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Abstract

In the classical group testing problem, there is a set N of n clones, each

of which is either positive or negative. The main task of the problem is

to identify all positive ones by group tests, and in identifying all positive

clones, minimizing the number of group tests is the main issue. Motivated

by applications, many studies have introduced a third type of clones called

“inhibitors” whose effect is in a sense to obscure the positive clones in pools.

Furthermore, in many applications, a subset of clones (rather than a single

clone), called a complex, can induce a positive effect.

There are two general types of group testing algorithms: sequential and

nonadaptive. A sequential algorithm conducts the tests one by one where

the outcomes of all previous tests can be treated as a reference to the later

one, while a nonadaptive algorithm specifies all tests in advance and thus

all tests can be conducted simultaneously. Generally, sequential algorithms

require fewer number of tests than nonadaptive ones, but performing all

tests in a sequential algorithm spends more time than performing all tests in

a nonadaptive one.

The group testing model which takes inhibitors (respectively complexes)

into consideration is referred to as an inhibitor model (respectively a complex

model). These two models have been well studied in the group testing liter-

ature. In this thesis, we first study group testing problems in a new pooling

design environment by allowing the coexistence of inhibitors and complexes

and devote our attention to nonadaptive algorithms. To identify positive

items, we attach a novel property “inclusiveness” to a design. This property
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and a well-studied property “disjunctness” lead to a significant improvement

in the decoding procedure. In addition to the identification problem where

only positive items are identified, we also attempt to classify all items. We

prove that the well-studied “(d, r; z]-disjunct matrices” are sufficient for the

classification problems and associated with fast decoding procedures.

In the identification and classification problems, (H : d; z)-disjunct, (d,

r;z]-disjunct, and (d, r; z]-disjunct and (h, r;y]-inclusive with z > y are three

main properties of matrices that are employed as nonadaptive pooling de-

signs. We study their constructions and the lower bounds on the number of

rows (tests).

Finally, we study the graph reconstruction problem which is a general-

ization of the classical combinatorial group testing problem. A group testing

problem is a search paradigm where it is usually assumed that there are

at most d positive items among given items. A graph reconstruction prob-

lem is to reconstruct a hidden graph G from a given family of graphs by

asking queries of the form “Whether a set of vertices induces an edge of

G”. Reconstruction problems on families of Hamiltonian cycles, matchings,

stars and cliques on n vertices have been studied where algorithms of using at

most 2n lg n, (1+o(1))(n lgn), 2n and 2n queries were proposed, respectively.

We exploit some strategies such as affine plane method to improve them to

(1 + o(1))(n lg n), (1 + o(1))(n
2

lg n), n + 2 lg n and n + lg n, respectively.
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摘要

所謂傳統的群式問題 (classical group testing problem), 是要從含

有正克隆 (clones) 及負克隆的群體中識別出正的克隆。 其所使用的

工具是群試驗 (group tests), 而如何減少群試驗的使用量是主要被

重視的問題。 應用當中也經常衍生出其它型態的克隆, 比如抑制型克

隆 (inhibitor)。它能攪擾正克隆的特性, 使其不能發揮正常的功用,
因此一個含有正克隆的群試驗可能無法顯現正克隆的存在, 若它同

時也含有抑制克隆。 此外, 在 NDA 篩選的環境中, 有些特定的克

隆能組合出具有相當特性的複合體, 我們稱它為克隆複合體 (com-

plex); 因此, 相對於克隆模型, 複合模型探討的是正複合體的識別。

逐步演算法 (sequential algorithm) 及非調整型演算法 (nonada-
ptive algorithm) 是兩個普遍的群試演算法。 前者當中的試驗是逐一

進行的, 且下一個試驗可依據之前進行過的試驗的結果而去設計; 後

者當中所含的試驗是同時進行的, 也就是只依據問題給定的訊息及

假設去設計所有的試驗, 且使其能達到識別所有正元素的能力。 一般

而言, 逐步演算法所涉及的試驗量比非調整型演算法的來得少, 但其

完成所有試驗所需的時間比非調整型的來得多。

群試抑制模型 (the inhibitor model) 指的是含有抑制型元素的群

試模型;而群試複合模型 (the complex model) 是指所探討的問題是

建立在複合體上。 在群試研究的文獻中, 這兩個模型已各別有完善的

發展。 在此論文中, 我們提出抑制元素和複合體共存的群試環境 (the

inhibitor complex model), 並專攻於非調整型演算法的設計。 我們

採用新提出的概念 「覆蓋性 (inclusiveness)」 去設計演算法。 「分離性

(disjunctness)」 是另一個常被使用的概念, 我們證明一個結合此兩
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種概念的設計能顯著地改善譯解試驗結果的時間。除了探討正複合體

的識別, 我們進一步從事複合體分類的工作, 也就是設計演算法去區

分所有的複合體 (正的、 負的及抑制型的)。 (d, r; z]-分離性群試設計

((d, r; z]-disjunct pooling design) 是一個發展良好的演算法設計工

具, 我們證明此工具足以用來處理複合體的分類工作而且也結合了

快速的譯解程序。

總結下來,(H, d; z]-分離性、(d, r; z]-分離性和(h, r; y]-覆蓋性是三

種主要用來設計非調型演算法的工具。 我們在此也討論它們的建構方

法及所需試驗量的下界。

最後, 我們探討推廣化的傳統群試問題–圖形重建問題。 群試問題

可被視為一種搜尋式問題的範例, 且通常會在正元素的總量上做一

個假設。而圖形的重建是另一種搜尋式的問題, 其主要工作是要識別

出隱藏的圖形, 而已知條件是它是眾多可能圖形中的其中一個。 其上

用來作為識別的工具是一種類似於群試驗是詢問: 一個詢問給的訊

息是一個點的子集合是否包含隱藏圖形上的某個邊的所有的點。 圖形

重建的問題已有一些結果, 比如隱藏的圖形是一個漢米爾頓圈 (Ham-
iltonian cycle)、 配對圖 (matching)、 星圖 (star) 或局部完全圖

(clique)。 針對這些問題, 我們利用一些策略去改進這些結果, 例如

仿射平面法 (the affine plane method) 及配對結構法 (maximal
matching method)。
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Chapter 1

Introduction

Given a set N of n clones, each of which is either positive (usually called

defective) or negative (usually called good), the group testing problem is to

identify all positive ones by group tests. A group test is applied to a subset

of N with two possible outcomes; a negative outcome indicates if all clones in

the subset are negative; a positive outcome indicates otherwise. In particular,

a group test on a clone can show its property. Consequently, the main issue

is to minimize the number of group tests in identifying all positive clones.

The origin of group testing can be traced back to World War II. The

concept of group testing was first conceived in a session in the offices of

the Price Statistics Branch of The Research Division of the office of Price

Administration in Washington, D.C.. Researchers in the session such as

David Rosenblatt and Robert Dorfman were struck by the wastefulness of

testing blood samples from millions of draftees to detect a few thousand

cases of syphilis. They suggested that pooling the blood samples may be

economical (for more detail, please refer to Du and Hwang, 1993 [20]).

In the probabilistic model of group testing, a probability distribution is

attached to the positive set and the expected number of tests required to

identify positive elements is a criterion of efficiency. Robert Dorfman (1943)

[19] studied the group testing problem under the probabilistic model and

proposed a method that could eliminate all syphilitic men called up for in-

duction. However, the need of group testing faded with the conclusion of
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the World War II. Group testing stayed dormant for many years until the

coming of its use in industry. Sobel and Groll (1959) [46], two Bell Lab-

oratory scientists, considered many industrial applications of group testing

and studied group testing under probabilistic models as well. Li (1962) [37]

was the first to study Combinatorial group testing where probability distri-

butions on positive set are completely eliminated; for instance, the number

of positive items among the n items can be assumed at most d. Hencefor-

ward, combinatorial group testing developed alongside with the probabilistic

group testing and has been prospering due to its applications in chemical

leak testing, electric shorting detection, codes, multi-access channel commu-

nication and AIDS screening (see Du and Hwang, 1993 [20] and 2nd ed. 2000

[21] for a general reference). Recently, group testing has been found useful

in molecular biology and is usually referred to as pooling designs. The new

application also generates new models and new problems such as pooling

designs on complexes (Torney, 1999 [52]), the inhibitor model (Farach et al.,

1997 [28]), contig sequencing, and non-unique probe selection problem (Du

and Hwang, 2006 [23]).

1.1 Preliminaries on Algorithm

There are two general types of group testing algorithms: sequential and non-

adaptive. A sequential algorithm conducts the tests one by one where the

outcomes of all previous tests can be treated as a reference to the later one.

A nonadaptive algorithm specifies all tests in advance and thus all tests can

be conducted simultaneously. Sequential algorithms require fewer number of

tests in general, since extra information allows for more efficient test designs

while nonadaptive algorithms permit to conduct all tests simultaneously, thus

saving the time for testing. Sequential algorithms have dominated the liter-

ature historically because the main goal of group testing is to minimize the

number of tests required to identify all positive items. However, in some ap-

plications such as molecular biology, an experiment corresponding to a group
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test is considerably time-consuming, thus it is impractical to perform the ex-

periments sequentially. The focus then goes to nonadaptive group testing

algorithms where all experiments are performed simultaneously; neverthe-

less, sequential procedures can still be used, but the total time required to

identify the positive items must be considered along with the total number of

tests. There is a natural tradeoff between the sequential and the nonadaptive

algorithms. One can seek 2-stage or k-stage algorithms for which all tests in

a stage must be specified simultaneously, but the stages are sequential.

With experimental errors, test outcomes may contain false negative out-

comes and false positive outcomes. The former means that a test yields a

negative outcome when a pool contains at least one positive clone. Likewise,

the latter means that a test yields a positive outcome when a pool contains no

positive clones. The error tolerance capability is concerned when proposing

a design.

1.2 Models Originating from Applications in

Molecular Biology

The wide range of conditions in which group testing has practical applications

call for meaningful variants of the basic model in order to better accommo-

date the applications at hand. In this section, we introduce three models of

group testing – inhibitor, complex, and graph reconstruction that originated

from applications in molecular biology. These models have been studied in

separate literatures. We will follow the original terminologies in each model.

1.2.1 Group Testing with Inhibitors

In certain applications, there is a third type of clones called inhibitors whose

existence may cancel the effect of positive clones and the number of such

clones in the population is usually assumed at most h. Various models can

be formulated with inhibitors in the pooling design, depending on the inter-

ferences between inhibitors and positive clones. Farach et al. (1997) [28],
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motivated by molecular biology applications, first proposed the 1-inhibitor

model in which a single inhibitor clone dictates the testing outcome to be

negative regardless of how many positive clones are in the test and gave a

randomized algorithm to identify all positives in O((d + h) log n) tests. For

example, in molecular biology, enzyme inhibitors are molecules that interact

in some way with the enzyme to prevent it from working normally; in drug

discovery applications, certain compounds can block the detection of a po-

tent compound (Xie et al., 2001 [54]); similar phenomena were mentioned in

blood testing applications (Phatarfod and Sudbury, 1994 [44]).

De Bonis and Vaccaro (1998) [17] connected the 1-inhibitor model to a

certain generalization of superimposed codes (D’yachkov and Rykov, 1983

[26]), and provided a lower bound Ω( h2

d log h
log n) on the number of tests re-

quired to identify exactly d positives in the presence of h inhibitors. Further,

De Bonis et al. (2005) [16] gave an asymptotically optimal 4-stage algorithm

for the 1-inhibitor model under the assumption that the exact number of

positives and an upper bound on the number of inhibitors are known before-

hand. Note that all these algorithms are sequential. Recently, nonadaptive

pooling designs have been proposed for the inhibitor model (D’yachkov et

al., 2001 [25]; Hwang and Liu, 2003 [32]; Du and Hwang, 2005 [22]).

De Bonis and Vacarro (2003) [18] extended the model to k-inhibitor model

in which k inhibitor clones dictate the testing outcome to be negative. In

general, one can consider a (k, g)-inhibitor model where k inhibitors cancel

the effect of g positive clones.

Besides the mathematical complexity of dealing with various inhibitor

models, determining which model fits the reality is also a practical question.

Hwang and Chang (2007) [33] considered the general inhibitor model in such

an environment with no need to know the exact relation between inhibitors

and positive clones. De Bonis (2008) [15] proposed an almost optimal algo-

rithm using O(h2

d
log(n/h)) tests under the hypothesis that the exact number

d of positives is given. Particularly, this algorithm is a trivial two-stage algo-

rithm, that is, most non-positive candidates are eliminated by the first stage
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and the remaining clones are tested separately in the second stage.

1.2.2 Group Testing on Complexes

The classical group testing problem has a set of elements each of which in-

duces a positive or negative effect. In many DNA screening environments, a

subset of clones (rather than a single clone), called a complex, can induce a

positive effect. We call such a model the complex model in comparison with

the clone model as previously discussed. Formally, in the complex model,

we consider a given set H of complexes where a fixed but unknown subset

of complexes are designated positive, while other candidates of positive com-

plexes are called negative complexes. In particular, H = N is referred as the

clone model. A group test is executed on a subset of N and yields a positive

outcome only when it contains at least one positive complex. To have an

efficient design, we need to make some assumptions on the positive set. The

simplest assumption is an upper bound d of the number of positive complexes

in the test population. It is usually assumed that two positive complexes can

overlap, but neither contains the other. Torney (1999) [52] first introduced

the concept of the complex model and gave some substances in eukaryotic

DNA transcription and RNA translation as examples of complexes.

Group testing on complexes is widely applied in modern molecular and

cellular biology. A prominent example is its application in the identifica-

tion of protein-to-protein interactions (Lappe and Holm, 2003 [36]; Li et

al., 2005 [38]). The interactions between proteins are significant for many

biological functions. For example, in signal transduction process, the protein-

to-protein interactions of the signaling molecules can convey signals from the

exterior of a cell to the inside of that cell. This conveying process plays a

fundamental role in living cells. Furthermore, information about the inter-

actions between proteins improves our understanding of diseases and then

provides the basis for new therapeutic approaches. Therefore, in many bio-

logical projects, identifying all protein-to-protein interactions is an essential

task. The development of some laboratory approaches (Lappe and Holm,
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2003 [36]) enables the application of group testing to this problem. Li et al.

(2005) [38] formulated this identification problem as a group testing problem

in bipartite graphs which can be regarded as a special case of group testing on

complexes. Besides the protein-to-protein interactions problem, some other

problems such as graph testing, superimposed codes and secure key distribu-

tion are also highly related to the complex model. Recent developments on

this topic can be found in (Macula et al., 2000 [42]; Macula et al., 2004 [41];

Du and Hwang, 2006 [23]; Gao et al., 2006 [29]; Chen et al., 2007 [13]; Chen

et al., 2008 [14]).

Chang et al. (2010) [9] first introduced the inhibitor complex model where

an inhibitor is a third type of complexes. Similar to the environments in the

inhibitor clone model, the presence of an inhibitor may cancel the effect of

positive complexes; in other words, a group test executed on a set of clones

containing an inhibitor may yield a negative outcome even if that set contains

a positive complex. Furthermore, the inhibitor complex model, as well as

the inhibitor clone model, can be subdivided into the 1-inhibitor, k-inhibitor

and general inhibitor models based on the interference effect between positive

complexes and inhibitors. For instance, under k-inhibitor model a pool of

clones inducing more than k inhibitors would yield a negative response.

1.2.3 Graph Reconstruction Model

Combinatorial search problems on graphs in the literature (Aigner, 1988 [6])

consist of identifying an unknown edge or vertex in a given graph, verifying

a property of a hidden graph, reconstructing a hidden graph of a given class,

and some others. The graph reconstruction problem we consider here is as

follows. A hidden graph G is known belonging to a given family G of labeled

graphs on the set [n] := {1, 2, · · · , n}. The main task is to reconstruct G

by asking queries as few as possible, where a query is of the form “Does S

induce at least one edge of G?”, denoted by Q(S), for S ⊆ [n], and Q(S) = 1,

representing “yes”, or 0, representing “no”. Of course, the design of queries

refers to the information provided by G.
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Different settings on the prior knowledge of the hidden graph produce

various graph reconstruction problems. The group testing problem under

complex model is a (hyper)graph-version of the graph reconstruction prob-

lem, where the vertices stand for the clones, edges stand for the complexes

and the number of edges of the hidden graph is assumed at most d. Moreover,

the hidden graph of bounded degree was studied in (Grebinski and Kucherov,

2000 [31]; Bouvel et al., 2005 [8]), while the general hidden graph was con-

sidered in (Bouvel et al., 2005 [8]; Angluin and Chen, 2008 [5]). We study

the graph reconstruction problems under the assumption that the structure

of the hidden graph is known.

Various families of hidden graphs have been studied. Many recent stud-

ies focus on two cases: Hamiltonian cycles and matchings (Grebinski and

Kucherov, 1998 [30]; Beigel et al., 2001 [7]; Alon et al., 2004 [2]) which

have specific application to the genome sequencing problem. In the genome

sequencing, the contigs, which are longer continuous fragments formed from

some overlapping short reads, cover the genome with possible gaps. The task

is to determine the relative placement of contigs on the genome. A tool for do-

ing this is an experiment called multiplex Polymerase Chain Reaction (PCR)

(Sorokin et al., 1996 [47]). In a multiplex PCR, an input of an experiment

is a set of primers, which are short nucleotide sequences that characterize

the ends of the contigs. Whenever the input set contains two primers corre-

sponding to adjacent ends of neighboring contigs, the experiment outputs a

reaction bringing a PCR product. Hence, the relative placement of contigs

can be represented by the reaction graph which is a graph with primers as

its vertices and pairs of vertices with reactions as its edges. In particular, for

a circular genome, a reaction graph can be characterized as either a Hamil-

tonian cycle if the two primers of each contig are mixed together and are

considered as a vertex, or a matching if primers are treated independently,

i.e., each primer corresponds to a vertex. The problem can be generalized

as to identify the pairs that react with each other among the given set of

molecules (Torney, 1999 [52]; Alon and Asodi, 2005 [1]).
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Sequential algorithms for graph reconstruction problems on some fami-

lies of hidden graphs of known structure have been proposed. Grebinski and

Kucherov (1998) [30] gave a sequential algorithm to reconstruct a Hamilto-

nian cycle in 2n lg n queries (lg := log2), while the information lower bound

for the number of queries needed is n lg n. Bouvel et al. (2005) [8] provided

a sequential algorithm to reconstruct a matching in (1+ o(1))(n lgn) queries

while (1 + o(1))(n
2

lg n) is the best lower bound known so far and an algo-

rithm to reconstruct a star in 2n queries while the information lower bound

is (1 + o(1))n. They also proved that a clique of unknown size can be recon-

structed in 2n queries while n queries are required in the worst case. There

is still some room to improve the performance.

1.3 Thesis Overview

The inhibitor complex model, introduced by Chang et al. (2010) [9], is

a new group testing environment with the allowance of the coexistence of

inhibitors and complexes. In Chapter 2, we study group testing problem

in the inhibitor complex model. We devote our attention to the studies of

efficient nonadaptive designs with fast decoding procedures.

For group testing problems in the inhibitor model, much research has

been devoted to the studies of identifying all positive items; however, only

few studies have been done in classifying all items, especially for the nonadap-

tive designs. Furthermore, almost no work has been done in the classification

problems under the inhibitor complex model. However, the identification of

inhibitory substances is important in many practical applications; for exam-

ple, many drugs are enzyme inhibitors because they can make the activity of

enzymes reduced, thus leading to a destruction of a pathogen or a correction

of a metabolic disturbance. In Chapter 3 we provide efficient nonadaptive

algorithms for the classification problems under the 1-inhibitor model. It

is notable that the pooling designs we propose have polynomial decoding

procedures, i.e., determining the three types of complexes according to the
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testing outcomes can be done in polynomial time. Finally, for k-inhibitor

clone model, we solve the classification problems with both efficient non-

adaptive algorithms and fast decoding procedures (work jointly with Chen

and Fu, 2010 [10]).

Concluding from Chapter 2 and Chapter 3, we know that (H : d; z)-

disjunctness, (d, r; z]-disjunctness, and (h, r; y]-inclusiveness are three main

properties of matrices employed as efficient designs. Many studies have been

done on the constructions of (H : d; z)-disjunct matrices and (d, r; z]-disjunct

matrices. In Chapter 4, we will introduce their constructions and some lower

bounds that are mostly discussed in the literature. A matrix with (d, r; z]-

disjunct and (h, r; y]-inclusive property was newly proposed in (Chang et al.,

2010 [10]; Chen, 2006 [12] for r = 1) and little literature is available on its

construction. Accordingly, we provide some general results and prove that

some well-constructed disjunct matrices have certain inclusiveness property.

In Chapter 5, we show some improvement on sequential algorithms for

graph reconstruction problems. We employ an affine plane method (Tettelin

et al., 1996 [51]; Grebinski and Kucherov, 1998 [30]) together with construct-

ing a maximal matching first and some other strategies to derive better al-

gorithms (Chang et al. (2010) [10]). We improve the result in (Grebinski

and Kucherov, 1998 [30]) on Hamiltonian cycle by a factor of 1/2. We also

provide algorithms to close up the gaps between lower and upper bounds

for the numbers of queries required to reconstruct a matching and a star of

unknown size. Further, we slightly improve the result in (Bouvel et al., 2005

[8]) on clique by giving an algorithm with at most n + lg n queries.
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Chapter 2

Nonadaptive Pooling Designs

with Fast Decoding Procedures

In this chapter we study group testing problems in the inhibitor complex

model. We devote our attention to nonadaptive designs that are not only

efficient in terms of the number of tests, but also associated with fast decoding

procedures.

A nonadaptive group testing scheme can be represented as a 0-1 (or bi-

nary) matrix where columns are labeled by clones and rows by tests. Thus

row j intersects (has a 1-entry in) column i specifies that test j contains clone

i. Sometimes it is convenient to view a column Ci as the set of tests (rows)

containing the clone Ci. Thus Ci ∩ Ci′ is the set of tests (rows) containing

(intersecting) both Ci and Ci′ . Accordingly, for a complex X, ∩X :=
⋂

C∈X

C

is the set of rows intersecting all clones in X and we say a row j covers X if

j ∈ ∩X.

For nonadaptive pooling designs, some enumerators are frequently used

to differentiate complexes (or clones) of different properties. For example,

let τ0(X) denote the number of negative pools that complex X appears in.

Then according to the testing outcomes of a design, this enumerator could be

a cutoff function, i.e., there may be a fixed value, say a, such that τ0(X) ≤ a

only when X is positive and thus distinguishing positive items from others.
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Furthermore, for a set S of complexes (or clones), let τS
0 (X) denote the same

except that an negative pool that covers an element in S is not counted in.

Similarly, let τ1(·) and τS
1 (·) denote the numbers of corresponding positive

pools, respectively.

2.1 The General Inhibitor Complex Model

With the introduction of inhibitors to the clone models, Hwang and Chang

(2007) [33] proposed the general inhibitor model in which the exact cancel-

lation effect of inhibitors on positive clones is not specified. In the general

inhibitor clone model, the (d+h)-disjunct matrix is the main design to iden-

tify the positive clones from n clones, including at most d positive clones and

at most h inhibitory clones. A binary matrix is d-disjunct if for any d + 1

columns C0, C1, · · · , Cd,
∣

∣

∣

∣

∣

C0 \
d
⋃

i=1

Ci

∣

∣

∣

∣

∣

≥ 1.

Chang et al. (2010) [9] are the first ones to study the general inhibitor

complex model, and expand the idea of (d + h)-disjunctness to this model.

We attach the parameters (n, d, h) to an inhibitor complex model with

complex set H to denote the fact that among the complexes of H , which are

subsets of the n clones, there are at most d positive complexes and at most

h inhibitors. Following the terminology of (Gao et al., 2006 [29]), a binary

matrix is (H : d; z)-disjunct if for any d + 1 complexes X0, X1, · · · , Xd there

exist z rows each covering X0 but none of X1, · · · , Xd, i.e.,

∣

∣

∣

∣

∣

∩X0 \
d
⋃

i=1

∩Xi

∣

∣

∣

∣

∣

≥ z.

Let t(n, (H : d; z)) denote the minimum number of rows in an (H : d; z)-

disjunct matrix with n columns. Construction of (H : d; z)-disjunct ma-

trices was studied in (Gao et al., 2006 [29]). When z = O(1) and each
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complex contains at most r clones, the construction yields a matrix with

O((
2dr lg n

lg(dr lg n)
)r+1) rows (Corollary 4.3.4).

It is generally assumed that no complex is a subset of another for other-

wise the requirement of (H : d; z)-disjunctness cannot be fulfilled when X0

is contained in one of the Xi’s.

A lower bound for the general inhibitor complex model is as follows, which

is an extension of a result in (De Bonis and Vaccaro, 1998 [17]) for the general

inhibitor clone model.

Theorem 2.1.1. The number of rows in a nonadaptive pooling design under

the (n, d, h) general inhibitor complex model with complex set H is at least

t(n, (H : h; 1)).

Proof. Since a lower bound of the 1-inhibitor complex model is clearly

a lower bound of the general inhibitor complex model, it suffices to prove

the 1-inhibitor case. Let M be the testing matrix of a nonadaptive pooling

design. Suppose M is not (H : h; 1)-disjunct. Then there exists a set of

h + 1 complexes X0, · · · , Xh such that every row covering X0 must cover

some of X1, · · · , Xh. Consider the sample that X0 is a positive complex and

{X1, · · · , Xh} is the set of inhibitors. Then outcomes of the tests covering

X0 are negative and thus X0 can not be identified from such outcomes.

Theorem 2.1.2. An (H : d + h; 1)-disjunct matrix can identify all positive

complexes under the (n, d, h) general inhibitor complex model with complex

set H.

Proof. A positive complex appears in a negative pool only when the pool

also contains some inhibitors. Thus, for a positive complex P , if S is an h-set

containing all inhibitors, then

τS
0 (P ) = 0

since all pools containing any inhibitor are excluded.
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On the other hand, consider a non-positive complex X∗. By the definition

of an (H : d + h; 1)-disjunct matrix, for any other complexes X1, · · · , Xd+h,

there exists a row covering X∗ but none of X1, · · · , Xd+h. In particular,

when {X1, · · · , Xd} contains all positive complexes and {Xd+1, · · · , Xd+h} is

a given set S, we have that the row yields a negative outcome. Thus

τS
0 (X∗) ≥ 1

for any h-set S ⊆ H \ {X∗}. Consequently, {X : τS
0 (X) = 0 for some h-set

S ⊆ H \ {X} } is the set of all positive complexes.

Next, for the error-tolerant case, we consider two types of errors: the

(10)-type, changing 1-outcome to 0, and the (01)-type, changing 0-outcome

to 1. Let e∗10 and e∗01 denote the unknown numbers of the (10)-type errors

and the (01)-type errors, respectively, and denote upper bounds of e∗10 and

e∗01 as e10 and e01, either known or unknown. We assume that e, an upper

bound of the total number of errors, is known, and set

c :=











e10 + e01 − e if e10 and e01 are known,

e if there are no estimates of e10 and e01,

0 if the number of positive complexes is d.

Chang et al. (2010) [9] dealt with the error-tolerant case as follows.

Theorem 2.1.3. An (H : d + h; c + e + 1)-disjunct matrix can identify all

positive complexes under the (n, d, h) general inhibitor complex model with

complex set H which has at most e errors.

Proof. Ignoring the inhibitors for the moment, then a positive complex

P can appear in a negative pool only if its outcome is one of the (10)-type

errors. Therefore, if S contains all inhibitors, then τS
0 (P ) ≤ e∗10.

On the other hand, for a non-positive complex X∗, by the definition of

(H : d+h; c+e+1)-disjunct, X∗ appears in at least c+e+1 rows each covering

none of the up-to-d positive complexes, nor the h complexes in S; hence the
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corresponding tests have negative outcomes. Errors of the (01)-type may

reduce the number of such negative pools. But still,

τS
0 (X∗) ≥ c + e + 1− e∗01 ≥ c + 1 + e∗10,

where the last inequality follows from e∗10 + e∗01 ≤ e.

However, we do not know e∗10 and hence not knowing how to distinguish

positive complexes from others. We consider three cases:

Case (1): e10 and e01 are known. Then c = e01 + e10 − e. Thus

τS
0 (X∗) ≥ (e01 + e10 − e) + e + 1− e∗01 ≥ e10 + 1.

This implies that {X : τS
0 (X) ≤ e10 for some h-set S ⊆ H \ {X} } is the set

of all positive complexes.

Case (2): no estimates of e10 and e01 are given. Then c = e. Thus

τS
0 (X∗) ≥ e + e + 1− e∗01 ≥ e + 1.

Hence, {X : τS
0 (X) ≤ e for some h-set S ⊆ H \{X} } is the set of all positive

complexes.

Case (3): the number of positive complexes is known to be d. Then c = 0.

Thus

τS
0 (X∗) ≥ e∗10 + 1.

Therefore, {X : min
X /∈S

τS
0 (X) is among the d smallest min

X /∈S
τS
0 (·) values} is the

set of all positive complexes.

The decoding procedure requires to compute τS
0 (X) for all h-subsets S ⊆

H \ {X} and there are
(

|H|−1
h

)

of them. However, |H| can be much larger

than n = |N |. For example, if H contains all r-sets of clones, then |H| =
(

n
r

)

.

Thus
(

|H|−1
h

)

could be a very large number. In the following, we introduce

some ways that reduce the decoding complexity in the order of magnitude.

14



2.1.1 Faster Procedures

For convenience, we use an (n, d, h, r) inhibitor complex model to denote

an (n, d, h) inhibitor complex model where every complex contains at most

r clones. Chang et al. (2010) [9] employe a seemingly unrelated notion,

the (d, r; z]-disjunct matrix, to tackle the problem. Moreover, this idea also

provides a fast decoding procedure. A binary matrix is (d, r; z]-disjunct if

for any r + d columns C1, · · · , Cr+d, there exist z rows each intersecting

C1, · · · , Cr, but none of Cr+1, · · · , Cr+d, i.e.,
∣

∣

∣

∣

∣

r
⋂

i=1

Ci \
d+r
⋃

i=r+1

Ci

∣

∣

∣

∣

∣

≥ z.

Let t(n, (d, r; z]) denote the minimum number of rows in a (d, r; z]-disjunct

matrix with n columns. The (d : r; z]-disjunct matrix has been well studied

(Stinson et al., 2000 [50]; D’yachkov et al., 2002 [27]; Stinson and Wei, 2004

[49]; Du et al., 2006 [24]). See Chapter 4 for a general introduction.

Theorem 2.1.4. A (d+ h, r; 2e+1]-disjunct matrix can identify all positive

complexes under the (n, d, h, r) general inhibitor complex model with error

tolerance e.

Proof. Consider a positive complex P and let {X1, · · · , Xh} denote a set

of other complexes containing all inhibitors. Since no complex is contained

in another, there exists a clone vi ∈ Xi\P for 1 ≤ i ≤ h. Let S ′ be an h-set

containing these vi’s such that S ′ ∩ P = ∅. Then

τS′

0 (P ) ≤ e

since P can be in a negative pool only by the occurrence of error.

On the other hand, consider a non-positive complex X∗ and let {X1, · · · ,
Xd} denote a set of other complexes containing all positive ones. Similarly,

we can define wi ∈ Xi\X∗. Let D be a d-set containing these wi’s and

D ∩ X∗ = ∅. By the definition of a (d + h, r; 2e + 1]-disjunct matrix, there

exist at least 2e + 1 rows each intersecting every columns in X∗ and none of
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the columns in D ∪ S for an arbitrary h-set S ⊆ N which is disjoint with

X∗. Hence the outcomes of these 2e + 1 pools should be negative except for

the occurrence of errors. This implies that

τS
0 (X∗) ≥ 2e + 1− e = e + 1.

Hence {X : τS
0 (X) ≤ e for some h-set S ⊆ N \ X} is the set of positive

complexes.

The decoding procedure demonstrated in the proof of Theorem 2.1.4

requires to compute τS
0 (X) from the knowledge of the testing outcomes

for each candidate complex X ∈ H and every h-set S ⊆ N \ X. Let

t = t(n, (d, r; z]). Then each computation of τS
0 (X) takes O(t(h + r)) and

thus the time complexity of the decoding procedure is O(t(h + r)
(

n−r
h

)

|H|)
which could be a big deduction from O(t′hr

(

|H|−1
h

)

|H|) in Theorem 2.1.3

where t′ = t(n, (H : d; z)).

Chang et al. (2010) [10] provided an efficient design with a faster decoding

procedure for the general inhibitor complex model where the improvement

on decoding ability is attributed to the introduction of inclusiveness prop-

erty to the design. A matrix is (h, r; y]-inclusive if for any h + r columns

C1, · · · , Cr+h, there are at most y rows each intersecting C1, · · · , Cr and at

least one of Cr+1, · · · , Cr+h, i.e.,

∣

∣

∣

∣

∣

(

r
⋂

i=1

Ci

)

⋂

(

r+h
⋃

i=r+1

Ci

)
∣

∣

∣

∣

∣

≤ y.

Lemma 2.1.5. A matrix which is (d, r; z]-disjunct and also (h, r; y]-inclusive

with z − y ≥ 2e + 1 is (d + h, r; 2e + 1]-disjunct.

Proof. For any r + d + h columns C1, · · · , Cr+d+h, there exist z rows in-

tersecting each of C1, · · · , Cr but none of Cr+1, · · · , Cr+d and at most y rows

intersecting each of C1, · · · , Cr and at least one of Cr+d+1, · · · , Cr+d+h. Then

there remain at least z− y ≥ 2e + 1 rows intersecting each of C1, · · · , Cr but

none of Cr+1, · · · , Cr+d+h. The theorem follows immediately.
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Let t(n, (d, h, r; x]) denote the minimum number of rows in a (d, r; z]-

disjunct and (h, r; y]-inclusive matrix with n columns for some z and y sat-

isfying z − y ≥ x.

From Lemma 2.1.5 and Theorem 2.1.4, we immediately have that a

(d, r; z]-disjunct and (h, r; y]-inclusive matrix with z−y ≥ 2e+1 can identify

all positive complexes under the (n, d, h, r) general inhibitor complex model

with error tolerance e. However, the decoding ability of the design is not

showed in the implication of Lemma 2.1.5. Especially, when every positive

complex contains exactly r positive clones, we have the following advanced

decoding procedure.

Algorithm 1:

Step 1. Implement a (d, r; z]-disjunct and (h, r; y]-inclusive matrix with

z − y ≥ 2e + 1 as a design.

Step 1 : Evaluate τ0(X) for every X ∈ H .

Step 2 : Return {X ∈ H : τ0(X) ≤ z − e− 1}.

Theorem 2.1.6. Algorithm 1 can identify all positive complexes in O(r|H|
t(n, (d, h, r; 2e + 1])) decoding time under the (n, d, h, r) general inhibitor

complex model with error tolerance e when each positive complex contains

exactly r clones.

Proof. Consider a positive complex P and let {X1, · · · , Xh} be a set of

other complexes containing all inhibitors. Under the hypothesis that no

complex is contained in another, there exist vi ∈ Xi \ P for 1 ≤ i ≤ h. By

(h, r; y]-inclusiveness property, the number of pools containing P and at least

one of vi is at most y. Hence P can only appear in at most y negative pools

if there is no error. This implies

τ0(P ) ≤ y + e.
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On the other hand, consider a non-positive complex X∗ ∈ H . Similarly,

there exists a clone v ∈ P \X∗ for each positive complex P . By the (d, r; z]-

disjunctness of the matrix, there are at least z rows each covering X∗ and

none of these v’s. Thus the pools corresponding to these rows yield negative

outcomes if there is no error. Even in the worst case that all errors occur in

these pools, we still have

τ0(X
∗) ≥ z − e > y + e.

Therefore, {X : τ0(X) ≤ y + e} is the set of positive complexes.

Since each computation of τ0(X) takes O(tr) time where t = t(n, (d, h, r;

2e + 1]), the time complexity of the decoding procedure is O(tr|H|).

This procedure also results in a big deduction in computation, namely,

from computing τS
0 (X) to computing τ0(X) where the measurement value is

only calculated once for each potential candidate, leading to a considerable

reduction in decoding complexity.

Notice that in Chapter 4, we will introduce some existing disjunct matri-

ces that have certain inclusiveness property.

2.2 The k-inhibitor Complex Model

In the k-inhibitor complex model, the outcome of a test is positive if and

only if it contains at least one positive complex and at most k− 1 inhibitors.

While Section 2.1 provided nonadaptive pooling designs for this model, we

now give a more efficient one.

Du and Hwang (2006) [23] used a (d+h−k+1, 1; 2e+1]-disjunct matrix

to solve group testing problem in the k-inhibitor clone model with error

tolerance e. It can be easily extended to the complex model as follows.

Theorem 2.2.1. A (d + h− k + 1, r; 2e + 1]-disjunct matrix can identify all

positive complexes under the (n, d, h, r) k-inhibitor complex model with error

tolerance e.
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Let
(

N
h

)

denote the set consisting of all h-subsets of N . Then the asso-

ciated decoding procedure for Theorem 2.2.1 is to compute τS
0 (X) for each

S ∈
(

N\X
h−k+1

)

while {X ∈ H : τS
0 (X) ≤ e for some (h − k + 1)-subset S of

N \X} is the set of positive complexes.

According to Theorem 2.1.5 and Theorem 2.2.1, we obtain that a (d, r; z]-

disjunct and (h−k+1, r; y]-inclusive matrix with z−y ≥ 2e+1 can identify all

positive complexes under the (n, d, h, r) k-inhibitor complex model with error

tolerance e, but the decoding ability of such design has not been revealed yet.

When every positive complex has exactly r clones, we show that the decoding

algorithm can be improved.

Algorithm 2:

Step 1. Implement a (d, r; z]-disjunct and (h − k + 1, r; y]-inclusive

matrix with z − y ≥ 2e + 1 as a design.

Step 1 : Evaluate τ0(X) for every X ∈ H .

Step 2 : Return {X ∈ H : τ0(X) ≤ z − e− 1}.

Theorem 2.2.2. Algorithm 2 can identify all positive complexes in O(r|H|
t(n, (d, h− k + 1, r; 2e + 1])) decoding time under the (n, d, h, r) k-inhibitor

complex model with error tolerance e when each positive complex contains

exactly r clones.

Proof. Since the implemented matrix is (d, r; z]-disjunct, by the same ar-

gument used in the proof of Theorem 2.1.6 we have

τ0(X) ≥ z − e

for any non-positive complex X.

On the other hand, let P be a positive complex and {X1, · · · , Xh−k+1} be

a set of other complexes containing as many inhibitors as possible. Since no

complex is included in another, we can take a vi ∈ Xi\P for 1 ≤ i ≤ h−k+1.

By (h−k+1, r; y]-inclusiveness property, the number of pools containing both

P and at least one of vi’s is no more than y. Since a pool containing P and
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none of these vi’s would be tested positive, P can only appear in at most y

negative pools if there is no error. Thus

τ0(P ) ≤ z − e− 1.

We conclude that {X : τ0(X) ≤ z− e− 1} is the set of positive complexes.

Theorem 2.2.1 suggest a decoding algorithm of computing τS
0 (X) for each

S ∈
(

N\X
h−k+1

)

for each complex X ∈ H while the decoding procedure shown in

Theorem 2.2.2 is to compute τ0(X) for each complex X ∈ H , a big reduction

in computing.

Example 1. Consider the (5, 1, 1, 2) 1-inhibitor complex model with N =

{1, · · · , 5} and H = {12, 23, 13, 34, 15} where ij denotes the complex consist-

ing of clones i and j. Assume that no error is allowed and 23 is the inhibitor.

In Figure 2.1, M is a (1, 2; 2]-disjunct and (1, 2; 1]-inclusive matrix (refer to

Example 3 in Chapter 4 for a general construction). In the chart we can see

that only 12, the only positive complex, can make the value of τ0 lower than

or equal to one.

1 2 3 4 5

1 1 1 0 0

1 1 0 1 0

1 1 0 0 1

1 0 1 1 0

1 0 1 0 1

1 0 0 1 1

0 1 1 1 0

0 1 1 0 1

0 1 0 1 1

0 0 1 1 1

outcomes

0

1

1

0

0

0

0

0

0

0

M = 5

4

3

2

1

0
12 23 13 34 15

complexes

Figure 2.1: An example of Theorem 2.2.2
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Chapter 3

Classification Problems on the

Inhibitor Models

The problem we consider in this chapter is to classify all items in the in-

hibitor clone/complex models. Some multi-stage algorithms that were pro-

posed to identify positive elements are to identify and then remove almost all

inhibitors at the first stages (Farach et al., 1997 [28]; Hwang and Liu, 2003

[32] under the inhibitor clone model; De Bonis and Vaccaro, 2003 [18] under

the k-inhibitor clone model). Of course, one could accomplish the classifi-

cation work by extending these results. However, very little is known about

nonadaptive pooling designs for the classification problem. An interesting

feature is that a trivial strategy does not work for identifying inhibitors, i.e.,

one can not simply test every item to classify the whole set. We propose a

nonadaptive pooling design to classify all items by starting with the identifi-

cation of inhibitors (Chang et al., 2010 [10]). Our approach is to strengthen

the parameters of (d, r; z]-disjunct type matrix such that the design gener-

ated from the matrix is sufficient to identify all inhibitors and also contains

enough pools, where inhibitors lost their cancellation effect, to identify posi-

tive items. In the following we first introduce the results in 1-inhibitor model

and then extend them to the k-inhibitor model.
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3.1 Nonadaptive Pooling Design for 1-inhibitor

Complex Model

In order to distinguish inhibitors from negatives, we need to make an ad-

ditional assumption: (A) Among the given complexes in H, there exists at

least a positive one. The reason for this is that one cannot distinguish neg-

ative complexes from inhibitors without any positive complex. In addition,

for the inhibitor complex model with r ≥ 2, we need another essential as-

sumption on complexes: (B) For each negative complex, there is always a

positive complex such that no inhibitor is included in their union. Otherwise,

any test containing the negative complex that violates the assumption must

yield a negative outcome and thus the recognition of this complex would be

ambiguous. Due to the naturalness of these two assumptions, we take them

as default properties on complexes throughout this section. The following

result was obtained by Chang et al. (2010) ([10]).

Theorem 3.1.1. An (h, 2r; 2e+1]-disjunct matrix can identify all inhibitors

under the (n, d, h, r) 1-inhibitor complex model with error tolerance e.

Proof. Consider a positive complex P and let {X1, · · · , Xh} be a set of

other complexes containing all inhibitors. Since no complex is contained in

another, there exists vi ∈ Xi \P for 1 ≤ i ≤ h. By (h, 2r; 2e+1]-disjunctness

property, there exist at least 2e + 1 rows each containing P but none of vi’s.

The pools corresponding to these rows must be tested positive if no erroneous

outcome occurs. Hence,

τ1(P ) ≥ e + 1

even in the worst case that e erroneous outcomes occur.

Next, consider a negative complex X−. According to the assumption (B)

on complexes, there exists a positive complex P such that there is a clone

v ∈ I \(P ∪X−) for each inhibitor I. By (h, 2r; 2e+1]-disjunctness property,

there exist at least 2e+1 rows each containing P and X−, but none of these

v’s. Hence, we have that

τ1(X
−) ≥ e + 1
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despite e erroneous outcomes.

On the other hand, since an inhibitor appears in a positive pool only

when an erroneous outcome occurs,

τ1(X
∗) ≤ e

for any inhibitor X∗. Thus, we conclude that {X : τ1(X) ≤ e} is the set of

inhibitors.

An interesting observation coming from this theorem is that the number

of tests required for identifying inhibitors does not depend on the number of

positive complexes while the number of inhibitors is significant to the number

of tests required for identifying all positives in the inhibitor model.

For inhibitor clone model, after identifying all inhibitors, one can remove

them and then continue to identify positive ones; however, this strategy

can not be implemented to the complex model due to intersections between

complexes. In the following, we deal with the clone model and the complex

model separately.

3.1.1 The Inhibitor Clone Model

For the inhibitor clone model, following Theorem 3.1.1, a two-stage algorithm

to classify all clones could be to identify and eliminate all inhibitors by an

(h, 2; 2e + 1]-disjunct matrix in the first stage and then turn to study the

clone model in the second stage. The group testing problem in the clone

model has been well studied in the literatures and a main design for this

model is as follows.

Lemma 3.1.2. A (d, 1; 2e+1]-disjunct matrix can identify all positive clones

under the (n, d) clone model with error tolerance e; furthermore, it can be

concluded from the design that {v ∈ N ; τ0(v) ≤ e} is the set of positive

clones.

According to Theorem 3.1.1 and Lemma 3.1.2, it is quite natural to con-

sider a matrix that is (h, 2; 2e + 1]-disjunct and satisfies the following condi-

tion: (∗) deleting any h columns and all rows intersecting them would yield
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a (d, 1; 2e+1]-disjunct matrix. Again, Chang et al. (2010) ([10]) proved that

a (d + h, 2; 2e + 1]-disjunct matrix can indeed accomplish this job based on

the following general result.

Lemma 3.1.3. For any d ≥ d′ and r ≥ r′, a (d, r; z]-disjunct matrix is

(d′, r′; z]-disjunct and the (d′, r′; z]-disjunctness property is preserved after

deleting any d− d′ columns and all rows intersecting them.

Proof. The first part of the statement is clear. Consider the second part.

Let M be a (d, r; z]-disjunct matrix with column index set [n] and S be a

(d − d′)-subset of [n]. Let M ′ be the matrix obtained from M by deleting

columns corresponding to indices in S and rows intersecting them. Let D and

R be two disjoint subsets of [n] \ S with |D| ≤ d′ and |R| ≤ r′. Any row of

M that intersects all columns of M(R) and none of the columns of M(S∪D)

is preserved in M ′ where M(S) denotes the submatrix of M obtained by

restricting the column indices to S. Thus the number of rows intersecting all

columns of M ′(R) and none of columns of M ′(D) is at least z.

Therefore, a (d +h, 2; 2e+1]-disjunct matrix is also (h, 2; 2e+1]-disjunct

and satisfies (∗) and thus it can classify all clones. Here, we give a proof

relating to decoding procedure.

Theorem 3.1.4. A (d + h, 2; 2e + 1]-disjunct matrix can classify all clones

under the (n, d, h) 1-inhibitor model with error tolerance e.

Proof. A (d+h, 2; 2e+1]-disjunct matrix is also (h, 2; 2e+1]-disjunct and

thus by Theorem 3.1.1, we immediately obtain that

I := {v ∈ N : τ1(v) ≤ e}

is the set of inhibitors. Consider the matrix M ′ obtained from deleting

columns corresponding to inhibitors and rows intersecting them. Notice that

the testing outcome for each pool in M ′ inherits the outcome of its corre-

sponding pool in M , showing no additional tests are required. By Lemma

3.1.3, M ′ is (d, 1; 2e + 1]-disjunct; hence, by Lemma 3.1.2,

{v ∈ N \ I; τ0(v) ≤ e}
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is the set of all positive clones where the computing of τ0(v) refers to the

pools in M ′.

Since the computing of τ1(v) and τ0(v) takes O(t) time, the decoding

procedure for such design takes O(tn) time where t = t(n, (d + h, 2; 2e + 1]).

Example 2. Consider the (5, 1, 1) 1-inhibitor clone model onN = {1, · · · , 5}.
Assume that no error is allowed, i.e., e = 0. Consider that clone 1 is the in-

hibitor and clone 2 is the positive clone. In Figure 3.1, M is a (2, 2; 1]-disjunct

matrix (see Chapter 4 for general constructions). In chart (a), we can see

that only 1, the only inhibitor, can make the value of τ1 lower than or equal to

e = 0. M is then shrunk to a 1-disjunct matrix M ′ where columns represent

all clones except inhibitors. Chart (b) shows that only 2, the only positive

clone, has the value of τ0 lower than or equal to e = 0.

1 2 3 4 5

1 1 1 0 0

1 1 0 1 0

1 1 0 0 1

1 0 1 1 0

1 0 1 0 1

1 0 0 1 1

0 1 1 1 0

0 1 1 0 1

0 1 0 1 1

0 0 1 1 1

outcomes

0

0

0

0

0

0

1

1

1

0

M =

M'

5

4

3

2

1

0

5

4

3

2

1

0
1 2 3 4 5 2 3 4 5

(a) clones (b) non-inhibitory clones

Figure 3.1: An example of Theorem 3.1.4

3.1.2 The Inhibitor Complex Model

We know that an (h, 2r; 2e + 1]-disjunct can identify all inhibitors for the

(n, d, h, r) inhibitor complex model (Theorem 3.1.1) and a (d, r; 2e + 1]-

disjunct can identify all positives for the (n, d, r) complex model (Theorem
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2.1.4). Thus learning from Theorem 3.1.4, one may use a (d + h, 2r; 2e + 1]-

disjunct matrix to tackle the classification problem. However, unlike the

inhibitor clone model, for the complex model, after identifying inhibitors,

we can not simply remove them because it could break other complexes and

thus would affect their identification. However, the cutoff function τS
0 (X)

provides a way to overcome this problem. When S is disjoint with X and

contains a clone from each inhibitor, each negative pool counted in τS
0 (X)

is not due to the appearance of inhibitors and thus any complex covered by

the pool can be identified as negative. The following result is obtained by

following this idea.

Theorem 3.1.5. A (d + h, 2r; 2e + 1]-disjunct matrix can classify all com-

plexes under the (n, d, h, r) 1-inhibitor complex model with error tolerance

e.

Proof. First, since a (d + h, 2r; 2e + 1]-disjunct matrix is (h, 2r; 2e + 1]-

disjunct, by Theorem 3.1.1, I := {X : τ1(X) ≤ e} is the set of inhibitors.

Assume that X1, X2, · · · , Xh′ are the inhibitors. Let IX be a set that contains

a clone in Xi \X for 1 ≤ i ≤ h′. Define τ0,I(X) = τIX

0 (X).

A positive complex P can appear in a negative pool only when an inhibitor

also appears in it or its testing result is fault. Thus

τIP

0 (P ) ≤ e

since a pool containing an inhibitor and thus some clone in IP is not evaluated

in the computation.

On the other hand, consider a negative complex X∗. Assume that D

is a set consisting of a clone in X \ X∗ for each positive complex X. A

(d + h, 2r; 2e + 1]-disjunct matrix is also (d + h, r; 2e + 1]-disjunct; hence,

there are 2e + 1 rows covering X∗ but none of clones in D ∪ IX∗ . Then

τIX∗

0 (X∗) > e

since each pool corresponding to any of these 2e+1 rows contains no positive

complex and thus yields a negative outcome if there is no error, and it is
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evaluated in the computation due to the fact that it contains no clone in

IX∗ . Hence {X ∈ H \ I : τ0,I(X) ≤ e} is the set of positive complexes.

Indeed, a decoding procedure for this design is to distinguish inhibitors

from other complexes by the cutoff function τ1(·) and then distinguish pos-

itive complexes from negative ones by the cutoff function τ0,I(·). Since the

computing of τ1(X) and τ0,I(X) takes O(t(rh)) time (including the setting of

IX), the procedure takes O(t(rh)|H|) time where t = t(n, (d+h, 2r; 2e+1]).

3.2 Nonadaptive Pooling Design for k-inhibitor

Clone Model

In this section we consider the k-inhibitor model where a test yields a positive

outcome if and only if it contains at least one positive clone and less than

k inhibitors. It is assumed that the threshold k is known beforehand. In

order to identify inhibitors, besides the assumption (A), another assumption

is also essential: (C) Among the given clones, there exist at least k inhibitors.

Otherwise, inhibitors do not have enough ability to obscure positive clones

and thus there is no way to differentiate them from negative ones. A bun-

dle of arbitrary k inhibitors has blocking effect while other clones (not all

inhibitors) can’t. Chang et al. (2010) ([10]) used this characteristic to prove

the following result which is an extension of Theorem 3.1.1 from k = 1 to a

general k ≥ 1.

Theorem 3.2.1. An (h−k +1, k+1; 2e+1]-disjunct matrix can identify all

inhibitors under the (n, d, h, r) k-inhibitor clone model with error tolerance

e.

Proof. For any k-set K of inhibitors, it is obvious that

τ1(K) ≤ e.

Consider a set K of k clones not all inhibitors. Let P be a positive clone

(that can be in K) and S be a set of h − k + 1 clones containing as many

27



inhibitors not in K as possible. By the (h− k + 1, k + 1; 2e + 1]-disjunctness

property, there exist at least 2e + 1 rows each intersecting P and all clones

in K but none in S. Then each pool corresponding to any of these rows

contains a positive clone and at most k − 1 inhibitors, implying its testing

outcome is positive except an occurrence of error. Thus

τ1(K) ≥ e + 1.

Therefore,
⋃{K ⊆ N : τ1(K) ≤ e, |K| = k} is the set of inhibitors.

The computing of τ1(K) takes O(kt) time and thus the overall decoding

procedure takes O

((

n

k

)

kt

)

time.

In the previous section, we discussed a two-stage algorithm to classify all

clones under the 1-inhibitor model where the first stage is to identify (and

eliminate) all inhibitors by a disjunct matrix and the sequential stage is to

distinguish positive clones from negative ones by another disjunct matrix.

We can extend this idea to produce a two-stage algorithm for the k-inhibitor

model, but with the following modification in the first stage: use an (h −
k + 1, k + 1; 2e + 1]-disjunct matrix (instead of an (h, 2; 2e + 1]-disjunct) to

identify inhibitors and then remove either all of them or exactly h − k + 1

of them so that the remaining inhibitors, at most k − 1, do not obscure the

positive clones.

Again, from Lemma 3.1.3, a nonadaptive pooling design obtained from

combining an (h − k + 1, k + 1; 2e + 1]-disjunct matrix and a (d, 1; 2e + 1]-

disjunct matrix as follows can classify all clones. The following proof is given

in the perspective of decoding.

Theorem 3.2.2. A (d + h− k + 1, k + 1; 2e + 1]-disjunct matrix can classify

all clones under the (n, d, h) k-inhibitor model with error tolerance e.

Proof. A (d+h−k +1, k +1; 2e+1]-disjunct matrix is also (h−k +1, k +

1; 2e + 1]-disjunct and then by Theorem 3.2.1, we immediately obtain that

the union I of all k-sets K of clones with τ1(K) ≤ e is the set of inhibitors.

Now focus on the sub-matrix M ′ obtained from deleting min(|I|, h− k + 1)
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columns corresponding to inhibitors and rows intersecting them. Then the

columns of M ′ relate to at most k − 1 inhibitors and hence M ′ could be

used as a design for the clone model. Since at most h − k + 1 columns are

deleted, M ′ is (d, 1; 2e + 1]-disjunct by Lemma 3.1.3. Then by Lemma 3.1.2,

{v ∈ N \ I; τ0(v) ≤ e} is the set of positive clones where the computing

of τ0(v) refers to the pools in M ′ and the outcome of each pool coincides

with the outcome of its expanded pool in M because deleted columns do not

intersect it.

Notice that in Theorem 3.1.4 for 1-inhibitor model, all columns associ-

ated with inhibitors are deleted but in Theorem 3.2.2 only at most h− k + 1

columns of inhibitors are deleted. Such deletion is proper because the in-

hibitors corresponding to the remaining columns do not have the ability of

obscuring positives and the remaining matrix still maintain the ability of

solving classical group testing problem.

The decoding procedure for this design is to compute τ0(v) for each v ∈
N \ I besides the computing of τ1(K) for each K ∈

(

N
k

)

, and thus its time

complexity is O

((

n

k

)

kt

)

where t = t(n, (d + h− k + 1, k + 1; 2e + 1]).
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Chapter 4

Constructions of Related

Disjunct Matrices

In the previous chapters, three main properties of matrices employed as

nonadaptive pooling designs are (H : d; z)-disjunct, (d, r; z]-disjunct, and

(d, r; z]-disjunct and (h, r; y]-inclusive with z > y. Many strategies were used

to construct the related matrices: constructing by design theory and set in-

tersections, transforming an m-ary matrix with certain properties to a binary

one, called m-ary method in (Du and Hwang, 2006 [23]), and controlling the

number of rows covering or not covering a certain number of columns, called

row-covering method.

Before proceeding to see the constructions, we present some basic defini-

tions and notations. We start with some notations on graph theory and then

coding theory.

Let H be the given set of complexes in the considered problem. Then

H can be viewed as a hypergraph with clones as vertices and complexes as

edges and accordingly, it is usually assumed that no edge contains another.

A hypergraph is usually represented by (V, E) where V is its vertex set and

E is its edge set. The degree of a vertex is the number of edges that it belongs

to while the rank of an edge is the number of vertices that it contains. A

hypergraph in which all vertices have the same degree is said to be regular ;

a hypergraph where all edges have the same rank is called uniform. Let Hr̄
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denote a hypergraph where the maximum rank is r and H∗
r the hypergraph

with edge set
(

V
r

)

.

A code is a set of vectors called codewords and has three primary pa-

rameters: length, size and Hamming distance. The number of entries in a

codeword is its length and is also the length of a code if all codewords have

the same length; the size of a code is the number of codewords in it; the

Hamming distance of a code is the minimum number of nonidentical sym-

bols between two codewords where the minimum is taken over all pairs of

codewords. Moreover, an m-ary code is a code whose symbols are from the

m-ary alphabet {0, 1, · · · , m − 1}. For an m-ary code C of length t, the

incident matrix of C is a t×|C| m-ary matrix whose columns are codewords

of C.

4.1 Lower Bound

Stinson et al. (2000) [50] considered the generalized cover-free family which

is equivalent to (d, r; z]-disjunct design. They derived a lower bound for the

case z = 1 by a recursive relation. Stinson and Wei (2004) extended the

method to a general z by induction on r +d. The basic cases and a recursive

relation are as follows.

Theorem 4.1.1. t(n, (d, 1; z]) ≥ c(d2 log n
log d

+ (z − 1)d) for some absolute con-

stant c.

The basic case d = 1 is the same as the case r = 1 according to the

following result.

Lemma 4.1.2. t(n, (d, r; z]) = t(n, (r, d; z]).

Proof. Interchanging 0 and 1 in a (d, r; z]-disjunct matrix yields an (r, d; z]-

disjunct matrix.

Theorem 4.1.3. t(n, (d, r; z]) ≥ t(n− 1, (d− 1, r; z]) + t(n− 1, (d, r− 1; z]).
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Proof. Let M be a (d, r; z]-disjunct matrix. By Lemma 3.1.3, deleting a

column of M and all rows intersecting it yields a (d−1, r; z]-disjunct matrix.

Similarly, deleting a column of M and all rows not intersecting it yields a

(d, r − 1; z]-disjunct matrix.

This recursion leads to a lower bound for t(n, (d, r; z]).

Theorem 4.1.4. For d + r > 2,

t(n, (d, r; z]) ≥ c

(

d + r

r

)(

2 log(n− 1)

log(d + r)
+

z − 1

2

)

where c is the same constant as in Theorem 4.1.1.

Proof. The proof is by induction on r + d. The case r = 1 or d = 1 is

easily obtained from Theorem 4.1.1 and Lemma 4.1.2. For d ≥ 2 and r ≥ 2,

t(n, (d, r; z]) ≥ t(n− 1, (d− 1, r; z]) + t(n− 1, (d, r− 1; z])

≥ c

(

d + r

r

)(

2 log(n− 2)

log(d + r − 1)
+

z − 1

2

)

≥ c

(

d + r

r

)(

2 log(n− 1)

log(d + r)
+

z − 1

2

)

.

Stinson and Wei (2004) [49] further gave a stronger lower bound by a

similar argument.

Theorem 4.1.5. There exists an integer nd,r such that for n ≥ nd,r,

t(n, (d, r; z]) ≥ c

(

d + r

r

)

(

0.7(d + r) log n

log
(

d+r
r

) +
z − 1

2

)

where c is the same constant as in Theorem 4.1.1.
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4.2 Inclusiveness Property and Direct Con-

structions

As mentioned in Chapter 2, a (d, r; z]-disjunct and (h, r; y]-inclusive matrix

with z > y has a great contribution to simplifying the decoding procedure.

The following result is an immediate consequence of Lemma 2.1.5 and

Theorem 4.1.5.

Theorem 4.2.1. t(n, (d, h, r; 2e + 1]) ≥ t(n, (d + h, r; 2e + 1])

≥ 0.7c
(d + h + r)

(

d+h+r
r

)

log
(

d+h+r
r

) log n + c

(

d + h + r

r

)

e.

However, constructions of such matrices were rare. We observe the fol-

lowing general result.

Lemma 4.2.2. For a binary matrix M , if any r columns are covered by at

least ω rows and any r + 1 columns are covered by at most λ rows, then M

is (d, r; ω − dλ]-disjunct and (h, r; hλ]-inclusive.

Proof. There are at most λ rows each intersecting given r columns and

any other column and thus at most hλ rows each intersecting r columns and

some of other h columns. Furthermore, since there are at least ω rows that

r columns share in common, the number of rows covering given r columns

but none of other d columns is at least ω − dλ.

For r = 1, the direct construction of disjunct matrices in (Hwang and

Sós, 1987 [34]) satisfies the condition in Lemma 4.2.2, implying the following

result (Chang et al., 2010 [10]).

Theorem 4.2.3. t(n, (d, h, r; 2e + 1]) ≤ 16(d + h + 2e)2 lg(3n/2)/ lg 3.

Lemma 4.2.2 can also be used to check the associated properties of the

matrices derived from T -designs. A T -(ν, k, λ) design is a collection of k-

subsets, called blocks, of a set of ν points such that for any T points there
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exist exactly λ blocks containing those T points (Anderson, 1990 [3]). Ac-

cording to the Fisher inequality, for a T -design, the number of blocks is not

smaller than the number of points and thus the incidence matrix of a T -design

with blocks as rows and points as columns is not a good pooling design for

clone models. However, T -designs become feasible for the complex models

since the number of tests could be less than
(

ν
r

)

, the number of all potential

candidates of positive complexes. Mitchell and Piper (1988) [40] gave a con-

struction of (d, r; 1]-disjunct matrix based on T -designs. Chang et al. (2010)

[10] extended their results to an error-tolerant version and extracted their

inclusiveness property.

Theorem 4.2.4. A T -(ν, k, λ) design yields a t×ν (d, T−1; ω−dλ]-disjunct

and (h, T − 1; hλ]-inclusive matrix for d, h < min(ω/λ, ν − T + 1) where

t =

(

ν
T

)

λ
(

k
T

) and ω = λ
ν − T + 1

k − T + 1
.

Moreover, its error tolerance achieves ⌈ω−λ(d+h)
2
⌉ − 1.

Proof. We first consider the inclusiveness property. For any set S of T −1

columns, there are at most λ rows covering S and any given column not in

S, and thus at most hλ rows covering S and any given h columns other than

those in S for any 1 ≤ h ≤ ν − T + 1.

Next, for any set S of T − 1 columns, |{(v, B) : B is a block containing

S and v ∈ B \ S}| = (ν − T + 1)λ since for each point v not in S there are

exactly λ blocks containing S ∪ {v}. Thus the number of blocks containing

S is (ν − T + 1)λ/(k − T + 1). Therefore, the theorem immediately follows

from Lemma 4.2.2.

Example 3. A 3-(q2 + 1, q + 1, 1) design always exists for prime power q

(Stinson, 1997 [48]) and its q(q2 + 1)× (q2 + 1) incidence matrix is (d, 2; q +

1− d]-disjunct and (h, 2; h]-inclusive.

Some constructed (d, r; z]-disjunct matrices potentially satisfy inclusive,

especially when the number of rows covering any designated r columns is

lower bounded by a certain number.

34



Lemma 4.2.5. Let M be a binary matrix in which the number of rows cov-

ering any designated r columns is w. Then M is (h, r; zh]-disjunct if and

only if M is (h, r; w − zh]-inclusive.

D’yachkov et al. (2002) [27] gave a simple construction of (d, r; 1]-disjunct

matrices by taking all k-subsets of [n] as the rows and then it is further

extended to the error-tolerant case (Du et al., 2006 [24]). We observe its

inclusiveness property as follows.

Theorem 4.2.6. The
(

n
k

)

× n binary matrix where the rows consist of all

k-subsets of [n], r ≤ k ≤ min(n−d, n−h), is (d, r; zd]-disjunct and (h, r; yh]-

inclusive, where

zd =

(

n− d− r

k − r

)

, yh =

(

n− r

k − r

)

− zh.

Moreover, zd − yh > 0 for h, d << n.

Proof. It is easily derived that this matrix is (d, r;
(

n−d−r
k−r

)

]-disjunct for

r ≤ k ≤ n − d. Given an r-set R, the number of rows covering R is
(

n−r
k−r

)

.

By Lemma 4.2.5, we immediately have the theorem. Furthermore, zd− yh =
(

n−r−d
k−r

)

+
(

n−r−h
k−r

)

−
(

n−r
k−r

)

> 0 for h, d << n.

Note that taking k = r or n− d would minimize the row number
(

n
k

)

and

copying each row in a (d, r; 1]-disjunct z times would yield a (d, r; z]-disjunct

matrix. Hence,

Corollary 4.2.7. t(n, (d, r; z]) ≤ z min(
(

n
d

)

,
(

n
r

)

).

4.3 Constructing by m-ary Method

(H : d; z)-disjunct matrices are basic pooling designs for complex model.

For the clone model, Du et al. (2006) [24] gave a construction of d-disjunct

matrices by first constructing an m-ary matrix satisfying certain property

and then converting it to a binary one. Gao et al. (2006) [29] extended

the construction to the complex model where the m-ary matrix used to be

converted satisfies the following property.
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Definition 1. An m-ary matrix is (H : d; z)-disjunct if for any d + 1 edges

X0, X1, · · · , Xd, there exist a least z rows in each of which

{entries of Xi} * { entries of X0}

for i = 1, · · · , d.

Let tm(n, (H : d; z)) denote the minimum number of rows in an m-ary

(H : d; z)-disjunct matrix with n columns.

Gao et al. (2006) [29] gave a construction of m-ary (Hr̄ : d; z)-disjunct

matrix. Let GF (q) be a finite field of order q. Suppose qk+1 ≥ n. Associate

each vertex v ∈ N with a distinct polynomial pv of degree k over GF (q). Let

S be a subset of s elements in GF (q). Construct an s × |N | q-ary matrix

AHr̄
(q, k, s) with rows labeled by S and columns by N where each cell (a, v)

is assigned the element pv(a) in GF (q). Then,

Lemma 4.3.1. If q ≥ s ≥ drk + z and qk+1 ≥ n where q is a prime power,

then AHr̄
(q, k, s) is an s× n q-ary (Hr̄ : d; z)-disjunct matrix.

Proof. Let PX(a) denote the set {pv(a) : v ∈ X} = {entries of X in row a

}. Suppose to the contrary that for some X0, X1, · · · , Xd, there are no such z

rows. Then there are at least drk+1 values a ∈ S such that PXi
(a) ⊆ PX0

(a)

for some i. Then there exists a fixed i′ such that PX
i′
(a) ⊆ PX0

(a) for at

least rk + 1 values a ∈ S. Thus for those rk + 1 values a ∈ S and any

u ∈ Xi′, pu(a) ∈ PX0
(a), implying that there exists some v ∈ X0 such that

pu(a) = pv(a) for at least k + 1 distinct a ∈ S. Thus pu = pv, showing

u = v ∈ X0. Hence Xi′ ⊆ X0, contradicting the assumption on Hr̄.

Gao et al. (2006) converted the AHr̄
(q, k, s) matrix to the binary matrix

BHr̄
(q, k, s) whose columns are labeled by N . For any a ∈ S and F ∈

{PX(a) : X ∈ Hr̄}, BHr̄
(q, k, s) has a row labeled by < a, F > and has a

1-entry in cell (< a, F >, v) if pv(a) ∈ F , and a 0-entry otherwise.

Lemma 4.3.2. BHr̄
(q, k, s) is (Hr̄ : d; z)-disjunct.
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Proof. Consider any d + 1 edges X0, X1, · · · , Xd. Let a be a row in

AHr̄
(q, k, s) such that PXi

(a) * PX0
(a) for i = 1, · · · , d. Then for any i,

pvi
(a) /∈ PX0

(a) for some vi ∈ Xi. Thus row < a, PX0
(a) > of BHr̄

(q, k, s)

covers X0 but not Xi for i = 1, · · · , d. Since AHr̄
(q, k, s) has z such rows, the

theorem follows.

Then properly choosing the parameters would imply

Theorem 4.3.3. For any d, r, n and z, there exists an (Hr̄ : d; z)-disjunct

matrix BHr̄
(q, k, s) with at most q ·

(

q+r−1
r

)

rows, where

q = z + (1 + o(1))
dr lg n

lg(dr lg n)
.

Moreover, for n ≥ 2
16

dr , q ≤ z +
2dr lg n

lg(dr lg n)
.

Proof. For the existence of AHr̄
(q, k, s), k and q should be chosen to satisfy

|N | = n ≤ qk+1 and q ≥ drk + z. Then

logq n− 1 ≤ k ≤ q − z

dr
(4.3.1)

for the chosen k and q. There exists a positive integer k satisfies (4.3.1) if q

satisfies logq n ≤ q−z
dr

. Therefore, it suffices to choose q satisfying

ndr ≤ qq−z. (4.3.2)

Let q0 be the smallest number q satisfying (4.3.2). Then

q0 ≤ z + (1 + h(dr, n))
dr lg n

lg(dr lg n)

where

h(l, n) =
lg lg(l lg n)

lg(l lg n)− lg lg(l lg n)
= o(1).

For n ≥ 2
16

dr , lg(dr lg n) ≥ 4, implying (lg(dr lg n))2 ≤ 2lg(dr lg n) = dr lg n.

Hence 2 lg lg(dr lg lg(dr lg n) ≤ lg(dr lg n), implying h(dr, n) ≤ 1. Therefore,

q0 ≤ z +
2dr lg n

lg(dr lg n)
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for n ≥ 2
16

dr .

Next, BHr̄
(q, k, t) has

∑

a∈S |{PX(a) : X ∈ Hr̄}| rows. |{PX(a) : X ∈
Hr̄}| ≤

∑r
i=1

(

q
i

)

≤
(

q+r−1
r

)

.

Thus BHr̄
(q, k, s) has at most q

(

q+r−1
r

)

≤ qr+1 rows for some s where q is

as in Theorem 4.3.3. Hence,

Corollary 4.3.4. When z = O(1) and n > 2
16

dr ,

t(n, (Hr̄ : d; z)) = O((
2dr lg n

lg(dr lg n)
)r+1).

Chen et al. (2007) [13] proposed another conversion to transform AHr̄

(q, k, s) to an (Hr̄ : d, z)-disjunct matrix. We generalize the conversion such

that it is feasible not only for AHr̄
(q, k, s) but also for any m-ary (Hr̄ : d; z)-

disjunct matrix.

Theorem 4.3.5. If there exist a t × n m-ary (Hr̄ : d; z)-disjunct matrix

M and a t′ × m (d, r; z′]-disjunct matrix M ′, then there exists a tt′ × n

(Hr̄ : d; zz′)-disjunct matrix.

Proof. The conversion is to label columns of M ′ by 0, · · · , q−1 and replace

each entry of M = [Mji] by a corresponding column of M ′. Let M∗ be the

matrix obtained from the conversion. Consider d + 1 edges X0, X1, · · · , Xd.

In the matrix M , let l be a row in which {entries of X0} + {entries of Xi}
for i = 1, · · · , d. Let vi ∈ Xi \ X0 such that Mlvi

/∈ {entries of X0}. Thus

{Mlvi
: i = 1, · · · , d} ∩ {entries of X0} = ∅. Then after the conversion, there

exist z′ rows in M∗ such that each row intersects columns corresponding to

vertices of X0 and none of columns corresponding to the vi’s, i.e., | ∩ X0 \
d
⋃

i=1

∩Xi| ≥ z′. Since in M there are at least z rows in each of which {entries

of X0} + {entries of Xi} for i = 1, · · · , d, | ∩X0 \
d
⋃

i=1

∩Xi| ≥ zz′.

In particular, by Lemma 4.3.1 with s = drk + z, we have
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Theorem 4.3.6. If n ≤ qk+1 and q ≥ drk + z, then t(n, (Hr̄ : d; zz′)) ≤
(drk + z)t(q, (d, r; z′]).

The m-ary method is also employed in the constructions of (d, r; z]-

disjunct matrices where the m-ary matrices satisfy the following property.

Definition 2. An m-ary matrix M = [Mji] is (d, r; z]-disjunct if for any two

disjoint sets D and R of columns with |D| = d and |R| = r, there exist at

least z rows indexed j such that

{mji : i ∈ D} ∩ {mji : i ∈ R} = ∅.

Let tm(n, (d, r; z]) denote the minimum number of rows in an m-ary

(d, r; z]-disjunct matrix with n columns.

We relate this disjunctness property to the (H : d; z)-disjunctness.

Lemma 4.3.7. tm(n, (Hr̄ : d; z)) ≤ tm(n, (d, r; z]). In particular, tm(n, (d, r; z])

= tm(n, (H∗
r : d; z)).

Proof. Let M be an m-ary (d, r; z]-disjunct matrix. Consider any d + 1

complexes X0, X1, · · · , Xd ∈ Hr̄. Since no complex contains another, there

exists vi ∈ Xi \ X0 for i = 1 · · ·d. Let D and R be two disjoint subsets of

N such that |D| = d, |R| = r, {v1, · · · , vd} ⊆ D and X0 ⊆ R. Then by

the (d, r; z]-disjunctness of M , there exist z rows in each of which {entries of

D}∩ {entries of R} = ∅. Then in each of these z rows, entry of vi /∈ {entries

of X0} and thus {entries of Xi} * { entries of X0} for i = 1 · · ·d. Hence, M

is (Hr̄ : d; z)-disjunct.

Next, suppose that M is an m-ary (H∗
r : d; z)-disjunct matrix. Let D and

R be any two disjoint sets of columns with |D| = d and |R| = r. Suppose

D = {v1, · · · , vd}. Let v be an element in R and Xi denote (R \ {v}) ∪ {vi}
for i = 1 · · ·d. Then by the (H∗

r : d; z)-disjunctness of M , there exist z rows

in each of which {entries of Xi} * {entries of R} for i = 1 · · ·d, implying

entry of vi /∈ { entries of R} for i = 1 · · ·d. Thus in each of these z rows,

{entries of D} ∩ { entries of R} = ∅.
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In fact, the complex set Hr̄ in Gao et al.’s construction can be designated

as H∗
r . Then by Lemma 4.3.7 we have

Theorem 4.3.8. When z = O(1) and n > 2
16

dr ,

t(n, (d, r; z]) = O((
2dr lg n

lg(dr lg n)
)r+1).

Stinson and Wei (2004) [49] proved the following result while the case

z = 1 was proposed by D’yachkov et al. (2002) [27].

Lemma 4.3.9. If there exist a t × n m-ary (d, r; z]-disjunct matrix and a

t′ ×m (d, r; z′]-disjunct matrix, then there exists a tt′ × n (d, r; zz′]-disjunct

matrix.

Next, we shall consider the construction of m-ary (d, r; z]-disjunct ma-

trices. The incident matrices of some well-known m-ary codes potentially

have a disjunct property. A maximum-distance separable (MDS ) code with

parameters (m, k, t) is an m-ary code of size mk, length t and Hamming dis-

tance t − k + 1. Kautz and Singleton (1964) [35] first employed an MDS

code to construct d-disjunct matrices. Sagalovich (1994) [45] observed the

(d, r; 1]-disjunctness property of its incident matrix.

Lemma 4.3.10. If t ≥ dr(k − 1) + 1 and mk ≥ d + r, then for any MDS

code C with parameters (m, k, t), the incident matrix of C is a t×mk m-ary

(d, r; 1]-disjunct matrix.

For any integer k ≥ 2 and a prime power q > k − 1, there exists an

MDS-code with parameters (q, k, q + 1), which is a Reed-Solomon code. By

the existence of such code, D’ychkov et al. (2002) [27] derived the following

result.

Theorem 4.3.11. If q is a prime power and q ≥ dr(k − 1) + 1, then

t(qk, (d, r; z]) ≤ (dr(k − 1) + 1)t(q, (d, r; z]).
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Proof. The matrix Q obtained from removing q − dr(k − 1) rows from

the incident matrix of a (q, k, q + 1) MDS code is the incident matrix of a

(q, k, dr(k − 1) + 1) MDS code. Thus by Lemma 4.3.10, Q is a (dr(k − 1) +

1) × qk q-ary (d, r; 1]-disjunct matrix. By the existence of such matrix and

Theorem 4.3.9, the theorem follows.

An (n, m, {d, r})-z-separating hash family is a set of functions F , such

that |Y | = n, |X| = m, f : Y → X for each f ∈ F , and for any D, R ⊆ Y

such that |D| = d, |R| = r and D ∩ R = ∅, there exist at least z functions

f ∈ F such that

{f(y) : y ∈ D} ∩ {f(y) : y ∈ R} = ∅.

An (n, m, w)-z-perfect hash family is a stronger family of functions where for

any |W | = w, there exist at least z functions such that for any y 6= y′ ∈W ,

f(y) 6= f(y′).

Then it is obvious that an (n, m, d + r)-z-perfect hash family is an (n,

m, {d, r})-z-separating hash family which is equivalent to an m-ary (d, r; z]-

disjunct matrix with n columns.

Stinson and Wei (2004) [49] observed the following result from a result

on separating hash family (Stinson et al. 2000 [50]).

Lemma 4.3.12. For any positive integers m, d and r, there exists an infinite

class of t× n m-ary (d, r; 1]-disjunct matrices where t = O((dr)lg∗(n) lg n).

Note that the function lg∗ is defined by lg∗(n) = lg∗(⌈lg n⌉) + 1 for n > 1

and lg∗(1) = 1. In fact, it grows very slowly; for example, lg∗(n) ≤ 6 for

n ≤ 265536.

Further, they used a result on perfect hash family with z = 1 (Wang and

Xing, 2001 [53]) to obtain

Lemma 4.3.13. For any positive integers m ≥ d+ r, there exists an explicit

construction for an infinite class of t × n m-ary (d, r; 1]-disjunct matrices

with t = O(c(m) log n) for some function c of m.

41



Then plugging the m-ary matrix in Lemma 4.3.13 and the matrix in

Corollary 4.2.7 into Theorem 4.3.9 with m = d + r implies

Theorem 4.3.14. t(n, (d, r; z]) ≤ O(z
(

d+r
r

)

c(d + r) log n) for some function

c of d + r.

4.4 Constructing by Controlling Row-covering

Chen et al. (2008) [14] provided an upper bound by another approach. A

z-cover of a hypergraph G = (V,F) is a multi-subset C ⊆ V of vertices such

that |C ∩ F | ≥ z for every edge F ∈ F . Let tz(G) denote the minimum

size among all z-covers of G. Since a z-cover can be obtained by copying a

1-cover z times,

tz(G) ≤ zt1(G).

Let G∗ be the hypergraph with vertex set
(

[n]
w

)

and edge set F ∗ = {ED,R :

D ∩ R = ∅, |D| = d, |R| = r} where ED,R = {S ∈
(

[n]
w

)

: R ⊆ S and

D ∩ S = ∅}. Let MG∗C be the matrix with rows indexed by a z-cover C of

G∗ and columns indexed by [n], and the matrix has a 1-entry in cell (W, a)

if a ∈ W , and a 0-entry otherwise. Chen et al. (2008) [14] observed that

MG∗C is (d, r; z]-disjunct. To obtain an upper bound of t1(G
∗), they quoted

a lemma of Lovász (1975) [39] on hypergraph. For a hypergraph G = (V,F),

greedily choosing vertices sequentially such that every chosen vertex belongs

to the maximum number of edges which are not covered yet yields a 1-cover

of G of size less than |V |
minF∈F |F |

(1 + ln∆)

where ∆ is the maximum degree of a vertex, thus implying an upper bound

of t1(G). Therefore,

Theorem 4.4.1. For any positive integers d, r, w, z and n, with r ≤ w ≤
n− d, there exists a t× n (d, r; z]-disjunct matrix with

t < z

(

n
r

)(

n−r
d

)

(

w
r

)(

n−w
d

)

[

1 + ln

(

w

r

)(

n− w

d

)]

. (4.4.1)

42



Proof. G∗ = (
(

[n]
w

)

,F∗) is uniform and regular. Thus
|
(

[n]
w

)

|
minF∈F∗ |F | =

|F∗|
∆

where |F ∗| =
(

n
r

)(

n−r
d

)

and ∆ =
(

w
r

)(

n−w
d

)

.

By properly choosing w to minimize (4.4.1), they proved

Theorem 4.4.2. For any positive integers d, r, z and n with d + r ≤ n,

t(n, (d, r; z]) < z(
d + r

r
)r(

d + r

d
)d[1 + (d + r)(1 + ln(

n

d + r
+ 1)].
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Chapter 5

Reconstruction of Hidden

Graphs

As introduced previously, in the graph reconstruction problem, a hidden

graph G is known belonging to a given family G of labeled graphs on the set

N = [n], and the main task is to reconstruct G by asking queries as few as

possible, where a query is of the form,

“Does S induce at least one edge of G?”

for S ⊆ N . This query is denoted by Q(S) and Q(S) = 1, representing

“yes”, or 0, representing “no”.

G usually provides some information to the setting of queries. In this

chapter, we study the graph reconstruction problem where the structure of

the hidden graph is known.

Notations. Subsequently, for a graph G, G[S] denotes the induced subgraph

of graph G with vertex set S.

5.1 Preparation and Subroutines

A simple graph is a graph where each edge contains exactly two vertices

and a vertex v is said to be adjacent to u if they induce an edge. We focus
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our attention on the reconstructions of four class of hidden simple graphs

of known structure: Hamiltonian cycle, matchings, stars, and cliques. A

Hamiltonian cycle on N is a cycle passing through every vertex in N exactly

once and thus G could be the set of all

(n− 1)!

2

Hamiltonian cycles on N and of course, the hidden graph G is one of them.

A matching on N is a set of disjoint edges while a perfect matching is a

matching where every vertex in N belongs to (is incident to) one edge. Thus

the number of perfect matchings on N is

n!

2
n

2 (n/2)!
.

A star is a graph where all its edges have a common vertex called center. A

star of k edges can be defined by choosing a vertex as the center and other

k vertices that are adjacent to the center. Therefore, the number of stars on

N is upper bounded by

n−1
∑

k=2

n

(

n− 1

k

)

+
n(n− 1)

2
+ 1 = n(2n−1 − 1)− n(n− 1)

2
+ 1.

A clique on N is of the form
(

S
2

)

for some S ⊆ N of size at least two and

there are 2n − n− 1 different cliques on N .

In the following, we will introduce some useful tools and algorithms that

will be used as subroutines in the main algorithms.

An affine plane of order p is a balanced incomplete block design with p2

points and p2+p blocks of size p such that each pair of points appear together

in exactly one block. It is well-known that an affine plane of order p exists

whenever p is a prime power (see Anderson, 1990 [3]).

The affine plane method was first proposed in (Tettelin et al. [51], 1996;

Grebinski and Kucherov, 1998 [30]) and then employed by Hwang and Lin

(2003) [32] which is to take an affine plane with the point set containing N
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and then reconstruct each subgraph induced by a block. The advantages of

using this method are that each block has size p which could be much smaller

than n and that all graphs induced by blocks can be dealt simultaneously.

The problem is how small a prime power p such that p2 ≥ n could be. Nagura

(1952) [43] proved that for n > 24, there is always a prime between n and

1.2n. Hence,

Lemma 5.1.1. For n > 242, there exists a prime p such that n ≤ p2 ≤
1.44n < 2n.

Angluin and Chen (2006) [4] gave an elegant algorithm (see Algorithm 1)

to find a vertex contained in at least one edge of a hidden graph on n vertices

using at most lg n queries.

Algorithm 1 FIND-ONE-VERTEX
1: S ← N
2: if Q(S) = 0 then

3: Return ∅.
4: end if

5: A← N .
6: while |A| > 1 do

7: Arbitrarily partition A into roughly equal-sized A0 and A1.
8: if Q(S \ A0) = 1 then

9: S ← S \ A0, A← A1.
10: else

11: A← A0.
12: end if

13: end while

14: Return the element in A.

Notice that the algorithm preserves the invariance that Q(S) = 1 and

Q(S\A) = 0 if the input hidden graph contains at least one edge. This

shows that A contains a vertex on an edge of the hidden graph; indeed,

|A| is monotonically decreasing and the halving of A’s cardinality in each

iteration results in lg n queries. Furthermore, once the algorithm terminates,
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A = {v} for some vertex v and S \ {v} contains a vertex adjacent to v;

hence, a neighbor of v can be found by using binary splitting algorithm on

S\{v} with v added to each test. Therefore, reconstructing an edge can be

accomplished in 2 lg n queries.

A matching is maximal if it is not contained in a matching of larger

size. A general approach that we propose to reconstruct a hidden graph is

to find a maximal matching of the hidden graph at the beginning of the

progress of reconstructing the whole graph (Chang et al., 2010 [11]). The

advantage of this approach is that a reconstructed maximal matching of

a hidden graph would reveal a partial structure of the hidden graph, thus

providing a direction to complete the reconstruction of the remaining graph.

Algorithm 2 FIND-MAXIMAL-MATCHING

1: M ← ∅, S ← N , U ← ∅, U ′ ← ∅.
2: while Q(S) = 1 do

3: Reconstruct an edge in G[S], say {u, f(u)}. M ← M ∪ {{u, f(u)}},
S ← S\{u, f(u)}, U ← U ∪ {u}, U ′ ← U ′ ∪ {f(u)}.

4: end while

5: Return (M, U, U ′, f).

Algorithm 2 reconstructs edges one by one. The two vertices in an edge

are removed from S as soon as it is reconstructed and thus the reconstructed

edges share no vertex, implying the returned set M is a matching. Indeed,

M is a maximal matching because searching an edge induced by S continues

until it induces no edge which implies that no larger matching contains M .

Overall, Algorithm 2 reconstructs a maximal matching of the hidden graph

in 2m′ lg n + 1 queries, where m′ is the size of the maximal matching. In

addition, the algorithm returns two sets U and U ′ to collect the vertices in

the reconstructed edges and also returns a function f that pairs the vertices

between U and U ′ to record the edges in M . We call U ∪ U ′ the saturating

set of M for U , U ′ and M returned by the algorithm.

A nontrivial path is a path containing at least one edge. We provide an
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algorithm (see Algorithm 3) to reconstruct any hidden graph on n vertices

that contains only nontrivial paths in 2m lg n+m+5 queries where m is the

number of edges in the hidden graph (Chang et al., 2010 [11]).

Algorithm 3 FIND-ALL-PATHS

Let G be a hidden graph on a set N of n vertices and contain only nontrivial
paths.

1: E ← ∅.
2: Apply FIND-MAXIMAL-MATCHING on G. Assume (M,U,U ′, f) is re-

turned.
3: E ← E ∪M , I ← N\(U ∪ U ′).
4: Apply FIND-MAXIMAL-MATCHING on G[U ] and G[U ′]. Assume

(M1, A,A′, f1) and (M2, B,B′, f2) are returned, respectively.
5: E ← E ∪M1 ∪M2, I1 ← U \ (A ∪A′), I2 ← U ′ \ (B ∪B′).
6: for u ∈ I1 do

7: Apply a binary splitting algorithm on I2\{f(u)} with u added to each test.
Assume v (if any) is obtained from the search.
E ← E ∪ {{u, v}}, I1 ← I1\{u}, I2 ← I2\{v}.

8: end for

9: while Q(I1 ∪ I) = 1 do

10: Reconstruct an edge in G[I1 ∪ I], say {u, i} where u ∈ I1 and i ∈ I.
E ← E ∪ {{u, i}}, I1 ← I1\{u}.

11: end while

12: Reconstruct edges between I2 and I by the same way as lines 9-11.
13: Return E.

Figure 5.1 demonstrates an example of Algorithm 3: (a) The bold edges

form a maximal matching and an independent set I is produced. (b) Line

4 reconstructs edges in G[U ] and G[U ′]. Then finally two independents sets

I1 = {b, i, k} and I2 = {a, c, j} are obtained (line 5). (c) Lines 6-8 recon-

struct edges between I1 and I2. By applying a binary splitting algorithm

to I2\{f(b)} = {c, j} with b added to each test, edge {b, c} is reconstructed.

Finally, I1 = {i, k} and I2 = {a, j}. (d) Lines 9-12 reconstruct edges between

I and I1 ∪ I2.

Lemma 5.1.2. Algorithm 3 reconstructs any graph G on n vertices contain-

ing only nontrivial paths in 2m lg n + m + 5 queries where m is the number
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Figure 5.1: An example of FIND-ALL-PATHS algorithm

of edges of G.

Proof. The algorithm first starts at reconstructing a maximal matching

M of G whose saturating set is assumed to be U ∪U ′. Since G only contains

nontrivial paths, the structure of the remaining graph consists of two match-

ings E[U ] and E[U ′] and some edges between U and U ′ and I = N\(U ∪U ′)

which is an independent set since M is maximal. Next, FIND-MAXIMAL-

MATCHING would reconstruct the matching M1 induced by U and M2 in-

duced by U ′ whose saturating sets are A∪A′ and B∪B′, respectively. Then

the incident edges of all vertices in A∪A′∪B ∪B′ are reconstructed so it re-

mains to reconstruct edges between three independent sets I, I1 = U\(A∪A′),

and I2 = U ′ \ (B ∪ B′). Note that constructing those three matchings takes

2(|M |+ |M1|+ |M2|) lg n + 3

queries.

Next, an edge between I1 and I2 is not reconstructed only if it is not in M

and every vertex in I1 is adjacent to at most one vertex in I2. Therefore, line
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7 exactly accomplishes the reconstruction of edges between I1 and I2 that

are not in M . Since |I1| ≤ |M | and the splitting algorithm takes at most lg n

queries, there are at most

m1 lg n + |M |

queries spent in this portion where m1 is the number of edges reconstructed

here.

Finally, it remains to reconstruct hidden edges between I and I1∪I2. For

the edges between I and I1, as shown in lines 9-11, the algorithm recursively

reconstructs an edge in G[I1 ∪ I], say {u, i} where u ∈ I1 and i ∈ I and

removes u from I1 until I ∪ I1 induces no edge. Note here that u can be

removed because both its incident edges are reconstructed after the recon-

struction of {u, i} and indeed removing u is to make sure that edges in I ∪ I1

are unreconstructed before each iteration. Similarly, the edges between I and

I2 can be reconstructed by the same way. Note that the number of queries

spent here is at most

2m2 lg n + 2

where m2 is the number of edges between I and I1 ∪ I2.

It is easily observed that each edge is reconstructed once and hence the

overall cost of this algorithm is upper bounded by 2m lg n+m+5. Therefore,

the lemma follows.

5.2 Reconstructions of Simple Graphs

Assume that G consists of all Hamiltonian cycles on N . Since there are
(n− 1)!

2
of them, the theoretic information lower bound is lg

(n− 1)!

2
≤

n lg n. Grebinski and Kucherov (1998) [30] gave a sequential algorithm to

reconstruct a Hamiltonian cycle with 2n lg n queries. Chang et al. (2010)

[11] improved their result to (1 + o(1))(n lg n) by employing the affine plane

method together with the algorithm FIND-ALL-PATHS.
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Theorem 5.2.1. For any hidden Hamiltonian cycle G of order n > 242, G

can be reconstructed in n lg n + 15n queries.

Proof. By Lemma 5.1.1, there is a prime p such that n ≤ p2 ≤ 2n. Add

p2 − n dummy vertices to obtain an affine plane and take them away when

testing the blocks. A block is said to be positive if its testing result is

positive. It is obvious that each positive block induces a graph containing

only nontrivial paths; hence, a Hamiltonian cycle can be reconstructed by

applying FIND-ALL-PATHS to these blocks (see an example in Table 5.1).

Since there are p2 +p blocks and every edge appears exactly in a block, there

are totally at most (p2 + p) + 2m lg p + m + 5(p2 + p) queries where m = n.

Hence, a Hamiltonian cycle can be reconstructed in 12n+6
√

2n+n lg 2n+n <

n lg n + 15n queries for n > 242.

Next, we consider that G is the set of all matchings on N . The recon-

struction of matchings has been studied in (Alon and Asodi, 2005; Bouvel et

al., 2005). The number of perfect matchings on n (even) vertices is
n!

2
n

2 (n/2)!
,

providing an information lower bound lg
n!

2
n

2 (n/2)!
= (1+o(1))(n

2
lg n) on the

reconstruction of matchings. Bouvel et al. (2005) [8] gave sequential algo-

rithms to reconstruct a matching of unknown size and a perfect matching on

n vertices in (1+o(1))(n lg n) and (1+o(1))(n
2

lg n) queries, respectively. Re-

cently, Chang et al. (2010) [11] took advantage of the affine plane method to

reconstruct a matching of unknown size in at most (1+ o(1))(n
2
lg n) queries.

Theorem 5.2.2. For n > 242, reconstructing a matching on n vertices can

be done in m lg n + 4n queries, where m ≤ n
2

is the number of edges of the

matching.

Proof. Similar to the proof of Theorem 5.2.1, the affine plane method

produces p2 + p blocks such that each pair of vertices belongs to exactly one

of them where n ≤ p2 ≤ 2n. Since each block induces a graph containing just

a matching, FIND-MAXIMAL-MATCHING would reconstruct each graph

induced by a positive block (see an example in Table 5.1). Hence, overall
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process takes at most (p2 + p) + 2m lg p < 2n +
√

2n + m lg 2n queries to

reconstruct a matching on n vertices.

Example 4. Examples of small order illustrating Theorem 5.2.1 and The-

orem 5.2.2 are given in the following. Let N = [7]. Then p = 3 is the

smallest prime power such that its square is at least 7. { {1, 2, 3}, {4, 5, 6},
{7, 8, 9}, {1, 4, 7}, {2, 5, 8}, {3, 6, 9}, {1, 5, 9}, {2, 6, 7}, {3, 4, 8}, {3, 5, 7},
{1, 6, 8}, {2, 4, 9} } is an affine plane of order 3. In Table 5.1, the hidden

graph G1 is a Hamiltonian cycle and the hidden graph G2 is a matching. For

G1, {1, 2, 3}, {4, 5, 6}, {1, 4, 7}, {2, 6, 7} and {3, 4, 8} are positive blocks and

then FIND-ALL-PATHS is applied to each of them. For G2, {1, 2, 3}, {4, 5, 6}
and {3, 5, 7} are positive blocks and then FIND-MAXIMAL-MATCHING is

applied to each of them (see the corresponding cell in Table 5.1). Note that

a cell in Table 5.1 is empty means the corresponding block is not positive,

i.e., the graph induced by it contains no edge.

Notice that the dummy vertices 8 and 9 are removed when the blocks

are tested. Based on the property of affine plane, the edge set of the hidden

graph is decomposed into the edge sets of graphs induced by positive blocks,

and therefore the whole graph is reconstructed by collecting edges induced

by positive blocks.

Next, we consider that G is the set of all stars on N . Thus |G| = n(2n−1−
1)− n(n−1)

2
+1. Accordingly, the information lower bound is (1+o(1))n which

is the number of queries required to reconstruct a hidden star. Bouvel et al.

(2005) [8] gave a sequential algorithm using queries achieving the lower bound

Ω(n). In fact, their algorithm requires 2n queries in the worst case. Chang

et al. (2010) [11] proved that the lower bound (1 + o(1))n can be achieved

by a sequential algorithm.

Theorem 5.2.3. A star on n vertices can be reconstructed in n + 2 lg n

queries.

Proof. The first step is to find the center of the star, and then to find all

its neighbors by querying each vertex with the center. An edge of the star
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can be reconstructed in 2 lg n queries and one of the two vertices in the edge

must be the center. The center can be determined by simply testing one of

these two vertices together with all other vertices. Clearly, the whole process

takes at most 2 lg n + n queries.

Finally, suppose that G is the set of all cliques onN . Then the information

lower bound is lg 2n = n. Bouvel et al. (2005) [8] provided a sequential

algorithm to reconstruct a hidden clique in 2n queries. Chang et al. (2010)

[11] slightly improved their result by giving an algorithm to construct a clique

in n + lg n queries.

Theorem 5.2.4. A clique on n vertices can be reconstructed in n + lg n

queries.

Proof. A vertex v on the clique can be found in lg n queries by applying

FIND-ONE-VERTEX. Then the clique can be reconstructed by querying

each vertex with x. Hence the whole process takes at most n + lg n queries.
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Blocks G1 4

7

5
3

1

2

6
G2

45

4

7

5
3

1

2

6

{1, 2, 3}
3

2

3

1

2

3

2

3

1

2

{4, 5, 6}
45

6
45

6

{1, 4, 7}
4

1

7

{2, 6, 7}

7

6

2

{3, 4, 8}
4

3

{3, 5, 7}
4

7

5
3

others

Table 5.1: Examples of small order for Theorem 5.2.1 and Theorem 5.2.2
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Chapter 6

Conclusion and Remarks

Research in this thesis can be cataloged into four categories: identification

problems in k-inhibitor complex model and general inhibitor complex model,

classification problems in 1-inhibitor complex model and k-inhibitor clone

model, lower bounds and constructions of related disjunct matrices, and

graph reconstruction problems on hidden graphs of known structure.

In the study of group testing, we introduced a new pooling design en-

vironment by allowing the coexistence of inhibitors and complexes which,

separately, have been well studied in the literature. For identification prob-

lems, we give a nonadaptive pooling design, with error-tolerance ability, to

the most general model in such an environment with no need to know the

exact relation between inhibitors and positive complexes. We present a novel

concept “inclusiveness” which leads to a significant improvement on the de-

coding procedure. Indeed, identifying all positive complexes can be done

by comparing the values of complexes plugging into certain cutoff functions

after the testing outcomes are produced.

On the other hand, in the k-inhibitor model, instead of treating the in-

hibitors as annoying elements, we face them as substances with certain fea-

tures and attempt to identify them. We prove that all complexes under

1-inhibitor complex model with error tolerance e can be identified by using

O(ec(d, h, r) logn) tests nonadaptively and O(ec(d, h, r)hr log n|H|) decod-

ing time for some function c on d, h, and r, where a (d + h, 2r; z]-disjunct
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matrix is sufficient; no complex nonadaptive design is required. This is also

a notable solution for identification problem under the 1-inhibitor model.

Unlike other identification results, in this design, the strategy of identifying

all inhibitors first is put into execution, leading to a great improvement on

decoding complexity. Furthermore, this design indeed comes from merging a

design for identifying inhibitors in the inhibitor model and a design for identi-

fying positive items in a non-inhibitor model, suggesting a way to strengthen

a design.

The problems we consider in this thesis all originated from applications

that were observed in recent literatures and our results suggest an efficient

nonadaptive strategy so that the time required to perform experiments and

analyze outcomes can be substantially reduced. We believe that the new

properties that we propose in this study can be applied to other practical

models with decent testing performance and decoding procedure. We also call

attention to the study of classification problem. This problem is not only of

theoretical interest but significant in applications. We believe the inhibitory

substances can play an important role in population and the setting-up of

inhibitor libraries is also in demand.
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