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Routing Permutations in the Baseline Network and

in the Omega Network

Student: Tzu-Hung Chen Advisor: Chiuyuan Chen

Department of Applied Mathematics
National Chiao Tung University

Hsinchu, Taiwan 30050

Abstract

Routing permutations in a multistage iaterconnection network (MIN) is an important
operation in parallel and distributed computing systems. Let N denote the number of
inputs and outputs of a given MIN. It“is-well=known; that an MIN may not be able to
realize all the N! possible permutations. A permutation is admissible in an MIN if it can
be realized in that MIN. Some researchérs considered adding extra hardware so that the
resultant MIN can realize all the N! possible permutations; see [8]. Other researchers
considered using extra passes to realize all the N! possible permutations; see [16, 17].
The purpose of this thesis is twofold: we propose an algorithm to determine whether a
permutation is admissible in the Baseline network and an algorithm to determine whether
a permutation is admissible in the Omega network; we also implement the algorithm in

[17] into a computer program.

Keywords: Multistage interconnection network; Routing; Permutation; Semi-

permutation; Baseline network; Omega network.
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1 Introduction

Given N processors Py, Py, -+, Py_1, an N x N multistage interconnection network (MIN)
can be used for communication among these processors as shown in Figure 1, where N x N
means N inputs and N outputs. Figure 2 shows examples of MINs. A column in an MIN is
called a stage and the nodes in an MIN are called switching elements (or switches or crossbars)
and are denoted as 0,1,..., % —1and % — 1. Throughout this thesis, N denotes the number
of processors in a given MIN,

n = log, N,

an MIN means an N x N MIN, and each switching element of an MIN is assumed to be of size
2 x 2. It is well known that a 2 x 2 switching element has only two possible states: straight or

cross, as shown in Figure 3.

. 1 (o}

Nx N
MIN

. Ina Ot

Figure 1: Communications among processors using an MIN.

A permutation in an MIN is one-to-one mapping between the inputs and outputs. Permu-
tation routing is a frequently used communication pattern in parallel and distributed systems.
It is well known that an MIN has NN! possible permutations; however, not all of the N! per-
mutations are realizable. For example, the identity permutation is not realizable by the MIN
shown in Figure 2 (a). Permutations realizable by an MIN are called admissible permutations
of that MIN. How to realize all the N! possible permutations in an MIN and how to determine

the admissibility of an arbitrary permutation in an MIN are the two problems discussed in



04 Lo 0 L0
1 >< -1 -1
2 L2 2 L2
3- -3 3 -3
4 L4 4 L4
5- >< -5 5 -5
6 - L6 6 L6
7 -7 7 -7
() (b)

Figure 2: (a) An 8 x 8 Baseline network. (b) An 8 x 8 Omega network.

sub port 0 *><* sub port 0

sub port 1 -1 — sub port 1

straight cross
Figure 3: The states of a 2 x 2 switching element.

this thesis.

An MIN enables processors to send their messagesrconcurrently. However, routing must be
handled carefully so that there is no conflict when messages are sending concurrently. There
are two types of conflict-free routings in'a MIN sone is routing with link-disjoint paths and
the other is routing with node-disjoint paths. The former is used in an electronic network and
the latter, an optical network. Routing with link-disjoint paths means that no two different
messages have their paths share the same link in the network, while routing with node-disjoint
paths means that no two different messages have their paths share the same switching element
in the network (this is to ensure that only one signal passes through a switching element at a
time and thus to avoid the crosstalk problem; see [18]).

We first briefly review the results of determining the admissibility of an arbitrary per-
mutation to an electronic MIN. In [11], Shen et al. proposed an O(Nlog N) algorithm to
determine the admissibility of an arbitrary permutation to the Omega network; their results
are applicable to Omega-equivalent networks (for example, the Baseline network).

We now briefly review the results of routing permutations in an electronic MIN. Many

researchers have studied this problem. Some of them considered adding extra hardware so



that the resultant MIN can realize all the N! possible permutations; see [1, 4, 8, 9, 18]. Other
researchers considered using extra passes to realize all the N! possible permutations; see
[5, 7,9, 12, 13, 15, 16, 17]. For example, it has been proven that Benes network can realize all
the N! possible permutations [1, 4]. A Benes network can be thought of the composition of the
Baseline network and the reverse Baseline network; in other words, it uses n — 1 extra stages.
In [5, 13], Huang et al. and Verma et al. studied a single stage shuffle-exchange network and
found that 2n — 1 passes are necessary and 3n — 4 passes are sufficient to realize an arbitrary
permutation. Recently, Cam [2] proved that a (2n — 1)-stage shuffle-exchange network can
realize all the N! possible permutations; note that a (2n — 1)-stage shuffle-exchange network
can be thought of adding n — 1 extra stages to the Omega network.

We now focus on the results of routing permutations in an optical MIN. Some researchers
considered adding extra hardware so that the resultant optical MIN can realize all the N!
possible permutations; see [8, 9, 12].2Other reésearchers considered using extra passes to realize
all the N! possible permutations; see [16, L7;18]. In [8; 9, 12], Lea et al., Maier et al., and
Vaez et al. considered using k vertically stacked banyan type networks to realize all the
N! possible permutations with node-disjoint paths. In [18], Yang and Wang proposed an
algorithm to decompose an arbitrary permutation into two semi-permutations (defined later);
they also proved any semi-permutation can be realized in a Benes network in a single pass
by using node-disjoint paths. In [16], Yang and Wang proposed a generic approach to realize
an arbitrary permutation in a class of unique-path, self-routable MIN (including the Baseline
network) with link-disjoint paths and node-disjoint paths; this generic approach is near optimal
for sufficiently long messages.

It should be noticed that although any semi-permutation can be realized in a Benes network
in a single pass by using node-disjoint paths, not any semi-permutation is realizable in a
Baseline network and this is the motivation of [17]. In [17], Yang and Wang used the idea

in [18] to prove that an arbitrary permutation can be realized in a Baseline network with



node-disjoint paths in four passes. In this thesis, we implement the algorithm in [17] into a
C++ computer program.

Note that in [11], Shen et al. proposed an algorithm to determine whether a permutation is
admissible to the Omega network. Although they claimed that their results are applicable to
Omega-equivalent networks (for example, the Baseline network), an admissible permutation
of the Omega network may not be an admissible permutation of the Baseline network. For
example, the identity permutation is admissible in the Omega network but it is not admissible
in the Baseline network. In this thesis we will propose an algorithm to determine whether
a permutation is admissible to the Baseline network. We will also propose an algorithm
to determine whether a permutation is admissible to the Omega network. Note that our
algorithms for the Baseline network and the Omega network are based on the same idea and
are different from that in [11].

This thesis is organized as follows. Section 2 gives some preliminaries. Sections 3 and
4 give algorithms to determine theadmissibility of an arbitrary permutation in the Baseline
network and in the Omega network, respectively. Seetion 5 contains an implementation of the
algorithm in [17], which realizes an arbitrary permutation in the Baseline network by using

node-disjoint paths in four passes. Concluding remarks are given in the final section.

2 Preliminaries

An MIN is wunique-path if there is a unique path between each source and each destination.
An MIN is self-routable if a routing in it only depends on the source and the destination. In
an MIN, a path from a source to a destination can be described by a sequence of labels that
label the successive links on this path. Such a sequence is called a control tag [10] or tag [3]
or path descriptor [6]. The control tag may be used as a header for routing a message: each

successive switching element uses the first element of the sequence to route the message, and



then discards it. More precisely, suppose the control tag is

T =t, 12" 41, 02" 2 4 1128 + 520,

Then digit ¢,_1_, controls the switching element at stage ¢ in the path and if ¢,_;_, = 0
(tn—1-¢ = 1), a connection is made to sub port 0 (sub port 1) of the switching element. For
example, in Figure 4, input 0 can get to output 5 by using control tag 5 = (101),, which means

that the routing via sub port 1 at stage 0, sub port 0 at stage 1, and sub port 1 at stage 2.

stage 0 stage 1 stage 2
0-\ -0
17 >< 1
2 -2
37 3
47 4
57 >< "5
6 6
7 7

Figure 4: Input 0 can-get to output 5 by using control tag (101),.

A permutation of an MIN is one-to-one‘mapping between the inputs and outputs. We will

use
p— apy ap -+ AaN-1
bo b1 - by

to denote the permutation that maps input a¢ to output by, input a; to output by, - - -, input

an_1 to output by_;. Moreover, let
a; = (ai,n—l Qjp—2 * " ai,0)2
denote the binary representation of a;; so
a; = am_12"_1 + CLim_22n_2 +---F CL@QQO.

Moreover, let

b; = (bi,n—1 bin—a - bi,0)2



denote the binary representation of b;; so
bi = bi7n_12n_1 + bi7n_22n_2 + -+ bi,020.

For convenience,
P:<b0 by - bN—1>

is used to denote the permutation that maps input 0 to output by, input 1 to output by, - - -,
input N — 1 to output by_;.
A partial permutation is an one-to-one mapping between partial inputs and partial outputs.

Let

apg ap ... a%_l

bp b1 ... bg—1
be a partial permutation with exactly % input-eutput pairs; then this partial permutation is

called a semi-permutation if

{EINETE N - (<) SRS
() 2] 22} - 00 o

Clearly, a semi-permutation has exactly % input-output pairs. Thus a semi-permutation is

and

a special type of partial permutation and it has the maximum potential to be realized in an
optical network with node-disjoint paths.

Note that for the Baseline network and for the Omega network, there are N links between
two consecutive stages and the connections between two consecutive stages are fixed. In this
thesis, we will use the properties of the connections between two consecutive stages of the
Baseline network and the Omega network to determine whether a permutation is admissible.

In [18], Yang et al. proved that any permutation could be decomposed two semi-permutations
and they proposed an algorithm for decomposing an arbitrary permutation into two semi-

permutations; the following is their algorithm.



Gy ar ... AaN_q

Let P = 2 be the given permutation. Construct a bipartite graph
bp b ... b% .

G = (V1, Vs, E) for P as follows. Let

Vi= (A alA Al

and
Vo= {AP, AP AP Ag_l},

where Agﬂ and Agz} mean the 2-element set {as;, agjt1}, for 0 < j < & There is an edge

between two vertices Ag»ll} and Aﬁ] if and only if there exist a; € Ag»ll} and b; € AE] such that
Q; . . .
( ) is a partial permutation of P.

bi
It is not difficult to see that the graph G has following properties:

1 |Vi| = [Va| = & and |E| = N.

2. The degree of each vertex is 2.

DECOMPOSITION ALGORITHM [18]

apg ap ... a%_l

Input : A permutation P =
bp by ... b%_l

Output: Two semi-permutations of P.
Step 1: Construct a bipartite graph G = (V1, V5, E') for P by the method described above.

Step 2: For each connected component of GG, start from a vertex of this component in V;,
traverse through an unvisited edge to a neighbor vertex in V5, back and forth until
returning to the starting vertex. During the traversal, a visited edge is marked “forward”
if the traverse direction on this edge is from V; to V5 and is marked “backward” if the

direction is from V5 to V;.



Step 3: Take all input-output pairs corresponding to the edges marked with “forward” to
form one semi-permutation and take the remaining input-output pairs corresponding to

the edges marked with “backward” to form the other semi-permutation.

End

01 2 3
2 01 3
and B = {(A!, AD), (A7, AP, (Al Af)), (A, APY}, where Af! = AFY = {0,1} and

Example 1. Let P = ( ) Then Vi = {4y, A/}, Vo = {47, AP},

A[ll] = A[f} = {2,3}. After performing the decomposition algorithm, one semi-permutation is
0 2 . 1 3
and the other is .
2 1 0 3

3 Determine the admissibility of permutations for

the Baseline network

The purpose of this section is to ptopoese an algorithm-to determine if a permutation is ad-
missible in the Baseline network. An N xw/V-Baseline network can be viewed as adding a
stage (call it stage 0) to two % X % Baseline networks; see Figure 5 for an illustration. For
convenience, the upper % X % Baseline network is called the upper subnetwork and is denoted
by U and the lower % X % Baseline network is called the lower subnetwork and is denoted
L. FEach switching element at stage 0 has a link to U and a link to L. More precisely, the
switching element ¢ at stage 0 has a link to input ¢ of U and a link to input ¢ of L.

Let (i,j)-path denote a path from input ¢ to output j. The idea of our algorithm for
determining if a permutation P is admissible in a Baseline network is as follows. Let P =
(by by --- by_y ). Consider an arbitrary pair of inputs 2i and 2i+1, (: =0,1,...,5 —1).
Let

T =t 12" 1, 02" %+ 1520 +452°
be the control tags for 2¢ to get to by;. Also, let
T =t 2"t 2m 2 2 20

8



U:

E X E baseline network
2 2

b L:

E X E baseline network
2 2

Figure 5: The structure of a Baseline network

be the control tags for 2i41 to get to by;11. At stage 0, 2¢ and 2¢+1 are connected to the same
switching element. Hence t, 1 and ¢/, , maust:be,different; otherwise, the (2i, by;)-path and
the (2i + 1, bg;41)-path will go through thesame sub port at stage 0 and therefore a conflict
will occur at stage 0. From the above discussion; a permutation P is admissible in a Baseline

network if
(i) for each pair of inputs 2i and 2i + 1, there is no conflict at stage 0, and

(ii) the two partial permutations Py and Pp, of P (defined later and Py is for U, Py, is for L)

are admissible permutations of the % X % Baseline network.

The following is our algorithm. In this algorithm, j is used to denote the index of a bit in

a control tag and initially, 7 is n — 1.

Algorithm Baseline-Admissible
Input : A permutation P = ( bp by -+ by_1 ) and an integer j.
Output: trueif P is admissible and false if P is not admissible for an N x N Baseline network.

Step 1: if N = 2 then return true;



Step 2: for each i, 0 < < g—l, do

if by; j = boi11,; then return false;

Step 3: setPU:<u0 uy ... ug_l)andPL:<l0 ... lg_1>,where
2 2

{ bg,’ lf b2i,j == 0
U; =

baiv1 if byjp1 ;=0

l o bgi lf bg@j = 1
Z b2i+1 1f b2i+1,j =1

Step 4: recursively call Algorithm Baseline—Admissible(%, Py,j—1);

if the result is false then P is not admissible and return false;

Step 5: recursively call Algorithm Baseline—Admissible(%, Pr,j—1);
if the result is false then P is not,admissible and return false;

else P is admissible and return true;

We now give two examples for the algorthm. In thefirst example. the given permutation

is not admissible; in the second examples.the given-permutation is admissible.
Examplez.P:<b0 by by bs by by b b7):<0 123456 7>.
Initially, 7 = 2.

e In step 1, since N = 8 # 2, step 2 will be performed.

e In step 2, since by = 0 = by 2, this algorithm stops and returns false.

Hence our algorithms determines that P is not admissible in a Baseline network. In P, input
0 is mapped to output 0 and input 1 is mapped to output 1. In Figure 6, it can be seen that a
conflict occurs at a switching element at stage 0 and this conflict is caused by the (0,0)-path

and (1,1)-path of the permutation.
Example?)-P:(bo by by b3 by bs bg 67):(7 305 16 4 2)
Initially, 7 = 2.

10



stage 0 stage 1 stage 2

B > -
2 -2

3- -3
4] L4
5- -5
6 - >< L6
7 -7

Figure 6: An illustration of Example 2; a conflict occurs at stage 0.

In step 1, since N = 8 # 2, step 2 will be performed.
In step 2, since byo # b1, bao 7 b3 2, byo # bs2, and b2 # b7 o, step 3 will be performed.
Instep3,PU:<3 0 1 2>andPL:<7 5 6 4).
In step 4, recursively call Algorithm Baseline-Admissible(4, Py, 1), where
Pu={t b b b )=(8 000 2 Nowi=1
o In step 1, since N =4 #£ 2, step 2 will be performed.
o In step 2, since by 1 # by and by # b3, step 3 will be performed.
oInstepS,PU:<O 1)andPL:<3 2).
o In step 4, recursively call Algorithm Baseline-Admissible(2, Py, 0), where
PU:<b0 bl)=<0 1).Now,j:0.
e In step 1, since N = 2, return true.
o In step 5, recursively call Algorithm Baseline-Admissible(2, Py, 0), where
PL:<b0 b1>=<3 2>.Now,j:O.

e In step 1, since N = 2, return true.

Hence return true.

11



e In step 5 recursively call Algorithm Baseline-Admissible(4, Pp, 1), where
Pr={1b b by by )=(756 4) Now, j=1

o In step 1, since N =4 # 2, step 2 will be performed.

o In step 2, since by 1 # by and by # b3, step 3 will be performed.

oInstep3,PU:<5 4)andPL:(7 6).

o In step 4, recursively call Algorithm Baseline-Admissible(2, Py, 0), where
PU:<b0 b1)=(5 4). Now, j = 0.
e In step 1, since N = 2, return true.

o In step 5, recursively call Algorithm Baseline-Admissible(2, Py, 0), where
Pr={bo b )= (7 6) Nowyi=0
e In step 1, since N = 2 returnytrue.

Hence return true.

Hence return true.

. , 0123456 7).
From the above, our algorithm determines that P = is ad-
730516 4 2

missible in a Baseline network. In Figure 7, we show the permutation routing of P.

Theorem 1 Algorithm Baseline-Admissible is correct and it takes O(N logy, N) time.

Proof. It is obvious that if N = 2, then the permutation is admissible and our algorithm
returns true and hence is correct. In the following, assume that N > 2. For each i, 0 < <
% — 1, note that (24, by;)-path and (2i + 1, bg;11)-path go through the same switching element
at stage 0. Thus there are two cases.

Case 1. by;,,—1 = bgit1,n—1 for some ¢ such that 0 <i < % — 1.

Then (21, by;)-path and (2i 4 1, by;11)-path will go through the same sub port of the same

12



switching element at stage 0. Thus a conflict occurs and the permutation can not be admissible.
Since our algorithm returns false for this case, it is correct.
Case 2. by; ;1 # bajt1,n—1 for all @ such that 0 < ¢ < % - 1.
A Baseline network is a unique-path network and the path between any input-output pair is
determined by the output. Thus for each input 2, if by;,,—1 = 0, then at stage 0, input 2:
links to the upper subnetwork U; if by;,,—1 = 1, then at stage 0, input 2¢ links to the lower
subnetwork L. Hence if by;,,—1 = 0, then byi should be in the partial permutation which goes
through the upper subnetwork U; if by, ,,—1 = 1, then byi should be in the partial permutation
P, which goes through the lower subnetwork L. The case for input 2i 4 1 is similar. Hence P
is admissible if and only if both Py and Pj, are admissible. Since our algorithm returns true
only when both Py and Pp, are admissible, it is correct.

The correctness of Algorithm Baselile-Admissible follows from the above discussion. We

now analyze its time complexity T'(N). Itis obvious that T'(/V) satisfies

() - 0(1) it N =2
| 2TNTEEDI) if N > 2

and the solution is O(N log, V). ]

4 Determine the admissibility of permutations for

the Omega network

The purpose of this section is to propose an algorithm to determine if a permutation is admis-
sible in an Omega network. An N x N Omega network can also be viewed as adding a stage
(call it stage 0) to two % X % Omega networks; see Figure 8 for an illustration. Note that for
convenience, we will also call the two % X % Omega networks U (the upper subnetwork) and

L (the lower subnetwork). U and L are defined as follows.

(i) The upper N/4 switching elements of stage n — 1 (the last stage) belong to U and the

lower N/4 switching elements of stage n — 1 belong to L.

13



stage 0 stage 1 stage 2

(o -0
11 -1
2 >< -2
31 -3
4 L 4
5 5
6 >< -6
7 r7
(@)
stage 0 stage 1 stage 2
0 - 1 2 L0
1-><0 -1
2 >< -2
3 7 -3
4 4 3 L 4
5 r5
6 7 >< -6
7 6 5 il

(©

Figure 7: The permutation routing of the P i Example 3. (a) The initial network. (b)
Routing the permutation to stage 0.+(¢c) Roiiting the permutation to stage 1. (d) Routing the

permutation to stage 2.

(ii) For each switching element of stage ¢ ({ =n —2,n—3,...,1), if this switching element is

adjacent to a switching element of stage ¢ + 1 which belongs to U (L), then it belongs

to U (L).

For example, in Figure 8 (a) and (b), the shaded switching elements belong to U, and and

the dotted switching elements belong to L.

Again, let (i, j)-path denote a path from input i to output j. The idea of our algorithm

for determining if a permutation P is admissible in an Omega network is as follows. Let P =

stage 0

stage 1

stage 2

L0

X

- 1

L2

-3

L4

X

stage 0

5
-6

(b)

stage 1

7

stage 2

-2

L4

2
7
2
3
o)

5

<

(@

(by by --- by_y ). Consider an arbitrary pair of inputs i and § + 4, (i =0,

Let

T =t, 12" 4+ t, 22" 24 128 4 120

14

L., % —=1).



stage 0 stage 1 stage 2 stage 3

0 L0

1 -1

stage 0 stage 1 stage 2 2 -2

0 BN/ A NN A -3

1 A N\ N\ 4

2 S5\ \/ KA AN\/RK A A\/XA_ ] -5

8 6. VV /N 1\VV /NI Y /N L 6
4

5 TWANA MAAN/A  WXAN -7

6 s’'YV\/ N VWVV/\N——¥VYWVW\/ N JYYV\/\ T L8

7 9AX N AN\ AN\ AKX NA E— 9

100/ \YY——Vv/\YN T 7Y/\NVYNT———V/\VY\N T 10

W AM AN AN AN L1

12/ AN — VvV AN V AN/ A NTTTTTTTTS 12

3 1 ¢ A 1 A v A =13

14~ V7 \NTTUTUTUTV NTTTTRAVL TR 14

o— | 15

(a) (b)

Figure 8: (a) An 8 x 8 Omega network and,its { and L. (b) A 16 x 16 Omega network and
its U and L. :

be the control tags for i to get to b Also, let
T =t 2" il . . 1 )2 + (2"

be the control tags for % + 7 to get to bgﬂ.. At stage 0, ¢ and % + ¢ are connected to the
same switching element. Hence t,,_; and ¢/, _; must be different; otherwise, the (i, b;)-path and
the (% + 1, b% +;)-path will go through the same sub port at stage 0 and therefore a conflict
will occur at stage 0. From the above discussion, a permutation P is admissible in an Omega

network if
(i) for each pair of inputs i and % + 4, there is no conflict at stage 0, and

(ii) the two partial permutations Py and Py, of P (defined later and Py is for U, Py, is for L)

are admissible permutations of an % X % Omega network.

The following is our algorithm. In this algorithm, j is used to denote the index of a bit in

a control tag and initially, 7 is n — 1.
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Algorithm Omega-Admissible

Input : A permutation P = ( bp by -+ by_1 ) and an integer j.

Output: trueif P is admissible and false if P is not admissible for an N x N Omega network.
Step 1: if N = 2 then return true;

Step 2: for each 7, 0 < < g—l, do

if b;; = b;, v ; then return false;

Step 3: setPU:<u0 up ... Uﬁ_1>andPL:<lo I ... lﬁ_1>,Whefe
2 2

U; = .
biyr by ;=0

Step 4: recursively call Algorithm Omega—AdmiSSible(%, Py,j—1);

if the result is false then P is not admissible and return false;

Step 5: recursively call Algorithm Omega—Admissible(%, Pr,j—1);
if the result is false then P is not admissible and return false;

else P is admissible and return true;

We now give two examples for the algorithm. In the first example. the given permutation

is not admissible; in the second example, the given permutation is admissible.

Example 4. LetP:(bO by by bs by bs bs b7>=<7 3051 6 4 2).

Initially, j = 2.
e In step 1, since N = 8 # 2, step 2 will be performed.

o In step 2, since b072 7é b472, 6172 7’é b572, b272 7é 6672, and 6372 7’é b772, step 3 will be performed.
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oInstepS,PU:<1 30 2>andPL:<7 6 4 5).

e In step 4, recursively call Algorithm Omega-Admissible(4, Py, 1
Po=(bo b by b5 )=(13 0 2) Now,j=1

o In step 1, since N =4 # 2, step 2 will be performed.

o In step 2, since by = 0 = by 1, this algorithm stops and returns false.

Hence our algorithms determines that P is not admissible in

input 2 is mapped to output 0 and input 4 is mapped to output 1. In Figure 9, it can be
seen that a conflict occurs at a switching element at stage 1 and this conflict is caused by the

(2,0)-path and (4,1)-path of the permutation. Note that in Example 3, we have shown that

P is admissible for a Baseline network.

), where

an Omega network. In P,

stage 0 stage 1 stage 2

o

—_

by

-0

L2

-4
r5

L6

N o o b~ W N

7

Figure 9: An illustration of Example 4; a conflict occurs at stage 1.

Example 5. LetP:<b0 by by by by by bg b7)=<0

Initially, j = 2.

e In step 1, since N =8 # 2, step 2 will be performed.
e In step 2, since by 7# bsa, bi2 7 bs2, bao # bgo, and bzo # b7

e Instep3, Py=(0 12 3)andP=(456 7)

17
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e In step 4, recursively call Algorithm Omega-Admissible(4, Py, 1), where
Pyz(bo by by bg>=(0 1 2 3).Now,j:1.
o In step 1, since N =4 # 2, step 2 will be performed.
o In step 2, since by # bey and by 1 # bs 1, step 3 will be performed.
oInstep?),PU:(O 1 ) andPL:(Q 3).
o In step 4, recursively call Algorithm Omega-Admissible(2, Py, 0), where
PU:<b0 b1)=(0 1). Now, j = 0.
e In step 1, since N = 2, return true.
o In step 5, recursively call Algorithm Omega-Admissible(2, Pp,0), where
Pr={b b )=(23) Nowui=0
e In step 1, since N = 2 returnytrue.
Hence return true.
e In step 5, recursively call Algorithm’ . Omega-Admissible(4, P, 1), where
PLz(bo by by bg):(4 5 6 7>.Now,j:1.
o In step 1, since N =4 # 2, step 2 will be performed.
o In step 2, since by # be1 and by 1 # b1, step 3 will be performed.
oInstepS,PU:<4 5 ) andPL:<6 7).
o In step 4, recursively call Algorithm Omega-Admissible(2, Py, 0), where
Po=(tb b )= (4 5) Now j=o.
e In step 1, since N = 2, return true.

o In step 5, recursively call Algorithm Omega-Admissible(2, P, 0), where

PL:<b0 b1>=<6 7>.Now,j:().
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e In step 1, since N = 2, return true.

Hence return true.

Hence return true.

) , 0123456 7\ .
From the above, our algorithm determines that P = is ad-
01 234567
missible. In Figure 10, we show the permutation routing of P. Note that in Example 2, we

have shown that P is not admissible for a Baseline network.

Theorem 2 Algorithm Omega-Admissible is correct and it takes O(N logy, N) time.

Proof. It is obvious that if N = 2, then the permutation is admissible and our algorithm
returns true and hence is correct. In the following, assume that N > 2. For each i, 0 < i <
% — 1, note that (i, b;)-path and (% +1, b% )2path go ‘through the same switching element at
stage 0. Thus there are two cases.

for some 7.such that-0.< ¢ < % —1.

Case 1. b;,_1 = b%ﬂyn—l

Then (i, b;)-path and (%jtz', b%ﬂ-)—path will.go through the same sub port of the same switching
element at stage 0. Thus a conflict occurs and the permutation can not be admissible. Since
our algorithm returns false for this case, it is correct.

Case 2. b;,,_1 # b% for all 7 such that 0 <i < % —

+in—1
An Omega network is a unique-path network and the path between any input-output pair is
determined by the output. Thus for each input ¢, if b; ,_; = 0, then at stage 0, input ¢ links to
the upper subnetwork U; if b; ,,_1 = 1, then at stage 0, input ¢ links to the lower subnetwork
L. Hence if b;,,_1 = 0, then b; should be in the partial permutation which goes through the
upper subnetwork U if b; ,,_1 = 1, then b; should be in the partial permutation P, which goes
through the lower subnetwork L. The case for input % + 4 is similar. Hence P is admissible if

and only if both Py and Pp, are admissible. Since our algorithm returns true only when both

Py and P;, are admissible, it is correct.
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The correctness of Algorithm Omega-Admissible follows from the above discussion. We

now analyze its time complexity T'(NN). It is obvious that T'(IV) satisfies

) = o(1) if N =2
| 2T(N) + O(N) if N > 2

and the solution is O(N log, N). ]
stage 0 stage 1 stage 2 stage 0 stage 1 stage 2
0 Lo 0 0 Lo
1 -1 1 -1
2 -2 2 1 -2
3 3 3 S r3
4 L4 4 2 L 4
S 5 5 6 -5
6 -6 6 -6
7 7 7 7 r7
(@ (b)
stage 0 stage 1 stage 2 stage 0 stage 1 stage 2
0 0 0 L0 0 0 0 0
1 F1 11
2 1 4 -2 2 1 4 2 2
3 ] 6 r3 3 33
4 2 -4 4 ] 4 4
5 6 3 5 5 6 3 55
6 -6 6 6 6
7 7 7 7 7 7 T m7
© (@
Figure 10: The permutation routing of the P in Example 5. (a) The initial network. (b)

Routing the permutation to stage 0. (c) Routing the permutation to stage 1. (d) Routing the

permutation to stage 2.

5 Realize any permutation in the Baseline network by

using node-disjoint paths

Recall that it has been proven that Benes network can realize all the N! possible permutations

and a Benes network is the composition of the Baseline network and the reverse Baseline net-
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work. In [18], Yang and Wang proposed an algorithm to decompose an arbitrary permutation
into two semi-permutations and they also proved any semi-permutation can be realized in a
Benes network in a single pass by using node-disjoint paths. In [17], Yang and Wang pro-
posed an algorithm to realize any permutation in the Baseline network by using node-disjoint
paths in four passes. In this thesis, we implement the decomposition algorithm in [18] and the
algorithm in [17] into a C++ computer program.

We have listed the decomposition algorithm in [18] in Section 2. The following is the
algorithm in [17], which is a two-pass node-disjoint self-routing algorithm for routing a semi-
permutation in a Baseline Network. A function FindBenesMiddleDestination is used to find

out the intermediate destinations in the middle stage of the Benes network.

Algorithm BaselineNodeDisjointSemiPermutation(SemiPermutation semi-perm)

{

ag ay = .. Laygsl
Let the semi-perm be ( o S >;
b(] bl 158 bN/2—l
ret-semi-perm = FindBenesMiddleDestination(aV, /N, semi-perm);
X ap AaA1¥ . AN 4
Let the ret-semi-perm be 2 ;
Ch €C1 ... C%_l

In the first pass, each source a; self-routes its message to the destination ¢;;

In the second pass, each ¢; self-routes its carried message to the destination b;;

Function FindBenesMiddleDestination(int NV, int &k, SemiPermutation semi-perm)

//The function returns a semi-permutation called ret-semi-perm.

{

X . ay ay ... QAk_4
Let the semi-perm in the k X k Benes subnetwork be 2 ;
bp b1 ... br_4

if (k equals to 2)

{

. . agp
The semi-perm is ( , );
0
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Qo
set cg = by and return ( );
Co

}

Decompose the semi-perm to two semi-permutations for the upper and the lower

% x £ Benes subnetworks by using the algorithm in [18]; Let them be
ai:) a'i’l o ai/ ) CLZ'B ai’i e CLZ"’k )
up-semi-perm = 1 , low-semi-perm = 4 ;
b. b, ... b by by b
Z:) Z’l Zl%71 ZO 21 Z%71

call FindBenesMiddleDestination(V, g, up-semi-perm);

call FindBenesMiddleDestination(V, g, low-semi-perm);

Suppose the returned values are

aig ai/1 cee ai/k ) ai*(’) CLZl cee alk )
1 and i , respectively;
Cor Coo ... Cy o Cpoo.. Cp
i iy 2% . 1 (5 1%71

for (j=0; j <% j++)

if a; links to ay then set c; =% ;
N N
J J

else if a; links to a;; then set '¢; = ¢; ;

apy a; ... AanN_y
return 2 ;
C €1 ... CN_4

We have implemented Yang and Wang’s algorithm in C++ programming language; see

the appendix. The following are our computer outputs.

6 Concluding remarks

It is known that an MIN may not be able to realize all the N! possible permutations. In [11],
Shen et al. proposed an O(N log N) algorithm to determine whether a permutation is admis-
sible in the Omega network. Although they claimed that their results are applicable to the
Baseline network, an admissible permutation of the Omega network may not be an admissible
permutation of the Baseline network. Therefore, in this thesis, we propose an algorithm to

determine whether a permutation is admissible to the Baseline network. We have also pro-
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posed an algorithm to determine whether a permutation is admissible to the Omega network.

Note that our algorithm for the Omega network is different from that in [11]. In this thesis,

we have also implemented the decomposition algorithm in [18] and the algorithm in [17] into

a C++ computer program.
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Appendix

//File Name: Routing Baseline node_disjoint.cpp

//Author: BT

//Email Address: x88cth@yahoo.com. tw

//Description: Routing permutation in a Baseline network with node-disjoint paths
/] in four passes.

//Input: a permutation.

//Output: control tag for each pass.

#include <iostream>
#include <fstream>
#include <iomanip>
#include <cmath>

using namespace std;
const int N = 1024, M = 2*N;

int permute[M][N], inverse[M][N], =t[NJ, label[NJ[N], upper[N/2], lower[N/2];
int space[M], tag[N][N], middle petr[4][M], «control{N];

//permute[M][N] F—HIFRE route By permutation, HAthg—IFm—

/] partial permutation.

//inverse[M][N] —5IFoR partial permutation HYSCEHLEAGR,

/] outputs map to inputs.

//t[N] t[i] = -1, #oR permutation HYZH i TESRIZAHUEREE.
//1abel[N][N] BT, EERSRAE partial permutation HY inputs.
//upper[N/2] upper permutation.

//1lower[N/2] lower permutation.

//space[M] ML EAIGEFHRTETHREY partial permutation HYA/N.
//tag[N][N] control tag.

//middle_per[4][M]

/1l
//control[N]

Z$7n semi-permutation £E Benes NT F route |
Hif] stage HY outputs.
B8y AR

int middle(int a, int k); //G%—{& semi-permutation 7 Benes NT

[ IHRfEIRY stage FY permutation FAEHER.

void control_tag(int a, int x); //BETF a &k x T HENET.
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int main()

{
int up_per, low_per, size, length, half, b, n, vy, d, s;
int I, u, q, p, h, 1, j, k, m, ¢c =1;

//n 2 W n XJ7 RN size.

/lsize permutation HJAK/IN.

/lup_per, low per EIEHGTIHY permutation S EINRA(E partial permutations,
/] HAFHAE permute[M][N] HIZE%].

//length FRHHT partial permutatlon HIEE .

//half FRE—4.

char ans;

do{

ifstream 1in_stream;

ofstream out_stream;
in_stream.open("permutation.txt");
out_stream.open("routing perm.txt");

do

{
in_stream > n; //{EFEZEchagEY permutation HYAV)N.
cout << "Permutation HYAVINE : "<<pow(2, n) << endl;
out_stream << "Permutation FYR/INES @ "<< pow(2, n) << endl;

jwhile(n < 0 Il n > N);

size = pow(2, n);

d = 2%s1ze;
s = size - 1;
y = 2%n - 1;

for(;j = 0; j < size; j++)
{

in_stream > permute[1][j]; //{EREZHZEEL permutation FYSEE,
[ 1AEEFEERESFFE permutation RYBEEARZEK.
dof

c=1;

while(permute[1][j] > s)

27



cout << "WRONG! ¥ " << s << " ZHEEPHHA \n";

out_stream << "WRONG! BT " << s << " EHEEIIM A \n";

cin > permute[1][j];
c=0;

!

for(i =0; 1 <j; 1++)
if(permute[1][1] == permute[1][j])

{
cout << "WRONG! #7CiEH#& > FHEHm A \n";
out_stream << "WRONG! (¥ HE#& » FE g A \n";
cin >> permute[1][]];
¢ =0;

}

jwhile(c == 0);
label[1][j] = permute[1][j];

in_stream.close();

for(i =2; 1 <d; i++) //permute Fl. Label #WHA{E.
for(j =0; j < size; j++)
{
permute[

11031 = -1;
label[1][]

I =-1
}
for(i = 0; i < size ; i++) //tag ¥IIE(H.
for(; =0; J <y; j+H)
tag(1][j] = -1;

for(i = 0; 1 < size; i++) //middle_per FJIEHE.
for(j =0; j <4; j+)
middle per[j][i] = -1;

//cout permutation.

cout << "\n"<<"f&E AR permutation £ : \n";
out_stream << "\n"<<"f&@ AR permutation 5 © \n";
for(i = 0; 1 < size; 1++)
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permute[0][1] = 1}
label[0][1] = 1;
cout << setw(n) << permute[0][1];
out_stream << setw(n) << permute[0][1];
]
cout << "\n";
out_stream << "\n";
for(i = 0; 1 < size; 1++)
{
cout << setw(n) << permute[l][1];
out_stream << setw(n) << permute[1][1];
}
cout << "\n\n";
out_stream << "\n\n";

[1LU R8RS - B permutation <3 BCRA1E semi-permutations.
for(i = 0; 1 <n; 1++)
for(j = 1; j < size; j%+)
{
1f((pow(2, 1) - 1)%<y sdd pow2s5 1. 4+1) > )
space[j] = size/pow(2, 1);

for(m=1; m < size ; m++)
{
length = space[m];
half = length/2;
p = size/length;
up_per = 2*m;
low_per = 2*m + 1;

k =0;

q=0;

for(i = 0; 1 < length; 1++)

{
t[1] = -1;
inverse[m][label[m][1]] = 1;
inverse[0][1] = 1;
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dof

t[k]++;
upper[q] = label[m][k];
1f(upper[ql]%2 == 1)

{
k = 1nverse[m][upper[q] - 1];
lower[q] = upper[q] - I;
tlk]++;
1f(k < length - 1 & k%2 = 0)
k++;
else
k--;
]
else
{
k = inverse[m][upper[q]+17;
lower[q] = upper[ql+l;
tlk]++;
1f(k < length®-'1 && k%2 = 0)
k++;
else
k--3
1
for(i =0; 1 <q; 1++)
{
if(inverse[m][upper[q]] < inverse[m][upper[i]])
swap(upper[q], upper[i]);
if(inverse[m][lower[q]] < inverse[m][lower[i]])
swap(lower[q], lower[1]);
}
g+t
1f((t[k] > -1) && (q < (half)))
{
u=0;
do
{
Ut
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while(t[u] > -1);
k = u;
}
Jwhile(q < half);

if(m < 2) //upper[i] A lower[i] /ZWiffE semi-permutations.
{
for(i = 0; 1 < half; 1++)
for(j =0 ; j < size; j++)

{
if(upper[i] == permute[m][]])
permute[up_per][j] = permute[m][]];
if(lower[i] == permute[m][]])
permute[ low_per][j] = permute[m][j];
}
]
else //# semi-permutatiof FF5E].
{

/1R stage B9 switching €lements LIAMHYH:A
//switching elemerits Y [tag.
for(j = 0 ; j < halfy j++)
for(i = 0; 1 < s1z€s.1++)
{
1f(permute[m][1]/p = upper[j] && permute[m][1] > -1)
{
permute[up_per][1] = permute[m][1];
h =0;
while(tag[i][h] > -1)
h++;
tag[1][h] = 0;
tag[i]ly - h - 1] = 0;
}
if(permute[m][1]/p = lower[j] && permute[m][1] > -1)
{
permute[ low_per][1] = permute[m][1];
h =0;
while(tag[i][h] > -1)
h++;
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tag[1][h] = 1;
tag[1]{y - h - 1] = 1;

}
for(i = 0; 1 < half; i++) //3EX permutation HY label.
{

label[up_per][i] = upper[i]/2;

label[low per][i] = lower[1]/2;

/MR stage Y switching elements HY tag.
b=n-1;
1 = pow(2, b);
for(i = 0; 1 < size; 1++)
tag[1][b] = permute[1][1J/1;

[1EHY first semi-permutation i) middleé - permutation.
for(i = 0; 1 < size; 1++)
if(permute[2][1] > -1)
middle per[0][1] = mrddle(b, 1)s

//Pass 1.
cout << "In pass 1, the permutation is:

<< endl;
out_stream << "In pass 1, the permutation 1s: " << endl;

for(j =0 ; j < size; j++)
if(permute[2][j] > -1)
{
cout << setw(n) << permute[O0][j];
out_stream << setw(n) << permute[O0][j];
}
cout << endl;
out_stream << endl;

for(i = 0; 1 < size; 1++)
1f(middle per[O][1] > -1)

32



cout << setw(n) << middle_per[0][1];
out_stream << setw(n) << middle _per[0][1];

cout << "\n\n";

out_stream << "\n\n";

//control tag of pass 1.

cout << "Control tag for the first semi-permutation 1s: \n\n";

out_stream << "Control tag for the first semi-permutation is: \n\n";

for(i = 0; 1 < size; 1++)

{
i1f(middle_per[O][1] > -1)
{
control tag(middle pef[O][1], n);
cout << "The inputii<<psetw(b) << 1. ": ";
out_stream << "TheX input" << sé€tw(b) < 1 << ": ";
for(j =0; j <n; J++)
{
cout << setw(n) << controlli];
out_stream << setw(n) << control[j];
1
cout << endl;
out_stream << endl;
}
1
//pass 2.

cout << "\n" << "In pass 2, the permutation is: " << endl;
out_stream << "\n" << "In pass 2, the permutation 1s: " << endl;
for(i = 0; 1 < size; 1++)
i1f(middle_per[O][1] > -1)
{
cout << setw(n) << middle per[0][1];
out_stream << setw(n) << middle_per[0][1];

33



}

cout << endl;
out_stream << endl;

for(j = 0; j < size; j++)
1f(permute[2][j] > -1)
{
cout << setw(n) << permute[2][j];
out_stream << setw(n) << permute[2][]j];

cout << "\n\n";
out_stream << "\n\n";

//control tag of pass 2.
cout << "Control tag for the second.semi-permutation is: \n\n";
out_stream << "Control tag fof the second semi-permutation is: \n\n";

for(i = 0; 1 < size; 1++)

{
if(permute[2][1] > -1)
{
control_tag(permute[2][1], n);
cout << "The input" << setw(b) << 1 << ": ";
out_stream << "The 1nput" << setw(b) << 1 << ": ";
for(j = 0; j < n; j++)
{
cout << setw(n) << control[j];
out_stream << setw(n) << control[j];
}
cout << endl;
out_stream << endl;
1
}

/1#H second semi-permutation HY middle_permutation.
for(i = 0; 1 < size; 1++)
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if(permute[3][1] > -1)
middle per[1][1] = middle(b, 1);

//Pass 3.
cout << endl << "In pass 3, the permutation is:

<< endl;
out_stream << endl << "In pass 3, the permutation 1s: " << endl;
for(j =0; j < size; j++)
if(permute[3][j] > -1)
{
cout << setw(n) << permute[0][]j];
out_stream << setw(n) << permute[O0][j];

cout << endl;
out_stream << endl;

for(i = 0; 1 < size; 1++)
if(middle_per[1][1] >=1)
{
cout << setw(n) <<"middle pecfl][1];
out_stream << setw(n) . <<.middle=per[1][1];

cout << "\n\n";

out_stream << "\n\n";

//control tag of pass 3.

cout << "Control tag for the third semi-permutation is: \n\n";

out_stream << "Control tag for the third semi-permutation 1s: \n\n";

for(i = 0; 1 < size; 1++)

{
i1f(middle_per[1][1] > -1)
{
control tag(middle per[1][1], n);
cout << "The 1nput'<<setw(b) << 1 << ": ";
out_stream << "The 1nput'<<setw(b) << 1 << ": ";
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for(j =0 ; j <n; j++)
{
cout << setw(n) << control[j];
out_stream << setw(n) << control[j];
}
cout << endl;
out_stream << endl;

//Pass 4.
cout << endl << "In pass 4, the permutation 1s: " << endl;
out_stream << endl << "In pass 4, the permutation is: " << endl;

for(i = 0; 1 < size; 1++)
1f(middle_per[1][1] > -1)

{
cout << setw(n) <<./middletper[1]Li];
out_stream << setw(n) << middle - per[1][1];
}
cout << "\n";

out_stream << endl;

for(j = 0; j < size; j++)
1f(permute[3][j] > -1)
{
cout << setw(n) << permute[3][j];
out_stream << setw(n) << permute[3][]j];

cout << "\n\n";
out_stream << "\n\n";

//control tag of pass 4.
cout << "Control tag for the forth semi-permutation 1s: \n\n";
out_stream << "Control tag for the forth semi-permutation is: \n\n";
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for(i = 0; 1 < size; 1++)

{
if(permute[3][1] > -1)
{
control_tag(permute[3][1], n);
cout << "The input" << setw(b) << 1 << ": ";
out_stream << "The 1nput" << setw(b) << 1 << ": ";
for(j = 0; j < n; j++)
{
cout << setw(n) << control[j];
out_stream << setw(n) << control[j];
}
cout << endl;
out_stream << endl;
]
}

cout << endl << "EEFHE—ZKHE? Ay RORFHE—X > T A n RIEER "
<< ans << endl;

cin >> ans;
out_stream.close();

twhile(ans == 'y' |l ans = 'Y');

return O;

int middle(int a, int k)
{

1
o
o

Il
()

int 1
do{
c =c+ (pow(2, i)*tag[k][a]);
a--;
1++;
Jwhile(a>-1);
return c;
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void control tag(int a, int Xx)

{
int 1 =0, j, c;
dof
j=x-1-1;
c = alpow(2, j);
if(c = 1)
{
control[i] = 1;
a -= pow(2, j);
}
else
control[1] = O;
1++;
twhile(j > 0);
}
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Outputs:

Permutation HYA/NES @ 8

g A permutation £ °
01 2 3 4 5 6 7
01 2 3 4 5 6 7

In pass 1, the permutation 1s:

0 2 4 6
0 4 3 7

Control tag for the first
semi-permutation 1S:

The input 0: 0 O O
The input 2: 1 0 0
The input 4: 0 1 1
The input 6: 1 1 1

In pass 2, the permutation 1s:

0 4 3 7
0 2 4 6

Control tag for the second
semi-permutation 1S:

The input 0: 0 O O
The input 2: 0 1 O
The input 4: 1 0 O
The input 6: 1 1 0

In pass 3, the permutation 1s:

1 3 57
0 4 3 7

Control tag for the third
semi-permutation 1s:

The input 1: 0 0 O
The input 3: 1 0 0
The input 5: 0 1 1
The input 7: 1 1 1

In pass 4, the permutation 1s:
0 4 3 7
1 3 5 17

Control.tag for the forth
semi-permutation 1S:

The input 15 0 0 1
Thermput 3: 0 1 1
The inputs5: 1 0 1
The 1nput 7: 1 1 1
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Permutation HYA/NES @ 8

g A permutation £ °
01 2 3 4 5 6 7
73 0 51 6 4 2

In pass 1, the permutation 1s:

0 3 47
1 526

Control tag for the first
semi-permutation 1S:

The input 0: 0 0 1
The input 3: 1 0 1
The input 4: 0 1 O
The input 7: 1 1 0

In pass 2, the permutation 1s:

1 526
75 1 2

Control tag for the second
semi-permutation 1S:

The 1input O: 1
The input 3: 1
The input 4: O
The input 7: O

—_ O O
O = =

In pass 3, the permutation 1s:

1 2 56
0 4 3 7

Control tag for the third
semi-permutation 1s:

The input 1: 0 0 O
The input 2: 1 0 0
The input 5: 0 1 1
The input 6: 1 1 1

In pass 4, the permutation 1s:
0 4 3 7
30 6 4

Control tag for the forth
semi-permutation 1s:

Thewinput 1: 0 1 1
Theinput 22 0 0 O
The danput 55 1 1 0
Therrnput 6: 1 0 0
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