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合併的光學多級式網路之無開關干擾之可重排性 

 

研究生：黃志文      指導老師：陳秋媛  教授 

 

國 立 交 通 大 學 

應 用 數 學 系 

 

摘  要 

一個多級式連接網路的可重排性，是指這個網路的 N 個輸入到 N 個輸出，在必

要時允許重新連線的情況下，是否可以連接所有 N!種可能的輸入輸出排列。在

文獻[8]中，Das 對於合併的 2n – 1 階級的多級式連接網路的可重排性，提出了一

個漂亮的充分條件，其中 n = log2N，Das 並且對符合這個充分條件的多級式連接

網路提出一個時間複雜度為 O(Nn)的排列繞送演算法。然而，上述的可重排性的

定義以及 Das 的結果，皆只適用於電子的多級式連接網路。如今，光學的多級式

連接網路，因其高效能，已是許多人的網路選擇。如同文獻[26]中所提，電子的

多級式連接網路、與光學的多級式連接網路，其最大的區別是：在電子的多級式

連接網路中，兩個訊息傳送之需求，當它們的傳送路徑的邊均不重覆時，可以同

時傳送；而在光學的多級式連接網路中，兩個訊息傳送之需求，只有當它們的傳

送路徑的點均不重覆時，才能同時傳送（這意味著這兩條傳送路徑不能同時通過

同一個開關，也因此不會有開關干擾的問題產生）。這篇論文的目的便是針對光

學的多級式連接網路來重做 Das 的工作。我們對於合併的 2n – 2 階級、以及 2n – 
1 階級的光學多級式連接網路的無開關干擾之可重排性各提出一個充分條件，對

於符合充分條件的光學多級式連接網路提出時間複雜度為 O(Nn)的排列繞送演

算法。另外，我們也針對 baseline 網路提出在四回合之內、點均不重覆的排列繞

送演算法。 
 
關鍵詞：多級式連接網路，光學的多級式連接網路，可重排性，排列繞送，開關

干擾，Benes 網路，baseline 網路，反向的 baseline 網路。 
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On the Crosstalk-free Rearrangeability of Combined

Optical Multistage Interconnection Networks

Student: Chih-Wen Huang Advisor: Chiuyuan Chen

Department of Applied Mathematics

National Chiao Tung University

Abstract

Rearrangeability of a multistage interconnection network (MIN) is that if the
MIN can connect its N inputs to its N outputs in all N ! possible ways, by rear-
ranging the existing connections if required. In [8], Das formulated an elegant suf-
ficient condition for the rearrangeability of a combined (2n − 1)-stage MIN, where
n = log2 N , and presented an O(N log2 N)-time routing algorithm for MINs that
satisfy the sufficient condition. However, the above definition of rearrangeability
and the results of Das are for electronic MINs. Recently, optical MINs have become
a promising network choice for their high performance. As was mentioned in [28],
the fundamental difference between an electronic MIN and an optical MIN is that:
two routing requests in an electronic MIN can be sent simultaneously if they are
link-disjoint, while two routing requests in an optical MIN can be sent simultane-
ously only when their routing paths are node-disjoint, meaning that these two paths
do not pass through the same switching element and therefore there is no crosstalk
problem. The purpose of this thesis is to redo the works of Das for optical MINs. In
particular, we formulate a sufficient condition for the crosstalk-free rearrangeability
of a combined (2n−2)-stage and a combined (2n−1)-stage optical MIN, we propose
an O(N log2 N)-time routing algorithm for optical MINs that satisfy the sufficient
condition. In this thesis we also propose an algorithm to realize any permutation
in a baseline network with node-disjoint paths in four passes.

Keywords: Multistage interconnection network; Optical multistage intercon-

nection network; Rearrangeability; Permutation routing; Crosstalk; Benes

network; Baseline network; Reverse baseline network.
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1 Introduction

Permutation routing is an important transmission pattern in parallel and distributed

computing systems [27]. The purpose of this thesis is to consider the problem of routing

all N ! possible permutations in an optical multistage interconnection network (MIN).

Given N processors P0, P1, · · · , PN−1, an N ×N MIN can be used for communication

among these processors as shown in Figures 1 and 2, where N ×N means N inputs and

N outputs. In this thesis an MIN denotes both an electronic MIN and an optical MIN,

and unless otherwise specified, an MIN means an N × N MIN. A column in an MIN is

called a stage. The number of stages in an MIN is denoted by s. The nodes in a stage

are called switches (or switching elements or crossbars). Define

n = log2 N.

Each switch is assumed to be of size 2×2 (thus N is even); see [4, 6, 7, 10, 15] for switches

of other sizes. It is well known that a 2 × 2 switch has only two possible states: straight

and cross, as shown in Figure 3.

N x N

MIN

P0

P1

P
N-1

I0

I1

I
N-1

O0

O1

O
N-1

… …

…

Figure 1: Communications among processors using an MIN.

A permutation of an MIN is one-to-one mapping between the inputs and outputs. A

permutation is admissible of an MIN if it can be realized on that MIN with link-disjoint

paths in one pass. An MIN is rearrangeable if all N ! possible permutations are admissible.
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Figure 2: A 5-stage, 8× 8 MIN; this MIN is a 8× 8 Benes network.

sub port 0

sub port 1

sub port 0

sub port 1

(a) (b)

switch straight           cross

Figure 3: (a) A 2× 2 switch and its sub ports. (b) The two possible states.

The rearrangeability of an MIN is that if the MIN can connect its N inputs to its N outputs

in all N ! possible ways, by rearranging the existing connections if required.

The Benes network has been proposed as a popular architecture for rearrangeable

MINs and it uses the theoretically minimum number of stages [2]. More precisely, a

Benes network is a (2n − 1)-stage MIN and it is essentially the concatenation of the

baseline network and the reverse baseline network with the last stage of the baseline

network overlapped with the first stage of the reverse baseline network. The shuffle-

exchange network is also a widely studied architecture for rearrangeable MINs. In [23],

Waksman proved that if a shuffle-exchange network is rearrangeable, then it has at least

2n − 1 stages. Later on, Stone [20] showed that an n2-stage shuffle-exchange network

is rearrangeable. In [24], Wu and Feng proposed an algorithm for realizing an arbitrary

permutation on a (3n − 1)-stage shuffle-exchange network. In [1] and [9], Babu et al.

had proven that 3n− 3 is an upper bound on the number of stages for a shuffle-exchange

network to be rearrangeable; this upper bound was later improved to be 3n− 4 by Linial

and Tarsi [13]. In [5], Cam proved that a (2n − 1)-stage shuffle-exchange network is
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rearrangeable, but the proof is still doubtful for n > 4; see [21].

Do notice that the above definition of rearrangeability and the results of [1, 2, 5, 9,

13, 20, 23, 24] are for electronic MINs. Recently, optical MINs have become a promising

network choice for their high performance and faster speed; see [11, 16, 19, 22, 25, 26, 27,

28]. As was mentioned in [28], electronic MINs and optical MINs have many similarities,

but there are some fundamental differences between them. The major difference between

them is that the optical MINs have the crosstalk problem (see [28]) and therefore two

messages can not pass through the same switch at the same time. As a result, two

routing requests can be sent simultaneously in an electronic MIN if they are link-disjoint;

they can be sent simultaneously in an optical MIN only when their routing paths are

node-disjoint.

Due to the crosstalk problem, the results for electronic MINs may not be applied on

optical MINs. Yang et al. [28] observed that the maximum number of input-output pairs

that can be routed simultaneously in an optical MIN is N
2
. Thus they introduced the

definition of semi-permutation, which is a partial permutation with N
2

input-output pairs.

A partial permutation

(

a0 a1 · · · aN
2
−1

b0 b1 · · · bN
2
−1

)

of an N -element set {0, 1, 2, . . . , N − 1},

where ai, bi ∈ {0, 1, 2, . . . , N − 1}, is a semi-permutation of the N -element set if

{

⌊

a0

2

⌋

,
⌊

a1

2

⌋

, . . . ,
⌊aN

2
−1

2

⌋}

=

{

⌊

b0
2

⌋

,
⌊

b1
2

⌋

, . . . ,

⌊

b N
2

−1

2

⌋}

=
{

0, 1, . . . , N
2
− 1
}

.

For example, when N = 8,

(

1 2 5 6
7 2 0 4

)

is a semi-permutation since

{⌊

1
2

⌋

,
⌊

2
2

⌋

,
⌊

5
2

⌋

,
⌊

6
2

⌋}

=
{⌊

7
2

⌋

,
⌊

2
2

⌋

,
⌊

0
2

⌋

,
⌊

4
2

⌋}

= {0, 1, 2, 3}.

A semi-permutation ensures that there is no crosstalk at the first and the last stages.

In [3], Bao and Li defined a routing to be crosstalk-free (conflict-free) if any two paths

used in the routing are node-disjoint (link-disjoint). They showed that the crosstalk-free

routing on any bit permutation network (BPN) is equivalent to the conflict-free routing

on a BPN of smaller size and with fewer stages. They defined “CF-rearrangeable” and

3



proved that the minimum number of stages for a BPN to be CF-rearrangeable is 2n− 2.

In particular, an MIN is crosstalk-free rearrangeable (CF-rearrangeable) if every semi-

permutations can be realized with node-disjoint paths in one pass. Since the maximum

number of input-output pairs that can be routed simultaneously in an optical MIN is

N
2
, at least two passes are required for realizing a permutation. Yang et al. [28] proved

an important result: Any permutation can be decomposed into two semi-permutations.

Thus a CF-rearrangeable MIN can realize any permutation in two passes and this is

optimal. Yang et al. [28] proved that a Benes network is CF-rearrangeable and proposed

a permutation routing algorithm for a Benes network. Lu and Zheng [14] also proposed

a permutation routing algorithm for the same network.

In [26], Yang and Wang proposed a permutation routing algorithm for the baseline

(or reverse baseline) network with node-disjoint paths in four passes; they said that the

proposed algorithm can work efficiently only for long message. Later, in [27], Yang and

Wang presented a permutation routing algorithm for the baseline (or reverse baseline)

network with node-disjoint paths in four passes and they claimed that this algorithm is

suitable for messages of any length.

Recently, Das [8] formulated a sufficient condition for the rearrangeability of a com-

bined (2n − 1)-stage electronic MIN and presented an O(N log2 N)-time permutation

routing algorithm for MINs that satisfy the sufficient condition. However, the results of

Das are for electronic MINs. Therefore, due to the crosstalk problem, these results can

not be applied on optical MINs. The purpose of this thesis is to transform the results

of Das into results applicable to optical MINs. In particular, we formulate a sufficient

condition for the CF-rearrangeability of a combined (2n−2)-stage optical MIN and a suf-

ficient condition for the CF-rearrangeability of a combined (2n−1)-stage optical MIN. We

propose an O(N log2 N)-time semi-permutation routing algorithm for optical MINs that

satisfy the sufficient condition. We also improve the decomposition algorithm proposed

4



in [28] and the permutation routing algorithm proposed in [27].

This thesis is organized as follows: Section 2 lists some preliminaries. Section 3 im-

proves the decomposition algorithm proposed in [28]. Section 4 contains our results on

CF-rearrangeability of optical MINs. Section 5 improves the permutation routing algo-

rithm in [27]. Concluding remarks are given in the last section.

2 Preliminaries

An s-stage N ×N MIN is represented as follows (see Figure 4 for an illustration):

• label the inputs of the MIN as 0, 1, 2, . . . , N − 1 and represent each input by an n-bit

binary number xn−1xn−2 · · ·x0;

• label the outputs of the MIN as 0, 1, 2, . . . , N −1 and represent each output by an n-bit

binary number yn−1yn−2 · · · y0;

• label the stages as 0, 1, 2, . . . , s− 1;

• label the switches of each stage as 0, 1, 2, . . . , N
2
− 1 and represent each switch by an

(n− 1)-bit binary number zn−2zn−3 · · · z0; and

• label the upper and the lower output links of every switch j, 0 ≤ j ≤ N
2
− 1, as

2j and 2j + 1 respectively, and represent each link by an n-bit binary number

xn−1xn−2 · · ·x0.

In an s-stage MIN, a path from an input to an output can be described by a sequence

r0r1 · · · rs−1 of labels that label the successive links on this path. Such a sequence of labels

is called the routing bits [8] (or control tag [17], tag [6], or path descriptor [12]). Routing

bits can be used as the header for routing a message: each successive switch uses the

first routing bit to route the message, and then discards it. In particular, routing bit rk

controls the switch at stage k, and if rk = 0 (respectively, rk = 1), then a connection is

5



stage 0 stage 1 stage 2
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1
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1
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Figure 4: An 8× 8 baseline network with labels and i-mappings.

made to sub port 0 (respectively, sub port 1). For example, in Figure 4, input 0 can get

to output 5 by using routing bits 101, which means the routing request can be fulfilled

by a path via sub port 1 at stage 0, sub port 0 at stage 1, and sub port 1 at stage 2.

In this thesis, the links connecting inputs and switches of stage 0 are regarded as

output links of switches of stage (−1) although there are no switches of stage (−1). The

following definition, i-mapping, is crucial for this thesis and was first proposed in [8].

Given an MIN, if for each stage i, 0 ≤ i ≤ s− 1, there exists a mapping

Fi : xn−1xn−2 · · ·x1x0 −→ yn−1yn−2 · · · y1ri

between the output links xn−1xn−2 · · ·x1x0 of switches of stage (i−1) and the output links

yn−1yn−2 · · · y1ri of switches of stage i, where yn−1yn−2 · · · y1 is a permutation of any n−1

bits of xn−1xn−2 · · ·x1x0 and ri is the routing bit, such that the link xn−1xn−2 · · ·x1x0 at

stage (i− 1) is connected to the link yn−1yn−2 · · · y1ri at stage i, then Fi’s are defined as

i-mappings for the MIN. For example, the i-mappings for the 8 × 8 baseline network in

Figure 4 are: F0 : x2x1x0 −→ x2x1r0, F1 : x2x1x0 −→ x0x2r1, F2 : x2x1x0 −→ x2x0r2.

An s-stag MIN is said to follow destination tag routing if the routing bits r0r1 · · · rs−1 of

every message equal to the n-bit binary representation yn−1yn−2 · · · y0 of the destination.

In other words, if an MIN follows destination tag routing, then s = n and the routing bits

of a message sent to output yn−1yn−2 · · · y0 are yn−1yn−2 · · · y0; also, the destination of a

6



message with routing bits r0r1 · · · rs−1 is r0r1 · · · rs−1. Consider the 8×8 baseline network

shown in Figure 4. From its i-mappings, a message from input x2x1x0 with routing bits

r0r1r2 will reach output r0r1r2 since x2x1x0
F0−→ x2x1r0

F1−→ r0x2r1
F2−→ r0r1r2. Thus

the 8× 8 baseline network follows destination tag routing. In general, an N ×N baseline

network satisfies s = n and has i-mappings:

F0 : xn−1xn−2 · · ·x1x0 −→ xn−1xn−2 · · ·x1r0,

F1 : xn−1xn−2 · · ·x1x0 −→ x0xn−1xn−2 · · ·x2r1,

F2 : xn−1xn−2 · · ·x1x0 −→ xn−1x0xn−2 · · ·x2r2,
...

Fn−1 : xn−1xn−2 · · ·x1x0 −→ xn−1xn−2 · · ·x2x0rn−1.

A baseline network follows destination tag routing since

xn−1xn−2 · · ·x1x0
F0−→ xn−1xn−2 · · ·x1r0

F1−→ r0xn−1xn−2 · · ·x2r1
F2−→ · · ·

Fn−1

−→ r0r1 · · · rn−1.

We now define a combined MIN M1(n1)⊕M2(n2). Let M1(n1) and M2(n2) denote an

n1-stage MIN and an n2-stage MIN, respectively. The combined MIN M1(n1) ⊕M2(n2)

is the concatenation of M1(n1) and M2(n2) with the last stage of M1(n1) overlapped with

the first stage of M2(n2). Clearly, M1(n1)⊕M2(n2) is an (n1 + n2 − 1)-stage MIN.

Recall that n = log2 N . A n-stage shuffle-exchange network is the well-known omega

network and is usually denoted as Ω. In [8], Das formulated the following sufficient

condition for the rearrangeability of a combined (2n−1)-stage MIN ∆⊕∆′, where ∆ and

∆′ are two n-stage Ω-equivalent networks (notice that an Ω-equivalent network follows

destination tag routing).

Theorem 1. [8] In a combined (2n − 1)-stage MIN ∆ ⊕ ∆′, if i-mappings exist for

all i, 0 ≤ i ≤ 2n − 2, and each AR-bit rj, 0 ≤ j ≤ n − 2, occurs only in each Sk,

j + 1 ≤ k ≤ 2n− 2− j, then ∆⊕∆′ is rearrangeable.

For the definitions of AR-bit and Sk, see Section 4. The Benes network is an example

of networks that satisfy this sufficient condition.
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3 Decompose a permutation into semi-permutations

The purpose of this section is to improve the decomposition algorithm proposed in [28].

Throughout this section, P =

(

a0 a1 · · · aN−1

b0 b1 · · · bN−1

)

denotes a given permutation. In

[28], Yang et al. proposed an efficient algorithm to decompose a given permutation P into

two semi-permutations L and R. This algorithm first constructs an undirected bipartite

graph G = (V1, V2; E) for P . The vertex sets of G are given by V1 = {A
[1]
0 , A

[1]
1 , . . . , A

[1]
N
2
−1
}

and V2 = {A
[2]
0 , A

[2]
1 , . . . , A

[2]
N
2
−1
}, where A

[1]
j and A

[2]
j correspond to inputs and outputs,

respectively, and both A
[1]
j and A

[2]
j are the 2-element set {2j, 2j+1} for all j, 0 ≤ j ≤ N

2
−1.

The edge set E is defined by: (A
[1]
j1

, A
[2]
j2

) ∈ E if and only if there exists a pair

(

ai

bi

)

in

P such that ai ∈ A
[1]
j1

and bi ∈ A
[2]
j2

. Clearly, G is 2-regular, |V1| = |V2| =
N
2
, and |E| = N .

The algorithm in [28] takes O(N) time and is listed in Algorithm 1.

Algorithm 1 DECOMPOSITION ALGORITHM in [28]

Require: A permutation P .
Ensure: Two semi-permutations L and R of P .
1: Construct a bipartite graph G = (V1, V2; E) for P .
2: For each connected component of G, start from a vertex of this component in V1,

traverse through an unvisited edge to the neighbor vertex in V2, back and forth until
returning to the starting vertex. (During the traverse, a visited edge is marked “for-
ward” if the traverse direction on this edge is from V1 to V2 and marked “backward”
if the direction is opposite.)

3: Take all one-pair mappings corresponding to edges marked with “forward” to form
semi-permutation L; take all one-pair mappings corresponding to edges marked with
“backward” to form semi-permutation R.

In Algorithm 1, a bipartite graph has to be constructed explicitly. We now propose

a decomposition algorithm, which abandon the requirement for constructing a bipartite

graph and still takes O(N) time. Without loss of generality, in our algorithm, assume the

given permutation P is of the form P =

(

0 1 · · · N − 1
b0 b1 · · · bN−1

)

and is represented as an

array also called P with P [i] = bi. An array Q is used to store the inverse permutation

of P ; that is, Q[bi] = i if and only if P [i] = bi. Semi-permutation L is represented by two

arrays La and Lb such that La[⌊
i
2
⌋] = i and Lb[⌊

i
2
⌋] = bi if and only if

(

i

bi

)

∈ L; R is

8



represented by two arrays Ra and Rb such that Ra[⌊
i
2
⌋] = i and Rb[⌊

i
2
⌋] = bi if and only

if

(

i

bi

)

∈ R. Define mate(v) = v + 1 if v is an even number and v − 1 if v is an odd

number. Thus 0 and 1 are the mates of each other, 2 and 3 are the mates of each other,

and so on. The following is our decomposition algorithm.

Algorithm 2 OUR DECOMPOSITION ALGORITHM

Require: A permutation P .
Ensure: Two semi-permutations L and R of P .
1: for i← 0 to N − 1 do
2: A[i]← 0;
3: end for
4: for i← 0 to N − 1 do
5: Q[P [i]]← i;
6: end for
7: while there exists i such that A[i] = 0 do
8: head← i;
9: next← i;

10: repeat
11: La[⌊

next
2
⌋]← next;

12: Lb[⌊
next

2
⌋]← P [next];

13: A[next]← 1;
14: next← Q[mate(P [next])];
15: Ra[⌊

next
2
⌋]← next;

16: Rb[⌊
next

2
⌋]← P [next];

17: A[next]← 1;
18: next← mate(next);
19: until (next = head);
20: end while

We now give an example for Algorithm 2. Suppose P =

(

0 1 2 3 4 5 6 7
5 7 2 6 3 0 4 1

)

.

In the 1st iteration, L =

(

0 ? ? ?
5 ? ? ?

)

and R =

(

? ? ? 6
? ? ? 4

)

.

In the 2nd iteration, L =

(

0 ? ? 7
5 ? ? 1

)

and R =

(

? ? 5 6
? ? 0 4

)

.

In the 3rd iteration, L =

(

0 ? 4 7
5 ? 3 1

)

and R =

(

? 2 5 6
? 2 0 4

)

.

In the final iteration, we obtain the two semi-permutations

L =

(

0 3 4 7
5 6 3 1

)

and R =

(

1 2 5 6
7 2 0 4

)

.

We now analyze Algorithm 2.

9



Theorem 2. Algorithm 2 is correct and takes O(N) time.

Proof. Let G be the bipartite graph in the algorithm in [28]. Our algorithm is based

on the observation that: for all v, 0 ≤ v < N , {v, mate(v)} is the vertex A
[1]
i and also the

vertex A
[2]
i in G, A

[1]
i is adjacent to A

[2]
j , where i =

⌊

v
2

⌋

and j =
⌊

P [v]
2

⌋

. Since G is a 2-

regular bipartite graph, each connected component of G is an even cycle. The repeat-loop

in lines 10 to 19 corresponds to traversing a cycle in G and inserting edges of the cycle

into L and R alternatingly. The while-loop ensures that all the connected components of

G are traversed. Hence the resultant L and R are two semi-permutations. Lines 1 to 6

of this algorithm take O(N) time. Lines 7 to 20 take O(N) time since each input-output

pair in P is considered exactly once. Thus Algorithm 2 takes O(N) time.

4 CF-rearrangeability of optical MINs

The purpose of this section is to formulate a sufficient condition for the crosstalk-free

rearrangeability of a combined (2n− 2)-stage and a combined (2n− 1)-stage optical MIN

and to propose a routing algorithm for MINs that satisfy the sufficient condition. Before

going further, we give three definitions: AR-bits, OWk, and OSk.

Recall that in this thesis, an MIN is an N×N MIN and n = log2 N . Let M1(n
′)⊕M2(n)

be a combined optical MIN in which M2(n) follows destination tag routing and set s =

n′+n−1 for easy writing. A path from an input to an output through the MIN is referred

to as an input-output path. Since M2(n) follows destination tag routing, for a particular

input-output path, the routing bits for stages k, s − n ≤ k ≤ s − 1, are predetermined

by the n-bit binary representation of the destination (i.e., the output), but the routing

bits rk, 0 ≤ k ≤ s− n− 1, can be arbitrary and are referred to as arbitrary routing bits

(AR-bits).

Suppose the i-mappings of M1(n
′)⊕M2(n) are F0, F1, . . . , Fs−1. Then an input-output

path from input x to output y can be represented as L0 → L1 → L2 → · · · → Ls−1 → Ls,

10



where L0 = x, Ls = y, and Lk, 1 ≤ k ≤ s− 1, is the output of stage k− 1 followed by the

path. Note that Lk = Fk−1(Lk−1) for all k, 1 ≤ k ≤ s. The path can also be represented

as E0 → E1 → · · · → Es−1, where Ek, 0 ≤ k ≤ s− 1, is the switch passed by the path at

stage k. It is not difficult to see that the binary representation of Ek, 0 ≤ k ≤ s− 1, can

be obtained by deleting the rightmost bit of the binary representation of Lk+1.

Given a semi-permutation on M1(n
′)⊕M2(n), at any stage k, 0 ≤ k ≤ s− 1, the set

of switches passed by individual input-output paths can be represented by an N
2
× (n−1)

matrix, called optical window OWk, where each row j, 0 ≤ j ≤ N
2
− 1, of OWk is the

(n−1)-bit binary representation of the switch at stage k that is passed by the path started

from input 2j (if 2j belongs to the semi-permutation) or 2j + 1 (if 2j + 1 belongs to the

semi-permutation). Note that each optical window OWk can be represented uniquely by

a string OSk obtained by deleting the rightmost bit of Sk+1, where S0 = xn−1xn−2 · · ·x0

and Sk = Fk−1(Sk−1), 1 ≤ k ≤ s. OSk is called the characteristic string of OWk.

A dilated Benes network is a (2n − 2)-stage MIN and it is the concatenation of the

baseline network and the reverse baseline network with the last two stages of the baseline

network overlapped with the first two stages of the reverse baseline network.

Take the 6-stage 16 × 16 dilated Benes network shown in Figure 5 as an example.

Suppose the binary representations of the input and the output are x3x2x1x0 and y3y2y1y0,

respectively. Then r2r3r4r5 = y3y2y1y0; the i-mappings, Sk’s, and OSk’s are:

F0 : x3x2x1x0 −→ x3x2x1r0 S0 = x3x2x1x0

F1 : x3x2x1x0 −→ x0x3x2r1 S1 = F0(S0) = x3x2x1r0 OS0 = x3x2x1

F2 : x3x2x1x0 −→ x3x0x2r2 S2 = F1(S1) = r0x3x2r1 OS1 = r0x3x2

F3 : x3x2x1x0 −→ x3x2x0r3 S3 = F2(S2) = r0r1x3r2 OS2 = r0r1x3

F4 : x3x2x1x0 −→ x3x1x0r4 S4 = F3(S3) = r0r1r2r3 OS3 = r0r1r2

F5 : x3x2x1x0 −→ x2x1x0r5 S5 = F4(S4) = r0r2r3r4 OS4 = r0r2r3

S6 = F5(S5) = r2r3r4r5 OS5 = r2r3r4

The following observation is crucial for the remaining discussions: A semi-permutation

can be realized on M1(n
′) ⊕M2(n) if and only if all rows of each optical window OWk,

0 ≤ k ≤ s− 1, are distinct. We now are ready to propose our sufficient condition.
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Figure 5: A 16× 16 dilated Benes network.

Theorem 3. (Sufficient condition for a combined (2n− 2)-stage optical MIN)

In a combined (2n − 2)-stage optical MIN M1(n − 1) ⊕M2(n) in which M2(n) follows

destination tag routing, if i-mappings exist for all i, 0 ≤ i ≤ 2n− 3, and each AR-bit rk,

0 ≤ k ≤ n− 3, occurs only in each OSℓ, for k + 1 ≤ ℓ ≤ 2n− 4− k, then the network is

CF-rearrangeable.

Proof. To prove this theorem, it suffices to prove that M1(n−1)⊕M2(n) can realize each

semi-permutation P with node-disjoint paths in one pass. In this proof, j is an integer in

{0, 1, . . . , N
2
− 1}. By the definition of a semi-permutation, exactly one of inputs 2j and

2j + 1 is in P; denote the one in P as j∗. Let r0(j)r1(j) · · · r2n−3(j) be the routing bits of

j∗; in particular, rk(j) is the routing bit of input j∗ at stage k.

Before going further, we define conjugate rows. By the constraints of this theorem,

AR-bit rk, 0 ≤ k ≤ n− 3, appears only in OSk+1, OSk+2, . . . , OS2n−4−k. Thus r0 appears

only in OS1, OS2, . . . , OS2n−4; r1 appears only in OS2, OS3, . . . , OS2n−5; r2 appears only

in OS3, OS4, . . . , OS2n−6; and so on. Therefore, we have two properties.

(i) For all k, 1≤ k≤ n−2, n − 2 columns of OWk appear in OWk−1 and the remaining

12



one column is composed of rk−1(0), rk−1(1), . . . , rk−1(
N
2
− 1).

(ii) For all k, n − 1 ≤ k ≤ 2n − 4, n − 2 columns of OWk appear in OWk+1 and the

remaining one column is composed of r2n−4−k(0), r2n−4−k(1), . . . , r2n−4−k(
N
2
− 1).

Based on the above two properties, we define conjugate rows as follows.

(i) For all k, 1 ≤ k ≤ n − 2, two rows j and j′ of OWk are the conjugate row of each

other if these two rows are identical except at rk−1(j) and rk−1(j
′).

(ii) For all k, n − 1 ≤ k ≤ 2n − 4, two rows j and j′ of OWk are the conjugate row of

each other if these two rows are identical except at r2n−4−k(j) and r2n−4−k(j
′).

Since M2(n) follows destination tag routing, rn−2(j)rn−1(j) · · · r2n−3(j) are predeter-

mined by the binary representation of the destination. Hence, to prove this theorem, it

suffices to prove that for each j, routing bits r0(j)r1(j) · · · rn−3(j) (i.e., AR-bits) exist

such that all rows of each optical window OWk, 0 ≤ k ≤ 2n− 3, are distinct.

First consider OW0 and OW2n−3. Since OS0 is composed of the leftmost n−1 bits of the

inputs in P, all rows of OW0 are distinct. Since OS2n−3 is composed of the leftmost n−1

bits of the outputs in P, all rows of OW2n−3 are distinct. In the following, we will show

that it is possible to assign the values of r0(0), r0(1), . . . , r0(
N
2
−1) so that all rows of OW1

are distinct and all rows of OW2n−4 are distinct, too. After r0(0), r0(1), . . . , r0(
N
2
−1) are

assigned, we will show that it is possible to assign the values of r1(0), r1(1), . . . , r1(
N
2
−1)

so that all rows of OW2 are distinct and all rows of OW2n−5 are distinct, too. In general,

after rk−1(0), rk−1(1), . . . , rk−1(
N
2
− 1) are assigned, we will show that it is possible to

assign the values of rk(0), rk(1), . . . , rk(
N
2
− 1) so that all rows of OWk+1 are distinct

and all rows of OW2n−4−k are distinct, too.

Consider the pair of optical windows OWk+1 and OW2n−4−k in the order k = 0, 1, . . . , n−

3. We now show that it is possible to use the idea of conjugate rows to assign the values

of rk(0), rk(1), . . . , rk(
N
2
− 1) so that all rows of OWk+1 are distinct and all rows of

13



OW2n−4−k are distinct, too. Among the n− 1 columns of OWk+1, n− 2 of them appear

in OWk and the remaining one column is composed of rk(0), rk(1), . . . , rk(
N
2
− 1); also,

among the n − 1 columns of OW2n−4−k, n − 2 of them appear in OW2n−3−k and the

remaining one column is composed of rk(0), rk(1), . . . , rk(
N
2
− 1). Each row j of the

n − 2 columns of OWk+1 that appear in OWk has a conjugate row j′. Hence all rows of

OWk+1 are distinct if and only if for each pair of conjugate rows j and j′, rk(j) 6= rk(j
′).

Similarly, each row j of the n− 2 columns of OW2n−4−k that appear in OW2n−3−k has a

conjugate row j′. Hence all rows of OW2n−4−k are distinct if and only if for each pair of

conjugate rows j and j′, rk(j) 6= rk(j
′). We start with an arbitrary row j of OWk+1 and

set rk(j) = 0. Then we find the conjugate row j′ of row j in OWk+1 and set rk(j
′) = 1. In

this way, rows j and j′ in OWk+1 can be made distinct. Next, find the conjugate row j′′

of row j′ in OW2n−4−k and set rk(j
′′) = 0. Again, in this way, rows j′ and j′′ in OW2n−4−k

can be made distinct. Repeat the above process until rk(j) is assigned for all j. Thus it

is possible to assign the values of rk(0), rk(1), . . . , rk(
N
2
− 1) so that all rows of OWk+1

are distinct and all rows of OW2n−4−k are distinct, too. We now have this theorem.

By using the idea of conjugate rows (defined in the proof of Theorem 3), we now

propose an algorithm to determine the AR-bits r0r1 · · · rn−3 for optical MINs that satisfy

Theorem 3.

Since AR-bits r0r1 · · · rn−3 together with rn−2rn−1 · · · r2n−3 (the predetermined routing

bits) can be used to route a given semi-permutation with node-disjoint paths in one pass,

Algorithm 3 is called the ROUTING ALGORITHM.

Take the 16× 16 dilated Benes network shown in Figure 5 and the semi-permutation

P =

(

0 2 5 7 8 11 13 15
13 11 2 0 9 14 5 7

)

as an example of Algorithm 3. The first and the
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Algorithm 3 ROUTING ALGORITHM

Require: An arbitrary semi-permutation P, the characteristic strings OSk, 1 ≤ k ≤
2n − 4, of the combined (2n − 2)-stage optical MIN, and the optical windows OW0

and OW2n−3 derived from P.
Ensure: AR-bits r0r1 · · · rn−3, each represented as an (N

2
)-bit array such that rk(j), 0 ≤

j ≤ N
2
− 1, represents the routing bit of input j∗ at stage k, where j∗ = 2j if input 2j

is in P and j∗ = 2j + 1 if input 2j + 1 is in P.
1: for k = 0 to n− 3 do
2: use OSk+1 and Wk to form (n− 2) of the (n− 1) columns of OWk+1;

/* the remaining one column is for AR-bit rk and is determined below */
3: use OS2n−4−k and W2n−3−k to form (n− 2) of the (n− 1) columns of OW2n−4−k;

/* the remaining one column is for AR-bit rk and is determined below */
4: j ← 0;
5: rk(j)← 0;
6: set the corresponding entry in the remaining one column of OWk+1 to 0;
7: find the conjugate row j′ in OWk+1;
8: rk(j

′)← 1;
9: set the corresponding entry in the remaining one column of OWk+1 to 1;

10: find the conjugate row j′′ in OW2n−4−k;
11: rk(j

′′)← 0;
12: set the corresponding entry in the remaining one column of OW2n−4−k to 0;
13: repeat lines 7 to 12 until j′′ = j;
14: if there exists a row j in OWk+1 such that rk(j) is not assigned then go to line 5;
15: end for

last optical windows OW0 and OW5 are as follows.





















← OW0 → ← OW5 →
x3 x2 x1 y3 (= r2) y2 (= r3) y1 (= r4)
0 0 0 1 1 0
0 0 1 1 0 1
0 1 0 0 0 1
0 1 1 0 0 0
1 0 0 1 0 0
1 0 1 1 1 1
1 1 0 0 1 0
1 1 1 0 1 1





















Algorithm 3 determines r0 from OW1 and OW4 as follows. Note that for convenience, the

columns in OW1 is given in the order x3x2r0 instead of the order r0x3x2.

























← OW1 →
← OW4 →

x3 x2 r0 y3 (= r2) y2 (= r3)
0 0 0 1 1
0 0 1 0
0 1 0 0
0 1 0 0
1 0 1 0
1 0 1 1
1 1 0 1
1 1 0 1
























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























← OW1 →
← OW4 →

x3 x2 r0 y3 (= r2) y2 (= r3)
0 0 0 1 1
0 0 1 1 0
0 1 0 0
0 1 0 0
1 0 1 0
1 0 1 1
1 1 0 1
1 1 0 1

















































← OW1 →
← OW4 →

x3 x2 r0 y3 (= r2) y2 (= r3)
0 0 0 1 1
0 0 1 1 0
0 1 0 0
0 1 0 0
1 0 0 1 0
1 0 1 1
1 1 0 1
1 1 0 1

















































← OW1 →
← OW4 →

x3 x2 r0 y3 (= r2) y2 (= r3)
0 0 0 1 1
0 0 1 1 0
0 1 0 0 0
0 1 1 0 0
1 0 0 1 0
1 0 1 1 1
1 1 0 0 1
1 1 1 0 1

























Algorithm 3 determines r1 from OW2 and OW3 as follows. Again, for convenience, the

columns in OW2 is given in the order x3r0r1 instead of the order r0r1x3.

























← OW2 →
← OW3 →

x3 r0 r1 y3 (= r2)
0 0 0 1
0 1 0 1
0 0 1 0
0 1 1 0
1 0 1 1
1 1 1 1
1 0 0 0
1 1 0 0

























The routing bits r0r1r2r3r4r5 for P is listed below, in which r0 and r1 are the AR-bits

derived by Algorithm 3, and each of r2, r3, r4, r5 is represented as an (N
2
)-bit array such

that r2(j)r3(j)r4(j)r5(j), 0 ≤ j ≤ N
2
− 1, is the binary representation of the output of
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input j∗ in P, where j∗ = 2j if input 2j is in P and j∗ = 2j + 1 if input 2j + 1 is in P.



















r0 r1 r2 r3 r4 r5
0 0 1 1 0 1
1 0 1 0 1 1
0 1 0 0 1 0
1 1 0 0 0 0
0 1 1 0 0 1
1 1 1 1 1 0
0 0 0 1 0 1
1 0 0 1 1 1



















Figure 6 shows the routing paths of P when the above r0r1r2r3r4r5 is used.
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Figure 6: The routing paths obtained by our algorithm.

We now prove a theorem.

Theorem 4. Algorithm 3 is correct and takes O(N log2 N) time. Moreover, it leads to

an O(N log2 N)-time semi-permutation routing algorithm.

Proof. The correctness of Algorithm 3 follows from the proof of Theorem 3. Since there

are (n − 2) × N
2

rk(j)’s and each of them can be determined in O(1) time, Algorithm 3

takes O((log2 N − 2) × N
2
) = O(N log2 N) time. It is not difficult to see that the AR-

bits r0r1 · · · rn−3 obtained by Algorithm 3 together with the n predetermined routing bits

rn−2rn−1 · · · r2n−3 can be used to route a given semi-permutation with node-disjoint paths

in one pass in O(N log2 N) time.
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The following is a sufficient condition for the CF-rearrangeability of a combined (2n−

1)-stage optical MIN. Since the proof is similar to that of Theorem 3, the proof is omitted.

Theorem 5. (Sufficient condition for a combined (2n− 1)-stage optical MIN)

In a combined (2n − 1)-stage optical MIN M1(n) ⊕M2(n) in which M2(n) follows des-

tination tag routing, if i-mappings exist for all i, 0 ≤ i ≤ 2n − 2, and each AR-bit rk,

0 ≤ k ≤ n− 2, occurs only in each OSℓ, for k + 1 ≤ ℓ ≤ 2n− 3− k, then the network is

CF-rearrangeable.

Before ending this section, we list the characteristic strings of a (2n− 2)-stage dilated

Benes network. These strings will be used in the next section.

OS0 = xn−1xn−2 · · ·x3x2x1

OS1 = r0xn−1xn−2 · · ·x3x2

OS2 = r0r1xn−1xn−2 · · ·x3
...

OSn−2 = r0r1r2 · · · rn−3xn−1

OSn−1 = r0r1r2 · · · rn−3rn−2
...

OS2n−5 = r0r1rn−2rn−1 · · · r2n−6

OS2n−4 = r0rn−2rn−1 · · · r2n−6r2n−5

OS2n−3 = rn−2rn−1 · · · r2n−6r2n−5r2n−4

(1)

Here xn−1xn−2 · · ·x0 denotes an input and yn−1yn−2 · · · y0 denotes an output. Note that

rn−2rn−1 · · · r2n−3 = yn−1yn−2 · · ·y0. It can be verified that a dilated Benes network satis-

fies the sufficient condition stated in Theorem 3 and hence is CF-rearrangeable.

5 A permutation routing algorithm in the baseline

(or reverse baseline) network

Recall that both the Benes network and the dilated Benes network are the concate-

nation of the baseline network and the reverse baseline network. The Benes network is

rearrangeable, whereas the dilated Benes network is CF-rearrangeable. For convenience,

call the output links of switches of stage (n − 1) followed by routing paths in a permu-

tation (respectively, semi-permutation) of the Benes network (respectively, dilated Benes
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network) the intermediate destinations. In [27], by using the intermediate destinations of

a Benes network, Yang and Wang proposed an algorithm (for convenience, call it Algo-

rithm YW) to route an arbitrary permutation in a baseline (or reverse baseline) network

with node-disjoint paths in four passes.

Algorithm YW uses Algorithm 1 to decompose a given permutation P into two semi-

permutations L and R. Recall that Algorithm 1 has to construct a bipartite graph explic-

itly. Also, to use the intermediate destinations of a Benes network, Algorithm YW has to

run Algorithm 1 to decompose each of L and R into two semi-permutations, say, LL, LR,

RL, and RR. Then, Algorithm YW has to run Algorithm 1 to further decompose each

of LL, LR, RL, and RR into two semi-permutations, say, LLL, LLR, LRL, LRR, RLL,

RLR, RRL, and RRR. The same process repeats until each semi-permutation contains

only one input-output pair.

The purpose of this section is to improve Algorithm YW. To achieve this purpose,

Algorithm 2 is used instead of Algorithm 1; also, the intermediate destinations of a dilated

Benes network are used instead of the intermediate destinations of a Benes network. See

the following for details.

We first use Algorithm 2 to decompose a given permutation P into two semi-permutations

L and R; then, route L in a baseline network with node-disjoint paths in two passes, and

route R in a baseline network with node-disjoint paths in two passes. In the following, we

only present an algorithm to route an arbitrary semi-permutation P in a baseline network

with node-disjoint paths in two passes. Obviously, setting P = L and P = R will route

an arbitrary permutation in a baseline network with node-disjoint paths in four passes.

Suppose the semi-permutation is P =

(

a0 a1 a2 · · · aN
2
−1

b0 b1 b2 · · · bN
2
−1

)

. Note that we

have assumed that the links connecting inputs and switches of stage 0 are regarded as

output links of switches of stage (−1). Therefore, an input-output path from input

ai to output bi, 0 ≤ i ≤ N
2
− 1, in a dilated Benes network can be represented as
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Li,0 → Li,1 → Li,2 → · · · → Li,2n−3 → Li,2n−2, where Li,0 = ai, Li,2n−2 = bi, and Li,k,

1 ≤ k ≤ 2n − 3, is the output link of switches of stage k − 1 followed by the path. Our

algorithm is based on the observation that L0,n, L1,n, . . . , LN
2
−1,n are the intermediate

destinations of a dilated Benes network for P and can be obtained by Algorithm 3. Let

P1 =

(

a0 a1 a2 · · · aN
2
−1

L0,n L1,n L2,n · · · LN
2
−1,n

)

and P2 =

(

L0,n L1,n L2,n · · · LN
2
−1,n

b0 b1 b2 · · · bN
2
−1

)

.

The following lemma was proven in [27].

Lemma 6. [27] The set of all semi-permutations realized by a baseline network with node-

disjoint paths in one pass is exactly the set of all semi-permutations realized by a reverse

baseline network with node-disjoint paths in one pass.

We now prove a lemma.

Lemma 7. Both P1 and P2 can be realized by a baseline (or reverse baseline) network

with node-disjoint paths in one pass. Moreover, routing bits for P1 and P2 are the n-bit

binary representations of L0,n, L1,n, . . . , LN
2
−1,n and b0, b1, . . . , bN

2
−1, respectively.

Proof. Since a dilated Benes network is CF-rearrangeable, P can be realized in it with

node-disjoint paths in one pass. Consider P1. The first n stages of a dilated Benes

network form a baseline network. Thus P1 can be realized by a baseline network with

node-disjoint paths in one pass. By Lemma 6, P1 can also be realized by a reverse baseline

network with node-disjoint paths in one pass. Now consider P2. Since the last n stages

of a dilated Benes network form a reverse baseline network, P2 can be realized in the last

n− 2 stages (i.e., stages 2, 3, . . ., n− 1) of a reverse baseline network with node-disjoint

paths in one pass. Thus if we can prove that, in a reverse baseline network, input Li,n,

0 ≤ i ≤ N
2
− 1, can get to output link Li,n of stage 1, then P2 can be realized by a reverse

baseline network with node-disjoint paths in one pass. For input Li,n, choose its routing

bit at stage 0 to be 0 if
⌊

Li,n

2

⌋

is even and 1 if
⌊

Li,n

2

⌋

is odd; choose its routing bit at

stage 1 to be 0 if Li,n is even and 1 if Li,n is odd. It is not difficult to see that the above
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choices of routing bits ensure input Li,n to get to output link Li,n of stage 1. Therefore,

P2 can be realized by a reverse baseline network with node-disjoint paths in one pass.

By Lemma 6, P2 can also be realized by a baseline network with node-disjoint paths in

one pass. Since a baseline (or reverse baseline) network follows destination tag routing,

routing bits for P1 and P2 are the n-bit binary representations of L0,n, L1,n, . . . , LN
2
−1,n

and b0, b1, . . . , bN
2
−1, respectively.

The following is our algorithm for routing an arbitrary semi-permutation P in an

N ×N baseline (or reverse baseline) network with node-disjoint paths in two passes.

Algorithm 4 ROUTING A SEMI-PERMUTATION IN A BASELINE OR REVERSE
BASELINE NETWORK
Require: An arbitrary semi-permutation P and the characteristic strings OSk, 1 ≤ k ≤

2n− 4, of a (2n− 2)-stage dilated Benes network.
Ensure: Routing bits r0r1 . . . rn−1 and r′0r

′

1 . . . r′n−1, each represented as an (N
2
)-bit array

such that rk(j), 0 ≤ k < n and 0 ≤ j ≤ N
2
− 1, represents the routing bit of input j∗

at stage k for the first pass, and r′k(j), 0 ≤ k < n and 0 ≤ j ≤ N
2
− 1, represents the

routing bit of input j∗ at stage k for the second pass, where j∗ = 2j if input 2j is in
P and j∗ = 2j + 1 if input 2j + 1 is in P.

1: use P to derive the optical windows OW0 and OW2n−3 for a (2n − 2)-stage dilated
Benes network and use Algorithm 3 to find AR-bits r0r1 . . . rn−3;

2: for j = 0 to N
2
− 1 do

3: let yn−1yn−2 · · · y0 be the n-bit binary representation of the destination of input j∗;
4: rn−2(j)← yn−1;
5: rn−1(j)← yn−2;
6: for i = 0 to n− 1 do
7: r′i(j)← yn−1−i;
8: end for
9: end for

In this algorithm, r0r1 · · · rn−1 are the routing bits for the first pass (i.e., for P1),

and r′0r
′

1 · · · r
′

n−1 are the routing bits for the second pass (i.e., for P2). This algorithm

uses the characteristic strings OSk, 1 ≤ k ≤ 2n − 4, of a (2n − 2)-stage dilated Benes

network to find r0r1 · · · rn−3. It sets rn−2 and rn−1 to the leftmost two bits of the n-

bit binary representation of the destination and sets r′0, r
′

1, . . . , r
′

n−1 to the n-bit binary

representation of the destination. Note that OSk, 1 ≤ k ≤ 2n − 4, of a (2n − 2)-stage

dilated Benes network can be obtained before this algorithm runs; see (1). Thus we
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assume OSk, 1 ≤ k ≤ 2n− 4, are inputs, too.

We now give an example for Algorithm 4. Let P =
(

0 2 5 7 8 11 13 15
13 11 2 0 9 14 5 7

)

be the given semi-permutation. Then Algorithm 4 obtains the following routing bits.



















r0 r1 r2 r3 r′0 r′1 r′2 r′3
0 0 1 1 1 1 0 1
1 0 1 0 1 0 1 1
0 1 0 0 0 0 1 0
1 1 0 0 0 0 0 0
0 1 1 0 1 0 0 1
1 1 1 1 1 1 1 0
0 0 0 1 0 1 0 1
1 0 0 1 0 1 1 1



















.

Do notice that the routing bits obtained by Algorithm 4 works for both a baseline and

a reverse baseline network. Routing paths in a baseline network are shown in Figure 7;

those in a reverse baseline network are shown in Figure 8. It is not difficult to see that

P1 =
(

0 2 5 7 8 11 13 15
3 10 4 12 6 15 1 9

)

and P2 =
(

3 10 4 12 6 15 1 9
13 11 2 0 9 14 5 7

)

.

stage 1 stage 2 stage 3stage 0
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0
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10

4

12

6

15

1

9

3

stage 1 stage 2 stage 3stage 0

13

11

2

0

9

14

5
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(a) (b)

Figure 7: (a) Routing paths in the first pass. (b) Routing paths in the second pass.

We now analyze Algorithm 4.

Theorem 8. Algorithm 4 takes O(N log2 N) time and it can realize any semi-permutation

with node-disjoint paths in a baseline (or reverse baseline) network in two passes.

Proof. It is not difficult to see that Algorithm 4 takes O(N log2 N) time. By Lem-

mas 7, it suffices to prove that: (i) r0r1 · · · rn−1 are the n-bit binary representations
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Figure 8: (a) Routing paths in the first pass. (b) Routing paths in the second pass.

of L0,n, L1,n, . . . , LN
2
−1,n, and (ii) r′0r

′

1 · · · r
′

n−1 are the n-bit binary representations of

b0, b1, . . . , bN
2
−1. Statement (ii) follows from lines 3, 6, 7, 8 of Algorithm 4. Since

L0,n, L1,n, . . . , LN
2
−1,n are the intermediate destinations of an (n− 2)-stage dilated Benes

network for P, if we set r0r1 · · · rn−1 to the first n routing bits of the 2n− 2 routing bits

obtained by Algorithm 3, then we have (i). By lines 1, 3, 4, 5 of Algorithm 4, r0r1 · · · rn−1

are set accordingly. Thus we have (i).

6 Concluding remarks

This thesis considers the crosstalk-free rearrangeability of combined optical MINs. In

[8], Das formulated an elegant sufficient condition for the rearrangeability of a combined

(2n − 1)-stage electronic MIN and presented an O(N log2 N)-time permutation routing

algorithm for MINs that satisfy the sufficient condition. In this thesis, we have formulated

a sufficient condition for the crosstalk-free rearrangeability of a combined (2n− 2)-stage

optical MIN and a sufficient condition for the crosstalk-free rearrangeability of a combined

(2n − 1)-stage optical MIN. We have proposed an O(N log2 N)-time semi-permutation

routing algorithm for optical MINs that satisfy the sufficient condition, and improved the

decomposition algorithm in [28] and the permutation routing algorithm in [27].
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