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On the Crosstalk-free Rearrangeability of Combined
Optical Multistage Interconnection Networks

Student: Chih-Wen Huang Advisor: Chiuyuan Chen

Department of Applied Mathematics
National Chiao Tung University

Abstract

Rearrangeability of a multistage interconnection network (MIN) is that if the
MIN can connect its N inputs to its N outputs in all N! possible ways, by rear-
ranging the existing connections if required. In [8], Das formulated an elegant suf-
ficient condition for the rearrangeability of a combined (2n — 1)-stage MIN, where
n = logy N, and presented an O(N logy N)-titie routing algorithm for MINs that
satisfy the sufficient condition. Hoewever,. the .above definition of rearrangeability
and the results of Das are for ele¢tronic MINs. ‘Recently, optical MINs have become
a promising network choice for their high performance. As was mentioned in [28],
the fundamental difference between an| electronic MIN' and an optical MIN is that:
two routing requests in an electronic: MINTEamnbe sent simultaneously if they are
link-disjoint, while two routing requests in an optical MIN can be sent simultane-
ously only when their routing paths are node-disjoint, meaning that these two paths
do not pass through the same switching element and therefore there is no crosstalk
problem. The purpose of this thesis is to redo the works of Das for optical MINs. In
particular, we formulate a sufficient condition for the crosstalk-free rearrangeability
of a combined (2n—2)-stage and a combined (2n — 1)-stage optical MIN, we propose
an O(N logy N)-time routing algorithm for optical MINs that satisfy the sufficient
condition. In this thesis we also propose an algorithm to realize any permutation
in a baseline network with node-disjoint paths in four passes.

Keywords: Multistage interconnection network; Optical multistage intercon-
nection network; Rearrangeability; Permutation routing; Crosstalk; Benes

network; Baseline network; Reverse baseline network.
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1 Introduction

Permutation routing is an important transmission pattern in parallel and distributed
computing systems [27]. The purpose of this thesis is to consider the problem of routing
all N! possible permutations in an optical multistage interconnection network (MIN).

Given N processors Py, P, -+, Py_1, an N x N MIN can be used for communication
among these processors as shown in Figures 1 and 2, where N x N means N inputs and
N outputs. In this thesis an MIN denotes both an electronic MIN and an optical MIN,
and unless otherwise specified, an MIN means an N x N MIN. A column in an MIN is
called a stage. The number of stages in an MIN is denoted by s. The nodes in a stage

are called switches (or switching elements or crossbars). Define

n=log, N.

Each switch is assumed to be of size:2 x 2 (thus Nis even); see [4, 6, 7, 10, 15] for switches
of other sizes. It is well known that a 2 % 2-switeh-has only two possible states: straight

and cross, as shown in Figure 3.

@) JO"

— ) -

NxN
MIN

. Ing O

Figure 1: Communications among processors using an MIN.

A permutation of an MIN is one-to-one mapping between the inputs and outputs. A
permutation is admissible of an MIN if it can be realized on that MIN with link-disjoint

paths in one pass. An MIN is rearrangeable if all N! possible permutations are admissible.
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Figure 2: A 5-stage, 8 x 8 MIN; this MIN is a 8 x 8 Benes network.

switch straight Cross

sub port 0 — —sub port 0 —><—

sub port 1 [~ sub port 1

(a) (b)

Figure 3: (a) A 2 x 2 switch and its sub ports. (b) The two possible states.

The rearrangeability of an MIN is that if the MIN can €ennect its N inputs to its N outputs
in all N! possible ways, by rearranging.the existing connections if required.

The Benes network has been proposed-as-a_popular architecture for rearrangeable
MINs and it uses the theoretically minimum number of stages [2]. More precisely, a
Benes network is a (2n — 1)-stage MIN and it is essentially the concatenation of the
baseline network and the reverse baseline network with the last stage of the baseline
network overlapped with the first stage of the reverse baseline network. The shuffle-
exchange network is also a widely studied architecture for rearrangeable MINs. In [23],
Waksman proved that if a shuffle-exchange network is rearrangeable, then it has at least
2n — 1 stages. Later on, Stone [20] showed that an n’-stage shuffle-exchange network
is rearrangeable. In [24], Wu and Feng proposed an algorithm for realizing an arbitrary
permutation on a (3n — 1)-stage shuffle-exchange network. In [1] and [9], Babu et al.
had proven that 3n — 3 is an upper bound on the number of stages for a shuffle-exchange
network to be rearrangeable; this upper bound was later improved to be 3n — 4 by Linial

and Tarsi [13]. In [5], Cam proved that a (2n — 1)-stage shuffle-exchange network is



rearrangeable, but the proof is still doubtful for n > 4; see [21].

Do notice that the above definition of rearrangeability and the results of [1, 2, 5, 9,
13, 20, 23, 24] are for electronic MINs. Recently, optical MINs have become a promising
network choice for their high performance and faster speed; see [11, 16, 19, 22, 25, 26, 27,
28]. As was mentioned in [28], electronic MINs and optical MINs have many similarities,
but there are some fundamental differences between them. The major difference between
them is that the optical MINs have the crosstalk problem (see [28]) and therefore two
messages can not pass through the same switch at the same time. As a result, two
routing requests can be sent simultaneously in an electronic MIN if they are link-disjoint;
they can be sent simultaneously in an optical MIN only when their routing paths are
node-disjoint.

Due to the crosstalk problem, the results for electronic MINs may not be applied on
optical MINs. Yang et al. [28] observed that|the miaximum number of input-output pairs
that can be routed simultaneouslyiin an optical MIN is % Thus they introduced the
definition of semi-permutation, whichis a partial perinutation with % input-output pairs.
do ot A4S ) of an N-element set {0,1,2,..., N — 1},

52
bo by -+ by,
2

where a;,b; € {0,1,2,..., N — 1}, is a semi-permutation of the N-element set if

CIRTTRNE ) S CTN TR S Y S (RSt

For example, when N = 8, <

A partial permutation (

) is a semi-permutation since

() BB B =B BB B = 10.1,2,3),

N[

A semi-permutation ensures that there is no crosstalk at the first and the last stages.

In [3], Bao and Li defined a routing to be crosstalk-free (conflict-free) if any two paths
used in the routing are node-disjoint (link-disjoint). They showed that the crosstalk-free
routing on any bit permutation network (BPN) is equivalent to the conflict-free routing

on a BPN of smaller size and with fewer stages. They defined “CF-rearrangeable” and

3



proved that the minimum number of stages for a BPN to be CF-rearrangeable is 2n — 2.
In particular, an MIN is crosstalk-free rearrangeable (CF-rearrangeable) if every semi-
permutations can be realized with node-disjoint paths in one pass. Since the maximum
number of input-output pairs that can be routed simultaneously in an optical MIN is
%, at least two passes are required for realizing a permutation. Yang et al. [28] proved
an important result: Any permutation can be decomposed into two semi-permutations.
Thus a CF-rearrangeable MIN can realize any permutation in two passes and this is
optimal. Yang et al. [28] proved that a Benes network is CF-rearrangeable and proposed
a permutation routing algorithm for a Benes network. Lu and Zheng [14] also proposed
a permutation routing algorithm for the same network.

In [26], Yang and Wang proposed a permutation routing algorithm for the baseline
(or reverse baseline) network with node-disjoint pashs in four passes; they said that the
proposed algorithm can work efficiently only-for long message. Later, in [27], Yang and
Wang presented a permutation routing algerithm for ithe baseline (or reverse baseline)
network with node-disjoint paths in four passes and they claimed that this algorithm is
suitable for messages of any length.

Recently, Das [8] formulated a sufficient condition for the rearrangeability of a com-
bined (2n — 1)-stage electronic MIN and presented an O(N log, N)-time permutation
routing algorithm for MINs that satisfy the sufficient condition. However, the results of
Das are for electronic MINs. Therefore, due to the crosstalk problem, these results can
not be applied on optical MINs. The purpose of this thesis is to transform the results
of Das into results applicable to optical MINs. In particular, we formulate a sufficient
condition for the CF-rearrangeability of a combined (2n — 2)-stage optical MIN and a suf-
ficient condition for the CF-rearrangeability of a combined (2n—1)-stage optical MIN. We
propose an O(N log, N)-time semi-permutation routing algorithm for optical MINs that

satisfy the sufficient condition. We also improve the decomposition algorithm proposed



in [28] and the permutation routing algorithm proposed in [27].

This thesis is organized as follows: Section 2 lists some preliminaries. Section 3 im-
proves the decomposition algorithm proposed in [28]. Section 4 contains our results on
CF-rearrangeability of optical MINs. Section 5 improves the permutation routing algo-

rithm in [27]. Concluding remarks are given in the last section.

2 Preliminaries

An s-stage N x N MIN is represented as follows (see Figure 4 for an illustration):

label the inputs of the MIN as 0,1,2,..., N — 1 and represent each input by an n-bit

binary number x, 12, _o---xg;

label the outputs of the MIN as 0, 1, 2, .« N =1 and represent each output by an n-bit

binary number vy, _1y,_2 - - - Yo;

label the stages as 0,1,2,... s —1;

label the switches of each stage as 0,152;::7, g — 1 and represent each switch by an

(n — 1)-bit binary number z, 52, 3- - - 2o; and

label the upper and the lower output links of every switch j, 0 < 7 < % — 1, as

2j and 2j5 + 1 respectively, and represent each link by an n-bit binary number

Tp-1Tn—2 " To-

In an s-stage MIN, a path from an input to an output can be described by a sequence
ror1 - - - rs—1 of labels that label the successive links on this path. Such a sequence of labels
is called the routing bits [8] (or control tag [17], tag [6], or path descriptor [12]). Routing
bits can be used as the header for routing a message: each successive switch uses the
first routing bit to route the message, and then discards it. In particular, routing bit r

controls the switch at stage k, and if r, = 0 (respectively, r, = 1), then a connection is
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Figure 4: An 8 x 8 baseline network with labels and i-mappings.

made to sub port 0 (respectively, sub port 1). For example, in Figure 4, input 0 can get
to output 5 by using routing bits 101, which means the routing request can be fulfilled
by a path via sub port 1 at stage 0, sub port 0 at stage 1, and sub port 1 at stage 2.

In this thesis, the links connecting inputs and switches of stage 0 are regarded as
output links of switches of stage (—1) although there ate no switches of stage (—1). The
following definition, i-mapping, is erucial for-this thesis and was first proposed in [8].

Given an MIN, if for each stage i, 0 <4 <is —71,“there exists a mapping

Fi: Xy Tp_o- 210 — Yn—1Yn—2-""Y1Ti

between the output links z,,_1x,_s - - - x11¢ of switches of stage (i—1) and the output links
Yn—1Yn—sa - - - y17; of switches of stage i, where y,_1y,_2 - - - y1 is a permutation of any n — 1
bits of x,_12,_2- - x120 and r; is the routing bit, such that the link z, 12, _o---x120 at
stage (i — 1) is connected to the link y, 19,2 ---y17; at stage 4, then F}’s are defined as
1-mappings for the MIN. For example, the -mappings for the 8 x 8 baseline network in
Figure 4 are: Fy: zoxi110 — Tox170, F1: Xox109 — ToTar1, I Tox129 — T2X(T2.
An s-stag MIN is said to follow destination tag routing if the routing bits rgry - - - r4_1 of
every message equal to the n-bit binary representation 1y, _1y,_o - - - yo of the destination.
In other words, if an MIN follows destination tag routing, then s = n and the routing bits

of a message sent to output ¥, 1Yn_2- Yo are Y,_1Yn_o - - - Yo; also, the destination of a



message with routing bits rory - - -rs_1 is 7971 - - - 7s_1. Consider the 8 x 8 baseline network

shown in Figure 4. From its --mappings, a message from input xszi29 with routing bits
. . Fy P Fy

roriry will reach output rorire since xox1xg — Xox179 — ToXT2T1 —— 7TTrira. Thus

the 8 x 8 baseline network follows destination tag routing. In general, an N x N baseline

network satisfies s = n and has -mappings:

Fy - Tp-1Tp—2*-T1Xyg — Tp—-1Tp—2"°'*T170,
Fy - Tp-1Tp—2*"T1Tyg — TTp-1Tp—2" "' Tal1,
Fy Tp—-1Tp—2' " T1Tyg — Tp-1ToTp—2 " TaT2,

Foi: TpaTp_o- 21Ty — Tp_1Tp—2- TaToln—1.

A baseline network follows destination tag routing since

o Py y Fn_1
Tp—1Tp—2 " XL1Xg — Tp—1Tp—2" " T1Tg — ToLp—1Tp—2 " T2y — -+ —— Tl Tp—1.

We now define a combined MIN My(n;) & Mo (n12)e,Let My(ny) and Ma(ng) denote an
ni-stage MIN and an ny-stage MIN; respectively:. The ecombined MIN M (ny) @& Ms(ns)
is the concatenation of M (ny) and My (nip) with-the last stage of M;(n;) overlapped with
the first stage of My (ng). Clearly, M (ny):@ Ma(ng) s an (ny + ny — 1)-stage MIN.

Recall that n = log, N. A n-stage shuffle-exchange network is the well-known omega
network and is usually denoted as §2. In [8], Das formulated the following sufficient
condition for the rearrangeability of a combined (2n — 1)-stage MIN A@® A’ where A and
A’ are two n-stage Q-equivalent networks (notice that an -equivalent network follows

destination tag routing).

Theorem 1. [8] In a combined (2n — 1)-stage MIN A & A, if i-mappings exist for
all i, 0 < 4 < 2n — 2, and each AR-bit r;, 0 < j < n — 2, occurs only in each Sy,

JH1<Ek<2n—2—j, then A& A’ is rearrangeable.

For the definitions of AR-bit and Si, see Section 4. The Benes network is an example

of networks that satisfy this sufficient condition.



3 Decompose a permutation into semi-permutations

The purpose of this section is to improve the decomposition algorithm proposed in [28].

ap ap -+ 4aN-1

bo by -+ by

28], Yang et al. proposed an efficient algorithm to decompose a given permutation P into

Throughout this section, P = ( ) denotes a given permutation. In
two semi-permutations L and R. This algorithm first constructs an undirected bipartite
graph G = (V4, Vy; E) for P. The vertex sets of G are given by V; = {Ag], A[ll}, ey A[_,%,}_l}
2
and V5 = {Agz]’A[lz]’ .. .,Ai]_ 1}, where AE-H and Agg] correspond to inputs and outputs,
2
respectively, and both Ag-l} and ABQ} are the 2-element set {27, 2j+1} forall j, 0 < j < Z-1.

bi
P such that a; € Ag-ll} and b; € Az]. Clearly, G is 2-regular, |V;| = |Vo| = &, and |E| = N.

2

The edge set E is defined by: (Ag-ll}, Ag) € F if and only if there exists a pair ( i ) in

The algorithm in [28] takes O(N) time and is listed in Algorithm 1.

Algorithm 1 DECOMPOSITION ALGORITHM. in [28]

Require: A permutation P.
Ensure: Two semi-permutations Iz and R of £

1. Construct a bipartite graph G = (Vi3Va;E) for. P.

2: For each connected component of G, *start from a vertex of this component in V;,
traverse through an unvisited edge to the.neighbor vertex in V5, back and forth until
returning to the starting vertex. (During the traverse, a visited edge is marked “for-
ward” if the traverse direction on this edge is from V; to V, and marked “backward”
if the direction is opposite.)

3: Take all one-pair mappings corresponding to edges marked with “forward” to form
semi-permutation L; take all one-pair mappings corresponding to edges marked with
“backward” to form semi-permutation R.

In Algorithm 1, a bipartite graph has to be constructed explicitly. We now propose
a decomposition algorithm, which abandon the requirement for constructing a bipartite

graph and still takes O(N) time. Without loss of generality, in our algorithm, assume the

o 1 -+ N-—-1
bo by -+ by

array also called P with P[i] = b;. An array @ is used to store the inverse permutation

given permutation P is of the form P = ( ) and is represented as an

of P; that is, Q[b;] = ¢ if and only if P[i] = b;. Semi-permutation L is represented by two
1

arrays L, and L, such that L,[|%]] =i and Ly[[£]] = b; if and only if < b

)EL;Ris



represented by two arrays R, and Ry, such that R,[|4]] =4 and Ry[[%]] = b; if and only
if < bz ) € R. Define mate(v) = v+ 1 if v is an even number and v — 1 if v is an odd

number. Thus 0 and 1 are the mates of each other, 2 and 3 are the mates of each other,

and so on. The following is our decomposition algorithm.

Algorithm 2 OUR DECOMPOSITION ALGORITHM
Require: A permutation P.
Ensure: Two semi-permutations L and R of P.

1: fori«<—0to N —1do

2. Ali] < 0;

3: end for

4: for 1 < 0to N —1do

5. QP[] < 4;

6: end for

7: while there exists ¢ such that Afi] =0 do
8  head « i;

9: next «— 1

10: repeat

11: Lo[[ %2 ]] « neat;

12: Ly[[22]] — Plnext];

13: Alnext] « 1;

14: next «— Q[mate(P[next])];
15: R,[| % |] « neat;

16: Ry[| 2% |] «— Plnewt];

17: Alnext] «— 1;

18: next < mate(next);

19:  until (next = head);
20: end while

We now give an example for Algorithm 2. Suppose P =

0

5

. . o7 77 7776
Inthelstlteratlon,L:<5 5 9 ?)andR:<? 2 7 4

? 7 7?07
In the 2nd iteration, L = ( g ? 2 I ) and R = ( 7 ? g Z
. . 07 47 725 6
In the 3rd iteration, L = ( 5703 1 ) and R = ( 2 92 0 4

In the final iteration, we obtain the two semi-permutations
0 3 47 1 256
L‘<5 6 3 1) andR_(? 2 0 4)'

We now analyze Algorithm 2.



Theorem 2. Algorithm 2 is correct and takes O(N) time.

Proof. Let G be the bipartite graph in the algorithm in [28]. Our algorithm is based
on the observation that: for all v, 0 < v < N, {v, mate(v)} is the vertex Alm and also the
vertex A?] in G, Azm is adjacent to A?], where i = |%] and j = {@J . Since G is a 2-
regular bipartite graph, each connected component of GG is an even cycle. The repeat-loop
in lines 10 to 19 corresponds to traversing a cycle in G and inserting edges of the cycle
into L and R alternatingly. The while-loop ensures that all the connected components of
G are traversed. Hence the resultant L and R are two semi-permutations. Lines 1 to 6

of this algorithm take O(N) time. Lines 7 to 20 take O(N) time since each input-output

pair in P is considered exactly once. Thus Algorithm 2 takes O(N) time. ]

4 CF-rearrangeability of optical MINs

The purpose of this section is ta-formulate‘a sufficient condition for the crosstalk-free
rearrangeability of a combined (2n —2)-stage anda combined (2n — 1)-stage optical MIN
and to propose a routing algorithm for MINs that satisfy the sufficient condition. Before
going further, we give three definitions: AR-bits, OWj, and OS}.

Recall that in this thesis, an MIN is an N x N MIN and n = log, N. Let M;(n')® My (n)
be a combined optical MIN in which M;(n) follows destination tag routing and set s =
n'+n—1 for easy writing. A path from an input to an output through the MIN is referred
to as an input-output path. Since Ms(n) follows destination tag routing, for a particular
input-output path, the routing bits for stages k, s —n < k < s — 1, are predetermined
by the n-bit binary representation of the destination (i.e., the output), but the routing
bits rx, 0 < k < s —n — 1, can be arbitrary and are referred to as arbitrary routing bits
(AR-bits).

Suppose the i-mappings of M;(n') @ Ms(n) are Fy, F, ..., Fs_1. Then an input-output

path from input x to output y can be represented as Lo — Ly — Ly — -+ — L, 1 — Ly,

10



where Lo =z, Ly =y, and L, 1 < k < s—1, is the output of stage k — 1 followed by the
path. Note that Ly = Fj,_1(Ly_1) for all k, 1 < k <s. The path can also be represented
as by — E1 — -+ — E,_1, where E}, 0 < k < s — 1, is the switch passed by the path at
stage k. It is not difficult to see that the binary representation of Ej, 0 < k < s — 1, can
be obtained by deleting the rightmost bit of the binary representation of Ly .

Given a semi-permutation on M;(n') @ Ms(n), at any stage k, 0 < k < s — 1, the set
of switches passed by individual input-output paths can be represented by an % X (n—1)
matrix, called optical window OW)},, where each row j, 0 < j < g — 1, of OW}, is the
(n—1)-bit binary representation of the switch at stage k that is passed by the path started
from input 25 (if 2j belongs to the semi-permutation) or 25 + 1 (if 25 + 1 belongs to the
semi-permutation). Note that each optical window OW)}, can be represented uniquely by
a string OS5}, obtained by deleting the rightmost bit of Si.1, where Sy = x, 12,2 29
and Sy = Fr_1(Sk-1), 1 < k < s. OSy is called the characteristic string of OWj,.

A dilated Benes network is a (2n — 2)-stage MIN and it is the concatenation of the
baseline network and the reverse baseline network with the last two stages of the baseline
network overlapped with the first two stages of the reverse baseline network.

Take the 6-stage 16 x 16 dilated Benes network shown in Figure 5 as an example.
Suppose the binary representations of the input and the output are x3zsx 2o and ysysy1yo,
respectively. Then rorsryrs = ysy2vy1yo; the i-mappings, Si’s, and OSy’s are:

FO L X3XX1 Ty — X3T2X1T0 S(] = I3X9X1T9
F1 L X391 Ty — LoL3T2Ty Sl = F(](So) = T3T2X17T0 OSO = T3X9X1

F2 L X391y — T3TpT2T2 52 = Fl(Sl) = TgT3T27T1 OSl = TogT3T9
F3 L X391y — T3T2XoT3 53 = FQ(SQ) = Tor1x3r2 OSQ = Tor1xs
F4 L X391y — 3L 1XoT4 54 = Fg(Sg) = Torirars 053 = Tor'172
F5 L X3T9X1 Xy — T 1Ty 55 = F4(S4) = Torarsry 054 = ToraTs

Sﬁ = F5(S5) = TaT3TyTs 055 = TaI'3Ty

The following observation is crucial for the remaining discussions: A semi-permutation
can be realized on Mi(n') @ My(n) if and only if all rows of each optical window OWj,

0 <k<s—1, are distinct. We now are ready to propose our sufficient condition.
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Figure 5: A 16 x 16 dilated Benes network.

Theorem 3. (Sufficient condition fér a combined (2n — 2)-stage optical MIN)

In a combined (2n — 2)-stage optical MIN My(n'=:1) @ Ms(n) in which My(n) follows
destination tag routing, if i-mappings exist-for-alli, 0 < i < 2n — 3, and each AR-bit ry,
0 <k <n—3, occurs only in each OSy;for k+ 1.0 < 2n —4 — k, then the network s

CF-rearrangeable.

Proof. To prove this theorem, it suffices to prove that M;(n—1)@® My(n) can realize each
semi-permutation P with node-disjoint paths in one pass. In this proof, j is an integer in
{0,1,..., % — 1}. By the definition of a semi-permutation, exactly one of inputs 25 and
27 + 1 is in P; denote the one in P as j*. Let ro(j)r1(j) - - - T2on—3(j) be the routing bits of
J*; in particular, 7 (7) is the routing bit of input j* at stage k.

Before going further, we define conjugate rows. By the constraints of this theorem,
AR-bit 7, 0 < k < n — 3, appears only in OSgi1,O0Skio,...,08, 4. Thus ry appears
only in OS1,0S8,,...,08,,_4; r1 appears only in OS5, OS5, ...,08s,_5; ro appears only

in 0S3,08y,...,085,_¢; and so on. Therefore, we have two properties.

(i) For all k, 1 <k<n—2, n— 2 columns of OW}, appear in OW},_; and the remaining

12



one column is composed of r,_1(0), r_1(1), ..., rk_l(% —1).

(ii) For all K, n —1 < k < 2n — 4, n — 2 columns of OW}, appear in OWj,; and the

remaining one column is composed of 79, 4 £(0), Ton_4_r(1), ..., ’I“gn_4_k(% —1).
Based on the above two properties, we define conjugate rows as follows.

(i) For all k, 1 < k < n —2, two rows j and j' of OW}, are the conjugate row of each

other if these two rows are identical except at r,_1(j) and r,_1(j').

(ii) For all k, n — 1 < k < 2n — 4, two rows j and j' of OW}, are the conjugate row of

each other if these two rows are identical except at ro, 4 x(j) and 79,4 (j’).

Since Ms(n) follows destination tag routing, 7,_2(7)rn_1(7) - r2,—3(j) are predeter-
mined by the binary representation of the'destination. Hence, to prove this theorem, it
suffices to prove that for each j, routing bits 7o(5)71(j) - - - 7—3(4) (i.e., AR-bits) exist
such that all rows of each optical window OW;, 0 <k < 2n — 3, are distinct.

First consider OW, and OWs,,_3. Since© Sy is composed of the leftmost n—1 bits of the
inputs in P, all rows of OW), are distinct. Since OS,,,_3 is composed of the leftmost n — 1

bits of the outputs in P, all rows of OWj,,_3 are distinct. In the following, we will show

that it is possible to assign the values of 79(0), ro(1), ..., ro(5 —1) so that all rows of OW;
are distinct and all rows of OWs,,_4 are distinct, too. After r9(0), ro(1), ..., ro(5—1) are
assigned, we will show that it is possible to assign the values of 1(0), r1(1), ..., ri(5—1)

so that all rows of OW, are distinct and all rows of OWj,,_5 are distinct, too. In general,
after r4_1(0), r5-1(1), ..., T—1(F — 1) are assigned, we will show that it is possible to
assign the values of 7,(0), (1), ..., re(§ — 1) so that all rows of OWj; are distinct
and all rows of OW,,,_4_. are distinct, too.

Consider the pair of optical windows OWy,; and OWy,,_4_intheorder k =0,1,...,n—

3. We now show that it is possible to use the idea of conjugate rows to assign the values

of rx(0), rx(1), ..., m(¥ — 1) so that all rows of OW); are distinct and all rows of

13



OWs,,_4_ are distinct, too. Among the n — 1 columns of OWy.1, n — 2 of them appear
in OW}, and the remaining one column is composed of 74,(0), rg(1), ..., r(¥ — 1); also,
among the n — 1 columns of OWoy,,_4_r, n — 2 of them appear in OW,,_35_, and the
remaining one column is composed of r4(0), rx(1), ..., re(§ — 1). Each row j of the
n — 2 columns of OWy, 4 that appear in OW)}, has a conjugate row j'. Hence all rows of
OWj4q are distinct if and only if for each pair of conjugate rows j and j', r(j) # r(5).
Similarly, each row j of the n — 2 columns of OW5,,_4_, that appear in OW5,,_3_;. has a
conjugate row j'. Hence all rows of OW5,,_4_ are distinct if and only if for each pair of
conjugate rows j and j', 7x(j) # ri(j’). We start with an arbitrary row j of OWj,; and
set r,(7) = 0. Then we find the conjugate row j’ of row j in OWj 1 and set 7(j') = 1. In
this way, rows j and j' in OWj,; can be made distinct. Next, find the conjugate row j”
of row j" in OWy,,_4_j and set ri(j”) =03 Again, in this way, rows j' and j” in OWa,,_4_4
can be made distinct. Repeat the above process until 7 () is assigned for all j. Thus it

is possible to assign the values of r5{(0), rp(l) ..., rk(% — 1) so that all rows of OWj, 4

are distinct and all rows of OW,,,_,_j-are distinct, tgo. We now have this theorem. [ |

By using the idea of conjugate rows (defined in the proof of Theorem 3), we now
propose an algorithm to determine the AR-bits ror; - - - 7,_3 for optical MINs that satisfy

Theorem 3.

Since AR-bits rory - -+ 1,3 together with 7, _or, 1 -+ - 19, 3 (the predetermined routing
bits) can be used to route a given semi-permutation with node-disjoint paths in one pass,

Algorithm 3 is called the ROUTING ALGORITHM.

Take the 16 x 16 dilated Benes network shown in Figure 5 and the semi-permutation

73:(0 2 5 7 8 11 13 15

1311 2 09 14 5 7 ) as an example of Algorithm 3. The first and the

14



Algorithm 3 ROUTING ALGORITHM

Require: An arbitrary semi-permutation P, the characteristic strings OSy, 1 < k <

2n — 4, of the combined (2n — 2)-stage optical MIN, and the optical windows OW)
and OW,,,_3 derived from P.

Ensure: AR-bits rory - - - 7,_3, each represented as an (5 )-bit array such that r(j), 0 <

B N . . . % sk .. . B
J <5 —1, represents the routing bit of input j* at stage k, where j* = 2j if input 2j
isin P and 5* = 25 + 1 if input 25 + 1 is in P.

1: for k=0ton—3do

2:  use OSky1 and Wy to form (n — 2) of the (n — 1) columns of OWj4;
/* the remaining one column is for AR-bit 7 and is determined below */

3: use OSq,_4_k and Wo, 34 to form (n — 2) of the (n — 1) columns of OWs,,_4_4;
/* the remaining one column is for AR-bit r and is determined below */

4: g« 0;

5. 1(7) < 0;

6:  set the corresponding entry in the remaining one column of OWj.; to 0;

7:  find the conjugate row j' in OWj,1;

8 mp(J) — 1;

9:  set the corresponding entry in the remaining one column of OWj., to 1;

10:  find the conjugate row j” in OWo,,_4_p;

11: re(3") < 0;

12:  set the corresponding entry in thé remaining one column of OWjy,, 4 to 0;

13:  repeat lines 7 to 12 until j” = j;

14:  if there exists a row j in OWgyysuch that.ri(5)is not assigned then go to line 5;

15: end for

last optical windows OW, and OWj are as follows:

A i R MR R
T3 T2 T1 Ys(=T2) Ya2(=73) Y1 {(=T4
0 0 0 1 1 0
0 0 1 1 0 1
0 1 0 0 0 1
0 1 1 0 0 0
1 0 0 1 0 0
1 0 1 1 1 1
1 1 0 0 1 0
1 1 1 0 1 1

Algorithm 3 determines o from OW; and OWj as follows. Note that for convenience, the

columns in OWj is given in the order x3xorg instead of the order rozsx,.

— OW; —

o (et =)
I3 T2 To Ys\=T2) Y(=T3
0 0 0 1 1
0 0 1 0
0 1 0 0
0 1 0 0
1 0 1 0
1 0 1 1
1 1 0 1
1 1 0 1
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— OW; —
— owy —
T3 Ty 1o Y3(=712) Y2(=73)
0 0 0 1 1
0 0 1 1 0
0 1 0 0
0 1 0 0
1 0 1 0
1 0 1 1
1 1 0 1
1 1 0 1
— OW; —
— oW, —
I3 T2 To Ys\=T2) Y(=T3
0 0 0 ( 1 ) ( 1 )
0 0 1 1 0
0 1 0 0
0 1 0 0
1 0 0 1 0
1 0 1 1
1 1 0 1
1 1 0 1
— OW; —
— ow, —
T3 X2 To Y3 (: 7“2) Y2 (: 7”3)
0 0 0 1 1
0 0 ¥ 1 0
0 1 0 0 0
0 1 1 0 0
1 0 0 1 0
1 0 1 1 1
1 1 0 0 1
1 1 1 0 1

Algorithm 3 determines r; from OW5and OW; asfollows. Again, for convenience, the

columns in OWj is given in the order x3ryr; instead of the order rorixs.

— OW, —

—  OW; —
T3 To L] Ys (Z 7“2)
0 0 0 1
0 1 0 1
0 0 1 0
0 1 1 0
1 0 1 1
1 1 1 1
1 0 0 0
1 1 0 0

The routing bits rorirersryrs for P is listed below, in which rq and r; are the AR-bits
derived by Algorithm 3, and each of ry, r3, r4, 75 is represented as an (%)—bit array such

that r2(j)rs(j)ra(j)rs(j), 0 < j < & — 1, is the binary representation of the output of
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input j* in P, where j* = 27 if input 27 is in P and j* = 27 + 1 if input 25 + 1 is in P.

—o—ROROROJ
ORI FROOS
COoORROOR I
RFRROOO O
RFOoOROOR OIS
PR OROO G

Figure 6 shows the routing paths of P when the above rorirorsryrs is used.

stage 2 stage 3 stage 4 stage 5

stage 1

0 stage 0

©ow NO b WON 0O

Figure 6: The routing paths obtained by our algorithm.

We now prove a theorem.

Theorem 4. Algorithm 3 is correct and takes O(N logy, N) time. Moreover, it leads to

an O(N log, N)-time semi-permutation routing algorithm.

Proof. The correctness of Algorithm 3 follows from the proof of Theorem 3. Since there
are (n — 2) x & ry(j)’s and each of them can be determined in O(1) time, Algorithm 3
takes O((log, N — 2) x &) = O(Nlog, N) time. It is not difficult to see that the AR-
bits rgry - - - r,,_3 obtained by Algorithm 3 together with the n predetermined routing bits
Th_oTn_1+--To,_3 can be used to route a given semi-permutation with node-disjoint paths

in one pass in O(N log, N) time. ]
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The following is a sufficient condition for the CF-rearrangeability of a combined (2n —

1)-stage optical MIN. Since the proof is similar to that of Theorem 3, the proof is omitted.

Theorem 5. (Sufficient condition for a combined (2n — 1)-stage optical MIN)

In a combined (2n — 1)-stage optical MIN M;(n) @ My(n) in which My(n) follows des-
tination tag routing, if i-mappings exist for all i, 0 < i < 2n — 2, and each AR-bit ry,
0 <k <n—2, occurs only in each OSy, for k+1 <€ < 2n— 3 — k, then the network is

CF-rearrangeable.

Before ending this section, we list the characteristic strings of a (2n — 2)-stage dilated

Benes network. These strings will be used in the next section.

0Sy = Tp-1Tp—2 " T3T2X]

(O = T0Tp-1Ln—-2 " T3x2

05, = ToT1Tp2iLp—2 "¢ T3

OS,—2 = reliTy Th3Tnei (1)
OSn—1  =19rTa - Tp=aln—2

OSon—5 = ToMIn—3Tn—1"""Toh=6

OSon—4 = ToTn_oMpmir o6 2n—5

OS2n—3 =Tn-2Tn—-1"" " "T2n—6"2n—5"2n—14

Here z,,_12,_5---x9 denotes an input and y,,_1Yn_o - - Yo denotes an output. Note that
TnoTn_1°*"Ton_3 = Yn_1Yn—2 - - - Yo. It can be verified that a dilated Benes network satis-

fies the sufficient condition stated in Theorem 3 and hence is CF-rearrangeable.

5 A permutation routing algorithm in the baseline
(or reverse baseline) network

Recall that both the Benes network and the dilated Benes network are the concate-
nation of the baseline network and the reverse baseline network. The Benes network is
rearrangeable, whereas the dilated Benes network is CF-rearrangeable. For convenience,
call the output links of switches of stage (n — 1) followed by routing paths in a permu-

tation (respectively, semi-permutation) of the Benes network (respectively, dilated Benes
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network) the intermediate destinations. In [27], by using the intermediate destinations of
a Benes network, Yang and Wang proposed an algorithm (for convenience, call it Algo-
rithm YW) to route an arbitrary permutation in a baseline (or reverse baseline) network
with node-disjoint paths in four passes.

Algorithm YW uses Algorithm 1 to decompose a given permutation P into two semi-
permutations L and R. Recall that Algorithm 1 has to construct a bipartite graph explic-
itly. Also, to use the intermediate destinations of a Benes network, Algorithm YW has to
run Algorithm 1 to decompose each of L and R into two semi-permutations, say, LL, LR,
RL, and RR. Then, Algorithm YW has to run Algorithm 1 to further decompose each
of LL, LR, RL, and RR into two semi-permutations, say, LLL, LLR, LRL, LRR, RLL,
RLR, RRL, and RRR. The same process repeats until each semi-permutation contains
only one input-output pair.

The purpose of this section is to improve Algorithin YW. To achieve this purpose,
Algorithm 2 is used instead of Algorithm 1j also, the intermediate destinations of a dilated
Benes network are used instead of thé intermediate destinations of a Benes network. See
the following for details.

We first use Algorithm 2 to decompose a given permutation P into two semi-permutations
L and R; then, route L in a baseline network with node-disjoint paths in two passes, and
route R in a baseline network with node-disjoint paths in two passes. In the following, we
only present an algorithm to route an arbitrary semi-permutation P in a baseline network
with node-disjoint paths in two passes. Obviously, setting P = L and P = R will route

an arbitrary permutation in a baseline network with node-disjoint paths in four passes.

. . ) ap aip Gz --- ag_l
Suppose the semi-permutation is P = by by by - b%—l . Note that we

have assumed that the links connecting inputs and switches of stage 0 are regarded as
output links of switches of stage (—1). Therefore, an input-output path from input

a; to output b;, 0 < i < % — 1, in a dilated Benes network can be represented as
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Lz’,o - Lz’,l - Lz’,2 — e = Li,2n—3 - Li,2n—2> where Li,O = Gy, Li,2n—2 = b;, and Li,ka

1 < k < 2n — 3, is the output link of switches of stage k — 1 followed by the path. Our

algorithm is based on the observation that Lg,, Li,, ..., L Ny, are the intermediate

destinations of a dilated Benes network for P and can be obtained by Algorithm 3. Let
Qo ay az -+ QN_4 Lo,n Ll,n L2,n Lﬂ_l,n

P = ( Lom Lin Loy - La ) and 772=< bo by by - 52%_1 :

S —1n

The following lemma was proven in [27].

Lemma 6. [27] The set of all semi-permutations realized by a baseline network with node-
disjoint paths in one pass is exactly the set of all semi-permutations realized by a reverse

baseline network with node-disjoint paths in one pass.
We now prove a lemma.

Lemma 7. Both P, and Py can be gealized by. a. baseline (or reverse baseline) network
with node-disjoint paths in one pass. Moreover, Touting.bits for P; and Ps are the n-bit

binary representations of Loy, L1y, %, L%_Ln and by, by, . . ., b%_l, respectively.

Proof. Since a dilated Benes network is CF-rearrangeable, P can be realized in it with
node-disjoint paths in one pass. Consider P;. The first n stages of a dilated Benes
network form a baseline network. Thus P; can be realized by a baseline network with
node-disjoint paths in one pass. By Lemma 6, P; can also be realized by a reverse baseline
network with node-disjoint paths in one pass. Now consider P,. Since the last n stages
of a dilated Benes network form a reverse baseline network, P, can be realized in the last
n — 2 stages (i.e., stages 2, 3, ..., n — 1) of a reverse baseline network with node-disjoint
paths in one pass. Thus if we can prove that, in a reverse baseline network, input L, ,,,
0<:1< % — 1, can get to output link L, ,, of stage 1, then P, can be realized by a reverse

baseline network with node-disjoint paths in one pass. For input L, ,, choose its routing

bit at stage 0 to be 0 if V;J is even and 1 if LLQ”J is odd; choose its routing bit at

stage 1 to be 0 if L;,, is even and 1 if L, ,, is odd. It is not difficult to see that the above
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choices of routing bits ensure input L;, to get to output link L;, of stage 1. Therefore,
Py can be realized by a reverse baseline network with node-disjoint paths in one pass.
By Lemma 6, P, can also be realized by a baseline network with node-disjoint paths in
one pass. Since a baseline (or reverse baseline) network follows destination tag routing,
routing bits for P; and P, are the n-bit binary representations of Lg,, L1y, ..., L N oin
and by, by, ..., b%_l, respectively. [

The following is our algorithm for routing an arbitrary semi-permutation P in an

N x N baseline (or reverse baseline) network with node-disjoint paths in two passes.

Algorithm 4 ROUTING A SEMI-PERMUTATION IN A BASELINE OR REVERSE

BASELINE NETWORK
Require: An arbitrary semi-permutation P and the characteristic strings OSy, 1 < k <

2n — 4, of a (2n — 2)-stage dilated Benes network.

Ensure: Routing bits rory ...r,—1 and r7{r} .. .77 _;, each represented as an (£)-bit array
such that r¢(j), 0 < k <mn and 0 <y < % —1represents the routing bit of input j*
at stage k for the first pass, and #,(7), Ostk& nand 0 < j < % — 1, represents the
routing bit of input j* at stage % for thesecond:pass, where j* = 27 if input 25 is in
P and j* =25 4+ 1 if input 2j +1 is'in P.

1: use P to derive the optical wirdows.OWy and OWs,,_3 for a (2n — 2)-stage dilated
Benes network and use Algorithm 3 torfind"AR-bits rory ... 7r,_3;
forijto%—ldo

let 4,_1Yn_2 - - - Yo be the n-bit binary representation of the destination of input j*;
Tn—2(J) < Yn-1;

Tn—l(j)  Yn—2;

fori=0ton—1do

/

75(J) — Yn—1-3;
end for
end for

In this algorithm, rory---7,_; are the routing bits for the first pass (i.e., for Py),

/
n—1

and ryry-- -7, _, are the routing bits for the second pass (i.e., for Py). This algorithm
uses the characteristic strings OSg, 1 < k < 2n — 4, of a (2n — 2)-stage dilated Benes
network to find rory---7r,—3. It sets r,_s and r,_; to the leftmost two bits of the n-
bit binary representation of the destination and sets r(,r},...,r,_; to the n-bit binary
representation of the destination. Note that OSk, 1 < k < 2n — 4, of a (2n — 2)-stage

dilated Benes network can be obtained before this algorithm runs; see (1). Thus we
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assume 0S5y, 1 < k < 2n — 4, are inputs, too.

We now give an example for Algorithm 4. Let P = ( 103 121 g g S ﬁ 153 175 )

be the given semi-permutation. Then Algorithm 4 obtains the following routing bits.

COoORHOO S
RFRROOOO %L
—O—OO R~ O
RO OO ok

RFOoORORORO3
COoORHEFRROOS
OO
RFRROOOO

Do notice that the routing bits obtained by Algorithm 4 works for both a baseline and
a reverse baseline network. Routing paths in a baseline network are shown in Figure 7;

those in a reverse baseline network are shown in Figure 8. It is not difficult to see that

0 2 5 7 8 11 13 15 3 10 4 12 6 15 1 9
P1:<310412615 1 9)aﬂd7’2:<13 112091457>~

stage 0 stage 1 stage 2 stage 3 stage 0 stage 1 stage 2 stage 3
[ — f— .- 1

Figure 7: (a) Routing paths in the first pass. (b) Routing paths in the second pass.
We now analyze Algorithm 4.

Theorem 8. Algorithm 4 takes O(N log, N) time and it can realize any semi-permutation

with node-disjoint paths in a baseline (or reverse baseline) network in two passes.

Proof. It is not difficult to see that Algorithm 4 takes O(N log, N) time. By Lem-

mas 7, it suffices to prove that: (i) rory---r,_1 are the m-bit binary representations
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Figure 8: (a) Routing paths in the first pass. (b) Routing paths in the second pass.

of Loy, Lig,-- -, Ly_y,, and (ii) ryry---rl,_, are the n-bit binary representations of
by, b, ..., b%_l. Statement (ii) follows from lines 3, 6, 7, 8 of Algorithm 4. Since
Loy, Lip, .-, L%_l’n are the intermediate destinations of an (n — 2)-stage dilated Benes
network for P, if we set rory - - - r,,_i to-the first s routing bits of the 2n — 2 routing bits
obtained by Algorithm 3, then we have (i) Bylines 1, 3; 4, 5 of Algorithm 4, rory -+ - 7,1

are set accordingly. Thus we have (i). ]

6 Concluding remarks

This thesis considers the crosstalk-free rearrangeability of combined optical MINs. In
8], Das formulated an elegant sufficient condition for the rearrangeability of a combined
(2n — 1)-stage electronic MIN and presented an O(N log, N)-time permutation routing
algorithm for MINs that satisfy the sufficient condition. In this thesis, we have formulated
a sufficient condition for the crosstalk-free rearrangeability of a combined (2n — 2)-stage
optical MIN and a sufficient condition for the crosstalk-free rearrangeability of a combined
(2n — 1)-stage optical MIN. We have proposed an O(N log, N)-time semi-permutation
routing algorithm for optical MINs that satisfy the sufficient condition, and improved the

decomposition algorithm in [28] and the permutation routing algorithm in [27].
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