 8 Let G(D) be a generator matriz of an (n, k) convolutional code C. Without loss

of generality (W.L.O.G), suppose s(G(D)) is in the nondecreasing order and has o« different

component values, each with §; repetitions for 1 < ¢ < «a. For a k x k matriz T(D) over

F(D), let t, (D) be the entry in the position (u,v) of T(D) for all 1 < u,v < k. T(D)

is called effectively lower-triangular with respect to G(D) if and only if t, (D) = 0 for all
f;iﬂl <u<>Si  B,v>Y0 6, and1<i<a.

For example, if s(G(D)) = (1,2,2,2,3,3), then the effectively lower - triangular matrix with

respect to G(D) is of the form:

X

X, X X

X X X X X X
X1 XX X X

X X X X

XX X

So from above, we introduced this theorem as follows;

Theorem 8 [18] Given an (n,k) convolutional code C, W.L.O.G, let G(D) be an optimal
generator matriz of nondecreasing separation vector. For any k X k nonsingular matriz T'(D),

T(D)G(D) is optimal if and only if T'(D) is effectively lower - triangular with respect to G(D).

From this result, we can produce many optimal generator matrices if we can get any one
optimal generator matrix. Among all of them, we will focus on a special optimal generator
matrix for our study, which is optimal and basic. Suppose a convolutional code C'is generated
by a polynomial optimal generator matrix G(D), and let separation vector s(G(D)) be in de-
creasing order. From Theorem 2, we know that it can be decomposed by the Smith-Algorithm

such that G(D) = W(D)['(D)V (D). Let W(D)['(D) = ¥(D), we can find that

Y11(D) 0 0 0 ... 0
) = oy (p) = | P =P) 00 g
Ye1(D) we2(D) oo (D) 0 ... 0
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where v;; € F[D] for 1 < i < kand 1 < j <i. And we denote that G,(D) is the first &
rows of V(D), hence we find that G(D) = Uy (D)Gy(D), where W (D) is the first £ columns
of (D). Since ¥,(D) is a lower triangular matrix hence W, '(D) is also a lower triangular
matrix. Hence Gy(D) = W, '(D)G (D), and by Theorem 8, we can get that G,(D) and G(D)
have the same separation vector, so Gy(D) is also optimal. Since they generate the same
convolutional code C', and since V(D) is unimodular, we know that there exists a polynomial
matrix V(D) such that V(D)V~Y(D) = I. Hence there exist a polynomial right inverse
G; (D) which is formed as the k columns of V=1(D), such that G,(D)G; ' (D) = I. So Gy(D)
is basic and optimal. By this property, we can obtain a basic and optimal generator matrix.

Since external degree of a generator matrix G(D) is the degree of its direct-form realiza-
tions. Hence reducing the external degree as smallest as possible will makes the circuits easier.
To get an optimal generator with fewest -external degree and guarantee noncatastrophic, we

can use Procedure 2 to obtaining an-optimal and ‘basic PGM with the lowest external degree.
Procedure 2 [1§]

Step 1 Give an (n, k)convolutional C'; find"a ‘generator matrix G(D) which is basic and
optimal. Suppose ¢;(D) is the rows of G(D) for 1 <i < k, and separation s(G(D))
is in nondecreasing order of « distinct component value, each has 3; repetitions for

all 1 <17 < a.

Step 2 Set [ = 1, C* = (), and C be the collection of all codewords whose degree is not

more then extdeg(G(D)).

Step 3 Choose f; independent codewords, say ¢1(D), c2(D), ..., cg (D), of the smallest sum

of degree from C' which are independent to all codewords in C* and satisfy the
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following constraints:

(D) 91(D)

62(.D) = [[11(D), T12(D), ..., T1(D)] g2(.D)

Coy (D> gZi:l gr(D)
where I';;(D) is a f; x (; matrix over F[D] for all 1 < j < [ and I';;(D) is

unimodular.
Step 4 Set C* = C*U {¢y(D),c5(D),... ,c5(D)} and C = C \ {¢1(D),ca(D),. .. ,c5(D)}.
Step 5 If [ < a, then replace [ by [ + 1 and go to Step 3; else go to the next step.

Step 6 Set G*(D) to be the generator matrix whose rows consist of all codewords in C*,

which will be the desired basic and optimal PGM of the smallest external degree.
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Chapter 3

Lowest McMillan degree of polynomial
encoders for UEP

In Chapter 2, we know that for a convolutional code C, there exists a generate matrix
for which the Mcdeg(G(D)) is the lowest among all generator matrices. But unfortunately,
authors in [18] showed that not all gonvolutional codes: can be generated by an optimal and

minimal generator matrix. For example, suppose a convolutional code C' can be generated by

the canonical PGM
1 1 0
G.(D) = 0 1 D 0],
1+D D 0 0

which has s(G.(D)) = (2,2,2) and Mcdeg(G.(D)) = 2. By Procedure 1, we obtain an optimal

PGM
01D 0
Go(D)=110 0 D? [,
001 1+D

which has s(G,(D)) = (2,2,3). As the result of [16], there are a finite number of minimal
generator matrices for a given convolutional code. Hence calculating the separation vectors of
all minimal generator matrices for ', we find that there are no minimal generator matrices
that have separation vectors equal to (2,2,3). So there are no minimal and optimal generator

matrices which can generate C'. In the following we based on some theorems to find an optimal

PGM with the lowest Mcdeg(G(D)).
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3.1 Smith decomposition on PGMs over the field F[D™]

Similar to the definition of polynomials, a Laurent series has the form A(D™) = a_,,,D™™+
a1 D7 4+ - -+ ag is called an anti-polynomial and has degree m, denoted by deg(A(D™1).
The set of all anti-polynomials is denoted by F[D~!]. Hence an anti-polynomial series is just
a polynomial series in D~'. We denote F((D™')) to be a field with all one-sided anti-Laurent
series, which are one-sided Laurent series in D~!. The rational subfield of F((D™1)) consists
of all rational anti-Laurent series, which are rational Laurent series in D=, and is denoted by
F(D™'). For two anti-polynomials A(D™') and B(D™!), we say that A(D™!) is divisible by
B(D™!) if there exists an anti-polynomial C'(D™1) such that A(D~Y)C(D~') = B(D™1), and
denoted by A(D™') | B(D™1). For example, D=2 is divisible by D™ since D72 . D73 = D~°,
so we have D2 | D75,

We will introduce two types of given generator, matrix. Let G(D) be a PGM for a given
(n, k) convolutional code C. Suppose p = the maximumdegree of g;; (D), where g;;(D) means

the i-th row and the j-th column entry of G(I):TWe write G(D) as a matrix over F'(D™!) as

follows:
G(D) = (g(D))ey = (D)) o, (0 (1)
where
G_1(D™") = (D™"g;4(D))i; (1.2)

is a matrix of polynomial in D', V1 <i <k, and V1< j <n. If we use z~! to replace D

in (1.1), then we get a matrix like the transfer function form as follows:

o) = (D))~ ep( (1.3)

2P
where P(z) is a polynomial matrix in z. By the Smith-Algorithm on P(z), we can decompose
P(z)as P(z) =V (2)®(2)W(z), where V(z) and W (z) are k x k and nxn unimodular matrices,
respectively, and ®(z) is a k x n diagonal matrix whose diagonal entries are invariant factors of

P(2). So we can decompose G(z71) as G(z7') = V(2)277®(2)W (2) = V(2)A(2)W (z), where
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A(z) is a diagonal matrix with the i-th diagonal entry \;(z) = «;(2)/8:(2), and
(i(2), 0:(2)) = 1, and a;(2)|ai+1(2), Biv1(2)|6i(2), for V1 <i <k, (1.4)

where (;(z), 5i(2)) is g.c.d of a;(2) and G;(z). It is the so-called Smith-McMillan decomposi-
tion, and it is proved that the McMillan degree p of G(z7') is 325 deg(B;(2)) [17], i.e., the
sum of denominator polynomial degree of invariant factors. Replace z by D~ in G(271); then

we have generator matrix of the form as (1.1). Similar way we use the Smith-Algorithm on

G_1(D7Y) with field F(D™1) to decompose G_1(D™!) = V_{(D™1)®_ (DY )YW_, (D), where

Hence G(D) has a Smith-McMillan decomposition as G(D) =V_{(D~ ) Dr®_;(DHW_y (D)
= Vi (DHA_ (D HYW_1(D™'), where ALW(D7Y)is a k x k diagonal matrix with diagonal

entries \;(D™!) = o;(D71)/3;(D71) sand
(i(D™Y), (DY) = 1, and a;(D™) |l tlD=FBia(D )| B:(D7Y), for V 1 <i < k. (1.5)

So we can calculate McMillan degree u of G(D)'as u = S | deg(8;(D")), and we conclude

it as follows :

Theorem 9 [5] Let G(D) be a k x n generator matriz, and have invariant factors \i(D™')
with respect to F(D™1), fori = 1,....,k. Assume that \;(D™') = a;(D™Y) /B;(D™') with no
common factors, where a;(D™1) and 3;(D™1) are polynomials in D', Then McMillan degree

po=30 deg(B;(D7Y)).

Example 3 Suppose

G(D)_D 0 D
\1 14D 1)

Since maximum degree of entries is 1, we can get

1 1 0 1
GP)=p= (D—l 1+ D! D—1> ‘
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Hence by the Smith-McMillan decomposition with respect to the field F(D™!), we get

1 01

1 0\ [ 0 0
GD)={ | P 010
D1 1 0 D0

0 01

We use 27! to replace D in G(D), so we get

-1 -1
i [* 0 z
ate )_<1 142! 1)’

Again use the Smith-McMillan decomposition with respect to the field F/(z) we can get

1 01

. 1 oy(f o0 o0
G(z™) = : 010
z 1) \0 == 0

0 01
Comparing this two types generator matrices, we can find that this is only different from the

choice of indeterminate. Hence we getithat McMillan*degree of G(D) is 2.

In [9], Johannesson and Wan proved:some degree properties as listed in Lemma 1 and Theorem

10:

Lemma 1 [9] Let the finite filed F' = GF(2), and let fi(D), fo(D),..., fi(D) € F[D] with

g.cd (fi(D), fo(D),..., fi(D)) = 1. Suppose f = max{deg(f;(D))| i =1,2,...,1}. Then for

m > f, D™ f(D), D™ fy(D),...,D"™f(D) € FID™'] and
(D™ f1(D), D" fo(D), ..., D" f(D)) = D=,

Theorem 10 [9] Let G(D) be a basic encoding matriz and let r and s be mazimum degree of
its k x k minors and (k — 1) x (k — 1) minors, respectively. Then the k-th invariant factor of

G(D) regarded as a matriz over F(D™") is 5——, where the finite field F = GF(2).

We will generalize this lemma and theorem and give proofs; then use this result to get A_;(D™1)
by invariant form of G(D), and then we can calculate Mcdeg(G (D)) directly without decom-

pose them by the Smith-McMillan decomposition.
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Lemma 2 Let F be a finite field, and let f1(D), fo(D), ..., fi(D) € F[D] with g.c.d (f1(D), f2(D),
. filD)) = A(D). Suppose f = max{deg(f;(D))| i=1,2,...,l}, and let f;(D)=D"ig;(D),

i =1, ..,l, where g;(D) is a delay-free polynomial. Also let
w = min(wy,ws, ...,w;), n =min{deg(g;(D))| i = 1,2, ...,1}.
Then form > f, D™™f(D),D~" f5(D),...,D~™f(D) € F[D™1], and
(D" fi(D), D" fo(D), ..., D" fi(D)) = D= D DA(D)D~.

Proof: Since f;(D) = D¥g;(D), V 1 < i <, it follows that (g1(D), g2(D),...,q(D)) =
A(D)/D¥. Hence for m > f,
D"fi(D) = D "D*g(D)
— D~ (mwisdeg(gi(D))) (D_deg(gi(D))gi(D))

— o~ (m=deg(fi(D))) (D—deg(gi(D))gi(D))’

where the last equation follows from the factrthatideg(f;(D)) = w; + deg(g;(D)), i=1,2,... L.
Since ¢1(D), g2(D), ..., q(D) are delay-free;polymomials, it follows that
(D= PD gy (D), D=0 gy (D), ..., D~*@ g (D)) = D(gi(D),ga(D), ..., (D))
= D7'A(D)/D*
— D'A(D)D™“.
Therefore, we get that
(D" f1(D), D" fo(D), ..., D" fi( D))
— (D—(m—deg(fl (D)))(D—deg(m(D))gl(D))7 e D—(m—deg(fz(D)))(D—deg(gz(D))gl(D))
— D—(m—f)(D—deg(gl(D))gl(D)’ o D—deg(gz(D))gl(D))
= D m=HDD=IA(D)D™,

and the proof is completed. [
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Example 4 Let fi(D) = D>+ D? + D5, fo(D) = D3>+ D*+ D°, f3(D) = D* + D5 + DS +
D7, Hence we know that (f1(D), fa(D), f3(D)) = D?> + D3+ D®> = D*(1 + D + D3), and
max(deg(f1(D)),deg(fo(D)),deg(f3(D))) = 7. Suppose fi(D) = D*(1+ D+ D?) = D*1g(D),
f2(D) = D3*(14 D+ D?) = D*?g5(D), and f3(D) = D*(1+ D)(1+ D + D?) = D“sg5(D). We
can find that min(w;,ws,w3) = 2, and min(deg(g;),deg(g2),deg(gs)) = 3. Therefore, for any

m > 7, W.L.O.G, let m = 8, it follows that

(D™f1(D), D" fo(D), D% f3(D))
= D?*+DP°+D°D?*+D*+DP D'+ D?*+D?+D7?)
= DY 1+D?+D7®

D~8""D=3(D? + D* + D°)D2.

Theorem 11 Let F be a finite field <Suppose G(D)=be a k x n polynomial encoding matrix
and let m; be the mazimum degree-of-4 %t minors-of.G(D), ¥V 1 < i < k. Suppose i-th
invariant factor of G(D) is v;i(D), and di-is-the-number makes v;(D) become delay-free, that
is, vi(D) = D%~/(D), (D) # 0, and let-0; = deg(+:(D)). Then the i-th invariant factor of

G(D) regarded as a matriz over F(D™') is D~%~;(D)D~% /D~ (mi=mi-1),

Proof: Let G(D) has entries g;;(D), for V1 <i <k, V1 <j<n, and w = max(deg(g;;(D))).

Write G(D) as a matrix over F[D™!] as follows:
G(D) = D“G_ (D7), (1.6)

where G_;(D™!') is a matrix of polynomial in D™! as we mentioned in (1.1). Suppose all
i x i minors of G(D) are fi(D), fo(D),..., fi(D) € F[D], and let the g.c.d of i x i mi-
nors is A;(D), in other words, A;(D) = (fi(D), fa(D), ..., fi(D)). Similarly, A;_1(D) =
(1(D),q2(D),...,q(D)), where ¢;(D) € F|[D] are all (i — 1) x (i — 1) minors of G(D), V

1 <i<t, and A;_1(D) is the g.c.d of (i — 1) x (i — 1) minors of G(D). Also, let d; and d; be

29



the numbers that make A;(D) and A;_1(D) delay-free, respectively, i.e.,

Ai(D) = D"A|(D),
Ai—1(D) = D*A;_(D),

where AL(D) and A]_, (D) are delay-free polynomials. Let 6, = deg(A’(D)) and 6; = deg(A’_,(D)).
Since an i x ¢ minor of G_;(D™!) is equal to the corresponding i x i minor of G(D) multiplied
by D~%". Tt is trivial that any degree of i x i minor of G(D) is less or equal than w - 4. Hence

we get that w -7 > m;, by Lemma 2, we have

Ai(G(DTY) = (D™ f(D), D™ fo(D),..., D™ fi(D))

= D W) DO A (D)D",

where A;(G_1(D™')) means g.c.d of i X ¢ minor of G_;(D™1). Similarly, A; 1(G_;(D™")) =

D~wi=N=mi-1) D=0t \; | (D)D~%. Thus,the 4-th ifvariant of G_;(D!) is

Ai(G_(D™Y) D~ wi=mi) D=0UA (D)D)~ D—v _o, _d,
= , = D™~ (D)D™%, (1.
A 1(G_(D7Y)) D-wl-D-miD D=0 N; ((D)D=d - D—(mi=mi-) (D) (1.7)

where d; is the integer making ~;(D).delay-free, i.e.;/D~%~,(D) = /(D) and 0;=deg(v.(D)).
From (1.6) and (1.7), it follows that the i-th"invariant factor of G(D) regarded as a matrix

over F(D™!) is

D—w
DY ——— D Y%y (D)D™% =

D(D)D
D—(mi—m;_1) '

D—(mi—m;_1)

(1.8)

By Theorem 11, suppose a k x n PGM G(D) with the i-th invariant factor v;(D), V 1 <
i < k; then it can be decomposed by the Smith-Algorithm over field F(D™') as G(D) =
V(D YT (DY)

W_1(D™1), where T'_1(D™') is of the form:

[ D%~ (D)D~% T
— D 0 ... 0
D=%2~5(D)D~ %
D—(mg—mq)
0 0
D%~ (D)D %

L D~ (mg—mp_1) T i
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Note that mg = 0, and d; is the number makes ;(D) become delay-free and 6; = deg(D~%~;(D)),
V1 <1< k. Also, degree of denominator of I'_;(D~!)’s entries only depends on m; — m;_1,
V1< i<k By Theorem 9, we know that McMillan degree of G(D) = (mg — my) + (my —
my) + -+ (my, — my_1). If my —m_; <0, for some index 4, D~(™=™-1) will have positive
degree in denominator of I'_;(D™1)’s entries, and hence we will not add it when calculating

McMillan degree of G(D). So it follows that

Corollary 1 Suppose G(D) is a k x n PGM for a convolutional code C, then we can get its
McMillan degree pn as pp = Zle(mi — m;_1)" without decomposing by the Smith-McMillan
algorithm where

(m; — mi—1)t = max{m; —m;_,,0}
From Corollary 1, we can prove the first inéquality,of degree equation (2.5).

Corollary 2 Let G(D) be a polynomial gemerator matriz for a given convolutional code C.

Suppose Mcdeg(G(D)) is pu, then intdeg(GID)) <-u <'extdeg(G(D)).

Proof: We have explained about the last imequality, and now we give proof for the first
inequality. By (1.5), we can find that for any & x n PGM G(D) with the maximum degree of

1 X ¢ minors m;, V1 <i <k,
DmET e DR =2 M1 T e =2 | M2 ME=3 1 M2TmL M (1.9)
Hence we know that
My > My — My 2 - > My — Mg > My — My (1.10)

Let p—my =mq+ (mag —mq)T + -+ (my, — myg_1)T — my, where my, is the maximum degree

of k x k minors of G(D), that is, internal degree of G(D). So

Case 1. If my — my_1 > 0. Hence from (1.10) we know that m; —m;_1 >0,V 1 <i <k. So

w—my =my —myg =0, we get that = my.
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Case 2. If mj —m;_y <O0Oand m; —m;—; >0, V1 <:¢<j—-1,V2<j <k Hencefrom
(1.10) we know that m; —my_; <0,V 57 <t < k. So we have y — my, = m;_1 —my, =

(mj_1 —my)+ (mj —mjq) + -+ -+ (mg—1 — my) > 0. Hence, we get that p > my.

By above, we conclude that for a PGM G(D), intdeg(G (D))< McMillan degree p, the equality

holds only if m; > my_;. [

By Corollary 2, we know that if my — my_1 > 0, then mq,(mg — mq),...,(my — my_1) will

be non-negative integers, and hence McMillan degree

k
po= Z(mz —mi—1)t =my+(mg—mi)t - (g =) T = my = intdeg(G(D)). (1.11)

i=1
We know that when we realize every kxn generator matrix, we can describe this circuit with
the so-called state space description, W.L.O:Gy( A, B;C, D), where the four matrices A,B,C,
and D have entries in F and has diiénsions m.% my k x m, m x n, and k x n, respectively,
and the integer m is the degree of:the 'realization. For a convolutional code C, there are
so many generator matrices can generate«Ci-and-all of them have a minimal realization.
Since we work with finite field F', we can find that among these minimal realization, state
matrices A with dimension m are finite. It follows that minimal realizations with degree m
are finite. From (2.5), we know that all PGM G(D) can be realized with the fewest degree
equal to intdeg(G(D)). By Theorem 1, if G(D) is a k x n basic polynomial generator matrix
with intdeg(G(D)) = a, then T(D)G(D) has intdeg(T(D)G(D)) = a + b where T'(D) is
any nonsingular k& X k matrix with det(7'(D)) has degree b. Hence by (1.11), if U(D) is a
unimodular matrix such that U(D)T(D)G(D) has my > my_y, where my and my_; means

maximum degree of k X k and (k—1) X (k— 1) minors of U(D)T(D)G(D), then we can realize

U(D)T(D)G(D) with delay elements a + b. Hence we conclude below:

Corollary 3 Suppose G(D) is a basic generator matriz of a convolutional code C, and let

intdeg(G(D)) = a. Suppose a nonsingular matriz T'(D) with determinant has degree b. If
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there is a unimodular matriz U(D) such that U(D)T(D)G(D) has my > my_1, where my. and
mi_1 means the mazimum degrees of k X k and (k — 1) x (k—1) minors of U(D)T(D)G(D),

then there exists a realization with a + b delay elements.

A rational polynomial generator matrix G(D) for a given convolutional code C' can also be

- (10 o )

realized. For example, let

D 1
0 1 1+D 14D

There are at least two physical realizations of G(D) which are shown in Figure 3.1.

We can find that although the circuit may contain feedback loop, there exists a realization
which has the fewest degree. Hence for a given convolutional code C, there are many rational
generator matrices, and each one has their own minimal realization.We will use similar way

to calculate a McMillan degree of a rationak generator matrix.

0

e
| |

- A
N Vo V3 Vs N Vo Vs Yy
(a) (b)

Figure 3.1: (a) A physical realization of rational G(D), (b) minimal realization of rational G(D).
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3.2 Smith-McMillan decomposition on rational polyno-

mial generator matrices over F(D™!)

If G(D) is a k x n rational polynomial generator matrix. Suppose L(D) is l.c.m of denom-
inator of g;;(D), where g;;(D) is the entries of G(D),V 1 <i<kand V1< j<n. Then we

get that

1

mGp(D) =G(D),

where G,(D) is a polynomial generator matrix. Let G,(D) have a invariant factor decom-
position G,(D) = A_y(D"H)['_;(D™Y)B_, (D) with field F[D™'], and suppose the invariant

factors are ¥_1(D7!), V 1 < i < k. Suppose degree of L(D) is d, then we divided ﬁ by

D% on both numerator and denominator. Hence we get a rational polynomial %, whose

numerator and denominator are polynomidls'in'D7l. So it follows that

D~ D~
- (D)

AL(DENELD YBALD ) = A(D™HYA (D) B_y(D7),

where A’ (D7) is a k xn diagonal miatrix with diagonal entries \;(D~!) = ﬁ_l(D_l)%, v
1<i<k Let N(D™) =al(D™Y)/B(D ") with ((D71), /(D7) = 1, where o}(D™!) and
Bi(D~1) are both polynomial in D', and o} (D~ 1)|af,, (DY), B, (D1)|B/(D™1). Hence we
get the Smith-McMillan decomposition of G(D) = A_1(D~Y)A’ {(D7')B_;(D™!), and from

Theorem 9, we know that Mcdeg(G(D)) = S35, deg(B/(D™Y))

Example 5 Let
1 0 L L
G(D) — 1+D 1+D )
D 1

01 %5 &5
So we get L(D) =1+ D, and it follows that

1 1+D 0 1 D
I+ 0 1+D D 1
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Hence we decompose the last polynomial matrix in F[D™!], we get

1+Dt 0 D! 1

1+D 0 1 D\ (1 0\(zx 0 00 D' 1 1+D7' 0
0 1+D D 1 D' 1)\ 0 H2Z o0 0 0 10

1 0 0 0

o

Therefore, it follows that

1+Dt 0 D! 1

G(D) - D™ 1 0\ (= O 00 D™ 1 14D 0
1+ Dt\p-1 4 0 M2 o 0 0 0 1 0

e
1 0 0 0

1+Dt 0 D! 1

1 0\ (5= 000 D™ 1 1+D7" 0
D' 1 0 100 o 0 1 0
10 0 0

Hence we get an invariant factor decomposition of.G(D) in F(D™'), and we can calculate

Mecdeg(G(D)) = 1, and the realization was shown.in Figure 3.1(b).

3.3 The least degree encoder for UEP with the non-
catastrophic property

We will use the result proved in Section 3.1 to illustrate that there exist an optimal genera-
tor matrix with the fewest McMillan degree, and we also guarantee that it is noncatastrophic.

Let G(D) be a k x n PGM with intdeg(G (D)) = k. Suppose G'(D) = A(D)G(D), where

I 0
= (0 D). (3.12)

By theorem 1, since all k£ x k submatrices of A(D)G(D) are just the k x k submatrices of

10 ... 00

0
10
0 D

G(D), each multiplied by A(D). Hence intdegG’'((D)) = intdeg(A(D)G(D)) = 1 + &, and it
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is a method to increase internal degree of G(D). By Theorem 4, we know that a PGM is
noncatastrophic if and only if the g.c.d of & x k minors of G(D) is a power of D. Hence if
G(D) is noncatastrophic, then g.c.d of k& x k minors is D, for some i. Multiplied by A(D),
we get G'(D) = A(D)G(D) has g.c.d of k x k minors is D!, hence it is noncatastrophic.
Also, if U(D) is an unimodular matrix, then U(D)A(D)G(D) is noncatastrophic since k x k
minors of U(D)A(D)G(D) = det(U(D))- det(A(D)) - (k x k) minors of G(D), we find that
U(D)A(D)G(D) is also a noncatastrophic generator matrix.

We can use Theorem 11 to find an optimal generator matrix with lowest McMillan de-
gree. By Procedure 2, we can obtain an optimal and basic generator matrix G(D) for any
convolutional code C. By Theorem 1 and Theorem 8, we know that if 7°(D) is unimodular
and effectively lower-triangular matrix with respect to G(D), then T'(D)G(D) is optimal and
intdeg(G(D))=intdeg(T'(D)G(D)). Sineé G(D) is basic, so it has the lowest internal degree.
By Corollary 1, we know that Mcdeg(G(D))=31 yi(ms— m;_1)*, where m; is maximum de-
gree of all 4 x ¢ minors. It implies that Medeg(G(D))>m, that is, Mcdeg(G(D)) is not less
than the degree of all entries of G(D):

Suppose a k x n generator matrix G(D) with intdeg(G(D)) = &, and let Gp(D) =
T(D)G(D) where T(D) is a effectively lower-triangular matrix with respect to G(D). If
my of Gp(D) is greater than s, it implies that Mcdeg(Gr(D)) is not equal to k, that is,
my < my_1. Since we work with finite field F', suppose F' = GF(q), we know that the num-
bers of Gp(D) with m; of Gp(D) < k at most ¢""* because every entry of Gy (D) is of the
form qo + 1D + -+ - + q. D", where ¢; € F, ¥V 1 < i < k. If two matrices T} (D) and T3(D)
such that 71(D)G(D) = T»(D)G(D) = Gr(D) has my < k, it implies that T\ (D) = Ty(D).
Hence there are finite number matrices T'(D) such that m; of Gr(D) is less or equal to k.
Among all these matrices T'(D), if there is no any 7'(D) such that Gr(D) = T'(D)G(D) with
myg > my_1, where my and my_; means maximum degree of Gp(D) of k x k minors and

(k — 1) x (k — 1) minors respectively, it means that there is no such PGM with McMillan
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degree equal to internal degree, i.e., no minimal PGMs with the optimality. Then we mul-
tiply G(D) by A(D), which is shown in (3.12), to increase internal degree by 1 such that
intdeg(A(D)G(D))) = k+1. Suppose G'(D) = A(D)G(D), and let G/ (D) = T'(D)G'(D),
where T"(D) is unimodular and effectively lower-triangular with respect to G'(D). Similarly,
the numbers of G%,(D) with m; of G, (D) < k + 1 at most ¢V because every entry of
G (D) is of the form go + ;D + -+ + o1 D", where ¢; € F, V1 < i < k+ 1. Hence
there are finite matrices 7"(D) such that m; of G’ (D) is less or equal to k + 1. Hence the
same way among these 7"(D), if there is a PGM T'(D)G'(D) with m}, > m}_,, where m/, and
mj,_, means maximum degree of T7'(D)G'(D) of k x k minors and (k — 1) x (k — 1) minors
respectively. It means that this PGM G/ (D) = T"(D)G'(D) has McMillan degree equal to
k + 1 and is optimal, else keep going on that add 1 to internal degree and do the same thing
again. Since we can not find any optimal-generatorf matrix with McMillan degree equal to &,
so we know that G/ (D) is optimal:PGM with:lowest McMillan degree. Also, since G(D) is
basic, hence it is noncatastrophic. So it follows that the'optimal PGM with lowest McMillan

degree we searched has the noncatasttophic property.

Example 6 Suppose a convolutional code C' generated by

01D 0
GD)=|10 0 D
00 1 1+D

is an optimal and basic generator matrix with separation s(G(D)) = (2,2, 3), and has internal
degree 2. For any k x k matrix T'(D) which is unimodular and effective-lower triangular with
respect to G(D), we can not find any T'(D)G(D) such that ms > my, where msz and my is
maximum degree of T'(D)G(D) of 3 x 3 minors and 2 X 2 minors respectively. So there are no

optimal generator matrices with minimality. We multiply G(D) by A(D) such that

100\(01D o0 01D 0
G'(D)=AD)GD)=]01 0of]1 00 D> [=]100 D
00 D/\0OO 1 1+D 00 D D+ D?

37



Hence G'(D) has internal degree 3. Since I(D)G(D) has m3z = 3 > my = 3, where [(D) is an
identity matrix and hence a unimodular and effectively-lower triangular matrix. So it follows
that G'(D) is an optimal PGM with lowest McMillan degree degree 3, and is noncatastrophic.

Figure 3.2 shows the realization of G'(D).

[}
U,
U,

t
e

_\ | l
yl y2 .y3 y4

Figure 3.2: A minimal realization ofiéptimal RGM G’(D) for convolutional code C.
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Chapter 4

Optimal PGMs with the lowest
McMillan degree

We now give a way to find an polynomial optimal PGM with the fewest McMillan degree
which is also noncatastrophic. SupposerG.(D) i§ra canonical generator matrix for a given
convolutional code C'. By Procedure 2, we cam obtain'an optimal and basic generator matrix
Go(D), and let intdeg(G,(D)) = k.=As we mentioned in“Section 3.3, we know that any PGM
G(D) has Mcdeg(G(D))> my, where’my 18 maximum-degree of 1 x 1 minors of G(D). Hence
if there is a nonsingular matrix 7'(D) such that m; of T'(D)G,(D) is greater than r, then
Mcdeg(T(D)Go(D)) > k. Let Il = {V U(D) : my of U(D)G,(D) < k}, where U(D) an
unimodular and effectively lower-triangular matrix respect to G,(D). We have explained that
since we work with finite field F', there are finite matrices in II. By Corollary 2, we know
that for a PGM G(D), intdeg(G (D))< Mcdeg(G(D)), the equality holds when my of G(D) >
my—1 of G(D).

Hence if there is a matrix Uy (D) € II such that Uy (D)G,(D) has my > my_1, where
m; is maximum degree of ¢ X ¢ minor of Uy(D)G,(D) for i = k — 1,k. It implies that
Mecdeg(Uy (D)Go(D))= intdeg(Ue(D)G,(D)) = k, and hence it is minimal and optimal. If
there does not exist a PGM U, (D)G (D) with my > my_, it means that there are no PGMs

with optimal and minimal property. Then let G,(D) be multiplied by A(D), where A(D) is a
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k x k diagonal matrix as follows:

10 0 0
01 ... °
AD)=|[: 1+ - 0
00 ... 10

0 D

Suppose G 4(D) = A(D)G,(D), and we know that intdeg(G (D)) = k+ 1. Then again search
all generator matrices Uga(D)G 4(D) with Uga(D) € I14, where the collection 114 = {Ua(D) :
my of Ua(D)Ga(D) < k+ 1} and Ux(D) is an unimodular and effectively lower-triangular
matrix respect to G4(D). Similarly, there are finite number of matrices in I14, if there exits a
generator matrix Uga(D)Ga(D) with my of Uga(D)GA(D) > my_1 of Uga(D)G (D), then
it is an optimal PGM with the lowest McMillan degree x + 1, and as we mentioned, it is
noncatastrophic; else let G 4(D) be multiplied by A(D) again and recursive searching again.
Since by Procedure 2, all convolutional codes always have an optimal and basic generator

matrix, hence the work will stop. New, we conclude this as below:

Procedure 3
Step 1 Give an (n, k) convolutional C, by Procedure 2 we obtain a generator matrix G(D)
which is basic and optimal. Set intdeg(G(D)) = &, i = 0.

Step 2 Let A;(D) be a k x k diagonal matrix:

10 ... 0 O
o1 ... :
AD)=|: 1+ . 0
00 ... 1 O
00 ... 0 D!

Set II; = {U(D) : my of U(D)A;(D)G(D) < k + i}, where U(D) is an unimodular and
effectively lower-triangular matrix respect to A;(D)G(D). Check all Uy (D)A;(D)G(D) with

Ug (D) € 11;, if there exist a PGM Uy (D)A;(D)G(D) with my of Uy(D)A;(D)G(D) > my_q
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of Uy (D)A;(D)G(D), then go to Step 4; else go to next step.
Step 3 Set ¢« = i+1, and go back to Step 2.
Step 4 Set G*(D) = UgyA;(D)G(D), and it is a desired optimal PGM which is noncatas-

trophic and has the lowest McMillan degree  + i.

Also, we can conclude that for any (n,1) and (n,2) convolutional codes, there exists an

generator matrix with the optimal and minimal property to generate these codes:

Theorem 12 For any (n,1) and (n,2) convolutional codes, there always exist generator ma-

trices which are both optimal and minimal.

Proof: Since (n,1) code is a trivial case, we give a simple proof for (n,2) code. Suppose
G(D) is a generator matrix of a given (ny2)'éényolutional code. Then by Procedure 3, we
first obtain an optimal and basic generator matrix from G(D), say Gy(D). Since Gy(D) is
a 2 x n generator matrix, we can find that any 2x2 minor has greater degree than any 1x1
minor, hence my > my. From (1.11),"we know that G4(D) has Mcdeg(Gy(D))=intdeg(G(D)).
Since Gy(D) is basic, it has the lowest internal'dégree, hence G(D) is an optimal and minimal

generator matrix. ]

Hence, for (n,1) and (n,2) convolutional codes, we can obtain an optimal and minimal
generator matrix by Procedure 3, and of course is noncatastrophic. Moreover, there are some
convolutional codes can be generated by an optimal PGM which is obtained by Procedure 3,

and we conclude that it has the lowest McMillan degree among all optimal generator matrices.

Theorem 13 For an (n,k) convolutional code C with k > 3, suppose G(D) is an optimal
generator matrix where the separations are of the same value. Then there exists an optimal

and minimal generator matrix for C.

Proof: It is a trivial case since the optimal generator matrix G(D) has the separations are all

the same, hence the effectively lower-triangular matrix with respect to G(D) is a nonsingular

41



matrix. So all generator matrices for C'is optimal, hence we can obtain a minimal and optimal

generator matrix for C'. [

Theorem 14 For an (n, k) convolutional codes C with k > 3, suppose C' can be generated by
an optimal and basic generator matriz with the lower external degree Gy(D), where Gy(D) has
the separations of the form

s(Gy(D)) = (e, ..., 0, B)
for some positive integers o and 3 with o < 3; the first k — 1 separations of Gy(D) are the
same and the last separation is greater than the first k — 1 separations. And suppose every

row of Gy(D) has only one row degree position. Then among all optimal generator matrices,

there exists an optimal PGM with the lowest McMillan degree for C'.

Proof: By Procedure 2, we can always_obtain ansoptimal and basic generator matrix Gy(D)
with the lowest external degree for €. Suppose Gy(D)has k rows, denoted by ¢,,(D), ¥V 1 <
i <k, and let my, of G4(D) be § andimy.—1 of Gy(D) be v By Corollary 2, if § > v, then G,(D)
is a minimal and optimal PGM. Suppose &*< v If Gy(D) is reduced, then G4(D) is canonical
and hence is minimal. It is a contradiction that 0 < v. Hence G,(D) is not reduced and of
course is not canonical. Since G,(D) has the lowest external degree among all optimal and
basic PGMs, the submatrix which consists of the first k£ — 1 rows of G;(D) forms a canonical
generator matrix for the supercode spanned by gs1, gp2, - - - gpr—1, denoted by Gy, (D). And
since Gy(D) is not reduced, if g, (D) has greater degree in some position than the degree of
any one of the first £k — 1 rows in the same position, it will be reduced until it is not greater
than them.

Also, we can find that v is the sum of row degrees of g,;(D),V 1 <i < k—1. Suppose v is
determined from one of the (k—1) x (k—1) minors which are obtained from g, (D) and k —2
rows of Gy, (D), W.L.O.G, let the omitted row be g, ;j(D) for some j and let this submatrix
is denoted by G, (D). It follows that although Gy, (D) is reduced, G, (D) has larger internal

degree. Hence g, (D) has greater degree in some position than the degree of g, ;(D) in the
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same position. So we can reduce the row degree of g, (D) by Gy (D) until they have the
same degree in this position, but it is a contradiction that g (D) has less row degree in some
position than the row degree of g, ;(D) in the same position.

In this way we will find that v can be determined from Gy, (D). Since Gy, (D) is canonical,
v is just the sum of its external degree. Hence when we want to realize Gy(D), we need at

least v delay elements to realize the canonical submatrix. By Procedure 3, we multiply Gy(D)

by A(D) as
10 0 0
01 ... :
AD)=[: 1 0
00 ....1 0
00 ... 0 D"

such that A(D)Gy(D) = Gap(D). So my ofiGaptD) = d+ (v — ) = v. Suppose Gap(D) has k
TOWS Gap;, V 1 < i < k. We can find that g5(D)=.gaps(D), V 1 <i <k — 1, and the highest
degree positions of g, (D) and gank(D) are the same. -In other words, Gy(D) and G4(D)
have the same indicator matrix, which:is-defined-in Theorem 5. Hence if ga; (D) has greater
degree in some position than the degree of any one of the first & — 1 rows of G 4,(D) in the
same position, we can reduce it by these & — 1 rows until gap (D) has less degrees than the
degrees of the first k£ — 1 rows of G45(D) in the same positions. It follows that there exists an

unimodular and effectively lower-triangular matrix U (D) of the form:

1 0 0 O
0 1 0 0
U(D) =
1 0
X X x 1

such that U(D)G 4(D) has the degree of the last row is not greater than the row degrees of the
first k—1 row of U(D)G 44(D), where the entries marked x are some possible polynomials. So
the my_1 of U(D)G (D) is v, and since U(D) is an unimodular matrix, hence intdeg(G 4,(D))

= intdeg(U(D)G 4(D)) = v. It implies that U(D)G (D) has my = my._;. By Corollary 2, we
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know that intdeg(U(D)G 4,(D)) = Mcdeg(U(D)G 45(D)) = v. Since we at least need v delay
elements to realize the optimal generator matrices for Cy, we conclude that U(D)G (D) is

the optimal PGM with the lowest McMillan degree among all optimal generator matrices. n

By Procedure 3, we can get an optimal PGM G(D) with the lowest McMillan degree,
however, we can not guarantee that there is no rational optimal generator matrix whose
McMillan degree is less than Mcdeg(G(D)). Hence, we will give another way to obtain a
optimal generator matrix with the lowest McMillan degree from the different idea. Suppose
G (D) is a minimal generator matrix with Mcdeg(G (D)) = m for an (n, k) convolutional code C,
and its minimal realization has the state space description (A4, B, C, D) with dimensions m xm,
k x m, m x n, and k x n, respectively. Then if we work with the field F = GF(q), there are
qm* Hf:_ol (¢* — ¢*) minimal generator matrices, whose.minimal realizations are different. Also
suppose (A, B,C, D) and (Ay, By, Gy, Dy) ate two thinimal realizations of different minimal
generator matrices, then there exists an gn-x'k matrix’' # and a nonsingular k£ X k matrix N
such that (A;, B;,Cy, D)) = (A+ MB;NB,C + MD, ND) [2]. By this result, when we have
a minimal realization with degree m, we can obtain all different minimal realizations with

degree m. Hence we conclude as follows:

Corollary 4 For an (n,k) convolutional code C, let G.(D) is a canonical generator ma-
trix with Mcdeg(G.(D)) = . If the finite field F = GF(q), then for i > 0, there are
gtk Hk_l(qk — ¢’) generator matrices which have different minimal realizations with de-

=0

grees [t + 1.

Proof: For ¢ > 0, let

10 0 0
0 1

Ai(D) = 0
0 0 . 1 0
00 0 D
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Since G.(D) is a canonical generator matrix, so it is also a reduced generator matrix. Let

A;(D)G.(D) = G4,(D), then we have G4, (D) is a reduced matrix since the indicator matrices

G 4,(D) = G.(D), which is defined in Theorem 5. So intdeg(G 4,(D)) = Mcdeg(G 4,(D)) =

extdeg(G 4,(D)) = p+i. Suppose G 4,(D) has a minimal realization with state space description

(A;, By, Gy, D;), where matrix A; has dimension u +i. Let G 4,(D) has state space equation

s(t+1) = s(t)A; + u(t)B;

y(t) = s(t)C;+u(t)D;

where s(t), x(t), and y(t) are the state vector, input vector, and output vector at time ¢.
By applying linear state variable feedback, we obtain a new state space description (A; +
M;B;, N; B, C; + M;D;, N; D;) from (A;, By, C;, D;) with a (j+1) x k matrix M; and a nonsin-
gular k x k matrix N;, where the input,i§-e¢hosen aga*(t) = (u(t) + s(t)M)N ' for some new
input u*(t) € F(D)*. In other words, let G D) =N:D; + N;B;(D~'I — A;))~Y(C; + M;D;),
we have
y(D) = ufP)G 1i(D) =X D)G* (D).

So G*(D) is another generator matrix with McMillan degree p + i. By choosing different
(1 + 7) X k matrices M;’s and nonsingular k£ x k matrices N;’s, we have all different state
space descriptions (A; + M;B;, N;B;, C; + M;D;, N; D;). Let the collection II; = {G(D)|N;D; +
N;B;(D7'I — A;)~Y(C; 4+ M;D;)}, we obtain all generator matrices with McMillan degree p+ 1.

Therefore, there are g(#+9* H o(¢" — ¢7) generator matrices with McMillan degrees m 4 i. u

By Corollary 4, we obtain all generator matrices from a canonical generator matrix. And
then we check all of them to obtain an optimal and noncatastrophic generator matrix with
the lowest McMillan degree, as shown in Figure 4.1. Since by Procedure 2, all convolutional
codes always have an optimal and basic generator matrix, hence we will obtain an optimal
and noncatastrophic generator matrix with the lowest McMillan degree p + . We conclude it

as Procedure 4:
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All generator matrices
with McMillan degree g+ 2

All generator matrices
with McMillan degree gz +1

All minimal generator matrices
with McMillan degree i

Figure 4.1: Sets of all generator matrices with equal McMillan degree.

Procedure 4

Step 1 Give an (n, k) convolutional code €}-first we eonstruct a canonical generator matrix
G.(D) for C, and by Procedure 13 we also‘construct an optimal PGM G,(D) for C. Set
Mcdeg(Go(D)) = p, i = 0, and G(D)'=G.(D).

Step 2 Set the minimal realization of @(D) has state space description (A;, B;, Cy, D;), and
Q={G(D)|G(D)= ND;+NB;(D™'I —(A;+ MB;))""(C;+ MD,)}, where M is a (u+i) x k
arbitrary matrix and N is a k£ X k nonsingular matrix. Check whether there exists a non-
catastrophic G*(D) € Q such that T'(D)G,(D) = G*(D), where T'(D) is an effectively lower-
triangular matrix with respect to G,(D). If exists, then go to Step 4; else go to next step.

Step 3 Set it =i+ 1, let

10 0 0
01

Ay(D) = 0
00 ... 1 0
00 ... 0 D

Construct a new generator matrix G(D) = A;(D)G.(D), and go to Step 2.

Step 4 G*(D) is the desired generator matrix, which is optimal and noncatastrophic with
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Mcdeg(G*(D)) = pu+ i is the lowest.

Example 7 Suppose a convolutional code C' can be generate by a canonical generator matrix

G(D) as

&(D) = 1 0 1
D 1+D 1+D)

We find that Mcdeg(G(D))= 1. By Procedure 1, we obtain an optimal generator matrix

G(D)_1 0 1
’ 1 1+D 0/}’

with s(G,(D)) = (2,3). By Procedure 3, we can obtain all minimal generator matrices of the

Go(D) as

form G,,(D) = T(D)H (D), where T(D) is one of six 2 X 2 nonsingular scalar matrices over
GF(2), and H(D) is one of the following four generator matrices:

)
1 0 1

Hl(D): 5
HALIRS, G

Hy(D) 1 0 1
2 = )
P D D

1 0 1
H3(D) = D y
'l 5%
1 01
H4(D) == 1 ) .
L D 1 O

Hence check all of them, we find that there are only 8 generator matrices which have the

optimal, minimal, and noncatastrophic properties as follows:

aoy={" " 1>,G2<D>=(é 1+0D 1)
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This is another way for obtaining an optimal and noncatastrophic generator matrix with
lowest McMillan degree. Procedure 3 starts from a basic and optimal generator matrix, and
Procedure 4 starts from a minimal generator generator matrix. Somehow Procedure 3 is also
like the brute force, but this two procedures use different ideas. Procedure 4 is an easier
way since when we use Procedure 4, we need to construct a minimal realization before every
searching step because we want to get its state space description (A, B,C, D). Although
authors in [18] proposed that for a given convolutional code C' they can from Procedure 2
to produce an optimal and basic generator matrix with lowest external degree, they can not

guarantee that it has the lowest McMillan degree. For example, suppose a canonical generator

matrix
1 1+D 0 1
GD)=10 1 1+ D? 0
0 0] 1 1+ D

with intdeg(G(D)) = extdeg(G (D))= 4 and 3(G(D)) = (2,2,2). By Procedure 2, we may get
an optimal generator matrix with loewest external degree as

10 0 D!
G*D)= 01714+ D> 0
00 1 14D

with extdeg(G*(D))) = 7, Mcdeg(G*(D)) = 6, and s(G*(D)) = (2,3,3). But by Procedure 3,

first, we construct a basic and optimal generator matrix Gy(D) as follows:

10 0 D!
G(D)=1|11 D> 1+D+D?],
11 1+ D3 D?

with s(Gy(D)) = (2,3,3) and intdeg(Gy(D)) = 4. Second, check all matrices U(D) which
are unimodular and effectively lower-triangular matrix with respect to G4(D) and m; of

U(D)Gy(D) < 4. We find that there is a matrix U, (D) such that

1 0 0 100 D4
Ua(D)Gy(D)= |1 1+D* D3|GyD)=10 1 0 1+D+D>+D3|,
0 1 1 0 0 1 1+D
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where Uy (D) is unimodular and effectively lower-triangular matrix with respect to G,(D) and
my of Ug(D)Gy(D) < 4. Hence we conclude that U, (D)Gy(D) = G'(D) is an optimal PGM
with the McMillan degree 4. Although G’(D) has more external degree than G*(D), it has

the lowest McMillan degree 4, and hence is minimal.
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Chapter 5

Concluding remarks

Authors in [18] proved that for any convolutional code, there exists at least one optimal
generator matrix. Furthermore, they use Procedure 1 as mentioned in Chapter 2 to obtain an
optimal generator matrix for a given convolutional code. In order to reduce the complexity,
and guarantee the noncatastrophic property,. they also proposed the Procedure 2 to obtain
an optimal and basic generator matrix with the lowest external degree. However, not all
convolutional codes have the optimal and’ the-minimal property at the same time. In this
thesis, we first obtain a result in orderthat we are able to calculate the McMillan degree of
a polynomial generator matrix without decomposing by the Smith-McMillan decomposition.
From this result, we then explain why internal degree of G(D) is not greater than McMillan
degree of G(D), where G(D) is a PGM. Although Procedure 2 can produce an optimal and
basic PGM with lowest external degree, it may not have the lowest McMillan degree. From
this result we provide a procedure to obtain an optimal polynomial generator matrix with
lowest McMillan degree. Unfortunately, although we can get an optimal PGM G(D) with the
lowest Mcdeg(G(D)), we can not guarantee that there is no any rational generator matrix
G'(D) which has Mcdeg(G'(D)) less than Mcdeg(G(D)). In the future, we can also focus on

how to find a minimal generator matrix with the greatest separation.
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