}f&%ﬁ{? /Jz
L% <

HES BP RS T HE

Multicolored Subgraphs in an
Edge-colored Graphs

a—

I E R R EfF K

B L 4 kg

PoE R 4 L 4 & =



HEI RY R 3 R
Multicolored Subgraphs in an
Edge-colored Graphs

B L 4 Rag Student : Yuan-Hsun Lo

|

IhERR T ® }iﬁz Advisor: Hung-Lin Fu

A Dissertation
Submitted to Department of Applied Mathematics
College of Science
National Chiao Tung University
In Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy

In
Applied Mathematics
June 2010
Hsinchu, Taiwan, Republic of China

CE AR o



Abstract

A subgraph in an edge-colored graph is multicolored if all its edges receive distinct
colors. In this dissertation, we first prove that a complete graph of order 2m (m # 2) can
be properly edge-colored with 2m — 1 colors in such a way that the edges of K5, can be
partitioned into m isomorphic multicolored spanning trees. Then, for the complete graph
on 2m + 1 vertices, we give a proper edge-coloring with 2m + 1 colors such that the edges
of Ks,,41 can be partitioned into m multicolored Hamiltonian cycles.

In the second part, we first prove thatif K3,; admits a proper (2m—1)-edge-coloring
such that any two colors induce a 2-factor with.each component a 4-cycle, then K, can
be partitioned into m isomorphic.multicelored spanning trees. As a consequence, we show
the existence of three isomorphic multicolored spanning trees whenever m > 14. As to the
complete graph of odd order, two'multicelored isomorphic unicyclic spanning subgraphs
can be found in an arbitrary proper (2m-1)-edge-coloring of Ky,,41.

If we drop the condition “isomorphic”, we prove that there exist 2(y/m) mutually
edge-disjoint multicolored spanning trees in any proper (2m—1)-edge-colored Ks,, by
applying a recursive construction. Using an analogous strategy, we can also find Q(y/m)
mutually edge-disjoint multicolored unicyclic spanning subgraphs in any proper (2m—1)-
edge-colored Ko, 1.

Finally, we consider the problem of how to forbid a specific multicolored subgraph in a
properly edge-colored complete bipartite graph. We (1) prove that for any integer k > 2,
if n > 5k — 6, then any properly n-edge-colored Kj ,, contains a multicolored Cy, and (2)
determine the order of the properly edge-colored complete bipartite graphs which forbid

multicolored 6-cycles.
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Chapter 1

Introduction and Preliminaries

1.1 Motivation

Graph decomposition and graph coloring are two of the most important topics in the
study of graph theory. Graph decomposition deals with the partition of the edge set of a
graph GG into subsets each induces a graph in the list of prescribed subgraphs of G, and
graph coloring studies the assignments of colors onto thewvertex set of G or the edge set of
G or both or some well-understood areas. Either one of them has made a strong impact
to make graph theory more interesting and useful through the years.

The research on combining these two topics-together starts at observing a subgraph
in an edge-colored graph which has many colors.. A subgraph whose edges are of distinct
colors is known as a rainbow (or multicolored, heterochromatic) subgraph, see [36] for
reference. In 1991, Alon, Brualdi and Shader [3] first showed that in any edge-coloring
of K, such that each color class forms a complete bipartite graph, there is a spanning
tree of K,, with distinct colors. Some years later, in 1996, Brualdi and Hollingsworth [10]
proved the existence of two edge-disjoint multicolored spanning trees in any proper edge-
coloring of Ks,. Then, they conjectured that a full partition into multicolored spanning
trees is always possible. This conjecture encouraged many scholars to devote themselves
to studying this kind of decomposition problem. In 2000, J. Krussel, S. Marshal and H.
Verral [32] showed the existence of three edge-disjoint multicolored spanning trees about

above conjecture, and it stopped for a while.



How about adding a condition that these spanning trees are isomorphic mutually? In
2002, G. M. Constantine [14] inserted a parallel concept into this problem. He proposed
two conjectures. One of them is that any proper (2n — 1)-edge-coloring of K, allows
a partition of the edges into multicolored isomorphic spanning trees. The other one is
a weaker version of above by giving an edge-coloring ourselves and partitioning E(Ks,).
Moreover, Constantine proved the latter conjecture on some specific orders.

It is not a coincidence that decomposing the complete graph with even order into
spanning trees, because it is easy to decompose K5, into n Hamiltonian paths. Analogous
to the complete graph of even order, how about that of odd order? Due to the chromatic
index, it is natural to partition the graph into either unicyclic subgraphs or Hamiltonian
cycles. In 2005, Constantine [15] partitioned Ko, into n multicolored Hamiltonian cycles
by a given proper (2n + 1)-edge-coloring if n is a prime. Furthermore, he proposed a new
conjecture that for any proper (2n 4*1)-edge-coloring of K, 1, the edges can be partition
into multicolored isomorphic spanning unicyeclic. subgraphs:.

The above problems motivate us the study of this thesis:

1.2 Graph Terms

In this section, we first introduce the terminologies and definitions of graphs. For
details, the readers may refer to the book “Introduction to Graph Theory” by D. B.
West. [35]

A graph G is a triple consisting of a vertex set V(G), an edge set E(G), and a relation
that associates each edge with two vertices called its endpoints. A loop is an edge whose
endpoints are equal. Multiedges are edges having the same pair of endpoints. A simple
graph is a graph without loops and multiedges. In this thesis, all the graphs we consider
are simple. The size of the vertex set V(G), |V(G)], is called the order of G, and the size
of the edge set E(G), |E(G)], is called the size of G.

If e = {u,v} (uv in short) is an edge of G, then e is said to be incident to u and v.



We also say that u and v are adjacent to each other. For every v € V(G), N(v) denotes
the neighborhood of v; that is, all vertices of N(v) are adjacent to v. The degree of v in
a graph G, written dg(v) or d(G), is the number of neighbors of v in G. The maximum
degree is A(G), and the minimum degree is 0(G). Moreover, G is regular if A(G) = 6(G),
and it is said to be k-regular if the common degree is k.

a

A=4 f b
6=1 3-regular
e ¢
N(c)={a, d, f}
d

Figure 1.1: Degree, neighborhood and regular

A path is a simple graph whose vertices can be ordered so that two vertices are adjacent
if and only if they are consecutive inthelist. A graph G'is connected if each pair of vertices
in G belongs to a path; otherwise; G is disconnected.

A subgraph of a graph G is.a graph H such that V(H).C V(G) and E(H) C E(G)
and the assignment of endpoints to edges in H is the same as in G. Given S be a subset
of vertex set V(G), the induced subgraph determined by S, denoted by (S)¢, is a subgraph
of G such that for any u,v € S, u is adjacent to v in (S)¢ if u is adjacent to v in G.

A spanning subgraph (or factor) of G is a subgraph with vertex set V(G). A spanning
subgraph is said to be k-factor if it is k-regular.

A matching of size k in GG is a set of k pairwise disjoint edges. If a matching covers
all vertices of G, then it is a perfect matching. Accordingly, a perfect matching and an
1-factor are almost the same thing. In Figure 1.2, the edge set {af,bg,ch,di,ej} is a
perfect matching of G and it induces an 1-factor.

A cycle is a graph with an equal number of vertices and edges whose vertices can
be placed around a circle so that two vertices are adjacent if and only if they appear

consecutively along the circle. A cycle with n vertices is denoted by C,,. A Hamiltonian
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Y%

S

G spanning subgraph

of G 1-factor 2-factor

Figure 1.2: spanning, factor and matching

graph is a graph with a spanning cycle, also called a Hamiltonian cycle. A graph with
exactly one cycle is unicyclic; therefore, a hamiltonian cycle in a hamiltonian graph is a
unicyclic subgraph.

In contrast, a graph with no cycle is acyclic. A tree is a connected acyclic graph. A
leaf (or pendant vertez) in a tree is a vertex of degree 1. A star is a tree consisting of
one vertex adjacent to all the others; and the particular vertex is said to be the root (or

center) of the star. Let S, denote.a star-with-center .

LT R I

Hamiltonian cycle Tree Sr

Figure 1.3: Hamiltonian cycle, tree and star

A clique in a graph is a set of pairwise adjacent vertices. An independent set in a
graph is a set of pairwise nonadjacent vertices.

A complete graph is a simple graph whose vertices are pairwise adjacent, and the
complete graph with n vertices is denoted by K,. A graph G is bipartite if V(G) is
the union of two disjoint independent sets, called partite sets of G. A graph G is m-
partite if V(G) can be expressed as the union of m independent sets. A complete bipartite

graph is a bipartite graph such that two vertices are adjacent if and only if they are in



different partite sets. When the sets have the sizes s and ¢, the complete bipartite graph
is denoted by K, ;. If the sets have the same size n, the complete bipartite graph is said
to be balanced, denoted by K, ,. Similarly, the complete m-partite graph is denoted by
K, s,...sm Where s; is the size of the i-th partite set, and the balanced complete m-partite

graph is denoted by K,,(,) where each partite set has n vertices.

A

Ky, Ky (or Kys2)

Figure 1.4: Complete graph, complete bipartite and multipartite graph

An isomorphism from a graph G to a graph-H is a bijection f : V(G) — V(H) such
that wv € F(G) if and only if f(u)f(v)ie-E(H). We say. “G is isomorphic to H” | written

G = H, if there is an isomorphism from G to H.

ol

hATEE

Figure 1.5: Two isomorphic graphs

1.3 Edge-coloring

A k-coloring of a graph G is a mapping from V(G) into a set of colors {1,2,...,k},
referred as a color set. The vertices of one color form a color class. A k-coloring is proper if
adjacent vertices have different colors. A graph is k-colorable if it has a proper k-coloring;
furthermore, name the least k£ such that G is k-colorable be the chromatic number of G,

written x(G).



Analogous to k-coloring, a k-edge-coloring, proper k-edge-coloring and k-edge-colorable
can be defined by replacing V(G) with E(G), and let the chromatic index x'(G) be the
least k£ such that G is k-edge-colorable. Combining these two kinds of colorings, an
(proper) k-total-coloring of a graph G is a mapping from V(G) U E(G) into a set of colors
{1,2,...,k} such that (i) adjacent vertices in G receive distinct colors, (ii) incident edges
in G receive distinct colors, and (iii) any vertex and its incident edges receive distinct

colors.

3 2 4 1 4 3

3-coloring 4-edge-coloring 5-total-coloring

Figure 1.6: Three types of proper coloring

Figure 1.6 shows the three types of proper coloring: (vertex-)coloring, edge-coloring
and total-coloring. Note here we usually use Arabic numerals to denote the colors; how-
ever, in same chapters we take symbols such as-cy;co, . .or (0,0),(0,1),... to denote
colors. No matter what they are, different symbolsindicate different colors. Here are

some famous results about colorings, edge-colorings, and total-colorings.

Theorem 1.3.1. (Brooks [9]) If G is a connected graph other than a complete graph or

an odd cycle, then x(G) < A(G).

Theorem 1.3.2. (Vizing [34]) If G is simple graph, then A(G) < ¥'(G) < A(G) + 1.

Theorem 1.3.3. [37] If n is an odd positive integer, then K, has an n-total-coloring.
According to Vizing’s theorem, for simple graphs, there are only two possibilities for y’.

A simple graph G is of Class 1 if x'(G) = A(G), while it is of Class 2 if \'(G) = A(G)+1.

It is not hard to check that K, is Class 1 and Ks,,; is Class 2.

In this thesis, we mainly focus on proper edge-coloring. Let ¢ be a proper (2m—1)-

edge-coloring of Ky, and C be the color set. For each x € V(Ky,,), define ¢, as the

6



mapping from V(Ky,) \ {z} to C by ¢.(y) = ¢ if ¢(zxy) = c. Clearly, ¢, is bijective.
For each vertex z, let . '(c) be the vertex adjacent to x with the edge colored c. For

convenience, we use v(c) to denote the edge incident to v with color c.

a 1 b
oul)=b  all)=ab
2 ) (p’i(Q)zd a2)=ad
p . @’}1(3):6 a{3)=ac
Figure 1.7: ¢=! and v(c) notations

A subgraph in an edge-colored graph is said to be multicolored (or rainbow, heterochro-
matic) if no two edges have the same color. Suppose 7' is a multicolored spanning tree of
Ky, with two leaves x; and x5. Let the edges in T' incident to x; and x5 be e; and ey
respectively, and p(e;) = ¢1, ¢(ez) = co.t Then-let Tz, 5] be the tree obtained from T

by removing the edges ej, e5 and adding the edges @ (o), 22(c1).

Figure 1.8: T and T'[b, f]

Figure 1.8 provides a properly 5-edge-colored K¢ and one of its multicolored spanning
tree T. Given b and f be two leaves in 7. It is easy to see that the tree T'[b, f] is still

multicolored and spanning.



1.4 Basic Algebra

Definition 1.4.1. A group (G,*) is a nonempty set G with a binary operation * such

that:

(1) a,b € G implies that a x b € G.

(2) For all a,b,c € G, we have a % (b*c) = (a*b) * c.

(3) There is an element e € G, say identity, such that a e = e x a = a for any a € G.

(4) For every a € G there exists an element b € G such that axb=bxa = e.

A group (G, *) is said to be abelian if axb = bx*a for all a,b € G. If the set G has an

finite number of elements, we say (G, ) is a finite group.

For each positive integer n, we can partition Z", all positive integers, into n subsets

according to whenever the remainders of two positive integers divided by n is the same.

These subsets are called the residue classes modulon in Z*. If a and b have the same

remainder divided by n, then we-write e =6 (mod n), read; "a is congruent to b modulo

n.” For convenient, we use Z, = {0,1,2,...,n — 1} to denote the set of residue classes

modulo n. It is easy to see that Z,, n' € Z™", is a finite group under the usual addition

modulo n. Table 1.1 presents the structure of the group (Z;, +).

+o]1]2]3]4]|5]6
ofol1]2]3]4]5][6
112314560
2 2]34]5]6]0]1
33456012
44]576l0[1]2]3
5015l6lo]1]2]3]4
6le6lof1]2]3]4]5

Table 1.1: The group table of (Z7, +)

Definition 1.4.2. A field (F,+,-) is a nonempty set F' with two binary operations + and

-, as well as two particular elements 0 and 1 such that:

8



(1) (F,+) is an abelian group with identity 0.
(2) (F*,-) is an abelian group with identity 1, where F* = F'\ {0}.

(3) For all a,b,c € F', we have a-(b+c¢)=a-b+a-cand (b+c)-a=b-a+c-a.

Given a prime p, it is not hard to check that Z, is a field under usual addition and

multiplication modulo p. Table 1.2 presents the structure of the field (Z;, +, ).

+0]1[2[3[4]5]6 123 ]4]5]6
Ofo[1[2[3[4[5]6

1[[1]2]3[4][5]6
1[1(2(3]4][5]6]0

2 2[4[6[1[3]5
2 [2(3[4[5[6]0]1

3[3(6[2[5|1]4
3(3[4]5(6|0]1]2

i41[5[2(6]3
il4[5(6]0[1|2]3

5(5(3[1[6|4]2
5(5(6|0[1]2|3]4 R e E R
66|01 [2[3[4]5

Table 1.2: The group table of (Z;, +) and (Z%, )

The group Z,, n € Z*, and the filed Z,; p € Z* a prime, play two important roles in
the description of proofs to our results. For more information about algebra, we refer to

19] and [27].
1.5 Latin Square

Let S be an n-set. A latin square of order n based on S is an n X n array such that

01
110

is a latin square of order 2 based on {0, 1} = Z,. Since this latin square corresponds to a

each element of S occurs in each row and each column exactly once. For example,

group table of (Zs, +), the latin square is also known as a 2-group latin square.

For convenience, we denote a latin square of order n based on S by L = [ [;; | where
lij e Sandi,j € Z,. Let L =[1;; | and M = [ m,; | be two latin squares of order
n based on S. Then L = [1;; | and M = [ m;; | are a pair of orthogonal latin squares,
denoted by L L M, if and only if {(l;;,m;;)| 1 <i,7 <n}=S5xS.

Let L =[1;; | and M = [ m;,; ] be two latin squares of order [ based on S and m

based on T, respectively. Then the direct product of L and M, L x M = [ h;; ], is a latin
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011123
213/071
3121110
11032
1 0 210
0 1 01123 0111213
112 0 11032 3121110
21301 11032
312110 21301

Figure 1.9: Mutually orthogonal latin squares of order 3 and 4

square of order /- m based on S x T', where hy, = ( lyp, Mcq ) provided that & = ma + ¢
and y = mb + d. For example, let L be the 2-group latin square, then L x L (or L?) is a

latin square of order 4 based on Zs X Zy as in Figure 1.10.

0 1 2 3

0 1(0,0)4(0,1)|(1,0)|(2,1)

1 |(0,1)|(0,0)|(1,1)|(1,0)

2 ((1,0)/(1,2)](0,0)((0,1)

3 (1,1)1(1,0)(0,1)(0,0)

Figure 1.10: 2-group latin square of order 4

A transversal of a latin square of order n is a set of n entries from each column
and each row such that these n entries are all distinct. For example, in Figure 1.10,
{hoo, P12, ho3, hs1} is a transversal. It is not difficult to see L x L does have 4 disjoint
transversals. Clearly, if a latin square of order n has n disjoint transversals, then it has
an orthogonal latin square mate.

A latin square L = [l; ;] is commutative if I; ; = 1;; for each pair of distinct ¢ and j,
and L is idempotent if l;; =1, i € [n]. Furthermore, L is circulant if ; ; = l;_1 j41 where
the indices ¢, j are taken modulo n.

Let L = [I; ;] be an idempotent commutative latin square of order n, n is odd. There is

10



a corresponding relationship between L and a properly n-edge-colored K,,. Let V(K,) =
{vi,v2,- -+ ,v,} and the edge v;v; is colored with /; ; for each 1 < i # j < m, then we

have a proper n-edge-coloring of K,,, and vice versa.

Us

W | O N | | =
=W | O N
= = O N
DN | = | = | | Ot
QU N || /| W

Figure 1.11: Idempotent commutative LS and corresponding edge-coloring

A similar idea shows that a latin square of order n corresponds to an n-edge-coloring
of the complete bipartite graph K, ,,. Let {ui,ug,+*su,} and {vy, v, -, v, } be the two
partite sets of K, , and the edge w;v; be-colored with [, ; where L = [I; ;] is a latin square
, we have a proper n-edge-coloring of K, ,. Therefore, a transversal of a latin square of
order n is corresponded to a multicolored perfect matching in a properly n-edge-colored
K.

For more information on latin squares, we refer to [16].

1.6 Parallelism Concept

The notion of parallelism has always played an important role in mathematics. Euclid’s
famous " parallel postulate” asserted that, given any line and any point in the plane, the
given point lies on a unique line parallel to the given line.

In a graph G = (V, E) we may consider each edge e as a set {z,y} consisting of the
two vertices incident to e. Then, two edges e, ¢’ are called parallel (or independent in this
case) if they are disjoint, i.e., e Ne’ = ¢. As an extension, two subgraphs are said to
be parallel if they use no common edges. Furthermore, if all edges of a graph G can be

covered by copies of a subgraph H, then we say the set of these copies is a parallelism of

11



H’s. Therefore, an 1-factorization can be considered as a parallelism of 1-factors.

We mainly consider two aspects of parallelism in a complete graphs. Firstly, given a
proper x'(K,)-edge-coloring of K,,. Then, the set of edges in a color class is parallel to
another set of edges induced by a distinct color. Since each color class is a matching, a
proper Y’'(K,)-edge-coloring of K, is a typical parallelism of matchings.

The second parallelism we will mention is parallelism of isomorphic spanning trees
(respectively spanning unicyclic subgraphs) in a complete graph of even order (respectively
odd order). Given a complete graph of even order and a partition of all edges into
isomorphic spanning trees, it provides a parallelism of spanning trees. Furthermore, if
the complete graph K, is properly (2m—1)-edge-colored and the edges of E(Kj,,) can
be decomposed into m isomorphic multicolored spanning trees, then we have a double
parallelism of isomorphic spanning trees, or parallelism of isomorphic spanning trees for
short. Subsequently, when it comes'to‘a complete graph of odd order, we have a double
parallelism of isomorphic spanning unicyclic subgraphs.

Harary [26] proposed several-examples of @ hierarchy of parallel structures in a graph
in 1993. For more information abeut, parallelism concept,.see [11] for an introduction of
a parallelism of complete designs. It is worth-of mention here that the parallel concept
plays important roles in applications. An application of parallelisms of complete designs
to population genetics data can be found in [7]. Parallelisms are also useful in partitioning
consecutive positive integers into sets of equal size with equal power sums [30]. In addition,
the generating function of the multicolored spanning trees in any edge colored graph can
be expressed as a sum of formal determinants, in [5] and [6]. These results have been used
in constructing parallelisms of multicolored trees in complete graphs on a small number

of vertices.

1.7 Known Results

We first consider the proper edge-coloring and total-coloring of a complete graph.

12



Lemma 1.7.1. [35| Vm € N, X'(Ka) = 2m — 1 and x'(Kom+1) = 2m + 1.

Base on Lemma 1.7.1 and the fact that Kj,, can be partitioned into paths, Brualdi

and Hollingsworth first made the following conjecture in 1996.

Conjecture 1.7.2. [10] If Ky, is properly (2m—1)-edge-colored, then the edges of Ky,

can be partitioned into m multicolored spanning trees except when m = 2.
Meanwhile, they also proved the following theorem.

Theorem 1.7.3. [10] If the complete graph Ko,,, m > 2, is properly (2m—1)-edge-colored,

then there exist two edge-disjoint multicolored spanning trees.

Krussel, Marshall and Verall [32] extend Theorem 1.7.3 to three multicolored spanning

trees.

Theorem 1.7.4. [32] If m > 2, then.in any proper. edge-coloring of Ks,, with 2m—1

colors, there exist three edge-disjoint multicolored spanning trees.

It will be more difficult if the desired multicolored spanning trees are mutually iso-

morphic. Here is an example of a'5-edge-colored /-

Example 1.7.5. In Kg, let {x1, x9, 23, %4325, 76} be the vertex set and {c1, ¢, ..., c5} be
the color set. The following table shows an assignment of colors and a partition of the
edge set. The ith row denotes the edges which are colored with ¢; for 1 < ¢ < 5; and,
the jth column denotes the edges contained in the jth multicolored spanning tree for

1<j<3

It is not difficult to see that we have a double parallelism of isomorphic spanning
trees of Kg. Formally, we say that the complete graph K, admits a multicolored tree
parallelism (MTP), if there exists a proper (2m—1)-edge-coloring of K,,, such that the
edges can be partitioned into m isomorphic multicolored spanning trees. The following
result shown by Constatine [14] provides an infinite number of complete graphs which

admit MTP.
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N L, 1y
C1 | T3T5 T4le T1X2
Cy | T2y X1T5 T3Te
C3 | T2&5 X3Ty T1Te
Cq | T2Tg XT1T3 T4Xs
Cs | 11Ty XT3 TsTe

Table 1.3: Three multicolored isomorphic spanning trees

Theorem 1.7.6. [14] The graph K,, admits an MTP whenevern = 2% k > 2, orn = 5-2%,

kE>1.
He also posed the following two conjectures.

Conjecture 1.7.7. (Weak version) [14] Ky, can be properly edge-colored with 2m — 1
colors in such a way that the edges can be partitioned into m multicolored isomorphic

spanning trees whenever m > 2.

Conjecture 1.7.8. (Strong version) {14] If Ko is properly (2m—1)-edge-colored, then
the edges of K, can be partitioned into m multicolored isomorphic spanning trees except

when m = 2.

On the other direction, we can also.consider the complete graph of odd order. Since
X' (Kom+1) = 2m + 1, the maximal size of a‘multicolored subgraph of a properly (2m+1)-
edge-colored Ky, 1 is 2m + 1. So, it is natural to ask if there also exists a partition of
the edges of a properly (2m-+1)-edge-colored K, 11 into multicolored subgraphs of size

2m + 1. Constatine gave the following result.

Theorem 1.7.9. [15] If n is an odd prime, then there exists a proper n-edge-coloring of

K,, such that the edges can be partitioned into multicolored Hamiltonian cycles.
In fact, Constantine proposed two conjectures relative to this topic.

Conjecture 1.7.10. (Weak version) [15] For any odd integer n > 3, there exists a proper
n-edge-coloring of K, such that all edges can be partitioned into multicolored Hamiltonian

cycles.
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Conjecture 1.7.11. (Strong version) [15] Any proper coloring of the edges of a complete
graph on an odd number of vertices allows a partition of the edges into multicolored

isomorphic unicyclic subgraphs.

In addition, there are results relevant to the existence of a multicolored subgraph in

an edge-colored graph. Here we list a couple of them.

Theorem 1.7.12. [36] For m > 3, every properly (2m—1)-edge-colored K, has a mul-

ticolored perfect matching.

Theorem 1.7.13. [28] For any proper n-edge-coloring in K, ,, there exists a multicolored

matching with size at least n — (11.053)log*n.

The rest of this thesis is organized as follows. In Chapter 2 and Chapter 3, we deal with
the decomposition of properly edge-colored complete graphs (assigned colorings) of even
and odd order into multicolored isomorphic spanning trees and multicolored Hamiltonian
cycles, respectively. In the next two chapters, all colorings we consider are given. First, in
Chapter 4, we prove the existence-of three edge-disjoint multicolored isomorphic spanning
trees in a properly (2m—1)-edge-colored. K5, wheneverin > 14, and about v/m — 1 edge-
disjoint multicolored spanning trees in K,,. In Chapter 5, we tackle the cases on Ko, 1.
Finally, in Chapter 6, the forbidden type problem is concerned. Mainly, we determine the
order of those properly edge-colored complete bipartite graphs which forbid multicolored

Cg. Certain general results are also mentioned.
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Chapter 2

Multicolored Tree Parallelism

2.1 Known Results

Definition 2.1.1. We say that the complete graph K5, admits a multicolored tree par-
allelism (MTP) if there exists a proper (2m—1)-edge-coloring of Ks,, for which all edges

can be partitioned into m isomorphic multicolored spanning trees.

It is clear that the complete graph K, does not admit.an MTP. We note here that such
a partition of the edges of K5, can be viewed as a double parallelism of K5, as defined in
Section 1.6. In fact, finding a partition as obtained above corresponds to an arrangement
of the edges of K, into an array-of 2m — 1 rows and m columns such that each row
contains the edges with the same color which form a perfect matching and the edges in
each column form a multicolored spanning tree of K,,; moreover, all the m spanning

trees are isomorphic.

Example 2.1.2. The complete graph Kg admits an MTP. To see this, consider the
complete graph Ky with the vertex set {xq,xs, 3, 24,25, 26}. Table 2.1 gives a proper
edge-coloring of Kg with the colors ¢y, cs, c3, ¢y, c5 as well as an MTP for it. The ith
row of this table is the set of all edges with color ¢;. Each column denotes the edges
of a multicolored spanning tree. Figure 2.1 shows that the spanning trees T3, 75, T3 are

isomorphic.
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N L, 1y
C1 | T3T5 T4le T1X2
Cy | T2y X1T5 T3Te
C3 | T2&5 X3Ty T1Te
Cq | T2Tg XT1T3 T4Xs
Cs | 11Ty XT3 TsTe

Table 2.1: Color assignment of Kjg

T3 Ts
€ Ty Ts I
T2 T3
X5 X6 Ty T2
T Ty Ty

Figure 2.1: K4 admits an MTP.

The following result has been proved in [14].

Theorem 2.1.3. [14] If m # 1,3 and Ky, admits an MTP; then Kor,, admits an MTP,

for all r > 1.

The mail goal of this chapter is‘to prove Conjecture 1.7.7, which states that K,

admits an MTP for m > 2.

2.2 Main Results

P. Cameron [11] found a decomposition of K into six isomorphic multicolored graphs
K3 U 3Ky U 2K, by using the software Gap. In the next lemma, we use Cameron’s

decomposition to find an MTP for Ki,.
Lemma 2.2.1. The complete graph Ko admits an MTP.

Proof. Consider the complete graph Kj, with the vertex set {us,...,ug,v1,...,v6}.
Table 2.2 gives a proper edge coloring of K15 with colors ¢y, ..., c1; as well as an MTP for

it. The ith row of this table is the set of all edges with color ¢;. Each column denotes the
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edges of a multicolored spanning tree. Note that the first six rows of the table determine

a decomposition of K¢ into six multicolored subgraphs to K;3U 3K, U 2K;. [ |

no L, 3 T, 1z T

C1 | UU5  UIVg UVl UV2 U4V3 U5V
Co | U2V3  UsVU2  UeUs U4VU5 UIV4 U1V
C3 | UgU1  U3V3 UeV4 UIV2 UsVs  U2Vg
Cq4 | UIVg UZV5 U5V3  UgU2 UVl  UgUs
Cs | UgV2  U4V4 UIVs UV UeU3 U3Vg
Ce | UsVUs U3V UV UVy UIV3  UgUs
C7 | UgUs UglUe UiU2 V3VUs UVylg V12
Cg | UUy UIU5 UIUs V2Ug VU5 V3Vs
Cg | UU5 UZU4 UUs V2Us V3Vy V1Vg
Cio | U2Ug UIU3Z UgU5 V2V ViVU3 UV4Us
Ci1 | Uty UU3  UsUe V1Vg4 VU3  UsUg

Table 2.2: Color assignment of K1

Vs

Uy

T5 | T6

Figure 2.2: Ky, admits an MTP.

Now, we are ready to prove our main result.
Theorem 2.2.2. For m # 2, Ks,, admits an MTP.

Proof. First, suppose that m is an odd integer. Consider the complete graph K,

defined on the set AU B where A ={ay,...,a,} and B = {by,...b,}. For convenience,
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let G and H be the complete graphs on the sets A and B, respectively. Since m is odd, G
has a total coloring m which uses m colors, 1,...,m. Now, define a proper edge-coloring

 of Ky, as follows:

(a) For each edge aja, € E(G), let p(ajar) = m(ajak);
(b) For each edge b;b, € E(H), let ¢(bjby) = m(a;ax);

(c) For each edge a;b;, 1 <i < m, let p(a;b;) = 7(a;); and

(d) For each edge ajby,j # k, let ¢(a;by) = m + t where t = k — j (mod m) and

te{1,2,--,m—1}

Clearly, ¢ is a proper (2m—1)-edge-coloring of Ks,,. It is left to decompose Ks,, into
m multicolored isomorphic spanning trees. ! First; for each i € {1,2,3,--- ,m}, let T; be
defined on the set AU B and E(Ty) = {086 Giod m)s 0ibi+21-1 (mod m)» DiGit2t—1 (mod m),
Qit1bitot (mod m) |t =1,2,- - ,mT_l} U {a;b;}. Then, it is easy to check that each T; is a
multicolored spanning tree of Ky, and all the T;’s are isomorphic.

Now, if m is not an odd integer, then 2m ="2¢"m/ where t > 2 and m’ is odd. In
case where m’ = 1, t must be at least 3./ Then itis direct consequence of Theorem 1.7.6.
Assume m’ > 3. Thus, Ky, admits an MTP by Theorem 2.1.3 except when m’ = 3 and

t = 2. Since this case can be handled by Lemma 2.2.1, we conclude the proof. [

We note here that the above theorem proves Conjecture 1.7.7 and the result has been

included in a paper written jointly with S. Akbari, A. Alipour and H. L. Fu [2].
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Chapter 3

Multicolored Hamiltonian Cycle
Parallelism

To extend the study in Chapter 2 of parallelism to the other graph, Ks,, . deserves
to be considered first. Since X'(Kamt1) = 2m + 1, the multicolored subgraph we consider
has 2m + 1 edges. Thus, a multicolored Hamiltonian cycle in K5, 1 is the best candidate
for the subgraphs. In this chapter, we shall prove that for each positive integer m, there
exists a proper (2m+1)-edge-coloring of Ko,,. 3 for which all edges can be partitioned into
multicolored Hamiltonian cycles.= Obviously, any two Hamiltonian cycles are isomorphic

and therefore we have another parallelism. if exists.

3.1 Known Results

Definition 3.1.1. We say that the complete graph K5, admits a multicolored Hamil-
tonian cycle parallelism (MHCP) if there exists a proper (2m-+1)-edge-coloring of Ko, 11

for which all edges can be partitioned into m multicolored Hamiltonian cycles.

Review that a latin square L = [¢; ;] is commutative if ¢; ; = ¢;; for each pair of distinct
tand jin Z,, and L is idempotent if ¢; ; = i for i € Z,,. It is well-known that an idempotent
commutative latin square of order n exists if and only if n is odd. For the convenience in

the proof of our main result, we shall use a special latin square M = [m; ;] of odd order

n+1 n+3 n+n—2
2717 2727"'7 P)

n which is a circulant latin square with 1st row (0, , "T’l) Figure

3.1 is such a latin square of order 7.
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0|4|1|5/2|6]3
4111521630
1/5/2/6/3]04
512163041
216(3/0/4|1]5
61304152
3/0(4[1|5/2/6

Figure 3.1: Circulant latin square of order 7

A similar idea shows that a latin square of order n corresponds to a proper n-edge-
coloring of the complete bipartite graph K, ,. Let {ug, 1, -+ ,up—1} and {vg, vy, -+ ,vp_1}
be the two partite sets of K, , and let M = [m; ;] be a circulant latin square of order n with
the first row as described in the preceding paragraph. Color edge u,;v; of K, ,, with color
m; ; and observe that the result is a proper n-edge-coloring of K, ,, with the extra prop-
erty that for 0 < 7 < n — 1, the perfect matehing {uov;, u1v;4+1, U242, -+, Up—1Vj1n—1},
where the indices of v; are taken modulo n with i € %, is multicolored. We note here
that if we permute the entries of M, we obtain another proper n-edge-coloring of K, ,,
which has the same property as‘above.

The following result by Constantine appears in [15].

Theorem 3.1.2. [15] If n is an odd prime, then there exists a proper n-edge-coloring of

K, such that all edges can be partitioned into multicolored Hamziltonian cycles.

Note that this result can be obtained by using a circulant latin square of order n
to color the edges of K, and the Hamiltonian cycles are corresponding to 1st, 2nd, - - -,

(25%)-th sub-diagonals respectively.

Example 3.1.3. In K5, the edges are colored by using Figure 3.1, and the three cycles are
induced by {xoz;i1, x12i42, -+, xex;} where V(K7) = {xg, 21, -+ ,x6}, i = 0,1,2, where

the sub-indices are in [n]. See Table 3.1.

In what follows, we extend Theorem 3.1.2 to the case when n is an odd integer.
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Ci G (G
T3ly TeXi T2Ts5
Tyls ToLz T3Tg
TsTe T1X3 T4
Telo T2ly X511
Tol1 T3Ts TeX2
T1T2 Tale T3
Tol3 TsLo T1T4

O Ol W N~ O

Table 3.1: Color assignment of K5

Figure 3.2: K7 admits an MHCP.

3.2 Main Results

We begin this section with some‘notations.Let K,,,) be the complete m-partite

graph in which each partite set is of size n. In what follows, we will let Z; = {1,2,...,k}
m—1

with the usual addition modulo k. For convenience, let V(Km(n)) = U V; where V; =
i=0

{@io, i1, ,@in—1}. The graph C,,(n) is a spanning subgraph of V(K@) where w;

is adjacent to x;41y for all j,k € Z, and i € Z,, (mod m). Clearly, if K,, can be

decomposed into mT_l Hamiltonian cycles (m is odd), then K,y can be decomposed into

mT_l subgraphs, each of which is isomorphic to Cy, ).

In order to prove the main theorem, we need the following two lemmas.

Lemma 3.2.1. Let p be an odd prime and m be a positive odd integer with p < m. Let
t€{1,2,...,p—1}. Then, there exists a set {S; = (a0, @i1,---,Aim-1) 0 <i<p—1}

of m-tuples such that
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(1) So=(0,0,...,0,%);

(2) {ai; |0<i<p—-1}={0,1,2,...,p—1} jwith0<j<m—1; and

m—1
(3) ptw; where w; = Z a;j for each i with 0 <i<p—1.
=0

Proof. The proof follows by direct constructions depending on the choice of ¢ where
1 <t <p-—1. First, we let Sy = (0,0,...,0,1), S; = (1,1,...,1,2), ---, and S,_; =
m—1

(p—1,p—1,...,p—1,0) be the p m-tuples. For each i with 0 <i < p—1, let w; = Z a;
where S; = (a0, ;15,0 m-1). If for each 0 < i < p—1, p{ w;, we do né?ﬁing.
Otherwise, assume that p | w; for some j € {1,2,...,p — 1}, and note that such j is
unique. Now, if j € {1,2,...,p—2}, replace S; and S;4; with (j,4,...,4,7+1,j+1) and
(j+1,7+1,...,74+1,4,7+2) respectively. Else, if j = p—1, then replace S,_5 and S,_4
with (p—2,p—2,...,p—2,p—1L,p—Lp=land (p—1,p—1,...,p—1,p—2,p—2,0)
respectively.

When t = 1, clearly, these p-m-tuples above satisfies all the four properties. So, in
what follows, we consider 2 < t.< p — 1. Note that we initially use the same m-tuples

constructed in the case t = 1 and ‘consider that 7 causing us to adjust entries above.

Case 1. No such j exists.

First, interchange ag,—1 with a;—1 1. If w,—1 # 0 (mod p), then we are done. On
the other hand, suppose w;_; = 0 (mod p). If wy; £ 1 (mod p), then replace S;_; and
Sy with (t—1,t—1,...,t—1,¢,1) and (t,¢,...,t,t—1,t+1) respectively. Otherwise,
replace S;_; and S; with (t — 1,¢t — 1,...,t — 1,t — 1,t + 1) and (¢,¢,...,t,t,1)

respectively.

Case 2. j€{1,2,...,p—2}.

First, interchange ag -1 with a;—1m,-1. If w1 & 0 (mod p), then we are done. On

the other hand, suppose w;—; = 0 (mod p). If ¢ = j + 2, then replace S; and S,
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with (j,7,...,7, 7+ 1,7+ 1L, j+1)and (j+ 1,74+ 1,...,5+ 1,7,4,1) respectively.

Otherwise, interchange a;—1 m,—2 With atm,—o.

Case 3. j=p—1.

Interchange ag ,—1 with a;—j m—1.

Thus we can construct the desired p m-tuples. [

Example 3.2.2. Take p = 5,m = 7. This implies that j = 2. Table 3.2 shows the

structure of {Sy, S1, So, S3, 54} for t = 1,2, 3, and 4.

t=1 t=2 t=3 t=4
So | (0,0,0,0,0,0,1) ] (0,0,0,0,0,0,2) | (0,0,0,0,0,0,3) | (0,0,0,0,0,0,4)
S| (1,1,1,1,1,1,2) | (1,1,1,1,1,1,1) | (1,1,1,1,1,1,2) | (1,1,1,1,1,1,2)
Sy 1(2,2,2,2,2,3,3) | (2,2,2,2,2,3,3) | (2,2,2,2,2,2,1) | (2,2,2,2,2,3,3)
Sy | (3,3,3,3,3,2,4) | (3,3,3,3,312,4)1(3.3,3,3,3,3,4) | (3,3,3,3,3,2,1)
Sp | (4,4,4,4,4,4,0) | (4,4, 44,4,4,0) | (4,4,4/%4,4,0) | (4,4,4,4,4,4,0)

Table 3.2: Circulating sequences forp =& and m =7

Lemma 3.2.3. Let v be a composite odd integer-and p be the smallest prime with plv.
Assume v = mp. If K,,, admits an MHCP; then ¥y has a proper mp-edge-coloring that

admits an MHCP.

Proof. We prove the lemma by giving a proper mp-edge-coloring ¢. Since K, defined
on {xz; | i € Z,,} admits an M HCP, let u be such a proper edge-coloring using the colors

m—1

0,1,---,m— 1 Let V(Kug) = |J Vi where V; = {a;; | j € Z,} and L = [(] be
a circulant latin square of order p ;:Sodeﬁned before Figure 3.1. Now, we have a proper
mp-edge-coloring of K,y by letting ¢(2,pc,a) = p(rae) - p + log, where a, c € Zy,, and
b,d € Z,. Therefore, the edges in K, joining a vertex of V, to a vertex of V,, denoted
(Va, Vi), are colored with the entries in p(z,x.) - p+ L. It is not difficult to see that ¢ is
a proper edge-coloring of K. Now, it is left to show that the edges of K, can be

partitioned into multicolored Hamiltonian cycles.

24



Let C = (x4, %y, , i, ,) be a multicolored Hamiltonian cycle in K, obtained
from the MHCP of K,,. Define Cy, to be the subgraph induced by the set of edges
in (Viy, Vi), Viy, Vin), oo, (Vi 5 Vi 1), (Vi 1, Vio). Then, let S(rg,ry, - ,rm_1), where
r; € {0,1,...,p—1} for 0 < j < m — 1, be the set of perfect matchings in (V,,V;,),
(Vir, Vi), -, (V5

Vi) and (Vi _,, Vi), respectively, where the perfect matching in

m—27 m—17

(Vi,, Vi,,,) is the set of edges x;; o;,,, s With b —a = r; (mod p) for each j € Z,. Since

these perfect matchings of (V; are multicolored, we have that S(rg,r1,...,7n_1) is

37 ij+1)
a multicolored 2-factor of C,,(,). Hence, we can partition the edges of Cj,(,) into p multi-
colored 2-factors due to the fact that r; € {0,1,...,p — 1}. Note that S(ro,r1, -+, rm—1)
and S(ry,ry,---,rl ;) are edge-disjoint 2-factors if and only if r; # r for each i € Z,,.

» Pm—1

The proof follows by selecting (ro,71, -+ ,7m-1) € Z,' properly in order that each

m—1
2-factor S(rg,r1,- -+ ,7m-1) of Cyp is a Hamiltonian cycle. Observe that if Zn is
not a multiple of p (odd prime), then S(ro,#y,- - 47 m=1) is a Hamiltonian cyclei.ZOFrom
Lemma 3.2.1, let §5,, 55, - ,S8,-1 be-the 2-factors of C),). This implies that we
have a partition of the edges of Gy, into p edge-disjoint multicolored Hamiltonian cycles.
Moreover, since K, can be partitioned into mT_l copies of O, () where each C,,(, arises

from a multicolored Hamiltonian cycle in J;;;-we have a partition of the edges of K, ;)

into mT_l - p multicolored Hamiltonian cycles. [

Example 3.2.4. If m = p = 3, then the three multicolored Hamiltonian cycles are
S(O,O, 1) = (950,0,951,0,952,0,%,1,951,1,$2,1,$0,2,$1,2,$2,2), 5(1, 1,2) = ($0,0,$1,1,$2,2,5750,1,
$1,2,$2,0,$0,2,951,0,952,1), 5(2,2,0) = ($0,0,$1,2,$2,1,950,2,951,1,@,0,5750,1,5751,0,%2,2)- In case
that m = 5 and p = 3, then we have 6 multicolored Hamiltonian cycles. For each Css,
we have three multicolored Hamiltonian cycles of type S(0,0,0,0,1), S(1,1,1,2,2), and

5(2,2,2,1,0).

Following above example, in order to partition the edges of a 9-edge-colored Ky into

4 Hamiltonian cycles, we combine S(0,0, 1) with the three cliques (K3) induced by the
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three partite sets V), V; and V5, to obtain a 4-factor. Since these K3’s can be edge-colored
with {3,4,5},{6,7,8} and {0, 1,2} respectively, we have a proper edge-colored 4-factor
with each color occurs exactly twice. Thus, if this 4-factor can be partitioned into two
multicolored Hamiltonian cycles, then we conclude that K9 admits an M HCP. Figure

3.3 shows how this can be done.

Xoo 7,7 Xox . T Xoz
4 ’ S

X20

Figure 3.3: Two multicolored Hamiltonian cyeles in 9-edge-colored Ky

Notice that in the induced subgraphs < V[ >, < Vi'> and < V, > we have exactly
one edge from each graph which is not included in"the cycle with solid edges. Therefore,
we may first color the edges in < V >, < V; > and < V5, > respectively and then adjust
the colors in (Vp, V4), (V4, V) and (Va, V) respectively in order to obtain a multicolored

Hamiltonian cycle. For example, if the color of x¢ ¢z 2 is 4 instead of 3, then we permute

354
(or interchange) the two entries in [ 5[4 [ 3 |, and thus the latin square used to color
135
4 5 3 . . . . .
(V1,V,) becomes [ 5 [ 3 [4|. This is an essential trick we shall use when p is a larger
3[4]5

prime.
Before the following theorem, we introduce one useful notation. Let p be a k-edge-
coloring of a graph G. If K is a subgraph of G, for convenience, we use p|x to denote the

edge-coloring of K induced by p, i.e., u|x(e) = p(e) for each e € E(K).
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Theorem 3.2.5. For each odd integer v > 3, K, admits an MHCP.

Proof. The proof is by induction on v. By Theorem 3.1.2, the assertion is true for
v is a prime. Therefore, we assume that v is a composite odd integer and the assertion
is true for each odd order u < v. Let p be the smallest prime such that v = p - m and

m—1

V(K,) = | Vi where Vi = {x:; | j € Z,}, i € Zy,. By induction, K,, admits an MHCP

can be partitioned into 2=t Cin(p)’s each of which admits an M HCP.

=0
and hence K, 5

p)
Moreover, by Lemma 3.2.3, each MHCP of C,,,) contains a multicolored Hamiltonian
cycle S(0,0,---,0,1). Here, the proper edge-coloring ¢ of K, is induced by the proper
edge-coloring 1 of K, defined as in Lemma 3.2.3. That is, if v;v; is an edge of K, with
color p(v;vj) =t € Zyy,, then the colors of the edges in (V;, V;) are assigned by using M +tp
where M is a circulant latin square of order p as defined before Figure 3.1. We note here
again that permuting the entries of a latin square M + #p gives another edge-coloring, but
the edge-coloring is still proper.

So, in order to obtain an M HC P of K,, we first give a proper v-edge-coloring of K,
and then adjust the coloring if it'is necessary.“Since K,y has a proper mp-edge-coloring
¢, the proper edge-coloring 7 of K, can be defined as follows: (a) 7| Ky = ¢ and (b)
7r|<vi> = ;1 = 0,1,--- ,m — 1, where ¥; is a proper p-edge-coloring of K, such that
K, can be partitioned into p%l multicolored Hamiltonian cycles. Moreover, the images
of ¢, are tp,tp+ 1,--- ,tp + p — 1 where t € Z,, and t is the color not occurring in
the edges incident to v; € V(K,,). (Here, the colors used to color the edges of K,, are
0,1,2,--- ,m—1.)

It is not difficult to check that 7 is a proper v-edge-coloring of K,. We shall revise 7
by permuting the colors in (V;, Vi41) for some i and finally obtain the edge-coloring we
need.

Let the edges of the K, induced by V{ be partitioned into p%l multicolored Hamilto-

nian cycles DM, D@ ... D3 and Toy, is the neighbor with the larger index ¢; of zg

in D®. Hence, the m copies of K, each induces by V; can be partitioned into m copies
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of DO D@ ... and D*3). For convenience, denote them as mD®, i = 1,2, - - 2t
m—1
Now, let the edges of K,,;) be partitioned into (Js()p),C’ff()p), e 707(;1(;) ), By Lemma
—1
3.2.1, we can let each of ngp),C’ff()p), e ,C’T(np(Tp)) contains a multicolored Hamiltonian

cycle EO E@ ... EFF) of type S(0,0,---,0,p+ 1 —1t;). Since m > p, we consider
the 4-factors E®) UmD® where ¢ = 1,2, , 21, Starting from i = 1, we shall parti-
tion the edges of M UmDW into two Hamiltonian cycles such that both of them are
multicolored. By the idea explained in Figure 3.3, we first obtain two Hamiltonian cy-
cles from EM UmDW by a similar way, see Figure 3.4 for example. For the purpose of
obtaining multicolored Hamiltonian cycles, we adjust the colors by permuting them in
the latin square for (V;, V;41) to make sure the first cycle does contain each color exactly
once. Then, the second one is clearly multicolored. Now, following the same process,
we partition the edges of E® UmD® ..., and E*3) UmD™*3) into two multicolored
Hamiltonian cycles respectively. We remark here.that if permuting entries of a latin

C(mT*l)

square is necessary, then we can keep doing the same trick since ngp) o L » Coni)

> m(p)’
are edge-disjoint subgraphs of K,p). (The permutations are carried out independently.)

This implies that after all the permutations are done, we obtain a proper v-edge-coloring

of K, such that K, can be partitioned into ”—;1 multicolored Hamiltonian cycles. [ |

In conclusion, we use Figure 3.4 and Figure 3.5 to explain how our idea works. In
Figure 3.4, t; = 4. The edge zy was colored with 25 originally by using the circulant latin
square of order 5 mentioned before Figure 3.2. But, 25 occurs in the Hamiltonian cycle
with solid edges already. Therefore, we use (25,29) to permute the square to obtain the
proper edge-coloring we would like to have. After adjusting the colors of zw, z'w’ and
ab respectively, we have two multicolored Hamiltonian cycles as desired. In Figure 3.5,
to = 3. For convenience, we reset Vj, Vo, Vy, Vs, Vi, V3, Vi from top to down. Following the
same process, we also have two multicolored Hamiltonian cycles.

We note here that the above theorem proves the weaker conjecture of Constantine and

the result has been included in a paper written jointly with H. L. Fu [20].
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Adjust to 29 — 25

Adjustto 4 — 0
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Adjustto1— 0

—— Adjust to 11

Figure 3.5: E@U7D® in Kss.
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Chapter 4

Multicolored Spanning Trees in
Edge-Colored Complete Graphs

In this chapter, we consider Conjecture 1.7.2 and Conjecture 1.7.8.

4.1 Isomorphic Multicolored Spanning Trees

Conjecture 1.7.8 states that for any arbitrary preper (2m—1)-edge-coloring of Ky,,, it
admits an MTP. We first consider‘a special proper edge-coloring of K5, with 2m—1 colors
such that for any two colors form an Cjy-factor.” This kind of edge-coloring is referred to

as a Cy-factor edge-coloring.
4.1.1 MST for Cy-factor edge-colored K-,

Let L be the 2-group latin square defined earlier in Chapter 1.5. In what follows, we

show that L™ = L x L x --- x L based on Zy" has 2" disjoint transversals for each n > 2.
Proposition 4.1.1. L™ has 2" disjoint transversals for each n > 2.

Proof. The proof is by induction on n. By Figure 4.1, n = 2 is true.

Assume that the assertion is true for each k& > 2. Let LF = [I,,] and LF =
Lo® | Li* . : K
TR TF By definition of direct product, we have Ly" = [mg,,] where m,, =
1 0

(0, 1as™) (a (k+1)-dim. vector) and L,* = [f,] where g, = (1, lop™). We shall use

the set of 2% disjoint transversals in L¥ to construct 2¥*! disjoint transversals in LFF!,
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o

0,0) (0,1)|(1,0)| (L.1)|  0[(0,0)|(0,2)| (1,0)|(L,1)

o

0,0)[(0,1)[(1,0) (1.1)|  0[(0,0)|(0,1)|(1,0) |(2,2)

RN

(0,1)|(0,0)[(1,2)|(1,0)

(AN

(0,1)|(0,0)|(1,1) |(1,0)

[EnN

(0,1)|(0,0)|(1,1)|(1,0)

[N

(0,1)(0,0)|(1,1) |(1,0)

N
N

(1,0)(1,1)|(0,0)/(0,1)|  2/(1,0)|(1,1)(0,0)|(0,1) (1,0)[(1,1)| (0,0 (0,1)|  2[@,0)|(1,1)|(0,0)|(0,1)

w

1,1)(1,0)/(0,1)|(0,0)]  3/(L1) (1,0)(0,1)|(0,0)

Ao As A As

w

1.10)].0)|(01[©00)] 3/(11)|(10)]©0.1)(0,0)

Figure 4.1: 4 transversals in L.

Let {A; | i = 0,1,2,---,2% — 1} be the set of disjoint transversals obtained in LF
by induction hypothesis. Without loss of generality, we may let A; be the transversal
which contains the entry loﬂ-(k), i=0,1,2,---,2¥ — 1. Now, we shall use Ay; and Ay,
i=0,1,2,---,2F1 — 1, to construct four disjoint transversals in L**'. For convenience,
we explain the construction by using Agand Aj.

Since Ag(respectively A;) is a transversal in/L¥; the corresponding entries in Lo* form
a transversal, so are the corresponding entries in £;,". Let the corresponding transversals
of Ay in Lo* and Li* be Z(),O and ZLO respectively. Similarly, let the corresponding
transversals of A; be ZOJ and Zl,l respectively. Note'that for 0 < r,s <1, Zm has 2
entries, one from each row and from each column. Now, for 0 < r,s < 1, we split A,
into two parts: Zm(u) is the set of entries from the first to the 2¥~'-th row of ers, and
ers(l) is the set of entries of the other half. By defining By, By, B, and B3 as in Figure

4.2, we have four transversals in L*! as desired.

AW A, W AL W AW
0,0 1,1 1,0 0.1
A N A A
1,(1) Ao,g) 0,(1) 1.8)
AW AL W AW AW
0.1 1,0 1,1 0,0
A A ( A ( A
Ait 0 Aot 10
Bo B B> Bs

Figure 4.2: 4 transversals in L**! constructed from A, and A;.
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Since for i = 1,2,---,21 — 1, A, and Z2i+1 can also be used to construct four
transversals in LFT!, we have a set of 2¥*! transversals in L**'. By the reason that

Ag, Ay, -, Agk_; are disjoint transversals, we conclude the proof. [

Before the following lemma, we review the notation . Let p be a k-edge-coloring of
agraph G. If K is a subgraph of G, for convenience, we use u|x to denote the edge-coloring

of K induced by p, i.e., u|lg(e) = u(e) for each e € F(K).

Lemma 4.1.2. Let i be a proper (2m—1)-edge-coloring of Koy, m > 2, such that any two
colors induce a 2-factor with each component a 4-cycle, then (a) 2m = 2" for some n > 2
and (b) Ko, contains a clique K of order 28, 1 < k <mn —1 such that {u(e) | e € E(K)}

is a (28—1)-set, i.e., u|, is a proper (28—1)-edge-coloring of K.

Proof. First, we claim that (b) is true.. The proof is by induction on n. Clearly, it is
true when n = 2. By hypothesis, let'H be a clique of order 2", h < k, and pl,, is a proper
(2" —1)-edge-coloring of H. Without loss-of generality, let V(H) = {x1, 2z, -+ , 2o} and
the colors used in H be {cy,co, ==+, con_1 }. Since u is a proper (2m—1)-edge-coloring of
Ko,,, each color occurs around each-vertex. Let.con bea color not used in H. Then, we have
aset H', HNH = ¢, H = {y1,ys, - -/, you}-such that p(x;y;) = con for i = 1,2,--- 2"
Now, by the reason that any two colors induce a Cy-factor, we conclude that p|,, is also
a proper (2"—1)-edge-coloring of H’, moreover, u(x;x;) = p(yy;) for 1 < i # j < 20
Therefore, the complete bipartite graph Kynon = (H, H') has a proper 2"-edge-coloring

following by the same reason. This implies that p| is a proper (2071 —1)-edge-coloring

HUH'
of the clique induced by H U H'. So, we have the proof of (b).

Suppose 2m = 2" - p where p is an odd integer and p # 1. Using the above argument,
we can find the largest clique G of order 2° which uses 2° — 1 colors. Then we partition
the vertices of Kj,, into two sets X and Y where X = V(G), and let |Y| = ¢q. Here, we

notice that ¢ < 2°. Consider these 2° — 1 colors used in coloring the edges of GG, there are

total (2° — 1)(2"' - p) edges which use these colors. But, we have used these colors in G.
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1
Hence, there remains 5(25 —1)(2m — 2%) edges to be colored by using these colors. Since
the edges between X and Y can not be colored with any of these colors, they have to be
1
in Y. But, since ¢ < 2° and 2m — 2° = gq, 5(25 —1)(2m —2%) > (g), a contradiction.

This implies that p = 1, and we have the proof of (a). [

Lemma 4.1.3. [10] Let p be a proper T-edge-coloring of Kg such that for any two colors
form a Cy-factor. Then the edges of Kg can be partitioned into 4 isomorphic multicolored

spanning trees.
We are ready to tackle the Cy-factor edge-coloring problem.

Theorem 4.1.4. Let p be a proper (2m—1)-edge-coloring of Ks,,, m > 2, such that any
two colors form an Cy-factor, the edges of Ks,, can be partitioned into m isomorphic

multicolored spanning trees.

Proof. By Lemma 4.1.2, 2m =2" for some n > 2. We prove the theorem by induction
on n. By Lemma 4.1.3, n = 3 is.true.

Assume that the assertion is true for each k£ >-3-and consider Kgk+1.

From the process of the proof of Lemma.4.1:2; there must exist two disjoint cliques
of order 2% with 2% — 1 colors in Kyki1. Let V(Kyi1) = AU B where A, B are the
vertex sets of the two cliques. Consider the colors of the edges between A and B. Let
A = {ap,a1,...,a90_1}, B = {bo,b1,...,box_1} and M = [m; ;| where m;; = p(a;b;).
It is clear that M is a latin square; furthermore, M = L*. By Proposition 4.1.1, M
has 2% disjoint transversals. This implies that there are 2 perfect matchings in the
complete bipartite graph induced by AU B. Note that the two cliques induced by A and
B respectively have 2¥~! multicolored isomorphic spanning trees of order 2¥, respectively.
Thus, by assigning a perfect matching to each spanning tree, we obtain 2¥ spanning trees

of order 2¥*1. Moreover, these spanning trees are isomorphic and multicolored. [
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4.1.2 Main Results

For the presentation of the proof of our main theorem, we review that the notation
T|x1, 2] is a new tree modified from 7', where T is a multicolored spanning tree in a
properly edge-colored Ks,, and x1,z, are two leaves. At first, we show the existence of

two disjoint isomorphic multicolored spanning trees.

Lemma 4.1.5. Let ¢ be an arbitrary proper (2m—1)-edge-coloring of Kop,. Then there

exist two disjoint isomorphic multicolored spanning trees in Ko, for m > 3.
Proof. Let V(Ky,) = {z;| i =1,2,...,2m}. We split the proof into two cases.
Case 1. There exists a 4-cycle (z1,xq, x3,24) such that p(z122) = b, ¢(x324) = ¢, and

o(x1my) = @(xox3) = a. Let Ty = Sy, (w2, 4] and Ty = S,,[21, x3], see Figure 4.3.

Clearly, they are the desired spanning trees:

ol

Figure 4.3: Two isomorphic spanning trees of Case 1.

Case 2. If any two colors of this edge-coloring induce a Cy-decomposition of K,,, then

we have the proof by Theorem 4.1.4. [

Review that if ¢ is a proper (2m—1)-edge-coloring of K5, and C'is the color set, ¢, is a
bijective mapping from V (Ky,,)\{z} to C. Hence, ¢, ! is defined accordingly. For a vertex
set V € V(Ky,) and a color ¢ € C, in addition, let [V]. = V U {u| ¢(uwv) = c,v € V}.

Now, we are ready for the main result.
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Theorem 4.1.6. Let ¢ be an arbitrary proper (2m—1)-edge-coloring of Ka,,. Then there

exist three disjoint isomorphic multicolored spanning trees in K, for m > 14.

Proof. From the proof of Lemma 4.1.5, we only need to consider the case: there ex-
ist two colors which do not induce a 4-cycle factor. Let T7 and 75 be the isomorphic
multicolored spanning trees obtained in Lemma 4.1.5. Clearly, Ks,, — T} — T5 is dis-
connected ({z1,x,} induces a component in this graph). Let ¢_!(b) = y1, ¢, (b) = 12
and U = V(Kyy,) — {21, 22, 3, 24, Y1, y2}. Since m > 14, we can choose a vertex u € U
such that the two colors p(uzi) and ¢(uxs) are different from those colors on the edges
of the graph induced by the vertex set {xy,xs,23,24}. Without loss of generality, let
o(ury) = 1 and p(uxe) = 2. Moreover, let v; € U \ {u} and ¢(z1v1) = 3 such that
e 1(b) # @3} (1) and the two vertices ¢, '(3) and ¢, (1) are elements in U \ {u}. Now,
pick v € U \ {u, vy, ;' (b)} and let @(ayvs)-=4 such.that ¢ ' (b) # ¢, !(2) and the two
vertices ¢, ' (4) and ¢ !(2) are elements-in-set U \ {u}. Note that we can always pick v,
and vy consecutively since m > 14.

Let T] = Ti[u,v] and Ty ="T5[u, vo]. Assume that ©,*(3) = u; and ¢;'(4) = u,.
If uy = ¢, (1), then adjust T} to"T{[vs, z4]. Similarly, if us = ¢, '(2), then adjust T
to Ty[va, x3]. Then T] and Tj both have two types. In either case, they are disjoint and

isomorphic. Figure 4.4 shows the types of 7T7.

T

Type 1

Figure 4.4: Two types of T7.
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Now, we are ready to construct the third tree. Let T3 be the graph S,[uy, us]. Then
choose one edge wywy with color 3 in the graph induced by V(Ks,,)\{z1, 2, u, us} and
assume p(uwy) = ¢, e(uwy) = co. Let W = {xl,xQ,ul,90;11(4),101,11}2}. Since m > 14,
there exists one color, ¢,, such that ¢, '(c,) ¢ W and ¢,;'(c,) ¢ W], U [W],. Let
4,0;21(@) = z1 and ¢, '(c;) = 2. Since ¢(2122) may be ¢; or cp, we assume ¢(2129) # ¢i.
Finally, let T} be obtained from T3 by removing the edges us(3),u(c1), u(c,) and then
adding the edges ua(c,), wi(3), z2(c1). Thus, the third spanning tree is constructed, see
Figure 4.5. Since all spanning trees contain exactly four vertices which are of distance 2

from vertices 1, 2 and u respectively, they are isomorphic. This concludes the proof.

T

Figure 4.5: T

We note here that the result obtained (jointly with H. L. Fu) in this section has been

included in [22].
4.2 Multicolored Spanning Trees

In this section, we consider Conjecture 1.7.2, the original problem of this topic.
4.2.1 Recursive Construction

We start with notations which will be used throughout this section. Let ¢ be a proper
(2m—1)-edge-coloring of Ky, and C' = {¢1, ¢, -+, cam—1} be the color set. Suppose T is

a multicolored spanning tree of K5, and x is a root of T". Clearly, if x is incident to two
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leaves e; = xy; and ey = xys9, i.e., the degree of y; and y, in T, degr(y1) = degr(y2) = 1,
then T'[x;y1,ys; 21,22] = T — €1 — ea + Y121 + Y222 is a spanning tree of Ky, for some
vertices z; and zp (27 may be the same as z). Furthermore, if p(e;) = ¢(y222) and
v(ez) = (y121), then T[x;yy, yo; 21, 22] is also a multicolored spanning tree of Ky, with
root x. For convenience, we say T'[x;y1, Yo; 21, 22| is obtained from T by using a (yi, y2)-
switch operation on T. We note here that T'[x;y1,ys; 21, 22] and T[y1, y2] in Section 4.1
are the same thing.

We shall apply a recursive construction to obtain edge-disjoint multicolored spanning
trees in an edge-colored Ks,,. Since those previously obtained spanning trees will be re-
vised before we find a new one, we use Tj(i) to denote the j* spanning tree which was
constructed at round ¢ of the recursive construction. That is to say, in order to construct
the (k+1)™ tree at (k+1)™ round, we first revise the k spanning trees 7%, 74 . .. ,Tk(k)

Tl(kJrl), T(k+1) T(k+1)

to obtain 5 o ,T,Ekﬂ) respectively and then define the new one T;’ ;" ac-

cordingly. As a matter of fact, Tj(kH) £ T].(k)[

wysy' Y52 2" where w; is the root of the
7" spanning tree and i/, ", 2, 2~are suitably chosen to meet-the requirements prescribed.

For clearness, we use a properly. 27-edge-colored Kogwas an example to outline the
idea of our construction. Let Ky be defined-on {;| i € Zss}, ¢ be a proper 27-edge-
coloring of Ksg, and the entry in ¢th row and jth column of the 28 x 28 coloring array
be the color of the edge z;x;, ¢(z;x;), see Figure 4.6. Let the first spanning tree be the
spanning star 7' 1(1) = Sz, with root z;. Clearly, Tl(l) is multicolored. In order to achieve
a better result and obtain a corresponding corollary in finding edge-disjoint multicolored
spanning unicyclic graphs in a properly (2m—1)-edge-colored Ks,,_1 (next chapter), we
shall enforce x( to be a pendent vertex of each spanning tree which is incident to the root.
Therefore, xy will not be a candidate of roots. For convenience, we let U; be the set of
candidates of roots in constructing the (i + 1) spanning tree.

Now, we are ready to find the second spanning tree. First, we revise T} 1(1). As mentioned

above, Tl(z) = Tl(l)[xl;y,vl;ul,vi] for some vertices y, vy, uy,v] in Zog \ {zo,x1}. At this
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step, since Uy = Zog \ {xo, 21}, we let 9 = y be the root of the second tree. So, it is
left to find vy for the (xs,v;)-switch operation of Tl(l). Notice that we have to make sure
that Tl(Z) is also a multicolored spanning tree, i.e., after we choose v, u; and v, we have
o(x1m9) = @(v1v]) and p(x1v1) = p(x2uy). Observe that from the coloring of Kyg we have
o(xora) = 2 and @(z122) = 15. Hence, in the search of vy, ¢(vi21) # 2 and @(v120) # 15,
for otherwise deng(z) (x9) # 1. On the other hand, pick u € Uy \ {z2}. Notice that TQ(Q) will
be obtained by using an (u,u;)-switch operation of S,,. In this case, let 3 = u. Since
o(xors) = 3, we have ¢(z1v1) # 3, for otherwise degTQ(Q) (x9) # 1. Furthermore, since
o(xox3) = 16, p(zv1) # 16. Finally, if p(xoa) = @(x18) = 16, then p(z1v1) # p(z2c)
and p(z1v1) # @(z2). This is by the reason that TQ(Q) contains neither u,zo nor u;x;.
Thus, we conclude that v; can not be one of x3, x4, x5, 15, x16. Therefore, choose x¢g = v
and then let Tl(z) = Tl(l)[xl; To, Te; Ts, Togl, T2(2) =18, — Toly — Toky + T3xy + Tyxoy. This
concludes the 2nd round. Figure 4.7 shows the structure of these two trees.

In the third round, we revise Tl(z) and T2(2) consecutively and then construct a third
tree. Notice that Uy = Uy \ ({as} U {@3,&4,&5, @6, x94, 797 }). Precisely, we will first
pick y € U, as the root of the third, tree and revise A= T\ [x1: y, vi: ug, v}, TS =
T 2(2) [T9; Y, U2; Ug, V] consecutively for some suitable vertices vy, v, uq, - - - . Then, we obtain
T 353) from S, by deleting edges yu, yui, yus and adding edges wv', uju}, usufy for some
vertices u, ', uf, ul so that p(uu’) = p(yus), w(uiu)) = @(yu) and p(ugul) = @(yuy).
Note here that the two vertices y and u, both in U,, are assigned at the beginning of
this round, namely, x; = y and xg = w. Then, the next step is to find v; € U, for

the (z7,v71)-switch operation of T1(2).

From the coloring of Ky we have p(zozy) = 7,
o(roxs) = 8, p(zazr) = 4, p(xexr) = 18 and p(z7xg) = 21. Then, in the search of
vy, p(nizg) # 4 and @(vixy) # 7, for otherwise deg. ) (xo) # 1. In addition, since we

have to make sure that T} 1(3) is edge-disjoint to the other two trees, p(viz1) # 18 and

o(vize) # 4. (Though the edge zoz; will disappear in T2(3), it appears in T§3).) On

the other hand, the edge z7u; will be dropped away and uju} will be included in T?)(S)

38



where p(uju}) = 21. Since u # wuy, we have that ¢(vix;) # 21. Furthermore, u] = xg
yields that degTég) (zg) # 1, and u} € {x,x2} implies that T3f3) is not edge-disjoint to
the other two trees. So, if p(zoa) = p(z18) = @(x9y) = 21, then p(z1v1) # p(z70),
o(z1v1) # e(x703) and p(z1v1) # @(z77). Finally, since uju) can not be an edge in Tl(Z) or
TQ(Q), o(v121) # @(x72) where z is an endpoint of an edge with color 21 in these two trees.
By the reasons mentioned above, vy ¢ {x4, x¢, x7, T3, T13, T14, T19, Tog, Toy }. Hence, choose
x9 = vy and then let Tl(g) = T1(2) [1; X7, To; 3, Tag]. (T3 = uy, Tog = v} and w1y = uj.)
Next, we have to find vy € Us for the (x7,vs)-switch operation of T2(2). Similarly, we
have to restrict the candidates of v, in order to achieve our goal. Since degT2<3> = 1, we have
o(vazg) # 18 and p(vexy) # 7. From the coloring of Kag, ¢(z7x3) = 5. In order to make
sure that TQ(S) and Tl(S) are disjoint, p(vews) # 4 or 5 and p(vexy) # 18. Now, consider

the edges which are going to appear in T?)(S)

: Notice that uq, u), v’ will be fixed once vy is
chosen. From the construction of T3(3), ug # ag implies that p(very) # 21. Next, u' = zg
or ul, = xg yield that degTés) (x0) % 1. Therefore, (vgms) # 8 as well as if p(zoa) =5 for
some «, then p(vexs) # p(z7ar).#In addition, ©(vaxs) # w(x1xs) or w(z70) if w(x23) = 5,
for otherwise x1xg or xouse will be added to T?E?’). Furthermore, usul, can not be an edge of
T. 2(3). Hence, p(vaxe) # p(z77) provided that--is-an endpoint incident to an edge in T2(3)
which is colored ”5”. Finally, we also have to make sure the three edges uu’, uyuy, usuly do
not form a cycle. Our strategy is to let uy # 12 = ), which was fixed after choosing v;.
Thus, p(vaxs) # @(x7212) = 23. To sum up, vy & {xg, T7, T3, Tg, T10, T12, 13, 14, 17, T18 } -
Hence, we take z1; = vy and then let TQ(?’) = T2(2) [o; X7, 211; T6, To5] and T3(3) = Sir —
T7Tg — L7y — T7ke + T3X19 + Ty + TgTs. S0, we have three trees now. We illustrate the
result of this round by showing the structure of these trees in Figure 4.8.

We may keep going to find the fourth tree as long as the followings are possible:
(1) U3 = Uy \ {7, xs, T9, 11, T12, Ta5, Tog } has two vertices y (root) and u available.

(2) There are suitable vertices vy, vg, v3, ug, - - -, such that we can revise Tl(g), T 2(3)

and T 353) into 7| 1(4), T 2(4) and T 354) consecutively and define T4(4) accordingly.
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Indeed, we are able to accomplish the above jobs (see Figure 4.9) by letting y = z1o,
U = T3, V1 = T13, V9 = x13 and vz = x14. Therefore, we have four mutually edge-disjoint

multicolored spanning trees in a 27-edge-colored Kog.

Xo Xt X2 X3 X4 X5 Xe X7 Xg Xo Xio Xu1 X2 X13 Xia X5 X1g X17 X1 X19 Xoo X1 Xo2 Xo3 X4 Xo5 X Xo7

Xo 112 |3 |4|5 |6 |7 |89 |10|11|12|13|14|15|16 |17 |18 |19 |20 |21 |22 |23 |24 |25 |26 |27
X1 152 16| 3|17 | 4 |18 |5 (19| 6 [ 20| 7 |21 | 8 | 22| 9 [ 23|10 |24 |11 |25 |12 |26 |13 |27 | 14
X2 6|3 17| 4 |18|5 |19| 6 [20| 7 |21 | 8 | 22| 9 | 23|10 |24 |11 |25 |12 |26 |13 |27 |14 | 1
X3 17| 4 | 18| 5 |19| 6 |20 | 7 |21 | 8 | 22| 9 | 23|10 |24 |11 |25 |12 |26 |13 |27 |14 | 1 |15
X4 185 19| 6 |2 | 7 |21| 8 [22] 9 |23|10| 24|11 |25 |12 (26|13 |27 |14 | 1 |15 2
Xs 196 [20| 7 |21|8 |22|9 |23]10|24|11|25|12|26|13|27 |14 | 1 |15]| 2 |16
Xg 20| 7 |21 |8 |22| 9 [23]10|24|11|25|12|26 |13 |27 |14 |1 |15| 2 |16 3
X7 21| 8 | 22| 9 | 23|10 |24 |11 (25|12 |26 |13 |27 |14 | 1 |15| 2 |16 3 |17
Xg 22| 9 | 23|10 |24 |11 |25 12| 26|13 |27 |14 | 1 |15| 2 |16| 3 |17 | 4
Xg 2310 |24 |11 |25 |12 |26 |13 |27 |14 | 1 [15| 2 |16 | 3 |17 | 4 | 18
X10 24 |11 | 25|12 |26 |13 |27 |14 | 1 |15| 2 |16 | 3 |17 | 4 |18 | &
X11 2512 26|13 |27 |14 | 1 |15| 2 |16 | 3 |17 | 4 |18 | 5 | 19
X12 26 |13 | 27 |14|.1 |15| 2 | 16| 3 |17 | 4 | 18| 5 |19 | 6
X13 27 14| 1415] 2 |16 | 3 |17 | 4 |18| 5 |19 | 6 |20
X14 1 (15| 2 |16 (.3 |17 | 4 |18| 5 |19| 6 |20 | 7
X15 2 "6 3 (27| 4 |18| 5 |19| 6 |20| 7 |21
X16 3 17| 47/ 18| 5 | 19| 6 |20 | 7 |21 | 8
X17 4|18 5 |19|6 |20] 7 |21|8 |22
X18 5/ 19| 6 || 7 |21| 8 |22] 9
X19 6 |20 7 |21 |8 | 22| 9 |23
X20 7 (21| 8 |22|9 |23]|10
Xo1 8 | 22| 9 |23 |10 |24
X22 9 | 23|10 |24 |11
X23 102|112
Xo4 11 | 25 | 12
X25 12 | 26
X26 13
Xo7

Figure 4.6: A properly 27-edge-colored Kog.
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Xo X1 X2 X3 X4 Xs Xe X7 Xg Xo Xio Xu1 X2 X13 X1 Xi5 Xie X17 X188 Xig Xoo X1 Xo2 Xo3 X4 Xo5 X Xo7
102|3|4|5|6|7|8|9|10|11|12|13 |14 15|16 |17 |18 |19 |20 |21 |22 |23 |24 |25/ 26 |27
65| 2 |16| 3 |17 | 4 |18 | 5 |19 | 6 |20 | 7 |21 | 8 |22 | 9 |23 |10 |24 |11 | 25| 12 |26 |13 | 27 | 14
6|3 |17 |4 |18 |5 [19| 6 |20 7 |21 | 8 [22| 9 |23 |10 |24 |11 |25 |12 |26 |13 |27 |14 | 1
17 | 4 |18 | 5 |19 6 | 20| 7 |21 | 8 |22 | 9 |23 |10 |24 |11 |25 |12 |26 |13 |27 |14 | 1 |15
18| 5|19 6 |20 7 |21 8 |22| 9 [23]10|24|11|25|12|26|13|27|14| 1 |15| 2
196|207 |21|8|22| 9 |23|10[24|11|25|12|26|13|27|14| 1 |15| 2 |16
20| 7|21 8 |22|9|23|10|24|11|25|12|2|13|27|14| 1 [15] 2|16/ 3
20| 8 22| 9 | 2310|2411 |25 |12 (26|13 |27 |14| 1 |15| 2 |16 3 |17
22| 9 |23 |10 |24 |11 | 25|12 |26 |13 |27 |14 | 1 |15| 2 |16| 3 |17 4
23|10 |24 |11 |25 |12 |26 |13 |27 |14 | 1 | 15| 2 | 16| 3 |17 | 4 | 18
24 |11 |25 |12 |26 |13 |27 |14 | 1 |15| 2 | 16| 3 |17 | 4 |18 | 5
25|12 |26 |13 |27 14| 1 |15| 2 |16 | 3 | 17| 4 | 18| 5 | 19
26|13 27|14 | 1 |15| 2 |16 | 3 [17| 4 |18| 5 |19 | 6
27|14 |1 |15| 2 |16| 3 |17 | 4 |18 | 5 |19 | 6 |20
1|15 2 |16 |3 |17 | 4 |18| 5 |19| 6 |20 7
2 |16 |3 |17 |4 |18| 5 |19|6 |20| 7 |21
3|17 | 4 |18 5 |19|6|20| 7 |21| 8
4|18 5 |19|6 |20| 7 [21]8 |22
5119|6 || 7|21 8 22|09
6 20| 7 |21]|8|22]9 |2
7 21| 8 |22|9|23|10
8 |22 |9 23|10 24
9 |23 (10|24 |11
102|112
11|25 | 12
12 | 26
13
Xo X2
Xq Xo7
17 16
X2 Xs X3 X5
[ 7@ = 10w 3, 5 2, 2.1 B 1@ = 8y, - w1, - 2+ i+ v
U, = Ul\({wz}u{l's, Ly, Ts, T, Loa, 3727}) = {5177, T3y Lyy Troy * * 5 Doy Tos, 51326}

Figure 4.7: Two edge-disjoint multicolored spanning trees.
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Xo X1 X2 X3 X4 X5 Xe X7 Xg Xo Xio Xu1 X2 X13 Xia X5 Xie X17 X1 X1g Xoo X1 Xo2 X2z Xoa Xo5 Xog Xo7
Xo 1 34|56 8 | 9 |10 |11 |12 (13|14 | 15|16 |17 |18 | 19 |20 | 21 | 22 | 23 | 24 | 25 | 26 | 27
X1 2 |16 | 3 |17 18| 5|29 6 |20| 7 |21| 8 22| 9 |23(10|24|11|25|12|26 |13 |27 |14
X2 16 17 20
X3 4118 5 (19|66 |20] 7 8 |22| 9 |23|10| 24|11 |25 |12 |26 |13 |27 |14 1 |15
X4 18 6 |20 7 | 21| 8 |22 9 |23|10|24|11|25|12|26[13 |27 |14| 1 |15]| 2
X5 19 7 |21 8 |22| 9 |23[10|24|11|25|12|2|13|27|14| 1 |15] 2
X6 7 21| 8|22 9 |23|10|24|11|25|12|26| 13|27 |14 | 1 |156| 2 |16 3
X7 21
Xg 22| 9 | 23|10 |24 |11 |25 |12 | 26|13 |27 |14 | 1 |16| 2 |16| 3 |17 | 4
Xo 2310 |24 |11 |25 |12 |26 |13 |27 |14 | 1 |15| 2 |16 | 3 |17 | 4 | 18
X10 24 |11 | 25|12 |26 |13 |27 |14 | 1 | 15| 2 |16 | 3 |17 | 4 |18 | &
X11 2512 | 26|13 |27 |14 | 1 |15| 2 | 16| 3 |17 | 4 . 5 | 19
X12 26 (13|27 |14 | 1 |15| 2 |16 | 3 |17 | 4 |18 | 5 [ 19| 6
X13 27|14 | 1 |15| 2 | 16| 3 |17 | 4 | 18| 5 (19| 6 |20
X14 115|216 | 3|17 | 4 |18|5 19| 6 |20 7
X15 2 /16| 3 |17 | 4 |18| 5 |[19|6 |20 | 7 |21
X16 3 |17| 4 | 18| 5 |19| 6 |20]| 7 |21 | 8
X17 4 18| 5 |19|6 |20 7 |21|8 |22
X18 5 119| 6 |2 | 7 |21] 8 |22] 9
X19 6 |20| 7 |21|8 |22]9 |23
X20 7218 22]9 23|10
X21 8 22| 9 |23|10| 24
X22 9 | 23|10 24|11
X23 1021125
X24 11 | 25 | 12
X5 12 | 26
X26 13
Xo7

&) 6 o7 Ty

D 7O = T®[ar; @7, 2; 23, 220

Us = Uz\({$7} U {Z& Ty, T11, T12, 125, 3726}) = {$107 T13, T14, T15, T16, L17, T18, T19, T20, 121, 122, 3722}

. sz = Tz(z)[ﬂ?z; Tz, T11; X, 1‘@5]

. T5®) = Sy, ~ wras — w73 — w725
+ B3X12 + Telyt Tl

Figure 4.8: Three edge-disjoint multicolored spanning trees.
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Xo X1 X2 X3 X4 X5 Xe X7 Xg Xo Xio Xu1 X2 X13 Xia X5 Xie X17 X1 X1g Xoo X1 Xo2 X2z Xoa Xo5 Xog Xo7
Xo 1 34|56 8 | 9 | 10|11 |12 |13 |14 |15 |16 |17 |18 |19 |20 |21 | 22 | 23 | 24 | 25 | 26 | 27
X1 2 |16 | 3 |17 18| 5 18| 6 |20| 7 |21 | 8 [22| 9 |23 (10|24 |11 |25 |12 |26 |13 |27 |14
X2 16 17 6 |20 21
X3 4118 5 (19|66 |20 7 8 9 | 23| 10|24 |11 |25|12| 26|13 |27 |14| 1 |15
X4 18 6 |20 7 [ 2118|229 |23|10|24|11 |25 |12|26[13[27|14| 1 |15]| 2
X5 19 7 8 |22| 9 | 23|10 |24 |11 |25 12|26 |13 |27 |14 1 |15]| 2
X6 7 |21 8 | 22| 9 (2310|2411 |25|12|2|13|27|14| 1 |15| 2 |16/ 3
X7 21 2 24
X8 2219 | 23|10 24 11|25 |12 | 26|13 |27 |14 | 1 |16| 2 |16| 3 |17 | 4
Xo 23|10 |24 |11 | 25|12 26|13 |27 |14 | 1 |16| 2 |16 | 3 |17 | 4 |18
X10 11125112 126 113 27 114 1 1151 2 116 | 3 197 4 | 18 | §
X11 2512 | 26|13 |27 |14 | 1 |15| 2 |16| 3 |17 | 4 5 | 19
X12 26 (13|27 |14 | 1 |15| 2 |16| 3 |17 | 4 |18 | 5 [ 19| 6
X13 27|14 | 1 |15 2 |16 | 3 |17 | 4 |18 5 |19 20
X14 1152 16| 3 |17| 4 |18|5 19| 6 |20 7
X15 2 /16| 3 |17 | 4 |18| 5 [19|6 |20| 7 |21
X16 3|17 4 |18 5 (19| 6 20| 7 |21| 8
X17 4 18| 5 |19]6 2|7 |21|8 |22
X18 5 119|6 | 2| 7 |21] 8 |22]9
X19 6 |20 7 |21 |8 |22] 9 |23
X20 7121 |8|22]9 23|10
X21 8 22| 9 |23|10| 24
X22 9 | 23|10 24|11
X23 1021125
X24 11 | 25 | 12
X5 12 | 26
X26 13
Xo7

Ty - 210~ T13

T T 1y

D T\ = T\ W xy; z10, 7135 T4, T25) . T = Ty®[my; w0, 2133 5, 20] . Ty = T5®[ar; a0, 2145 201, 23]

Z5

21

2y

Tr Ty

T3

Us = Us\({mi0} U{mi3, 214, 210} = {215, T16, 17, 18, 20, T1, Doz, a3}

T\ =8 - @023 ~ T10Ts ~ D10%5 ~ TneT11
+ TyT1g + TyTot TniZat D13l

-

Figure 4.9: Four edge-disjoint multicolored spanning trees.
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Now, we are ready for the recursive construction. Given a proper (2m—1)-edge-
coloring ¢ of K,,,, we start with n = 2, Tl(l) = Sy, and Uy = {x9, 23, , Tom_1},
Ry = {xg,x1}. Note here we use R,, to denote the collection of xy and all roots of TZ-(")

for i € [n].

Step 1. (Checking initial value)

If |U,—1] > 9n — 14, go to Step 2; otherwise, break the recursive construction.

Step 2. (Choosing x;,)

Pick z;,,up € U,, where z;, is the root of nth tree.
Step 3. (Revising 7"V, 70"V, ..., T\" Y consecutively)

3.1 Choose vy € Un_1\{z;, } and let TV = 3" V2 2., vi; uy, v)] where o(vy0v}) =
o(x12;,) and @(uyz;,) = p(T1v1) such that (i) u; ¢ {uo} U (R,—1 \ {z1}), (ii)
vy & Ryq \ {x1}, (iil). 0] ¢ R,—y where p(ufuy) = o(x;, ug), and (iv) the edge
utd, can not appear in 1"V for alld € [n — 1],

3.2 Fort«—2ton—2, do{

Choose vy € U,,_1\{z;, } and let Tt") z Tt("*l)[xit; T, , Ug; Ug, vj] where p(v0]) =
o(x;,x;,) and p(ux;,) = @(z,v) such that (1) w, ¢ {wo,ur, -, w1} U
(Bn-y \{i, }), (i) vp & Roy \{w;, }, (i) wi & Ry \ {mi,_, } where p(uju,) =
o(x;, ur—1), (iv) the edge usu) can not appear in Ti("fl) for all i € [n — 1],
and (v) ug & {ul, - ui ) }

3.3 Choose v,—1 € U,_1 \ {x;,} and let T,@l = T(n_l)[xinfl;xin,vn_l;un_l,U{lfl]

n—1

where @(v,_1v,,_1) = p(z;,_,x;,) and p(u,_17;,) = @(x;, ,v,_1) such that (i)
Up—1 & {uo, U1, Un—2} U (Rp1 \ {7, 1 }), (1) v,y & Ru1 \ {my,_, }, (iii)
/

w, 1 ¢ Ry \{x;,_,} where o(u!,_ju,_1) = ¢(x; u,_2), (iv) the edge u,_1u!,_,

can not appear in Ti("fl) foralli € [n — 1,9, (V) wp_1 & {uy, - ,u,_o}, (Vi)
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uy & Bna\{2i,, } where p(ugup) = (@i, vn1), and (vii) up & {ua, -+, un—a}

if n > 6.

Step 4. (Defining T,g"))

Let T, ’én) be the tree obtained from S, by removing the edges x;, ug, T, u1, . . ., T, Un_1
and then adding the edges ugug, uul, ..., u,_qu,_,. Finally, let R, = R,y U{z;,}
—1
and U, = U,_1\ ({%n, ug, ug} U TU{Ui, g, U, ué}) and go back to Step 1 with
n«—mn+ 1. .
We note here that u, v;, v}, u;, u} for all i are just temporary bywords in each round and
will be replaced once the vertices fixed which they refer to. More precisely, after doing

Step 4 in round k, the bywords u,v;, v}, u;, u; drop their references, and then they will

carry new vertices in the round k + 1.
4.2.2 Main Results

Theorem 4.2.1. Let ¢ be an arbitrary proper (2m—1)-edge-coloring of Ko, m > 3,

Vdm 4 37— 3
2

and xo be an arbitrary vertex. Then, there exist at least { J mutually edge-

disjoint multicolored spanning trees, €ach-of them_contains a pendent vertex xy.

Proof. First of all, we show that the recursive construction works for finding the n*
tree as long as |U,_1| > 9n — 14. It suffices to show that we can successfully find suitable
V1, Vg, - -+, U, consecutively. In the search of v;, we split the discussion into several parts
according to the Step 3 in the construction process. (1) If we want to have u; # y, then it
is sufficient to ensure v; # gp;i (¢), where ¢ = p(z;,y). (2) If we want to have v, # y, then
it suffices to make sure vy # ¢, '(c), where ¢ = @(z;,2;,). (3) If we want to have uj # y,
then it only needs to make sure that p(v;z;,) # @(x;, ) whenever p(ya) = @(x;, us_1).
(4) If the edge usu; can not appear in Ti(n_l), then we only ensure u; # « or (3, where af3 is
the edge colored with ¢(z;, ;1) in 7"V, (5) Finally, in Step 3.3, u} # y if v, # 0z ()

where ¢ = ¢(ugy). Applying simple arithmetic, for each v; , 2 <t < n — 2, we avoid at
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most 5n + 2t — 6 vertices in choosing v;, and 9n — 16 vertices in choosing v, for n > 6.
Since each v; € U,_1 \ {z;,}, we conclude that vy, v, -+, v,—1 can be successfully found
if |U,—1| > 9n — 14 for n > 6.

Secondly, we have to show the revised Tl(n), TQ(n), T

4 are still mutually edge-

disjoint multicolored spanning trees. For each 1 <t < n — 1, since the multicolored and
spanning properties hold by the (x;, ,v;)-switch operation of Tt(”_l), it suffices to show
that T\™ is edge-disjoint to TZ-(”) for every i <t < mn — 1. Observe that every vertex in
U,_1 is adjacent to the root of Tt(”_l) which has degree one. Since z;,,v; € U,,—1, we need
only to check that v; ¢ R,y and u; ¢ {ug, w1, -+ ,ug—1} U (Ry—1 \ {x;,}). This is a direct
consequence of the restriction in Step 3.2.

Next, we claim that 7™ is a multicolored spanning tree and edge-disjoint to any
other revised tree. The multicolored propertyis trivial from the definition of T,g"). Since
w; & {uf, - u_ ) for 2 <@ < n<1 and w, & {us, < ,u,—2} if n > 6, the induced
subgraph of the n edges {ugug,wt], -~ up=1u, 4} has no cycles, and thus 7™ is a
spanning tree. We emphasize here that the second condition can not be dropped, for
otherwise u)y = ug, uj = us and wuf; =l 1y may occur at the same time and thus induce
a cycle. Furthermore, the condition ‘(iii), (iv)-in Step 3.1, 3.2 and 3.3, as well as the
condition (vi) in Step 3.3 guarantee the edge-disjoint property.

In addition, the fact that ¢ is a pendent vertex of each Tt(n), t € [n—1] can be proved
by the conditions: u; # x¢ and v; # xy. Moreover, x, is also a pendent vertex of TT(L”)
because of u; # g and w, # xg for i € Zy,41.

Finally, we evaluate the size of U,,_; by Step 4 of the recursive construction: U, =

-1
Un_1\ ({%n, ug, ug } U TU {vy, v}, uj, ui}) . The worst case is that all the vertices v;, v}, u;, u
and x;, , ug, ug, are distirz;’t, see Figure 4.10. This implies that we have a recurrence relation:
\Up| > |Un—1] — (4n—1) with initial value U; = 2m—2. Therefore, |U,,_;| > 2m—2n?+3n.
Combining this inequality with the recurrence condition of the construction in the case

n > 6, we obtain 2m — 2n? 4+ 3n > 9n — 14. Hence, we can revise n — 1 mutually edge-
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disjoint multicolored spanning trees and then find an extra one. This concludes that there

vVam 4+ 37— 3
2

exist at least L J mutually edge-disjoint multicolored spanning trees, each

of them contains a pendent vertex z. [

n-1
T2( )

n-1
T4( )

xi7, U Tl(n)

W U i U 0

Figure 4.10: Estimate |U,| from |U,_1]|.

Since the number trees obtained is around y/m, we use Q(y/m) to denote its order.
We note finally that the above theorem has been included in a paper written jointly with

H. L. Fu [23].
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Chapter 5

Multicolored Unicyclic Spanning
Subgraphs in Edge-Colored
Complete Graphs

Recall the statement of Conjecture 1.7.11: any properly edge-colored complete graph
of odd order allows a partition of edges into_multicolored isomorphic unicyclic spanning

subgraphs. In this chapter, we consider-a properly n-edge-colored K, n is odd.

5.1 Isomorphic Multicolored Unicyclic Spanning Sub-
graphs

At first, we introduce a special total-coloring in the complete graph of odd order:
symmetric total-coloring. A symmetric n-total-coloring of K,, n is odd, is an n-total-
coloring p so that for any three vertices a,b, and ¢, if u(be) = p(a), then p(ab) = p(c)

and p(ac) = p(b). Then, we have the following result.

Lemma 5.1.1. Let n be an odd integer and p is a symmetric n-edge-coloring of K,, then
(1) n#5; and

(2) if n =17, then all edges can be partitioned into multicolored Hamiltonian cycles.

Proof. Let V(K,) = {21, ,...,2,} and the color set be C' = [n]. For convenience, we
can permute the color assignment so that u(x;) =i for every ¢ € [n]. In the case n = 5,

we can assume that p(zoxs) = 1. Then, pu(z1z2) = 3, p(xrizs) = 2 and p(z4x;) must be
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1. This implies that no other edges can be colored with 2, a contradiction to the fact that
each color occurs exactly twice on edges. Hence, m # 5.

In the case n = 7, we assume that color 1 appears on the edges xox7, x324, and
x4xs. Without loss of generality, let u(xsxy) = 2, then this will imply p(zszs) = 2
and thus p(rszs) = p(rsze) = 7. By the symmetry of u, the colors on the other edges
are determined, see Figure 5.1. Figure 5.2 shows the existence of three multicolored

Hamiltonian cycles under this coloring. [

Figure 5.2: Three multicolored Hamiltonian cycles in symmetric 7-total-colored K.

Now, we are ready for our main result in this section.
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Theorem 5.1.2. For any positive odd integer n > 5 and an arbitrary proper n-edge-
coloring of K,,, there exists a pair of multicolored isomorphic unicyclic spanning subgraphs

of K,.

Proof. Let ¢ be a properly n-edge-colored K,,, we observe that each vertex of K, is
missing exactly once from the color set ', and each color of C occurs exactly "T’l times.
Therefore, the corresponding missing colors of two distinct vertices are distinct. So,
without loss of generality, let V(K,) = {x1, 22, -+ ,2,}, C = [n], and the missing color
at vertex x; be color 7. Note that this edge-coloring can be seen as an n-total-coloring.

We split the proof into two cases.

Case 1. There exists a triangle (x4, 2y, z.) such that p(zpyz.) = a and either p(z,z3) # ¢
or p(z,xe) # b.
Without loss generality, let o(x,#,) = t # c. Then let G; be the graph modified
from S,, by deleting the edge z,z; and adding edge x,z.. Assume @(z,z;) = t'.
Similarly, let G5 be the graph modified from S,, by deleting the edge z,z; and
adding edge x,x,. Finally, adding edges yy” (colored t) and zz' (colored t') to Gy
and G, respectively, yield the desired-two-isomorphic unicyclic subgraphs. Notice

that the two edges yy', zz' can not incident to x, or z;, see Figure 5.3.

Ty Za

Figure 5.3: (Case 1) Two multicolored isomorphic unicyclic subgraphs.
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Case 2. For any triangle (z,, xp, x.), if ¢(xpz.) = a, then p(x,x;,) = ¢ and p(z,z.) = b.

In this case, we can assume n > 9 by Lemma 5.1.1. Pick the vertex z; and two
edges with color 1, say xsxs and xyxs. Since p(z123) = 2 and p(x122) = 3, we
have ¢;1(2) ¢ {x1,x2,x3}. Since n > 9, there exists one edge yy’ which is colored
4 such that y,y" & {22, 23,25, ¢, (2)}. Then, let G; be the graph modified from
Sz, by deleting the two edges z1x3, z125 and adding the three edges xoxs, x5(2), yy'.
Assume @531(5) = x,. Analogous to Gy, let Gy be the graph modified from S,,
by deleting the two edges x3z5, x5z, and adding the three edges x2(5), ,(3), r4xs,
see Figure 5.4. Thus, we have two isomorphic multicolored spanning unicyclic sub-

graphs. [

Figure 5.4: (Case 2) Two multicolored isomorphic unicyclic subgraphs.

5.2 Multicolored Unicyclic Spanning Subgraphs

Applying Theorem 4.2.1, we can have the following result.

Theorem 5.2.1. Let ¢ be an arbitrary proper (2m—1)-edge-coloring of Koy, then there

vam + 37 — BJ
2

exist at least { mutually edge-disjoint multicolored spanning unicyclic sub-

graphs.
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Proof. Let Ks, be defined on V(K1) U {zo}. Then, by the observation in Section
5.1, we obtain a (2m—1)-edge-coloring @ of Ky, by letting @(zox;) = i for ¢ € [2m — 1]

and @(z;x;) = p(xz;) for i, € [2m — 1]. By Theorem 4.2.1, there exist at least

{\/4m +37—-3
2

tains a pendent vertex xy. Therefore, after deleting the vertex xg, these trees turn out to

J mutually edge-disjoint multicolored spanning trees, each of them con-

be mutually edge-disjoint multicolored spanning trees in K5, 1 and each of them misses
one color. Assume these trees are T;,Ts, -, and the root of T} is y;. Then, let C; be
obtained from 7; by adding an available edge e; colored with the missing color in 7T;; i.e.,

let C; = T; +e; where ¢(e;) = p(xoy;). This process always works since the missing colors

vadm + 37— 3
2

are distinct and there are m — 1 — L J edges available in each color class.

vViam + 37— 3
2

subgraphs in Ks,,_1. Note that @|,, , = @. This concludes the proof. ]

Thus, we have L J mutually edge-disjoint multicolored unicyclic spanning
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Chapter 6

Forbidden Multicolored Cycles

From what we have seen in literatures, it is not difficult to see that finding (or prov-
ing the existence of) a specific multicolored subgraph such as tree, path or cycle, in an
arbitrary properly edge-colored graph is not easy. On the other point of view, avoiding
a specific multicolored subgraph is also a tough job. In this chapter, we first introduce
some interesting results about the existence of multicolored subgraphs and then focus on

the avoiding issue in the posterior part.

6.1 Multicolored Subgraphs in 'Edge-colored Com-
plete Graphs

We start with some definitions. If the edges of a graph G are colored by r colors [r]
which are actually appearing in G, then its color distribution (ai,as, ..., a,) means that
the number of edges with color i is equal to a; for every i € [r]. An edge-coloring of a
graph G is called an edge-coloring with complete bipartite decomposition if each color class
forms a complete bipartite subgraph of GG. If the edges of G are colored so that no color
is appeared in more than k edges, we refer to this as a k-bounded coloring. For a vertex
v of G, the color degree of v, denoted by degq,(v), is the number of colors on the edges
which are incident to v.

In this section, some results related to multicolored subgraph in an edge-colored (not
necessarily be proper) K, will be introduced. We split them into the following three

categories of multicolored subgraphs.
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6.1.1 Multicolored Spanning Tree

Results related to proper edge-coloring have been discussed in previous chapters. In
what follows, we consider a general edge-coloring of K,. Recall the result proved by
Brualdi and Hollingsworth [10] that in any proper (2m — 1)-edge-coloring of the complete
graph Ky,,, m > 2, there are two edge-disjoint multicolored spanning trees. In 2006,

Akbari and Alipour [1] generalized Brualdi and Hollingsworth’s result as follows.

Theorem 6.1.1. [1] If (a1, as,...,a,) is a color distribution for the complete graph K,,
n>>5, such that2 <a; <---<a, < "TH, then there exist two edge-disjoint multicolored

spanning trees.

As early as in 1991, however, Alon, Brualdi and Shader [3] discussed the existence of

multicolored spanning trees from the perspective of complete bipartite decomposition.

Theorem 6.1.2. [3] Every K, having an edge-eoloring (not necessary proper) with com-

plete bipartite decomposition contains-a multicolored spanning tree.

6.1.2 Multicolored Path
Erdés and Gallai [17] first dealt with this type-of problems in 1959.

Theorem 6.1.3. [17] Every r-edge-colored graph G of order n has a multicolored path of

2
length at least [—T—‘ .

n

In 2005, Broersma, Li, Woeginger and Zhang [8] obtained the following result.

Theorem 6.1.4. [8] Let G be an edge-colored graph. If deg.,(x) > k for every vertex x

of G, then for every vertex v of G, there exists a multicolored path starting at v and of

kE+1
length at least [%-‘ :

Then, Chen and Li [12], [13] improved above theorem.

Theorem 6.1.5. [12] Let G' be an edge-colored graph and k > 1 be an integer. If

degeol(x) > k for every vertex x of G, then there exists a multicolored path of length
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3k
at least {E-‘ + 1. Moreover, if 1 < k < 7, there exists a multicolored path of length at

least k — 1.

Theorem 6.1.6. [13] Let G be an edge-colored graph and k > 8 be an integer. If
degeoi(x) > k for every vertex x of G, then there exists a multicolored path of length

2k
at least [3—‘ + 1.

Consider the proper edge-coloring of a complete graph, we immediately get the fol-

lowing corollary by Theorem 6.1.6.

Corollary 6.1.7. In any proper edge-coloring of K,, n > 9, with x'(K,) colors, there

2n — 2
exists a multicolored path of length at least [ n3 -‘ + 1.

6.1.3 Multicolored Cycle

When it comes to cycles, it is natural to consider Hamiltonian cycles. The problem to
find n which is large enough so that every k-bounded edge-colored K, where k is given,
contains a multicolored Hamiltonian cycle was mentioned in [18] in 1983. Here are three

relative results. We list them in historical order:

Theorem 6.1.8. [29] There exists a constant number ¢ such that if n > ck®, then every

k-bounded edge-colored K, has a multicolored Hamiltonian cycle.

Theorem 6.1.9. [24] There exists a constant number ¢ such that if n is sufficiently large
and k < =, then every k-bounded edge-colored K,, contains a multicolored Hamiltonian

cycle.

Theorem 6.1.10. [4] Let ¢ < 1/32. If n is sufficiently lage and k < [cn], then every

k-bounded edge-colored K, contains a multicolored Hamiltonian cycle.

Theorem 6.1.8 was obtained by Hahn and Thomassen [29] in 1986 and implied that

1/3

k could grow as fast as n'/° to guarantee that a k-bounded edge-colored K, contains a

multicolored Hamiltonian cycle. In 1993, Frieze and Reed [24] made further progress, see
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Theorem 6.1.9. Few years later, in 1995, Albert, Frieze and Reed [4] improved Theorem
6.1.9 and proved the growth rate of k could in fact be linear.

Now, we consider general cycles. In an edge-colored K, it is clear that there is no
multicolored cycle if and only if there is no multicolored C5. Notice that there exists
a cycle somewhere in a subgraph of K, which has n edges. Montellano-Ballesteros and

Neumann-Lara [33] presented the following results.

Theorem 6.1.11. [33] If the edges of K,, are colored by n or more colors actually ap-

pearing, then there is a multicolored K3 somewhere.

Above result infers that K, has an (n—1)-edge-coloring which forbids multicolored
K3's. A. Gouge et al. [25], in 2010, not only proved the existence of such colorings but
also characterized all such colorings. They defined a JL(n) coloring as an edge-coloring
of K, with exactly n — 1 colors whieh forbids multicolored K%s (and thus multicolored

cycles). They also have

Theorem 6.1.12. [25] Suppose.n > 2.. Every JL(n) coloring is obtainable as follows:
choose positive integers r, s satisfyinga s = n; partition.V (K,) into sets R, S satisfying
|R| = r,|S| = s. Color all R-to-S edges in Ky with one color-say green. Color (R)g,

with a JL(r) coloring and (S), with a JL(s) coloring with disjoint sets of colors on the

two cliques, and with green not appearing in (R)k, nor (S)k

n*

In the same paper, they also considered the edge-coloring, named equalized, which the

difference of numbers of any two colors is at most 1.

Theorem 6.1.13. [25] Forn > 1, there is an equalized t-edge-coloring of K,, which forbids

multicolored K3 if and only ift € {1,2,...,[5]}.
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6.2 Forbidding Multicolored Cycles in Edge-colored
Complete Bipartite Graphs

In this section, motivated by the works in [25] and [33], we consider the proper edge-
colorings of K,,,, n > m, which forbid multicolored (even) cycles. Actually, given an
integer k, we want to know for what natural numbers n and m, there always exists a
multicolored C'y, somewhere in any properly n-edge-colored K,,,. For k > 2, we define
the forbidding multicolored 2k-cycles set, FMC(2k) in short, by the ordered pair (m,n) €
FMC(2k) if there exists a proper n-edge-coloring of K, , that forbids multicolored 2k-
cycles. Since m < k or n < 2k gives trivial results, we only consider m > k and n > 2k
in the set FMC(2k)

Firstly, it is impossible to forbid multicolored 4-cycles in any proper n-edge-coloring

of K, where 2 <m <n and n > 4.
Proposition 6.2.1. FMC(4) = .

Proof. It suffices to show that there exists a multicolored C, in any properly edge
colored K5 4. Let ¢ be a proper edge, coloring of Ky and{uy, us}, {v1,v2,v3,v4} be the
two partite sets. For convenience, let € ={1,2,...} be the color set. Without loss of
generality, assume p(ujv;) = 1 and ¢(ugv;) = 2. Since ¢ is proper, there must be one
vertex v;, where 2 < ¢ < 4, such that p(uqv;), e(ugv;) € {1,2}. Thus ug —v; —ug —v; —ug

is the desired multicolored Cj. [ |

6.2.1 Forbidding Multicolored 2k-cycles

We start with some notations. Let S be an n-set. A latin rectangle of order m x n,
m < n, based on S is an m x n array in which every element of S is arranged such that
each one occurs at most once in each row and each column. Thus, a latin square of order
n based on S, defined in Section 1.5, is a latin rectangle of order n x n. A partial latin

square of order r, r < n, based on S is an r X r array in which every element of S is
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arranged such that each one occurs at most once in each row and each column. In this

section, we use Z, = {0,1,2,...,n—1} for the n-set S. For example, g é ? is a latin
0]1]. . :
rectangle of order 2 x 3 based on Zs; and 5101152 partial latin square of order 2 based

on Zs. In particular, the size of a partial latin square L, denoted by |L|, is the number of
elements of S actually appearing in L.

For convenience in presentation, we redefine the method of the product of two latin
squares (compare with Section 1.5). Let L = [l; ;] and M = [m, ;] be two latin squares of
order s based on Z, and t based on Z;, respectively. Then the direct product of L and
M, L x M = [h; ],is a latin square of order s -t based on Zg, where hy, =1t -l + Mg
provided that x = ta + ¢ and y = tb + d. For instance, let L and M be two latin square
of order 2 (based on Z,) and 3 (based on Zs) respectively, then L x M is a latin square

of order 6 based on Zg, as in Figure 6.1.

0l1(2]3]4]5

2101534
0[1]2

011 11210453
)(201:

110 3145|012
11210

513[41210]1

41513111210

Figure 6.1: The direct product of L and M

Similar to the definition of transversal in a latin square, the transversal of a partial
latin square of order r based on an n-set is set of r cells with exactly one in each row and
each column and containing exactly r elements.

Let L = [l; ;] be an mxn latin rectangle. There is a corresponding relationship between
L and a properly n-edge-colored K,,,. Let {ug,us,...,un—1} and {vg,v1,...,v,—1} be
two partite sets of K,,,, and the edge u;v; is colored with [; ; for each 0 < i < m — 1,
0 < j <n—1, then we have a properly n-edge-colored K,,, and vice versa. Now, we

have
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Theorem 6.2.2. If k is odd, then (m,2k) € FMC(2k) for k < m < 2k.

Proof. It suffices to find a proper 2k-edge-coloring of Ky, o which forbids multicolored
Coyy. Let Ly be the latin square of order 2 in Figure 6.1 and M be a latin square of order
k. Notice that Ly x M is formed by four latin squares of order k, two of them based on

Zy, and other two based on Zoy \ Z. For convenience, name the four squares A, B, C' and

D clockwise from the top-left one, see Figure 6.2.

M based on M based on
{0, 1, ..., k-1 } | {k, ..., 2k-1}
M based on M based on

{k,...,2k-1} | {0, 1, ..., k-1}

Figure 6.2: Ls x M-and the four copies of M

Let ¢ be the proper 2k-edge-coloring of Koy 9, obtained by Lo x M. Suppose it
contains a multicolored Cy. Let azb,¢, and d be the numbers of cells in A, B, C, and D,
respectively, corresponding to the edges of the multicolored cycle. Then a + b is a sum of
the degrees, on the cycle, of some of the vertices on the cycle, so a + b is even. Similarly,
b+ c is even. Therefore, a + ¢ is even. But since all 2k colors 0, 1, .

.., 2k — 1 must appear

on the edges of the cycle, a + ¢ = k, odd. This contradiction completes the proof. [

The following result provides an upper bound of the order of complete bipartite graphs

to forbid multicolored 2k-cycles.

Theorem 6.2.3. For any integer k > 2, if n > bk — 6, then any properly n-edge-colored

Ky, contains a multicolored Coy,.

Proof. Let ¢ be a proper n-edge-coloring of K} ,, and the partite sets be A = {ay, as, . ..

7&16}

and B = {by, b, ...,b,}. Let P = aybjas - - - b;_1a; be the longest multicolored path whose
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endpoints lie on A. Suppose t < k. Assume C' is the set of colors which appear on P.
Note that |C| = 2t — 2. For each i = 1,...,k, define S; C B by b € S; if p(a;b) € C.
Observe that [S;USi1 U{by, bo, ... 01} <2(2t—2)4+(t—1)—1=5t—6 < 5k—6 < n.
Therefore, there exists a vertex b € {bs, bi11,...,b,} such that p(a:b), p(ar1b) ¢ C. Let
Q = P U {abasy1}, we have |Q| = 2t > |P|, a contradiction. Then ¢ > k. By the fact
that a longest path in K, with end vertices in A is of length 2k — 2, we have ¢ = k.
We have that |S], |Sk| < 2k—2and by € Sy, b,_1 € Sk. Hence, |S1USU{by, ..., bp_1}| <

5k —7. Since n > 5k — 6, there exists a vertex b € B such that ¢(ab), p(arb) ¢ C. There-

fore, a multicolored (s, is found. [ |

6.2.2 Determining FMC(6)

By Theorem 6.2.3, if (m,n) € FMC(6), then we have 3 <m <n and n =6,7,8. The
case n = 6 was done in Theorem 6.2.2, 80 we consider .= 7 and 8 in the following.

Let L be the corresponding latin rectangle-of a properly n-edge-colored K,, ,,. If there
is a multicolored Cs somewhere, then there exists a 3 x 3 partial latin square which

contains two disjoint transversals-using exactly 6 symbols in L.

Proposition 6.2.4. Let L be a partial latin square of order 3 with |L| = 7. Then, there
is no multicolored Cj in its corresponding K33 if and only if it contains a latin subsquare

of order 2.

Proof. It suffices to consider the necessity since the sufficiency is clearly true. Suppose
L contains no latin subsquares of order 2. If there is one element appearing 3 times,
then the other 6 elements form a multicolored Cs. Therefore, assume that there are two
elements, say 1,2, appearing twice respectively. Without loss of generality, let the two 1’s
be arranged at the diagonal in the first two rows. Then at least one of 2’s occurs in the
third column or the third row. Omitting this cell and one of the cells labeled 1 such that
the two cells form a transversal, the 6 of the remaining cells will provide a multicolored

Cs, a contradiction. n
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Proposition 6.2.5. Let L be a partial latin square of order 3 with |L| = 6. There does
not exist a multicolored Cg in its corresponding Kj 3 if one of the following conditions

occurs:

(1) There exist 2 columns (or rows) in L using exactly 3 elements.
(2) Some element appears three times in L.

(3) L contains a latin subsquare of order 2.

Proof. Since there are only 6 elements, if there exists a multicolored Cg, all elements
should appear in the two disjoint transversals. In case 1, the elements of the third column
(or row) can not all appear. In case 2, that element can not appear only once in any two
disjoint transversals. In case 3, the argument is similar to the proof of Proposition 6.2.4.

Lemma 6.2.6. For3 <m <8, (m,8) e EFMC(6).

Proof. It suffices to prove theelaim for m = 8. Let L bethe latin sqaure of order 2 in
Figure 6.1. Let L = Ly X Ly X Loya latin square of order/8 based on Zg. For convenience,

name the four copies A, B,C and D of L. x Ly as.in Figure 6.3.
c d k

T
T4 |

) ST REE s

e L
D | C

WIN| R O NS O] =
N| W[ D[ =] O | =] Ot
ROl W] O =] O
Ol PRI N W]t

=l oo Nl o~ N W

QU = ] O] W N

N| OO sl WI N =] O
(=20 IEN BN BN I (VN NGV el B o

Figure 6.3: Ly X Lo X Lo

Suppose that there are 6 cells whose entries induce a multicolored Cs. Let L’ be

the 3 x 3 partial latin square which contains the 6 cells. It is easy to see that any
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2 x 3 partial latin rectangle in Ly x Ly (A or B or C' or D) contains a latin subsquare
of order 2. By Proposition 6.2.4, we can assume that L’ traverses all four copies of
Ly X Lo. Without loss of generality, suppose there are 4 cells of L' located in A. Let
the 4 cells be (a,c), (a,d), (b,c), (b,d), and the only one cell located on C' be (h, k), where
0 <a,bc,d<3and 4 < hk <7 (Figure 6.3). By Proposition 6.2.4 and Proposition
6.2.5, lge # lpa or lgq # lpe, and thus the four elements are distinct. Assume that
Ih = lgc. This implies I, = [, .. Then we have a copy of Lo, a contradiction. Similarly,
if I is any of the l;;, with (7,7) being one of the 4 cells of L' in A, then we have
a contradiction. But [, must be one of these, since these 4 are distinct elements of

{0,1,2,3}. "

Lemma 6.2.7. (3,7) € FMC(6). Furthermore, if K37 is properly 7-edge-colored such

that it forbids multicolored Cg’s, there.ewists-an-nduced Ks 3 using exactly 3 colors.

Proof. Firstly, Figure 6.4 gives a 3 x 7 latin rectangle. "It is not difficult to check its
corresponding proper 7-edge-coloring of K37 induces no multicolored Cs by Proposition

6.2.4 and Proposition 6.2.5.

0O(12]3]4 6
1103 [2]6]4
213 1 4

Figure 6.4: A 3 x 7 latin rectangle

Secondly, given a proper 7-edge-coloring of K37 which forbids multicolored 6-cycles,
let L be its corresponding latin rectangle. It suffices to show that L contains a latin
subsquare of order 3. For convenience, let C* denote the set of elements in the ith column
of L where ¢ € Zr.

Claim. There exist 7, j such that C* N C7 = ¢.

Suppose for any i # j, C*' N C7 # ¢. Since each element occurs three times, we have

|C'NCY| = 1 for all i # j under this assertion. Without loss of generality, let C° = {0, 1, 2}
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and C! = {0, 3,4}. Then 3 and 4 will each occur twice in the remaining five columns. So,
there exists a C*, where 2 <t < 6, such that C* N {3,4} = ¢. This implies that the three
columns CY, C' and C" create a multicolored Cg by Proposition 6.2.4, a contradiction.
Thus, assume C° = {0, 1,2}, C! = {3,4,5} and C?, C?, C* contain the element 6. Note
here that |C*NC% =2 or [C'NCY =2 for all t = 2,3, 4; otherwise, C°, C1, C* will create
a multicolored Cg by Proposition 6.2.4. Next, we want to claim (C?UC?UC*)\ {6} equals
C? or C'. Suppose the assertion is not true, without loss of generality, let |C? N C?| =
2,|C* N C% =2 and |C*N C'| = 2. See the left rectangle in Figure 6.5: the elements in

cell A are from {0, 1,2} while the elements in cell B are from {3,4,5}.

0|36 |A|B 0136|2451
114|A]|6|B — (1 (4|26 |3]0]5
2|15 |A]A]| 6 2511106 |C|C

Figure 6.5: The-3 x 7 latin rectangle

Proposition 6.2.4 shows that the elements in the cells labelled A and the cells labelled
B are uniquely determined; see the right-hand side rectangle in Figure 6.5. Meanwhile,
the elements in some cells of the last two columns-are determined except cells denoted as
C, which are filled with 3 and 4. No matter what the elements in C' are, C°, C* and C®
contain a multicolored Cg, a contradiction. Therefore, (C? U C3 U C*)\ {6} equals C°(or

C'). Hence, combining C°, C® with C'(or CV), we have a latin square of order 3. [

Lemma 6.2.7 will yield the following result.

Proposition 6.2.8. For any proper 7-edge-coloring of K, 7, 4 < m < 7, there exists a

multicolored Cg.

Proof.
It’s sufficient to consider the case when m = 4. Suppose that there exists a properly

7T-edge-colored K, 7 which forbids multicolored Cg’s, then let L be its corresponding 4 x 7
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Figure 6.6: The 4 x 7 latin rectangle

latin rectangle. By Lemma 6.2.7, there exists a latin square of order 3 in the first three
rows of L. Without loss of generality, we put the latin square of order 3 in the last three
columns and let the symbols be {4,5,6}, see Figures 6.6. Next, consider the last three
rows. It’s impossible to find another latin square of order 3. It contradicts Lemma 6.2.7.

To sum up, we have the following conclusion.
Theorem 6.2.9. FMC(6) = {(m,6)| 3<m <6}U{(3,7)} U{(m,8)| 3<m < 8}.

We note here that above result (obtained jointly with H. L. Fu and R. Y. Pei) has

been included in [21].
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Chapter 7

Conclusion and Remarks

The main focus of this thesis is to find edge-disjoint multicolored subgraphs in a
properly edge-colored complete graph. If the complete graph is properly k-edge-colored,
then we are aiming to obtain edge-disjoint copies of multicolored subgraphs of size k. This
is why we try to find copies of multicolored spanning trees of Ky, since it is (2m—1)-edge-
colorable and find copies of multicolored spanning unicyclic subgraphs of Ks,, 1 since it
is (2m+1)-edge-colorable.

In case that the proper edge-coloring is of special type or prescribed, then in Chapter
2 and Chapter 3 we have an MT' P (multicolored spanning tree parallelism) or an M HC P
(multicolored Hamiltonian cycle parallelism) respectively when Ko, or Ky, are con-
sidered. However, if the proper edge-colorings are arbitrarily given, then finding copies
of multicolored subgraph is going to be very difficult. In fact, except for special graphs
such as stars, small paths or small cycles, finding just one copy (multicolored) of a given
graph, for example, a multicolored perfect matching in Ks,,, is difficult enough.

Therefore, we put our effort in searching for edge-disjoint (not necessarily be iso-
morphic) multicolored spanning trees in a properly (2m—1)-edge-colored Ks,, and mul-
ticolored unicyclic spanning subgraphs in a properly (2m-+1)-edge-colored Ky, respec-
tively. In Chapter 4 and Chapter 5, by using a recursive construction, we are able to find
Q(y/m) edge-disjoint multicolored spanning trees and §2(y/m) edge-disjoint multicolored

spanning unicylic subgraphs in Ky, and Ko, 1 respectively. Though this result is the
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best one obtained so far, it is very far from m spanning trees (conjectured by Brauldi
and Hollingsworth) and m unicyclic spanning subgraphs (conjectured by Constantine).
Hopefully, we can close the gap in the near future.

In this thesis, we also consider ”forbidden” multicolored subgraphs in a properly edge-
colored complete bipartite graph. Mainly, we prove that if the two partite sets are large
enough, then forbidding a multicolored even cycle of fixed length is not possible. Pre-
cisely, we prove that for f(k) < n, then every properly n-edge-colored K, contains a
multicolored 2k-cycle where f(k) = 5k —6. As a consequence, we determine the set of all
ordered pairs (m, n), such that multicolored Cs can be forbidden in K, ,. Unfortunately,
determining the set of (m,n)’s such that multicolored Cy can be forbidden in K,,, (by
giving a proper n-edge-coloring) is still unsolved. We believe that it is close related to

find a latin rectangle with special structure-which is worth of more study.
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