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在 Baseline 網路和 Omega 網路中設定排列的連線 
 
 

研究生：陳子鴻 指導老師：陳秋媛 教授 

 

國 立 交 通 大 學 

應 用 數 學 系 
 

摘  要 

在一個多級式連接網路中設定排列的連線，是平行和交換式計算系統中的一個重要

運算。令 N 為給定的多級式連接網路的輸入及輸出端的個數。一個眾所皆知的結果

是：一個多級式連接網路不一定能實現所有 N!種可能的排列。如果一個排列能在一

個多級式連接網路中被實現，則我們稱這個排列在該多級式連接網路是可被允許

的。一些研究人員在多級式連接網路中增加額外的硬體，以實現所有 N!種可能的排

列（見文獻 8）；另一些研究人員則考慮增加額外的步驟來實現所有 N!種可能的排列

（見文獻 16, 17）。本篇論文的目的有二，第一個目的是：提出一個演算法來判斷一

個排列在 Baseline 網路中是否是可被允許的、以及提出一個演算法來判斷一個排列

在 Omega 網路中是否是可被允許的；第二個目的是：將文獻 17 中的演算法實作成

電腦程式。 

關鍵詞：多級式連接網路，設定連線，排列，半排列，Baseline 網路，Omega 網路。 
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Abstract

Routing permutations in a multistage interconnection network (MIN) is an important

operation in parallel and distributed computing systems. Let N denote the number of

inputs and outputs of a given MIN. It is well-known that an MIN may not be able to

realize all the N ! possible permutations. A permutation is admissible in an MIN if it can

be realized in that MIN. Some researchers considered adding extra hardware so that the

resultant MIN can realize all the N ! possible permutations; see [8]. Other researchers

considered using extra passes to realize all the N ! possible permutations; see [16, 17].

The purpose of this thesis is twofold: we propose an algorithm to determine whether a

permutation is admissible in the Baseline network and an algorithm to determine whether

a permutation is admissible in the Omega network; we also implement the algorithm in

[17] into a computer program.

Keywords: Multistage interconnection network; Routing; Permutation; Semi-

permutation; Baseline network; Omega network.
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1 Introduction

Given N processors P0, P1, · · · , PN−1, an N × N multistage interconnection network (MIN)

can be used for communication among these processors as shown in Figure 1, where N × N

means N inputs and N outputs. Figure 2 shows examples of MINs. A column in an MIN is

called a stage and the nodes in an MIN are called switching elements (or switches or crossbars)

and are denoted as 0, 1, . . . , N
2
− 1 and N

2
− 1. Throughout this thesis, N denotes the number

of processors in a given MIN,

n = log2 N,

an MIN means an N ×N MIN, and each switching element of an MIN is assumed to be of size

2× 2. It is well known that a 2× 2 switching element has only two possible states: straight or

cross, as shown in Figure 3.

N x N

MIN

P0

P1

PN-1

I0

I1

IN-1

O0

O1

ON-1

… …

…

Figure 1: Communications among processors using an MIN.

A permutation in an MIN is one-to-one mapping between the inputs and outputs. Permu-

tation routing is a frequently used communication pattern in parallel and distributed systems.

It is well known that an MIN has N ! possible permutations; however, not all of the N ! per-

mutations are realizable. For example, the identity permutation is not realizable by the MIN

shown in Figure 2 (a). Permutations realizable by an MIN are called admissible permutations

of that MIN. How to realize all the N ! possible permutations in an MIN and how to determine

the admissibility of an arbitrary permutation in an MIN are the two problems discussed in
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Figure 2: (a) An 8 × 8 Baseline network. (b) An 8 × 8 Omega network.

sub port 0

sub port 1

straight

sub port 0

sub port 1

cross

Figure 3: The states of a 2 × 2 switching element.

this thesis.

An MIN enables processors to send their messages concurrently. However, routing must be

handled carefully so that there is no conflict when messages are sending concurrently. There

are two types of conflict-free routings in a MIN: one is routing with link-disjoint paths and

the other is routing with node-disjoint paths. The former is used in an electronic network and

the latter, an optical network. Routing with link-disjoint paths means that no two different

messages have their paths share the same link in the network, while routing with node-disjoint

paths means that no two different messages have their paths share the same switching element

in the network (this is to ensure that only one signal passes through a switching element at a

time and thus to avoid the crosstalk problem; see [18]).

We first briefly review the results of determining the admissibility of an arbitrary per-

mutation to an electronic MIN. In [11], Shen et al. proposed an O(N log N) algorithm to

determine the admissibility of an arbitrary permutation to the Omega network; their results

are applicable to Omega-equivalent networks (for example, the Baseline network).

We now briefly review the results of routing permutations in an electronic MIN. Many

researchers have studied this problem. Some of them considered adding extra hardware so

2



that the resultant MIN can realize all the N ! possible permutations; see [1, 4, 8, 9, 18]. Other

researchers considered using extra passes to realize all the N ! possible permutations; see

[5, 7, 9, 12, 13, 15, 16, 17]. For example, it has been proven that Benes network can realize all

the N ! possible permutations [1, 4]. A Benes network can be thought of the composition of the

Baseline network and the reverse Baseline network; in other words, it uses n− 1 extra stages.

In [5, 13], Huang et al. and Verma et al. studied a single stage shuffle-exchange network and

found that 2n − 1 passes are necessary and 3n− 4 passes are sufficient to realize an arbitrary

permutation. Recently, Cam [2] proved that a (2n − 1)-stage shuffle-exchange network can

realize all the N ! possible permutations; note that a (2n − 1)-stage shuffle-exchange network

can be thought of adding n − 1 extra stages to the Omega network.

We now focus on the results of routing permutations in an optical MIN. Some researchers

considered adding extra hardware so that the resultant optical MIN can realize all the N !

possible permutations; see [8, 9, 12]. Other researchers considered using extra passes to realize

all the N ! possible permutations; see [16, 17, 18]. In [8, 9, 12], Lea et al., Maier et al., and

Vaez et al. considered using k vertically stacked banyan type networks to realize all the

N ! possible permutations with node-disjoint paths. In [18], Yang and Wang proposed an

algorithm to decompose an arbitrary permutation into two semi-permutations (defined later);

they also proved any semi-permutation can be realized in a Benes network in a single pass

by using node-disjoint paths. In [16], Yang and Wang proposed a generic approach to realize

an arbitrary permutation in a class of unique-path, self-routable MIN (including the Baseline

network) with link-disjoint paths and node-disjoint paths; this generic approach is near optimal

for sufficiently long messages.

It should be noticed that although any semi-permutation can be realized in a Benes network

in a single pass by using node-disjoint paths, not any semi-permutation is realizable in a

Baseline network and this is the motivation of [17]. In [17], Yang and Wang used the idea

in [18] to prove that an arbitrary permutation can be realized in a Baseline network with

3



node-disjoint paths in four passes. In this thesis, we implement the algorithm in [17] into a

C++ computer program.

Note that in [11], Shen et al. proposed an algorithm to determine whether a permutation is

admissible to the Omega network. Although they claimed that their results are applicable to

Omega-equivalent networks (for example, the Baseline network), an admissible permutation

of the Omega network may not be an admissible permutation of the Baseline network. For

example, the identity permutation is admissible in the Omega network but it is not admissible

in the Baseline network. In this thesis we will propose an algorithm to determine whether

a permutation is admissible to the Baseline network. We will also propose an algorithm

to determine whether a permutation is admissible to the Omega network. Note that our

algorithms for the Baseline network and the Omega network are based on the same idea and

are different from that in [11].

This thesis is organized as follows. Section 2 gives some preliminaries. Sections 3 and

4 give algorithms to determine the admissibility of an arbitrary permutation in the Baseline

network and in the Omega network, respectively. Section 5 contains an implementation of the

algorithm in [17], which realizes an arbitrary permutation in the Baseline network by using

node-disjoint paths in four passes. Concluding remarks are given in the final section.

2 Preliminaries

An MIN is unique-path if there is a unique path between each source and each destination.

An MIN is self-routable if a routing in it only depends on the source and the destination. In

an MIN, a path from a source to a destination can be described by a sequence of labels that

label the successive links on this path. Such a sequence is called a control tag [10] or tag [3]

or path descriptor [6]. The control tag may be used as a header for routing a message: each

successive switching element uses the first element of the sequence to route the message, and

4



then discards it. More precisely, suppose the control tag is

T = tn−12
n−1 + tn−22

n−2 + · · · + t12
1 + t02

0.

Then digit tn−1−ℓ controls the switching element at stage ℓ in the path and if tn−1−ℓ = 0

(tn−1−ℓ = 1), a connection is made to sub port 0 (sub port 1) of the switching element. For

example, in Figure 4, input 0 can get to output 5 by using control tag 5 = (101)2, which means

that the routing via sub port 1 at stage 0, sub port 0 at stage 1, and sub port 1 at stage 2.

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

stage 0 stage 1 stage 2

Figure 4: Input 0 can get to output 5 by using control tag (101)2.

A permutation of an MIN is one-to-one mapping between the inputs and outputs. We will

use

P =

(

a0 a1 · · · aN−1

b0 b1 · · · bN−1

)

to denote the permutation that maps input a0 to output b0, input a1 to output b1, · · · , input

aN−1 to output bN−1. Moreover, let

ai = (ai,n−1 ai,n−2 · · · ai,0)2

denote the binary representation of ai; so

ai = ai,n−12
n−1 + ai,n−22

n−2 + · · ·+ ai,02
0.

Moreover, let

bi = (bi,n−1 bi,n−2 · · · bi,0)2

5



denote the binary representation of bi; so

bi = bi,n−12
n−1 + bi,n−22

n−2 + · · · + bi,02
0.

For convenience,

P =
(

b0 b1 · · · bN−1

)

is used to denote the permutation that maps input 0 to output b0, input 1 to output b1, · · · ,

input N − 1 to output bN−1.

A partial permutation is an one-to-one mapping between partial inputs and partial outputs.

Let




a0 a1 . . . aN
2
−1

b0 b1 . . . bN
2
−1





be a partial permutation with exactly N
2

input-output pairs; then this partial permutation is

called a semi-permutation if

{

⌊a0

2

⌋

,
⌊a1

2

⌋

, . . . ,

⌊aN
2
−1

2

⌋}

= {0, 1, . . . ,
N

2
− 1}

and
{

⌊

b0

2

⌋

,

⌊

b1

2

⌋

, . . . ,

⌊

bN
2
−1

2

⌋}

= {0, 1, . . . ,
N

2
− 1}.

Clearly, a semi-permutation has exactly N
2

input-output pairs. Thus a semi-permutation is

a special type of partial permutation and it has the maximum potential to be realized in an

optical network with node-disjoint paths.

Note that for the Baseline network and for the Omega network, there are N links between

two consecutive stages and the connections between two consecutive stages are fixed. In this

thesis, we will use the properties of the connections between two consecutive stages of the

Baseline network and the Omega network to determine whether a permutation is admissible.

In [18], Yang et al. proved that any permutation could be decomposed two semi-permutations

and they proposed an algorithm for decomposing an arbitrary permutation into two semi-

permutations; the following is their algorithm.

6



Let P =





a0 a1 . . . aN
2
−1

b0 b1 . . . bN
2
−1



 be the given permutation. Construct a bipartite graph

G = (V1, V2, E) for P as follows. Let

V1 = {A
[1]
0 , A

[1]
1 , A

[1]
2 , . . . , A

[1]
N
2
−1
}

and

V2 = {A
[2]
0 , A

[2]
1 , A

[2]
2 , . . . , A

[2]
N
2
−1
},

where A
[1]
j and A

[2]
j mean the 2-element set {a2j, a2j+1}, for 0 ≤ j < N

2
. There is an edge

between two vertices A
[1]
j1

and A
[2]
j2

if and only if there exist ai ∈ A
[1]
j1

and bi ∈ A
[2]
j2

such that
(

ai

bi

)

is a partial permutation of P .

It is not difficult to see that the graph G has following properties:

1. |V1| = |V2| = N
2

and |E| = N .

2. The degree of each vertex is 2.

DECOMPOSITION ALGORITHM [18]

Input : A permutation P =





a0 a1 . . . aN
2
−1

b0 b1 . . . bN
2
−1



.

Output: Two semi-permutations of P .

Step 1: Construct a bipartite graph G = (V1, V2, E) for P by the method described above.

Step 2: For each connected component of G, start from a vertex of this component in V1,

traverse through an unvisited edge to a neighbor vertex in V2, back and forth until

returning to the starting vertex. During the traversal, a visited edge is marked “forward”

if the traverse direction on this edge is from V1 to V2 and is marked “backward” if the

direction is from V2 to V1.

7



Step 3: Take all input-output pairs corresponding to the edges marked with “forward” to

form one semi-permutation and take the remaining input-output pairs corresponding to

the edges marked with “backward” to form the other semi-permutation.

End

Example 1. Let P =

(

0 1 2 3

2 0 1 3

)

. Then V1 = {A
[1]
0 , A

[1]
1 } , V2 = {A

[2]
0 , A

[2]
1 },

and E = {(A
[1]
0 , A

[2]
1 ), (A

[1]
0 , A

[2]
0 ), (A

[1]
1 , A

[2]
0 ), (A

[1]
1 , A

[2]
1 )}, where A

[1]
0 = A

[2]
0 = {0, 1} and

A
[1]
1 = A

[2]
1 = {2, 3}. After performing the decomposition algorithm, one semi-permutation is

(

0 2

2 1

)

and the other is

(

1 3

0 3

)

.

3 Determine the admissibility of permutations for

the Baseline network

The purpose of this section is to propose an algorithm to determine if a permutation is ad-

missible in the Baseline network. An N × N Baseline network can be viewed as adding a

stage (call it stage 0) to two N
2
× N

2
Baseline networks; see Figure 5 for an illustration. For

convenience, the upper N
2
× N

2
Baseline network is called the upper subnetwork and is denoted

by U and the lower N
2
× N

2
Baseline network is called the lower subnetwork and is denoted

L. Each switching element at stage 0 has a link to U and a link to L. More precisely, the

switching element i at stage 0 has a link to input i of U and a link to input i of L.

Let (i, j)-path denote a path from input i to output j. The idea of our algorithm for

determining if a permutation P is admissible in a Baseline network is as follows. Let P =

( b0 b1 · · · bN−1 ). Consider an arbitrary pair of inputs 2i and 2i+1, (i = 0, 1, . . . , N
2
−1).

Let

T = tn−12
n−1 + tn−22

n−2 + · · ·+ t12
1 + t02

0

be the control tags for 2i to get to b2i. Also, let

T ′ = t′n−12
n−1 + t′n−22

n−2 + · · ·+ t′12
1 + t′02

0

8



                  :

baseline network
2 2

U

N N

                  :

baseline network
2 2

L

N N

Figure 5: The structure of a Baseline network

be the control tags for 2i+1 to get to b2i+1. At stage 0, 2i and 2i+1 are connected to the same

switching element. Hence tn−1 and t′n−1 must be different; otherwise, the (2i, b2i)-path and

the (2i + 1, b2i+1)-path will go through the same sub port at stage 0 and therefore a conflict

will occur at stage 0. From the above discussion, a permutation P is admissible in a Baseline

network if

(i) for each pair of inputs 2i and 2i + 1, there is no conflict at stage 0, and

(ii) the two partial permutations PU and PL of P (defined later and PU is for U , PL is for L)

are admissible permutations of the N
2
× N

2
Baseline network.

The following is our algorithm. In this algorithm, j is used to denote the index of a bit in

a control tag and initially, j is n − 1.

Algorithm Baseline-Admissible

Input : A permutation P =
(

b0 b1 · · · bN−1

)

and an integer j.

Output: true if P is admissible and false if P is not admissible for an N×N Baseline network.

Step 1: if N = 2 then return true;

9



Step 2: for each i, 0 ≤ i ≤ N
2
− 1, do

if b2i,j = b2i+1,j then return false;

Step 3: set PU =
(

u0 u1 . . . uN
2
−1

)

and PL =
(

l0 l1 . . . lN
2
−1

)

, where

ui =

{

b2i if b2i,j = 0

b2i+1 if b2i+1,j = 0

li =

{

b2i if b2i,j = 1

b2i+1 if b2i+1,j = 1

Step 4: recursively call Algorithm Baseline-Admissible(N
2
, PU , j − 1);

if the result is false then P is not admissible and return false;

Step 5: recursively call Algorithm Baseline-Admissible(N
2
, PL, j − 1);

if the result is false then P is not admissible and return false;

else P is admissible and return true;

We now give two examples for the algorithm. In the first example. the given permutation

is not admissible; in the second example, the given permutation is admissible.

Example 2. P =
(

b0 b1 b2 b3 b4 b5 b6 b7

)

=
(

0 1 2 3 4 5 6 7
)

.

Initially, j = 2.

• In step 1, since N = 8 6= 2, step 2 will be performed.

• In step 2, since b0,2 = 0 = b1,2, this algorithm stops and returns false.

Hence our algorithms determines that P is not admissible in a Baseline network. In P , input

0 is mapped to output 0 and input 1 is mapped to output 1. In Figure 6, it can be seen that a

conflict occurs at a switching element at stage 0 and this conflict is caused by the (0,0)-path

and (1,1)-path of the permutation.

Example 3. P =
(

b0 b1 b2 b3 b4 b5 b6 b7

)

=
(

7 3 0 5 1 6 4 2
)

.

Initially, j = 2.

10
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Figure 6: An illustration of Example 2; a conflict occurs at stage 0.

• In step 1, since N = 8 6= 2, step 2 will be performed.

• In step 2, since b0,2 6= b1,2, b2,2 6= b3,2, b4,2 6= b5,2, and b6,2 6= b7,2, step 3 will be performed.

• In step 3, PU =
(

3 0 1 2
)

and PL =
(

7 5 6 4
)

.

• In step 4, recursively call Algorithm Baseline-Admissible(4, PU , 1), where

PU =
(

b0 b1 b2 b3

)

=
(

3 0 1 2
)

. Now, j = 1.

◦ In step 1, since N = 4 6= 2, step 2 will be performed.

◦ In step 2, since b0,1 6= b1,1 and b2,1 6= b3,1, step 3 will be performed.

◦ In step 3, PU =
(

0 1
)

and PL =
(

3 2
)

.

◦ In step 4, recursively call Algorithm Baseline-Admissible(2, PU , 0), where

PU =
(

b0 b1

)

=
(

0 1
)

. Now, j = 0.

• In step 1, since N = 2, return true.

◦ In step 5, recursively call Algorithm Baseline-Admissible(2, PL, 0), where

PL =
(

b0 b1

)

=
(

3 2
)

. Now, j = 0.

• In step 1, since N = 2, return true.

Hence return true.

11



• In step 5 recursively call Algorithm Baseline-Admissible(4, PL, 1), where

PL =
(

b0 b1 b2 b3

)

=
(

7 5 6 4
)

. Now, j = 1.

◦ In step 1, since N = 4 6= 2, step 2 will be performed.

◦ In step 2, since b0,1 6= b1,1 and b2,1 6= b3,1, step 3 will be performed.

◦ In step 3, PU =
(

5 4
)

and PL =
(

7 6
)

.

◦ In step 4, recursively call Algorithm Baseline-Admissible(2, PU , 0), where

PU =
(

b0 b1

)

=
(

5 4
)

. Now, j = 0.

• In step 1, since N = 2, return true.

◦ In step 5, recursively call Algorithm Baseline-Admissible(2, PL, 0), where

PL =
(

b0 b1

)

=
(

7 6
)

. Now, j = 0.

• In step 1, since N = 2, return true.

Hence return true.

Hence return true.

From the above, our algorithm determines that P =

(

0 1 2 3 4 5 6 7

7 3 0 5 1 6 4 2

)

is ad-

missible in a Baseline network. In Figure 7, we show the permutation routing of P .

Theorem 1 Algorithm Baseline-Admissible is correct and it takes O(N log2 N) time.

Proof. It is obvious that if N = 2, then the permutation is admissible and our algorithm

returns true and hence is correct. In the following, assume that N > 2. For each i, 0 ≤ i ≤

N
2
− 1, note that (2i, b2i)-path and (2i + 1, b2i+1)-path go through the same switching element

at stage 0. Thus there are two cases.

Case 1. b2i,n−1 = b2i+1,n−1 for some i such that 0 ≤ i ≤ N
2
− 1.

Then (2i, b2i)-path and (2i + 1, b2i+1)-path will go through the same sub port of the same

12



switching element at stage 0. Thus a conflict occurs and the permutation can not be admissible.

Since our algorithm returns false for this case, it is correct.

Case 2. b2i,n−1 6= b2i+1,n−1 for all i such that 0 ≤ i ≤ N
2
− 1.

A Baseline network is a unique-path network and the path between any input-output pair is

determined by the output. Thus for each input 2i, if b2i,n−1 = 0, then at stage 0, input 2i

links to the upper subnetwork U ; if b2i,n−1 = 1, then at stage 0, input 2i links to the lower

subnetwork L. Hence if b2i,n−1 = 0, then b2i should be in the partial permutation which goes

through the upper subnetwork U ; if b2i,n−1 = 1, then b2i should be in the partial permutation

PL which goes through the lower subnetwork L. The case for input 2i + 1 is similar. Hence P

is admissible if and only if both PU and PL are admissible. Since our algorithm returns true

only when both PU and PL are admissible, it is correct.

The correctness of Algorithm Baseline-Admissible follows from the above discussion. We

now analyze its time complexity T (N). It is obvious that T (N) satisfies

T (N) =

{

O(1) if N = 2

2T (N) + O(N) if N > 2

and the solution is O(N log2 N).

4 Determine the admissibility of permutations for

the Omega network

The purpose of this section is to propose an algorithm to determine if a permutation is admis-

sible in an Omega network. An N × N Omega network can also be viewed as adding a stage

(call it stage 0) to two N
2
× N

2
Omega networks; see Figure 8 for an illustration. Note that for

convenience, we will also call the two N
2
× N

2
Omega networks U (the upper subnetwork) and

L (the lower subnetwork). U and L are defined as follows.

(i) The upper N/4 switching elements of stage n − 1 (the last stage) belong to U and the

lower N/4 switching elements of stage n − 1 belong to L.
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Figure 7: The permutation routing of the P in Example 3. (a) The initial network. (b)

Routing the permutation to stage 0. (c) Routing the permutation to stage 1. (d) Routing the

permutation to stage 2.

(ii) For each switching element of stage ℓ (ℓ = n− 2, n− 3, . . . , 1), if this switching element is

adjacent to a switching element of stage ℓ + 1 which belongs to U (L), then it belongs

to U (L).

For example, in Figure 8 (a) and (b), the shaded switching elements belong to U , and and

the dotted switching elements belong to L.

Again, let (i, j)-path denote a path from input i to output j. The idea of our algorithm

for determining if a permutation P is admissible in an Omega network is as follows. Let P =

( b0 b1 · · · bN−1 ). Consider an arbitrary pair of inputs i and N
2

+ i, (i = 0, 1, . . . , N
2
− 1).

Let

T = tn−12
n−1 + tn−22

n−2 + · · ·+ t12
1 + t02

0
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Figure 8: (a) An 8 × 8 Omega network and its U and L. (b) A 16 × 16 Omega network and

its U and L.

be the control tags for i to get to bi. Also, let

T ′ = t′n−12
n−1 + t′n−22

n−2 + · · ·+ t′12
1 + t′02

0

be the control tags for N
2

+ i to get to bN
2

+i. At stage 0, i and N
2

+ i are connected to the

same switching element. Hence tn−1 and t′n−1 must be different; otherwise, the (i, bi)-path and

the (N
2

+ i, bN
2

+i)-path will go through the same sub port at stage 0 and therefore a conflict

will occur at stage 0. From the above discussion, a permutation P is admissible in an Omega

network if

(i) for each pair of inputs i and N
2

+ i, there is no conflict at stage 0, and

(ii) the two partial permutations PU and PL of P (defined later and PU is for U , PL is for L)

are admissible permutations of an N
2
× N

2
Omega network.

The following is our algorithm. In this algorithm, j is used to denote the index of a bit in

a control tag and initially, j is n − 1.
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Algorithm Omega-Admissible

Input : A permutation P =
(

b0 b1 · · · bN−1

)

and an integer j.

Output: true if P is admissible and false if P is not admissible for an N ×N Omega network.

Step 1: if N = 2 then return true;

Step 2: for each i, 0 ≤ i ≤ N
2
− 1, do

if bi,j = bi+ N
2

,j then return false;

Step 3: set PU =
(

u0 u1 . . . uN
2
−1

)

and PL =
(

l0 l1 . . . lN
2
−1

)

, where

ui =

{

bi if bi,j = 0

bi+ N
2

if bi+ N
2

,j = 0

li =

{

bi if bi,j = 1

bi+ N
2

if bi+ N
2

,j = 1

Step 4: recursively call Algorithm Omega-Admissible(N
2
, PU , j − 1);

if the result is false then P is not admissible and return false;

Step 5: recursively call Algorithm Omega-Admissible(N
2
, PL, j − 1);

if the result is false then P is not admissible and return false;

else P is admissible and return true;

We now give two examples for the algorithm. In the first example. the given permutation

is not admissible; in the second example, the given permutation is admissible.

Example 4. Let P =
(

b0 b1 b2 b3 b4 b5 b6 b7

)

=
(

7 3 0 5 1 6 4 2
)

.

Initially, j = 2.

• In step 1, since N = 8 6= 2, step 2 will be performed.

• In step 2, since b0,2 6= b4,2, b1,2 6= b5,2, b2,2 6= b6,2, and b3,2 6= b7,2, step 3 will be performed.
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• In step 3, PU =
(

1 3 0 2
)

and PL =
(

7 6 4 5
)

.

• In step 4, recursively call Algorithm Omega-Admissible(4, PU , 1), where

PU =
(

b0 b1 b2 b3

)

=
(

1 3 0 2
)

. Now, j = 1.

◦ In step 1, since N = 4 6= 2, step 2 will be performed.

◦ In step 2, since b0,1 = 0 = b2,1, this algorithm stops and returns false.

Hence our algorithms determines that P is not admissible in an Omega network. In P ,

input 2 is mapped to output 0 and input 4 is mapped to output 1. In Figure 9, it can be

seen that a conflict occurs at a switching element at stage 1 and this conflict is caused by the

(2,0)-path and (4,1)-path of the permutation. Note that in Example 3, we have shown that

P is admissible for a Baseline network.

0
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7
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1

2

3

4

5

6

7

stage 0 stage 1 stage 2

Figure 9: An illustration of Example 4; a conflict occurs at stage 1.

Example 5. Let P =
(

b0 b1 b2 b3 b4 b5 b6 b7

)

=
(

0 1 2 3 4 5 6 7
)

.

Initially, j = 2.

• In step 1, since N = 8 6= 2, step 2 will be performed.

• In step 2, since b0,2 6= b4,2, b1,2 6= b5,2, b2,2 6= b6,2, and b3,2 6= b7,2, step 3 will be performed.

• In step 3, PU =
(

0 1 2 3
)

and PL =
(

4 5 6 7
)

.
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• In step 4, recursively call Algorithm Omega-Admissible(4, PU , 1), where

PU =
(

b0 b1 b2 b3

)

=
(

0 1 2 3
)

. Now, j = 1.

◦ In step 1, since N = 4 6= 2, step 2 will be performed.

◦ In step 2, since b0,1 6= b2,1 and b1,1 6= b3,1, step 3 will be performed.

◦ In step 3, PU =
(

0 1
)

and PL =
(

2 3
)

.

◦ In step 4, recursively call Algorithm Omega-Admissible(2, PU , 0), where

PU =
(

b0 b1

)

=
(

0 1
)

. Now, j = 0.

• In step 1, since N = 2, return true.

◦ In step 5, recursively call Algorithm Omega-Admissible(2, PL, 0), where

PL =
(

b0 b1

)

=
(

2 3
)

. Now, j = 0.

• In step 1, since N = 2, return true.

Hence return true.

• In step 5, recursively call Algorithm Omega-Admissible(4, PL, 1), where

PL =
(

b0 b1 b2 b3

)

=
(

4 5 6 7
)

. Now, j = 1.

◦ In step 1, since N = 4 6= 2, step 2 will be performed.

◦ In step 2, since b0,1 6= b2,1 and b1,1 6= b3,1, step 3 will be performed.

◦ In step 3, PU =
(

4 5
)

and PL =
(

6 7
)

.

◦ In step 4, recursively call Algorithm Omega-Admissible(2, PU , 0), where

PU =
(

b0 b1

)

=
(

4 5
)

. Now, j = 0.

• In step 1, since N = 2, return true.

◦ In step 5, recursively call Algorithm Omega-Admissible(2, PL, 0), where

PL =
(

b0 b1

)

=
(

6 7
)

. Now, j = 0.
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• In step 1, since N = 2, return true.

Hence return true.

Hence return true.

From the above, our algorithm determines that P =

(

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

)

is ad-

missible. In Figure 10, we show the permutation routing of P . Note that in Example 2, we

have shown that P is not admissible for a Baseline network.

Theorem 2 Algorithm Omega-Admissible is correct and it takes O(N log2 N) time.

Proof. It is obvious that if N = 2, then the permutation is admissible and our algorithm

returns true and hence is correct. In the following, assume that N > 2. For each i, 0 ≤ i ≤

N
2
− 1, note that (i, bi)-path and (N

2
+ i, bN

2
+i)-path go through the same switching element at

stage 0. Thus there are two cases.

Case 1. bi,n−1 = bN
2

+i,n−1 for some i such that 0 ≤ i ≤ N
2
− 1.

Then (i, bi)-path and (N
2
+i, bN

2
+i)-path will go through the same sub port of the same switching

element at stage 0. Thus a conflict occurs and the permutation can not be admissible. Since

our algorithm returns false for this case, it is correct.

Case 2. bi,n−1 6= bN
2

+i,n−1 for all i such that 0 ≤ i ≤ N
2
− 1.

An Omega network is a unique-path network and the path between any input-output pair is

determined by the output. Thus for each input i, if bi,n−1 = 0, then at stage 0, input i links to

the upper subnetwork U ; if bi,n−1 = 1, then at stage 0, input i links to the lower subnetwork

L. Hence if bi,n−1 = 0, then bi should be in the partial permutation which goes through the

upper subnetwork U ; if bi,n−1 = 1, then bi should be in the partial permutation PL which goes

through the lower subnetwork L. The case for input N
2

+ i is similar. Hence P is admissible if

and only if both PU and PL are admissible. Since our algorithm returns true only when both

PU and PL are admissible, it is correct.

19



The correctness of Algorithm Omega-Admissible follows from the above discussion. We

now analyze its time complexity T (N). It is obvious that T (N) satisfies

T (N) =

{

O(1) if N = 2

2T (N) + O(N) if N > 2

and the solution is O(N log2 N).
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Figure 10: The permutation routing of the P in Example 5. (a) The initial network. (b)

Routing the permutation to stage 0. (c) Routing the permutation to stage 1. (d) Routing the

permutation to stage 2.

5 Realize any permutation in the Baseline network by

using node-disjoint paths

Recall that it has been proven that Benes network can realize all the N ! possible permutations

and a Benes network is the composition of the Baseline network and the reverse Baseline net-
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work. In [18], Yang and Wang proposed an algorithm to decompose an arbitrary permutation

into two semi-permutations and they also proved any semi-permutation can be realized in a

Benes network in a single pass by using node-disjoint paths. In [17], Yang and Wang pro-

posed an algorithm to realize any permutation in the Baseline network by using node-disjoint

paths in four passes. In this thesis, we implement the decomposition algorithm in [18] and the

algorithm in [17] into a C++ computer program.

We have listed the decomposition algorithm in [18] in Section 2. The following is the

algorithm in [17], which is a two-pass node-disjoint self-routing algorithm for routing a semi-

permutation in a Baseline Network. A function FindBenesMiddleDestination is used to find

out the intermediate destinations in the middle stage of the Benes network.

Algorithm BaselineNodeDisjointSemiPermutation(SemiPermutation semi-perm)

{

Let the semi-perm be

(

a0 a1 . . . aN/2−1

b0 b1 . . . bN/2−1

)

;

ret-semi-perm = FindBenesMiddleDestination(N , N , semi-perm);

Let the ret-semi-perm be





a0 a1 . . . aN
2
−1

c0 c1 . . . cN
2
−1



;

In the first pass, each source ai self-routes its message to the destination ci;

In the second pass, each ci self-routes its carried message to the destination bi;

}

Function FindBenesMiddleDestination(int N , int k, SemiPermutation semi-perm)

//The function returns a semi-permutation called ret-semi-perm.

{

Let the semi-perm in the k × k Benes subnetwork be





a0 a1 . . . ak
2
−1

b0 b1 . . . bk
2
−1



;

if (k equals to 2)

{

The semi-perm is

(

a0

b0

)

;
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set c0 = b0 and return

(

a0

c0

)

;

}

Decompose the semi-perm to two semi-permutations for the upper and the lower

k
2
× k

2
Benes subnetworks by using the algorithm in [18]; Let them be

up-semi-perm =







ai
′

0

ai
′

1

. . . ai
′

k
4
−1

bi
′

0

bi
′

1

. . . bi
′

k
4
−1






, low-semi-perm =







ai”
0

ai”
1

. . . ai”
k
4
−1

bi”
0

bi”
1

. . . bi”
k
4
−1






;

call FindBenesMiddleDestination(N , k
2
, up-semi-perm);

call FindBenesMiddleDestination(N , k
2
, low-semi-perm);

Suppose the returned values are






ai
′

0

ai
′

1

. . . ai
′

k
4
−1

ci
′

0

ci
′

1

. . . ci
′

k
4
−1






and







ai”
0

ai”
1

. . . ai”
k
4
−1

ci”
0

ci”
1

. . . ci”
k
4
−1






, respectively;

for (j = 0; j < k
2
; j + +)

if aj links to ai
′

j
′

then set cj = ci
′

j
′

;

else if aj links to ai”
j”

then set cj = ci”
j”

;

return





a0 a1 . . . aN
2
−1

c0 c1 . . . cN
2
−1



;

}

We have implemented Yang and Wang’s algorithm in C++ programming language; see

the appendix. The following are our computer outputs.

6 Concluding remarks

It is known that an MIN may not be able to realize all the N ! possible permutations. In [11],

Shen et al. proposed an O(N log N) algorithm to determine whether a permutation is admis-

sible in the Omega network. Although they claimed that their results are applicable to the

Baseline network, an admissible permutation of the Omega network may not be an admissible

permutation of the Baseline network. Therefore, in this thesis, we propose an algorithm to

determine whether a permutation is admissible to the Baseline network. We have also pro-
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posed an algorithm to determine whether a permutation is admissible to the Omega network.

Note that our algorithm for the Omega network is different from that in [11]. In this thesis,

we have also implemented the decomposition algorithm in [18] and the algorithm in [17] into

a C++ computer program.
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