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The Theory and Applications of the Elliptic

Functions
Student : Ja-Hou Liu Advisor : Jong-Eao Lee

Department of Applied Mathematics

National Chiao TungUniversity

Abstract

In this paper, we study the classical elliptic functions and the applications to the
differential equations.

In chapter I, we define the elliptic functions and analyze it’s properties. And then,
we introduce Weierstrass funetions and Jacobian-funections, the two typical elliptic
functions.

In chapter I, we analyze phase-portraits.
In chapterIl, we study the-Sine-Gordon equation that describes the ideal
pendulum motion and use Jacobian functions to-represent the solutions. We then

use the methods in chapterTI to analyze pendulum motion with friction.

In chapterIV, we provide other five physical-models described by differential
equations and solve them by Jacobian functions.
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Chapter 1 Elliptic Functions

1.1.1 Introduction:

In this chapter, we study the classical elliptic functions and it mainly follows the
references [3, 4, 5, 10]. Some of the tables follow another reference [6]. Moreover, the
relation between one period functions and double-period functions are according to the

references [4, 7]. Figures inside are drawn by the program Mathematica.

1.1.2 Doubly-Periodic functions:

Let o, o, beanytwo numbers (real or complex) whose ratio is not purely real.

A function which satisfies the equations

fz+20,)-12)  fz+20,)-1(),

and no further period lies between 0 andy @/, and,0.and «, respectively,

for all values of z for which f(z)exist, is called a doubly-periodic function of z, with

periods 2o, 2o,

1.1.3 Elliptic functions:
1. The singularity (singular peint)
If f(z) is not analytic at z = z4 thenwe call z ~isthe singularity of f(z).
For a singular point z, if there exists a neighborhood N(z,) of z, such thatthe

function f(z) is analytic in N(z,)/z, then z  is called a isolated singularity of f(z).

0

Moreover, for a isolated singularity of f(z) if there exist an analytic function
g(z)N(z)> C suchthat g@ =fz on N(z,)z, thenthepoint z, iscalleda

removable singularity.



2. Pole

If z, isisolated singularityand 3min ke N suchthat (z-z,)fz) isanalytic at

0

z, then z, isa pole of function f(z)

0
3. Elliptic function
A doubly-periodic function which is analytic (except at poles), and which has no
singularities other than poles in the finite part of the plane, is called an elliptic
function.
Remark 1:
A function defined in real is defined in one dimension. It means we can see all the
function if there is one certain period in it. Furthermore, a function defined in complex

number is defined in two dimension and a “good” function defined in complex number

should have two period that is doubly-periodie function.

1.1.4 Period-parallelograms:
Suppose that in the plane of the variable z fora elliptic function with two primitive

periods o, and o, iscompletely determined in any one of'the parallelograms with
verticesat z,, z,+2w,, z,+20,+2w0,, z,+2w,, Where: z, e C . For proper choice
of z,, the poles of this ellipticfunction will not reside on the boundary of any of these

parallelograms. Such parallelograms arecalled the cells.

1.1.5 Some properties of elliptic functions:

1. The number of poles of an elliptic function in any cell is finite.

2. The number of zeros of an elliptic function in any cell is finite.
3. The sum of the residues of an elliptic function at its poles in any cell is zero.
4. Liouvilles theorem

An elliptic function with no poles in a cell is merely a constant.



1.1.6  The order of an elliptic function:

1. The order of an elliptic function
If f(z) be anelliptic function and ¢ be any constant, the number of roots of equation
f(z)=c which lie in any cell depends only on f(z), and not on c ; this number is
called the order of the elliptic function.

2. Some properties of the order of an elliptic function

a. The number of the elliptic function f(z) is equal to the number of poles of f(z) in

the cell.

b. The order of an elliptic function is> 2.

Remark2:
The elliptic functions with order two are classified as two kinds; the Weierstrassian
elliptic functions, which have a single doublepole in.a cell, and the Jacibian elliptic

functions, which have two simple poles in a cell.

The importance of the elliptic functions with order.two is as indicated by the fact
that any elliptic function can be in terms ofeither of these type. We study the elliptic

functions of order two in the next section.

1.1.7 The Weierstrass elliptic function:

The Weierstrass elliptic function

( 1
0@ =Ziz+ 3 : : #

mnez L(Z—Zm W, -2na)2)2 (2m w, + 2na)2)2J
where ' denotes that the sum excludes the term when m =n=0and o, ,o, satisfy

the condition that the ratio is not purely real.

For brevity, we write @ _ in place of 2mo, +2ne, ,

so that

1 / 2 -2
0@ = S 'z-a,..)-0..7) (1.1.1)

mneZ



Remark3:

1.1f 20, and 2w, are periods whose ratio is real, then it is not double period for a

noconstant elliptic function.(In reference [2])

2 . . .
a. If Zﬂ = % , where a and b are relatively prime integers, then there exists integers m
w

2

and nsuchthat mb +na =1

Let w =20, +2w,. Then « isa period and we have the following
=0, m+n2L :wl(m+n3]:&(mb +na):&,

o, b) b b
SO w,=bew and w,=aw.Thus o, and e, integer multiples of w .

b. If 22— 4 2 isan irrational number. Given & > 0, there exist integers p and g such
a)Z
that
wl
lpA-q|=|p| == |-a|< & or [2pw, - 2q w,|< 2¢]ay]
a)z

but then 2pw, - 29w, would be a period of arbitrary'small.modulus, which is
impossible.

2. The weierstrassian functionds.a.elliptic function.

a. For o,
1 [ 1 1 ]
PEZ+20)=—"""7+ z ’{ - >
@+20,)" noz [(z420,-2mo,-2n0,) 2mo,+2nw,) |
1 i 1 1 )
= —+ -
z° mzn;z %L(Z-Zma)l-Zna)z)z (2ma)1+2na)2)2JF
=p(2)

By the same way
PZ+20,)=p(2)

Hence ¢ () isa doubly-periodic function of z.



b. The singular points of o (2) are o , andforany Q, ,  take k=2 then

n n

. . .
z-Q,.,) @(z)isanalyticon z=Q .

c. For any finite plane the number of poles are finite.

Froma.b.andc. p( isan elliptic function.

1.1.8 Some properties of Weierstrass elliptic function:

1. p(@ isaneven elliptic function of z.

2. p@'=-23 '(z-Q,,) isan odd elliptic function of order three with poles at

mneZ

{Q,, }andzeros (2n +1)w ,(2m +1)w ,; MOreover,
p'z+2w ) =p'Z+2w,)=p'(2)

3. The differential equation satisfied-by- ¢ 2@
(@) =4p@°-0,0@ -d;

where g, =60 ¥ 'Q . g,=1403'Q "~

mneZ m neZ

and the constantg,, g, arecalled invariants of ()¢, moreover,
('@ =4p@ -e,)Np@ -, @ =ey)
=4p@ -pW Np@ -pW )@@ -pW,))
Where pw,)=¢e, pWw,)=e, pW,)=e, withw ,=-w,-w,.
and e =e, for i=j .

4. The intergral formula for o (2)

1

2= 7,4 -g,t-g,) 20t
5. The addition-theorem for the function o (2)
If u+v+w=0,then

PR (VIe'(w))p(v)e'(u)yp'(w)}e(w)'(u)ye'(v)>0

(1.1.2)

(1.1.3)

(1.1.4)

(1.1.5)



That is

pU) e 1
V)  pV) 1=0
oW pWw) 1

and o) ,e (V) ,pw) areall unequal.

Remark 4:
By (1.1.2)and (1.1.3)

If pu) =e,,p(V) =e,, oW =e, and u+v+w =0
then e, ,e,, e, are the roots of the equation 4t°-g,t-g, =0

Thatis e, =e, #e,

9.
e, +e,e,+e,e = e

e.e. e, = —93
17273
4

7. Another form of the addition-theorem

1 ’ _ ’
@(Hy):_{so(z) 00

} -9 -y
41 p@ -

02z l{&)} -2 (z) unless: 2z is a period.
4| p'(2)

1.1.9 The Riemann-Zeta function {(z):

The function¢ (z) defined by the equation

dlz) “o(2) with m {¢(z)-3=0.
dZ z->0 Z

The limit condition in (1.1.8) is to assure that ¢ (z) has simple poleat z=0.

andso ¢(z)=

1 / 1 1 z
z

+ + +
L z-Q Q o °?

mn mn mn

(1.1.6)

(1.1.7)

(1.1.8)



1.1.10 _Some properties of The function {(z):

¢ (z) isodd with a simple poles @ _ , but is not doubly periodic. In fact, ¢(z) is

mn?
quasi-periodic elliptic function,

(z+2w)=¢(2)+ 27,

£(2+20,)= ¢(2)+ 2, (11.9)
where

n=¢(@,) 1, =¢(20,)
with

1
n,o,-1m,0, = Eﬂ' i

1.1.11 The sigma function ¢(z):
The function o(z) defined by.the equation

{"(Z) } 1 (1.1.10)

V4

dizlog o@ =<(z) WIth [im

z—>0

The limit condition in (1.1,10) is to assure that & (z) has simple zero atz=0.
z z z?
exp + 5
R o

1.1.12 Some properties of The functiono(z):

The function o (2) isan odd entire function with simple zeros at all the points Q

So o@» :zl_['mn{[l-

and is quasi-periodicity,

cz+20)=-exp{2 {,Z+w,)} oD

(1.1.11)
c(Z+20,)=-exp{2 {,(z+w,)}o(2

1.1.13 Expression of elliptic function:

1. Any elliptic function can express in terms of p(z2) and ()’

2. Any elliptic function can express in terms of linear combination of Zeta-functions and

their derivates.



3. Any elliptic function can express in terms of quotient of Sigma-functions.

1.2.1 Theta functions:
Let t be a (constant) complex number whose imaginary part is positive; and
writeq = e”'", so that |a|<1

Consider the function 9(z q), defined by the series

8z q)= i(-l")q”ze“‘, (1.2.1)

qua function of the variable z.

It is evident that 9(z q)=1+2>(-1)"q " cos2nz

Sand that $(z +7,q)=%(z q);

Further  9(z+7r.q)= > (1) "q" g2 e

n=-ow

_ _q-le—Ziz i (_1) n+1q(n+1)2e2(n+1)iz 1

Andso  9(z+77,9)=-q"e*9(zq)

1.2.2 The four types of Theta functions:

It is customary to write 9,(z, q) in place of 9(z q);the other three type of

Theta-functions are defined as follows:

9,(z,q)=-ie iZ+‘l‘”irl94[z + %m,qj = Zi (n" q(n%)zsin(Zn +1)z (1.2.2)
h=0
$,(z,q)= 3{2 + %n,q] = Zi q(n%)zcos(Zn +1)z (1.2.3)
h-0
Sg(z,q)=194[z+§7r,q] =1+ 2n§:1q”20052nz (1.2.4)
3,(zq)=1+ i (-1)"q" cos2nz (1.2.5)
o1



Writing down the series at length, we have

1 9 25
8,(z,q)=2q*sinz -2q*sin3z +2q *sin5z -..... (1.2.6)
: s 25
$,(z,q)=2q*cosz +2q *cos3z +2q * coS5Z + ... (1.2.7)
9,(z,9) =1+ 2qcos2z + 2q *cosdz + 2q°cos6z + ... (1.2.8)
$,(z q)=1-2qcos2z + 2q ‘cosdz -2q°cos6z + ... (1.2.9)
For brevity,

1. The parameter g will usually not be specified, so that 9,(z), ... will be written for

9,(2,q), .....

2. When it is desired to exhibit the dependence of a Theta-function on the parameter «

it will be written 9(z 7).

3.9,(0), 9,(0), 4,(0), 9,(0) will be replaced by 9,;9,, 8., $,and 91, will denote the

result of making z equal to zero in the derivate of 9,(2) .

1.2.3 Some properties of Theta functions:

1. 9,(z q)isan odd function of z and that the other Theta-functions are even functions

of z.

2. The relations between the squares of the Theta-functions

92(2)9: (2)= 82 (2)92 - 82@) 9 (1.2.10)
92(2)92(2) = 92(2)97 - 82 (29 (1.2.11)
52(2)92(2) = 92(2)97 - 92 (292 (1.2.12)
92(2)92(2) = 92(2)97 - 92 (29 (1.2.13)

Form equation (1.2.13), let z=0 we get fallowing equation.

9, +9,) =9.. (1.2.14)

4 2 3



3. The addition-formulae for the Theta-functions
'93 (Z + y)‘93 (Z 'Y)= gsz(y)‘gsz(z)"gf(yylz(z)

4. Jacobis expressions for Theta-functions as infinite priducts

1

9,(z q) = 2q *sinz I (1-q™ f1-2q ™ cos2z +q™" )

n=1

1

9,(z q) = 2q *cosz I (L-q* )(1+ 2q *" cos2z +q4”)

n=1

©

9,(za)=T] (1-q2“ )(1+ 2q *" cos2z +q4”'2)

n=1

©

9,(zq)=T] -0 JL-29*cos2z +g*?)

n=1

5. The differential equation satisfied by Theta-function

29,2/7) 4 29,2/ )

oz° i or
6. A relation between Theta-functions of zerojargument

’

9, (0)=9,(0)9,(0 4, (0)
7. Sigma-function can express in terms of Theta-functions
so any elliptic function can express«in.terms.of -Theta-functions
8. Landen’s type of transformation

9,(z17)9,(z]z) 9,(0]7)9,(0]7)
9,(2z12c) 9,(0]27)

9. The differential equation satisfied by quotients of Theta-functions

i 5] 5,00
4 [9,@)] .8 80
5.0 " 60w
1[93(2)1 _ 2‘91(2) ‘92(2)
“2 100" 50w

10

(1.2.15)

(1.2.16)

(1.2.17)

(1.2.18)

(1.2.19)

(1.2.20)

(1.2.21)

(1.2.22)

(1.2.23)

(1.2.24)

(1.2.25)



From (1.2.23)

We write ¢ = %) and use the result of relations between the squares of the

9,(2)
Theta-functions.
We see that

(Z—éj = (97 -E29IN9L-&E29]) (1.2.26)
z

1

Write y=¢£9,9, u=292 k?=49,/9, andk is called modulus
We get equation
&y - -y -ky?) (1.2.27)
du
This differential equation has the particular solution
TS| (1.2.28)

9, 9,(usy’)

Rmark5:

1. Let k' be called the complementary modulus such that k* + k' =1, that is

2. The number u will be called the'argument and thenumber m =k? be called the
parameter of the functions.

2

3. The complementary parameter is the number m, =1-m, thatis m, =k’

11



1.3.1 Jacobian function:

2
From (1.2.26) and (1.2.27) we know vy = &M is a particular solution of

differential equation (:_y)z =1-y)1-k’y?)
u

We have the integral representation of y is
u=[m L dt (13.1)
Ja-t)a -kt

so we defined y = sn (u, K) or simply y =sn (u) ,when it is unnecessary to emphasize

the modulus k

1

5 dt
J Ja-t)a-k’t?)

Clearly, sn™(x, k) =

Jacobian functions defined as follow

sn (u) 99, u/87) (13.2)
9,9,(u/97)
cn (U): lS’4'92 (u/‘93 ) (133)
9,9,(u/95)
dn (U): '94'93 (u/‘93 ) (134)
l93'94 (U/1932)
From (1.2.24) (1.2.25)
We get the following integral equations
If u= j o ! dt  then yu) =cn (u k)
J@-t) (K2 k%)
and cn*(x k) = jlx ! dt (1.3.5)
J@-) K2+ k%t7)
If u= j o ! dt then y(u) =dn (u, k)
Ja-t)e? -k?)
and dn*(x, k) = jlx ! dt (1.3.6)
Ja-t)e? -k

12



This integrals (1.3.1), (1.3.5), (1.3.6) are called the elliptic integral of the first
kind.

Glaishers nation for quotients.
A short and convenient notation has been invented by Glaisher to express reciprocals

and quotients of the Jacobian elliptic functions

ns (U) =1/sn (u) nc (u) =1/cn (u) nd (u)=1/dn(u (1.3.7)
SC(u) =sn(u) /cn(u) sd (u) =sn(u) /dn(u) cd () =cn(u) /dn(u)
CS(u) =cn(u) /sn(u) ds(u) =dn(u) /sn(u) dc u=dn(u) /cn(u) (1.3.8)

We have the following results
1 1 . 1 1
u:j (L+t?) 21 +k'%t?) 2dt =j 1) 2(t°+ k') 2dt
0 csu
1 1 1 1

sd u -— - ES == -—
:j (L-k"?t?) 21+ k?t?) 2dt :L % -k'™) 2’ +k%) 2dt
0 s u

1 1 1 1
1 = = 1 — %y
:jd (1-t7) 2@-k%t?).2dt =L (t%-1) 2 (t% -kt 2dt
© l 1 nc.u L =
:j (t°-1) 2(@t?-k?) 2dt =I (% -1) 2(k"°t° + k%) 2 dt
ns u 1

1 b

nd u -— -—
= [ °-1) 2@-kF%) 2dt
1

1.3.2 Some relation between Jacobian function:

1. disn(u)=cn(u)dn(u) (1.3.9)
u

2. sn’() +cn?(u) =1 (1.3.10)

3. k®sn?(u) +dn?(u)=1 (1.3.11)

4. cn(0)x=dn(0)=1 (1.3.12)

Differentiate the equation sn?(u) +cn?(u) =1 and use relation equation (1.3.9) we get

equation (1.3.13)

13



5. dc(:J: -sn (u) dn (u) (1.3.13)
u

From equation k?sn?(u) +dn?(u) =1and equation (1.3.9) we have equation (1.3.14)

6. dd:;Az -k ?sn (u) cn (u) (1.3.14)
u
Moreover
disn (U) =cn (u) dn (u) = \/(l—kzsn 2@ -sn () (1.3.15)
u
dicn (U =-sn (U) dn () = \/(k'2 -k’en?(U)@ -cen?(u)’ (1.3.16)
u
didn (u) =-k’sn (U cn (U) = \/(dn ) -k'*)@ -dn () (1.3.17)
u
And
d d
—sn (u) =cnu(u)dn (u) , —cn (U=-8n (u) dn (u) , (1.3.18)
du du
didn (Wy =-msn (u) en (u) (1.3.19)
u
d d
—ocs (U) =-ds (U ns(u)y”  —ns (u) =-cs(u) cs (u) (1.3.20)
du du
dids (u) =-cs (u) ns(u) (1.3.21)
u
d d
—sc (U =dc (W nc U —nc (U =sc (u) dc (u) (1.3.22)
du du
didc (uy =m, sc (u) nc (u) (1.3.23)
u
d d
—sd (u) =sd (u) nd (u) —cd (W) =-m,sd () nd (u) (1.3.24)
du du
dind (U =msd (u) cd (u) (1.3.25)
u

14



7. Relations between the Squares of the Jacobian Functions

sn® () +cn’U) =1 dn’ @ +msn?(u)=1 (1.3.26)
dn? () -men? (U =m, (1.3.27)

ns® () -cs” (U =1 ds® (W) -cs® (u)=m, (1.3.28)
s’ (U -ds® (W) =m (1.3.29)

msd? () -cd® U) =1 nd? @) -msd?(u)=1 (1.3.30)
med? W -m, nd? @) =1 (1.3.31)

nc® (U -sc” (U) =1 de” (U -m, ¢’ (u)=1 (1.3.32)
de? () -m,nc? () =m (1.3.33)

with the aid of these identities the square of any function can be expressed in terms of

the square of any other. In particular

1

y £ d 1.3.34
g T+cs? (U m+ds’ (u) ( )
m
2 = = 1 1.3.35
o 1+sc® () ds’(u)xm ( )
) O (1.3.36)

1emsd? (U ~1<mcd?(u)

1.3.3 Some properties of Jacobian functions:

1.sn(u) isan odd function of u
cn(u) is an even function of u

dn(u) isan even function of u

15



Double and Half Arguments
2sn () cn(u) dn(u) 2sn(u)cn  (u) dn (u)

2U) = = 1.3.37
n (2 1-k?sn*(u) cn’@) +sn’(u)dn(u) ( )
e u) = cn “(u) -sn“(u) dn“(u) _ cn “(u) -sn“(u) dn " (u) (1.3.38)
1-k?sn*(u) en’(u) +sn’(u)dh(u)
dn @u) = dn “ (u) -kzsn 4(u) cn “(u) _ dn 2(u) +cn2 (u)(dn : w -1) (1.3.39)
1-k“sn”(u) dn“(u) -en“(u) (d{u)l)
l-cn (i) _sn 2(u) dn ?(u) (1.3.40)
1+cn (2u) en’(u) o
1-dn (2u)  k’sn”(u) cn’(u) (1.3.41)
1+dn 2u) dn?(u) o
sn? (iu) _l-en(2u) (1.3.42)
2 1+dn(2u)
cn 2(lu) _dn (@ +en (0 (1.3.43)
2 1+dn (2u)
dnz(lu)=k' +dn(u)tken(uw (1.3.44)
2 1+dn(u)
3. The addition-theorem for-Jacobian function.
Sn(U +v) = sn (u) cn (V) dn"(v). +sn (v) cn (u) -dn- (u) (1.3.45)

1-k’sn @) sn’(v)

en(u +v) = cn (u) en (V) -sn (u) sh (V) (1.3.46)
1-k%sn?(U) sn2(v) "

dnu +v) = dn (u) dn (v) - k’sn (u) sn (v) cn (u) cn (V) (1.3.47)
- 1-k%sn 2(U) sn2(v) o

sn 2 (u) -sn?(v)

V) = 1.3.48
sn (U + V) sh (U-V) e @ () ( )
SN (U+V) e (U-Y) = sn (u) cn (u) dn2 (v)2+sn(v)2 cn (V) dn (u) (1.3.49)
1-k“sn“(usn “ (V)

s (U +v) dn (U -v) = sn (u) dn (u) cn2 (v)2+sn(v)2 dn (V) cn (u) (1.3.50)
1-k“sn“(usn “ (V)

cn (U+Vv)en (u-v) = cn" -sn” () dn (W (1.3.51)

1-k%sn?()sn (v

16



cn (U +v)dn (u-v) = cn () dn (u)l(_:r:((\?s(:]nz (5;;2:) sy _sn ) (1.3.52)

dn (u+v)dn (u-v) = dn_ ;k ch (u)zsn v (1.3.53)
1-Kk"sn“(wsn “(v)

4. The constant K , K’
a. Symbol K is a function of k such that sn (K, k) =1

In other words,

1 1

K = [ (@-t')2(1-k't") 2dt (1.3.54)

and snK=1, cnK=0, dnK= k'

b. Symbol K’ is a function of k'

1 1

K’ (k") = j:(l-tz)?(l-k'ztz)?dt (1.3.55)

Remark5:
1. KM =K'(1-m) = K’(m)

2. K@) = iﬂ'
2

K'(0)= o

3. Another form of Kand K’

1

K k) = j:/z (L-k2sin 2(0)) 2d@ (1.3.56)

1

K’ (k) = j:/z(l-k'zsin 2(0)) 2d6 (1.3.57)

5. The periodic properties of the Jacobian elliptic functions
a. associated with K
sn (U + 4K) =sn (u)
cn (u + 4K) =cn (u) (1.3.58)
dn u+2K)xdn(u)
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b. associated with K + iK'
snu +2K +2iK)=-sn (u) snlu + 4K + 4iK') =sn (u)
cnu +2K +2iK)=cn (u) cnu +4K +4iK') =cn (u) (1.3.59)
dnu + 2K +2iK’)=-dn () dnu +4K +4iK)=dn(u)

c. associated with iK'
sn (U +2iK") = sn (u) sn (U +4iK') =sn (u)
cn (U +2iK") =-cn (u) cn (U +4iK") =cn (u) (1.3.60)
dn (u+2iK") = -dn (u) dn (u+4iK)=dn(u)

u sn (u) cn (u) dn (u)
0 0 1 1
1 1 L B
2 x> o 7 m;
@L+m?2)? 7
= @+m2)?
K 1 0 S
m
2K 0 -1 1
_ L s £
A m (@rm?):? (+m?)?
1
m4
iK' 0 o0 )
2iK’ 0 -1 -1
K+iK’ R 1 0
m ? -i(m ,/m) ?
2K +2iK’ 0 1 1
Table 1

Special Values of Argument
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Remark6:

For any Jacobian elliptic functions pq (u)

pg (u+4K ,k)=pq (u+4iK' k) =pqg (u, k)

Periods

2K ,4iK’ cs(u) | sc(u) | dn(u)| nd(u)
4K , 2iK’ ns (u) | dc(u) | sn(u) | cd (u)
4K ,2K +2iK' | ds(u) | nc(u) | cn (u) | sd (u)

Table 2 Periods

sn (u) cn (u) dn (u)
Zeros 0, 2K K, 3K K+iK', K +3iK’
Poles iK' 2K +iK' | (iK' 2K +iK" iK' 3iK’
Periods | 4K, 2iK’ 4K, 2K +2iK' 2K, 4iK!

Table 3 Zeros, Poles and Periods

6. Jacobi’s imaginary transformation

sn(iu,k)=isc(u, k') cnfiu, kK)=nc(u, k) “dnfiu,k)=dc (u, k")

If z=x+iy,the addition theorems the give with
s,=sn(x,k), s,=sn(y, k),
c,=cn(x,k), c,=cn(y, k),
d,=dn (x ,k), d,=dn (y k")
s,d,+ic,d;s,c,

171

sn(z ,k) =

2 2 2 2
c,+K"s; s,

c,-is;d; s, d,

K =2
cn(z , =
2 2 2 2
c,+Kk"s;s,

inz ,k)zdlczdz-ikzslclsz

2 2 2 .2
c,+k"s;s;

19
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Argument sn cn dn
u sn (u) cn (u) dn (u)
-u -sn (u) cn (u) dn (u)
u+K cd (u) -k’ sd (u) k'nd (u)
u-K - cd (u) k'sd (u) k'nd (u)
K-u cd (u) k'sd (u) k'nd (u)
u+ 2K -sn (u) -cn (u) dn (u)
u-2K -sn (u) -cn (u) dn (u)
2K -u sn (u) -cn (u) dn (u)
u+iK’ k™ ns (u) -i k™ ds (u) -ics (u)
u+ 2K’ sn (u) -cn (u) - dn (u)
u+ K +iK’ k* de (U) “ik'k ™ ne (U) i k'sc (u)
u+2K +2iK’ - sn (u) cn(u) -dn (u)

Table 4
Chang of Argument

1.3.4 The Jacobian-elliptic function and the trigonometric

functions:

1. Observation:

Recall the integral representation of sn (u) in (1.3.1),

a. When

(1.3.65) becomes

That is,

o<

sn (u)

1
dt

Ja-t)a-k’t?)

20

(1.3.65)

(1.3.66)



sn(u)degenerate to sin (u) as k — 0.

b. When
k=1,
(1.3.65) becomes
u= ™" #dg (1.3.67)
That is,
sn (u) degenerateto tanh (u) as k — 1.
Similarly,
cn (u) degenerateto cos (u) as k —» 0,
dn(u) degeneratetolas k —» 0,
and
cn (u) degenerate to sechw(u) «as k — 1,
dn(u) degenerate t0 sech (u) as 'k — 1,
2. Exact:
Changing the variable by t =sin (8),the integral (1.3.65) is reduced to
Legendre’s form,
"
F(¢, k) =sn ~“(sin g k) = j:(l- k’sin?9) *do (1.3.68)

Then, expanding the integrand in ascending powers of k?and integrating term by

term, we find that
sn(sin 4, k) = ¢+ %kz (4 -sin ¢Cos @) + ....... , (1.3.69)
which is equivalent to
u=sn"(x k) =sin (X +%k2(sin (%) -x«/1-7)+ ........ . (1.3.70)

where x = sin ¢
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This series can now be inverted to expand sn (u) in powers of k?, thus:

sn (u, k) = x =sin[u +%k2(x1/(1—x2) -sin *(x) + 0k )]

=sin(u) + %kz (X+/(1-x?) -sin *())cos(U) + Ok *)

=sinu) + %k ?(sin(u)cos  (u) - u)cos(u) + O(k *) (1.3.71)
Moreover,

1. When the parameter m = k? is small that its square may be neglected, the

following approximations may be used to calculate the elliptic functions in terms of
circular functions.

sn(u|m):sin(u)-%mcos(u)(ﬂin(u)cmjgﬁ, (1.3.72)
cn(u|m):cos(u}k%msin(u)(—ﬂin(u)cmjsﬁ, (1.3.73)
dn(u|m)=1-%msinz(u), (1.3.74)

2. When the parameter m.=k?* is'so'near unity that the square of the complementary
parameter m, =1-m =1-k? may be neglected; the following approximations may

be used to calculate the elliptic functions.in‘terms of hyperbolic functions.

sn (u | m) = tanh (U) + %ml sech *(u)(sinh(u )cosh(u) -u) , (1.3.75)
cn (U | m) =sech (u) - %ml tanh (u)sech (u)(sinh(u )cosh(u) - u) , (1.3.76)
dn (u | m) = sech (u) + %ml tanh (u)sech (u)(sinh(u )cosh(u) + u) , (1.3.77)
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1.3.5 General form of the elliptic integral of the first kind:

1. integral of the Jacodian function sn (u)
By changing the variable in the integral (1.3.1) using the substitution t=s/b, we

calculate that

snt (x k) :u:J'OX{(l-tz)(l—kztz)}-Edt (0<x<1)

1

_ ajobx{(a 2 _52)(b2-s%)} 2ds (1.3.78)
where 0<b<b/k =a
It now follows that
Tt Y- ! it (1.3.79)
" ba i@ -t)b -

where 0<x<b<a

2. integral of the Jacodian functioncn-(u)
In the same way

By changing the variable=in the integral (1.3.5) using the substitution,

t=s/b,k=b//@a>+b?)

After some manipulation, we arrive at the formula

1 1 X b b 1
————0Cn [—, I=
J@2+b?) b J@?+b?) JX\/{(a2+t2)(b2-t2)}

3. More results below:

d (0<x<b) (1.3.80)

2.X b
cd [, -]
b a
. (1.3.81)
—aj dt, 0<x<b<a,
Jai-t)p?-t)
PRAORTEEN
al 2 2
@ +b%) (1.3.82)
2 2\ % 1
=@ +b%) | dt, 0<x<b
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dt, b<ac<x

M e

_af !
X \/(tz _az)(t 2 _bz)

dt, b<ac<yx

L X A@®-b?)
' B CAL
n [b " ]

dt, b<x<a,

_af !
b \/(az -'[2)('[2 _bz)

dn -1[1’ (a -b )]
a a

dt, b <x<a,

_af !
x\/(az _tz)(tz _bz)

b

1 X
nc- [—,—]
a \J@?+b?)
x 1
=j dt, a < x,
a'\/(tz'az)(t2+b2)
X b

ds ™ ,
S[J@2+b6 J@2+b6]

o 1
=J@%+b?) dt,

Ix ’\/(tz‘az)(t2+b2)
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(1.3.86)
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sc [, ]
b2 . (1.3.89)
_aJ'X dt, O<b<a 0<Xx,
° Ja? +a’)t? +b?)
2 b2
es ' (a )]
a a . (1.3.90)
:ajw dt, O<b<a 0<X
it rat)et +b%)

1.3.6 Some graphs of Jacobian functions:

1. Jacobian function sn u

a. sn (u, k)
2 JacobiSN[x, 1]

JacobiSN[x, 9/10]

u

JacobiSN[x, 2/3]

JacobiSN[x, 1/2]

Figure 1.1
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b. sn(u,1)

10 -

05 [

S S R ER RU P .
15 10 5 5 10 15

10 -

Figure 1.2

2
C. sn(u, —)
3

05

10

Figure-1.3

d. sn(u, l)
2

P T

Figure 1.4
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Remark 7: .
sn(u) is an odd periodic function of u for u is real. Moreover the period is larger

when K is larger.

We only consider that the Jacobian function sn u is defined in real number when we
sketch the graphs above. However, the Jacobian function sn (u) is a function from
complex number to complex number. Because this function is from two dimension to
two dimension, it means that we have to analyze it in a four dimension space. It is
difficult for us to do this.

Therefore, we use the method below to analyze the Jacobian function sn (u) defined

in complex number.

First, we define two new functions Re(u),-im(u). Re(u) is a function that we take the
real part of the Jacobian functien:sn u andsim(u).is another function we take the
imaginary part of the Jacobian functien-sn (u)~That is Re(u).= Re{sn(u)} and
Im(u)=Im{sn(u)}.

Example :

1
1. sn (3 +4i,—)=0.660252 =0.203738. i
2

Re(34i)=0.6602¢

Im(34i)=0.2037:

2. sn(6 -2i) =-1.47598 +0.0512946 i
Re(6 -2i) =-1.47598

Im® - 2i) = 0.0512946

Second, we can use two three-dimensional figures of Re(u) and Im(u) to represent
the behavior of the Jacobian function sn (u). It is obvious that the Jacobian function

sn (u) is a doubly-periodic function of u and there is a smallest unit parallelogram that
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can be repeated to form the entire graph.

In the end, we want to examine whether the graphs of Re(u) and Im(u) are right
when the domain of the Jacobian function sn (u) is restricted in real number. It is
coincident that the range of the Jacobian function sn (u) defined in real umber is also

real.

Now, in order to observe the graph or Re(u) clearly, we take the value of x-axis ( real
part of u) from -5 to 5 and the value of y-axis ( imaginary part of u) from 0 to 5. It is
easy to discover that the intersection of the plane y = 0 and the graph of Re(u) is the

figure of the Jacobian function sn u defined in real number.

In comparison, we find that the three-dimensional figure of the intersection and the
two-dimensional graph of the Jacobian function:sn (u).defined in real number are the
same. In the other hand, the value of Im(u).is zero«n the three-dimensional figure when

y =0.

We can use the same way to observe the Jacobian function.cn (u) and the Jacobian

function dn (u) .
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complex number u .
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The figure Re(u) represent the real

number u .

Figure 1.7
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Y (kmagivary patt) ! 2 (real part)

Figure 1.8

The graph of Re(u) for x-axis from -5 to 5 and y-axis from 0 to 5

¥ ([inagihary part]

2 4
0
))\ 1a

0

-5 1] 5
-5 1] 5
20 (real part)
30 [real part)
Figure 1.9 .
We can see the intersection line N Figure 1.10 .
from this direction. The imaginary part of function
sn(u).
l.OSn
3
Figure 1.11

The jacobian function sn(u).
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2. Jacobian function cn(u)

a. cn(u, k)
=1}
1
ns b
acobiCN[x, 1]
u
_4 +
JacobiCN[x, 9 710]
—05t
JacobiCN[x, 1/2] JacobiCH[x, 2 73]
ol
Figure 1.12
b. cn(u,1)
cn
//g‘t
06
04
‘ 02}
4 2 0 2 4
Figure 1.13
2
C. cn(u, —)
3

cn

05

10 +

Figure 1.14
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d. cn(u, £)
2

cn

Figure 1.15
Remark 8:

cn(uis an even periodic function of u for u is real. Moreover the period is larger

when K is larger.

O (mnagivary patt)

¥ el pat) 3 (real part}

Figure 1.16

The imaginary part of the Jacobian function cn (u, %)
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Figure 1.17

The real-part of the Jacobian function ‘cn [u, %J

g
/e

0
3L (real part)

7 -10

10

Figure 1.18
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0
20 (real part)

Figure 1.19

The real part of the Jacobian function cn [u, %J for

x-axis from -5 to 5 and y-axis from 0 to 5

20 (real part) X [(real part)
_ Figure 1.21
Figure 1.20 The imaginary part of function

We can see the intersection line

L . cn(u).
from this direction.

Figure 1.22
The jacobian function cn(u)
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3. Jacobian function dn u

a.dn(u, k)
dn
acobiDN[x, 27 %]
JacobiDN[x, 9/710]
JacobiDN[x, 1]
2 3 b
Figure 1.23
b. dn(u,1)
dn
,/O/:g%
0.6
0.4
0.2
: u
4 2 0 2 4
Figure 1.24
Remark 9:
dn(u,BHcn(u,!
By definition
1
1
u= dt
cn(u, k)
J Ja-t2)Kk? + k%t
1

dt

V= ijnvk
/ " a-te -k

k> +k'?=1
For k=1then k'=0 and

1 1 1
U: :<L:nu dt: tnu dt: an dt
I (ul) \/(l-tz)(02+12'[2) I i) \/m J.d('l) /(1_t2)(t2_02)

Therefore, dn(ul) = cn(u,l)
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2
C.dn(u, —)
3

dn

Figure 1.25

d. dn(u, l)
2

Figure 1.26

Remark 10:

d n (uis an even periodic function of u for u is real. Moreover the period is larger

when K is larger.
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Figure 1.28

The real part of the Jacobian function dn (u, %J
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3 (real part)

2\ G )

The real part of the Jacobian function dn (u, gj for

x-axis from -5 to 5 and y-axis from 0 to 5
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=5 ] 5

2 [real patt) X (real part)

Figure 1.31
We can see the intersection line Figure 1.32
from this direction. The imaginary part of dn(u).
Figure 1.33

The jacobian function dn(u)

4. Jacobian function sc u

JacobiSC[x, 1/2]

1
Jacobi SN[x, 172]

JacobiCN[x, 172]

Figure 1.34
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Chapter 2 Linearzied , Nullclines , Hamiltonian

system and Dissipative system

In this chapter, according to the reference [1], we analyze phase portraits by some
ways.

2.1 Linearzied:

1. linearized system

For a general form of a nonlinear system

dx
—=f(x vy
o (x y)
dy
—=0XYy
m (xy)

The linearized system at the equilibrium point (x,,y,) is

U of of
(au) | —<x(,,yo>5<xo,yo>)

OX
| dt |:I |[ J Where u=x-x, v=y-y,
Ld_VJ 29 (x5 )29 (x g |\

dt ) Lox ey My

oX

[ xaye) o) |
And J:Ia ay }

°9 9

\ax(xayo)ay(xayo)J

is called the Jacobian matrix of the systemat (x,.y,)
2. Classerify equilibrium points by linearized system

a. If all eigenvalues of J are negative real numbers than (x,,y,) is sink.
If all eigenvalues of J are complex numbers with negative real parts than (x,,y,) is
spiral sink

b. If all eigenvalues of J are positive real numbers than (x,,y,) is source
If all eigenvalues of J are complex numbers with positive real parts than (x,,y,) is
spiral source

c. If J has one positive and one negative eigenvalue than (x,,y,) issaddle
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2.2  Nullclines:

1. x-nulicline y-nulicline

For the system

dx
- = f(X, y)
dt
dy
— =9 Y)
dt

The x-nullcline is the set of points (x,y) wheref(x, y) is zero that is, the level curve
where f(x, y) is zero. The y-nullcline is the set of points whereg(x, y) Is zero.

Example:

2. Some properties of nullclines
a. Along the x-nullcline, the x-component of the vector field is zero, and
consequently the vector field is vertical.
Along the y-nullcline, the'y-component of the vector field is zero, and
consequently the vector-field is horizontal.
b. The intersections of the nullclines are the equilibrium points

c. The regions separated-by nullclines offer information of vector field

2.3 Hamiltonian system:

1. Conserved quantity
A real-valued function H(x,y) of the two variables x and y is a conserved quantity
for a system of differential equations if it is constant along all solution curves of
system. That is, if (x(t),y(t)) is a solution of the system, then H(x(t),y(t))is constant. In

other words,

H (x(ty(t)30 for (x(t),y(t)) is a solution of the system

2. Hamiltonian system

A system of differential equations is called Hamiltonian system if there exists a
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real-valued function H(x,y) such that

dx oH
a oy
dy oH
d ox

for all x and y. The function H is called the Hamiltonian function for the system.

3. Relation between conserved quantity and Hamiltonian system

Letting (x(t),y(t)) be any solution of the system then
d OH _ dx OH _ dy
—HX®O, ¥1) = () +()(—)
dt ox dt oy dt
oH _ dH oH  dH
=)+ )
ox dy oy dx
=0

So Hamiltonian system is conserved.

4. Equilibrium points of Hamiltonian-system

Suppose (x,,y,) isourequilibrium point for the Hamiltonian system

dx. = oH
o ay
dy, ~ oH
it ox

The Jacobian matrix at this equilibrium point is given by

o°H o°H W
| oxoy oy’ |
| a%H o°H |

L_ ox®  oyox
where each of these partial derivatives is evaluated at (x,,y,).
Since

o°H  0°H
OX0y  0yox

The Jacobian matrix assumes the form
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b

o°H  9°H o°H

where « = B o A
oXoy oy OX

The characteristic polynomial of this matrix is
(@-2)-a-2)-pr=2"-a"-py

And the eigenvalues are 1 = i\/m .Thus we see that there are only three

possibilities for the eigenvalues:

a. If a?+ gy >0 both eigenvalues are real and have opposite signs.

b. If a®+ gy <0 both eigenvalues are imaginary with real part equal to zero.

c.If a®+ gy =0 then O isthe only eigenvalue

In case a. we know the equilibrium paint,must be a saddle

5. Solution of Hamiltonian system
Solution curves of the system lie along the level curves of'H . Sketching the phase
portrait for Hamiltonian systemis the same as sketching the. level sets of the

Hamiltonian function.

2.4 Dissipative system:

A function L(x,y) is called a Lyapunov function for a system of differential equation if,

for every solution (x(t),y(t)) that is not an equilibrium solution of the system,
d
—L(x(ty(t)30
dt

For all t with strict inequality except for set of t’s.
2.5 Discussion:

There are four methods to analyze the solution of nonlinear systems. By linearized we
have some information near equilibrium points. By nullclines we get the trend in the
whole phrase plane. In the special case we have the properties of Hamiltonian system

and Dissipative system.
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Chapter 3 Pendulum

We study the motions of Pendulum in the following paragraphs. The references for this

part are [1, 8, 10].
3.0.1 Physic aspect:

Consider a pendulum made of a light rod of length | with a ball at one end of mass
m .The position of the bob at time t is given by an angle U(t),which we choose to
measure in the counterclockwise direction with 0 corresponding to the downward

vertical axis (see Figure2.1)

-
-
-

-
—

O " w

Figure3.1
A pendulum with rod length | and angle 0

The speed of the bob is the length of the velocity vector , which is 1U(t) . The
component of the acceleration that points along the direction of the motion of the bob is

IU®) We take the force due to friction to be proportional to the velocity , so this force is

-blU() where b>0 is a parameter that corresponds to the coefficient of damping .

Using Newton’s second law, F = ma we obtain the equation of motion
-bIU(®) -mg sinu®) =mlU(t)

Which is often written as

U(t)rEU(t}rgTsinU(t:)O (3.0.1)
m
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Figure 3.2
3.0.2 Mathematic aspect:

Consider the Sine-Gordon equation is

Ue®y)-U, & y+sin[U(x)EO0
Let t=xx-wy

Then

. ot !
U, (xy) = U(t)y—=wl(t;
oX

U,(xy) = U(t)a—t=-coU(t]
oy

U, (xy) = U(t)
U, (Y =0U(t)
So we can rewrite equation (3.0.2)
K20ty o’U(tysin[U(BD
Let h?-w?=1

We get U(t) +sinfU®] =0

(s-G) (3.0.2)

(3.0.3)

Compare with equation (3.0.1). This is a equation describing ideal pendulum

Multiple U ()
U@ U® + U®sin[ut )] =0

Integrated by t
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1., .
EU (tycosU(®E, where E, >-1 isaconstant
Add 1
%Uz(t)+[1-cosu(t=)}+E2=El (3.0.5)
We can see %U 2(t) as kinetic energy and [1-cosU(t)] as potential energy and this

system has total energy E,

Figure 3.3

The relation between potential energy P.E and angle u

From (3.0.5)

%Uz(t)+[1—cosu(t=)]51

U@ = +/2E,-2[LcosU(t (3.0.6)

Ut
=1
J2E, -2[tcosU(t)]

Integrated
We get

u(t) 1
t= d 3.0.7
J J2E, -2[%cog] > (3.07)

3.1.0 ldeal Pendulum:

A system of pendulum with no friction is called ideal pendulum.

When no friction is present, the coefficient b vanish. We get the equation

U+ Lsnu(t)=0
l
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For convenience we suppose 2 =1

l

We can rewrite this equation U(t) +sin U (t) = 0 as first-order system in the usual

manner by letting the variable v represent the angular velocity U (t) .The corresponding

system is
du
— =V
dt
dv .
— =-sinU
dt

Equilibrium points of this system are (nz,0) for ne Z

3.1.1 Apply Linearzied to analysis Ideal pendulum:

For system
a _

dt

dv :
— =-s8InY
dt

1.The linearized system at the equilibrium point” (nz,0) forn is odd integer
du
(I}: 0 1) u
[d_vJ 10 )\v
dt

. . . 01 .
The Jacobian matrix of the system is J = [1 . ] and its eigenvalues are +1

There are saddle points at the equilibrium point (nz,0) for nis odd integer
2. The linearized system at the equilibrium point (nz,0) for nis even integer
du
| dt \|: 01 u
Ld_vJ -10 v

dt

. . . 01 L
The Jacobian matrix of the system is J = [ 0 J and its eigenvalues are +1

There are center points at the equilibrium point (nz,0) for nis even integer
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3.1.2 Apply the Hamiltonian system to analysis Ideal
pendulum:

Consider U () + sin[U(t)] =0

Let H(U,V)= %VZ - cosU

du oH
Because — =V =—
dt oV
dv oH
—=-cosU =-—
dt ouU

A

Figure 3.4
Level curve of H(U,V)

3.1.3  Apply the Jacobian elliptic function to solve the Ideal

pendulum motion:

We want to solve (3.0.5) by Jacobian elliptic functions

U 1

Consider  t= fo J2E - 2[L -cos ¢ ]

d¢ with 1+E,=E,

u() 1

t:IO \J2E , + 2c0s & i

ie. (3.1.1)
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a.lf 0<E, <2 ,le -1<E, <1
then thereis « suchthat -cosa =E,

t_jum 1
0 \/-200a+2005

d¢

-[o 1 as

J-Z[l—Zsiﬁaj+2[l—23iﬁgj
2 2

u(h) 1 de

J T
2

sin 2 —-sin
2

1
2

sin Q
2

Let O<k=sin £<1 z=
2 k

sinﬂ

:lf 2 1 %
RN NI A

sin&

:I k = dz

Ja-2)a-k’z%)

According to Jacobian function

sn(t, k) = is i nUT(t]

So U® =2sin *(k snit, k) where Kk=sin % (3.1.2)

b.If E,=2,1e. E,=1

U@ 1

—d¢

0 2+ 2cos ¢

t=

=

1 .u(t) 1
, ¢
2°° l+cog

S

1 .u(t) 1

:ﬁ"; l+cog
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_ 1 Lo 1 q
__2'[0 é’ g
2-2sin 2=
2
1 .uw 1
= dé’
2 0
1-sin 26
2
Let x =sin 4
2
1 01 2

dx
2
X

b

So sin %: tanh(t) 1.6 ~U(t) =2sin- " tanh(t)

c.lf E,>2 ie E,>1
u(t) 1

t:L ,ME2+2005d§

u(t) 1

:.L d¢
\/2E2+(2—4siﬁi)

J
\/ LA £)
26, +2 2
Compare with j;
V1 -k %sin x

Let k= x =%

J2E , +2 2

dx
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= IT dx
®  \1-k?%sin *x
Let y=sinx
u()
sin —— 1 1
- J. ’ 2 .2 dy
2
0 \/1 k°y \/1 y
t t
So sn(—,k):sin—(‘
k 2
. 1 t 2
ie. u) = =sin *sn(—, k)  where k= ——— 3.15
2 k \2E, +2 ( )

3.1.4 The graph of the Ideal pendulum motion:
1.

P.E

20
o.U

25 ¢
20 ¢
15 ¢
10 ¢
05¢F

Figure 3.5

The relation between potential energy P.E and angle u with total energy E, =3

Figure 3.6

The relation between vector v and angle u with E, =3
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P.E

20
.U

15 ¢
10 ¢
05 ¢

Figure 3.7
The relation between paotential energy P.E and angle u with total energyE, = 2

\

N
d |

Figure 3.8

The relation between vector v and.angle u with E, =2

Figure 3.9

The relation between potential energy P.E-and-angle u with total energy E, =05

Figure 3.10

The relation between vector v and angle u with E, = 0.5

2. From (3.0.2)

U(twsin[U(D with t=hx +wy and h®-w?®=1

Let h=2w=\/§
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a. Graph of the ideal pendulum motion with E, =1 (0 <E, < 2)

Figure 3.11

b . Graph of the ideal pendulum motion with E, =2

Figure-3:12

¢ .Graph of the ideal pendulum motion with E, =3 (2 <E,)

0
by =5

Figure 3.13
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3.2.0 Pendulum motion with friction:

Recall that the second-order equation governing the motion of the pendulum is
. b . g .
u®+—u®+mem =0

m

Where b is the coefficient of damping m is the mass of the pendulum bob, g is the

acceleration of gravity, and | is the length of the pendulum arm.

For convenies we let L B and gT= 1.And rewrite this equation as first-order system
m

in the usual manner by letting the variable v represent the angular velocity U(8) .

The corresponding system is

du

— =V

dt

dv :
— =-BV-sinU
dt

3.2.1 Apply Linearzied to analysis pendulum with friction:

For system

du

dt
-BV-sinU
1. The linearized system at the equilibrium point (nz,0) for nis odd integer
d_u
| dt |: 01 u
Ld_vJ 1-B)lv

dt

: : : 01 o
The Jacobian matrix of the system is J = [1 BJ and its eigenvalues are

A_-Bi\/52+4

2

There are saddle points at the equilibrium point (nz,0) for nis odd integer
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2. The linearized system at the equilibrium point (nz,0) for nis even integer

du

M(i 2

dt

: : . 0 1 L
The Jacobian matrix of the system is J = { J and its eigenvalues are +1

There are center points at the equilibrium point (nz,0) for nis even integer.

3.2.2 Apply the nullclines to analysis pendulum with friction:

For system

du
dt

dv .
— =-BV-'sinU
dt

U-nullcline is {(uU, V);V =0}

If V>0 then O('ji>o This means veetor filed “Hpht”
t

If V<0 then O;i<o This means vector filed=Ietr"
t

10}

-4 -3x -3 - T 2 i 4

-10 b
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V-nullcline is {(U, V);BV +sinU =0}

dv .
If BV +sinU <0 then e >0 This means vector filed “up”
t

dv .
If BV +sinU >0 then e <0 This means vector filed “down”
t

\l/\l 'Lﬂl/\i
AIRIZTAIA

S

\/ AT
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It obvious

1. There are saddle points at the equilibrium point (nz,0) fornis odd integer.

2. There are center or spiral sink or spiral source points at the equilibrium point (nz,0)

7N
/
1

for n is even integer.

N
!

'\ _/
N
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Chapter 4 Physical Applications of Elliptic functions

In the paragraphs below, we study five physical models’ differential systems. An ideal
whirling chain, and Duffing’s Equation. The other three describe the motions of orbit

planets. These parts mainly follow the reference [4].

4.1 Whirling Chain:

Consider a uniform length | of rope or chain, whose ends are fixed at point 0 and A
and which is set rotating about the axis OA with constant angular velocity w .

For ideal case
1. Gravity will be neglected
2. It will be assumed that the chain always lies in a plane through the axis of rotation.

We shall take O to be the origin of axes Ox, Oy, the x-axis lying along OA, and
y-axis lying in the plane of the chain at same instant t (Fig.). Consider the motion of an
element ds = PQ of the chain, where-P-and-Q-have coordinates (X, y), (x+dx, y+dy)

respectively.

The forces acting on this.element-are tensions T and T+dT at its ends P and Q, and
their lines of action are the_tangents to the chain at these points; let these tangents make
angles v, v +dyw respectively with the x-axis:

4
dSP Q. L~ T+dT
¥ L b

a/? AL,
Figure 4.1

Resolving the forces tangentially and normally, we obtain components (dT, Tdy )
respectively. The element moves around a circle of radius y with angular velocity
and its acceleration is accordingly »’y directed in the negative sense parallel to the
y-axis.

We can now write down the tangential and normal components of the equation of
motion thus;

dT =-oc ds w’ysin( w), Td y = -0 ds w’y cos(y) (4.1.1)
Where & is the mass per unit length of the chain.
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Dividing these equations, we find that

dT/T =tan (w)dy (4.1.2)
Which integrates to give the equation
T=Tsec(y), (4.1.3)

T, being the tension at the point B where y =0.

Substituting for T in the second equation (4.1.1), we now deduce that

Ady lds = -y cos *(y) (4.1.4)
Where
A=T,/o0n 2
But dyids =sin () and it therefore follows that
Atan( y)sec( w )d v = -ydy . (4.1.5)
This equation integrates to
Asec( y)-1) =§(b2-y2), (4.1.6)
Where y=b,w =0 atB.
Thus,
dyldx = tan () = (sec * () -1). = i\/{(bz Ly )b+ aa-y?)) (4.1.7)

and, after integration from , this leads-to the equation

x=22] 7 dy

b2 -y)e’-y))

where
c’=b*+42 (4.1.8)

Reference to the standard form (1:3:79)-now _shows that
24 .
X = ——sn “(y/b) ,
c

The modulus being given by
k?=b’lc?=@1+4ab%)". (4.1.9)
We conclude the equation of chain is
y=bsn (cx2 ).

Supposing the end A to lie at the point x =a on the x-axis, we must have
y =0atx =a. Clearly, therefore, it is necessary that
ac/2 A = 2K (4.1.10)
and the equation of the chain can be written
y = b sn (2Kx/a)

By eliminating and between equations (4.1.8), (4.1.9 and (4.1.10), we arrive at the
equation
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ak
2 =K
b1-k°)

(4.1.11)

Since K is a known function of k, this equation determine k and K when a, b are given.
A can then be found from equation (4.1.9) .

For example, if k=0.5, then K=1.6858 and, thus, a/b=2.53 and 1 = %bz :

Instead of b being specified, the length | of the chain may be given. This can be related
to the other parameters, thus:

| - J‘:w/[l+(dy/dx) 2 1dx

= j: JIL+ @bK/a) *on?(@Kxfa)dn * (2Kxia)] dx

= joa \/[1 + (4k */k"en ? (2Kxfa)dn  * (2Kx/a)] dx

=j:[(2|4'2)drf(2 Kx/a)]d>
a
T KK
2aE
"k °
Where E = jOK dn *(udu .With' k=0.5,K=1.6858 as-hefore, we read from the table
E=1.4675 and hence, I=1.32]a.

2K 2
j dn’(u)dua
0

(4.1.12)

Remark11:
E (u, k) is a function definedy

EQ, K) = joudn 2 (v, K)dv

And E = E(K, K) = jOK dn 2 (v, K)dv .
It can be saw a function of k.
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4.2 Duffing’s Equation:

This is the equation governing the oscillations of mass attached to the end of a
spring whose tension (or compression) T is related to its extension x by an equation of

the form
T =ax+ px°

a IS always positive.

(4.2.1)

1. If g = 0, the spring obeys Hooke’s law and the oscillations are simple harmonic.
2. If p > 0, the tension increases with the extension more rapidly than required by

Hooke’s law and the spring is said to be hard.

3. If p < 0, the tension increases less rapidly than required by the law and the spring is

said to be soft.

By a suitable time choice of the unit of time, the equation of motion of the mass can be

put into the form (Remark12)
X+X+ex' =0
which is the canonical form of Duffing’s Equation.

We want to solve this system.
1. The case of a hard spring,.for'which—¢ >0 .

Suppose that initially, t=0,x=a x=0.

get the system X+ X+ex =0
(4.2.3)
t=0,x=ax=0

. d 1 . . .
Since x = d—(—xz) , We can integrate with respect to x to give
X 2
1 1 1 1
Lx? 4+ =x?+=ex'==a’+ ~ea’
2 4 2 4
or

1 1
x*=@%-x*) +Ega2 +E.9x2)

Integrating to obtain t, we find

1 1. X e’
cn T[—, 4f(

1+ ca’ a \'2+2a’

having referred to the standard form (1.3.80). Inversion now shows that

x=acn{Vl+ea’t}

x)( +a’+x7%)
&

)1

(4.2.2)

(4.2.49)

(4.2.4b)

(4.2.5)

(4.2.6)

(4.2.7)



with modulus given by

k® =

: (4.2.8)
2+ 2¢a

The period of oscillation determined by (4.2.7) is given by

7o (4.2.9)

J@+ea?)

If ¢ isverysmall, we get k* = ; . Thisimply K = %;;(1+%ga2).
Hence, to O(¢)
T= 2ﬂ(1-§ga2), (4.2.10)

indicating that, as the amplitude of the oscillation increases, the period decreases and
the frequency therefore increases.

2. The case of a soft spring, for which ¢ <o0.

Let e=-5, n>0.Since x-px*> hasamaximum at X:%/ﬁ
n

It will be convenient to measure t from an-instant'when the mass is at the center of
oscillation (x=0) and x is increasing. Thus, x=0.at t=0; and the equation for the time is

\fjx\/(az-x e

after reference to the standard form (1.3.79) , (to apply this result, we must assume

%-az >a’lie., a< %/@which i guaranteed by a < %/@). Inverting the

last equation, we obtain

x=a-sn{.|(1- —na Hy, (4.2.11)

where the modulus is determined by

2

na
2-77a2

k? =

(4.2.12)

Thus, the period of oscillation is given by

S S (4.2.13)

/ 1,
(1-—ma”)
2

and, for small 7, this reduces to
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1 -
T=272'(l+g?7& )

(4.2.14)

to O(#n ), in agreement with (4.2.10). For a soft spring, therefore, the frequency of

oscillation decreases as the amplitude increases.

Remark12:

By Newton’s law
T =-ma
Where m is the mass and a is the acceleration of the mass
So we get the equation
ax+ px° =T =-ma =-mx
Divide m
g+ Lxs By o
m m

Let m=« and gzﬁzﬁ
m o

K+X+ex’=0

We note that ¢ >0 if B >0 the springis hardand <0 if B <o the spring is soft.
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4.3 Orbit motion:

4.3.1 Orbits under ap /r* Law of Attraction:

Suppose a particle of unit mass is attracted towards a center O by a force 4/r* ,r

and ¢ being its polar coordinates at time t in the plane of motion. Then, since the
particle’s energy E and angular momentum h about O will be conserved, we can write
down the equations of motion (Remark13)

%(f2+r2é2)-3'u—3=E, r26 = h (4.3.1)
r

Putting r=1/u and eliminating t between these equations, we arrive at the equation
a(j—ug)zzu3-au2+ﬂ:f(u), (4.3.2)

where o =3h?R2u p=3E/u

This equation determines the polar equation-of:the‘orbit. Clearly, « >0 (we ignore the
case of rectilinear motion), butg may take any real value: We shall always assume the
sense of the motion to be such.that g-increases (i.e., h>0)

Before solve this equation we should verify that there are five cases to consider:

L2 3. 4. 5.
| Il
| I

o 4o f27

Figure 4.2

1.1f,p <0 ,then f (u) has one real zero‘at greater than « and two complex zeros whose
real parts are negative (since the sum of the zerosis « )

For e =2 p=-1
fu
fu

[ 30
500 r
[ 25F

20F

T
10 5

15F

500 - 10

1000} s \4‘\_/2‘/ . o
L /:
Figure 4.3a Figure 4.3b

For a=2 p=-1
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2.1f , 8 =0,f () has adouble zero at u=0 and a simple zero at u =«

For e =2 pB=0

fu

50 -

50

100

150 [~

Figure 4.4a

Figure 4.4b

3.1f,0< g < 4a®/27, f (u) has three real zeros u,,u,,u,, satisfying

u,<0<u,<2af3<u,<a.

Figure 4.5
For e =2 p=1

4.1fp = 4a3/27 , T (u) has a pair.of coincident zerosat“u'= 2« /3 and a simple zero at

u=-a/3.

For a =2 p=32/27

0.008 -

0.006

0.004 -

1F

Figure 4.6a

— u 0002
3

132 134

Figure 4.6b
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5.1f g >4a°/27, f(u) has a real zero with negative u and two complex zeros with

positive real parts.
fu

20

20 -

40 i
Figure 4.7
For a=2 p=2

Since «a(du/d@)? >0, by consideration of the sign of f(u) over the range of all positives

of u, it is possible to establish the character-of each'of the possible orbits in these cases
without further integration.

Casel.
For p <0, f (u hasone real zero at greater thane and twa complex zeros whose real

parts are negative.

We get f (u) = U -a){(u +b)*+c’}

a, b, ¢ being all positive and “a >\ . Clearly,weneed u>a tomake f (u positive.
Apply some method

f ) =55, (4.3.33)
where s, - %(p f) W) -9 (4.3.30)
S, =(+Q (A +D)U +P)° +E-HU -] (4.3.3¢)

p and g are positive numbers given by

p=+{@+b)>+c’}-a qg=+{@ +b)’+c’t+a (4.3.3d)

Then, integrating equation (4.3.2) we find
du

\/[(u +p) 7 -u-a)°l@ +b)u +p)°+@-b)u -g)°]
We now make the substitution

, (4.34)

a¥o=2(p+0|

x =274 (4.3.5)

u+p

where x increases monotonically for increasing u. This give
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a0 = \/T | dx | (4.3.6)
P-b” J@-x>)d +x?)
where
g+b
p-b
We have now arrived at a standard from and can make use of the result (1.3.80) to show
that

d? =

a0 = - |2 on i , (4.3.7)
p-b
the modulus being given by
KPP (4.3.8)
p+q
thus,
x =cn( y8), (4.3.9)
where

y=~{p +0)2a}. (4.3.10)
The polar equation of the orbit now fellows in the form
o Loen GOY- (4.3.11)
q-+pecen(x0)
wherep < q .
We deduce that, as @ increases:-form 0, the trajectory spirals outward from the center,
the mass being at its maximum distance 2/(g<p) = 1/a from O-when ¢ = 2K /5 .

Thereafter, the orbit spirals inward andreaches the center again when o = 4K /y

before, negative values of ¢ «yield the mirror image trajectory, which is identical with
the original.

Case 2.
If g =0, we calculate that

a0 :J' "2 cos (——1) (4.3.12)

uw/(u -a)

(Use the substitutionu = 1/v .)We have ignored the constant of integration, since this can

always be eliminated by suitable choice of the line ¢ = 0. The polar equation of the
orbit is now found to be

r= i(1 +cos ), (4.3.13)

2a
Which is a cardioid. Thus, the particle recedes to a maximum distance 1/2a from the
pole and then falls into the center of attraction.
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Case 3.
If,0< g <4a’/27, f ()

u,<0<u,<2a/3<u,<

has three real zeros u,,u,,u,, satisfying

o .

We get f (U =(u-u,)u-u,)u -u,),where u, <0<u,<u,.Hence, either 0<u=<u,

or u>u, tomakef (u >0, and there are two types of orbit.

Integrating equation (4.3.

(24

Changing the variable by

we reduce the integral to

a-1/20 _

where

2). We get
12, :j du .
VAU U U, -u)}
the transformation
u:u1+1/x2 x>0,

standard form, thus
2 dx

W, -u)u, -uy J\/{(a ZoxH)b?-x%)}

a’=1/(u,-un b’ =1/(u,-u,).

Clearly a>b.

a. If u=x=u,, then x <bandtheresult(1.3:79)may be applied to give

with modulus k, where

(1_1/29 = -ﬁsn —1{1[(U 3" Ul)X}

) "

Ug=U,

1

k? =

Then, the orbit is found to have equation

where

1
F=u=ul+(u3—u1)nsz(7/¢9)

1
V= EV{(U 3 Ul)/a}
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04 -
03[

02

Figure 4.8
u,=-1, u,=1 u,=2

This implies, as ¢ increases from 0, the trajectory spirals outward from the center,
achieving maximum distance 1/u, , when @ = K/y ; it then spirals back into the pole,

arriving there when ¢ = 2K /y .

b.If 0<u<u, then x>a and the standard form (1.3.84) is used to yield

a‘l/zaz-+m'l{,/(uz-ul)x} (4.3.20)
SVAC K ul)

whence

l=u=u1+(u2-u1)sn2(;/¢9) (4.3.21)
r

The constant k and » take the same values as before.

wH

6 4 2 8 2 4 6

4

Figljre4.9
u,=-14, u,=1 u,=2

For this orbit equation (4.3.21), ¢ must equal or exceed ® =sn *[{-u,/(u, -u,)}]
to give positive values for uand r. When ¢ has this limit value w , r is infinite and

further increase in ¢ causes r to decrease to a minimum of 1/u, when ¢ =K/y . If
6 s increased again, r approaches infinity as @ — (2K - )/ y . Thus, the trajectory
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first approaches the center of attraction from infinity and later recedes again to an
infinite distance

Case 4.
If p=4a®/27,then

du o u+da/3
(U -2a/3)yJU +a/3) - u-2a/3
(Put u-2a/3=1/v if u>2a/3and 2a/3-u=1/v if u<2a/3)The equation of the
orbit is accordingly

Y2eosh *

a0 = | . (4.3.25)

10

Figure 4.10

r o COSNOCL G %0 s, (4.3.26a)
2a cosh 6+ 2

_2 NI L e e (4.3.26b)
2a cosh. 60+-2

In (4.3.26a)
For positive values of @, the orbit spirals-outwardfrom the center of attraction,

approaching the circle r = 3/2« asymptatically from inside circle.

For @ =2 p=32/27
In (4.3.26b)
For 6 > cosh ™2, the orbit spirals inward from infinity, approaching the circler
r=3/2a asymptotically from outside the circle.

Reflecting these orbits in line 6 = 0, we obtain the orbits for negative values of ¢,
which represent similar trajectories, traversed in the opposite sense, i.e., diverging
inward and outward from he circular motion.
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1h

AR
Figure 4.11
Case 5.
In case,
flu) =@u+afu -b)*+c’} (4.3.27)

Where a, b, ¢ are all positive; all positive values of u are now admissible. The analysis
proceeds as for Casel. , the signs of a and b being reversed. Thus

p=+{@ +b)*+c’}+a q=+{@ +b)’+c’}-a (4.3.28)

andp>q.
The orbital equation is as given at (4.3d1)
__1-on (9) (4.3.29)
q+pen(70)

and, as @ increases from Oy increases from O-and the orbit spirals outward from the
center. However, the equatien; cn(.78) = -q/p —how has a realroot ¢ for whichr

becomes infinite and the trajectory does not return to the center of attraction. Negative
values of ¢ provide a mirror image orbit along which the mass can fall into the center
of attraction from an infinite distance:

Remark13:

Total energy E = kinetic energy +‘potential-energy
=K+ U

1 -

=—mv’ +des
2
1 B r

= S r%60) [ Lo
2 ©r
1 .

= (1241207 -
2 3r

Angular momentum h =rxm v =(r, ) x1 (i, ro)

The value of his
|h| =r’0
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4.3.2 Orbits under ap /r° Law of Attraction:
If . /r® is the attraction per unit mass, the particle’s potential energy in the field is
- u/4r * and the equations of energy and angular momentum are

%(r2+r292)-i4:E, (26— h . (4.3.30)
These equations lead to the equation
a(:—ue)z=u4-au2+ﬂ=g(u2)=g(V) (4.3.31)
determining the orbits, where
a=2n*/u>0, B =4E/u, v=u’.

g(v) (v =u?)isaquadratic and its zeros distinguish five cases

1. 2 3. 4. 3.

[

L
4

1. p<0,bothzeros v,, v, arereal and: vy<0,v, >a. v>v, forgto be positive.

10 -

10 =

For a=2"pg=-1

2. p=0,zerosare0and « . v=>a onthe orbit.

gv

4 F

For a=2 B =0
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1 .
3. 0< B <=a’,both zeros are real and satisfy
4

the orbit.

O<v,<v,<a. vsv,0r vzv, On

For « =2 p=

N |

1 . 1 . .
4. B = P 2, coincident zeros at v = i . all positive values of v are admissible.

gv
100

gv
010

0.05 -

10~

0.05 -

0.10 -

For a =2 p=1
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1 . . .
5. g >=a?, zeros are complex with positive real parts; all positive values of v are
4

admissible.

10;
For a =2 pg=2

Supposed increases with t (h>0)

Case 1.
du
a(@)2 = (uz -Vl)(u \ -Vz)v

where

1 fl ) 1 /1 ’
V,=—a-.[(a -£)<0, V,=—a+.(-a" -pB)>a.
2 4 2 4

We must have u > /v, . Integration leads to the orbital equation

a0 =(v,-v,)""nc 'l(u/\/f) ,
using the standard integral (1.3.87), the modulusbeing given by

k!
V,-V,
We deduce that
1
r=——cn (y9),
V2
where

7/2 = (v, 'V1)/a-

(4.3.32)

(4.3.33)

(4.3.34)

(4.3.35)

(4.3.36)

Thus, as ¢ increases from-K/y toK/y , the particle spirals out from the center of

attraction to a maximum distance 1/,/v, and then falls back into the center along the

mirror image spiral.
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Case 2.
For g =0, integration of (4.3.30) lead to

-1/20
¢ J‘uw/(u -a)

1
2

12008 (a1 . (4.3.37)

1
2

(Put u=1/r.)Clearly u>a? and r<a 2. The polar equation of the orbit is therefore

= a2cos( 0), (4.3.38)

which is a circle through the center of attraction. Thus, the particle first recedes from O
along one semicircle and then falls back into O along the remaining semicircle.

Case 3.
In this case, 0<v, <v, <« and either u<./v, or u>.lv, .
a. We write
a(j—“9)2=(v1-u2)(vz-u2) (4.3.39)
and then apply the standard integral (1.3.79) to give
r= %ns (y9) , (4.3.40)
vl
with
k? =V1/V2 and yzzvz/a. (4.3.41)

Thus, as ¢ increases from 0 to 2Ky , the'particle approaches the center of
attraction from infinity to-a minimum distance 1/ \/Z and then recedes again to
infinity.
b. If, however, u > v, , then'we write
a(j—”0)2=(vl-u2)(vz-u2) (4.3.42)
and apply the standard integral (1:3.84)..This show that

L o (o) (4.3.43)
.
kand » being given as before.

Hence, as ¢ increase form 0to 2K /y , the particle leaves the center of attraction

Ir =

and recedes from it to a maximum distance 1/./v, ; thereafter, it falls back into pole
O . This is similar to Case 1.

Case 4.
For g - %az we find that

e NEE 4.3.44
' e | .

Solving for u, we derive
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r=1/u = \J(2/a)tanh( 6/~2) or \[(2/a)cosh( 6//2) (4.3.45)
as possible equations for the orbit. The first equation corresponds to a trajectory which
spirals outward from O, approaching the circle r=./(2/a) asymptotically. The

alternative orbit spirals inward from infinity and approaches the same circle
asymptotically.

Case b.
For convenience in later calculations, we shall take the zeros of g(v) to be

1,v2=%a2-bziia‘/(b2-%a2), (4.3.46)

a2=a+2\/z bzz\/z,

taking a and b positive. Note that b* >a?/4 . Thus

\Y

where

Transforming by

u=b—, (4.3.47)
1-t
the last equation becomes
o (2 207 - Latye ep N2 w0, (4.3.48)
dé 4
where
2_2b—a qz_2b+a
2b+a 2b-a

We shall take p, g to be positive and, clearly, p < g Integration, using the standard

form (1.3.89) , now yields
dt

\/{(t p )(t q )}
SC ‘1(t/p)
i)

a+
V(Bab) (4.3.50)

where the modulus is given by
a+2b

The polar equation of the orbit now follows in form
zi.cn (yg)_p'sn (7/6) (4351)
b cn (y0)+p-sn( y@) ’

1/2 _ (b a )1/2

(4.3.49)

k:

where

= @+20)/a").
Consideration of equation (4.3.51) revealsthat r =« ,when 6 =-0 and r=0 when
0 = w , Where

1 ., Ja+2b
@ ==sn"(

y 4b

). (4.3.52)
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(Since a/b<2,w can be found in the interval (0, K).) We conclude that the particle
spirals into the center of attraction form infinity asé increases from-o» tow.

4.3.3 Relativistic Planetary Orbits:

According to the general theory of relativity, a planet falling freely in the gravitational
field of a spherically sun behaves as if it were governed by the Newtonian laws and
were attracted to the sun by a non-Newtonian gravitational force of

1 3h?
u(5+ 5 (4.3.53)
r cr
per unit mass, where h is the angular momentum per unit mass of the planet about the
center of the sun and c is the velocity of light. Thus, its equations of motion are

2

1 : 1 .
(4170 - u(-+——) =E, r’d=h. (4.3.54)
2 r cr
As in the previous sections, putting , we now arrive at the equation
du , 2u » 2u 5 2E
—) ' =—u-u"+—u+— 4.3.55
(de) h? c? h? ( )

determining the orbit.

For all planets in the solar system, the term 2 ...u%/c®is always very small by

comparison with the remaining terms-in equation (4.3.55)
For convenience let

u=p-v/h? (4.3.56)
and then write equation (4.3:55) in the form
(j—‘;)z SRRV A= ) (4.3.57)
where
a =2(u/ch)?, B=-2Eh?/u®. (4.3.58)

This circumstance that a planet’s energy is insufficient to permit its escape from the
sun’s field requires that g > 0 . Also g <1, for otherwise (dv/d@)® <0 in the absence of
the relativistic term. « is very small and positive for all planets in the solar system,
taking its largest value of 5.09 x10® for Mercury.

By graphing the function2v - v* + av?, it is easy to establish that the zeros of f(v) (in
equation(4.3.57)) are all real and satisfy the inequalitieso < v, <1<v, <2<v,, v

being very large. Thus

3

fv) =a(v-v,)V,-VV,-V) (4.3.59)
and, sincef(v) >0, v must lie in the interval (v,,v,)(Remarkl14)
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04

0.2 -

02

04 -

1
For ¢ =107 ==
2

15

1
For a =107 ﬂ:z

Note that v, get larger as «"becomesmaller.

a being small, the zeros of f(v)‘canbe expanded in series of ascending powers of ,
thus

vlzl-e-;—e(l-e)3+0(a2)

v2:1+e+21(1+e)3+0(a2) (4.3.60)
e
1
V,=—-2+0(a)
o
where
e’ =1-8
Integrating equation (4.3.57), we deduce that
a2 dv (4.3.61)

-

\/(v -V IV, -V 5 -V)
Changing the variable in the elliptic integral by v =v, +1/t2 , We bring it to standard
form, thus:
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1/20 _ 2 dv

(24

where

a’=1/(v,-v,), b? =1/(v,-v,).

Use of (1.3.87) now yields the result

a’?g = ﬁns Ut W, -v,)}

With modulus given by

Thus,

V=V, +(V,-v,)sn 2{%,loz(v3 -v,)03}

is the equation of the orbit.

Substituting the expansions (4.3.60), we calculate that
t :—Z(A LB 8% (0))
r
where
A-l-e-2 (1-6)°+0(a?)
2e
B=2+a(3e +1/e)+0(a’)
11 )
n=——@B-ea+0(a”)
2 4

The modulus id determined by
k’ =2ea+0(a’)

If « =0,thenA=1-e, B=2¢, 5 = % k =0, and the orbital equation reduces to

1
—=1-e-cos(8)
r

__\/{(v , -V (VL -V} J\/(t2 -a?)(t?-b?)

(4.3.62)

(4.3.63)

(4.3.64)

(4.3.65)

(4.3.66)

(4.3.67)

(4.3.68)

(4.3.69)

where 1=h?/u . This represents the classical elliptical orbit with semi-latusrectum |

and eccentricity e.

On the relativistic orbit given by equation (4.3.69), perihelion occurs when 6 = K/5
and, on the next occasion, when 6 =3K /. Thus, @ increasesby 2K/ between two
passages through perihelion, instead of the increase of 2z expected from the classical

theory. The advance of perihelion per revolution is accordingly

2K rQ+k? /44
—-27 = -27 =3na
n 1/2-(3-e)a/4+--
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For Mercury, « =5.09 x10° and its period is 88 days. Thus, the advance of
perihelion per century predicted by the theory is 43" ; this is exactly the residual
advance remaining to be explained at the time the new theory was proposed by Einstein.

Remark14:
v > v, isexcluded since this would lead to v — was ¢ —» « ; i.e., the planet would

fall into the sun.
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Chapter5 Conclusion

The goal that people research differential equations is to describe some phenomena in
the real world. However, most of the phenomena are hard to describe and trying to get
the solutions of them is another hard work.

In this paper, we introduce one kind of function defined in complex number, which has
some ‘good’ properties, and these functions have powerful usage for getting the
solutions of integral equations.

To show the effects of these functions, we choose seven physical examples. By
Newton’s mechanics, general theory of relativity and some laws of motions, we use
differential systems to describe these physical phenomena. And then, we use elliptic
Jacobian functions to get the solutions of them. In the end, we compare these solutions
with physical phenomena.

The last three examples (Orbits under ap /r* Law of Attraction, Orbits under ap /r° Law
of Attraction, Relativistic Planetary Orbits) explain the evolution of the modern theories
in Planetary Orbits. The first two examples obey Newton’s law, and the last one is the
model basing on the general theory of relativity-proposed by Einstein. That is the reason
for the difference of the estimation-of Mercury’s period.
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