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Abstract

In the classical group testing problem, there is a set A/ of n clones, each
of which is either positive or negative. The main task of the problem is
to identify all positive ones by group tests, and in identifying all positive
clones, minimizing the number of group tests is the main issue. Motivated
by applications, many studies have introduced a third type of clones called
“inhibitors” whose effect is in a sense to obscure the positive clones in pools.
Furthermore, in many applications, a subset of clones (rather than a single
clone), called a complex, can induce a positive effect.

There are two general types of group testing algorithms: sequential and
nonadaptive. A sequential algorithm conduets the tests one by one where
the outcomes of all previous tests can be treated as a reference to the later
one, while a nonadaptive algorithm specifies- all tests in advance and thus
all tests can be conducted simultaneously." Generally, sequential algorithms
require fewer number of tests than nonadaptive ones, but performing all
tests in a sequential algorithm spends more time than performing all tests in
a nonadaptive one.

The group testing model which takes inhibitors (respectively complexes)
into consideration is referred to as an inhibitor model (respectively a complex
model). These two models have been well studied in the group testing liter-
ature. In this thesis, we first study group testing problems in a new pooling
design environment by allowing the coexistence of inhibitors and complexes
and devote our attention to nonadaptive algorithms. To identify positive

items, we attach a novel property “inclusiveness” to a design. This property
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and a well-studied property “disjunctness” lead to a significant improvement
in the decoding procedure. In addition to the identification problem where
only positive items are identified, we also attempt to classify all items. We
prove that the well-studied “(d,r; z]-disjunct matrices” are sufficient for the
classification problems and associated with fast decoding procedures.

In the identification and classification problems, (H : d; z)-disjunct, (d,
r;z]-disjunct, and (d, r; z]-disjunct and (h, r;y]-inclusive with z > y are three
main properties of matrices that are employed as nonadaptive pooling de-
signs. We study their constructions and the lower bounds on the number of
rows (tests).

Finally, we study the graph reconstruction problem which is a general-
ization of the classical combinatorial group testing problem. A group testing
problem is a search paradigm where it is usually assumed that there are
at most d positive items among given items. A graph reconstruction prob-
lem is to reconstruct a hidden graph G from a given family of graphs by
asking queries of the form “Whether a set of vertices induces an edge of
G”. Reconstruction problems on.families of Hamiltonian cycles, matchings,
stars and cliques on n vertices have been studied where algorithms of using at
most 2nlgn, (14+0(1))(nlgn),2n and 2n queries were proposed, respectively.
We exploit some strategies such as affine plane method to improve them to
(14 0(1))(nlgn), (1 +o(1))(5 lgn);n+21gn and n + Ign, respectively.
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Chapter 1

Introduction

Given a set N of n clones, each of which is either positive (usually called
defective) or negative (usually called good), the group testing problem is to
identify all positive ones by group tests. A group test is applied to a subset
of N with two possible outcomes; a negative outcome indicates if all clones in
the subset are negative; a positive outcome indicates otherwise. In particular,
a group test on a clone can show its:property. Consequently, the main issue
is to minimize the number of group tests in identifying all positive clones.

The origin of group testing can be traced back to World War II. The
concept of group testing was-first conceived in a session in the offices of
the Price Statistics Branch of The.Research Division of the office of Price
Administration in Washington, D.C.. Researchers in the session such as
David Rosenblatt and Robert Dorfman were struck by the wastefulness of
testing blood samples from millions of draftees to detect a few thousand
cases of syphilis. They suggested that pooling the blood samples may be
economical (for more detail, please refer to Du and Hwang, 1993 [20]).

In the probabilistic model of group testing, a probability distribution is
attached to the positive set and the expected number of tests required to
identify positive elements is a criterion of efficiency. Robert Dorfman (1943)
[19] studied the group testing problem under the probabilistic model and
proposed a method that could eliminate all syphilitic men called up for in-

duction. However, the need of group testing faded with the conclusion of



the World War II. Group testing stayed dormant for many years until the
coming of its use in industry. Sobel and Groll (1959) [46], two Bell Lab-
oratory scientists, considered many industrial applications of group testing
and studied group testing under probabilistic models as well. Li (1962) [37]
was the first to study Combinatorial group testing where probability distri-
butions on positive set are completely eliminated; for instance, the number
of positive items among the n items can be assumed at most d. Hencefor-
ward, combinatorial group testing developed alongside with the probabilistic
group testing and has been prospering due to its applications in chemical
leak testing, electric shorting detection, codes, multi-access channel commu-
nication and AIDS screening (see Du and Hwang, 1993 [20] and 2nd ed. 2000
[21] for a general reference). Recently, group testing has been found useful
in molecular biology and is usually referred to as pooling designs. The new
application also generates new models and new problems such as pooling
designs on complexes (Torney, 1999 [52]), the inhibitor model (Farach et al.,
1997 [28]), contig sequencing, and non-unique probe selection problem (Du
and Hwang, 2006 [23]).

1.1 Preliminaries on Algorithm

There are two general types of group-testing algorithms: sequential and non-
adaptive. A sequential algorithm conducts the tests one by one where the
outcomes of all previous tests can be treated as a reference to the later one.
A nonadaptive algorithm specifies all tests in advance and thus all tests can
be conducted simultaneously. Sequential algorithms require fewer number of
tests in general, since extra information allows for more efficient test designs
while nonadaptive algorithms permit to conduct all tests simultaneously, thus
saving the time for testing. Sequential algorithms have dominated the liter-
ature historically because the main goal of group testing is to minimize the
number of tests required to identify all positive items. However, in some ap-

plications such as molecular biology, an experiment corresponding to a group



test is considerably time-consuming, thus it is impractical to perform the ex-
periments sequentially. The focus then goes to nonadaptive group testing
algorithms where all experiments are performed simultaneously; neverthe-
less, sequential procedures can still be used, but the total time required to
identify the positive items must be considered along with the total number of
tests. There is a natural tradeoff between the sequential and the nonadaptive
algorithms. One can seek 2-stage or k-stage algorithms for which all tests in
a stage must be specified simultaneously, but the stages are sequential.
With experimental errors, test outcomes may contain false negative out-
comes and false positive outcomes. The former means that a test yields a
negative outcome when a pool contains at least one positive clone. Likewise,
the latter means that a test yields a positive outcome when a pool contains no
positive clones. The error tolerance capability is concerned when proposing

a design.

1.2 Models Originating from Applications in
Molecular Biology

The wide range of conditions in which group testing has practical applications
call for meaningful variants of the basic model in order to better accommo-
date the applications at hand. In this section, we introduce three models of
group testing — inhibitor, complex, and graph reconstruction that originated
from applications in molecular biology. These models have been studied in

separate literatures. We will follow the original terminologies in each model.

1.2.1 Group Testing with Inhibitors

In certain applications, there is a third type of clones called inhibitors whose
existence may cancel the effect of positive clones and the number of such
clones in the population is usually assumed at most h. Various models can
be formulated with inhibitors in the pooling design, depending on the inter-

ferences between inhibitors and positive clones. Farach et al. (1997) [28],



motivated by molecular biology applications, first proposed the 1-inhibitor
model in which a single inhibitor clone dictates the testing outcome to be
negative regardless of how many positive clones are in the test and gave a
randomized algorithm to identify all positives in O((d + h)logn) tests. For
example, in molecular biology, enzyme inhibitors are molecules that interact
in some way with the enzyme to prevent it from working normally; in drug
discovery applications, certain compounds can block the detection of a po-
tent compound (Xie et al., 2001 [54]); similar phenomena were mentioned in
blood testing applications (Phatarfod and Sudbury, 1994 [44]).

De Bonis and Vaccaro (1998) [17] connected the 1-inhibitor model to a
certain generalization of superimposed codes (D’yachkov and Rykov, 1983
[26]), and provided a lower bound Q(% logn) on the number of tests re-
quired to identify exactly d positives in the presence of h inhibitors. Further,
De Bonis et al. (2005) [16] gave an asymptotically optimal 4-stage algorithm
for the 1-inhibitor model under the assumption that the exact number of
positives and an upper bound on the number of inhibitors are known before-
hand. Note that all these algorithms-are sequential. Recently, nonadaptive
pooling designs have been proposed for the inhibitor model (D’yachkov et
al., 2001 [25]; Hwang and Liu; 2003 [32]; Du and Hwang, 2005 [22]).

De Bonis and Vacarro (2003) 18] extended the model to k-inhibitor model
in which k inhibitor clones dictate the-testing outcome to be negative. In
general, one can consider a (k, g)-inhibitor model where k inhibitors cancel
the effect of g positive clones.

Besides the mathematical complexity of dealing with various inhibitor
models, determining which model fits the reality is also a practical question.
Hwang and Chang (2007) [33] considered the general inhibitor model in such
an environment with no need to know the exact relation between inhibitors
and positive clones. De Bonis (2008) [15] proposed an almost optimal algo-
rithm using O(%2 log(n/h)) tests under the hypothesis that the exact number
d of positives is given. Particularly, this algorithm is a trivial two-stage algo-

rithm, that is, most non-positive candidates are eliminated by the first stage



and the remaining clones are tested separately in the second stage.

1.2.2 Group Testing on Complexes

The classical group testing problem has a set of elements each of which in-
duces a positive or negative effect. In many DNA screening environments, a
subset of clones (rather than a single clone), called a complez, can induce a
positive effect. We call such a model the complex model in comparison with
the clone model as previously discussed. Formally, in the complex model,
we consider a given set H of complexes where a fixed but unknown subset
of complexes are designated positive, while other candidates of positive com-
plexes are called negative complezes. In particular, H = N is referred as the
clone model. A group test is executed on a subset of N and yields a positive
outcome only when it contains at least one positive complex. To have an
efficient design, we need to make some assumptions on the positive set. The
simplest assumption is an upper bound d of the number of positive complexes
in the test population. It is usually assumed that two positive complexes can
overlap, but neither contains the other. Torney (1999) [52] first introduced
the concept of the complex model and gave some substances in eukaryotic
DNA transcription and RNA translation as examples of complexes.

Group testing on complexes is widely applied in modern molecular and
cellular biology. A prominent example is its application in the identifica-
tion of protein-to-protein interactions (Lappe and Holm, 2003 [36]; Li et
al., 2005 [38]). The interactions between proteins are significant for many
biological functions. For example, in signal transduction process, the protein-
to-protein interactions of the signaling molecules can convey signals from the
exterior of a cell to the inside of that cell. This conveying process plays a
fundamental role in living cells. Furthermore, information about the inter-
actions between proteins improves our understanding of diseases and then
provides the basis for new therapeutic approaches. Therefore, in many bio-
logical projects, identifying all protein-to-protein interactions is an essential

task. The development of some laboratory approaches (Lappe and Holm,



2003 [36]) enables the application of group testing to this problem. Li et al.
(2005) [38] formulated this identification problem as a group testing problem
in bipartite graphs which can be regarded as a special case of group testing on
complexes. Besides the protein-to-protein interactions problem, some other
problems such as graph testing, superimposed codes and secure key distribu-
tion are also highly related to the complex model. Recent developments on
this topic can be found in (Macula et al., 2000 [42]; Macula et al., 2004 [41];
Du and Hwang, 2006 [23]; Gao et al., 2006 [29]; Chen et al., 2007 [13]; Chen
et al., 2008 [14]).

Chang et al. (2010) [9] first introduced the inhibitor complex model where
an inhibitor is a third type of complexes. Similar to the environments in the
inhibitor clone model, the presence of an inhibitor may cancel the effect of
positive complexes; in other words, a group test executed on a set of clones
containing an inhibitor may yield a negative outcome even if that set contains
a positive complex. Furthermore, the inhibitor complex model, as well as
the inhibitor clone model, can be subdivided into the 1-inhibitor, k-inhibitor
and general inhibitor models based onthe'interference effect between positive
complexes and inhibitors. Fortinstance, under k-inhibitor model a pool of

clones inducing more than £ inhibitors would vield a negative response.

1.2.3 Graph Reconstruction Model

Combinatorial search problems on graphs in the literature (Aigner, 1988 [6])
consist of identifying an unknown edge or vertex in a given graph, verifying
a property of a hidden graph, reconstructing a hidden graph of a given class,
and some others. The graph reconstruction problem we consider here is as
follows. A hidden graph G is known belonging to a given family G of labeled
graphs on the set [n] := {1,2,---,n}. The main task is to reconstruct G
by asking queries as few as possible, where a query is of the form “Does S
induce at least one edge of G7”, denoted by Q(S), for S C [n], and Q(S) = 1,
representing “yes”, or 0, representing “no”. Of course, the design of queries

refers to the information provided by G.



Different settings on the prior knowledge of the hidden graph produce
various graph reconstruction problems. The group testing problem under
complex model is a (hyper)graph-version of the graph reconstruction prob-
lem, where the vertices stand for the clones, edges stand for the complexes
and the number of edges of the hidden graph is assumed at most d. Moreover,
the hidden graph of bounded degree was studied in (Grebinski and Kucherov,
2000 [31]; Bouvel et al., 2005 [8]), while the general hidden graph was con-
sidered in (Bouvel et al., 2005 [8]; Angluin and Chen, 2008 [5]). We study
the graph reconstruction problems under the assumption that the structure
of the hidden graph is known.

Various families of hidden graphs have been studied. Many recent stud-
ies focus on two cases: Hamiltonian cycles and matchings (Grebinski and
Kucherov, 1998 [30]; Beigel et al., 2001 [7]; Alon et al., 2004 [2]) which
have specific application to the genome sequencing problem. In the genome
sequencing, the contigs, which are longer continuous fragments formed from
some overlapping short reads, cover the genome with possible gaps. The task
is to determine the relative placement-of contigs on the genome. A tool for do-
ing this is an experiment calledmultipler Polymerase Chain Reaction (PCR)
(Sorokin et al., 1996 [47]). In-a multiplex PCR, an input of an experiment
is a set of primers, which are-short nucleotide sequences that characterize
the ends of the contigs. Whenever the-input set contains two primers corre-
sponding to adjacent ends of neighboring contigs, the experiment outputs a
reaction bringing a PCR product. Hence, the relative placement of contigs
can be represented by the reaction graph which is a graph with primers as
its vertices and pairs of vertices with reactions as its edges. In particular, for
a circular genome, a reaction graph can be characterized as either a Hamil-
tonian cycle if the two primers of each contig are mixed together and are
considered as a vertex, or a matching if primers are treated independently,
i.e., each primer corresponds to a vertex. The problem can be generalized
as to identify the pairs that react with each other among the given set of
molecules (Torney, 1999 [52]; Alon and Asodi, 2005 [1]).



Sequential algorithms for graph reconstruction problems on some fami-
lies of hidden graphs of known structure have been proposed. Grebinski and
Kucherov (1998) [30] gave a sequential algorithm to reconstruct a Hamilto-
nian cycle in 2nlgn queries (lg := log,), while the information lower bound
for the number of queries needed is nlgn. Bouvel et al. (2005) [8] provided
a sequential algorithm to reconstruct a matching in (1+o(1))(nlgn) queries
while (1 + o(1))(51gn) is the best lower bound known so far and an algo-
rithm to reconstruct a star in 2n queries while the information lower bound
is (14 o(1))n. They also proved that a clique of unknown size can be recon-
structed in 2n queries while n queries are required in the worst case. There

is still some room to improve the performance.

1.3 Thesis Overview

The inhibitor complex model, introduced by Chang et al. (2010) [9], is
a new group testing environment with the allowance of the coexistence of
inhibitors and complexes. In Chapter 2, we study group testing problem
in the inhibitor complex model.” We devote our attention to the studies of
efficient nonadaptive designs with fast decoding procedures.

For group testing problems in' the inhibitor model, much research has
been devoted to the studies of identifying all positive items; however, only
few studies have been done in classifying all items, especially for the nonadap-
tive designs. Furthermore, almost no work has been done in the classification
problems under the inhibitor complex model. However, the identification of
inhibitory substances is important in many practical applications; for exam-
ple, many drugs are enzyme inhibitors because they can make the activity of
enzymes reduced, thus leading to a destruction of a pathogen or a correction
of a metabolic disturbance. In Chapter 3 we provide efficient nonadaptive
algorithms for the classification problems under the 1-inhibitor model. It
is notable that the pooling designs we propose have polynomial decoding

procedures, i.e., determining the three types of complexes according to the



testing outcomes can be done in polynomial time. Finally, for k-inhibitor
clone model, we solve the classification problems with both efficient non-
adaptive algorithms and fast decoding procedures (work jointly with Chen
and Fu, 2010 [10]).

Concluding from Chapter 2 and Chapter 3, we know that (H : d;z)-
disjunctness, (d,r;z]-disjunctness, and (h,r;y]-inclusiveness are three main
properties of matrices employed as efficient designs. Many studies have been
done on the constructions of (H : d; z)-disjunct matrices and (d, r; z]-disjunct
matrices. In Chapter 4, we will introduce their constructions and some lower
bounds that are mostly discussed in the literature. A matrix with (d,r; z]-
disjunct and (h, r; y]-inclusive property was newly proposed in (Chang et al.,
2010 [10]; Chen, 2006 [12] for » = 1) and little literature is available on its
construction. Accordingly, we provide some general results and prove that
some well-constructed disjunct matrices have certain inclusiveness property.

In Chapter 5, we show some improvement on sequential algorithms for
graph reconstruction problems. We employ an affine plane method (Tettelin
et al., 1996 [51]; Grebinski and Kucherov;:1998 [30]) together with construct-
ing a maximal matching first and some other strategies to derive better al-
gorithms (Chang et al. (2010) [10]). We improve the result in (Grebinski
and Kucherov, 1998 [30]) on Hamiltonian cycle by a factor of 1/2. We also
provide algorithms to close up the gaps between lower and upper bounds
for the numbers of queries required to reconstruct a matching and a star of
unknown size. Further, we slightly improve the result in (Bouvel et al., 2005

[8]) on clique by giving an algorithm with at most n + lgn queries.



Chapter 2

Nonadaptive Pooling Designs
with Fast Decoding Procedures

In this chapter we study group testing problems in the inhibitor complex
model. We devote our attention to nonadaptive designs that are not only
efficient in terms of the number of tests, but also associated with fast decoding
procedures.

A nonadaptive group testing scheme can be represented as a 0-1 (or bi-
nary) matrix where columns are labeled by clones and rows by tests. Thus
row j intersects (has a 1-entry in) column ¢ specifies that test j contains clone
i. Sometimes it is convenient to view a column C; as the set of tests (rows)
containing the clone C;. Thus C; N'Cy s the set of tests (rows) containing

(intersecting) both C; and Cj. Accordingly, for a complex X, NX := ﬂ C

cex
is the set of rows intersecting all clones in X and we say a row j covers X if

Jjenx.

For nonadaptive pooling designs, some enumerators are frequently used
to differentiate complexes (or clones) of different properties. For example,
let 70(X) denote the number of negative pools that complex X appears in.
Then according to the testing outcomes of a design, this enumerator could be
a cutoff function, i.e., there may be a fixed value, say a, such that 7o(X) < a

only when X is positive and thus distinguishing positive items from others.

10



Furthermore, for a set S of complexes (or clones), let 75 (X) denote the same
except that an negative pool that covers an element in S is not counted in.
Similarly, let 71(-) and 7{(-) denote the numbers of corresponding positive

pools, respectively.

2.1 The General Inhibitor Complex Model

With the introduction of inhibitors to the clone models, Hwang and Chang
(2007) [33] proposed the general inhibitor model in which the exact cancel-
lation effect of inhibitors on positive clones is not specified. In the general
inhibitor clone model, the (d+ h)-disjunct matrix is the main design to iden-
tify the positive clones from n clones, including at most d positive clones and
at most h inhibitory clones. A binary matrix is d-disjunct if for any d 4+ 1

columns Cy, Cy, - -+, CYy,

> 1.

d
‘%\U@
i=1

Chang et al. (2010) [9] are the first ones to study the general inhibitor
complex model, and expand the idea of (d + h)-disjunctness to this model.
We attach the parameters(n,d; k) to an inhibitor complex model with
complex set H to denote the fact that-among the complexes of H, which are
subsets of the n clones, there are at most d positive complexes and at most
h inhibitors. Following the terminology of (Gao et al., 2006 [29]), a binary
matrix is (H : d; z)-disjunct if for any d 4+ 1 complexes Xg, X7, -, X, there

exist z rows each covering X, but none of Xy,---, Xy, i.e.,
d
ﬁXo \ U ﬁXZ' Z zZ.
i=1

Let t(n, (H : d;z)) denote the minimum number of rows in an (H : d; z)-
disjunct matrix with n columns. Construction of (H : d;z)-disjunct ma-
trices was studied in (Gao et al, 2006 [29]). When z = O(1) and each

11



complex contains at most r clones, the construction yields a matrix with

2drign .,
—) llary 4.3.4).
O((lg(dr lgn)) ) rows (Corollary 4.3.4)

It is generally assumed that no complex is a subset of another for other-
wise the requirement of (H : d; z)-disjunctness cannot be fulfilled when X
is contained in one of the X;’s.

A lower bound for the general inhibitor complex model is as follows, which
is an extension of a result in (De Bonis and Vaccaro, 1998 [17]) for the general

inhibitor clone model.

Theorem 2.1.1. The number of rows in a nonadaptive pooling design under

the (n,d, h) general inhibitor complex model with complex set H is at least
t(n, (H : h; 1)).

Proof. Since a lower bound of the 1-inhibitor complex model is clearly
a lower bound of the general inhibitor complex model, it suffices to prove
the 1-inhibitor case. Let M be the testing matrix of a nonadaptive pooling
design. Suppose M is not (H : h;l)-disjunct. Then there exists a set of
h + 1 complexes X, --, X} such that every row covering X, must cover
some of Xy,---, X}. Consider-the sample that X, is a positive complex and
{X1,--+, Xy} is the set of inhibitors.“Then outcomes of the tests covering

Xp are negative and thus X, can not be identified from such outcomes. =

Theorem 2.1.2. An (H : d + h;1)-disjunct matriz can identify all positive
complezes under the (n,d, h) general inhibitor complex model with complex
set H.

Proof. A positive complex appears in a negative pool only when the pool
also contains some inhibitors. Thus, for a positive complex P, if S is an h-set

containing all inhibitors, then
5 (P)=0

since all pools containing any inhibitor are excluded.
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On the other hand, consider a non-positive complex X*. By the definition
of an (H : d + h;1)-disjunct matrix, for any other complexes X, -+, Xy,
there exists a row covering X* but none of Xi,---, X4, In particular,
when {Xj,---, X} contains all positive complexes and { X411, - -+, Xgyn} is

a given set S, we have that the row yields a negative outcome. Thus
(X)) >1

for any h-set S C H \ {X*}. Consequently, {X : 75/(X) = 0 for some h-set
S C H\ {X} }is the set of all positive complexes. ]

Next, for the error-tolerant case, we consider two types of errors: the
(10)-type, changing 1-outcome to 0, and the (01)-type, changing 0-outcome
to 1. Let e}, and ¢}, denote the unknown numbers of the (10)-type errors
and the (01)-type errors, respectively, and denote upper bounds of e}, and
ey as ejp and egp, either known or unknown. We assume that e, an upper

bound of the total number of errors, is known, and set

e10 + €01 — e if eygoand egylare known,
c:=<e if there are no estimates of e;y and eqq,

0 if the number of positive complexes is d.
Chang et al. (2010) [9] dealt with:the error-tolerant case as follows.

Theorem 2.1.3. An (H : d + h;c + e + 1)-disjunct matriz can identify all
positive complexes under the (n,d,h) general inhibitor complex model with

complex set H which has at most e errors.

Proof. Ignoring the inhibitors for the moment, then a positive complex
P can appear in a negative pool only if its outcome is one of the (10)-type
errors. Therefore, if S contains all inhibitors, then 75(P) < e},.

On the other hand, for a non-positive complex X*, by the definition of
(H : d+h; c+e+1)-disjunct, X* appears in at least c4+e+1 rows each covering

none of the up-to-d positive complexes, nor the h complexes in S; hence the
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corresponding tests have negative outcomes. Errors of the (01)-type may

reduce the number of such negative pools. But still,
(X)) >ct+etl—e) >ct+1+el,

where the last inequality follows from e}, + ¢j; < e.
However, we do not know e}, and hence not knowing how to distinguish
positive complexes from others. We consider three cases:

Case (1): e1p and eg; are known. Then ¢ = ey + €19 — e. Thus

Tég(X*) > (601+€10—6)+6+1—€81 2610—|—1.
This implies that {X : 75 (X) < ey for some h-set S C H \ {X} } is the set
of all positive complexes.

Case (2): no estimates of ejp and ey are given. Then ¢ = e. Thus
S * *
(X)) >e+e+1—ep >e+ 1.

Hence, {X : 75 (X) < e for some heset S CH \ {X} } is the set of all positive
complexes.
Case (3): the number of positive complexes is known to be d. Then ¢ = 0.
Thus
5 (X el + 1.
Therefore, {X : I)?nsl 75 (X) is among the d smallest r)?ég 75 (-) values} is the

set of all positive complexes.
[

The decoding procedure requires to compute 75 (X) for all h-subsets S C
H \ {X} and there are (‘H}'L_l) of them. However, |H| can be much larger
than n = |A/|. For example, if H contains all r-sets of clones, then |H| = (7).
Thus ('H}‘L_l) could be a very large number. In the following, we introduce

some ways that reduce the decoding complexity in the order of magnitude.

14



2.1.1 Faster Procedures

For convenience, we use an (n,d, h,r) inhibitor complex model to denote
an (n,d, h) inhibitor complex model where every complex contains at most
r clones. Chang et al. (2010) [9] employe a seemingly unrelated notion,
the (d, r; z]-disjunct matrix, to tackle the problem. Moreover, this idea also
provides a fast decoding procedure. A binary matrix is (d,r; z]-disjunct if
for any r + d columns Cf,--- ,C,.4, there exist z rows each intersecting

Ci,---,C,, but none of Cyyq,---,Chiy, e,

r d+r
e\ U ai| ==
i=1 1=r+1

Let t(n, (d, r; z]) denote the minimum number of rows in a (d, r; z|-disjunct
matrix with n columns. The (d : 7; z]-disjunct matrix has been well studied
(Stinson et al., 2000 [50]; D’yachkov et al., 2002 [27]; Stinson and Wei, 2004
[49]; Du et al., 2006 [24]). See Chapter 4 for a general introduction.

Theorem 2.1.4. A (d+ h,r;2e +Y-disjunct matriz can identify all positive
complexes under the (n,d, h,r) general inhibitor complex model with error

tolerance e.

Proof. Consider a positive complex P _and let {X7,---, X} denote a set
of other complexes containing all inhibitors. Since no complex is contained
in another, there exists a clone v; € X;\P for 1 < i < h. Let S’ be an h-set
containing these v;’s such that S’ N P = (). Then

' (P)<e

since P can be in a negative pool only by the occurrence of error.

On the other hand, consider a non-positive complex X* and let { X3, - - -,
Xy} denote a set of other complexes containing all positive ones. Similarly,
we can define w; € X;\X*. Let D be a d-set containing these w;’s and
DN X* = (. By the definition of a (d + h,r;2e + 1]-disjunct matrix, there

exist at least 2e + 1 rows each intersecting every columns in X* and none of
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the columns in D U S for an arbitrary h-set S C N which is disjoint with
X*. Hence the outcomes of these 2e + 1 pools should be negative except for

the occurrence of errors. This implies that
(X)) >2+1—e=e+ 1.

Hence {X : 75(X) < e for some h-set S C AN\ X} is the set of positive

complexes. [

The decoding procedure demonstrated in the proof of Theorem 2.1.4
requires to compute 75 (X) from the knowledge of the testing outcomes
for each candidate complex X € H and every h-set S C N \ X. Let
t = t(n,(d,r;z]). Then each computation of 75 (X) takes O(t(h + r)) and
thus the time complexity of the decoding procedure is O(t(h + r)(";7)|H|)
which could be a big deduction from O(# hr(‘H}'L_l)\H |) in Theorem 2.1.3
where t' = t(n, (H : d; 2)).

Chang et al. (2010) [10] provided an efficient design with a faster decoding
procedure for the general inhibitor.complex model where the improvement
on decoding ability is attributed to.the introduction of inclusiveness prop-
erty to the design. A matrix-is«(h, r; yl=inclusive if for any h + r columns
Ch, -+ ,Chip, there are at most y rows each intersecting C1,--- ,C, and at

least one of Cyi 1, -+ ,Cryp, ie.,

(0e)n(U)

Lemma 2.1.5. A matriz which is (d, r; z]-disjunct and also (h,r; y]-inclusive
with z —y > 2e + 1 is (d + h,r;2e + 1]-disjunct.

<y.

Proof. For any r + d + h columns C4, - - -, Cyi g, there exist z rows in-
tersecting each of C'y,--- , C,. but none of C.y1,---,C,.4 and at most y rows
intersecting each of C'y,--- ,C, and at least one of Cy g1, -+ ,Crigin. Then
there remain at least z —y > 2e 4 1 rows intersecting each of C', - - - , C,. but

none of Cyyq, -+, Crigin. The theorem follows immediately. [ |
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Let t(n,(d, h,r;x]) denote the minimum number of rows in a (d,r; z]-
disjunct and (h, r; y]-inclusive matrix with n columns for some z and y sat-
isfying z —y > .

From Lemma 2.1.5 and Theorem 2.1.4, we immediately have that a
(d,r; z]-disjunct and (h, r; y]-inclusive matrix with z —y > 2e+1 can identify
all positive complexes under the (n,d, h,r) general inhibitor complex model
with error tolerance e. However, the decoding ability of the design is not
showed in the implication of Lemma 2.1.5. Especially, when every positive
complex contains exactly r positive clones, we have the following advanced

decoding procedure.

Algorithm 1:

Step 1. Implement a (d, r; z]-disjunct and (h, r; y|-inclusive matrix with

z—y > 2e+1 as a design.
Step 1: Evaluate 79(X) for every X € H.
Step 2: Return {X € H :70(X) <z —e — 1}.

Theorem 2.1.6. Algorithm I can identify all positive complexes in O(r|H |
t(n, (d,h,r;2e + 1)) decoding-time under the (n,d,h,r) general inhibitor
complex model with error tolerance e when each positive complex contains

exactly r clones.

Proof. Consider a positive complex P and let {X;,---, X} be a set of
other complexes containing all inhibitors. Under the hypothesis that no
complex is contained in another, there exist v; € X; \ P for 1 <14 < h. By
(h, r; y]-inclusiveness property, the number of pools containing P and at least
one of v; is at most y. Hence P can only appear in at most y negative pools

if there is no error. This implies

T()(P)Sy‘l‘&
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On the other hand, consider a non-positive complex X* € H. Similarly,
there exists a clone v € P\ X* for each positive complex P. By the (d,r;z]-
disjunctness of the matrix, there are at least z rows each covering X* and
none of these v’s. Thus the pools corresponding to these rows yield negative
outcomes if there is no error. Even in the worst case that all errors occur in

these pools, we still have
(X" )>z—e>y+e.

Therefore, {X : 79(X) < y + e} is the set of positive complexes.
Since each computation of 7o(X) takes O(tr) time where t = t(n, (d, h, r;
2e + 1]), the time complexity of the decoding procedure is O(tr|H|). ]

This procedure also results in a big deduction in computation, namely,
from computing 73 (X) to computing 79(X) where the measurement value is
only calculated once for each potential candidate, leading to a considerable
reduction in decoding complexity.

Notice that in Chapter 4, we will:introduce some existing disjunct matri-

ces that have certain inclusiveness property.

2.2 The k-inhibitor Complex Model

In the k-inhibitor complex model, the outcome of a test is positive if and
only if it contains at least one positive complex and at most £ — 1 inhibitors.
While Section 2.1 provided nonadaptive pooling designs for this model, we
now give a more efficient one.

Du and Hwang (2006) [23] used a (d+h—k+1,1; 2e + 1]-disjunct matrix
to solve group testing problem in the k-inhibitor clone model with error

tolerance e. It can be easily extended to the complex model as follows.

Theorem 2.2.1. A (d+ h —k+ 1,r;2e + 1]-disjunct matriz can identify all
positive complexes under the (n,d, h,r) k-inhibitor complex model with error
tolerance e.
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Let (’X ) denote the set consisting of all h-subsets of A/. Then the asso-
ciated decoding procedure for Theorem 2.2.1 is to compute 73 (X) for each
S e (hj\_/,\ﬁfl) while {X € H : 7§(X) < e for some (h — k + 1)-subset S of
N\ X} is the set of positive complexes.

According to Theorem 2.1.5 and Theorem 2.2.1, we obtain that a (d, r; z]-
disjunct and (h—k+1, ; y]-inclusive matrix with z—y > 2e+1 can identify all
positive complexes under the (n, d, h, r) k-inhibitor complex model with error
tolerance e, but the decoding ability of such design has not been revealed yet.
When every positive complex has exactly r clones, we show that the decoding
algorithm can be improved.

Algorithm 2:

Step 1. Implement a (d,r;z]-disjunct and (h — k + 1, r;yl|-inclusive

matrix with z —y > 2e + 1 as a design.
Step 1: Evaluate 79(X) for every X € H.
Step 2: Return {X € H : 79(X) <2 —e—1}.

Theorem 2.2.2. Algorithm 2-can identify all positive complexes in O(r|H |
t(n, (d,h —k +1,7r;2e + 1])) decoding time under the (n,d, h,r) k-inhibitor
complex model with error tolerance e when each positive complex contains

exactly r clones.

Proof. Since the implemented matrix is (d, r; z]-disjunct, by the same ar-

gument used in the proof of Theorem 2.1.6 we have
(X)>z—¢

for any non-positive complex X.

On the other hand, let P be a positive complex and { X7, -, X;_x+1} be
a set of other complexes containing as many inhibitors as possible. Since no
complex is included in another, we can take a v; € X;\ P for 1 <i < h—k+1.
By (h—k+1, r; y]-inclusiveness property, the number of pools containing both

P and at least one of v;’s is no more than y. Since a pool containing P and
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none of these v;’s would be tested positive, P can only appear in at most y

negative pools if there is no error. Thus
(P)<z—e—1

We conclude that {X : 70(X) < z—e — 1} is the set of positive complexes. n

Theorem 2.2.1 suggest a decoding algorithm of computing 75 (X) for each

S e (h/i/,\:fl) for each complex X € H while the decoding procedure shown in

Theorem 2.2.2 is to compute 74(X) for each complex X € H, a big reduction

in computing.

Example 1. Consider the (5,1,1,2) 1-inhibitor complex model with N' =
{1,---,5}and H = {12,23,13, 34, 15} where ij denotes the complex consist-
ing of clones i and j. Assume that no error is allowed and 23 is the inhibitor.
In Figure 2.1, M is a (1, 2; 2]-disjunct and (1, 2; 1]-inclusive matrix (refer to
Example 3 in Chapter 4 for a general construction). In the chart we can see
that only 12, the only positive complex, can make the value of 7y lower than

or equal to one.

12345 outcomes
F11100Y 0
11010
11001
10110
10101
M=l 10011
01110
01101
01011
L00111 )

T0 -

Il

12 23 13 34 15

S OO DD OO = =

o =2 N W~ O
T

complexes

Figure 2.1: An example of Theorem 2.2.2
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Chapter 3

Classification Problems on the
Inhibitor Models

The problem we consider in this chapter is to classify all items in the in-
hibitor clone/complex models. Some multi-stage algorithms that were pro-
posed to identify positive elements are to identify and then remove almost all
inhibitors at the first stages (Farach et al., 1997 [28]; Hwang and Liu, 2003
[32] under the inhibitor clone model; De Bonis and Vaccaro, 2003 [18] under
the k-inhibitor clone model). “Of course, one-could accomplish the classifi-
cation work by extending these results. However, very little is known about
nonadaptive pooling designs for the classification problem. An interesting
feature is that a trivial strategy does not work for identifying inhibitors, i.e.,
one can not simply test every item to classify the whole set. We propose a
nonadaptive pooling design to classify all items by starting with the identifi-
cation of inhibitors (Chang et al., 2010 [10]). Our approach is to strengthen
the parameters of (d,r; z]-disjunct type matrix such that the design gener-
ated from the matrix is sufficient to identify all inhibitors and also contains
enough pools, where inhibitors lost their cancellation effect, to identify posi-
tive items. In the following we first introduce the results in 1-inhibitor model
and then extend them to the k-inhibitor model.
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3.1 Nonadaptive Pooling Design for 1-inhibitor
Complex Model

In order to distinguish inhibitors from negatives, we need to make an ad-
ditional assumption: (A) Among the given complexes in H, there exists at
least a positive one. The reason for this is that one cannot distinguish neg-
ative complexes from inhibitors without any positive complex. In addition,
for the inhibitor complex model with » > 2, we need another essential as-
sumption on complexes: (B) For each negative complex, there is always a
positive complex such that no inhibitor is included in their union. Otherwise,
any test containing the negative complex that violates the assumption must
yield a negative outcome and thus the recognition of this complex would be
ambiguous. Due to the naturalness of these two assumptions, we take them
as default properties on complexes throughout this section. The following
result was obtained by Chang et al. (2010) ([10]).

Theorem 3.1.1. An (h, 2r; 2e + 1]-disjunct matriz can identify all inhibitors

under the (n,d, h,r) 1-inhibitor compler model with error tolerance e.

Proof. Consider a positive complex P and let {X;,---, X} be a set of
other complexes containing all inhibitors. Since no complex is contained in
another, there exists v; € X;\ Pfor 1 < <h. By (h, 2r;2e + 1]-disjunctness
property, there exist at least 2e + 1 rows each containing P but none of v;’s.
The pools corresponding to these rows must be tested positive if no erroneous
outcome occurs. Hence,

n(P)>e+1

even in the worst case that e erroneous outcomes occur.

Next, consider a negative complex X ~. According to the assumption (B)
on complexes, there exists a positive complex P such that there is a clone
v € I'\(PUX™) for each inhibitor I. By (h, 2r; 2e + 1]-disjunctness property,
there exist at least 2e + 1 rows each containing P and X ~, but none of these
v’s. Hence, we have that

n(X7)>e+1
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despite e erroneous outcomes.
On the other hand, since an inhibitor appears in a positive pool only

when an erroneous outcome occurs,
T1 (X*) S €

for any inhibitor X*. Thus, we conclude that {X : 71(X) < e} is the set of
inhibitors. ]

An interesting observation coming from this theorem is that the number
of tests required for identifying inhibitors does not depend on the number of
positive complexes while the number of inhibitors is significant to the number
of tests required for identifying all positives in the inhibitor model.

For inhibitor clone model, after identifying all inhibitors, one can remove
them and then continue to identify positive ones; however, this strategy
can not be implemented to the complex model due to intersections between
complexes. In the following, we deal with the clone model and the complex

model separately.

3.1.1 The Inhibitor Clone Model

For the inhibitor clone model, following Theorem 3.1.1, a two-stage algorithm
to classify all clones could be to .identify and eliminate all inhibitors by an
(h,2;2e + 1]-disjunct matrix in the first stage and then turn to study the
clone model in the second stage. The group testing problem in the clone
model has been well studied in the literatures and a main design for this

model is as follows.

Lemma 3.1.2. A (d, 1;2e+1]-disjunct matriz can identify all positive clones
under the (n,d) clone model with error tolerance e; furthermore, it can be
concluded from the design that {v € N;7o(v) < e} is the set of positive

clones.

According to Theorem 3.1.1 and Lemma 3.1.2, it is quite natural to con-
sider a matrix that is (h, 2; 2e + 1]-disjunct and satisfies the following condi-

tion: (x) deleting any h columns and all rows intersecting them would yield
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a (d, 1; 2e + 1]-disjunct matrix. Again, Chang et al. (2010) ([10]) proved that
a (d + h,2;2e + 1]-disjunct matrix can indeed accomplish this job based on

the following general result.

Lemma 3.1.3. For any d > d and r > ', a (d,r; z]-disjunct matriz is
(d',r'; z]-disjunct and the (d',r'; z]-disjunctness property is preserved after

deleting any d — d' columns and all rows intersecting them.

Proof. The first part of the statement is clear. Consider the second part.
Let M be a (d,r; z]-disjunct matrix with column index set [n] and S be a
(d — d')-subset of [n]. Let M’ be the matrix obtained from M by deleting
columns corresponding to indices in .S and rows intersecting them. Let D and
R be two disjoint subsets of [n] \ S with |D| < d" and |R| < ’. Any row of
M that intersects all columns of M (R) and none of the columns of M (SUD)
is preserved in M’ where M (S) denotes the submatrix of M obtained by
restricting the column indices to S. Thus the number of rows intersecting all

columns of M'(R) and none of columns of M'(D) is at least z. ]
Therefore, a (d + h, 2; 2e + 1]-disjunetimatrix is also (h, 2; 2e + 1]-disjunct
and satisfies () and thus it can elassify all-clones. Here, we give a proof

relating to decoding procedure.

Theorem 3.1.4. A (d + h,2;2e 4+ 1]-disjunct matriz can classify all clones

under the (n,d, h) 1-inhibitor modelwith error tolerance e.

Proof. A (d+h,2;2e+ 1]-disjunct matrix is also (h, 2; 2e + 1]-disjunct and

thus by Theorem 3.1.1, we immediately obtain that
IT:={veN:n)<e}

is the set of inhibitors. Consider the matrix M’ obtained from deleting
columns corresponding to inhibitors and rows intersecting them. Notice that
the testing outcome for each pool in M’ inherits the outcome of its corre-
sponding pool in M, showing no additional tests are required. By Lemma
3.1.3, M" is (d, 1; 2e + 1]-disjunct; hence, by Lemma 3.1.2,

{fve N\Z;n(v) <e}
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is the set of all positive clones where the computing of 7o(v) refers to the

pools in M. ]

Since the computing of 71(v) and 7g(v) takes O(t) time, the decoding
procedure for such design takes O(tn) time where t = t(n, (d + h, 2;2e + 1]).

Example 2. Consider the (5,1, 1) 1-inhibitor clone model on N' = {1, --- | 5}.
Assume that no error is allowed, i.e., e = 0. Consider that clone 1 is the in-
hibitor and clone 2 is the positive clone. In Figure 3.1, M is a (2, 2; 1]-disjunct
matrix (see Chapter 4 for general constructions). In chart (a), we can see
that only 1, the only inhibitor, can make the value of 7 lower than or equal to
e = 0. M is then shrunk to a 1-disjunct matrix M’ where columns represent
all clones except inhibitors. Chart (b) shows that only 2, the only positive

clone, has the value of 7y lower than or equal to e = 0.

12345 outcomes
r11100y 0
11010
11001
10110

10101 1 70

SO == —_ 000 o oo

o =~ N W B~ O

T

S =~ N W~ O
T T

......... :1DUUU _mmm

(a) clones (b) non-inhibitory clones

Figure 3.1: An example of Theorem 3.1.4

3.1.2 The Inhibitor Complex Model

We know that an (h,2r;2e + 1]-disjunct can identify all inhibitors for the
(n,d, h,r) inhibitor complex model (Theorem 3.1.1) and a (d,r;2e + 1]-
disjunct can identify all positives for the (n,d,r) complex model (Theorem
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2.1.4). Thus learning from Theorem 3.1.4, one may use a (d + h, 2r;2e + 1]-
disjunct matrix to tackle the classification problem. However, unlike the
inhibitor clone model, for the complex model, after identifying inhibitors,
we can not simply remove them because it could break other complexes and
thus would affect their identification. However, the cutoff function 73 (X)
provides a way to overcome this problem. When S is disjoint with X and
contains a clone from each inhibitor, each negative pool counted in 75 (X)
is not due to the appearance of inhibitors and thus any complex covered by
the pool can be identified as negative. The following result is obtained by

following this idea.

Theorem 3.1.5. A (d + h,2r;2e + 1]-disjunct matriz can classify all com-
plexes under the (n,d,h,r) 1-inhibitor complex model with error tolerance

€.

Proof. First, since a (d + h, 2r;2e + 1]-disjunct matrix is (h, 2r;2e + 1]-
disjunct, by Theorem 3.1.1, 7 := {X : 7 (X) < e} is the set of inhibitors.
Assume that X, Xs, -+, X} are theinhibitors. Let Zx be a set that contains
a clone in X; \ X for 1 < i < bl Definedy.r(X) = 3% (X).

A positive complex P can appear in a negative pool only when an inhibitor

also appears in it or its testing result is fault.  Thus
o Ry < e

since a pool containing an inhibitor and thus some clone in Zp is not evaluated
in the computation.

On the other hand, consider a negative complex X*. Assume that D
is a set consisting of a clone in X \ X* for each positive complex X. A
(d + h,2r;2e + 1]-disjunct matrix is also (d + h,r;2e + 1]-disjunct; hence,

there are 2e + 1 rows covering X* but none of clones in D UZx-. Then
XX > e

since each pool corresponding to any of these 2e+ 1 rows contains no positive

complex and thus yields a negative outcome if there is no error, and it is
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evaluated in the computation due to the fact that it contains no clone in
Zx~. Hence {X € H\ T :17(X) < e} is the set of positive complexes. &

Indeed, a decoding procedure for this design is to distinguish inhibitors
from other complexes by the cutoff function 71(-) and then distinguish pos-
itive complexes from negative ones by the cutoff function 7 7(-). Since the
computing of 71 (X) and 79 7(X) takes O(¢(rh)) time (including the setting of
Zx), the procedure takes O(t(rh)|H|) time where t = t(n, (d+ h, 2r;2e + 1]).

3.2 Nonadaptive Pooling Design for k-inhibitor
Clone Model

In this section we consider the k-inhibitor model where a test yields a positive
outcome if and only if it contains at least one positive clone and less than
k inhibitors. It is assumed that the threshold £ is known beforehand. In
order to identify inhibitors, besides the assumption (A), another assumption
is also essential: (C') Among the given. clones, there exist at least k inhibitors.
Otherwise, inhibitors do not haye enough ability to obscure positive clones
and thus there is no way to differentiate them from negative ones. A bun-
dle of arbitrary k inhibitors has blocking effect while other clones (not all
inhibitors) can’t. Chang et al. (2010) ([10]) used this characteristic to prove
the following result which is an extension of Theorem 3.1.1 from k£ =1 to a

general k£ > 1.

Theorem 3.2.1. An (h—k+1,k+ 1;2e+ 1]-disjunct matriz can identify all
inhibitors under the (n,d, h,r) k-inhibitor clone model with error tolerance
e.

Proof. For any k-set K of inhibitors, it is obvious that

n(K) <e.

Consider a set K of k clones not all inhibitors. Let P be a positive clone

(that can be in K) and S be a set of h — k + 1 clones containing as many
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inhibitors not in K as possible. By the (h —k + 1,k + 1; 2e + 1]-disjunctness
property, there exist at least 2e + 1 rows each intersecting P and all clones
in K but none in S. Then each pool corresponding to any of these rows
contains a positive clone and at most & — 1 inhibitors, implying its testing

outcome is positive except an occurrence of error. Thus
T1 (K) Z e+ 1.

Therefore, | J{K C N : 11(K) <e,|K| =k} is the set of inhibitors. |
The computing of 71 (K) takes O(kt) time and thus the overall decoding

procedure takes O ((Z) kt) time.

In the previous section, we discussed a two-stage algorithm to classify all
clones under the 1-inhibitor model where the first stage is to identify (and
eliminate) all inhibitors by a disjunct matrix and the sequential stage is to
distinguish positive clones from negative ones by another disjunct matrix.
We can extend this idea to produce a two-stage algorithm for the k-inhibitor
model, but with the following modification in the first stage: use an (h —
k+ 1,k + 1;2e + 1]-disjunct matrix:(instead of an (h, 2;2e + 1]-disjunct) to
identify inhibitors and then remove either all of them or exactly h — k + 1
of them so that the remaining-inhibitors; at most k — 1, do not obscure the
positive clones.

Again, from Lemma 3.1.3, a nonadaptive pooling design obtained from
combining an (h — k + 1,k + 1; 2e + 1]-disjunct matrix and a (d, 1;2e + 1]-
disjunct matrix as follows can classify all clones. The following proof is given

in the perspective of decoding.

Theorem 3.2.2. A (d+h—k+1,k+ 1;2e+ 1]|-disjunct matriz can classify

all clones under the (n,d, h) k-inhibitor model with error tolerance e.

Proof. A (d+h—Fk+1,k+1;2e+1]-disjunct matrix is also (h —k+ 1,k +
1;2e 4+ 1]-disjunct and then by Theorem 3.2.1, we immediately obtain that
the union Z of all k-sets K of clones with 71 (K) < e is the set of inhibitors.
Now focus on the sub-matrix M’ obtained from deleting min(|Z|,h — k + 1)
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columns corresponding to inhibitors and rows intersecting them. Then the
columns of M’ relate to at most k& — 1 inhibitors and hence M’ could be
used as a design for the clone model. Since at most h — k + 1 columns are
deleted, M’ is (d, 1;2e + 1]-disjunct by Lemma 3.1.3. Then by Lemma 3.1.2,
{v e N\ Z;m(v) < e} is the set of positive clones where the computing
of 79(v) refers to the pools in M’ and the outcome of each pool coincides
with the outcome of its expanded pool in M because deleted columns do not

intersect it. L]

Notice that in Theorem 3.1.4 for 1-inhibitor model, all columns associ-
ated with inhibitors are deleted but in Theorem 3.2.2 only at most h — k41
columns of inhibitors are deleted. Such deletion is proper because the in-
hibitors corresponding to the remaining columns do not have the ability of
obscuring positives and the remaining matrix still maintain the ability of
solving classical group testing problem.

The decoding procedure for this design is to compute 79(v) for each v €
N\ T besides the computing of 7;(K) for each K € (j;/), and thus its time

complexity is O ((Z) k:t) where't =t(ns (d+h — k+ 1,k + 1;2e + 1)).
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Chapter 4

Constructions of Related
Disjunct Matrices

In the previous chapters, three main properties of matrices employed as
nonadaptive pooling designs are (H : d;z)-disjunct, (d,r;z|-disjunct, and
(d,r; z]-disjunct and (h, r; y]-inclusive with z > y. Many strategies were used
to construct the related matrices: constructing by design theory and set in-
tersections, transforming an m-ary matrix with certain properties to a binary
one, called m-ary method in (Du.and Hwang, 2006 [23]), and controlling the
number of rows covering or not covering a certain number of columns, called
row-covering method.

Before proceeding to see the constructions, we present some basic defini-
tions and notations. We start with some notations on graph theory and then
coding theory.

Let H be the given set of complexes in the considered problem. Then
H can be viewed as a hypergraph with clones as vertices and complexes as
edges and accordingly, it is usually assumed that no edge contains another.
A hypergraph is usually represented by (V, E) where V is its vertex set and
FE is its edge set. The degree of a vertex is the number of edges that it belongs
to while the rank of an edge is the number of vertices that it contains. A
hypergraph in which all vertices have the same degree is said to be reqular;

a hypergraph where all edges have the same rank is called uniform. Let H-
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denote a hypergraph where the maximum rank is r and A the hypergraph
with edge set (‘:)

A code is a set of vectors called codewords and has three primary pa-
rameters: length, size and Hamming distance. The number of entries in a
codeword is its length and is also the length of a code if all codewords have
the same length; the size of a code is the number of codewords in it; the
Hamming distance of a code is the minimum number of nonidentical sym-
bols between two codewords where the minimum is taken over all pairs of
codewords. Moreover, an m-ary code is a code whose symbols are from the
m-ary alphabet {0,1,--- ,m — 1}. For an m-ary code C of length t, the
incident matriz of C'is a t x |C| m-ary matrix whose columns are codewords
of C.

4.1 Lower Bound

Stinson et al. (2000) [50] considered the generalized cover-free family which
is equivalent to (d, r; z]-disjunct design.“They derived a lower bound for the
case z = 1 by a recursive relation.; Stinson-and Wei (2004) extended the
method to a general z by induction on 7+ d. The basic cases and a recursive

relation are as follows.

Theorem 4.1.1. t(n,(d, 1;z]) > c(% + (2 — 1)d) for some absolute con-

stant c.

The basic case d = 1 is the same as the case » = 1 according to the

following result.
Lemma 4.1.2. t(n, (d,r; z]) = t(n, (r,d; 2]).

Proof. Interchanging 0 and 1 in a (d, r; z]-disjunct matrix yields an (r, d; z]-

disjunct matrix. [

Theorem 4.1.3. t(n,(d,r;z]) > t(n—1,(d—1,r;2]) +t(n—1,(d,r — 1;2]).
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Proof. Let M be a (d,r; z]-disjunct matrix. By Lemma 3.1.3, deleting a
column of M and all rows intersecting it yields a (d — 1, r; z]-disjunct matrix.
Similarly, deleting a column of M and all rows not intersecting it yields a

(d,r — 1; z]-disjunct matrix. ]

This recursion leads to a lower bound for t(n, (d,r; z]).

Theorem 4.1.4. Ford+r > 2,

itz ') (38355

where ¢ is the same constant as in Theorem 4.1.1.

Proof. The proof is by induction on r + d. The case r = 1 or d = 1 is
easily obtained from Theorem 4.1.1 and Lemma 4.1.2. For d > 2 and r > 2,

t(n,(d,r;z]) >t(n—1,(d—1,r;2]) + t(n — 1,(d,r — 1;2])
d+r 2log(n — 2) z—1
ZC( r )<log(d+r—1)+ 2 )

()

Stinson and Wei (2004) [49] further gave a stronger lower bound by a

similar argument.

Theorem 4.1.5. There exists an integer ng, such that forn > ng,,

(') (g )

where ¢ is the same constant as in Theorem 4.1.1.
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4.2 Inclusiveness Property and Direct Con-
structions

As mentioned in Chapter 2, a (d, r; z]-disjunct and (h, r; y|-inclusive matrix
with z > y has a great contribution to simplifying the decoding procedure.

The following result is an immediate consequence of Lemma 2.1.5 and
Theorem 4.1.5.

Theorem 4.2.1. t(n,(d, h,r;2e + 1)) > t(n, (d + h,r;2e + 1))

(d+ h+r) (4T d+h+r)e

d+h+r) logn+c< .

> 0.7c
log (“*

However, constructions of such matrices were rare. We observe the fol-

lowing general result.

Lemma 4.2.2. For a binary matriz M, if any r columns are covered by at
least w rows and any r + 1 columns are covered by at most A\ rows, then M

is (d,r;w — dX|-disjunct and (h, ryhX[=inclusive.

Proof. There are at most A rows each intersecting given r columns and
any other column and thus at most A\ rows each intersecting r columns and
some of other h columns. Furthermore, since there are at least w rows that
r columns share in common, the number of rows covering given r columns

but none of other d columns is at least w — d\. ]

For r = 1, the direct construction of disjunct matrices in (Hwang and
Sés, 1987 [34]) satisfies the condition in Lemma 4.2.2, implying the following
result (Chang et al., 2010 [10]).

Theorem 4.2.3. t(n, (d, h,r;2e+1]) < 16(d + h + 2¢)?1g(3n/2)/1g 3.

Lemma 4.2.2 can also be used to check the associated properties of the
matrices derived from T-designs. A T-(v, k,\) design is a collection of k-

subsets, called blocks, of a set of v points such that for any T points there
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exist exactly A blocks containing those 7" points (Anderson, 1990 [3]). Ac-
cording to the Fisher inequality, for a T-design, the number of blocks is not
smaller than the number of points and thus the incidence matrix of a T-design
with blocks as rows and points as columns is not a good pooling design for
clone models. However, T-designs become feasible for the complex models
since the number of tests could be less than (Z), the number of all potential
candidates of positive complexes. Mitchell and Piper (1988) [40] gave a con-
struction of (d, r; 1]-disjunct matrix based on T-designs. Chang et al. (2010)
[10] extended their results to an error-tolerant version and extracted their

inclusiveness property.

Theorem 4.2.4. A T-(v,k,\) design yields at xv (d,T—1;w—d\]-disjunct
and (h,T — 1; hA]-inclusive matriz for d,h < min(w/\, v — T + 1) where

_(;))\ =T +1

w—\(d+h
wIANATh)

Moreover, its error tolerance achieves |
Proof. We first consider the inglusivenéss property. For any set S of T'— 1
columns, there are at most A rows covering S and any given column not in
S, and thus at most hA rows cevering .S and any given h columns other than
those in S for any 1 < h <v =T +1.

Next, for any set S of T'— 1 columns;'|{ (v, B) : B is a block containing
Sand v € B\ S} = (v—T+ 1)\ since for each point v not in S there are
exactly A blocks containing S U {v}. Thus the number of blocks containing
Sis (v =T+ 1)\/(k — T + 1). Therefore, the theorem immediately follows

from Lemma 4.2.2. ]

Example 3. A 3-(¢*> + 1,q + 1,1) design always exists for prime power g
(Stinson, 1997 [48]) and its ¢(q? + 1) X (¢* + 1) incidence matrix is (d, 2; q +
1 — d]-disjunct and (h, 2; h]-inclusive.

Some constructed (d, r; z]-disjunct matrices potentially satisfy inclusive,
especially when the number of rows covering any designated r columns is

lower bounded by a certain number.
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Lemma 4.2.5. Let M be a binary matriz in which the number of rows cov-
ering any designated r columns is w. Then M is (h,r; zy]-disjunct if and

only if M is (h,r;w — zp|-inclusive.

D’yachkov et al. (2002) [27] gave a simple construction of (d, r; 1]-disjunct
matrices by taking all k-subsets of [n] as the rows and then it is further
extended to the error-tolerant case (Du et al., 2006 [24]). We observe its

inclusiveness property as follows.

Theorem 4.2.6. The (Z) X n binary matriz where the rows consist of all
k-subsets of [n], r < k <min(n—d,n—h), is (d,r; z4)-disjunct and (h,r;yp]-

inclusive, where
_(n—d-r _(n—TY
Rd = L—r y Yn = L— o Zh-

Moreover, zg —yn, > 0 for h,d << n.
n—d—r
k—r

r <k <mn-—d. Given an r-set R, the number of rows covering R is (Z::)

By Lemma 4.2.5, we immediately have the‘theorem. Furthermore, 24—y, =

() + () = () > 0dord << '

Proof. It is easily derived that this matrix is (d,r; ( )]-disjunct for

Note that taking k = r or n — d would minimize the row number (Z) and
copying each row in a (d, r; 1]-disjunct z times would yield a (d, r; z]-disjunct

matrix. Hence,

Corollary 4.2.7. t(n, (d,r; z]) < zmin((}), (7)).

4.3 Constructing by m-ary Method

(H : d;z)-disjunct matrices are basic pooling designs for complex model.
For the clone model, Du et al. (2006) [24] gave a construction of d-disjunct
matrices by first constructing an m-ary matrix satisfying certain property
and then converting it to a binary one. Gao et al. (2006) [29] extended
the construction to the complex model where the m-ary matrix used to be

converted satisfies the following property.
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Definition 1. An m-ary matrix is (H : d; z)-disjunct if for any d 4+ 1 edges

Xo, X1, -+, Xy, there exist a least z rows in each of which
{entries of X;} ¢ { entries of Xo}
fori=1,---,d.

Let t,,(n, (H : d;z)) denote the minimum number of rows in an m-ary
(H : d; z)-disjunct matrix with n columns.

Gao et al. (2006) [29] gave a construction of m-ary (H; : d; z)-disjunct
matrix. Let GF(q) be a finite field of order q. Suppose ¢"**! > n. Associate
each vertex v € N with a distinct polynomial p, of degree k over GF(q). Let
S be a subset of s elements in GF(gq). Construct an s x [N g-ary matrix
A (q,k, s) with rows labeled by S and columns by A where each cell (a,v)
is assigned the element p,(a) in GF(q). Then,

Lemma 4.3.1. If ¢ > s > drk + z and ¢"*' > n where q is a prime power,
then Ap.(q,k,s) is an s X n q-ary (Hz.: d; z)-disjunct matriz.

Proof. Let Px(a) denote the set {p,(a): v-€ X} = {entries of X in row a
}. Suppose to the contrary that for some X¢, X, - -+, Xy, there are no such z
rows. Then there are at least drk+ 1 values a € S such that Px,(a) C Px,(a)
for some i. Then there exists a fixed-# such that Px,(a) C Px,(a) for at
least rk 4+ 1 values a € S. Thus for those rk + 1 values a € S and any
u € Xy, pu(a) € Px,(a), implying that there exists some v € X, such that
pu(a) = py(a) for at least k + 1 distinct @ € S. Thus p, = p,, showing
u=uv € Xg. Hence X; C X, contradicting the assumption on H;. [

Gao et al. (2006) converted the Ap.(q, k, s) matrix to the binary matrix
Br.(q,k,s) whose columns are labeled by A. For any a € S and F €
{Px(a) : X € H:}, Bpu.(q,k,s) has a row labeled by < a, F > and has a
l-entry in cell (< a, F >, v) if p,(a) € F, and a 0-entry otherwise.

Lemma 4.3.2. By.(q,k,s) is (Hr : d; z)-disjunct.
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Proof. Consider any d + 1 edges Xg, X1,---,Xy. Let a be a row in
Ap. (g, k,s) such that Px,(a) € Px,(a) for i = 1,---,d. Then for any i,
Pu; (@) ¢ Px,(a) for some v; € X;. Thus row < a, Px,(a) > of By.(q,k,s)
covers X but not X; fori =1,--- ,d. Since Ay.(q,k, s) has z such rows, the

theorem follows. ]

Then properly choosing the parameters would imply

Theorem 4.3.3. For any d, r, n and z, there exists an (H; : d; z)-disjunct

matriz By, (q, k, s) with at most q - (q+:_l) rows, where
drlgn
= 1 1)—————.
g =2+ (1+of ))lg(drlgn)

2dr1
Moreover, for n > 2111_3, q<z+ rign'
lg(drlgn)

Proof. For the existence of Ay, (q, k, s), k and ¢ should be chosen to satisfy
IN|=n < ¢" and ¢ > drk + z. Then

q—z

logqn—1§k§ o

(4.3.1)

for the chosen k and g. There-exists a positive integer k satisfies (4.3.1) if ¢

satisfies log, n < &=, Therefore, it suffices to choose ¢ satisfying

NI g4, (4.3.2)

Let gy be the smallest number ¢ satisfying (4.3.2). Then

drlgn

4o S Z+ (1 + h(d'f’, n))m

where lg la(l1g n)
glglrlgn

h(l,n) = =o(1

07 = felgn) - Teleign) ~ )

For n > 2@ lg(drlgn) > 4, implying (Ig(drlgn))? < 2'el@rlsn) — drign,
Hence 21glg(drlglg(drign) <lg(drlgn), implying h(dr,n) < 1. Therefore,
<4 2drlgn
- lg(drlgn)

qo
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for n > 2.
Next, Bp,(q,k,t) has > _o[{Px(a) : X € Hz}| rows. [{Px(a): X €
HI ST () < () :
Thus By, (q, k, s) has at most q(‘”:_l) < ¢"*! rows for some s where ¢ is

as in Theorem 4.3.3. Hence,

Corollary 4.3.4. When z = O(1) and n > 2ir

2drlgn

t(n, (Hy : d; 2)) = O((m

)r—i—l)‘

Chen et al. (2007) [13] proposed another conversion to transform Ag,
(q,k,s) to an (H: : d, z)-disjunct matrix. We generalize the conversion such
that it is feasible not only for Ay.(q, k, s) but also for any m-ary (H; : d; z)-

disjunct matrix.

Theorem 4.3.5. If there exist a t X n m-ary (Hy : d;z)-disjunct matrix
M and a t' x m (d,r;2']-disjunct matriz M', then there ezists a tt' X n

(Hy : d; z2')-disjunct matriz.

Proof. The conversion is to label columms of M’ by 0, --- , ¢g—1 and replace
each entry of M = [M;;] by a-cortesponding column of M’. Let M* be the
matrix obtained from the conversion. Censider d + 1 edges Xy, X1, -+, Xy4.
In the matrix M, let [ be a row in which {entries of Xy} 2 {entries of X;}
fori =1,---,d. Let v; € X; \ Xy such that M, ¢ {entries of Xy}. Thus
{M, i =1,---,d} N {entries of Xy} = 0. Then after the conversion, there
exist 2’ rows in M* such that each row intersects columns corresponding to

vertices of Xy and none of columns corresponding to the v;’s, i.e., | N Xp \

d
U NX;| > 2. Since in M there are at least z rows in each of which {entries

i=1
d

of Xo} 2 {entries of X;} fori=1,---,d, |NXp\ UﬂXZ-| > 27 ]
i=1

In particular, by Lemma 4.3.1 with s = drk + z, we have
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Theorem 4.3.6. If n < ¢**' and q > drk + z, then t(n, (H; : d;z2')) <
(drk + 2)t(q, (d,r; 2']).

The m-ary method is also employed in the constructions of (d,r;z]-

disjunct matrices where the m-ary matrices satisfy the following property.

Definition 2. An m-ary matrix M = [M};] is (d, r; z]-disjunct if for any two
disjoint sets D and R of columns with |D| = d and |R| = r, there exist at

least z rows indexed j such that
{mﬂZED}ﬂ{m],zeR}Z(@

Let tn(n,(d,r;2]) denote the minimum number of rows in an m-ary
(d, r; z]-disjunct matrix with n columns.
We relate this disjunctness property to the (H : d; z)-disjunctness.

Lemma 4.3.7. t,,(n, (Hy : d;2)) < t,n(n, (d,r; z]). In particular, t,,(n, (d,r; z])

Proof. Let M be an m-ary (d,r; z]-disjunct matrix. Consider any d + 1
complexes Xg, Xy, -+, Xy € Hrw Since no eomplex contains another, there
exists v; € X; \ X for i = 1-=.diLet- D.and R be two disjoint subsets of
N such that |D| = d, |R| = rj{uy, -~ .09} € D and Xy C R. Then by
the (d, r; z]-disjunctness of M, there exist z rows in each of which {entries of
D} N {entries of R} = ). Then in each of these z rows, entry of v; ¢ {entries
of Xo} and thus {entries of X;} ¢ { entries of X,} for i =1---d. Hence, M
is (Hr : d; z)-disjunct.

Next, suppose that M is an m-ary (H; : d; z)-disjunct matrix. Let D and
R be any two disjoint sets of columns with |D| = d and |R| = r. Suppose
D ={vy,--- ,v4}. Let v be an element in R and X; denote (R \ {v}) U {v;}
for i =1---d. Then by the (H} : d; z)-disjunctness of M, there exist z rows
in each of which {entries of X;} ¢ {entries of R} for i = 1---d, implying
entry of v; ¢ { entries of R} for ¢ = 1---d. Thus in each of these z rows,
{entries of D} N { entries of R} = 0. ]
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In fact, the complex set Hy in Gao et al.’s construction can be designated
as H. Then by Lemma 4.3.7 we have

Theorem 4.3.8. When z = O(1) and n > 2§,

2drlgn
lg(drlgn)

Stinson and Wei (2004) [49] proved the following result while the case
z = 1 was proposed by D’yachkov et al. (2002) [27].

t(n, (d,r; 2]) = O(( ).

Lemma 4.3.9. If there exist a t x n m-ary (d, r; z|-disjunct matriz and a
t' x m (d,r; Z]-disjunct matriz, then there exists a tt' x n (d,r; zZ'|-disjunct

matrix.

Next, we shall consider the construction of m-ary (d,r; z]-disjunct ma-
trices. The incident matrices of some well-known m-ary codes potentially
have a disjunct property. A mazimum-distance separable (MDS) code with
parameters (m, k,t) is an m-ary code.of size m*, length ¢t and Hamming dis-
tance t — k + 1. Kautz and Singleton (1964) [35] first employed an MDS
code to construct d-disjunct matrices. Sagalovich (1994) [45] observed the

(d, r; 1]-disjunctness property of its incident matrix.

Lemma 4.3.10. If t > dr(k — 1) 41-and m* > d + r, then for any MDS
code C with parameters (m, k,t), the incident matriz of C is a t x m* m-ary

(d, r; 1]-disjunct matriz.

For any integer £ > 2 and a prime power ¢ > k — 1, there exists an
MDS-code with parameters (g, k,q + 1), which is a Reed-Solomon code. By
the existence of such code, D’ychkov et al. (2002) [27] derived the following

result.

Theorem 4.3.11. If q is a prime power and q > dr(k — 1) + 1, then

t(q", (d, 75 2]) < (dr(k — 1) + 1)t(q, (d, 73 2]).
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Proof. The matrix @) obtained from removing ¢ — dr(k — 1) rows from
the incident matrix of a (¢, k,q + 1) MDS code is the incident matrix of a
(q,k,dr(k —1) + 1) MDS code. Thus by Lemma 4.3.10, Q is a (dr(k — 1) +
1) x ¢* g-ary (d,r;1]-disjunct matrix. By the existence of such matrix and
Theorem 4.3.9, the theorem follows. [

An (n,m,{d,r})-z-separating hash family is a set of functions F, such
that |[Y| =n,|X|=m, f: Y — X for each f € F, and for any D,R C Y
such that |D| = d, |R| = r and DN R = (), there exist at least z functions
f € F such that

{fy):yeDIn{f(y):ye R} =0.

An (n, m,w)-z-perfect hash family is a stronger family of functions where for

any |W| = w, there exist at least z functions such that for any y # ¢y’ € W,

fly) # f).

Then it is obvious that an (n, m, d 4 r)-z-perfect hash family is an (n,
m, {d, r})-z-separating hash family which is-equivalent to an m-ary (d,r; z]-
disjunct matrix with n columus.

Stinson and Wei (2004) [49] observed the-following result from a result
on separating hash family (Stinson et al. 2000 [50]).

Lemma 4.3.12. For any positive integers m, d and r, there exists an infinite

class of t x n m-ary (d, r; 1]-disjunct matrices where t = O((dr)'®" ™ Ign).

Note that the function Ig* is defined by 1g*(n) = 1g"([lgn]) + 1 for n > 1
and 1g*(1) = 1. In fact, it grows very slowly; for example, 1g*(n) < 6 for
n < 265536

Further, they used a result on perfect hash family with z = 1 (Wang and
Xing, 2001 [53]) to obtain

Lemma 4.3.13. For any positive integers m > d—+1r, there exists an explicit
construction for an infinite class of t x n m-ary (d,r;1]-disjunct matrices

with t = O(c(m)logn) for some function ¢ of m.
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Then plugging the m-ary matrix in Lemma 4.3.13 and the matrix in
Corollary 4.2.7 into Theorem 4.3.9 with m = d + r implies

Theorem 4.3.14. t(n, (d,7;2]) < O(2(*")e(d + ) logn) for some function
cofd+r.

4.4 Constructing by Controlling Row-covering

Chen et al. (2008) [14] provided an upper bound by another approach. A
z-cover of a hypergraph G = (V, F) is a multi-subset C C V' of vertices such
that |C N F| > z for every edge F' € F. Let t.(G) denote the minimum
size among all z-covers of G. Since a z-cover can be obtained by copying a

1-cover z times,

1.(G) < 24:(G).

Let G* be the hypergraph with vertex set ([Z}) and edge set F* = {Ep R :
DNR =0,|D| = d,|R| = r} where Epp = {S € ([Z]) : R C S and
DNS = 0}. Let Mg« be the matrix with rows indexed by a z-cover C of
G* and columns indexed by [n], and the matrix has a l-entry in cell (W, a)
if a € W, and a 0O-entry otherwise. Chen et al. (2008) [14] observed that
Mgsc is (d,r; z]-disjunct. To abtain-an upper-bound of ¢;(G*), they quoted
a lemma of Lovasz (1975) [39] on hypergraph. For a hypergraph G = (V, F),
greedily choosing vertices sequentially ‘such that every chosen vertex belongs
to the maximum number of edges which are not covered yet yields a 1-cover

of G of size less than
4

. 1+InA
mlnFE}‘|F|( )

where A is the maximum degree of a vertex, thus implying an upper bound
of t1(G). Therefore,

Theorem 4.4.1. For any positive integers d,r,w, z and n, with r < w <

n —d, there ezists a t x n (d, r; z]-disjunct matriz with

t < z% {1 +1n (Tf) (” p w)} . (4.4.1)
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[n] *
Proof. G* = (([Z]),f*) is uniform and regular. Thus m1n|1£:f)| F = |‘Z |

where |[F*| = (7)(",") and A = (¥)(""). |

By properly choosing w to minimize (4.4.1), they proved

Theorem 4.4.2. For any positive integers d,r,z and n with d+r < n,

d+ 7“)7‘(‘%7”)%1 4 (d+r)(1 +In(=2

t(n, (d,r;z]) < 2( d+r

- +1)).
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Chapter 5

Reconstruction of Hidden
Graphs

As introduced previously, in the graph reconstruction problem, a hidden
graph G is known belonging to a given family G of labeled graphs on the set
N = [n], and the main task is to reconstruct G by asking queries as few as

possible, where a query is of the form,
“Does S induce at least one edge of G?7”

for S C N. This query is denoted by-@Q(S) and Q(S) = 1, representing
“yes”, or 0, representing “no”.

G usually provides some information to the setting of queries. In this
chapter, we study the graph reconstruction problem where the structure of

the hidden graph is known.

Notations. Subsequently, for a graph G, G[S] denotes the induced subgraph
of graph G with vertex set S.

5.1 Preparation and Subroutines

A simple graph is a graph where each edge contains exactly two vertices

and a vertex v is said to be adjacent to w if they induce an edge. We focus
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our attention on the reconstructions of four class of hidden simple graphs
of known structure: Hamiltonian cycle, matchings, stars, and cliques. A
Hamiltonian cycle on N is a cycle passing through every vertex in N exactly
once and thus G could be the set of all

(n—1)!
2

Hamiltonian cycles on N and of course, the hidden graph G is one of them.
A matching on N is a set of disjoint edges while a perfect matching is a
matching where every vertex in A/ belongs to (is incident to) one edge. Thus

the number of perfect matchings on N is

n!
22 (n/2)!"

A star is a graph where all its edges have a common vertex called center. A
star of k edges can be defined by choosing a vertex as the center and other
k vertices that are adjacent to the center. Therefore, the number of stars on

N is upper bounded by

1
n—1 n(n —=1) 7> \E n(n —1)
k:2n< i )+T—|—1—n(2 1) Tjtl.

n

A cligue on N is of the form (‘;) for some S C N of size at least two and
there are 2" — n — 1 different cliques on N.

In the following, we will introduce some useful tools and algorithms that
will be used as subroutines in the main algorithms.

An affine plane of order p is a balanced incomplete block design with p?
points and p? +p blocks of size p such that each pair of points appear together
in exactly one block. It is well-known that an affine plane of order p exists
whenever p is a prime power (see Anderson, 1990 [3]).

The affine plane method was first proposed in (Tettelin et al. [51], 1996;
Grebinski and Kucherov, 1998 [30]) and then employed by Hwang and Lin

(2003) [32] which is to take an affine plane with the point set containing A
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and then reconstruct each subgraph induced by a block. The advantages of
using this method are that each block has size p which could be much smaller
than n and that all graphs induced by blocks can be dealt simultaneously.
The problem is how small a prime power p such that p?> > n could be. Nagura
(1952) [43] proved that for n > 24, there is always a prime between n and

1.2n. Hence,

Lemma 5.1.1. For n > 242, there exists a prime p such that n < p? <
1.44n < 2n.

Angluin and Chen (2006) [4] gave an elegant algorithm (see Algorithm 1)
to find a vertex contained in at least one edge of a hidden graph on n vertices

using at most lgn queries.

Algorithm 1 FIND-ONE-VERTEX
: S — N
if Q(S) =0 then
Return 0.
end if
A— N.
while |A| > 1 do
Arbitrarily partition A into.roughly equal-sized Ay and A;.
if Q(S\ Ayg) =1 then
S — S\ Ay, A— A;.
else
A — AQ.
end if
: end while
: Return the element in A.

[ S e S e G
Ll

Notice that the algorithm preserves the invariance that Q(S) = 1 and
Q(S\A) = 0 if the input hidden graph contains at least one edge. This
shows that A contains a vertex on an edge of the hidden graph; indeed,
|A] is monotonically decreasing and the halving of A’s cardinality in each

iteration results in lgn queries. Furthermore, once the algorithm terminates,
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A = {v} for some vertex v and S\ {v} contains a vertex adjacent to v;
hence, a neighbor of v can be found by using binary splitting algorithm on
S\{v} with v added to each test. Therefore, reconstructing an edge can be
accomplished in 21gn queries.

A matching is maximal if it is not contained in a matching of larger
size. A general approach that we propose to reconstruct a hidden graph is
to find a maximal matching of the hidden graph at the beginning of the
progress of reconstructing the whole graph (Chang et al., 2010 [11]). The
advantage of this approach is that a reconstructed maximal matching of
a hidden graph would reveal a partial structure of the hidden graph, thus

providing a direction to complete the reconstruction of the remaining graph.

Algorithm 2 FIND-MAXIMAL-MATCHING
L. M—0,S—N,U«—0,U 0.

while Q(S) = 1 do

3:  Reconstruct an edge in G[S], say {u, f(u)}. M — M U {{u, f(u)}},
S = S\{u, f(u)}, U — U Ufu Ul — U U{f(u)}.

end while

: Return (M, U, U’ f).

N

AN

Algorithm 2 reconstructs edges-one by one. The two vertices in an edge
are removed from S as soon as it is reconstructed and thus the reconstructed
edges share no vertex, implying the returned set M is a matching. Indeed,
M is a maximal matching because searching an edge induced by S continues
until it induces no edge which implies that no larger matching contains M.
Overall, Algorithm 2 reconstructs a maximal matching of the hidden graph
in 2m/lgn + 1 queries, where m’ is the size of the maximal matching. In
addition, the algorithm returns two sets U and U’ to collect the vertices in
the reconstructed edges and also returns a function f that pairs the vertices
between U and U’ to record the edges in M. We call U U U’ the saturating
set of M for U, U' and M returned by the algorithm.

A nontrivial path is a path containing at least one edge. We provide an
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algorithm (see Algorithm 3) to reconstruct any hidden graph on n vertices
that contains only nontrivial paths in 2m lgn +m + 5 queries where m is the
number of edges in the hidden graph (Chang et al., 2010 [11]).

Algorithm 3 FIND-ALL-PATHS
Let G be a hidden graph on a set N of n vertices and contain only nontrivial
paths.
1: E« 0.
2: Apply FIND-MAXIMAL-MATCHING on G. Assume (M,U,U’,f) is re-
turned.
3 E<— EUM, I —N\(UUU).
4: Apply FIND-MAXIMAL-MATCHING on G[U] and G[U']. Assume
(M, A, A', f1) and (M, B, B', f2) are returned, respectively.
5 E«— FEUM; UMy, I} — U\(AUA/), I U,\(BUB/)
6: for u € I do
7 Apply a binary splitting algorithm on Io\{f(u)} with v added to each test.
Assume v (if any) is obtained from the search.
E— FEU {{’LL,’U}}, Il — Il\{u}, 12 — IQ\{’U}
8: end for
9: while Q([;UI)=1do
10:  Reconstruct an edge in G[I}UT], say {u;i} where uw € I} and i € I.
E—FU {{’LL,’L}}, Il — 11\{u}
11: end while
12: Reconstruct edges between I3 and I by the same way as lines 9-11.
13: Return FE.

Figure 5.1 demonstrates an example of Algorithm 3: (a) The bold edges
form a maximal matching and an independent set I is produced. (b) Line
4 reconstructs edges in G[U] and G[U’]. Then finally two independents sets
I = {b,i,k} and Iy = {a,c,j} are obtained (line 5). (c) Lines 6-8 recon-
struct edges between [; and [;. By applying a binary splitting algorithm
to Io\{f(b)} = {c, 5} with b added to each test, edge {b, c} is reconstructed.
Finally, I = {i,k} and I» = {a,j}. (d) Lines 9-12 reconstruct edges between
I and I, U I5.

Lemma 5.1.2. Algorithm 3 reconstructs any graph G on n vertices contain-

ing only nontrivial paths in 2mlgn 4+ m + 5 queries where m is the number
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Figure 5.1: An example of FIND-ALL-PATHS algorithm

of edges of G.

Proof. The algorithm first starts at-reconstructing a maximal matching
M of G whose saturating set is assumed to be-U U U’. Since G only contains
nontrivial paths, the structure-of the remaining graph consists of two match-
ings F[U] and E[U’] and some edges between U and U’ and [ = N\(UUU")
which is an independent set since M is maximal. Next, FIND-MAXIMAL-
MATCHING would reconstruct the matching M; induced by U and Ms in-
duced by U’ whose saturating sets are AU A" and BU B’, respectively. Then
the incident edges of all vertices in AU A’U BU B’ are reconstructed so it re-
mains to reconstruct edges between three independent sets I, I = U\(AUA’),
and I, = U’ \ (B U B’). Note that constructing those three matchings takes

2(|M| + | M| + | Ms])1gn +3

queries.
Next, an edge between I and I, is not reconstructed only if it is not in M

and every vertex in [ is adjacent to at most one vertex in I. Therefore, line
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7 exactly accomplishes the reconstruction of edges between I; and I that
are not in M. Since |I;| < |M] and the splitting algorithm takes at most lgn
queries, there are at most

mylgn + | M|

queries spent in this portion where m; is the number of edges reconstructed
here.

Finally, it remains to reconstruct hidden edges between I and I, UI,. For
the edges between I and [, as shown in lines 9-11, the algorithm recursively
reconstructs an edge in G[I; U I], say {u,i} where u € I, and i € I and
removes u from [; until 7 U I; induces no edge. Note here that u can be
removed because both its incident edges are reconstructed after the recon-
struction of {u,i} and indeed removing u is to make sure that edges in I U I;
are unreconstructed before each iteration. Similarly, the edges between I and
I5 can be reconstructed by the same way. Note that the number of queries
spent here is at most

2molgn + 2

where my is the number of edges between I and I U .
It is easily observed that each edge is reconstructed once and hence the
overall cost of this algorithm isupper bounded by 2m lgn+m+5. Therefore,

the lemma follows. ]

5.2 Reconstructions of Simple Graphs

Assume that G consists of all Hamiltonian cycles on N. Since there are

(n—1)! (n—1)! <

of them, the theoretic information lower bound is Ig

nlgn. Grebinski and Kucherov (1998) [30] gave a sequential algorithm to
reconstruct a Hamiltonian cycle with 2nlgn queries. Chang et al. (2010)
[11] improved their result to (14 o(1))(nlgn) by employing the affine plane
method together with the algorithm FIND-ALL-PATHS.
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Theorem 5.2.1. For any hidden Hamiltonian cycle G of order n > 242, G

can be reconstructed in nlgn + 15n queries.

Proof. By Lemma 5.1.1, there is a prime p such that n < p? < 2n. Add
p? — n dummy vertices to obtain an affine plane and take them away when
testing the blocks. A block is said to be positive if its testing result is
positive. It is obvious that each positive block induces a graph containing
only nontrivial paths; hence, a Hamiltonian cycle can be reconstructed by
applying FIND-ALL-PATHS to these blocks (see an example in Table 5.1).
Since there are p? +p blocks and every edge appears exactly in a block, there
are totally at most (p? + p) + 2mlgp + m + 5(p* + p) queries where m = n.
Hence, a Hamiltonian cycle can be reconstructed in 12n+6v/2n+nlg2n+n <
nlgn + 15n queries for n > 242. [ |

Next, we consider that G is the set of all matchings on N. The recon-

struction of matchings has been studied in (Alon and Asodi, 2005; Bouvel et

|
al., 2005). The number of perfect matchings on n (even) vertices is ,LL,
22 (n/2)!

|
providing an information lower bound-lg 5 = (1+0(1))(51lgn) on the

> !
reconstruction of matchings. Bouvel et ?Ll. (?433]5) [8] gave sequential algo-
rithms to reconstruct a matching of unknown size and a perfect matching on
n vertices in (1+0(1))(nlgn) and (L+o(1))(5 lgn) queries, respectively. Re-
cently, Chang et al. (2010) [11] took advantage of the affine plane method to

reconstruct a matching of unknown size in at most (14 0(1))(%1gn) queries.

Theorem 5.2.2. For n > 242, reconstructing a matching on n vertices can
be done in mlgn + 4n queries, where m < T is the number of edges of the

matching.

Proof. Similar to the proof of Theorem 5.2.1, the affine plane method
produces p? + p blocks such that each pair of vertices belongs to exactly one
of them where n < p? < 2n. Since each block induces a graph containing just
a matching, FIND-MAXIMAL-MATCHING would reconstruct each graph

induced by a positive block (see an example in Table 5.1). Hence, overall
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process takes at most (p* + p) + 2mlgp < 2n + v/2n + mlg2n queries to

reconstruct a matching on n vertices. |

Example 4. Examples of small order illustrating Theorem 5.2.1 and The-
orem 5.2.2 are given in the following. Let NV = [7]. Then p = 3 is the
smallest prime power such that its square is at least 7. { {1,2,3}, {4,5,6},
{7,8,9}, {1,4,7}, {2,5,8}, {3,6,9}, {1,5,9}, {2,6,7}, {3,4,8}, {3, 5, 7},
{1,6,8}, {2,4,9} } is an affine plane of order 3. In Table 5.1, the hidden
graph G is a Hamiltonian cycle and the hidden graph G5 is a matching. For
G1, {1,2,3},{4,5,6}, {1,4,7}, {2,6,7} and {3,4, 8} are positive blocks and
then FIND-ALL-PATHS is applied to each of them. For Gs, {1,2,3},{4,5,6}
and {3,5, 7} are positive blocks and then FIND-MAXIMAL-MATCHING is
applied to each of them (see the corresponding cell in Table 5.1). Note that
a cell in Table 5.1 is empty means the corresponding block is not positive,
i.e., the graph induced by it contains no edge.

Notice that the dummy vertices 8 and 9 are removed when the blocks
are tested. Based on the property of affine plane, the edge set of the hidden
graph is decomposed into the edge sets.of graphs induced by positive blocks,
and therefore the whole graph is reconstrueted by collecting edges induced

by positive blocks.

Next, we consider that G is the'set-of all stars on N'. Thus |G| = n(2" ! —
1)— @ +1. Accordingly, the information lower bound is (14o0(1))n which
is the number of queries required to reconstruct a hidden star. Bouvel et al.
(2005) [8] gave a sequential algorithm using queries achieving the lower bound
Q(n). In fact, their algorithm requires 2n queries in the worst case. Chang
et al. (2010) [11] proved that the lower bound (1 + o(1))n can be achieved

by a sequential algorithm.

Theorem 5.2.3. A star on n wvertices can be reconstructed in n + 2lgn

queries.

Proof. The first step is to find the center of the star, and then to find all
its neighbors by querying each vertex with the center. An edge of the star
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can be reconstructed in 21gn queries and one of the two vertices in the edge
must be the center. The center can be determined by simply testing one of
these two vertices together with all other vertices. Clearly, the whole process

takes at most 21gn + n queries. [

Finally, suppose that G is the set of all cliques on /. Then the information
lower bound is 1g2™ = n. Bouvel et al. (2005) [8] provided a sequential
algorithm to reconstruct a hidden clique in 2n queries. Chang et al. (2010)
[11] slightly improved their result by giving an algorithm to construct a clique

in n + lgn queries.

Theorem 5.2.4. A clique on n vertices can be reconstructed in n + lgn

queries.

Proof. A vertex v on the clique can be found in Ign queries by applying
FIND-ONE-VERTEX. Then the clique can be reconstructed by querying
each vertex with x. Hence the whole process takes at most n + lgn queries.

]

93



Blocks |G; 5 4 Gy 5 4
1 1
\XZ )
{1,2,3} ) ’
6\—0 600\0
5 4 5 4
{4,5,6}
1
7</D
4
{1,4,7}

eor| °
/3
4
{3,4,8}
7\
o 3
5
{3,5,7}
others

Table 5.1: Examples of small order for Theorem 5.2.1 and Theorem 5.2.2
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Chapter 6

Conclusion and Remarks

Research in this thesis can be cataloged into four categories: identification
problems in k-inhibitor complex model and general inhibitor complex model,
classification problems in 1-inhibitor complex model and k-inhibitor clone
model, lower bounds and constructions of related disjunct matrices, and
graph reconstruction problems on hidden graphs of known structure.

In the study of group testing, werintroduced a new pooling design en-
vironment by allowing the coexistence of inhibitors and complexes which,
separately, have been well studied in the literature. For identification prob-
lems, we give a nonadaptive pooling design, with error-tolerance ability, to
the most general model in such“an. environment with no need to know the
exact relation between inhibitors and positive complexes. We present a novel
concept “inclusiveness” which leads to a significant improvement on the de-
coding procedure. Indeed, identifying all positive complexes can be done
by comparing the values of complexes plugging into certain cutoff functions
after the testing outcomes are produced.

On the other hand, in the k-inhibitor model, instead of treating the in-
hibitors as annoying elements, we face them as substances with certain fea-
tures and attempt to identify them. We prove that all complexes under
1-inhibitor complex model with error tolerance e can be identified by using
O(ec(d, h,r)logn) tests nonadaptively and O(ec(d, h,r)hr logn|H|) decod-

ing time for some function ¢ on d, h, and r, where a (d + h, 2r; z]-disjunct
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matrix is sufficient; no complex nonadaptive design is required. This is also
a notable solution for identification problem under the 1-inhibitor model.
Unlike other identification results, in this design, the strategy of identifying
all inhibitors first is put into execution, leading to a great improvement on
decoding complexity. Furthermore, this design indeed comes from merging a
design for identifying inhibitors in the inhibitor model and a design for identi-
fying positive items in a non-inhibitor model, suggesting a way to strengthen
a design.

The problems we consider in this thesis all originated from applications
that were observed in recent literatures and our results suggest an efficient
nonadaptive strategy so that the time required to perform experiments and
analyze outcomes can be substantially reduced. We believe that the new
properties that we propose in this study can be applied to other practical
models with decent testing performance and decoding procedure. We also call
attention to the study of classification problem. This problem is not only of
theoretical interest but significant in applications. We believe the inhibitory
substances can play an important role in:population and the setting-up of

inhibitor libraries is also in demand:
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