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Abstract

A subgraph in an edge-colored graph is multicolored if all its edges receive distinct

colors. In this dissertation, we first prove that a complete graph of order 2m (m �= 2) can

be properly edge-colored with 2m− 1 colors in such a way that the edges of K2m can be

partitioned into m isomorphic multicolored spanning trees. Then, for the complete graph

on 2m+1 vertices, we give a proper edge-coloring with 2m+1 colors such that the edges

of K2m+1 can be partitioned into m multicolored Hamiltonian cycles.

In the second part, we first prove that if K2m admits a proper (2m−1)-edge-coloring

such that any two colors induce a 2-factor with each component a 4-cycle, then K2m can

be partitioned into m isomorphic multicolored spanning trees. As a consequence, we show

the existence of three isomorphic multicolored spanning trees whenever m ≥ 14. As to the

complete graph of odd order, two multicolored isomorphic unicyclic spanning subgraphs

can be found in an arbitrary proper (2m+1)-edge-coloring of K2m+1.

If we drop the condition “isomorphic”, we prove that there exist Ω(
√
m) mutually

edge-disjoint multicolored spanning trees in any proper (2m−1)-edge-colored K2m by

applying a recursive construction. Using an analogous strategy, we can also find Ω(
√
m)

mutually edge-disjoint multicolored unicyclic spanning subgraphs in any proper (2m−1)-

edge-colored K2m−1.

Finally, we consider the problem of how to forbid a specific multicolored subgraph in a

properly edge-colored complete bipartite graph. We (1) prove that for any integer k ≥ 2,

if n ≥ 5k− 6, then any properly n-edge-colored Kk,n contains a multicolored C2k, and (2)

determine the order of the properly edge-colored complete bipartite graphs which forbid

multicolored 6-cycles.
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摘要 
 

  在一個邊著色的圖中（以下的邊著色須滿足相接的兩條邊必為不

同顏色），如果有一個子圖它每個邊的顏色皆不相同，則稱這種子圖

為一個混色圖。在這篇論文中，首先我們證明點數為 的完全圖

( )，存在一個 個顏色的邊著色，可以將

2m

2m2m ≠ 2m −1 K 分解成 個互

相同構的混色懸掛樹。而對點數為2

m

1m + 的完全圖，我們也證明其邊

適當地著 個顏色後，2m +1 2 1mK + 將可分解成 個混色的哈米爾頓圈。 m

 

  第二部分，我們證明對於 個點的完全圖，如果有一種 個

顏色的邊著色使得任兩種顏色均會形成一組 的分割，則這種著色

的完全圖也可以分解成 個互相同構的混色懸掛樹。由這個結果，我

們可以證明在

2m 2 1m −

4C

m

2mK 中( )，任意給定一種214m ≥ 1m − 個顏色的邊著

色，一定會存在三個同構的混色懸掛樹。至於對於點數為 的完

全圖，在任意的 個顏色邊著色下，也一定存在兩個同構的混色

子圖，其中這兩個子圖是懸掛單圈圖。 

2 1m +

2 +1m

 

  若捨棄掉「同構」這個限制，我們利用一種遞迴的建構方法，可

以證明出在 2mK 中，任意給定一種2m 1− 個顏色的邊著色，存在約

( mΩ )

1

個邊互斥的混色懸掛樹。利用相同的策略－遞迴建構法，在

中，任意給定一種22 1mK − m − 個顏色的邊著色，我們也可找出約

( mΩ )個邊互斥的混色懸掛單圈圖。 
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  最後，我們討論如何在一個邊著色的完全二部圖中避免某些特定

的混色子圖的出現。我們的貢獻有下列兩部分： (1) 對任意的 ，

如果 ，則任意 著色的完全二部圖

2k ≥

5n k≥ − n ,k nK 中一定找得到混色的

； (2) 刻劃出所有可避免混色 的完全二部圖。 2kC 6C
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Chapter 1

Introduction and Preliminaries

1.1 Motivation

Graph decomposition and graph coloring are two of the most important topics in the

study of graph theory. Graph decomposition deals with the partition of the edge set of a

graph G into subsets each induces a graph in the list of prescribed subgraphs of G, and

graph coloring studies the assignments of colors onto the vertex set of G or the edge set of

G or both or some well-understood areas. Either one of them has made a strong impact

to make graph theory more interesting and useful through the years.

The research on combining these two topics together starts at observing a subgraph

in an edge-colored graph which has many colors. A subgraph whose edges are of distinct

colors is known as a rainbow (or multicolored, heterochromatic) subgraph, see [36] for

reference. In 1991, Alon, Brualdi and Shader [3] first showed that in any edge-coloring

of Kn such that each color class forms a complete bipartite graph, there is a spanning

tree of Kn with distinct colors. Some years later, in 1996, Brualdi and Hollingsworth [10]

proved the existence of two edge-disjoint multicolored spanning trees in any proper edge-

coloring of K2n. Then, they conjectured that a full partition into multicolored spanning

trees is always possible. This conjecture encouraged many scholars to devote themselves

to studying this kind of decomposition problem. In 2000, J. Krussel, S. Marshal and H.

Verral [32] showed the existence of three edge-disjoint multicolored spanning trees about

above conjecture, and it stopped for a while.
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How about adding a condition that these spanning trees are isomorphic mutually? In

2002, G. M. Constantine [14] inserted a parallel concept into this problem. He proposed

two conjectures. One of them is that any proper (2n − 1)-edge-coloring of K2n allows

a partition of the edges into multicolored isomorphic spanning trees. The other one is

a weaker version of above by giving an edge-coloring ourselves and partitioning E(K2n).

Moreover, Constantine proved the latter conjecture on some specific orders.

It is not a coincidence that decomposing the complete graph with even order into

spanning trees, because it is easy to decompose K2n into n Hamiltonian paths. Analogous

to the complete graph of even order, how about that of odd order? Due to the chromatic

index, it is natural to partition the graph into either unicyclic subgraphs or Hamiltonian

cycles. In 2005, Constantine [15] partitionedK2n+1 into nmulticolored Hamiltonian cycles

by a given proper (2n+ 1)-edge-coloring if n is a prime. Furthermore, he proposed a new

conjecture that for any proper (2n+1)-edge-coloring of K2n+1, the edges can be partition

into multicolored isomorphic spanning unicyclic subgraphs.

The above problems motivate us the study of this thesis.

1.2 Graph Terms

In this section, we first introduce the terminologies and definitions of graphs. For

details, the readers may refer to the book “Introduction to Graph Theory” by D. B.

West.[35]

A graph G is a triple consisting of a vertex set V (G), an edge set E(G), and a relation

that associates each edge with two vertices called its endpoints. A loop is an edge whose

endpoints are equal. Multiedges are edges having the same pair of endpoints. A simple

graph is a graph without loops and multiedges. In this thesis, all the graphs we consider

are simple. The size of the vertex set V (G), |V (G)|, is called the order of G, and the size

of the edge set E(G), |E(G)|, is called the size of G.

If e = {u, v} (uv in short) is an edge of G, then e is said to be incident to u and v.

2



We also say that u and v are adjacent to each other. For every v ∈ V (G), N(v) denotes

the neighborhood of v; that is, all vertices of N(v) are adjacent to v. The degree of v in

a graph G, written dG(v) or d(G), is the number of neighbors of v in G. The maximum

degree is Δ(G), and the minimum degree is δ(G). Moreover, G is regular if Δ(G) = δ(G),

and it is said to be k-regular if the common degree is k.

a

f

e

d

c

b= 4

= 1

N(c)={a, d, f}

3-regular

Figure 1.1: Degree, neighborhood and regular

A path is a simple graph whose vertices can be ordered so that two vertices are adjacent

if and only if they are consecutive in the list. A graph G is connected if each pair of vertices

in G belongs to a path; otherwise, G is disconnected.

A subgraph of a graph G is a graph H such that V (H) ⊆ V (G) and E(H) ⊆ E(G)

and the assignment of endpoints to edges in H is the same as in G. Given S be a subset

of vertex set V (G), the induced subgraph determined by S, denoted by 〈S〉G, is a subgraph

of G such that for any u, v ∈ S, u is adjacent to v in 〈S〉G if u is adjacent to v in G.

A spanning subgraph (or factor) of G is a subgraph with vertex set V (G). A spanning

subgraph is said to be k-factor if it is k-regular.

A matching of size k in G is a set of k pairwise disjoint edges. If a matching covers

all vertices of G, then it is a perfect matching. Accordingly, a perfect matching and an

1-factor are almost the same thing. In Figure 1.2, the edge set {af, bg, ch, di, ej} is a

perfect matching of G and it induces an 1-factor.

A cycle is a graph with an equal number of vertices and edges whose vertices can

be placed around a circle so that two vertices are adjacent if and only if they appear

consecutively along the circle. A cycle with n vertices is denoted by Cn. A Hamiltonian
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G

a

j

i h

g

fe

d c

b

spanning subgraph 
of G 1-factor 2-factor

Figure 1.2: spanning, factor and matching

graph is a graph with a spanning cycle, also called a Hamiltonian cycle. A graph with

exactly one cycle is unicyclic; therefore, a hamiltonian cycle in a hamiltonian graph is a

unicyclic subgraph.

In contrast, a graph with no cycle is acyclic. A tree is a connected acyclic graph. A

leaf (or pendant vertex) in a tree is a vertex of degree 1. A star is a tree consisting of

one vertex adjacent to all the others, and the particular vertex is said to be the root (or

center) of the star. Let Sx denote a star with center x.

G

a

e

f

d

c

b

Hamiltonian cycle Tree Sf

f

Figure 1.3: Hamiltonian cycle, tree and star

A clique in a graph is a set of pairwise adjacent vertices. An independent set in a

graph is a set of pairwise nonadjacent vertices.

A complete graph is a simple graph whose vertices are pairwise adjacent, and the

complete graph with n vertices is denoted by Kn. A graph G is bipartite if V (G) is

the union of two disjoint independent sets, called partite sets of G. A graph G is m-

partite if V (G) can be expressed as the union of m independent sets. A complete bipartite

graph is a bipartite graph such that two vertices are adjacent if and only if they are in
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different partite sets. When the sets have the sizes s and t, the complete bipartite graph

is denoted by Ks,t. If the sets have the same size n, the complete bipartite graph is said

to be balanced, denoted by Kn,n. Similarly, the complete m-partite graph is denoted by

Ks1,s2,...,sm where si is the size of the i-th partite set, and the balanced complete m-partite

graph is denoted by Km(n) where each partite set has n vertices.

K5 K2,4 K2,2,2,2 (or K4(2))

Figure 1.4: Complete graph, complete bipartite and multipartite graph

An isomorphism from a graph G to a graph H is a bijection f : V (G)→ V (H) such

that uv ∈ E(G) if and only if f(u)f(v) ∈ E(H). We say “G is isomorphic to H”, written

G ∼= H , if there is an isomorphism from G to H .

x1

x10

x9 x8

x7

x6x5

x4 x3

x2

x1

x5 x6

x2

x9

x8

x7

x4

x3

x10

Figure 1.5: Two isomorphic graphs

1.3 Edge-coloring

A k-coloring of a graph G is a mapping from V (G) into a set of colors {1, 2, . . . , k},
referred as a color set. The vertices of one color form a color class. A k-coloring is proper if

adjacent vertices have different colors. A graph is k-colorable if it has a proper k-coloring;

furthermore, name the least k such that G is k-colorable be the chromatic number of G,

written χ(G).
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Analogous to k-coloring, a k-edge-coloring, proper k-edge-coloring and k-edge-colorable

can be defined by replacing V (G) with E(G), and let the chromatic index χ′(G) be the

least k such that G is k-edge-colorable. Combining these two kinds of colorings, an

(proper) k-total-coloring of a graph G is a mapping from V (G)∪E(G) into a set of colors

{1, 2, . . . , k} such that (i) adjacent vertices in G receive distinct colors, (ii) incident edges

in G receive distinct colors, and (iii) any vertex and its incident edges receive distinct

colors.

1

3

3

2

2

3

3

2
1

1

4

4

3

3

2
1

1

4

4

1

5 4

3

2

3-coloring 4-edge-coloring 5-total-coloring

Figure 1.6: Three types of proper coloring

Figure 1.6 shows the three types of proper coloring: (vertex-)coloring, edge-coloring

and total-coloring. Note here we usually use Arabic numerals to denote the colors; how-

ever, in same chapters we take symbols such as c1, c2, . . . or (0, 0), (0, 1), . . . to denote

colors. No matter what they are, different symbols indicate different colors. Here are

some famous results about colorings, edge-colorings, and total-colorings.

Theorem 1.3.1. (Brooks [9]) If G is a connected graph other than a complete graph or

an odd cycle, then χ(G) ≤ Δ(G).

Theorem 1.3.2. (Vizing [34]) If G is simple graph, then Δ(G) ≤ χ′(G) ≤ Δ(G) + 1.

Theorem 1.3.3. [37] If n is an odd positive integer, then Kn has an n-total-coloring.

According to Vizing’s theorem, for simple graphs, there are only two possibilities for χ′.

A simple graph G is of Class 1 if χ′(G) = Δ(G), while it is of Class 2 if χ′(G) = Δ(G)+1.

It is not hard to check that K2m is Class 1 and K2m+1 is Class 2.

In this thesis, we mainly focus on proper edge-coloring. Let ϕ be a proper (2m−1)-

edge-coloring of K2m and C be the color set. For each x ∈ V (K2m), define ϕx as the
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mapping from V (K2m) \ {x} to C by ϕx(y) = c if ϕ(xy) = c. Clearly, ϕx is bijective.

For each vertex x, let ϕ−1
x (c) be the vertex adjacent to x with the edge colored c. For

convenience, we use v〈c〉 to denote the edge incident to v with color c.

a

d c

b

3

1

1

2 2
3

a(1)=b-1

a(3)=c-1

a(2)=d-1

a 1 =ab

a 2 =ad

a 3 =ac

Figure 1.7: ϕ−1 and v〈c〉 notations

A subgraph in an edge-colored graph is said to be multicolored (or rainbow, heterochro-

matic) if no two edges have the same color. Suppose T is a multicolored spanning tree of

K2m with two leaves x1 and x2. Let the edges in T incident to x1 and x2 be e1 and e2

respectively, and ϕ(e1) = c1, ϕ(e2) = c2. Then let T [x1, x2] be the tree obtained from T

by removing the edges e1, e2 and adding the edges x1〈c2〉, x2〈c1〉.

f

e d

c

ba

4

1

1

1

2

2

5

5

3 5

4 33

24 f

e d

c

ba 1

2 5
3

4 f

e d

c

ba

5
3

4 1 2

K6 T T[b , f ]

Figure 1.8: T and T [b, f ]

Figure 1.8 provides a properly 5-edge-colored K6 and one of its multicolored spanning

tree T . Given b and f be two leaves in T . It is easy to see that the tree T [b, f ] is still

multicolored and spanning.
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1.4 Basic Algebra

Definition 1.4.1. A group 〈G, ∗〉 is a nonempty set G with a binary operation ∗ such

that:

(1) a, b ∈ G implies that a ∗ b ∈ G.

(2) For all a, b, c ∈ G, we have a ∗ (b ∗ c) = (a ∗ b) ∗ c.

(3) There is an element e ∈ G, say identity, such that a ∗ e = e ∗ a = a for any a ∈ G.

(4) For every a ∈ G there exists an element b ∈ G such that a ∗ b = b ∗ a = e.

A group 〈G, ∗〉 is said to be abelian if a ∗ b = b ∗ a for all a, b ∈ G. If the set G has an

finite number of elements, we say 〈G, ∗〉 is a finite group.

For each positive integer n, we can partition Z+, all positive integers, into n subsets

according to whenever the remainders of two positive integers divided by n is the same.

These subsets are called the residue classes modulo n in Z+. If a and b have the same

remainder divided by n, then we write a ≡ b (mod n), read, ”a is congruent to b modulo

n.” For convenient, we use Zn = {0, 1, 2, . . . , n − 1} to denote the set of residue classes

modulo n. It is easy to see that Zn, n ∈ Z+, is a finite group under the usual addition

modulo n. Table 1.1 presents the structure of the group 〈Z7,+〉.

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

Table 1.1: The group table of 〈Z7,+〉

Definition 1.4.2. A field 〈F,+, ·〉 is a nonempty set F with two binary operations + and

·, as well as two particular elements 0 and 1 such that:
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(1) 〈F,+〉 is an abelian group with identity 0.

(2) 〈F ∗, ·〉 is an abelian group with identity 1, where F ∗ = F \ {0}.

(3) For all a, b, c ∈ F , we have a · (b+ c) = a · b+ a · c and (b+ c) · a = b · a + c · a.

Given a prime p, it is not hard to check that Zp is a field under usual addition and

multiplication modulo p. Table 1.2 presents the structure of the field 〈Z7,+, ·〉.
+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

· 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 3 6 2 5 1 4
4 4 1 5 2 6 3
5 5 3 1 6 4 2
6 6 5 4 3 2 1

Table 1.2: The group table of 〈Z7,+〉 and 〈Z∗
7, ·〉

The group Zn, n ∈ Z+, and the filed Zp, p ∈ Z+ a prime, play two important roles in

the description of proofs to our results. For more information about algebra, we refer to

[19] and [27].

1.5 Latin Square

Let S be an n-set. A latin square of order n based on S is an n × n array such that

each element of S occurs in each row and each column exactly once. For example,
0 1
1 0

is a latin square of order 2 based on {0, 1} = Z2. Since this latin square corresponds to a

group table of 〈Z2,+〉, the latin square is also known as a 2-group latin square.

For convenience, we denote a latin square of order n based on S by L = [ li,j ] where

li,j ∈ S and i, j ∈ Zn. Let L = [ li,j ] and M = [ mi,j ] be two latin squares of order

n based on S. Then L = [ li,j ] and M = [ mi,j ] are a pair of orthogonal latin squares,

denoted by L ⊥ M , if and only if {(li,j, mi,j)| 1 ≤ i, j ≤ n} = S × S.

Let L = [ li,j ] and M = [ mi,j ] be two latin squares of order l based on S and m

based on T , respectively. Then the direct product of L and M , L×M = [ hi,j ], is a latin
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Figure 1.9: Mutually orthogonal latin squares of order 3 and 4

square of order l ·m based on S × T , where hx,y = ( la,b, mc,d ) provided that x = ma+ c

and y = mb+ d. For example, let L be the 2-group latin square, then L× L (or L2) is a

latin square of order 4 based on Z2 × Z2 as in Figure 1.10.

(0,1)(0,0)

(1,0)

(0,0)

(0,0)

(0,0)

(0,1)

(0,1)

(0,1)

(1,1)

(1,0)

(1,0)

(1,0) (1,1)

(1,1)

(1,1)0

1

2

3

0 1 2 3

Figure 1.10: 2-group latin square of order 4

A transversal of a latin square of order n is a set of n entries from each column

and each row such that these n entries are all distinct. For example, in Figure 1.10,

{h0,0, h1,2, h2,3, h3,1} is a transversal. It is not difficult to see L × L does have 4 disjoint

transversals. Clearly, if a latin square of order n has n disjoint transversals, then it has

an orthogonal latin square mate.

A latin square L = [li,j] is commutative if li,j = lj,i for each pair of distinct i and j,

and L is idempotent if li,i = i, i ∈ [n]. Furthermore, L is circulant if li,j = li−1,j+1 where

the indices i, j are taken modulo n.

Let L = [li,j] be an idempotent commutative latin square of order n, n is odd. There is
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a corresponding relationship between L and a properly n-edge-colored Kn. Let V (Kn) =

{v1, v2, · · · , vn} and the edge vivj is colored with li,j for each 1 ≤ i �= j ≤ m, then we

have a proper n-edge-coloring of Kn, and vice versa.

1 3524

2 4135

3 5241

5 2413

4 1352

v1

v5

v4 v3

v2

1

1

2

2

3

3

5

4

4

5

Figure 1.11: Idempotent commutative LS and corresponding edge-coloring

A similar idea shows that a latin square of order n corresponds to an n-edge-coloring

of the complete bipartite graph Kn,n. Let {u1, u2, · · · , un} and {v1, v2, · · · , vn} be the two

partite sets of Kn,n and the edge uivj be colored with li,j where L = [li,j ] is a latin square

, we have a proper n-edge-coloring of Kn,n. Therefore, a transversal of a latin square of

order n is corresponded to a multicolored perfect matching in a properly n-edge-colored

Kn,n.

For more information on latin squares, we refer to [16].

1.6 Parallelism Concept

The notion of parallelism has always played an important role in mathematics. Euclid’s

famous ”parallel postulate” asserted that, given any line and any point in the plane, the

given point lies on a unique line parallel to the given line.

In a graph G = (V,E) we may consider each edge e as a set {x, y} consisting of the

two vertices incident to e. Then, two edges e, e′ are called parallel (or independent in this

case) if they are disjoint, i.e., e ∩ e′ = φ. As an extension, two subgraphs are said to

be parallel if they use no common edges. Furthermore, if all edges of a graph G can be

covered by copies of a subgraph H , then we say the set of these copies is a parallelism of
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H ’s. Therefore, an 1-factorization can be considered as a parallelism of 1-factors.

We mainly consider two aspects of parallelism in a complete graphs. Firstly, given a

proper χ′(Kn)-edge-coloring of Kn. Then, the set of edges in a color class is parallel to

another set of edges induced by a distinct color. Since each color class is a matching, a

proper χ′(Kn)-edge-coloring of Kn is a typical parallelism of matchings.

The second parallelism we will mention is parallelism of isomorphic spanning trees

(respectively spanning unicyclic subgraphs) in a complete graph of even order (respectively

odd order). Given a complete graph of even order and a partition of all edges into

isomorphic spanning trees, it provides a parallelism of spanning trees. Furthermore, if

the complete graph K2m is properly (2m−1)-edge-colored and the edges of E(K2m) can

be decomposed into m isomorphic multicolored spanning trees, then we have a double

parallelism of isomorphic spanning trees, or parallelism of isomorphic spanning trees for

short. Subsequently, when it comes to a complete graph of odd order, we have a double

parallelism of isomorphic spanning unicyclic subgraphs.

Harary [26] proposed several examples of a hierarchy of parallel structures in a graph

in 1993. For more information about parallelism concept, see [11] for an introduction of

a parallelism of complete designs. It is worth of mention here that the parallel concept

plays important roles in applications. An application of parallelisms of complete designs

to population genetics data can be found in [7]. Parallelisms are also useful in partitioning

consecutive positive integers into sets of equal size with equal power sums [30]. In addition,

the generating function of the multicolored spanning trees in any edge colored graph can

be expressed as a sum of formal determinants, in [5] and [6]. These results have been used

in constructing parallelisms of multicolored trees in complete graphs on a small number

of vertices.

1.7 Known Results

We first consider the proper edge-coloring and total-coloring of a complete graph.
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Lemma 1.7.1. [35] ∀m ∈ N, χ′(K2m) = 2m− 1 and χ′(K2m+1) = 2m+ 1.

Base on Lemma 1.7.1 and the fact that K2m can be partitioned into paths, Brualdi

and Hollingsworth first made the following conjecture in 1996.

Conjecture 1.7.2. [10] If K2m is properly (2m−1)-edge-colored, then the edges of K2m

can be partitioned into m multicolored spanning trees except when m = 2.

Meanwhile, they also proved the following theorem.

Theorem 1.7.3. [10] If the complete graph K2m, m > 2, is properly (2m−1)-edge-colored,

then there exist two edge-disjoint multicolored spanning trees.

Krussel, Marshall and Verall [32] extend Theorem 1.7.3 to three multicolored spanning

trees.

Theorem 1.7.4. [32] If m > 2, then in any proper edge-coloring of K2m with 2m−1

colors, there exist three edge-disjoint multicolored spanning trees.

It will be more difficult if the desired multicolored spanning trees are mutually iso-

morphic. Here is an example of a 5-edge-colored K6.

Example 1.7.5. In K6, let {x1, x2, x3, x4, x5, x6} be the vertex set and {c1, c2, . . . , c5} be

the color set. The following table shows an assignment of colors and a partition of the

edge set. The ith row denotes the edges which are colored with ci for 1 ≤ i ≤ 5; and,

the jth column denotes the edges contained in the jth multicolored spanning tree for

1 ≤ j ≤ 3.

It is not difficult to see that we have a double parallelism of isomorphic spanning

trees of K6. Formally, we say that the complete graph K2m admits a multicolored tree

parallelism (MTP), if there exists a proper (2m−1)-edge-coloring of K2m such that the

edges can be partitioned into m isomorphic multicolored spanning trees. The following

result shown by Constatine [14] provides an infinite number of complete graphs which

admit MTP.
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T1 T2 T3

c1 x3x5 x4x6 x1x2

c2 x2x4 x1x5 x3x6

c3 x2x5 x3x4 x1x6

c4 x2x6 x1x3 x4x5

c5 x1x4 x2x3 x5x6

Table 1.3: Three multicolored isomorphic spanning trees

Theorem 1.7.6. [14] The graph Kn admits an MTP whenever n = 2k, k > 2, or n = 5·2k,

k ≥ 1.

He also posed the following two conjectures.

Conjecture 1.7.7. (Weak version) [14] K2m can be properly edge-colored with 2m − 1

colors in such a way that the edges can be partitioned into m multicolored isomorphic

spanning trees whenever m > 2.

Conjecture 1.7.8. (Strong version) [14] If K2m is properly (2m−1)-edge-colored, then

the edges of K2m can be partitioned into m multicolored isomorphic spanning trees except

when m = 2.

On the other direction, we can also consider the complete graph of odd order. Since

χ′(K2m+1) = 2m+ 1, the maximal size of a multicolored subgraph of a properly (2m+1)-

edge-colored K2m+1 is 2m + 1. So, it is natural to ask if there also exists a partition of

the edges of a properly (2m+1)-edge-colored K2m+1 into multicolored subgraphs of size

2m+ 1. Constatine gave the following result.

Theorem 1.7.9. [15] If n is an odd prime, then there exists a proper n-edge-coloring of

Kn such that the edges can be partitioned into multicolored Hamiltonian cycles.

In fact, Constantine proposed two conjectures relative to this topic.

Conjecture 1.7.10. (Weak version) [15] For any odd integer n ≥ 3, there exists a proper

n-edge-coloring ofKn such that all edges can be partitioned into multicolored Hamiltonian

cycles.
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Conjecture 1.7.11. (Strong version) [15] Any proper coloring of the edges of a complete

graph on an odd number of vertices allows a partition of the edges into multicolored

isomorphic unicyclic subgraphs.

In addition, there are results relevant to the existence of a multicolored subgraph in

an edge-colored graph. Here we list a couple of them.

Theorem 1.7.12. [36] For m ≥ 3, every properly (2m−1)-edge-colored K2m has a mul-

ticolored perfect matching.

Theorem 1.7.13. [28] For any proper n-edge-coloring in Kn,n, there exists a multicolored

matching with size at least n− (11.053)log2n.

The rest of this thesis is organized as follows. In Chapter 2 and Chapter 3, we deal with

the decomposition of properly edge-colored complete graphs (assigned colorings) of even

and odd order into multicolored isomorphic spanning trees and multicolored Hamiltonian

cycles, respectively. In the next two chapters, all colorings we consider are given. First, in

Chapter 4, we prove the existence of three edge-disjoint multicolored isomorphic spanning

trees in a properly (2m−1)-edge-colored K2m whenever m ≥ 14, and about
√
m−1 edge-

disjoint multicolored spanning trees in K2m. In Chapter 5, we tackle the cases on K2m+1.

Finally, in Chapter 6, the forbidden type problem is concerned. Mainly, we determine the

order of those properly edge-colored complete bipartite graphs which forbid multicolored

C6. Certain general results are also mentioned.
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Chapter 2

Multicolored Tree Parallelism

2.1 Known Results

Definition 2.1.1. We say that the complete graph K2m admits a multicolored tree par-

allelism (MTP) if there exists a proper (2m−1)-edge-coloring of K2m for which all edges

can be partitioned into m isomorphic multicolored spanning trees.

It is clear that the complete graph K4 does not admit an MTP. We note here that such

a partition of the edges of K2m can be viewed as a double parallelism of K2m as defined in

Section 1.6. In fact, finding a partition as obtained above corresponds to an arrangement

of the edges of K2m into an array of 2m − 1 rows and m columns such that each row

contains the edges with the same color which form a perfect matching and the edges in

each column form a multicolored spanning tree of K2m; moreover, all the m spanning

trees are isomorphic.

Example 2.1.2. The complete graph K6 admits an MTP. To see this, consider the

complete graph K6 with the vertex set {x1, x2, x3, x4, x5, x6}. Table 2.1 gives a proper

edge-coloring of K6 with the colors c1, c2, c3, c4, c5 as well as an MTP for it. The ith

row of this table is the set of all edges with color ci. Each column denotes the edges

of a multicolored spanning tree. Figure 2.1 shows that the spanning trees T1, T2, T3 are

isomorphic.
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T1 T2 T3

c1 x3x5 x4x6 x1x2

c2 x2x4 x1x5 x3x6

c3 x2x5 x3x4 x1x6

c4 x2x6 x1x3 x4x5

c5 x1x4 x2x3 x5x6

Table 2.1: Color assignment of K6

T1

x2

T2 T3

x3

x6

x4x5

x1

x3

x5

x2

x4x1

x6

x6

x4

x3

x1x5

x2

Figure 2.1: K6 admits an MTP.

The following result has been proved in [14].

Theorem 2.1.3. [14] If m �= 1, 3 and K2m admits an MTP, then K2rm admits an MTP,

for all r ≥ 1.

The mail goal of this chapter is to prove Conjecture 1.7.7, which states that K2m

admits an MTP for m > 2.

2.2 Main Results

P. Cameron [11] found a decomposition of K6,6 into six isomorphic multicolored graphs

K1,3 ∪ 3K2 ∪ 2K1 by using the software Gap. In the next lemma, we use Cameron’s

decomposition to find an MTP for K12.

Lemma 2.2.1. The complete graph K12 admits an MTP.

Proof. Consider the complete graph K12 with the vertex set {u1, . . . , u6, v1, . . . , v6}.
Table 2.2 gives a proper edge coloring of K12 with colors c1, . . . , c11 as well as an MTP for

it. The ith row of this table is the set of all edges with color ci. Each column denotes the
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edges of a multicolored spanning tree. Note that the first six rows of the table determine

a decomposition of K6,6 into six multicolored subgraphs to K1,3 ∪ 3K2 ∪ 2K1.

T1 T2 T3 T4 T5 T6

c1 u2v5 u1v6 u6v1 u3v2 u4v3 u5v4

c2 u2v3 u5v2 u6v6 u4v5 u3v4 u1v1

c3 u4v1 u3v3 u6v4 u1v2 u5v5 u2v6

c4 u1v4 u3v5 u5v3 u6v2 u2v1 u4v6

c5 u2v2 u4v4 u1v5 u5v1 u6v3 u3v6

c6 u5v6 u3v1 u4v2 u2v4 u1v3 u6v5

c7 u3u5 u4u6 u1u2 v3v5 v4v6 v1v2

c8 u2u4 u1u5 u3u6 v2v4 v1v5 v3v6

c9 u2u5 u3u4 u1u6 v2v5 v3v4 v1v6

c10 u2u6 u1u3 u4u5 v2v6 v1v3 v4v5

c11 u1u4 u2u3 u5u6 v1v4 v2v3 v5v6

Table 2.2: Color assignment of K12

T1

u2

T2 T3

u5u4

u6

u3
u1

v2 v3 v5

v6

v4

v1

u3
u4u1

u2

u6
u5

v1 v3 v5

v4

v4

v6

u6
u1u5

u3

u2
u4

v1 v4 v6

v5

v2

v3

T4

v2

T5 T6

v5v4

v6

v3
v1

u1 u3 u6

u4

u5

u2

v3
v4v1
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Figure 2.2: K12 admits an MTP.

Now, we are ready to prove our main result.

Theorem 2.2.2. For m �= 2, K2m admits an MTP.

Proof. First, suppose that m is an odd integer. Consider the complete graph K2m

defined on the set A ∪ B where A = {a1, . . . , am} and B = {b1, . . . bm}. For convenience,
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let G and H be the complete graphs on the sets A and B, respectively. Since m is odd, G

has a total coloring π which uses m colors, 1, . . . , m. Now, define a proper edge-coloring

ϕ of K2m as follows:

(a) For each edge ajak ∈ E(G), let ϕ(ajak) = π(ajak);

(b) For each edge bjbk ∈ E(H), let ϕ(bjbk) = π(ajak);

(c) For each edge aibi, 1 ≤ i ≤ m, let ϕ(aibi) = π(ai); and

(d) For each edge ajbk, j �= k, let ϕ(ajbk) = m + t where t ≡ k − j (mod m) and

t ∈ {1, 2, · · · , m− 1}.

Clearly, ϕ is a proper (2m−1)-edge-coloring of K2m. It is left to decompose K2m into

m multicolored isomorphic spanning trees. First, for each i ∈ {1, 2, 3, · · · , m}, let Ti be

defined on the set A ∪ B and E(Ti) = {aiai+2t (mod m), bibi+2t−1 (mod m), biai+2t−1 (mod m),

ai+1bi+2t (mod m) | t = 1, 2, · · · , m−1
2
} ∪ {aibi}. Then, it is easy to check that each Ti is a

multicolored spanning tree of K2m, and all the Ti’s are isomorphic.

Now, if m is not an odd integer, then 2m = 2t · m′ where t ≥ 2 and m′ is odd. In

case where m′ = 1, t must be at least 3. Then it is direct consequence of Theorem 1.7.6.

Assume m′ ≥ 3. Thus, K2tm′ admits an MTP by Theorem 2.1.3 except when m′ = 3 and

t = 2. Since this case can be handled by Lemma 2.2.1, we conclude the proof.

We note here that the above theorem proves Conjecture 1.7.7 and the result has been

included in a paper written jointly with S. Akbari, A. Alipour and H. L. Fu [2].
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Chapter 3

Multicolored Hamiltonian Cycle
Parallelism

To extend the study in Chapter 2 of parallelism to the other graph, K2m+1 deserves

to be considered first. Since χ′(K2m+1) = 2m+ 1, the multicolored subgraph we consider

has 2m+1 edges. Thus, a multicolored Hamiltonian cycle in K2m+1 is the best candidate

for the subgraphs. In this chapter, we shall prove that for each positive integer m, there

exists a proper (2m+1)-edge-coloring of K2m+1 for which all edges can be partitioned into

multicolored Hamiltonian cycles. Obviously, any two Hamiltonian cycles are isomorphic

and therefore we have another parallelism if exists.

3.1 Known Results

Definition 3.1.1. We say that the complete graph K2m+1 admits a multicolored Hamil-

tonian cycle parallelism (MHCP) if there exists a proper (2m+1)-edge-coloring of K2m+1

for which all edges can be partitioned into m multicolored Hamiltonian cycles.

Review that a latin square L = [�i,j ] is commutative if �i,j = �j,i for each pair of distinct

i and j in Zn, and L is idempotent if �i,i = i for i ∈ Zn. It is well-known that an idempotent

commutative latin square of order n exists if and only if n is odd. For the convenience in

the proof of our main result, we shall use a special latin square M = [mi,j] of odd order

n which is a circulant latin square with 1st row (0, n+1
2
, 1, n+3

2
, 2, · · · , n+n−2

2
, n−1

2
). Figure

3.1 is such a latin square of order 7.
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Figure 3.1: Circulant latin square of order 7

A similar idea shows that a latin square of order n corresponds to a proper n-edge-

coloring of the complete bipartite graphKn,n. Let {u0, u1, · · · , un−1} and {v0, v1, · · · , vn−1}
be the two partite sets ofKn,n and let M = [mi,j] be a circulant latin square of order n with

the first row as described in the preceding paragraph. Color edge uivj of Kn,n with color

mi,j and observe that the result is a proper n-edge-coloring of Kn,n with the extra prop-

erty that for 0 ≤ j ≤ n − 1, the perfect matching {u0vj , u1vj+1, u2vj+2, · · · , un−1vj+n−1},
where the indices of vi are taken modulo n with i ∈ Zn, is multicolored. We note here

that if we permute the entries of M , we obtain another proper n-edge-coloring of Kn,n

which has the same property as above.

The following result by Constantine appears in [15].

Theorem 3.1.2. [15] If n is an odd prime, then there exists a proper n-edge-coloring of

Kn such that all edges can be partitioned into multicolored Hamiltonian cycles.

Note that this result can be obtained by using a circulant latin square of order n

to color the edges of Kn and the Hamiltonian cycles are corresponding to 1st, 2nd, · · · ,
(n−1

2
)-th sub-diagonals respectively.

Example 3.1.3. In K7, the edges are colored by using Figure 3.1, and the three cycles are

induced by {x0xi+1, x1xi+2, · · · , x6xi} where V (K7) = {x0, x1, · · · , x6}, i = 0, 1, 2, where

the sub-indices are in [n]. See Table 3.1.

In what follows, we extend Theorem 3.1.2 to the case when n is an odd integer.
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C1 C2 C3

0 x3x4 x6x1 x2x5

1 x4x5 x0x2 x3x6

2 x5x6 x1x3 x4x0

3 x6x0 x2x4 x5x1

4 x0x1 x3x5 x6x2

5 x1x2 x4x6 x0x3

6 x2x3 x5x0 x1x4

Table 3.1: Color assignment of K7
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Figure 3.2: K7 admits an MHCP.

3.2 Main Results

We begin this section with some notations. Let Km(n) be the complete m-partite

graph in which each partite set is of size n. In what follows, we will let Zk = {1, 2, . . . , k}
with the usual addition modulo k. For convenience, let V (Km(n)) =

m−1⋃
i=0

Vi where Vi =

{xi,0, xi,1, · · · , xi,n−1}. The graph Cm(n) is a spanning subgraph of V (Km(n)) where xi,j

is adjacent to xi+1,k for all j, k ∈ Zn and i ∈ Zm (mod m). Clearly, if Km can be

decomposed into m−1
2

Hamiltonian cycles (m is odd), then Km(n) can be decomposed into

m−1
2

subgraphs, each of which is isomorphic to Cm(n).

In order to prove the main theorem, we need the following two lemmas.

Lemma 3.2.1. Let p be an odd prime and m be a positive odd integer with p ≤ m. Let

t ∈ {1, 2, . . . , p− 1}. Then, there exists a set {Si = (ai,0, ai,1, . . . , ai,m−1)| 0 ≤ i ≤ p− 1}
of m-tuples such that
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(1) S0 = (0, 0, . . . , 0, t);

(2) {ai,j | 0 ≤ i ≤ p− 1} = {0, 1, 2, . . . , p− 1} j with 0 ≤ j ≤ m− 1; and

(3) p � wi where wi =
m−1∑
j=0

ai,j for each i with 0 ≤ i ≤ p− 1.

Proof. The proof follows by direct constructions depending on the choice of t where

1 ≤ t ≤ p − 1. First, we let S0 = (0, 0, . . . , 0, 1), S1 = (1, 1, . . . , 1, 2), · · · , and Sp−1 =

(p−1, p−1, . . . , p−1, 0) be the p m-tuples. For each i with 0 ≤ i ≤ p−1, let wi =

m−1∑
j=0

ai,j

where Si = (ai,0, ai,1, . . . , ai,m−1). If for each 0 ≤ i ≤ p − 1, p � wi, we do nothing.

Otherwise, assume that p | wj for some j ∈ {1, 2, . . . , p − 1}, and note that such j is

unique. Now, if j ∈ {1, 2, . . . , p−2}, replace Sj and Sj+1 with (j, j, . . . , j, j+1, j+1) and

(j+ 1, j+1, . . . , j+ 1, j, j+ 2) respectively. Else, if j = p− 1, then replace Sp−2 and Sp−1

with (p− 2, p− 2, . . . , p− 2, p− 1, p− 1, p− 1) and (p− 1, p− 1, . . . , p− 1, p− 2, p− 2, 0)

respectively.

When t = 1, clearly, these p m-tuples above satisfies all the four properties. So, in

what follows, we consider 2 ≤ t ≤ p − 1. Note that we initially use the same m-tuples

constructed in the case t = 1 and consider that j causing us to adjust entries above.

Case 1. No such j exists.

First, interchange a0,m−1 with at−1,m−1. If wt−1 ≡/ 0 (mod p), then we are done. On

the other hand, suppose wt−1 ≡ 0 (mod p). If wt ≡/ 1 (mod p), then replace St−1 and

St with (t−1, t−1, . . . , t−1, t, 1) and (t, t, . . . , t, t−1, t+1) respectively. Otherwise,

replace St−1 and St with (t − 1, t − 1, . . . , t − 1, t − 1, t + 1) and (t, t, . . . , t, t, 1)

respectively.

Case 2. j ∈ {1, 2, . . . , p− 2}.

First, interchange a0,m−1 with at−1,m−1. If wt−1 ≡/ 0 (mod p), then we are done. On

the other hand, suppose wt−1 ≡ 0 (mod p). If t = j + 2, then replace Sj and Sj+1
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with (j, j, . . . , j, j + 1, j + 1, j + 1) and (j + 1, j + 1, . . . , j + 1, j, j, 1) respectively.

Otherwise, interchange at−1,m−2 with at,m−2.

Case 3. j = p− 1.

Interchange a0,m−1 with at−1,m−1.

Thus we can construct the desired p m-tuples.

Example 3.2.2. Take p = 5, m = 7. This implies that j = 2. Table 3.2 shows the

structure of {S0, S1, S2, S3, S4} for t = 1, 2, 3, and 4.

t = 1 t = 2 t = 3 t = 4
S0 (0, 0, 0, 0, 0, 0, 1) (0, 0, 0, 0, 0, 0, 2) (0, 0, 0, 0, 0, 0, 3) (0, 0, 0, 0, 0, 0, 4)
S1 (1, 1, 1, 1, 1, 1, 2) (1, 1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 1, 1, 2) (1, 1, 1, 1, 1, 1, 2)
S2 (2, 2, 2, 2, 2, 3, 3) (2, 2, 2, 2, 2, 3, 3) (2, 2, 2, 2, 2, 2, 1) (2, 2, 2, 2, 2, 3, 3)
S3 (3, 3, 3, 3, 3, 2, 4) (3, 3, 3, 3, 3, 2, 4) (3, 3, 3, 3, 3, 3, 4) (3, 3, 3, 3, 3, 2, 1)
S4 (4, 4, 4, 4, 4, 4, 0) (4, 4, 4, 4, 4, 4, 0) (4, 4, 4, 4, 4, 4, 0) (4, 4, 4, 4, 4, 4, 0)

Table 3.2: Circulating sequences for p = 5 and m = 7

Lemma 3.2.3. Let v be a composite odd integer and p be the smallest prime with p|v.
Assume v = mp. If Km admits an MHCP, then Km(p) has a proper mp-edge-coloring that

admits an MHCP.

Proof. We prove the lemma by giving a proper mp-edge-coloring ϕ. Since Km defined

on {xi | i ∈ Zm} admits an MHCP , let μ be such a proper edge-coloring using the colors

0, 1, · · · , m − 1. Let V (Km(p)) =
m−1⋃
i=0

Vi where Vi = {xi,j | j ∈ Zp} and L = [�h,k] be

a circulant latin square of order p as defined before Figure 3.1. Now, we have a proper

mp-edge-coloring of Km(p) by letting ϕ(xa,bxc,d) = μ(xaxc) · p+ �b,d, where a, c ∈ Zm and

b, d ∈ Zp. Therefore, the edges in Km(p) joining a vertex of Va to a vertex of Vc, denoted

(Va, Vc), are colored with the entries in μ(xaxc) · p+ L. It is not difficult to see that ϕ is

a proper edge-coloring of Km(p). Now, it is left to show that the edges of Km(p) can be

partitioned into multicolored Hamiltonian cycles.
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Let C = (xi0 , xi1, · · · , xim−1) be a multicolored Hamiltonian cycle in Km obtained

from the MHCP of Km. Define Cm(p) to be the subgraph induced by the set of edges

in (Vi0 , Vi1), (Vi1, Vi2), . . . , (Vim−2 , Vim−1), (Vim−1 , Vi0). Then, let S(r0, r1, · · · , rm−1), where

rj ∈ {0, 1, . . . , p − 1} for 0 ≤ j ≤ m − 1, be the set of perfect matchings in (Vi0 , Vi1),

(Vi1 , Vi2), . . ., (Vim−2 , Vim−1) and (Vim−1 , Vi0), respectively, where the perfect matching in

(Vij , Vij+1
) is the set of edges xij ,axij+1,b with b − a ≡ rj (mod p) for each j ∈ Zm. Since

these perfect matchings of (Vij , Vij+1
) are multicolored, we have that S(r0, r1, . . . , rm−1) is

a multicolored 2-factor of Cm(n). Hence, we can partition the edges of Cm(p) into p multi-

colored 2-factors due to the fact that ri ∈ {0, 1, . . . , p− 1}. Note that S(r0, r1, · · · , rm−1)

and S(r′0, r
′
1, · · · , r′m−1) are edge-disjoint 2-factors if and only if ri �= r′i for each i ∈ Zm.

The proof follows by selecting (r0, r1, · · · , rm−1) ∈ Zm
p properly in order that each

2-factor S(r0, r1, · · · , rm−1) of Cm(p) is a Hamiltonian cycle. Observe that if

m−1∑
i=0

ri is

not a multiple of p (odd prime), then S(r0, r1, · · · , rm−1) is a Hamiltonian cycle. From

Lemma 3.2.1, let SS0, SS1, · · · , SSp−1 be the 2-factors of Cm(p). This implies that we

have a partition of the edges of Cm(p) into p edge-disjoint multicolored Hamiltonian cycles.

Moreover, since Km(p) can be partitioned into m−1
2

copies of Cm(p) where each Cm(p) arises

from a multicolored Hamiltonian cycle in Km, we have a partition of the edges of Km(p)

into m−1
2
· p multicolored Hamiltonian cycles.

Example 3.2.4. If m = p = 3, then the three multicolored Hamiltonian cycles are

S(0, 0, 1) = (x0,0, x1,0, x2,0, x0,1, x1,1, x2,1, x0,2, x1,2, x2,2), S(1, 1, 2) = (x0,0, x1,1, x2,2, x0,1,

x1,2, x2,0, x0,2, x1,0, x2,1), S(2, 2, 0) = (x0,0, x1,2, x2,1, x0,2, x1,1, x2,0, x0,1, x1,0, x2,2). In case

that m = 5 and p = 3, then we have 6 multicolored Hamiltonian cycles. For each C5(3),

we have three multicolored Hamiltonian cycles of type S(0, 0, 0, 0, 1), S(1, 1, 1, 2, 2), and

S(2, 2, 2, 1, 0).

Following above example, in order to partition the edges of a 9-edge-colored K9 into

4 Hamiltonian cycles, we combine S(0, 0, 1) with the three cliques (K3) induced by the
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three partite sets V0, V1 and V2, to obtain a 4-factor. Since these K3’s can be edge-colored

with {3, 4, 5}, {6, 7, 8} and {0, 1, 2} respectively, we have a proper edge-colored 4-factor

with each color occurs exactly twice. Thus, if this 4-factor can be partitioned into two

multicolored Hamiltonian cycles, then we conclude that K9 admits an MHCP . Figure

3.3 shows how this can be done.

0 1 2

3 4 5
8

7 6

4 5

3

6

7

8

0 1

2

x0,0 x0,2x0,1

x1,0

x2,0 x2,1 x2,2

x1,1
x1,2

Figure 3.3: Two multicolored Hamiltonian cycles in 9-edge-colored K9

Notice that in the induced subgraphs < V0 >,< V1 > and < V2 > we have exactly

one edge from each graph which is not included in the cycle with solid edges. Therefore,

we may first color the edges in < V0 >,< V1 > and < V2 > respectively and then adjust

the colors in (V0, V1), (V1, V2) and (V2, V0) respectively in order to obtain a multicolored

Hamiltonian cycle. For example, if the color of x0,0x0,2 is 4 instead of 3, then we permute

(or interchange) the two entries in
3 5 4
5 4 3
4 3 5

, and thus the latin square used to color

(V1, V2) becomes
4 5 3
5 3 4
3 4 5

. This is an essential trick we shall use when p is a larger

prime.

Before the following theorem, we introduce one useful notation. Let μ be a k-edge-

coloring of a graph G. If K is a subgraph of G, for convenience, we use μ|K to denote the

edge-coloring of K induced by μ, i.e., μ|K(e) = μ(e) for each e ∈ E(K).
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Theorem 3.2.5. For each odd integer v ≥ 3, Kv admits an MHCP.

Proof. The proof is by induction on v. By Theorem 3.1.2, the assertion is true for

v is a prime. Therefore, we assume that v is a composite odd integer and the assertion

is true for each odd order u < v. Let p be the smallest prime such that v = p · m and

V (Kv) =

m−1⋃
i=0

Vi where Vi = {xi,j | j ∈ Zp}, i ∈ Zm. By induction, Km admits an MHCP

and hence Km(p) can be partitioned into m−1
2

Cm(p)’s each of which admits an MHCP .

Moreover, by Lemma 3.2.3, each MHCP of Cm(p) contains a multicolored Hamiltonian

cycle S(0, 0, · · · , 0, 1). Here, the proper edge-coloring ϕ of Km(p) is induced by the proper

edge-coloring μ of Km defined as in Lemma 3.2.3. That is, if vivj is an edge of Km with

color μ(vivj) = t ∈ Zm, then the colors of the edges in (Vi, Vj) are assigned by using M+tp

where M is a circulant latin square of order p as defined before Figure 3.1. We note here

again that permuting the entries of a latin square M + tp gives another edge-coloring, but

the edge-coloring is still proper.

So, in order to obtain an MHCP of Kv, we first give a proper v-edge-coloring of Kv

and then adjust the coloring if it is necessary. Since Km(p) has a proper mp-edge-coloring

ϕ, the proper edge-coloring π of Kv can be defined as follows: (a) π|
Km(p)

= ϕ and (b)

π|
<Vi>

= ψi, i = 0, 1, · · · , m − 1, where ψi is a proper p-edge-coloring of Kp such that

Kp can be partitioned into p−1
2

multicolored Hamiltonian cycles. Moreover, the images

of ψi are tp, tp + 1, · · · , tp + p − 1 where t ∈ Zm and t is the color not occurring in

the edges incident to vi ∈ V (Km). (Here, the colors used to color the edges of Km are

0, 1, 2, · · · , m− 1.)

It is not difficult to check that π is a proper v-edge-coloring of Kv. We shall revise π

by permuting the colors in (Vi, Vi+1) for some i and finally obtain the edge-coloring we

need.

Let the edges of the Kp induced by V0 be partitioned into p−1
2

multicolored Hamilto-

nian cycles D(1), D(2), · · · , D(p−1
2

), and x0,ti is the neighbor with the larger index ti of x0,0

in D(i). Hence, the m copies of Kp each induces by Vi can be partitioned into m copies
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of D(1), D(2), · · · , and D(p−1
2

). For convenience, denote them as mD(i), i = 1, 2, · · · , p−1
2

.

Now, let the edges of Km(p) be partitioned into C
(1)
m(p), C

(2)
m(p), · · · , C

(m−1
2

)

m(p) . By Lemma

3.2.1, we can let each of C
(1)
m(p), C

(2)
m(p), · · · , C

(p−1
2

)

m(p) contains a multicolored Hamiltonian

cycle E(1), E(2), · · · , E(p−1
2

) of type S(0, 0, · · · , 0, p + 1 − ti). Since m ≥ p, we consider

the 4-factors E(i) ∪mD(i) where i = 1, 2, · · · , p−1
2

. Starting from i = 1, we shall parti-

tion the edges of E(1) ∪ mD(1) into two Hamiltonian cycles such that both of them are

multicolored. By the idea explained in Figure 3.3, we first obtain two Hamiltonian cy-

cles from E(1) ∪mD(1) by a similar way, see Figure 3.4 for example. For the purpose of

obtaining multicolored Hamiltonian cycles, we adjust the colors by permuting them in

the latin square for (Vi, Vi+1) to make sure the first cycle does contain each color exactly

once. Then, the second one is clearly multicolored. Now, following the same process,

we partition the edges of E(2) ∪mD(2), · · · , and E(p−1
2

) ∪mD(p−1
2

) into two multicolored

Hamiltonian cycles respectively. We remark here that if permuting entries of a latin

square is necessary, then we can keep doing the same trick since C
(1)
m(p), C

(2)
m(p), · · · , C

(m−1
2

)

m(p)

are edge-disjoint subgraphs of Km(p). (The permutations are carried out independently.)

This implies that after all the permutations are done, we obtain a proper v-edge-coloring

of Kv such that Kv can be partitioned into v−1
2

multicolored Hamiltonian cycles.

In conclusion, we use Figure 3.4 and Figure 3.5 to explain how our idea works. In

Figure 3.4, t1 = 4. The edge xy was colored with 25 originally by using the circulant latin

square of order 5 mentioned before Figure 3.2. But, 25 occurs in the Hamiltonian cycle

with solid edges already. Therefore, we use (25, 29) to permute the square to obtain the

proper edge-coloring we would like to have. After adjusting the colors of zw, z′w′ and

ab respectively, we have two multicolored Hamiltonian cycles as desired. In Figure 3.5,

t2 = 3. For convenience, we reset V0, V2, V4, V6, V1, V3, V5 from top to down. Following the

same process, we also have two multicolored Hamiltonian cycles.

We note here that the above theorem proves the weaker conjecture of Constantine and

the result has been included in a paper written jointly with H. L. Fu [20].
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Figure 3.4: E(1) ∪ 7D(1) in K35.
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Chapter 4

Multicolored Spanning Trees in
Edge-Colored Complete Graphs

In this chapter, we consider Conjecture 1.7.2 and Conjecture 1.7.8.

4.1 Isomorphic Multicolored Spanning Trees

Conjecture 1.7.8 states that for any arbitrary proper (2m−1)-edge-coloring of K2m, it

admits an MTP. We first consider a special proper edge-coloring ofK2m with 2m−1 colors

such that for any two colors form an C4-factor. This kind of edge-coloring is referred to

as a C4-factor edge-coloring.

4.1.1 MST for C4-factor edge-colored K2m

Let L be the 2-group latin square defined earlier in Chapter 1.5. In what follows, we

show that Ln = L×L× · · · ×L based on Z2
n has 2n disjoint transversals for each n ≥ 2.

Proposition 4.1.1. Ln has 2n disjoint transversals for each n ≥ 2.

Proof. The proof is by induction on n. By Figure 4.1, n = 2 is true.

Assume that the assertion is true for each k ≥ 2. Let Lk = [la,b
(k)] and Lk+1 =

L0
k L1

k

L1
k L0

k . By definition of direct product, we have L0
k = [ma,b] where ma,b =

(0 , la,b
(k)) (a (k+1)-dim. vector) and L1

k = [ma,b] where ma,b = (1 , la,b
(k)). We shall use

the set of 2k disjoint transversals in Lk to construct 2k+1 disjoint transversals in Lk+1.
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Figure 4.1: 4 transversals in L2.

Let {Ai | i = 0, 1, 2, · · · , 2k − 1} be the set of disjoint transversals obtained in Lk

by induction hypothesis. Without loss of generality, we may let Ai be the transversal

which contains the entry l0,i
(k), i = 0, 1, 2, · · · , 2k − 1. Now, we shall use A2i and A2i+1,

i = 0, 1, 2, · · · , 2k−1 − 1, to construct four disjoint transversals in Lk+1. For convenience,

we explain the construction by using A0 and A1.

Since A0(respectively A1) is a transversal in Lk, the corresponding entries in L0
k form

a transversal, so are the corresponding entries in L1
k. Let the corresponding transversals

of A0 in L0
k and L1

k be A0,0 and A1,0 respectively. Similarly, let the corresponding

transversals of A1 be A0,1 and A1,1 respectively. Note that for 0 ≤ r, s ≤ 1, Ar,s has 2k

entries, one from each row and from each column. Now, for 0 ≤ r, s ≤ 1, we split Ar,s

into two parts: Ar,s
(u)

is the set of entries from the first to the 2k−1-th row of Ar,s, and

Ar,s
(l)

is the set of entries of the other half. By defining B0, B1, B2 and B3 as in Figure

4.2, we have four transversals in Lk+1 as desired.

A0,1
(u)A0,0

(u)

A1,0
(u)

A1,0
(u)

A0,0
(u)

A1,0
(l)

A0,0
(l)

A0,0
(l)

A1,0
(l)A1,1

(l)

A0,1
(l)

A0,1
(l)

A1,1
(l)

A0,1
(u)

A1,1
(u)

A1,1
(u)

0 1 2 3

Figure 4.2: 4 transversals in Lk+1 constructed from A0 and A1.
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Since for i = 1, 2, · · · , 2k−1 − 1, A2i and A2i+1 can also be used to construct four

transversals in Lk+1, we have a set of 2k+1 transversals in Lk+1. By the reason that

A0, A1, · · · , A2k−1 are disjoint transversals, we conclude the proof.

Before the following lemma, we review the notation μ|K . Let μ be a k-edge-coloring of

a graphG. IfK is a subgraph ofG, for convenience, we use μ|K to denote the edge-coloring

of K induced by μ, i.e., μ|K(e) = μ(e) for each e ∈ E(K).

Lemma 4.1.2. Let μ be a proper (2m−1)-edge-coloring of K2m, m ≥ 2, such that any two

colors induce a 2-factor with each component a 4-cycle, then (a) 2m = 2n for some n ≥ 2

and (b) K2m contains a clique K of order 2k, 1 ≤ k ≤ n− 1 such that {μ(e) | e ∈ E(K)}
is a (2k−1)-set, i.e., μ|

K
is a proper (2k−1)-edge-coloring of K.

Proof. First, we claim that (b) is true. The proof is by induction on n. Clearly, it is

true when n = 2. By hypothesis, let H be a clique of order 2h, h < k, and μ|
H

is a proper

(2h−1)-edge-coloring of H . Without loss of generality, let V (H) = {x1, x2, · · · , x2h} and

the colors used in H be {c1, c2, · · · , c2h−1}. Since μ is a proper (2m−1)-edge-coloring of

K2m, each color occurs around each vertex. Let c2h be a color not used inH . Then, we have

a set H ′, H ′ ∩H = φ, H ′ = {y1, y2, · · · , y2h} such that μ(xiyi) = c2h for i = 1, 2, · · · , 2h.

Now, by the reason that any two colors induce a C4-factor, we conclude that μ|
H′ is also

a proper (2h−1)-edge-coloring of H ′, moreover, μ(xixj) = μ(yiyj) for 1 ≤ i �= j ≤ 2h.

Therefore, the complete bipartite graph K2h,2h = (H,H ′) has a proper 2h-edge-coloring

following by the same reason. This implies that μ|
H∪H′ is a proper (2h+1−1)-edge-coloring

of the clique induced by H ∪H ′. So, we have the proof of (b).

Suppose 2m = 2r · p where p is an odd integer and p �= 1. Using the above argument,

we can find the largest clique G of order 2s which uses 2s − 1 colors. Then we partition

the vertices of K2m into two sets X and Y where X = V (G), and let |Y | = q. Here, we

notice that q < 2s. Consider these 2s− 1 colors used in coloring the edges of G, there are

total (2s − 1)(2r−1 · p) edges which use these colors. But, we have used these colors in G.
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Hence, there remains
1

2
(2s − 1)(2m− 2s) edges to be colored by using these colors. Since

the edges between X and Y can not be colored with any of these colors, they have to be

in Y . But, since q < 2s and 2m − 2s = q,
1

2
(2s − 1)(2m − 2s) >

(
q

2

)
, a contradiction.

This implies that p = 1, and we have the proof of (a).

Lemma 4.1.3. [10] Let μ be a proper 7-edge-coloring of K8 such that for any two colors

form a C4-factor. Then the edges of K8 can be partitioned into 4 isomorphic multicolored

spanning trees.

We are ready to tackle the C4-factor edge-coloring problem.

Theorem 4.1.4. Let μ be a proper (2m−1)-edge-coloring of K2m, m > 2, such that any

two colors form an C4-factor, the edges of K2m can be partitioned into m isomorphic

multicolored spanning trees.

Proof. By Lemma 4.1.2, 2m = 2n for some n > 2. We prove the theorem by induction

on n. By Lemma 4.1.3, n = 3 is true.

Assume that the assertion is true for each k ≥ 3 and consider K2k+1 .

From the process of the proof of Lemma 4.1.2, there must exist two disjoint cliques

of order 2k with 2k − 1 colors in K2k+1 . Let V (K2k+1) = A ∪ B where A,B are the

vertex sets of the two cliques. Consider the colors of the edges between A and B. Let

A = {a0, a1, . . . , a2k−1}, B = {b0, b1, . . . , b2k−1} and M = [mi,j ] where mi,j = μ(aibj).

It is clear that M is a latin square; furthermore, M ∼= Lk. By Proposition 4.1.1, M

has 2k disjoint transversals. This implies that there are 2k perfect matchings in the

complete bipartite graph induced by A∪B. Note that the two cliques induced by A and

B respectively have 2k−1 multicolored isomorphic spanning trees of order 2k, respectively.

Thus, by assigning a perfect matching to each spanning tree, we obtain 2k spanning trees

of order 2k+1. Moreover, these spanning trees are isomorphic and multicolored.
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4.1.2 Main Results

For the presentation of the proof of our main theorem, we review that the notation

T [x1, x2] is a new tree modified from T , where T is a multicolored spanning tree in a

properly edge-colored K2m and x1, x2 are two leaves. At first, we show the existence of

two disjoint isomorphic multicolored spanning trees.

Lemma 4.1.5. Let ϕ be an arbitrary proper (2m−1)-edge-coloring of K2m. Then there

exist two disjoint isomorphic multicolored spanning trees in K2m for m ≥ 3.

Proof. Let V (K2m) = {xi| i = 1, 2, . . . , 2m}. We split the proof into two cases.

Case 1. There exists a 4-cycle (x1, x2, x3, x4) such that ϕ(x1x2) = b, ϕ(x3x4) = c, and

ϕ(x1x4) = ϕ(x2x3) = a. Let T1 = Sx1[x2, x4] and T2 = Sx2[x1, x3], see Figure 4.3.

Clearly, they are the desired spanning trees.

x1

a

x3 x4

x2 x2

x3 x4

x1

a

b
b

.   .   . .   .   ..  . .  .

T1 T2

Figure 4.3: Two isomorphic spanning trees of Case 1.

Case 2. If any two colors of this edge-coloring induce a C4-decomposition of K2m, then

we have the proof by Theorem 4.1.4.

Review that if ϕ is a proper (2m−1)-edge-coloring ofK2m and C is the color set, ϕx is a

bijective mapping from V (K2m)\{x} to C. Hence, ϕ−1
x is defined accordingly. For a vertex

set V ∈ V (K2m) and a color c ∈ C, in addition, let [V ]c = V ∪ {u| ϕ(uv) = c, v ∈ V }.
Now, we are ready for the main result.
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Theorem 4.1.6. Let ϕ be an arbitrary proper (2m−1)-edge-coloring of K2m. Then there

exist three disjoint isomorphic multicolored spanning trees in K2m for m ≥ 14.

Proof. From the proof of Lemma 4.1.5, we only need to consider the case: there ex-

ist two colors which do not induce a 4-cycle factor. Let T1 and T2 be the isomorphic

multicolored spanning trees obtained in Lemma 4.1.5. Clearly, K2m − T1 − T2 is dis-

connected ({x1, x2} induces a component in this graph). Let ϕ−1
x3

(b) = y1, ϕ
−1
x4

(b) = y2

and U = V (K2m) − {x1, x2, x3, x4, y1, y2}. Since m ≥ 14, we can choose a vertex u ∈ U
such that the two colors ϕ(ux1) and ϕ(ux2) are different from those colors on the edges

of the graph induced by the vertex set {x1, x2, x3, x4}. Without loss of generality, let

ϕ(ux1) = 1 and ϕ(ux2) = 2. Moreover, let v1 ∈ U \ {u} and ϕ(x1v1) = 3 such that

ϕ−1
v1

(b) �= ϕ−1
x4

(1) and the two vertices ϕ−1
u (3) and ϕ−1

v1
(1) are elements in U \ {u}. Now,

pick v2 ∈ U \ {u, v1, ϕ
−1
v1

(b)} and let ϕ(x2v2) = 4 such that ϕ−1
v2

(b) �= ϕ−1
x3

(2) and the two

vertices ϕ−1
u (4) and ϕ−1

v2
(2) are elements in set U \ {u}. Note that we can always pick v1

and v2 consecutively since m ≥ 14.

Let T ′
1 = T1[u, v1] and T ′

2 = T2[u, v2]. Assume that ϕ−1
u (3) = u1 and ϕ−1

u (4) = u2.

If u1 = ϕ−1
v1

(1), then adjust T ′
1 to T ′

1[v1, x4]. Similarly, if u2 = ϕ−1
v2

(2), then adjust T ′
2

to T ′
2[v2, x3]. Then T ′

1 and T ′
2 both have two types. In either case, they are disjoint and

isomorphic. Figure 4.4 shows the types of T ′
1.

x1

x3 x4

x2

b.  .
u1 u v1

x1

x3 x4

x2

.  .
u1 u v1

13

1 1

b

Figure 4.4: Two types of T ′
1.
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Now, we are ready to construct the third tree. Let T3 be the graph Su[u1, u2]. Then

choose one edge w1w2 with color 3 in the graph induced by V (K2m)\{x1, x2, u, u2} and

assume ϕ(uw1) = c1, ϕ(uw2) = c2. Let W = {x1, x2, u1, ϕ
−1
u1

(4), w1, w2}. Since m ≥ 14,

there exists one color, cr, such that ϕ−1
u2

(cr) /∈ W and ϕ−1
u (cr) /∈ [W ]c1 ∪ [W ]c2. Let

ϕ−1
u2

(cr) = z1 and ϕ−1
u (cr) = z2. Since ϕ(z1z2) may be c1 or c2, we assume ϕ(z1z2) �= c1.

Finally, let T ′
3 be obtained from T3 by removing the edges u2〈3〉, u〈c1〉, u〈cr〉 and then

adding the edges u2〈cr〉, w1〈3〉, z2〈c1〉. Thus, the third spanning tree is constructed, see

Figure 4.5. Since all spanning trees contain exactly four vertices which are of distance 2

from vertices x1, x2 and u respectively, they are isomorphic. This concludes the proof.

x1

x2

.  .  .
u2 u1 u

4

w1 w2

3
z1 z2

cr

c1

Figure 4.5: T ′
3.

We note here that the result obtained (jointly with H. L. Fu) in this section has been

included in [22].

4.2 Multicolored Spanning Trees

In this section, we consider Conjecture 1.7.2, the original problem of this topic.

4.2.1 Recursive Construction

We start with notations which will be used throughout this section. Let ϕ be a proper

(2m−1)-edge-coloring of K2m and C = {c1, c2, · · · , c2m−1} be the color set. Suppose T is

a multicolored spanning tree of K2m and x is a root of T . Clearly, if x is incident to two
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leaves e1 = xy1 and e2 = xy2, i.e., the degree of y1 and y2 in T , degT (y1) = degT (y2) = 1,

then T [x; y1, y2; z1, z2] = T − e1 − e2 + y1z1 + y2z2 is a spanning tree of K2m for some

vertices z1 and z2 (z1 may be the same as z2). Furthermore, if ϕ(e1) = ϕ(y2z2) and

ϕ(e2) = ϕ(y1z1), then T [x; y1, y2; z1, z2] is also a multicolored spanning tree of K2m with

root x. For convenience, we say T [x; y1, y2; z1, z2] is obtained from T by using a (y1, y2)-

switch operation on T . We note here that T [x; y1, y2; z1, z2] and T [y1, y2] in Section 4.1

are the same thing.

We shall apply a recursive construction to obtain edge-disjoint multicolored spanning

trees in an edge-colored K2m. Since those previously obtained spanning trees will be re-

vised before we find a new one, we use T
(i)
j to denote the jth spanning tree which was

constructed at round i of the recursive construction. That is to say, in order to construct

the (k+1)th tree at (k+1)th round, we first revise the k spanning trees T
(k)
1 , T

(k)
2 , · · · , T (k)

k

to obtain T
(k+1)
1 , T

(k+1)
2 , · · · , T (k+1)

k respectively and then define the new one T
(k+1)
k+1 ac-

cordingly. As a matter of fact, T
(k+1)
j = T

(k)
j [wj; y

′, y′′; z′, z′′] where wj is the root of the

jth spanning tree and y′, y′′, z′, z′′ are suitably chosen to meet the requirements prescribed.

For clearness, we use a properly 27-edge-colored K28 as an example to outline the

idea of our construction. Let K28 be defined on {xi| i ∈ Z28}, ϕ be a proper 27-edge-

coloring of K28, and the entry in ith row and jth column of the 28 × 28 coloring array

be the color of the edge xixj , ϕ(xixj), see Figure 4.6. Let the first spanning tree be the

spanning star T
(1)
1 = Sx1 with root x1. Clearly, T

(1)
1 is multicolored. In order to achieve

a better result and obtain a corresponding corollary in finding edge-disjoint multicolored

spanning unicyclic graphs in a properly (2m−1)-edge-colored K2m−1 (next chapter), we

shall enforce x0 to be a pendent vertex of each spanning tree which is incident to the root.

Therefore, x0 will not be a candidate of roots. For convenience, we let Ui be the set of

candidates of roots in constructing the (i+ 1)th spanning tree.

Now, we are ready to find the second spanning tree. First, we revise T
(1)
1 . As mentioned

above, T
(2)
1 = T

(1)
1 [x1; y, v1; u1, v

′
1] for some vertices y, v1, u1, v

′
1 in Z28 \ {x0, x1}. At this
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step, since U1 = Z28 \ {x0, x1}, we let x2 = y be the root of the second tree. So, it is

left to find v1 for the (x2, v1)-switch operation of T
(1)
1 . Notice that we have to make sure

that T
(2)
1 is also a multicolored spanning tree, i.e., after we choose v1, u1 and v′1, we have

ϕ(x1x2) = ϕ(v1v
′
1) and ϕ(x1v1) = ϕ(x2u1). Observe that from the coloring of K28 we have

ϕ(x0x2) = 2 and ϕ(x1x2) = 15. Hence, in the search of v1, ϕ(v1x1) �= 2 and ϕ(v1x0) �= 15,

for otherwise deg
T

(2)
1

(x0) �= 1. On the other hand, pick u ∈ U1 \{x2}. Notice that T
(2)
2 will

be obtained by using an (u, u1)-switch operation of Sx2 . In this case, let x3 = u. Since

ϕ(x0x3) = 3, we have ϕ(x1v1) �= 3, for otherwise deg
T

(2)
2

(x0) �= 1. Furthermore, since

ϕ(x2x3) = 16, ϕ(x1v1) �= 16. Finally, if ϕ(x0α) = ϕ(x1β) = 16, then ϕ(x1v1) �= ϕ(x2α)

and ϕ(x1v1) �= ϕ(x2β). This is by the reason that T
(2)
2 contains neither u1x0 nor u1x1.

Thus, we conclude that v1 can not be one of x3, x4, x5, x15, x16. Therefore, choose x6 = v1

and then let T
(2)
1 = T

(1)
1 [x1; x2, x6; x5, x24], T

(2)
2 = Sx2 − x2x3 − x2x5 + x3x4 + x5x27. This

concludes the 2nd round. Figure 4.7 shows the structure of these two trees.

In the third round, we revise T
(2)
1 and T

(2)
2 consecutively and then construct a third

tree. Notice that U2 = U1 \ ({x2} ∪ {x3, x4, x5, x6, x24, x27}). Precisely, we will first

pick y ∈ U2 as the root of the third tree and revise T
(3)
1 = T

(2)
1 [x1; y, v1; u1, v

′
1], T

(3)
2 =

T
(2)
2 [x2; y, v2; u2, v

′
2] consecutively for some suitable vertices v1, v2, u1, · · · . Then, we obtain

T
(3)
3 from Sy by deleting edges yu, yu1, yu2 and adding edges uu′, u1u

′
1, u2u

′
2 for some

vertices u, u′, u′1, u
′
2 so that ϕ(uu′) = ϕ(yu2), ϕ(u1u

′
1) = ϕ(yu) and ϕ(u2u

′
2) = ϕ(yu1).

Note here that the two vertices y and u, both in U2, are assigned at the beginning of

this round, namely, x7 = y and x8 = u. Then, the next step is to find v1 ∈ U2 for

the (x7, v1)-switch operation of T
(2)
1 . From the coloring of K28 we have ϕ(x0x7) = 7,

ϕ(x0x8) = 8, ϕ(x1x7) = 4, ϕ(x2x7) = 18 and ϕ(x7x8) = 21. Then, in the search of

v1, ϕ(v1x0) �= 4 and ϕ(v1x1) �= 7, for otherwise deg
T

(3)
1

(x0) �= 1. In addition, since we

have to make sure that T
(3)
1 is edge-disjoint to the other two trees, ϕ(v1x1) �= 18 and

ϕ(v1x2) �= 4. (Though the edge x2x7 will disappear in T
(3)
2 , it appears in T

(3)
3 .) On

the other hand, the edge x7u1 will be dropped away and u1u
′
1 will be included in T

(3)
3
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where ϕ(u1u
′
1) = 21. Since u �= u1, we have that ϕ(v1x1) �= 21. Furthermore, u′1 = x0

yields that deg
T

(3)
3

(x0) �= 1, and u′1 ∈ {x1, x2} implies that T
(3)
3 is not edge-disjoint to

the other two trees. So, if ϕ(x0α) = ϕ(x1β) = ϕ(x2γ) = 21, then ϕ(x1v1) �= ϕ(x7α),

ϕ(x1v1) �= ϕ(x7β) and ϕ(x1v1) �= ϕ(x7γ). Finally, since u1u
′
1 can not be an edge in T

(2)
1 or

T
(2)
2 , ϕ(v1x1) �= ϕ(x7z) where z is an endpoint of an edge with color 21 in these two trees.

By the reasons mentioned above, v1 /∈ {x4, x6, x7, x8, x13, x14, x19, x20, x27}. Hence, choose

x9 = v1 and then let T
(3)
1 = T

(2)
1 [x1; x7, x9; x3, x26]. (x3 = u1, x26 = v′1 and x12 = u′1.)

Next, we have to find v2 ∈ U2 for the (x7, v2)-switch operation of T
(2)
2 . Similarly, we

have to restrict the candidates of v2 in order to achieve our goal. Since deg
T

(3)
2

= 1, we have

ϕ(v2x0) �= 18 and ϕ(v2x2) �= 7. From the coloring of K28, ϕ(x7x3) = 5. In order to make

sure that T
(3)
2 and T

(3)
1 are disjoint, ϕ(v2x2) �= 4 or 5 and ϕ(v2x1) �= 18. Now, consider

the edges which are going to appear in T
(3)
3 . Notice that u2, u

′
2, u

′ will be fixed once v2 is

chosen. From the construction of T
(3)
3 , u2 �= x8 implies that ϕ(v2x2) �= 21. Next, u′ = x0

or u′2 = x0 yield that deg
T

(3)
3

(x0) �= 1. Therefore, ϕ(v2x2) �= 8 as well as if ϕ(x0α) = 5 for

some α, then ϕ(v2x2) �= ϕ(x7α). In addition, ϕ(v2x2) �= ϕ(x1x8) or ϕ(x7β) if ϕ(x2β) = 5,

for otherwise x1x8 or x2u2 will be added to T
(3)
3 . Furthermore, u2u

′
2 can not be an edge of

T
(3)
2 . Hence, ϕ(v2x2) �= ϕ(x7γ) provided that γ is an endpoint incident to an edge in T

(3)
2

which is colored ”5”. Finally, we also have to make sure the three edges uu′, u1u
′
1, u2u

′
2 do

not form a cycle. Our strategy is to let u2 �= x12 = u′1, which was fixed after choosing v1.

Thus, ϕ(v2x2) �= ϕ(x7x12) = 23. To sum up, v2 /∈ {x6, x7, x8, x9, x10, x12, x13, x14, x17, x18}.
Hence, we take x11 = v2 and then let T

(3)
2 = T

(2)
2 [x2; x7, x11; x6, x25] and T

(3)
3 = Sx7 −

x7x8 − x7x3 − x7x6 + x3x12 + x6x4 + x8x5. So, we have three trees now. We illustrate the

result of this round by showing the structure of these trees in Figure 4.8.

We may keep going to find the fourth tree as long as the followings are possible:

(1) U3 = U2 \ {x7, x8, x9, x11, x12, x25, x26} has two vertices y (root) and u available.

(2) There are suitable vertices v1, v2, v3, u1, · · · , such that we can revise T
(3)
1 , T

(3)
2

and T
(3)
3 into T

(4)
1 , T

(4)
2 and T

(4)
3 consecutively and define T

(4)
4 accordingly.
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Indeed, we are able to accomplish the above jobs (see Figure 4.9) by letting y = x10,

u = x13, v1 = x13, v2 = x13 and v3 = x14. Therefore, we have four mutually edge-disjoint

multicolored spanning trees in a 27-edge-colored K28.
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Figure 4.6: A properly 27-edge-colored K28.
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Figure 4.7: Two edge-disjoint multicolored spanning trees.
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Figure 4.8: Three edge-disjoint multicolored spanning trees.
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Figure 4.9: Four edge-disjoint multicolored spanning trees.
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Now, we are ready for the recursive construction. Given a proper (2m−1)-edge-

coloring ϕ of K2m, we start with n = 2, T
(1)
1 = Sx1, and U1 = {x2, x3, · · · , x2m−1},

R1 = {x0, x1}. Note here we use Rn to denote the collection of x0 and all roots of T
(n)
i

for i ∈ [n].

Step 1. (Checking initial value)

If |Un−1| ≥ 9n− 14, go to Step 2; otherwise, break the recursive construction.

Step 2. (Choosing xin)

Pick xin , u0 ∈ Un, where xin is the root of nth tree.

Step 3. (Revising T
(n−1)
1 , T

(n−1)
2 , . . . , T

(n−1)
n−1 consecutively)

3.1 Choose v1 ∈ Un−1\{xin} and let T
(n)
1 = T

(n−1)
1 [x1; xin , v1; u1, v

′
1] where ϕ(v1v

′
1) =

ϕ(x1xin) and ϕ(u1xin) = ϕ(x1v1) such that (i) u1 /∈ {u0} ∪ (Rn−1 \ {x1}), (ii)

v′1 /∈ Rn−1 \ {x1}, (iii) u′1 /∈ Rn−1 where ϕ(u′1u1) = ϕ(xinu0), and (iv) the edge

u1u
′
1 can not appear in T

(n−1)
i for all i ∈ [n− 1].

3.2 For t← 2 to n− 2, do {

Choose vt ∈ Un−1\{xin} and let T
(n)
t = T

(n−1)
t [xit ; xin , vt; ut, v

′
t] where ϕ(vtv

′
t) =

ϕ(xitxin) and ϕ(utxin) = ϕ(xitvt) such that (i) ut /∈ {u0, u1, · · · , ut−1} ∪
(Rn−1 \ {xit}), (ii) v′t /∈ Rn−1 \ {xit}, (iii) u′t /∈ Rn−1 \ {xit−1} where ϕ(u′tut) =

ϕ(xinut−1), (iv) the edge utu
′
t can not appear in T

(n−1)
i for all i ∈ [n − 1]t−1,

and (v) ut /∈ {u′1, · · · , u′t−1}. }

3.3 Choose vn−1 ∈ Un−1 \ {xin} and let T
(n)
n−1 = T

(n−1)
n−1 [xin−1 ; xin, vn−1; un−1, v

′
n−1]

where ϕ(vn−1v
′
n−1) = ϕ(xin−1xin) and ϕ(un−1xin) = ϕ(xin−1vn−1) such that (i)

un−1 /∈ {u0, u1, · · · , un−2} ∪ (Rn−1 \ {xin−1}), (ii) v′n−1 /∈ Rn−1 \ {xin−1}, (iii)

u′n−1 /∈ Rn−1 \{xin−2} where ϕ(u′n−1un−1) = ϕ(xinun−2), (iv) the edge un−1u
′
n−1

can not appear in T
(n−1)
i for all i ∈ [n− 1]n−2, (v) un−1 /∈ {u′1, · · · , u′n−2}, (vi)
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u′0 /∈ Rn−1\{xin−1} where ϕ(u0u
′
0) = ϕ(xin−1vn−1), and (vii) u′0 /∈ {u4, · · · , un−2}

if n ≥ 6.

Step 4. (Defining T
(n)
n )

Let T
(n)
n be the tree obtained from Sxin

by removing the edges xinu0, xinu1, . . . , xinun−1

and then adding the edges u0u
′
0, u1u

′
1, . . . , un−1u

′
n−1. Finally, let Rn = Rn−1 ∪ {xin}

and Un = Un−1 \
(
{xin , u0, u

′
0} ∪

n−1⋃
i=1

{vi, v
′
i, ui, u

′
i}
)

and go back to Step 1 with

n← n + 1.

We note here that u, vi, v
′
i, ui, u

′
i for all i are just temporary bywords in each round and

will be replaced once the vertices fixed which they refer to. More precisely, after doing

Step 4 in round k, the bywords u, vi, v
′
i, ui, u

′
i drop their references, and then they will

carry new vertices in the round k + 1.

4.2.2 Main Results

Theorem 4.2.1. Let ϕ be an arbitrary proper (2m−1)-edge-coloring of K2m, m ≥ 3,

and x0 be an arbitrary vertex. Then there exist at least

⌊√
4m+ 37− 3

2

⌋
mutually edge-

disjoint multicolored spanning trees, each of them contains a pendent vertex x0.

Proof. First of all, we show that the recursive construction works for finding the nth

tree as long as |Un−1| ≥ 9n− 14. It suffices to show that we can successfully find suitable

v1, v2, · · · , vn consecutively. In the search of vi, we split the discussion into several parts

according to the Step 3 in the construction process. (1) If we want to have ut �= y, then it

is sufficient to ensure vt �= ϕ−1
xit

(c), where c = ϕ(xiny). (2) If we want to have v′t �= y, then

it suffices to make sure vt �= ϕ−1
y (c), where c = ϕ(xitxin). (3) If we want to have u′t �= y,

then it only needs to make sure that ϕ(vtxit) �= ϕ(xinα) whenever ϕ(yα) = ϕ(xinut−1).

(4) If the edge utu
′
t can not appear in T

(n−1)
i , then we only ensure ut �= α or β, where αβ is

the edge colored with ϕ(xinut−1) in T
(n−1)
i . (5) Finally, in Step 3.3, u′0 �= y if vt �= ϕ−1

xit
(c)

where c = ϕ(u0y). Applying simple arithmetic, for each vt , 2 ≤ t ≤ n − 2, we avoid at
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most 5n + 2t − 6 vertices in choosing vt, and 9n − 16 vertices in choosing vn for n ≥ 6.

Since each vi ∈ Un−1 \ {xin}, we conclude that v1, v2, · · · , vn−1 can be successfully found

if |Un−1| ≥ 9n− 14 for n ≥ 6.

Secondly, we have to show the revised T
(n)
1 , T

(n)
2 , · · · , T (n)

n−1 are still mutually edge-

disjoint multicolored spanning trees. For each 1 ≤ t ≤ n − 1, since the multicolored and

spanning properties hold by the (xin , vt)-switch operation of T
(n−1)
t , it suffices to show

that T
(n)
t is edge-disjoint to T

(n)
i for every i < t ≤ n − 1. Observe that every vertex in

Un−1 is adjacent to the root of T
(n−1)
t which has degree one. Since xin , vt ∈ Un−1, we need

only to check that v′t /∈ Rn−1 and ut /∈ {u0, u1, · · · , ut−1} ∪ (Rn−1 \ {xit}). This is a direct

consequence of the restriction in Step 3.2.

Next, we claim that T
(n)
n is a multicolored spanning tree and edge-disjoint to any

other revised tree. The multicolored property is trivial from the definition of T
(n)
n . Since

ui /∈ {u′1, · · · , u′i−1} for 2 ≤ i ≤ n − 1 and u′0 /∈ {u4, · · · , un−2} if n ≥ 6, the induced

subgraph of the n edges {u0u
′
0, u1u

′
1, · · · , un−1u

′
n−1} has no cycles, and thus T

(n)
n is a

spanning tree. We emphasize here that the second condition can not be dropped, for

otherwise u′2 = u0, u
′
4 = u2 and u′0 = u4 may occur at the same time and thus induce

a cycle. Furthermore, the condition (iii), (iv) in Step 3.1, 3.2 and 3.3, as well as the

condition (vi) in Step 3.3 guarantee the edge-disjoint property.

In addition, the fact that x0 is a pendent vertex of each T
(n)
t , t ∈ [n−1] can be proved

by the conditions: ut �= x0 and v′t �= x0. Moreover, x0 is also a pendent vertex of T
(n)
n

because of ui �= x0 and u′i �= x0 for i ∈ Zn+1.

Finally, we evaluate the size of Un−1 by Step 4 of the recursive construction: Un =

Un−1\
(
{xin , u0, u

′
0} ∪

n−1⋃
i=1

{vi, v
′
i, ui, u

′
i}
)

. The worst case is that all the vertices vi, v
′
i, ui, u

′
i

and xin , u0, u
′
0 are distinct, see Figure 4.10. This implies that we have a recurrence relation:

|Un| ≥ |Un−1|−(4n−1) with initial value U1 = 2m−2. Therefore, |Un−1| ≥ 2m−2n2+3n.

Combining this inequality with the recurrence condition of the construction in the case

n ≥ 6, we obtain 2m − 2n2 + 3n ≥ 9n − 14. Hence, we can revise n − 1 mutually edge-
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disjoint multicolored spanning trees and then find an extra one. This concludes that there

exist at least

⌊√
4m+ 37− 3

2

⌋
mutually edge-disjoint multicolored spanning trees, each

of them contains a pendent vertex x0.

. . .

. . .

. . .

x1x0

. . .

. . .

. . .

xx0

. . .

. . .

. . .

xx0i2 i3

. . .

. . .

. . .

xx0 i4

. . .

. . .

. . .

xx0 in-1

. . .

. . .

. . .

x1x0 xx0 xx0i2 i3

. . .

. . .

. . .

xin

u1

v1

v1

`
xin

u2

v2

v2

` . . .

. . .

. . .

xin

u3

v3

v3

`

xx0 x0i4

. . .

. . .

. . .

xin

u4

v4

v4

` . . .

. . .

. . .

xin

un-1

`

xin-1

vn-1

vn-1

x0

. . .

. . .

. . .

xin

u0

`

un-1

un-1u0

`

u1

u1

`
T1

(n-1) T2
(n-1) T3

(n-1)

T4
(n-1) Tn-1

(n-1)

T1
(n) T2

(n)

Tn-1
(n)

T3
(n)

T4
(n) Tn

(n)

Figure 4.10: Estimate |Un| from |Un−1|.

Since the number trees obtained is around
√
m, we use Ω(

√
m) to denote its order.

We note finally that the above theorem has been included in a paper written jointly with

H. L. Fu [23].
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Chapter 5

Multicolored Unicyclic Spanning
Subgraphs in Edge-Colored
Complete Graphs

Recall the statement of Conjecture 1.7.11: any properly edge-colored complete graph

of odd order allows a partition of edges into multicolored isomorphic unicyclic spanning

subgraphs. In this chapter, we consider a properly n-edge-colored Kn, n is odd.

5.1 Isomorphic Multicolored Unicyclic Spanning Sub-

graphs

At first, we introduce a special total-coloring in the complete graph of odd order:

symmetric total-coloring. A symmetric n-total-coloring of Kn, n is odd, is an n-total-

coloring μ so that for any three vertices a, b, and c, if μ(bc) = μ(a), then μ(ab) = μ(c)

and μ(ac) = μ(b). Then, we have the following result.

Lemma 5.1.1. Let n be an odd integer and μ is a symmetric n-edge-coloring of Kn, then

(1) n �= 5; and

(2) if n = 7, then all edges can be partitioned into multicolored Hamiltonian cycles.

Proof. Let V (Kn) = {x1, x2, . . . , xn} and the color set be C = [n]. For convenience, we

can permute the color assignment so that μ(xi) = i for every i ∈ [n]. In the case n = 5,

we can assume that μ(x2x3) = 1. Then, μ(x1x2) = 3, μ(x1x3) = 2 and μ(x4x5) must be
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1. This implies that no other edges can be colored with 2, a contradiction to the fact that

each color occurs exactly twice on edges. Hence, m �= 5.

In the case n = 7, we assume that color 1 appears on the edges x2x7, x3x6, and

x4x5. Without loss of generality, let μ(x3x4) = 2, then this will imply μ(x5x6) = 2

and thus μ(x3x5) = μ(x4x6) = 7. By the symmetry of μ, the colors on the other edges

are determined, see Figure 5.1. Figure 5.2 shows the existence of three multicolored

Hamiltonian cycles under this coloring.
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Figure 5.1: Symmetric 7-total-coloring of K7.
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Figure 5.2: Three multicolored Hamiltonian cycles in symmetric 7-total-colored K7.

Now, we are ready for our main result in this section.
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Theorem 5.1.2. For any positive odd integer n ≥ 5 and an arbitrary proper n-edge-

coloring of Kn, there exists a pair of multicolored isomorphic unicyclic spanning subgraphs

of Kn.

Proof. Let ϕ be a properly n-edge-colored Kn, we observe that each vertex of Kn is

missing exactly once from the color set C, and each color of C occurs exactly n−1
2

times.

Therefore, the corresponding missing colors of two distinct vertices are distinct. So,

without loss of generality, let V (Kn) = {x1, x2, · · · , xn}, C = [n], and the missing color

at vertex xi be color i. Note that this edge-coloring can be seen as an n-total-coloring.

We split the proof into two cases.

Case 1. There exists a triangle (xa, xb, xc) such that ϕ(xbxc) = a and either ϕ(xaxb) �= c

or ϕ(xaxc) �= b.

Without loss generality, let ϕ(xaxb) = t �= c. Then let G1 be the graph modified

from Sxa by deleting the edge xaxb and adding edge xbxc. Assume ϕ(xaxt) = t′.

Similarly, let G2 be the graph modified from Sxt by deleting the edge xaxt and

adding edge xaxb. Finally, adding edges yy′ (colored t) and zz′ (colored t′) to G1

and G2, respectively, yield the desired two isomorphic unicyclic subgraphs. Notice

that the two edges yy′, zz′ can not incident to xa or xt, see Figure 5.3.

G1 G2

xa

y`

t

a

tt`

t
t`

t`

z

z`

y

xb
xc

xt

xa

xbxc
xt

Figure 5.3: (Case 1) Two multicolored isomorphic unicyclic subgraphs.
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Case 2. For any triangle (xa, xb, xc), if ϕ(xbxc) = a, then ϕ(xaxb) = c and ϕ(xaxc) = b.

In this case, we can assume n ≥ 9 by Lemma 5.1.1. Pick the vertex x1 and two

edges with color 1, say x2x3 and x4x5. Since ϕ(x1x3) = 2 and ϕ(x1x2) = 3, we

have ϕ−1
x5

(2) /∈ {x1, x2, x3}. Since n ≥ 9, there exists one edge yy′ which is colored

4 such that y, y′ /∈ {x2, x3, x5, ϕ
−1
x5

(2)}. Then, let G1 be the graph modified from

Sx1 by deleting the two edges x1x3, x1x5 and adding the three edges x2x3, x5〈2〉, yy′.
Assume ϕ−1

x3
(5) = xa. Analogous to G1, let G2 be the graph modified from Sx3

by deleting the two edges x3x2, x3xa and adding the three edges x2〈5〉, xa〈3〉, x4x5,

see Figure 5.4. Thus, we have two isomorphic multicolored spanning unicyclic sub-

graphs.
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2
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5
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4y

G1 G2

5

1

x1

x5

x4

x2

x3

x5

x4

x2

x3

xa

Figure 5.4: (Case 2) Two multicolored isomorphic unicyclic subgraphs.

5.2 Multicolored Unicyclic Spanning Subgraphs

Applying Theorem 4.2.1, we can have the following result.

Theorem 5.2.1. Let ϕ be an arbitrary proper (2m−1)-edge-coloring of K2m−1, then there

exist at least

⌊√
4m+ 37− 3

2

⌋
mutually edge-disjoint multicolored spanning unicyclic sub-

graphs.
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Proof. Let K2m be defined on V (K2m−1) ∪ {x0}. Then, by the observation in Section

5.1, we obtain a (2m−1)-edge-coloring ϕ̃ of K2m by letting ϕ̃(x0xi) = i for i ∈ [2m − 1]

and ϕ̃(xixj) = ϕ(xixj) for i, j ∈ [2m − 1]. By Theorem 4.2.1, there exist at least⌊√
4m+ 37− 3

2

⌋
mutually edge-disjoint multicolored spanning trees, each of them con-

tains a pendent vertex x0. Therefore, after deleting the vertex x0, these trees turn out to

be mutually edge-disjoint multicolored spanning trees in K2m−1 and each of them misses

one color. Assume these trees are T1, T2, · · · , and the root of Ti is yi. Then, let Ci be

obtained from Ti by adding an available edge ei colored with the missing color in Ti; i.e.,

let Ci = Ti + ei where ϕ(ei) = ϕ(x0yi). This process always works since the missing colors

are distinct and there are m − 1 −
⌊√

4m+ 37− 3

2

⌋
edges available in each color class.

Thus, we have

⌊√
4m+ 37− 3

2

⌋
mutually edge-disjoint multicolored unicyclic spanning

subgraphs in K2m−1. Note that ϕ̃|K2m−1 = ϕ. This concludes the proof.
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Chapter 6

Forbidden Multicolored Cycles

From what we have seen in literatures, it is not difficult to see that finding (or prov-

ing the existence of) a specific multicolored subgraph such as tree, path or cycle, in an

arbitrary properly edge-colored graph is not easy. On the other point of view, avoiding

a specific multicolored subgraph is also a tough job. In this chapter, we first introduce

some interesting results about the existence of multicolored subgraphs and then focus on

the avoiding issue in the posterior part.

6.1 Multicolored Subgraphs in Edge-colored Com-

plete Graphs

We start with some definitions. If the edges of a graph G are colored by r colors [r]

which are actually appearing in G, then its color distribution (a1, a2, . . . , ar) means that

the number of edges with color i is equal to ai for every i ∈ [r]. An edge-coloring of a

graph G is called an edge-coloring with complete bipartite decomposition if each color class

forms a complete bipartite subgraph of G. If the edges of G are colored so that no color

is appeared in more than k edges, we refer to this as a k-bounded coloring. For a vertex

v of G, the color degree of v, denoted by degcol(v), is the number of colors on the edges

which are incident to v.

In this section, some results related to multicolored subgraph in an edge-colored (not

necessarily be proper) Kn will be introduced. We split them into the following three

categories of multicolored subgraphs.
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6.1.1 Multicolored Spanning Tree

Results related to proper edge-coloring have been discussed in previous chapters. In

what follows, we consider a general edge-coloring of Kn. Recall the result proved by

Brualdi and Hollingsworth [10] that in any proper (2m−1)-edge-coloring of the complete

graph K2m, m > 2, there are two edge-disjoint multicolored spanning trees. In 2006,

Akbari and Alipour [1] generalized Brualdi and Hollingsworth’s result as follows.

Theorem 6.1.1. [1] If (a1, a2, . . . , ar) is a color distribution for the complete graph Kn,

n ≥ 5, such that 2 ≤ a1 ≤ · · · ≤ ar ≤ n+1
2

, then there exist two edge-disjoint multicolored

spanning trees.

As early as in 1991, however, Alon, Brualdi and Shader [3] discussed the existence of

multicolored spanning trees from the perspective of complete bipartite decomposition.

Theorem 6.1.2. [3] Every Kn having an edge-coloring (not necessary proper) with com-

plete bipartite decomposition contains a multicolored spanning tree.

6.1.2 Multicolored Path

Erdős and Gallai [17] first dealt with this type of problems in 1959.

Theorem 6.1.3. [17] Every r-edge-colored graph G of order n has a multicolored path of

length at least

⌈
2r

n

⌉
.

In 2005, Broersma, Li, Woeginger and Zhang [8] obtained the following result.

Theorem 6.1.4. [8] Let G be an edge-colored graph. If degcol(x) ≥ k for every vertex x

of G, then for every vertex v of G, there exists a multicolored path starting at v and of

length at least

⌈
k + 1

2

⌉
.

Then, Chen and Li [12], [13] improved above theorem.

Theorem 6.1.5. [12] Let G be an edge-colored graph and k ≥ 1 be an integer. If

degcol(x) ≥ k for every vertex x of G, then there exists a multicolored path of length
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at least

⌈
3k

5

⌉
+ 1. Moreover, if 1 ≤ k ≤ 7, there exists a multicolored path of length at

least k − 1.

Theorem 6.1.6. [13] Let G be an edge-colored graph and k ≥ 8 be an integer. If

degcol(x) ≥ k for every vertex x of G, then there exists a multicolored path of length

at least

⌈
2k

3

⌉
+ 1.

Consider the proper edge-coloring of a complete graph, we immediately get the fol-

lowing corollary by Theorem 6.1.6.

Corollary 6.1.7. In any proper edge-coloring of Kn, n ≥ 9, with χ′(Kn) colors, there

exists a multicolored path of length at least

⌈
2n− 2

3

⌉
+ 1.

6.1.3 Multicolored Cycle

When it comes to cycles, it is natural to consider Hamiltonian cycles. The problem to

find n which is large enough so that every k-bounded edge-colored Kn, where k is given,

contains a multicolored Hamiltonian cycle was mentioned in [18] in 1983. Here are three

relative results. We list them in historical order.

Theorem 6.1.8. [29] There exists a constant number c such that if n ≥ ck3, then every

k-bounded edge-colored Kn has a multicolored Hamiltonian cycle.

Theorem 6.1.9. [24] There exists a constant number c such that if n is sufficiently large

and k ≤ c
ln n

, then every k-bounded edge-colored Kn contains a multicolored Hamiltonian

cycle.

Theorem 6.1.10. [4] Let c < 1/32. If n is sufficiently lage and k ≤ �cn�, then every

k-bounded edge-colored Kn contains a multicolored Hamiltonian cycle.

Theorem 6.1.8 was obtained by Hahn and Thomassen [29] in 1986 and implied that

k could grow as fast as n1/3 to guarantee that a k-bounded edge-colored Kn contains a

multicolored Hamiltonian cycle. In 1993, Frieze and Reed [24] made further progress, see
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Theorem 6.1.9. Few years later, in 1995, Albert, Frieze and Reed [4] improved Theorem

6.1.9 and proved the growth rate of k could in fact be linear.

Now, we consider general cycles. In an edge-colored Kn, it is clear that there is no

multicolored cycle if and only if there is no multicolored C3. Notice that there exists

a cycle somewhere in a subgraph of Kn which has n edges. Montellano-Ballesteros and

Neumann-Lara [33] presented the following results.

Theorem 6.1.11. [33] If the edges of Kn are colored by n or more colors actually ap-

pearing, then there is a multicolored K3 somewhere.

Above result infers that Kn has an (n−1)-edge-coloring which forbids multicolored

K3’s. A. Gouge et al. [25], in 2010, not only proved the existence of such colorings but

also characterized all such colorings. They defined a JL(n) coloring as an edge-coloring

of Kn with exactly n − 1 colors which forbids multicolored K ′
3s (and thus multicolored

cycles). They also have

Theorem 6.1.12. [25] Suppose n ≥ 2. Every JL(n) coloring is obtainable as follows:

choose positive integers r, s satisfying r+ s = n; partition V (Kn) into sets R, S satisfying

|R| = r, |S| = s. Color all R-to-S edges in Kn with one color-say green. Color 〈R〉Kn

with a JL(r) coloring and 〈S〉Kn with a JL(s) coloring with disjoint sets of colors on the

two cliques, and with green not appearing in 〈R〉Kn nor 〈S〉Kn.

In the same paper, they also considered the edge-coloring, named equalized, which the

difference of numbers of any two colors is at most 1.

Theorem 6.1.13. [25] For n > 1, there is an equalized t-edge-coloring of Kn which forbids

multicolored K3 if and only if t ∈ {1, 2, . . . , �n
2
�}.

56



6.2 Forbidding Multicolored Cycles in Edge-colored

Complete Bipartite Graphs

In this section, motivated by the works in [25] and [33], we consider the proper edge-

colorings of Km,n, n ≥ m, which forbid multicolored (even) cycles. Actually, given an

integer k, we want to know for what natural numbers n and m, there always exists a

multicolored C2k somewhere in any properly n-edge-colored Km,n. For k ≥ 2, we define

the forbidding multicolored 2k-cycles set, FMC(2k) in short, by the ordered pair (m,n) ∈
FMC(2k) if there exists a proper n-edge-coloring of Km,n that forbids multicolored 2k-

cycles. Since m < k or n < 2k gives trivial results, we only consider m ≥ k and n ≥ 2k

in the set FMC(2k)

Firstly, it is impossible to forbid multicolored 4-cycles in any proper n-edge-coloring

of Km,n where 2 ≤ m ≤ n and n ≥ 4.

Proposition 6.2.1. FMC(4) = φ.

Proof. It suffices to show that there exists a multicolored C4 in any properly edge

colored K2,4. Let ϕ be a proper edge coloring of K2,4 and {u1, u2}, {v1, v2, v3, v4} be the

two partite sets. For convenience, let C = {1, 2, . . .} be the color set. Without loss of

generality, assume ϕ(u1v1) = 1 and ϕ(u2v1) = 2. Since ϕ is proper, there must be one

vertex vi, where 2 ≤ i ≤ 4, such that ϕ(u1vi), ϕ(u2vi) /∈ {1, 2}. Thus u1−v1−u2−vi−u1

is the desired multicolored C4.

6.2.1 Forbidding Multicolored 2k-cycles

We start with some notations. Let S be an n-set. A latin rectangle of order m × n,

m ≤ n, based on S is an m× n array in which every element of S is arranged such that

each one occurs at most once in each row and each column. Thus, a latin square of order

n based on S, defined in Section 1.5, is a latin rectangle of order n × n. A partial latin

square of order r, r < n, based on S is an r × r array in which every element of S is
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arranged such that each one occurs at most once in each row and each column. In this

section, we use Zn = {0, 1, 2, . . . , n−1} for the n-set S. For example,
0 1 2
2 0 1

is a latin

rectangle of order 2× 3 based on Z3; and
0 1
2 0

is a partial latin square of order 2 based

on Z3. In particular, the size of a partial latin square L, denoted by |L|, is the number of

elements of S actually appearing in L.

For convenience in presentation, we redefine the method of the product of two latin

squares (compare with Section 1.5). Let L = [li,j] and M = [mi,j ] be two latin squares of

order s based on Zs and t based on Zt, respectively. Then the direct product of L and

M , L×M = [hi,j],is a latin square of order s · t based on Zst, where hx,y = t · la,b +mc,d

provided that x = ta + c and y = tb + d. For instance, let L and M be two latin square

of order 2 (based on Z2) and 3 (based on Z3) respectively, then L ×M is a latin square

of order 6 based on Z6, as in Figure 6.1.

01

10

021

102

210

021354

102435

210543

354021

435102

543210

Figure 6.1: The direct product of L and M

Similar to the definition of transversal in a latin square, the transversal of a partial

latin square of order r based on an n-set is set of r cells with exactly one in each row and

each column and containing exactly r elements.

Let L = [li,j ] be anm×n latin rectangle. There is a corresponding relationship between

L and a properly n-edge-colored Km,n. Let {u0, u1, . . . , um−1} and {v0, v1, . . . , vn−1} be

two partite sets of Km,n, and the edge uivj is colored with li,j for each 0 ≤ i ≤ m − 1,

0 ≤ j ≤ n − 1, then we have a properly n-edge-colored Km,n and vice versa. Now, we

have
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Theorem 6.2.2. If k is odd, then (m, 2k) ∈ FMC(2k) for k ≤ m ≤ 2k.

Proof. It suffices to find a proper 2k-edge-coloring of K2k,2k which forbids multicolored

C2k. Let L2 be the latin square of order 2 in Figure 6.1 and M be a latin square of order

k. Notice that L2 ×M is formed by four latin squares of order k, two of them based on

Zk and other two based on Z2k \Zk. For convenience, name the four squares A,B,C and

D clockwise from the top-left one, see Figure 6.2.

M based on

{0, 1, …, k-1 }

M based on

{k, …, 2k-1 }

M based on

{k, …, 2k-1 }

M based on

{0, 1, …, k-1 }

CD

BA

Figure 6.2: L2 ×M and the four copies of M

Let ϕ be the proper 2k-edge-coloring of K2k,2k obtained by L2 × M . Suppose it

contains a multicolored C2k. Let a, b, c, and d be the numbers of cells in A,B,C, and D,

respectively, corresponding to the edges of the multicolored cycle. Then a+ b is a sum of

the degrees, on the cycle, of some of the vertices on the cycle, so a+ b is even. Similarly,

b+ c is even. Therefore, a+ c is even. But since all 2k colors 0, 1, . . . , 2k− 1 must appear

on the edges of the cycle, a+ c = k, odd. This contradiction completes the proof.

The following result provides an upper bound of the order of complete bipartite graphs

to forbid multicolored 2k-cycles.

Theorem 6.2.3. For any integer k ≥ 2, if n ≥ 5k − 6, then any properly n-edge-colored

Kk,n contains a multicolored C2k.

Proof. Let ϕ be a proper n-edge-coloring ofKk,n and the partite sets beA = {a1, a2, . . . , ak}
and B = {b1, b2, . . . , bn}. Let P = a1b1a2 · · · bt−1at be the longest multicolored path whose

59



endpoints lie on A. Suppose t < k. Assume C is the set of colors which appear on P .

Note that |C| = 2t − 2. For each i = 1, . . . , k, define Si ⊂ B by b ∈ Si if ϕ(aib) ∈ C.

Observe that |St∪St+1 ∪{b1, b2, . . . , bt−1}| ≤ 2(2t−2)+(t−1)−1 = 5t−6 < 5k−6 ≤ n.

Therefore, there exists a vertex b ∈ {bt, bt+1, . . . , bn} such that ϕ(atb), ϕ(at+1b) /∈ C. Let

Q = P ∪ {atbat+1}, we have |Q| = 2t > |P |, a contradiction. Then t ≥ k. By the fact

that a longest path in Kk,n with end vertices in A is of length 2k − 2, we have t = k.

We have that |S1|, |Sk| ≤ 2k−2 and b1 ∈ S1, bk−1 ∈ Sk. Hence, |S1∪Sk∪{b1, . . . , bk−1}| ≤
5k−7. Since n ≥ 5k−6, there exists a vertex b ∈ B such that ϕ(a1b), ϕ(akb) /∈ C. There-

fore, a multicolored C2k is found.

6.2.2 Determining FMC(6)

By Theorem 6.2.3, if (m,n) ∈ FMC(6), then we have 3 ≤ m ≤ n and n = 6, 7, 8. The

case n = 6 was done in Theorem 6.2.2, so we consider n = 7 and 8 in the following.

Let L be the corresponding latin rectangle of a properly n-edge-colored Km,n. If there

is a multicolored C6 somewhere, then there exists a 3 × 3 partial latin square which

contains two disjoint transversals using exactly 6 symbols in L.

Proposition 6.2.4. Let L be a partial latin square of order 3 with |L| = 7. Then, there

is no multicolored C6 in its corresponding K3,3 if and only if it contains a latin subsquare

of order 2.

Proof. It suffices to consider the necessity since the sufficiency is clearly true. Suppose

L contains no latin subsquares of order 2. If there is one element appearing 3 times,

then the other 6 elements form a multicolored C6. Therefore, assume that there are two

elements, say 1, 2, appearing twice respectively. Without loss of generality, let the two 1’s

be arranged at the diagonal in the first two rows. Then at least one of 2’s occurs in the

third column or the third row. Omitting this cell and one of the cells labeled 1 such that

the two cells form a transversal, the 6 of the remaining cells will provide a multicolored

C6, a contradiction.
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Proposition 6.2.5. Let L be a partial latin square of order 3 with |L| = 6. There does

not exist a multicolored C6 in its corresponding K3,3 if one of the following conditions

occurs:

(1) There exist 2 columns (or rows) in L using exactly 3 elements.

(2) Some element appears three times in L.

(3) L contains a latin subsquare of order 2.

Proof. Since there are only 6 elements, if there exists a multicolored C6, all elements

should appear in the two disjoint transversals. In case 1, the elements of the third column

(or row) can not all appear. In case 2, that element can not appear only once in any two

disjoint transversals. In case 3, the argument is similar to the proof of Proposition 6.2.4.

Lemma 6.2.6. For 3 ≤ m ≤ 8, (m, 8) ∈ FMC(6).

Proof. It suffices to prove the claim for m = 8. Let L2 be the latin sqaure of order 2 in

Figure 6.1. Let L = L2×L2×L2, a latin square of order 8 based on Z8. For convenience,

name the four copies A,B,C and D of L2 × L2 as in Figure 6.3.

01234567

10325476

23016745

32107654

45670123

54761032

67452301

76543210

CD

BA
a

b

h

c d k

Figure 6.3: L2 × L2 × L2

Suppose that there are 6 cells whose entries induce a multicolored C6. Let L′ be

the 3 × 3 partial latin square which contains the 6 cells. It is easy to see that any
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2 × 3 partial latin rectangle in L2 × L2 (A or B or C or D) contains a latin subsquare

of order 2. By Proposition 6.2.4, we can assume that L′ traverses all four copies of

L2 × L2. Without loss of generality, suppose there are 4 cells of L′ located in A. Let

the 4 cells be (a, c), (a, d), (b, c), (b, d), and the only one cell located on C be (h, k), where

0 ≤ a, b, c, d ≤ 3 and 4 ≤ h, k ≤ 7 (Figure 6.3). By Proposition 6.2.4 and Proposition

6.2.5, la,c �= lb,d or la,d �= lb,c, and thus the four elements are distinct. Assume that

lh,k = la,c. This implies la,k = lh,c. Then we have a copy of L2, a contradiction. Similarly,

if lh,k is any of the li,j, with (i, j) being one of the 4 cells of L′ in A, then we have

a contradiction. But lh,k must be one of these, since these 4 are distinct elements of

{0, 1, 2, 3}.

Lemma 6.2.7. (3, 7) ∈ FMC(6). Furthermore, if K3,7 is properly 7-edge-colored such

that it forbids multicolored C6’s, there exists an induced K3,3 using exactly 3 colors.

Proof. Firstly, Figure 6.4 gives a 3 × 7 latin rectangle. It is not difficult to check its

corresponding proper 7-edge-coloring of K3,7 induces no multicolored C6 by Proposition

6.2.4 and Proposition 6.2.5.

4651032

5462301

6543210

Figure 6.4: A 3× 7 latin rectangle

Secondly, given a proper 7-edge-coloring of K3,7 which forbids multicolored 6-cycles,

let L be its corresponding latin rectangle. It suffices to show that L contains a latin

subsquare of order 3. For convenience, let Ci denote the set of elements in the ith column

of L where i ∈ Z7.

Claim. There exist i, j such that Ci ∩ Cj = φ.

Suppose for any i �= j, Ci ∩ Cj �= φ. Since each element occurs three times, we have

|Ci∩Cj | = 1 for all i �= j under this assertion. Without loss of generality, let C0 = {0, 1, 2}
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and C1 = {0, 3, 4}. Then 3 and 4 will each occur twice in the remaining five columns. So,

there exists a Ct, where 2 ≤ t ≤ 6, such that Ct ∩ {3, 4} = φ. This implies that the three

columns C0, C1 and Ct create a multicolored C6 by Proposition 6.2.4, a contradiction.

Thus, assume C0 = {0, 1, 2}, C1 = {3, 4, 5} and C2, C3, C4 contain the element 6. Note

here that |Ct∩C0| = 2 or |Ct∩C1| = 2 for all t = 2, 3, 4; otherwise, C0, C1, Ct will create

a multicolored C6 by Proposition 6.2.4. Next, we want to claim (C2∪C3∪C4)\{6} equals

C0 or C1. Suppose the assertion is not true, without loss of generality, let |C2 ∩ C0| =
2, |C3 ∩ C0| = 2 and |C4 ∩ C1| = 2. See the left rectangle in Figure 6.5: the elements in

cell A are from {0, 1, 2} while the elements in cell B are from {3, 4, 5}.

6AA52

B6A41

BA630

CC60152

5036241

1542630

Figure 6.5: The 3× 7 latin rectangle

Proposition 6.2.4 shows that the elements in the cells labelled A and the cells labelled

B are uniquely determined; see the right hand side rectangle in Figure 6.5. Meanwhile,

the elements in some cells of the last two columns are determined except cells denoted as

C, which are filled with 3 and 4. No matter what the elements in C are, C0, C4 and C5

contain a multicolored C6, a contradiction. Therefore, (C2 ∪C3 ∪C4) \ {6} equals C0(or

C1). Hence, combining C5, C6 with C1(or C0), we have a latin square of order 3.

Lemma 6.2.7 will yield the following result.

Proposition 6.2.8. For any proper 7-edge-coloring of Km,7, 4 ≤ m ≤ 7, there exists a

multicolored C6.

Proof.

It’s sufficient to consider the case when m = 4. Suppose that there exists a properly

7-edge-colored K4,7 which forbids multicolored C6’s, then let L be its corresponding 4× 7
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465

546

654

Figure 6.6: The 4× 7 latin rectangle

latin rectangle. By Lemma 6.2.7, there exists a latin square of order 3 in the first three

rows of L. Without loss of generality, we put the latin square of order 3 in the last three

columns and let the symbols be {4, 5, 6}, see Figures 6.6. Next, consider the last three

rows. It’s impossible to find another latin square of order 3. It contradicts Lemma 6.2.7.

To sum up, we have the following conclusion.

Theorem 6.2.9. FMC(6) = {(m, 6)| 3 ≤ m ≤ 6} ∪ {(3, 7)} ∪ {(m, 8)| 3 ≤ m ≤ 8}.

We note here that above result (obtained jointly with H. L. Fu and R. Y. Pei) has

been included in [21].
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Chapter 7

Conclusion and Remarks

The main focus of this thesis is to find edge-disjoint multicolored subgraphs in a

properly edge-colored complete graph. If the complete graph is properly k-edge-colored,

then we are aiming to obtain edge-disjoint copies of multicolored subgraphs of size k. This

is why we try to find copies of multicolored spanning trees of K2m since it is (2m−1)-edge-

colorable and find copies of multicolored spanning unicyclic subgraphs of K2m+1 since it

is (2m+1)-edge-colorable.

In case that the proper edge-coloring is of special type or prescribed, then in Chapter

2 and Chapter 3 we have an MTP (multicolored spanning tree parallelism) or an MHCP

(multicolored Hamiltonian cycle parallelism) respectively when K2m or K2m+1 are con-

sidered. However, if the proper edge-colorings are arbitrarily given, then finding copies

of multicolored subgraph is going to be very difficult. In fact, except for special graphs

such as stars, small paths or small cycles, finding just one copy (multicolored) of a given

graph, for example, a multicolored perfect matching in K2m, is difficult enough.

Therefore, we put our effort in searching for edge-disjoint (not necessarily be iso-

morphic) multicolored spanning trees in a properly (2m−1)-edge-colored K2m and mul-

ticolored unicyclic spanning subgraphs in a properly (2m+1)-edge-colored K2m+1 respec-

tively. In Chapter 4 and Chapter 5, by using a recursive construction, we are able to find

Ω(
√
m) edge-disjoint multicolored spanning trees and Ω(

√
m) edge-disjoint multicolored

spanning unicylic subgraphs in K2m and K2m+1 respectively. Though this result is the
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best one obtained so far, it is very far from m spanning trees (conjectured by Brauldi

and Hollingsworth) and m unicyclic spanning subgraphs (conjectured by Constantine).

Hopefully, we can close the gap in the near future.

In this thesis, we also consider ”forbidden” multicolored subgraphs in a properly edge-

colored complete bipartite graph. Mainly, we prove that if the two partite sets are large

enough, then forbidding a multicolored even cycle of fixed length is not possible. Pre-

cisely, we prove that for f(k) ≤ n, then every properly n-edge-colored Kk,n contains a

multicolored 2k-cycle where f(k) = 5k− 6. As a consequence, we determine the set of all

ordered pairs (m,n), such that multicolored C6 can be forbidden in Km,n. Unfortunately,

determining the set of (m,n)’s such that multicolored C2k can be forbidden in Km,n (by

giving a proper n-edge-coloring) is still unsolved. We believe that it is close related to

find a latin rectangle with special structure which is worth of more study.
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