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橢圓函數之 

理論與運用 
 

 

 

研 究 生 : 劉家豪             指導教授 : 李榮耀 

 

國 立 交 通 大 學 

 

應 用 數 學 系 

 
摘  要 

 
   本篇文章主要是研究古典橢圓函數的理論及其在微分方程式上的運用和分析。 

 

在第一章裡我們定義了橢圓函數並分析其性質，接著介紹了 Weierstrass 和 

Jacobian 這兩個代表性的橢圓函數。 

 

在第二章裡提供了一些分析相位圖的技巧與方法。 

 

在第三章裡利用 Jacobian 函數解 Sine-Gordon equation 所描繪的理想平面鐘擺運

動。接著使用第二章所提供的技巧與方法分析非理想狀態下的平面鐘擺運動。 

 

在第四章裡提供了五個物理問題之數學模式用微分方程式來描繪並運用 Jacodian 

函數來求解。 

 

 

 

 

 

 

 

 

中 華 民 國 九 十 九 年 一 月 
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The Theory and Applications of the Elliptic 

Functions 
Student：Ja-Hou Liu Advisor：Jong-Eao Lee 

Department of Applied Mathematics 

National Chiao Tung University 
 

 

Abstract 
 

In this paper, we study the classical elliptic functions and the applications to the 

differential equations. 

 

In chapterⅠ, we define the elliptic functions and analyze it’s properties. And then, 

we introduce Weierstrass functions and Jacobian functions, the two typical elliptic 

functions. 

 

In chapterⅡ, we analyze phase portraits. 

 

In chapterⅢ, we study the Sine-Gordon equation that describes the ideal 

pendulum motion and use Jacobian functions to represent the solutions. We then 

use the methods in chapterⅡ to analyze pendulum motion with friction. 

 

In chapterⅣ, we provide other five physical models described by differential 

equations and solve them by Jacobian functions. 
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Chapter 1      Elliptic Functions 

1.1.1  Introduction: 

In this chapter, we study the classical elliptic functions and it mainly follows the 

references [3, 4, 5, 10]. Some of the tables follow another reference [6]. Moreover, the 

relation between one period functions and double-period functions are according to the 

references [4, 7]. Figures inside are drawn by the program Mathematica. 

 

1.1.2  Doubly-Periodic functions: 

Let 
1

  
2

  be any two numbers (real or complex) whose ratio is not purely real.  

A function which satisfies the equations 

   zf2zf
1

          zf2zf
2

  ,  

and no further period lies between 0 and 
1

 , and 0 and 
2

  respectively, 

for all values of z for which  zf  exist, is called a doubly-periodic function of z, with 

periods 
1

2  
2

2  

 

1.1.3  Elliptic functions: 

1. The singularity (singular point) 

  If f(z) is not analytic at 
0

zz   then we call 
0

z  is the singularity of f(z). 

  For a singular point 
0

z  if there exists a neighborhood  
0

zN  of 
0

z  such that the    

function f(z) is analytic in  
00

/zzN  then 
0

z  is called a isolated singularity of f(z). 

   

  Moreover, for a isolated singularity of f(z) if there exist an analytic function         

CN ( z ) :g ( z )   such that f(z)g(z)   on  
00

/zzN  then the point 
0

z  is called a 

removable singularity. 
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2. Pole 

  If 
0

z  is isolated singularity and  min Nk   such that   f(z)z-z
k

0
is analytic at 

0
z  then 

0
z  is a pole of function f(z)  

 

3. Elliptic function 

A doubly-periodic function which is analytic (except at poles), and which has no     

singularities other than poles in the finite part of the plane, is called an elliptic 

function. 

Remark 1: 

    A function defined in real is defined in one dimension. It means we can see all the 

function if there is one certain period in it. Furthermore, a function defined in complex 

number is defined in two dimension and a “good” function defined in complex number 

should have two period that is doubly-periodic function. 

 

1.1.4  Period-parallelograms: 

  Suppose that in the plane of the variable z for a elliptic function with two primitive 

periods 
1

  and 
2

  is completely determined in any one of the parallelograms with 

vertices at 
0

z , 
10

2z  , 
210

22z   , 
20

2z  , where Cz
0
  . For proper choice 

of 
0

z , the poles of this elliptic function will not reside on the boundary of any of these 

parallelograms. Such parallelograms are called the cells. 

 

1.1.5  Some properties of elliptic functions: 

1. The number of poles of an elliptic function in any cell is finite. 

2. The number of zeros of an elliptic function in any cell is finite. 

3. The sum of the residues of an elliptic function at its poles in any cell is zero. 

4. Liouvilles theorem 

  An elliptic function with no poles in a cell is merely a constant. 
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1.1.6  The order of an elliptic function: 

1. The order of an elliptic function 

  If  zf  be an elliptic function and c be any constant, the number of roots of equation 

 zf =c which lie in any cell depends only on  zf , and not on c ; this number is 

called the order of the elliptic function. 

2. Some properties of the order of an elliptic function 

a. The number of the elliptic function  zf  is equal to the number of poles of  zf  in   

the cell. 

b. The order of an elliptic function is 2.   

 

Remark2: 

   The elliptic functions with order two are classified as two kinds; the Weierstrassian 

elliptic functions, which have a single double pole in a cell, and the Jacibian elliptic 

functions, which have two simple poles in a cell. 

 

    The importance of the elliptic functions with order two is as indicated by the fact 

that any elliptic function can be in terms of either of these type. We study the elliptic 

functions of order two in the next section. 

 

1.1.7  The Weierstrass elliptic function: 

The Weierstrass elliptic function 

   


 










Znm,

2

21

2

21

/

2
2n2m

1
-

2n-2m-z

1

z

1
(z)


 

where 
/
 denotes that the sum excludes the term when 0nm  and 

1
 ,

2
 satisfy 

the condition that the ratio is not purely real. 

For brevity, we write 
nm,

 in place of 2m
1

 +2n
2

 ,  

so that  

  




Znm,

2-

nm,

2-

nm,

/

2
--z

z

1
(z)                                   (1.1.1) 
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Remark3: 

1. If 
1

2  and 
2

2  are periods whose ratio is real, then it is not double period for a  

  noconstant elliptic function.(In reference [2]) 

a. If 
b

a

2

2

2

1





, where a and b are relatively prime integers, then there exists integers m  

and n such that 1namb   

Let 
21

22   . Then   is a period and we have the following 

 
b

namb
bb

a
nmnm

11

1

2

1

1







 























 , 

So  b
1
  and  a

2
 . Thus 

1
  and 

2
  integer multiples of  . 

b. If 





2

1 ,   is an irrational number. Given 0 , there exist integers p and q such 

that  

221

2

1
22q-2por    q-pq-p 




 














  

but then 
21

2q-2p   would be a period of arbitrary small modulus, which is 

impossible. 

 

2. The weierstrassian function is a elliptic function. 

a. For 
1

             

   

   

( z )                

2n2m

1
-

2n-2m-z

1

z

1
                 

2n2m

1
-

2n-2m-2z

1

)2(z

1
)2(z

Znm,

2

21

2

21

/

2

Znm,

2

21

2

211

/

2

1

1









































 

   By the same way 

   ( z ))2(z
2

   

   Hence (z)  is a doubly-periodic function of z. 
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b. The singular points of (z)  are 
nm,

  and for any 
nm,

  take 2k   then 

  ( z ))-(z
k

nm,
  is analytic on 

nm,
z  . 

 

c. For any finite plane the number of poles are finite. 

 

  From a. b. and c. (z)  is an elliptic function. 

 

1.1.8  Some properties of Weierstrass elliptic function: 

1. (z)  is an even elliptic function of z. 

2.  -3

nm,

Znm,

//
-z-2(z)  



is an odd elliptic function of order three with poles at     

{
nm,

  }and zeros 
1

1)w(2n  ,
2

1)w(2m  ; moreover, 

   ( z ) .)2w(z)2w(z
21

  

3. The differential equation satisfied by (z)  

   
32

32
g-(z)g-(z)4))(z(                                                (1.1.2) 

    where 
-6

nm,

Znm,

/

3

-4

nm,

Znm,

/

2
140g    60g  



 

   and the constant
2

g , 
3

g  are called invariants of (z) ; moreover, 

   
))(w-(z)))((w-(z)))((w-(z)4(            

)e-(z))(e-(z))(e-(z)4((z))(

321

321

2




                   (1.1.3) 

   Where . w--wwith we)(w  e)(w  e)(w
213  332211

  

           and 
ji

ee   for ji   . 

4. The intergral formula for (z)  

    dtg-tg-4tz 2

1
-

32

3

(z)



                                           (1.1.4) 

5. The addition-theorem for the function (z)  

   If 0wvu  ,then 

  0( v ) )-( u )( w ) (( w ) )-( u )( v ) (-( w ) )-( v )( u ) (             (1.1.5) 
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  That is 

  0

1)(w(w)

1)(v(v)

1)(u(u)









 

  and (u) , (v) , (w) ,are all unequal. 

 

Remark 4: 

 By (1.1.2)and (1.1.3) 

 If 
1

e(u)  ,
2

e(v)  ,
3

e(w)   and 0wvu   

 then 
1

e ,
2

e ,
3

e ,are the roots of the equation 0g-tg-4t
32

3
    

 That is 
321

eee   

       
4

g
eeeeee

2

133221
  

       
4

g
eee

3

321
  

 

 7. Another form of the addition-theorem 

   -
(y)-(z)

(y)-(z)

4

1
y)(z

2












 (z) - (y)                                  (1.1.6) 

     ( z )2-
( z )

( z )

4

1
( 2 z )

2













 
  unless 2z  is a period.                   (1.1.7) 

 

1.1.9 The Riemann-Zeta function ζ(z): 

The function  z  defined by the equation 

    
 

( z )-
dz

zd



 with   0}

z

1
-z{lim

0- z




 .                              (1.1.8) 

The limit condition in (1.1.8) is to assure that  z  has simple pole at 0z  . 

and so   























/

nm, 2

nm,nm,nm,

z1

-z

1

z

1
z  
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1.1.10  Some properties of The function ζ(z): 

 z  is odd with a simple poles 
nm,

 , but is not doubly periodic. In fact,  z  is 

quasi-periodic elliptic function, 

  
   

   
22

11

2z2z

2z2z








                                                       (1.1.9) 

  where  

      
1211

2  ,    

  with  

   i 
2

1
-

1221
   

 

1.1.11  The sigma function σ(z): 

    The function (z)  defined by the equation 

 z(z)log
dz

d
   with 1

z

(z)

lim
0z













                                  (1.1.10) 

The limit condition in (1.1.10) is to assure that (z)  has simple zero at 0z  . 

So 
















































nm,
2

2

nm,nm,

/

nm,
2

zz
exp

z
-1z(z)  

 

1.1.12  Some properties of The functionσ(z): 

 The function (z)  is an odd entire function with simple zeros at all the points 
nm,

 , 

and is quasi-periodicity, 

(z) )}(z-exp{2)2(z

(z) )}(z-exp{2)2(z

222

111








                                 (1.1.11) 

 

1.1.13  Expression of elliptic function: 

1. Any elliptic function can express in terms of (z)  and 
/

(z)  

2. Any elliptic function can express in terms of linear combination of Zeta-functions and 

their derivates. 
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3. Any elliptic function can express in terms of quotient of Sigma-functions. 

 

1.2.1  Theta functions: 

  Let τ be a (constant) complex number whose imaginary part is positive; and 

write  i 
eq  , so that 1q   

Consider the function  qz, , defined by the series 

             






 - n

2 n i znn
eq( - 1 )qz,

2

 ,                                 (1.2.1) 

qua function of the variable z. 

 

It is evident that   






1n

nn
cos2nzq(-1)21qz,

2

  

Sand that    qz,q,z   ; 

Further    2niz2nn

-n

n
eqq(-1)q,z

2






   

                  








-n

iz1n21)(n1n2iz-1-
eq(-1)e-q

2

, 

And so     qz,e-qq,z
-2iz-1
   

 

1.2.2 The four types of Theta functions: 

It is customary to write  qz,
4

  in place of  qz, ;the other three type of 

Theta-functions are defined as follows: 

  
















0n

)
2

1
(n

n

4

i
4

1
iz

1
1)zsin(2nq(-1)2q,

2

1
z-ieqz,

2




               (1.2.2) 

  1)zcos(2nq2              q,
2

1
zqz,

0n

)
2

1
(n

12

2









 







                    (1.2.3) 

  














1n

n

43
cos2nzq21                 q,

2

1
zqz,

2

                       (1.2.4) 

  cos2nzq(-1)1qz,
2

n

1n

n

4 




                                         (1.2.5) 
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Writing down the series at length, we have 

  .....-sin5z2qsin3z2q-sinz2qqz, 4

2.5

4

9

4

1

1
                              (1.2.6) 

  .....cos5z2qcos3z2qcosz2qqz, 4

2.5

4

9

4

1

2
                            (1.2.7) 

  .....cos6z2qcos4z2q2qcos2z1qz,
94

3
                           (1.2.8) 

  .....cos6z2q-cos4z2q2qcos2z-1qz,
94

4
                            (1.2.9) 

 

 For brevity,  

1. The parameter q will usually not be specified, so that   ... ,z
1

 will be written for   

  ..... ,qz,
1

  

 

2. When it is desired to exhibit the dependence of a Theta-function on the parameter  , 

it will be written   |z . 

 

3.        0 ,0 ,0 ,0
4321

  will be replaced by 
4321

 , , ,  and 


1
 will denote the  

result of making z equal to zero in the derivate of (z)
1

 . 

 

1.2.3  Some properties of Theta functions: 

1.  qz,
1

 is an odd function of z and that the other Theta-functions are even functions 

of z. 

2. The relations between the squares of the Theta-functions 

        2

3

2

1

2

2

2

4

2

4

2

2
(z)-zzz                                        (1.2.10) 

        2

2

2

1

2

3

2

4

2

4

2

3
( z )-zzz                                        (1.2.11) 

        2

3

2

2

2

2

2

3

2

4

2

1
( z )-zzz                                        (1.2.12) 

        2

2

2

2

2

3

2

3

2

4

2

4
( z )-zzz                                        (1.2.13) 

  Form equation (1.2.13), let z=0 we get fallowing equation. 

  4

3

4

2

4

4
  .                                                   (1.2.14) 
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3. The addition-formulae for the Theta-functions 

        ( z )( y )-( z )yy-zyz
2

1

2

1

2

3

2

333
                             (1.2.15) 

4. Jacobis expressions for Theta-functions as infinite priducts 

      






1n

4n2n2n4

1

1
qcos2z2q-1q-1sinz2qqz,                         (1.2.16) 

      






1n

4n2n2n4

1

2
qcos2z2q1q-1cosz2qqz,                        (1.2.17) 

      






1n

2-4n2n2n

3
qcos2z2q1q-1qz,                              (1.2.18) 

      






1n

2-4n2n2n

4
qcos2z2q-1q-1qz,                               (1.2.19) 

5. The differential equation satisfied by Theta-function 

  
   
















   z

i 

4
-

z

  z
3

2

3                                         (1.2.20) 

6. A relation between Theta-functions of zero argument 

     (0)(0)00
4321

 


                                          (1.2.21) 

7. Sigma-function can express in terms of Theta-functions 

  so any elliptic function can express in terms of Theta-functions 

8. Landen‟s type of transformation 

 
   

 

   

 







2|0

|0|0

2|2z

|z|z

4

43

4

43
                                     (1.2.22) 

9. The differential equation satisfied by quotients of Theta-functions 

  a.
 

 

 

 

 

 z

z

z

z

z

z

dz

d

4

3

4

22

4

4

1























                                      (1.2.23) 

  b.
 

 

 

 

 

 z

z

z

z
-

z

z

dz

d

4

3

4

12

3

4

2























                                     (1.2.24) 

  c.
 

 

 

 

 

 z

z

z

z
-

z

z

dz

d

4

2

4

12

2

4

3























                                     (1.2.25) 
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From (1.2.23)     

We write 
 

 z

z

4

1




   and use the result of relations between the squares of the   

Theta-functions. 

    We see that 

    )-)(-(
dz

d 2

2

22

3

2

3

22

2












                                   (1.2.26) 

     Write 
32

2

1

2

323
/k   zu    /y    and k is called modulus 

     We get equation 

     )yk-)(1y-(1)
du

dy
(

2222
                                        (1.2.27) 

    This differential equation has the particular solution 

    
 
 2-

34

-2

31

2

3

u

u
y








                                                (1.2.28) 

 

Rmark5: 

1. Let k   be called the complementary modulus such that 1kk
22
 , that is 

2
k-1k   

2. The number u will be called the argument and the number 2
km   be called the 

parameter of the functions. 

3. The complementary parameter is the number m-1m
1
 , that is 2

1
km   
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1.3.1  Jacobian function: 

From (1.2.26) and (1.2.27) we know 
 
 2-

34

-2

31

2

3

u

u
y








  is a particular solution of 

differential equation )yk-)(1y-(1)
du

dy
(

2222
   

We have the integral representation of y is 

dt

)tk-)(1t-(1

1
u

222

y(u)

0                                          (1.3.1) 

so we defined y = sn (u, k) or simply  y = sn (u) ,when it is unnecessary to emphasize 

the modulus k  

Clearly, dt

)tk-)(1t-(1

1
k) (x,sn

222

x

0

1-

  

Jacobian functions defined as follow 

        sn (u)=
 
 2

342

2

313

u

u




                                         (1.3.2) 

        cn (u)=
 
 2

342

2

324

u

u




                                         (1.3.3) 

        dn (u)=
 
 2

343

2

334

u

u




                                         (1.3.4) 

 

From (1.2.24) (1.2.25)  

We get the following integral equations 

 If dt

)tkk)(t-(1

1
u

2222

1

y(u)


    then  k)(u,cn y(u)   

    and dt

)tkk)(t-(1

1
k)(x,cn

2222

1

x

1-


                             (1.3.5) 

 If dt

)k-)(tt-(1

1
u

222

1

y(u)


      then  k)(u,dn y(u)   

    and dt

)k-)(tt-(1

1
k) (x,dn

222

1

x

1-


                               (1.3.6) 
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    This integrals (1.3.1), (1.3.5), (1.3.6) are called the elliptic integral of the first  

kind.  

 

Glaishers nation for quotients. 

   A short and convenient notation has been invented by Glaisher to express reciprocals    

and quotients of the Jacobian elliptic functions 

 

    1 / d n ( u )( u ) nd               (u)1/cn (u) nc             (u)1/sn (u) ns              (1.3.7) 

   sc (u) = sn (u) /cn (u)    sd (u) =sn (u) /dn (u)     cd (u) =cn (u) /dn (u)            

   cs (u) = cn (u) /sn (u)    ds (u) =dn (u) /sn (u)     dc u=dn (u) / cn (u)            (1.3.8) 

 

   We have the following results 

   



























u nd

1

2

1
-

222

1
-

2

u nc

1

2

1
-

2222

1
-

2

u ns

2

1
-

222

1
-

2

1

u dc

2

1
-

222

1
-

2
1

u cd

2

1
-

222

1
-

2

u ds

2

1
-

222

1
-

22
u sd

0

2

1
-

222

1
-

22

u cs

2

1
-

222

1
-

2
u sc

0

2

1
-

222

1
-

2

dt.)tk-(11)-(t   

dt)ktk(1)-(t           dt)k-(t-1)(t   

dtt)k-(t1)-(t         dt)tk-(1)t-(1   

dt)k(t)k-(t   dt)tk(1)tk-(1   

dt)k(t1)(tdt      )tk(1)t(1u

 

 

1.3.2  Some relation between Jacobian function: 

1.    ( u )d n   ( u )c n  ( u )s n  
du

d
                                         (1.3. 9)  

2.       1(u)cn(u)sn
22

                                          (1.3.10)  

3.     1( u )dn(u)snk
222

                                          (1.3.11) 

4.      1( 0 )d n  ( 0 )c n                                               (1.3.12) 

 

Differentiate the equation 1(u)cn(u)sn
22

  and use relation equation (1.3.9) we get 

equation (1.3.13) 
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5.     (u)dn  (u)-sn 
du

(u)cn  d
                                        (1.3.13) 

From equation 1(u)dn(u)snk
222

 and equation (1.3.9) we have equation (1.3.14) 

 

6.     (u)cn  (u)sn -k
du

(u)dn  d 2
                                      (1.3.14) 

Moreover  

(u))sn-(u))(1snk-(1       (u)dn  (u)cn (u)sn 
du

d 222
         (1.3.15) 

  ( u ) )cn-(u))(1cnk-k(      (u)dn  (u)-sn (u)cn 
du

d 2222
       (1.3.16) 

(u))dn-)(1k-(u)(dn   (u)cn  (u)sn -k(u)dn 
du

d 2222
        (1.3.17) 

And 

(u)dn  (u)cn   (u)sn 
du

d
 , (u)dn  (u)sn -  (u)cn 

du

d
 ,         (1.3.18) 

(u)cn  (u)sn  m-  (u)dn 
du

d
                   (1.3.19) 

(u) ns (u) ds-  (u) cs
du

d
   ( u ) cs (u) cs-  (u) ns

du

d
          (1.3.20) 

(u) ns (u) cs-  (u) ds
du

d
                     (1.3.21) 

(u) nc (u) dc  (u) sc
du

d
   ( u ) dc (u) sc  (u) nc

du

d
           (1.3.22) 

(u) nc (u) sc m (u) dc
du

d
1

                    (1.3.23) 

(u) nd (u) sd (u) sd
du

d
   ( u ) nd (u) sd-m (u) cd

du

d
1

         (1.3.24) 

(u) cd (u) sd m (u) nd
du

d
                    (1.3.25) 
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7. Relations between the Squares of the Jacobian Functions 

1(u) cn(u) sn
22

           1( u ) sn m(u) dn
22

          (1.3.26) 

1

22
m(u) cn m-(u) dn                      (1.3.27) 

1(u) cs -(u) ns
22

            
1

22
m( u ) cs -(u) ds          (1.3.28) 

m(u) ds -(u) ns
22

                      (1.3.29) 

1(u) cd -(u) sd m
22

          1( u ) sd m-(u) nd
22

        (1.3.30) 

1(u) nd m-(u) cd m
2

1

2
                    (1.3.31) 

1(u) sc-(u) nc
22

           1( u ) sc m-(u) dc
2

1

2
         (1.3.32) 

m(u) nc m-(u) dc
2

1

2
                     (1.3.33) 

 

with the aid of these identities the square of any function can be expressed in terms of 

the square of any other. In particular 

 

(u) dsm

1

(u) cs1

1
(u) sn

22

2





                 (1.3.34) 

                      
m-( u ) ds

m

(u) sc1

1
(u) cn

2

1

2

2



                 (1.3.35) 

  
( u ) cd m-1

m

(u) sd m1

1
(u) dn

2

1

2

2



              (1.3.36) 

 

1.3.3  Some properties of Jacobian functions: 

1. sn (u)  is an odd function of u 

  cn (u)  is an even function of u 

  dn (u)  is an even function of u 
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    Double and Half Arguments 

    
( u )( u ) d nsn(u)cn

(u)dn  (u)2sn(u)cn 
    

(u)sn k-1

dn(u) cn(u) (u)sn  2
(2u)sn 

22242


                   (1.3.37) 

   
( u )( u ) d nsn(u)cn

(u)dn (u)sn-(u)cn
    

(u)sn k-1

(u)dn (u)sn- (u)cn
(2u)cn 

222

222

42

222


                (1.3.38) 

    
1 )-( u )( u ) ( d ncn-(u)dn

1)-(u)(u)(dncn(u)dn
    

(u)sn k-1

(u)cn (u)snk- (u)dn
(2u)dn 

222

222

42

2222


           (1.3.39) 

    
( u )cn

(u)dn (u)sn
  

(2u)cn 1

(2u)cn -1

2

22




                                        (1.3.40) 

    
( u )dn

(u)cn (u)snk
  

(2u)dn 1

(2u)dn -1
2

222




                                      (1.3.41) 

     
( 2 u )d n  1

( 2 u )c n  -1
u)

2

1
(sn

2


                                             (1.3.42) 

     
(2u)dn 1

(2u)cn (u)dn 
u)

2

1
(cn

2




                                                 (1.3.43) 

  
( u )d n  1

( u )c n  k ( u )d n  k
u)

2

1
(dn

22

2




                                           (1.3.44) 

 3. The addition-theorem for Jacobian function . 

   
( v )sn (u)snk-1

(u)dn  (u)cn  (v)sn (v)dn  (v)cn  (u)sn 
v)sn(u

222


                       (1.3.45) 

  
( v )sn (u)snk-1

 (v)sn  (u)sn - (v)cn  (u)cn 
v)cn(u

222
                                 (1.3.46) 

   
( v )sn (u)snk-1

(v)cn  (u)cn  (v)sn  (u)sn k- (v)dn  (u)dn 
v)dn(u

222

2

                     (1.3.47) 

(v)(u)snsnk-1

(v)sn-(u)sn
v)-(usn  v)(usn 

222

22

                                (1.3.48) 

(v)(u)snsnk-1

(u)dn  (v)cn  sn(v)(v)dn  (u)cn  (u)sn 
v)-(ucn  v)(usn 

222


                   (1.3.49) 

(v)(u)snsnk-1

(u)cn  (v)dn  sn(v)(v)cn  (u)dn  (u)sn 
v)-(udn  v)(usn 

222


                   (1.3.50) 

(v)(u)snsnk-1

(u)dn (v)sn-(u)cn
v)-(ucn  v)(ucn 

222

222

                             (1.3.51) 
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(v)(u)snsnk-1

 (v)sn  sn(u)k(v)cn(v)dn  (u)dn  (u)cn 
v)-(udn  v)(ucn 

222

2


               (1.3.52) 

(v)(u)snsnk-1

(v)sn (u)cnk-(u)dn
v)-(udn  v)(udn 

222

2222

                          (1.3.53) 

 

4. The constant K  , K   

 a. Symbol K  is a function of k such that sn (K, k) = 1 

   In other words, 

   
1

0

2

1
-

222

1
-

2
d t       )tk-(1)t-(1 (k)K                                  (1.3.54) 

   and  sn K = 1,  cn K = 0 ,  dn K = k   

    

 b. Symbol K  is a function of k   

    
1

0

2

1
-

222

1
-

2
dt      )tk-(1)t-(1)k( K                                 (1.3.55) 

 

Remark5: 

 1. )m( Km)-(1 K (m)K   

 2. 
2

1
K(0)   

    ( 0 )K  

 3.  Another form of K and K   

    
2

0

2

1
-

22
      d))(sink-(1 (k)K 



                                  (1.3.56) 

     
2

0

2

1
-

22
      d))(sink-(1(k) K



                                 (1.3.57) 

 

5. The periodic properties of the Jacobian elliptic functions 

   a. associated with K  

     

 ( u )d n   2 K )(udn 

(u)cn  4K)(ucn 

(u)sn  4K)(usn 







                                            (1.3.58) 
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   b. associated with KiK   

     

( u )d n  )K4i4Kdn(u     (u)-dn )K2i2Kdn(u

(u)cn )K4i4Kcn(u      (u)cn   )K2i2Kcn(u

(u)sn   )K4i4Ksn(u     (u)sn  -)K2i2Ksn(u







                (1.3.59) 

   c. associated with Ki   

     

( u )d n  )K4i(udn       (u)-dn )K2i(udn 

(u)cn )K4i(ucn        (u)-cn )K2i(ucn 

(u)sn  )K4i(usn         (u)sn   )K2i(usn 







                       (1.3.60) 

    

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1  

Special Values of Argument 

 

u sn (u) cn (u) dn (u) 

0 0 1 1 

K
2

1
 

2

1

2

1

1
)m(1

1



 

2

1

2

1

1

4

1

)m(1

m



 
4

1

1
m  

K 1 0 
2

1

1
m  

2K 0 -1 1 

Ki
2

1
  4

1
-

im  

4

1

2

1

2

1

m

)m(1 
 

2

1

2

1

)m(1   

Ki         

K2i   0 -1 -1 

KiK   
2

1
-

m  2

1

1
/m)i(m-  

0 

K2i2K   0 1 -1 
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Remark6: 

   For any Jacobian elliptic functions pq (u) 

   k)(u, pq  k),K4i(u pq)k  ,4K u ( pq   

 

 

 

 

 

 

 

              Table 2  Periods 

                     

 sn (u) cn (u) dn (u) 

Zeros 2K 0,  3K K,  K3iK ,KiK   

Poles Ki,2KKi   Ki2K ,Ki   K3i ,Ki   

Periods K2i 4K,   K2i2K 4K,   K4i 2K,   

          Table 3  Zeros, Poles and Periods 

6. Jacobi ś imaginary transformation 

  sn (iu , k)= i sc (u, k  )  cn (iu , k) = nc (u, k  )  dn (iu , k) = dc (u , k  )    (1.3.61) 

   

If y ixz  , the addition theorems the give with 

k) ,(x sn s
1
 ,  )k ,(y sn s

2
 , 

k) ,(x cn c
1
 , )k ,(y cn c

2
 , 

k) ,(x dn d
1
 , )k ,(y dn d

2
  

2

2

2

1

22

2

221121

s s kc

c s d c i  d s
k) , sn(z




                                          (1.3.62) 

2

2

2

1

22

2

211121

s s kc

d s d s i - c c
k) , cn(z


                                          (1.3.63) 

2

2

2

1

22

2

211

2

221

s s kc

 s c s k i - d c d
k) , dn(z


                                       (1.3.64) 

Periods     

K4i ,2K   cs (u) sc (u) dn (u) nd (u) 

K2i ,4K   ns (u) dc (u) sn (u) cd (u) 

K2i2K ,4K   ds (u) nc (u) cn (u) sd (u) 
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Argument sn cn dn 

u sn (u) cn (u) dn (u) 

-u -sn (u) cn (u) dn (u) 

Ku   cd (u) (u) sd k-   (u) ndk   

K-u  - cd (u) (u) sd k   (u) ndk   

u-K  cd (u) (u) sd k   (u) ndk   

2Ku   - sn (u) - cn (u) dn (u) 

2K-u  - sn (u) - cn (u) dn (u) 

u-2K  sn (u) - cn (u) dn (u) 

Kiu   (u) ns k
-1  (u) ds k i-

-1  (u) cs i-  

K2iu   sn (u) - cn (u) - dn (u) 

KiKu   (u) dc k
-1  (u) nc kki-

-1
  (u) sck i   

K2i2Ku   - sn (u) cn (u) - dn (u) 

Table 4 

Chang of Argument 

 

1.3.4 The Jacobian elliptic function and the trigonometric 

functions: 

1. Observation: 

  Recall the integral representation of (u)sn in (1.3.1), 


(u)sn 

0 222
dt

)tk-)(1t-(1

1
u                     (1.3.65) 

a. When                                  

0k  , 

   

  (1.3.65) becomes 


(u)sin 

0 2
x-1

dt
u                        (1.3.66) 

  That is, 
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                       ( u )s n  degenerate to (u)sin as 0k  . 

 

b. When  

1k  , 

  (1.3.65) becomes 




d
-1

1
u

(u)tanh 

0 2                        (1.3.67) 

  That is, 

(u)sn degenerate to (u)tanh as 1k  . 

  Similarly, 

 (u)cn  degenerate to (u) cos  as 0k  , 

                   ( u )d n   degenerate to 1 as 0k  , 

  and 

 (u)cn  degenerate to (u)sech  as 1k  , 

                   ( u )d n   degenerate to (u)sech  as 1k  , 

2. Exact: 

     Changing the variable by )(sin t  , the integral (1.3.65) is reduced to 

Legendre’s form, 




d)sink-(1 k) ,(sinsnk) ,F(
2

1
-

0

221-

                (1.3.68) 

   Then, expanding the integrand in ascending powers of 2
k and integrating term by 

term, we find that 

.......)cossin-(k
4

1
k) ,(sinsn

21-
   ,         (1.3.69) 

which is equivalent to 

........)x-1x-(x)(sink
4

1
(x)sink) (x,snu

21-21-1-
 .     (1.3.70) 

where sinx   
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 This series can now be inverted to expand (u)sn in powers of 2
k , thus: 

        )]O(k(x))sin-)x-(1(xk
4

1
sin[uxk) (u,sn 

41-22
  

                        )O(k(x))cos(u)sin-)x-(1(xk
4

1
sin(u)

41-22
  

                        )O(ku)cos(u)-(u)(sin(u)cosk
4

1
sin(u)

42
          (1.3.71) 

  Moreover, 

  1. When the parameter 2
km   is small that its square may be neglected, the 

following approximations may be used to calculate the elliptic functions in terms of 

circular functions. 

                 u ) )s i n ( u ) c o s (-c o s ( u ) ( u m
4

1
 -( u )s i n  )m ( u  s n   ,         (1.3.72) 

    u ) )s i n ( u ) c o s (-s i n ( u ) ( u m
4

1
( u ) c o s)m ( u  c n   ,         (1.3.73) 

                 ( u )s i n m
2

1
 -1)m ( u  d n  

2
 ,                          (1.3.74) 

 

  2. When the parameter 2
km   is so near unity that the square of the complementary 

parameter 2

1
k-1m-1m  may be neglected, the following approximations may 

be used to calculate the elliptic functions in terms of hyperbolic functions. 

         u)-)cosh(u)(u)(sinh(usech m
4

1
 (u)tanh )m (u sn 

2

1
 ,          (1.3.75) 

         u)-)cosh(u)(u)(sinh(u(u)sech  tanh m
4

1
 -(u)sech )m (u cn 

1
 ,     (1.3.76) 

         u))cosh(u)(u)(sinh(u(u)sech  tanh m
4

1
 (u)sech )m (u dn 

1
 ,    (1.3.77) 
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1.3.5 General form of the elliptic integral of the first kind: 

1. integral of the Jacodian function sn (u) 

By changing the variable in the integral (1.3.1) using the substitution bst  , we 

calculate that 

1)x(0        dt)}tk-)(1t-{(1uk) (x, sn
x

0

2

1
-

2221-
   

                         ds)}s-)(bs-{(aa
bx

0

2

1
-

2222

                  (1.3.78) 

   where akbb0   

   It now follows that 

dt

)}t-)(bt-{(a

1
)

a

b
 ,

b

x
( sn

a

1 x

0 2222

1-

               (1.3.79) 

   where abx0   

 

2. integral of the Jacodian function cn (u) 

   In the same way 

 By changing the variable in the integral (1.3.5) using the substitution, 

bst  , )b(abk
22

   

   After some manipulation, we arrive at the formula 

b)x(0      dt

)}t-)(bt{(a

1
]

)b(a

b
 ,

b

x
[cn

)b(a

1 b

x 222222

1-

22







   (1.3.80) 

 3. More results below: 

   

a,bx0      ,dt

)t-)(bt-(a

1
 a

                           ]
a

b
 ,

b

x
[cd

b

x 2222

1-

 

                            (1.3.81) 

 

   

b,x0      ,dt

)t-)(bt(a

1
)b(a

]

)b(a

b
 ,

ab

x)b(a
[sd

x

0 2222

22

22

22

1-













                       (1.3.82) 
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x,ab      ,dt

)b-)(ta-(t

1
 a

                           ]
a

b
 ,

b

x
[dc

x

a 2222

1-

 

                               (1.3.83) 

 

    

x,ab      ,dt

)b-)(ta-(t

1
 a

                           ]
a

b
 ,

a

x
[ns

x 2222

1-

 


                                    (1.3.84) 

 

    

a,xb      ,dt

)b-)(tt-(a

1
 a

                           ]
a

)b-(a
 ,

b

x
[nd

x

b 2222

22

1-

 

                                    (1.3.85) 

 

    

a,xb      ,dt

)b-)(tt-(a

1
 a

                           ]
a

)b-(a
 ,

a

x
[dn

a

x 2222

22

1-

 

                                     (1.3.86) 

 

    

x,a      ,dt

)b)(ta-(t

1

                           ]

)b(a

b
 ,

a

x
[nc

x

a 2222

22

1-











                                        (1.3.87) 

 

    

x,a      ,dt

)b)(ta-(t

1
 )b(a

                           ]

)b(a

b
 ,

)b(a

x
[ds

x 2222

22

2222

1-












                              (1.3.88) 
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,x,0   a,b0     ,dt

)b)(ta(t

1
 a

                           ]
a

)b-(a
 ,

b

x
[sc

x

0 2222

22

1-





 

                             (1.3.89) 

 

     

x,0   a,b0      ,dt

)b)(ta(t

1
 a

                           ]
a

)b-(a
 ,

a

x
[cs

x 2222

22

1-





 


                           (1.3.90) 

 

1.3.6 Some graphs of Jacobian functions: 

 

   1. Jacobian function sn u 

   a. k)(u,sn  

 

 

                               Figure 1.1 
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 b. sn(u,1)  

 15  10  5 5 10 15
u

 1.0

 0.5

0.5

1.0

sn

 

 

Figure 1.2 

    

c. )
3

2
sn(u,  

 15  10  5 5 10 15
u

 1.0

 0.5

0.5

1.0

sn

 

                               Figure 1.3 

    d. )
2

1
sn(u,  

 15  10  5 5 10 15
u

 1.0

 0.5

0.5

1.0

sn

 

                                       Figure 1.4 
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Remark 7: . 

   sn (u)  is an odd periodic function of u for u is real. Moreover the period is larger 

when k is larger.  

 

    We only consider that the Jacobian function sn u is defined in real number when we 

sketch the graphs above. However, the Jacobian function sn (u) is a function from 

complex number to complex number. Because this function is from two dimension to 

two dimension, it means that we have to analyze it in a four dimension space. It is 

difficult for us to do this. 

  

     Therefore, we use the method below to analyze the Jacobian function sn (u) defined 

in complex number. 

  

     First, we define two new functions Re(u), Im(u). Re(u) is a function that we take the 

real part of the Jacobian function sn u and Im(u) is another function we take the 

imaginary part of the Jacobian function sn (u). That is Re(u) = Re{sn(u)} and 

Im(u)=Im{sn(u)}. 

  

 Example :  

        1. i 0.203738- 0.660252)
2

1
 , 4i(3sn     

             0 . 6 6 0 2 5 24 i )R e ( 3   

            0 . 2 0 3 7 3 84 i )I m ( 3   

 

        2. i  0.0512946 + -1.475982i)-sn(6   

             -1.475982i)-Re(6   

           0.0512946 2i)-Im(6   

 

   Second, we can use two three-dimensional figures of Re(u) and Im(u) to represent 

the behavior of the Jacobian function sn (u). It is obvious that the Jacobian function  

sn (u) is a doubly-periodic function of u and there is a smallest unit parallelogram that 
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can be repeated to form the entire graph. 

 

   In the end, we want to examine whether the graphs of Re(u) and Im(u) are right 

when the domain of the Jacobian function sn (u) is restricted in real number. It is 

coincident that the range of the Jacobian function sn (u) defined in real umber is also 

real.  

 

   Now, in order to observe the graph or Re(u) clearly, we take the value of x-axis ( real 

part of u ) from -5 to 5 and the value of y-axis ( imaginary part of u ) from 0 to 5. It is 

easy to discover that the intersection of the plane y = 0 and the graph of Re(u) is the 

figure of the Jacobian function sn u defined in real number.  

 

   In comparison, we find that the three-dimensional figure of the intersection and the 

two-dimensional graph of the Jacobian function sn (u) defined in real number are the 

same. In the other hand, the value of Im(u) is zero in the three-dimensional figure when 

y = 0. 

 

   We can use the same way to observe the Jacobian function cn (u) and the Jacobian 

function dn (u) . 
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Figure 1.5 

The figure Im(u) represents the imaginary part of Jacobian function )
2

1
sn(u,  for 

complex number u . 
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Figure 1.6 

The figure Re(u) represent the real part of Jacobian function )
2

1
sn(u,  for complex 

number u . 

 

Figure 1.7 
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Figure 1.8 

The graph of Re(u) for x-axis from -5 to 5 and y-axis from 0 to 5 

 

. 

 

     

 4  2 2 4
u

 1.0

 0.5

0.5

1.0

sn

 

              Figure 1.11     

       The jacobian function sn(u). 

 

 

 

 

 

 

 

Figure 1.9 

We can see the intersection line 

from this direction. 

Figure 1.10 

The imaginary part of function 

sn(u).  
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2. Jacobian function cn(u) 

   a. k)cn(u,  

               

                               Figure 1.12 

 

b. cn(u,1)  

 4  2 0 2 4
u

0.2
0.4
0.6
0.8
1.0

cn

 

Figure 1.13 

c. )
3

2
cn(u,  

 15  10  5 5 10 15
u

 1.0

 0.5

0.5

1.0

cn

 

                               Figure 1.14 
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d. )
2

1
cn(u,  

 15  10  5 5 10 15
u

 1.0

 0.5

0.5

1.0

cn

 

Figure 1.15 

Remark 8:  

    c n ( u )is an even periodic function of u for u is real. Moreover the period is larger 

when k is larger. 

 

 

 

Figure 1.16 

The imaginary part of the Jacobian function 








2

1
u,cn  
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Figure 1.17 

The real part of the Jacobian function 








2

1
u,cn  

 

Figure 1.18 
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Figure 1.19 

 

 

 

 

 

 

 

      

 

 

 

 4  2 2 4
u

 1.0

 0.5

0.5

1.0

cn u

 

           Figure 1.22 

   The jacobian function cn(u) 

 

The real part of the Jacobian function 








2

1
u,cn for 

x-axis from -5 to 5 and y-axis from 0 to 5 

Figure 1.20 

We can see the intersection line 

from this direction. 

Figure 1.21 

The imaginary part of function 

cn(u).  
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3. Jacobian function dn u 

a. k)dn(u,  

 

 

Figure 1.23 

 

b. dn(u,1)  

 4  2 0 2 4
u

0.2
0.4
0.6
0.8
1.0

dn

 

Figure 1.24 

 

Remark 9: 

       c n ( u , 1 )d n ( u , 1 )  

       By definition 

       

dt

)k-)(tt-(1

1
V

dt

)tkk)(t-(1

1
u

222

1

k)dn(v,

2222

1

k)cn(u,










 

       1kk
22
     

       For k=1 then 0k   and             

)0-)(tt-(1

1
dt

)tt-(1

1
dt

)t1)(0t-(1

1
u

222

1

dn(u,1)
22

1

cn(u,1)
2222

1

cn(u,1)  



 dt  

Therefore,  cn(u,1)dn(u,1)  . 
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c. )
3

2
dn(u,  

 15  10  5 5 10 15
u

0.7

0.8

0.9

1.0

dn

 

Figure 1.25 

 

d. )
2

1
dn(u,  

 15  10  5 5 10 15
u

0.80

0.85

0.90

0.95

1.00

dn

 

Figure 1.26 

 

Remark 10:  

    d n ( u )is an even periodic function of u for u is real. Moreover the period is larger 

when k is larger. 



                                      38 

 

  

Figure 1.27 

The imaginary part of the Jacobian function 








2

1
u,dn  

 

 

Figure 1.28 

The real part of the Jacobian function 








2

1
u,dn  
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Figure 1.29 

 

 

Figure 1.30 

 

 

 

 

 

 

 

 

 

The real part of the Jacobian function 








2

1
u,dn for 

x-axis from -5 to 5 and y-axis from 0 to 5 
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 4  2 2 4
u

1.00

dn

 

            Figure 1.33 

     The jacobian function dn(u) 

 

4. Jacobian function sc u 

 

 

 

Figure 1.34 

 

 

 

 

Figure 1.32 

The imaginary part of dn(u). 

Figure 1.31 

We can see the intersection line 

from this direction. 
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Chapter 2  Linearzied , Nullclines , Hamiltonian 

system and Dissipative system 

  In this chapter, according to the reference [1], we analyze phase portraits by some 

ways. 

2.1  Linearzied: 

1. linearized system 

For a general form of a nonlinear system 

 yx,f
dt

dx
  

 yx,g
dt

dy
  

The linearized system at the equilibrium point  
00

y,x  is 

   

   














































































v

u

 yx
y

g
 yx

x

g

yx
y

f
 yx

x

f

dt

dv

dt

du

00,00,

00,00,

     Where 
00

y-y     vx-xu    

And  J=

   

    






































 yx
y

g
 yx

x

g

yx
y

f
 yx

x

f

00,00,

00,00,

   

is called the Jacobian matrix of the system at  
00

y,x  

2. Classerify equilibrium points by linearized system 

 a. If all eigenvalues of J are negative real numbers than  
00

y,x  is sink.  

   If all eigenvalues of J are complex numbers with negative real parts than  
00

y,x  is 

spiral sink 

 b. If all eigenvalues of J are positive real numbers than  
00

y,x  is source 

   If all eigenvalues of J are complex numbers with positive real parts than  
00

y,x  is 

spiral source 

 c. If J has one positive and one negative eigenvalue than  
00

y,x  is saddle 
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2.2  Nullclines: 

1. x-nullcline y-nullcline 

 For the system    

                y)f(x,
dt

dx
  

                y)g(x,
dt

dy
  

 The x-nullcline is the set of points (x,y) where y)f(x, is zero that is, the level curve   

where y)f(x, is zero. The y-nullcline is the set of points where y)g(x,  is zero. 

Example:  

 

2. Some properties of nullclines 

a. Along the x-nullcline, the x-component of the vector field is zero, and   

consequently the vector field is vertical. 

  Along the y-nullcline, the y-component of the vector field is zero, and    

consequently the vector field is horizontal. 

  b. The intersections of the nullclines are the equilibrium points 

  c. The regions separated by nullclines offer information of vector field 

 

 

2.3  Hamiltonian system: 

1. Conserved quantity 

  A real-valued function H(x,y) of the two variables x and y is a conserved quantity     

for a system of differential equations if it is constant along all solution curves of 

system. That is, if (x(t),y(t)) is a solution of the system, then H(x(t),y(t))is constant. In 

other words, 

          0y ( t ) )( x ( t ) ,H
/

      for (x(t),y(t)) is a solution of the system 

  

2. Hamiltonian system  

 A system of differential equations is called Hamiltonian system if there exists a 
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real-valued function H(x,y) such that 

                          

x

H
-

dt

dy

y

H

dt

dx











 

for all x and y. The function H is called the Hamiltonian function for the system.   

 

3. Relation between conserved quantity and Hamiltonian system 

  Letting (x(t),y(t)) be any solution of the system then 

  

0                     

)
d x

d H
)(-

y

H
()

dy

dH
)(

x

H
(                     

)
dt

dy
)(

y

H
()

dt

dx
)(

x

H
(y(t))H(x(t),

dt

d























 

  So Hamiltonian system is conserved. 

  

4. Equilibrium points of Hamiltonian system 

  Suppose  
00

y,x  is our equilibrium point for the Hamiltonian system  

                          

x

H
-

dt

dy

y

H

dt

dx











 

  The Jacobian matrix at this equilibrium point is given by 

                         









































xy

H
-

x

H
-

y

H

yx

H
  

2

2

2

2

22

 

where each of these partial derivatives is evaluated at  
00

y,x . 

Since 

                         
xy

H

yx

H
22









 

The Jacobian matrix assumes the form 
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

















-
 

where 
2

2

2

22

x

H
-  

y

H
   

yx

H
  














   

The characteristic polynomial of this matrix is 

                ------
22

  

And the eigenvalues are  
2 .Thus we see that there are only three 

possibilities for the eigenvalues: 

a. If 0
2

   both eigenvalues are real and have opposite signs. 

b. If 0
2

   both eigenvalues are imaginary with real part equal to zero. 

c. If 0
2

   then 0 is the only eigenvalue 

In case a. we know the equilibrium point must be a saddle 

 

5. Solution of Hamiltonian system 

  Solution curves of the system lie along the level curves of H . Sketching the phase   

portrait for Hamiltonian system is the same as sketching the level sets of the 

Hamiltonian function. 

 

2.4  Dissipative system: 

A function L(x,y) is called a Lyapunov function for a system of differential equation if,   

for every solution (x(t),y(t)) that is not an equilibrium solution of the system , 

                       0y ( t ) )L ( x ( t ) ,
dt

d
  

For all t with strict inequality except for set of t‟s. 

2.5  Discussion: 

 There are four methods to analyze the solution of nonlinear systems. By linearized we 

have some information near equilibrium points. By nullclines we get the trend in the 

whole phrase plane. In the special case we have the properties of Hamiltonian system 

and Dissipative system. 
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Chapter 3      Pendulum  

We study the motions of Pendulum in the following paragraphs. The references for this 

part are [1, 8, 10]. 

3.0.1  Physic aspect: 

   Consider a pendulum made of a light rod of length l with a ball at one end of mass 

m .The position of the bob at time t is given by an angle U(t),which we choose to 

measure in the counterclockwise direction with 0 corresponding to the downward 

vertical axis (see Figure2.1) 

               Figure3.1  

               A pendulum with rod length l and angle θ  

                                                 

    The speed of the bob is the length of the velocity vector , which is (t)Ul  . The  

component of the acceleration that points along the direction of the motion of the bob is 

(t)Ul   We take the force due to friction to be proportional to the velocity , so this force is 

(t)Ubl-   where b>0 is a parameter that corresponds to the coefficient of damping . 

 

Using Newton‟s second law, maF   we obtain the equation of motion 

                ( t )UmlsinU(t) mg-(t)Ubl-    

Which is often written as 

                 0s i n U ( t )
l

g
( t )U

m

b
( t )U                         (3.0.1) 
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                              Figure 3.2 

3.0.2  Mathematic aspect: 

Consider the Sine-Gordon equation is 

          0y ) ]s i n [ U ( x ,y)(x,U-y)(x,U
yyxx

       (s-G)               (3.0.2) 

Let y-xt   

Then  

     ( t )U
x

t
( t )Uy)(x,U

x
 




  

     ( t )U-
y

t
( t )Uy)(x,U

y
 




  

     ( t )Uy)(x,U
2

xx
  

     ( t )Uy)(x,U
2

yy
  

So we can rewrite equation (3.0.2) 

     0s i n [ U ( t ) ]( t )U-( t )U
22

   

Let 1w-h
22
  

We get 0sin[U(t)](t)U                                             (3.0.3) 

Compare with equation (3.0.1). This is a equation describing ideal pendulum  

Multiple (t)U   

       0)](t)sin[U(tU(t)U(t)U                                       (3.0.4) 

Integrated by t 
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2

2
Ec o s U ( t )-( t )U

2

1
  where -1E

2
  is a constant  

Add 1 

       
12

2
EE1c o s U ( t ) ]-[1(t)U

2

1
                             (3.0.5) 

We can see (t)U
2

1 2  as kinetic energy and cosU(t)]-[1  as potential energy and this 

system has total energy 
1

E   

  2 2
u

0.5

1.0

1.5

2.0

P.E

 

Figure 3.3 

The relation between potential energy P.E and angle u 

 

From (3.0.5) 

        
1

2
Ec o s U ( t ) ]-[1(t)U

2

1
  

          c o s U ( t ) ]-2 [ 1-2E(t)U
1

                                  (3.0.6) 

          1
c o s U ( t ) ]-2 [ 1-2E

(t)U

1




 

Integrated 

We get 

       
U ( t )

0

1

d
]c o s-2 [ 1-2E

1
t 


                                   (3.0.7) 

 

3.1.0  Ideal Pendulum: 

A system of pendulum with no friction is called ideal pendulum. 

When no friction is present, the coefficient b vanish. We get the equation 

0)(sin
 

g
(t)U  tU



  



                                      48 

For convenience we suppose 1
g



 

We can rewrite this equation 0)(sin(t)U  tU  as first-order system in the usual 

manner by letting the variable v represent the angular velocity (t)U .The corresponding 

system is 

                V
dt

dU
  

                
dt

dV
- sinU 

Equilibrium points of this system are (nπ,0) for n Z 

3.1.1  Apply Linearzied to analysis Ideal pendulum: 

For system 

                 V
dt

dU
  

                 
dt

dV
- sinU 

1.The linearized system at the equilibrium point  ,0n  for n is odd integer  

  


















































v

u

 0   1

1   0

dt

dv

dt

du

 

  The Jacobian matrix of the system is J = 













 0   1

1   0
 and its eigenvalues are 1   

  There are saddle points at the equilibrium point  ,0n  for n is odd integer 

2. The linearized system at the equilibrium point  ,0n  for n is even integer  

  


















































v

u

 0  1-

1   0 

dt

dv

dt

du

 

  The Jacobian matrix of the system is J = 













 0   1-

1   0 
 and its eigenvalues are 1   

  There are center points at the equilibrium point  ,0n  for n is even integer 
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3.1.2  Apply the Hamiltonian system to analysis Ideal 

pendulum: 

Consider 0sin[U(t)](t)U   

Let H(U,V)= cosU-
2

1
v

2

 

Because 
V

H
        V

dt

dU




  

         
U

H
--cosU

dt

dV




  

it is Hamilonian system with Hamiltonian function H(U,V)= cosU-
2

1
v

2

 

 

 

Figure 3.4 

Level curve of H(U,V) 

 

3.1.3  Apply the Jacobian elliptic function to solve the Ideal 

pendulum motion: 

We want to solve (3.0.5) by Jacobian elliptic functions 

Consider   
U(t)

0

1

d
]cos-2[1-2E

1
t 


  with  

12
EE1   

     i.e.    



U(t)

0

2

d
2cos2E

1
t 


                                (3.1.1) 
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a. If 2E0
1
  , i.e. 1E1-

2
  

  then there is   such that 
2

Ecos-   

           



U ( t )

0
d

2 c o s2 c o s-

1
t 


 

             


d

2
2 s i n-12

2
2 s i n-12-

1

22

U ( t )

0


















 

            =
2

1



d

2
sin-

2
sin

1

22

U(t)

0  

  Let  0< k =
2

sin


<1   z =
k

2
sin



   

              = dz

zk-1

2k

zk-k

1

2

1

22222

k

2

u(t)
sin

0  

              = dz

)zk-)(1z-(1

1

222

k

2

u(t)
sin

0  

According to Jacobian function                              

                     
2

U ( t )
s i n

k

1
k)sn(t,                            

  So                k))sn(t,(k 2sinU(t)
-1

  where  k=
2

sin


           (3.1.2)  

b. If 2E
1
 , i.e. 1E

2
  

            



U(t)

0
d

2cos2

1
t 


 

           



U ( t )

0
d

c o s1

1

2

1



 

            


U ( t )

0
d

c o s1

1

2

1



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           = 
U(t)

0
2

d

2
2sin-2

1

2

1



 

             = 
U(t)

0
2

d

2
sin-1

1

2

1



 

    Let 
2

sinx


  

           = 
2

U(t)
sin

0 22
dx

x-1

2

x-1

1

2

1
 

           = 
2

U(t)
sin

0 2
dx

x-1

1
 

           =

2

U(t)
sin-1

2

U(t)
sin1

ln
2

1


                                       (3.1.3) 

  So      tanh(t)
2

U(t)
sin    i.e tanh(t)2sinU(t)

-1
                    (3.1.4) 

  

c. If 2E
1
  i.e. 1E

2
  

            



U ( t )

0

2

d
2 c o s2E

1
t 


 

              



U ( t )

0
2

2

d

)
2

4 s i n-(22E

1



 

              






U ( t )

0
2

2

2
d

)
2

s i n
22E

4
-1

22E

1




 

Compare with     dx

sin xk-1

1

2
 

Let 
2

    x
22E

2
k

2





  
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                2

U ( t )

0 22
dx

xsink-1

k
 

Let sin xy   

                   2

U(t)
sin 

0 222
dy

y-1

1

yk-1

1
k  

So            
2

U ( t )
s i nk),

k

t
sn(   

i.e.            k),
k

t
sn(sin

2

1
U(t)

1-
    where     

22E

2
k

2


            (3.1.5) 

 

3.1.4  The graph of the Ideal pendulum motion: 

1. 

  2 2
u

0.5

1.0

1.5

2.0

2.5

3.0

P.E

 

Figure 3.5 

The relation between potential energy P.E and angle u with total energy 3E
1
  

  2 2
u

 2

 1

1

2

v

 

Figure 3.6 

The relation between vector v and angle u with 3E
1
  
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           2 2
u

0.5

1.0

1.5

2.0

P.E

 

Figure 3.7 

The relation between potential energy P.E and angle u with total energy 2E
1
  

  2 2
u

 2

 1

1

2

v

 

Figure 3.8 

The relation between vector v and angle u with 2E
1
  

 

  2 2
u

0.5

1.0

1.5

2.0

P.E

 

Figure 3.9 

The relation between potential energy P.E and angle u with total energy 0.5E
1
  

  2 2
u

 1.0

 0.5

0.5

1.0

v

 

Figure 3.10 

The relation between vector v and angle u with 0.5E
1
  

 

2. From (3.0.2)  

  0s i n [ U ( t ) ]( t )U   with wyhxt   and 1w-h
22
  

  Let 3  w2h   
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a. Graph of the ideal pendulum motion with 2)E(0   1E
11
  

                        

                           Figure 3.11 

b . Graph of the ideal pendulum motion with   2E
1
  

                       

                                    Figure 3.12 

c .Graph of the ideal pendulum motion with )E(2  3E
11

  

 

                      

                              Figure 3.13 
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3.2.0  Pendulum motion with friction: 

Recall that the second-order equation governing the motion of the pendulum is 

0sin[U(t)]
l

g
(t)U

m

b
(t)U    

Where b is the coefficient of damping m is the mass of the pendulum bob, g is the 

acceleration of gravity, and l is the length of the pendulum arm. 

 

For convenies we let B
m

b
  and 1

l

g
 .And rewrite this equation as first-order system 

in the usual manner by letting the variable v represent the angular velocity )(U  . 

The corresponding system is 

                V
dt

dU
  

                
dt

dV
-BV- sinU 

 

3.2.1  Apply Linearzied to analysis pendulum with friction: 

For system 

                 V
dt

dU
  

                 -BV- sinU 

1. The linearized system at the equilibrium point  ,0n  for n is odd integer  

  


















































v

u

B-  1

1   0

dt

dv

dt

du

 

  The Jacobian matrix of the system is J = 













B-  1

1   0
 and its eigenvalues are   

2

4BB-
2


   

  There are saddle points at the equilibrium point  ,0n  for n is odd integer 
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2. The linearized system at the equilibrium point  ,0n  for n is even integer  

  


















































v

u

 B-  1-

1    0 

dt

dv

dt

du

 

  The Jacobian matrix of the system is J = 














 B-  1-

1    0 
 and its eigenvalues are 1   

  There are center points at the equilibrium point  ,0n  for n is even integer. 

 

 

3.2.2  Apply the nullclines to analysis pendulum with friction: 

For system 

                V
dt

dU
  

                
dt

dV
-BV- sinU 

U-nullcline is   0V; VU,    

If V>0 then 0
dt

dU
  This means vector filed “right” 

If V<0 then 0
dt

dU
  This means vector filed “left” 
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V-nullcline is   0sinUBV; VU,   

If 0sinUBV   then 0
dt

dV
  This means vector filed “up” 

If 0sinUBV   then 0
dt

dV
  This means vector filed “down” 

 

 

 

Combine this two graphs 
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It obvious 

1. There are saddle points at the equilibrium point  ,0n  for n is odd integer. 

 

 

2. There are center or spiral sink or spiral source points at the equilibrium point  ,0n    

for n is even integer. 
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Chapter 4  Physical Applications of Elliptic functions  
 

In the paragraphs below, we study five physical models‟ differential systems. An ideal 

whirling chain, and Duffing‟s Equation. The other three describe the motions of orbit 

planets. These parts mainly follow the reference [4]. 

 

4.1  Whirling Chain: 

   Consider a uniform length l of rope or chain, whose ends are fixed at point 0 and A 

and which is set rotating about the axis OA with constant angular velocity .  

 

   For ideal case 

1. Gravity will be neglected  

2. It will be assumed that the chain always lies in a plane through the axis of rotation. 

 

   We shall take O to be the origin of axes Ox, Oy, the x-axis lying along OA, and 

y-axis lying in the plane of the chain at same instant t (Fig.). Consider the motion of an 

element PQds   of the chain, where P and Q have coordinates (x, y), (x+dx, y+dy) 

respectively.  

 

   The forces acting on this element are tensions T and T+dT at its ends P and Q, and 

their lines of action are the tangents to the chain at these points; let these tangents make 

angles  d  ,   respectively with the x-axis.  

 
                          Figure 4.1 

 

   Resolving the forces tangentially and normally, we obtain components (dT, Td ) 

respectively. The element moves around a circle of radius y with angular velocity   

and its acceleration is accordingly y
2

  directed in the negative sense parallel to the 

y-axis.  

 

   We can now write down the tangential and normal components of the equation of 

motion thus; 

)sin(y  ds -dT
2

 ,     )cos(y  ds -Td
2

            (4.1.1) 

Where is the mass per unit length of the chain. 
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   Dividing these equations, we find that  

 )d(tan dT/T                         (4.1.2) 

Which integrates to give the equation 

)sec(TT
0

 ,                         (4.1.3) 

0
T  being the tension at the point B where 0 . 

 

Substituting for T in the second equation (4.1.1), we now deduce that 

)(cos-y  /dsd
2
                        (4.1.4) 

Where 
2

0
/T    

But )(sin dy/ds   and it therefore follows that  

-ydy)d)sec(tan(  .                   (4.1.5) 

This equation integrates to 

)y-(b
2

1
1)-)(sec(

22
 ,                    (4.1.6) 

Where 0 b,y    at B. 

 

Thus, 

 )y-4)(by-(b
2

1
1)-)((sec )(tan dy/dx

22222



       (4.1.7) 

and, after integration from , this leads to the equation 

 


y

0 2222
)y-)(cy-(b

dy
2x  , 

where 

4bc
22
                           (4.1.8) 

 

Reference to the standard form (1.3.79) now shows that 

(y/b)sn
c

2
x

1-
 , 

The modulus being given by  
-12222

)/b4(1/cbk  .                 (4.1.9) 

We conclude the equation of chain is 

)(cx/2sn  by  . 

 

    Supposing the end A to lie at the point ax   on the x-axis, we must have 

aat x 0y  . Clearly, therefore, it is necessary that 

2Kac/2                           (4.1.10) 

and the equation of the chain can be written 

(2Kx/a)sn  by   

 

By eliminating and between equations (4.1.8), (4.1.9 and (4.1.10), we arrive at the 

equation 
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K
)k-b(1

ak

2
                         (4.1.11) 

 

Since K is a known function of k, this equation determine k and K when a, b are given. 

  can then be found from equation (4.1.9) . 

 

For example, if k=0.5, then K=1.6858 and, thus, a/b=2.53 and 2
b

4

3
 . 

Instead of b being specified, the length l of the chain may be given. This can be related 

to the other parameters, thus: 

         l  
a

0

2
dx](dy/dx)[1  

           
a

0

222
dx(2Kx/a)](2Kx/a)dncn(2bK/a)[1  

           
a

0

222
dx(2Kx/a)](2Kx/a)dn)cnk/(4k[1  

           
a

0

22
1 ] d x-( 2 K x / a )) d nk[ ( 2 /  

          a-( u ) d udn
Kk

a 2K

0

2

2 
  

          a-
Kk

2 a E

2


                                              (4.1.12) 

Where 
K

0

2
(u)dudnE .With k=0.5, K=1.6858 as before, we read from the table 

E=1.4675 and hence, l=1.321a. 

 

Remark11: 

E (u, k) is a function defined by 


u

0

2
k)dv (v,dnk) E(u,  

And 
K

0

2
k)dv (v,dnk)E(K,E .  

It can be saw a function of k.  
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4.2 Duffing’s Equation:    

    This is the equation governing the oscillations of mass attached to the end of a 

spring whose tension (or compression) T is related to its extension x by an equation of 

the form 
3

xxT                           (4.2.1) 

 

  is always positive. 

1. If 0 , the spring obeys Hooke‟s law and the oscillations are simple harmonic. 

2. If 0 , the tension increases with the extension more rapidly than required by 

Hooke‟s law and the spring is said to be hard. 

3. If 0 , the tension increases less rapidly than required by the law and the spring is 

said to be soft. 

 

By a suitable time choice of the unit of time, the equation of motion of the mass can be 

put into the form (Remark12) 

0xxx
3
                          (4.2.2) 

which is the canonical form of Duffing’s Equation. 

 

We want to solve this system. 

 

1. The case of a hard spring, for which 0 . 

 

Suppose that initially, 0x a, x0,t   . 

get the system                0xxx
3
                          

(4.2.3) 

                              0x a, x0,t               

 

  Since )x
2

1
(

dx

d
x

2  , we can integrate with respect to x to give 

42422

2

1 a
4

1
a

2

1
x

4

1
x

2

1
x                   (4.2.4a) 

or 

)x
2

1
a

2

1
)(1x-(ax

22222
                  (4.2.4b) 

Integrating to obtain t, we find 





a

x
2222
)xa

2
)(x-(a

dx2
t




                 (4.2.5) 

                      ])
2a2

a
( ,

a

x
[cn

a1

1

2

2

1-

2 





,                (4.2.6) 

having referred to the standard form (1.3.80). Inversion now shows that 

t}a1cn{ ax
2

                        (4.2.7) 
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with modulus given by 

2

2

2

a22

a
k






                              (4.2.8) 

 

    The period of oscillation determined by (4.2.7) is given by 

)a(1

4K
T

2


                        (4.2.9) 

If   is very small, we get 22
a

2

1
k  . This imply ).a

8

1
(1

2

1
K

2
   

Hence, to O(  ) 

)a
8

3
-(12T

2
 ,                   (4.2.10) 

indicating that, as the amplitude of the oscillation increases, the period decreases and 

the frequency therefore increases. 

 

2. The case of a soft spring, for which 0 . 

  Let  - , 0 . Since 3
x-x   has a maximum at 

)(3

1x


  

  It will be convenient to measure t from an instant when the mass is at the center of 

oscillation (x=0) and x is increasing. Thus, x=0 at t=0, and the equation for the time is 


x

0
2222
)x-a-

2
)(x-(a

dx2
t




 

                       ])
a-2

a
(,

a

x
[sn)

a-2

2
(

2

2

1-

2





 , 

after reference to the standard form (1.3.79) , (to apply this result, we must assume 
22

aa-2 


,i.e., 
)(3

1a


 which is guaranteed by 
)(3

1a


 ). Inverting the 

last equation, we obtain 

t})a
2

1
-(1sn{ax

2
 ,                    (4.2.11) 

where the modulus is determined by 

2

2

2

a-2

a
k




                         (4.2.12) 

 

Thus, the period of oscillation is given by 

)a
2

1
-(1

4K
T

2


                       (4.2.13) 

and, for small  , this reduces to 
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)a
8

1
(12T

2
                        (4.2.14) 

to O( ), in agreement with (4.2.10). For a soft spring, therefore, the frequency of 

oscillation decreases as the amplitude increases. 

 

 

 

Remark12: 

 

By Newton‟s law  

-maT   

Where m is the mass and a is the acceleration of the mass 

So we get the equation 

x-m-maTxx
3    

Divide m 

0x
m

x
m

x
3



  

Let m  and 



 

m
 

0xxx
3
   

We note that 0  if 0  the spring is hard and 0  if 0 the spring is soft. 
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4.3 Orbit motion: 

 

4.3.1 Orbits under aμ /r
4
 Law of Attraction: 

   Suppose a particle of unit mass is attracted towards a center O by a force 4
r , r 

and   being its polar coordinates at time t in the plane of motion. Then, since the 

particle‟s energy E and angular momentum h about O will be conserved, we can write 

down the equations of motion (Remark13) 

 

E
3r

-)rr(
2

1

3

222



 ,       hr

2
              (4.3.1) 

 

Putting u1r   and eliminating t between these equations, we arrive at the equation 

(u) fu-u)
d

du
(

232
 


 ,                 (4.3.2) 

where  /23h
2

    3E  

 

This equation determines the polar equation of the orbit. Clearly, 0  (we ignore the 

case of rectilinear motion), but  may take any real value. We shall always assume the 

sense of the motion to be such that increases (i.e., h>0) 

 

Before solve this equation we should verify that there are five cases to consider: 

 

 
Figure 4.2  

 

1. If , 0 ,then (u) f has one real zero at greater than and two complex zeros whose 

real parts are negative (since the sum of the zeros is  ) 

 

 For 2  -1  

 

 10  5 5 10
u

 1000

 500

500

fu

 1 1 2 3 4
u

5

10

15

20

25

30

fu

 

         Figure 4.3a                            Figure 4.3b 

       For 2  -1  
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2. If , 0 , (u) f has a double zero at u=0 and a simple zero at u  

  For 2  0  

  

 4  2 2 4
u

 150

 100

 50

50

fu

 

 1 1 2 3
u

 3

 2

 1

1

2

3

4

fu

 

            Figure 4.4a                        Figure 4.4b 

 

3. If, 2740
3

  , (u) f has three real zeros 
1

u ,
2

u ,
3

u , satisfying 

 
321

u32u0u . 

 1 1 2 3
u

 2

 1

1

2

3

4

5

fu

 
Figure 4.5 

For 2  1  

 

4. If 274
3

  , f (u) has a pair of coincident zeros at 32u   and a simple zero at 

3-u  . 

 

For 2  2732  

 1 1 2 3
u

 1

1

2

3

4

5

fu

 1.32 1.34 1.36 1.38 1.40
u

0.002

0.004

0.006

0.008

fu

 
        Figure 4.6a                            Figure 4.6b 
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5. If 274
3

  , f (u) has a real zero with negative u and two complex zeros with 

positive real parts.  

 3  2  1 1 2 3 4
u

 40

 20

20

fu

 

Figure 4.7 

                            For 2  2  

 

Since 0)ddu(
2
 , by consideration of the sign of f(u) over the range of all positives 

of u, it is possible to establish the character of each of the possible orbits in these cases 

without further integration. 

 

 

Case 1. 

For 0 , (u) f has one real zero at greater than and two complex zeros whose real 

parts are negative. 

We get }cb)a){(u-(u(u) f
22

   

a, b, c being all positive and a . Clearly, we need au   to make (u) f  positive. 

Apply some method  

21
SS(u) f                           (4.3.3a) 

                where  ]q)-(u-p)[(uq)(p
2

1
S

221-

1
                (4.3.3b) 

                      ]q)-b)(u-(pp)b)(u[(qq)(pS
22-1

2
       (4.3.3c) 

p and q are positive numbers given by 

a-}cb){(ap
22

         a}cb){(aq
22

        (4.3.3d) 

 

Then, integrating equation (4.3.2) we find  






]q)-b)(u-(pp)b)(u][(qq)-(u-p)[(u

du
q)(p2

2222

21-
 ,  (4.3.4) 

We now make the substitution 

pu

q-u
x


                            (4.3.5) 

 

where x increases monotonically for increasing u. This give 
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




)x)(dx-(1

dx

b-p

2

22

21-
 ,                  (4.3.6) 

where 

b-p

bq
d

2 
 . 

We have now arrived at a standard from and can make use of the result (1.3.80) to show 

that 

xcn
b-p

2
-

1-21-
 ,                     (4.3.7) 

the modulus being given by 

qp

b-p
k

2


 .                         (4.3.8) 

thus, 

)cn(x  ,                          (4.3.9) 

where  

}q)/2{(p   .                       (4.3.10) 

The polar equation of the orbit now follows in the form 

)(cn  pq

)(cn -1
r






                        (4.3.11) 

where qp  .  

We deduce that, as   increases form 0, the trajectory spirals outward from the center, 

the mass being at its maximum distance a1p)-(q2  from O when  2K . 

 

Thereafter, the orbit spirals inward and reaches the center again when  4K  . As 

before, negative values of   yield the mirror image trajectory, which is identical with 

the original. 

 

Case 2. 

If 0 , we calculate that 

1)-
u

2
(cos

)-(uu

du 1-21-21- 



   .              (4.3.12) 

(Use the substitution v1u  .)We have ignored the constant of integration, since this can 

always be eliminated by suitable choice of the line 0 . The polar equation of the 

orbit is now found to be 

)cos(1
2

1
r 


 ,                     (4.3.13) 

Which is a cardioid. Thus, the particle recedes to a maximum distance 21  from the 

pole and then falls into the center of attraction. 
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Case 3. 

If, 2740
3

  , (u) f has three real zeros 
1

u ,
2

u ,
3

u , satisfying 

 
321

u32u0u . 

We get )u-)(uu-)(uu-(u(u) f
321

 , where 
321

uu0u  . Hence, either 
2

uu0   

or 
3

uu   to make 0(u) f  , and there are two types of orbit. 

 

Integrating equation (4.3.2). We get 


)}u-)(uu-)(uu-{(u

du

321

21-
 .                (4.3.14) 

Changing the variable by the transformation 

0)(x              x1uu
2

1
 , 

 

we reduce the integral to standard form, thus  



)}x-)(bx-{(a

dx

)}u-)(uu-{(u

2
-

2222

1212

21-
 ,        (4.3.15) 

where 

)u-(u1a
12

2
 ,        )u-(u1b

13

2
 . 

 

   Clearly ba  . 

 

a. If 
3

uu  , then bx  and the result (1.3.79) may be applied to give 

x})u-(u{sn
)u-(u

2
-

13

1-

13

21-
                (4.3.16) 

  with modulus k, where 

13

122

u-u

u-u
k  .                        (4.3.17) 

  Then, the orbit is found to have equation 

)()nsu-(uuu
r

1 2

131
                   (4.3.18) 

  where 

})u-(u{
2

1
13

                       (4.3.19) 
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 10  5 5 10


0.1

0.2

0.3

0.4

0.5

r

 

Figure 4.8 

2u  1,u  -1,u
321
  

 

  This implies, as   increases from 0, the trajectory spirals outward from the center, 

achieving maximum distance 
3

u1 , when  K ; it then spirals back into the pole, 

arriving there when  2K . 

   

b. If 
2

uu0   then ax   and the standard form (1.3.84) is used to yield 

x})u-(u{ns
)u-(u

2
-

12

1-

13

21-
                  (4.3.20) 

  whence 

)()snu-(uuu
r

1 2

121
                   (4.3.21) 

  The constant k and   take the same values as before. 

 6  4  2 2 4 6


 4

 2

2

4

r

 

Figure 4.9 

2u  1,u  -1,u
321
  

 

For this orbit equation (4.3.21),  must equal or exceed ]})u-(uu-{[sn
121

-1
  

to give positive values for u and r. When   has this limit value , r is infinite and 

further increase in  causes r to decrease to a minimum of 
2

u1 when  K . If 

  is increased again, r approaches infinity as  )/-(2K . Thus, the trajectory 
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first approaches the center of attraction from infinity and later recedes again to an 

infinite distance 

 

Case 4. 

If 274
3

  , then 

32-u

34u
cosh-

)3(u)32-(u

du 1-21-21-













  .         (4.3.25) 

(Put v132-u   if 32u  and v1u-32   if 32u  ) The equation of the 

orbit is accordingly 

 

 10  5 5 10


0.5

0.6

0.7

r

 

Figure 4.10 

 

2cosh

1-cosh

2

3
r









, if 32u  ,                   (4.3.26a) 

2-cosh

1cosh

2

3








 , if 32u  ,                   (4.3.26b) 

In (4.3.26a) 

For positive values of  , the orbit spirals outward from the center of attraction, 

approaching the circle 23r  asymptotically from inside circle. 
 

For 2  2732  

In (4.3.26b)  

For 2cosh
-1

 , the orbit spirals inward from infinity, approaching the circler 

23r   asymptotically from outside the circle. 

Reflecting these orbits in line 0 , we obtain the orbits for negative values of  , 

which represent similar trajectories, traversed in the opposite sense, i.e., diverging 

inward and outward from he circular motion.   
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
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2

r

 
Figure 4.11 

 

 

Case 5. 

In case, 

}cb)-a){(u(uf(u)
22

                   (4.3.27) 

Where a, b, c are all positive; all positive values of u are now admissible. The analysis 

proceeds as for Case1. , the signs of a and b being reversed. Thus 

a}cb){(ap
22

     a-}cb){(aq
22

           (4.3.28) 

and qp  .  

The orbital equation is as given at (4.3.11)  

)(cn  pq

)(cn -1
r






                       (4.3.29) 

and, as   increases from 0, r increases from 0 and the orbit spirals outward from the 

center. However, the equation pq-)cn(   now has a real root   for which r 

becomes infinite and the trajectory does not return to the center of attraction. Negative 

values of   provide a mirror image orbit along which the mass can fall into the center 

of attraction from an infinite distance. 

 

Remark13: 
Total energy E = kinetic energy + potential energy 

            UK   

             ds F vm
2

1 2


 

            dr 
r

 )rr( 1 
2

1 r

4

2222




  

            
3

222

3r
-)rr(

2

1 
   

 

Angular momentum )r ,r( 1)(r,v mrh  


   

 

The value of h is 

 r  h
2
  
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4.3.2 Orbits under aμ /r
5
 Law of Attraction: 

If 5
r is the attraction per unit mass, the particle‟s potential energy in the field is 

4
4r-  and the equations of energy and angular momentum are  

E
4r

-)rr(
2

1

4

222



 ,      hr

2
 .                (4.3.30) 

These equations lead to the equation 

g(v))(u gu-u)
d

du
(

2242
 


               (4.3.31) 

determining the orbits, where 

02h
2

  ,       4E ,       2
uv  . 

 

)u(v g(v)
2

 is a quadratic and its zeros distinguish five cases  

 
1. 0 , both zeros 

1
v , 

2
v  are real and 0v

1
 , 

2
v . 

2
vv   for g to be positive. 

2

 10

 5

5

10

 

For 2  -1  

 

 

2. 0 , zeros are 0 and  . v on the orbit. 

 2  1 1 2 3 4 5
v

 4

 2

2

4

gv

 

For 2  0  
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3. 2

4

1
0   , both zeros are real and satisfy 

21
vv0 . 

1
vv  or 

2
vv   on 

the orbit. 

 2  1 1 2 3 4 5
v

 4

 2

2

4

gv

 

For 2  
2

1
  

4. 2

4

1
  , coincident zeros at 

2

1
v  ; all positive values of v are admissible. 

 4  2 2 4
v

 10

 5

5

10

gv

 

0.8 1.0 1.2 1.4
v

 0.10

 0.05

0.05

0.10

gv

 

For 2  1  
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5. 2

4

1
  , zeros are complex with positive real parts; all positive values of v are 

admissible. 

 4  2 2 4
v

 10

 5

5

10

gv

 

For 2  2  

 

Suppose  increases with t (h>0) 

 

Case 1. 

)v-)(uv-(u)
d

du
(

2

2

1

22



 ,                    (4.3.32) 

where  

0)-
4

1
(-

2

1
v

2

1
  ,     )-

4

1
(

2

1
v

2

2
. 

We must have 
2

vu  . Integration leads to the orbital equation 

)vu(nc)v-(v
2

-121-

12

21-
 ,                 (4.3.33) 

using the standard integral (1.3.87), the modulus being given by 

12

12

v-v

v
-k  .                        (4.3.34) 

We deduce that 

)(cn 
v

1
r

2

 ,                      (4.3.35) 

where 

 )v-(v
12

2
 .                      (4.3.36) 

Thus, as   increases from K- to K , the particle spirals out from the center of 

attraction to a maximum distance 
2

v1 and then falls back into the center along the 

mirror image spiral. 
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Case 2. 

For 0 , integration of (4.3.30) lead to 

r)(cos

)-(uu

du 211-21-

2

21-



   .               (4.3.37)               

(Put r1u  .) Clearly 2

1

u   and 2

1
-

r  . The polar equation of the orbit is therefore 

)cos(r
21-

 ,                      (4.3.38) 

which is a circle through the center of attraction. Thus, the particle first recedes from O 

along one semicircle and then falls back into O along the remaining semicircle. 

 

Case 3. 

In this case, 
21

vv0 and either 
1

vu  or 
2

vu  . 

a. We write 

)u-)(vu-(v)
d

du
(

2

2

2

1

2



                   (4.3.39) 

and then apply the standard integral (1.3.79) to give 

)( ns
v

1
r

1

 ,                     (4.3.40) 

with 

21

2
vvk   and 

2

2
v .                (4.3.41) 

Thus, as   increases from 0 to 2K , the particle approaches the center of 

attraction from infinity to a minimum distance 
2

v1  and then recedes again to 

infinity. 

b. If, however, 
2

vu  , then we write 

)u-)(vu-(v)
d

du
(

2

2

2

1

2



                   (4.3.42) 

and apply the standard integral (1.3.84) . This show that 

)(sn 
v

1
r

2

                       (4.3.43) 

k and   being given as before. 

   Hence, as   increase form 0 to 2K , the particle leaves the center of attraction 

and recedes from it to a maximum distance 
2

v1 ; thereafter, it falls back into pole 

O . This is similar to Case 1. 

 

Case 4. 

For 2

4

1
  , we find that 

u-)2(

u)2(
ln

2

1

u-2

du

2

21-









  .             (4.3.44) 

Solving for u, we derive 
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)2tanh()2(u1r   or )2cosh()2(            (4.3.45) 

as possible equations for the orbit. The first equation corresponds to a trajectory which 

spirals outward from O, approaching the circle )2(r   asymptotically. The 

alternative orbit spirals inward from infinity and approaches the same circle 

asymptotically. 

 

Case 5. 

For convenience in later calculations, we shall take the zeros of g(v) to be 

,)a
4

1
-(biab-a

2

1
 v,v

2222

21
                  (4.3.46) 

where  

 2a
2

     
2

b , 

taking a and b positive. Note that 4ab
22

 . Thus 

 

Transforming by 

t-1

t1
bu


 ,                         (4.3.47) 

the last equation becomes  

)q)(tp)(ta
4

1
-(b)

d

dt
(

2222222



 ,              (4.3.48) 

where  

a2b

a-2b
p

2


 ,         

a-2b

a2b
q

2 
 . 

We shall take p, q to be positive and, clearly, qp  . Integration, using the standard 

form (1.3.89) , now yields 






)}q)(tp{(t

dt
)a

4

1
-(b

2222

21-2221-
 ,           (4.3.49) 

                      )pt(sc
2ba

2 1-


 , 

where the modulus is given by 

2ba

(8ab)
k


                          (4.3.50) 

The polar equation of the orbit now follows in form 

)sn(p)(cn 

)(sn p-)(cn 

b

1
r








 ,                   (4.3.51) 

where 

)(22b)(a
21

  . 

Consideration of equation (4.3.51) reveals that r , when  -  and 0r   when 

  , where 

)
4b

2ba
(sn

1 1- 



 .                     (4.3.52) 
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(Since 2ba  ,  can be found in the interval (0, K).) We conclude that the particle 

spirals into the center of attraction form infinity as  increases from -  to . 

 

4.3.3  Relativistic Planetary Orbits: 
 

  According to the general theory of relativity, a planet falling freely in the gravitational 

field of a spherically sun behaves as if it were governed by the Newtonian laws and 

were attracted to the sun by a non-Newtonian gravitational force of 

)
rc

3h

r

1
(

42

2

2
                         (4.3.53) 

  per unit mass, where h is the angular momentum per unit mass of the planet about the 

center of the sun and c is the velocity of light. Thus, its equations of motion are 

E)
rc

h

r

1
(-)rr(

2

1

32

2

222
  ,            hr

2
 .        (4.3.54) 

  As in the previous sections, putting , we now arrive at the equation 

2

3

2

2

2

2

h

2E
u

c

2
u-u

h

2
)

d

du
( 




                (4.3.55) 

determining the orbit. 

 

  For all planets in the solar system, the term 23
cu2  is always very small by 

comparison with the remaining terms in equation (4.3.55)  

For convenience let 
2

hvu                            (4.3.56) 

and then write equation (4.3.55) in the form  

f(v)-vv-2v)
d

dv
(

322
 


                 (4.3.57) 

where  
2

)ch2(   ,         22
Eh-2   .             (4.3.58) 

  This circumstance that a planet‟s energy is insufficient to permit its escape from the 

sun‟s field requires that 0 . Also 1 , for otherwise 0)ddv(
2
  in the absence of 

the relativistic term. is very small and positive for all planets in the solar system, 

taking its largest value of -8
105.09   for Mercury. 

 

  By graphing the function 32
vv-2v  , it is easy to establish that the zeros of f(v) (in 

equation(4.3.57)) are all real and satisfy the inequalities
321

v2v1v0  , 
3

v  

being very large. Thus 

v)-v)(v-)(vv-(vf(v)
321

                   (4.3.59) 

and, since 0f(v)  , v must lie in the interval ) v,(v
21

(Remark14)  
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0.5 1.0 1.5 2.0
v

 0.4

 0.2

0.2

0.4

fv

 

For -7
10  

2

1
  

           

2. 106 4. 106 6. 106 8. 106 1. 107
v

 1.5 1013

 1. 1013

 5. 1012

5. 1012

1. 1013

fv

 

For -7
10  

2

1
  

Note that 
3

v  get larger as become smaller. 
 

    being small, the zeros of f(v) can be expanded in series of ascending powers of , 

thus 

)O(2-
1

v

)O(e)(1 
2e

e1v

)O(e)-(1 
2e

-e-1v

3

23

2

23

1
















                  (4.3.60) 

where 

                       -1e
2
  

Integrating equation (4.3.57), we deduce that  


v)-v)(v-)(vv-(v

dv

321

21
                 (4.3.61) 

Changing the variable in the elliptic integral by 2

1
t1vv  , we bring it to standard 

form, thus: 
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

)b-)(ta-(t

dv

)}v-)(vv-{(v

2
-

2222

1312

21
           (4.3.62) 

where 

)v-(v1a
12

2
 ,          )v-(v1b

13

2
 . 

Use of (1.3.87) now yields the result 

})v-(v{tns
)v-(v

1
12

1-

13

21
                (4.3.63) 

With modulus given by  

13

122

v-v

v-v
k                           (4.3.64) 

Thus, 

})v-(v
2

1
{)snv-(vvv

13

2

121
               (4.3.65) 

is the equation of the orbit. 

 

    Substituting the expansions (4.3.60), we calculate that 

))(snB(A
hr

1 2

2



 ,                   (4.3.66) 

where 

)O(e)-(3
4

1
-

2

1

)O()e1(3e2eB

)O(e)-(1
2e

-e-1A

2

2

23














                  (4.3.67) 

The modulus id determined by 

)O(2ek
22

                        (4.3.68) 

If 0 , then A=1-e, B=2e, 
2

1
 , 0k  , and the orbital equation reduces to 

)cos(e-1
r

1
                        (4.3.69) 

where 
2

hl  . This represents the classical elliptical orbit with semi-latusrectum l 

and eccentricity e. 

 

  On the relativistic orbit given by equation (4.3.69), perihelion occurs when  K  

and, on the next occasion, when  K3 . Thus,   increases by K2 between two 

passages through perihelion, instead of the increase of 2 expected from the classical 

theory. The advance of perihelion per revolution is accordingly 








32-

4e)-(3-21

)4k(1
2-

2K
2





              (4.3.70) 
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  For Mercury, -8
105.09   and its period is 88 days. Thus, the advance of 

perihelion per century predicted by the theory is 34  ; this is exactly the residual 

advance remaining to be explained at the time the new theory was proposed by Einstein. 

 

Remark14: 

3
vv   is excluded since this would lead to v as  ; i.e., the planet would 

fall into the sun. 
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Chapter5      Conclusion  
 

The goal that people research differential equations is to describe some phenomena in 

the real world. However, most of the phenomena are hard to describe and trying to get 

the solutions of them is another hard work. 

 

In this paper, we introduce one kind of function defined in complex number, which has 

some „good‟ properties, and these functions have powerful usage for getting the 

solutions of integral equations. 

 

To show the effects of these functions, we choose seven physical examples. By 

Newton‟s mechanics, general theory of relativity and some laws of motions, we use 

differential systems to describe these physical phenomena. And then, we use elliptic 

Jacobian functions to get the solutions of them. In the end, we compare these solutions 

with physical phenomena.  

 

The last three examples (Orbits under aμ /r
4
 Law of Attraction, Orbits under aμ /r

5
 Law 

of Attraction, Relativistic Planetary Orbits) explain the evolution of the modern theories 

in Planetary Orbits. The first two examples obey Newton‟s law, and the last one is the 

model basing on the general theory of relativity proposed by Einstein. That is the reason 

for the difference of the estimation of Mercury‟s period. 

 

 

 

 

 

 

 

 

. 
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