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摘要 

 

本論文主要研究高維度系統的拓樸動態，其中系統是擾動

由F(x,y)=(f(x),g(x,y))形式之系統且滿足低維度函數f為

一連續函數。首先我們會證明如果當低維度函數 f具有返回

擴張固定點，其微小的 C1擾動同樣具有返回擴張固定點。 

假設函數g具有局部抑制的區域且系統沿著一連續的參數

群{Fλ}滿足F0=F。我們會證明如果當低維度函數f為一維度函

數且具有正的拓樸熵或f為一高維度函數具有返回擴張固定

點，則對於所有夠小的參數λ，Fλ也會具有正的拓樸熵。並

且我們證明如果當f為一微分同胚具有topologically 

crossing homoclinic point時，則對於參數λ夠接近0時，

Fλ具有正的拓樸熵。 



更進一步地，我們證明當f具有由轉移矩陣A決定的覆蓋關

係時，則F的任意微小C0擾動系統會存在一緊緻正向的不變集

且當系統限定在此不變集上時會拓樸半共軛到由A生成的單

邊有限型子轉移。此外，如果覆蓋關係滿足strong Liapunov 

condition且函數g為一壓縮函數，則我們會證明出F的任意

微小C1擾動同胚會存在一緊緻的不變集且當系統限定在此不

變集上時會拓樸共軛到由A生成的雙邊有限型子轉移。 
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Abstract 

In this dissertation, we investigate topological dynamics of high-dimensional 

systems which are perturbed from a continuous map f of the following form F(x,y) = 

(f(x),g(x,y)). First, we show that if the lower dimensional map f has a snap-back 

repeller, then the small C1 perturbation of f also has a snap-back repeller. 

Assume that g is locally trapping and the system is along a one-parameter 

continuous family {Fλ} such that F0 = F. We show that if f is a one dimensional map 

and has positive entropy, or f is a high-dimensional map and has a snap-back repeller 

then {Fλ} has a positive topological entropy for all small parameter λ. Also, we 

show that if f is a C1 diffeomorphism having a topologically crossing homoclinic point, 

then {Fλ} has positive topological entropy for allλclose enough to 0. 

Moreover, we show that if f has covering relations determined by a transition 

matrix A, then any small C0 perturbed system of F has a compact positively invariant 

set restricted to which the perturbated system is topologically semi-conjugate to the 

one-sided subshift of finite type induced by A. In addition, if the covering relations 

satisfy a strong Liapunov condition and g is a contraction, we show that any small C1 

perturbed homeomorphism of F has a compact invariant set restricted to which the 



system is topologically conjugate to the two-sided subshift of finite type induced by 

A. 
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1 Introduction

In this dissertation, we mainly study the perturbation from a map f on

the lower dimensional phase space, which has some dynamical properties

(positive topological entropy, snap-back repeller, topologically crossing ho-

moclinicity, covering relations determined by a transition matrix, etc.) to

continuous map G on a high dimensional space such that G is a small per-

turbation of the singular map F which is one of the following cases:

(i) F (x) = f(x) ∈ Rm;

(ii) F (x, y) = (f(x), g(x)) ∈ Rm × Rn;

(iii) F (x, y) = (f(x), g(x, y)) ∈ Rm × Rn and g(Rm × S) ⊂ int(S) for some

compact set S ⊂ Rn homeomorphic to the closed unit ball in Rn, where

int(S) denote the interior of S;

(iv) F (x, y) = (f(x), g(y)) ∈ Rm × Rn, where g is a contraction on the

closed unit ball in Rn and has the unique fixed point in the interior of

the unit ball.

The question we discussed is the following.

(#) Does G have chaotic dynamics?

The map G in cases (ii)-(iv) is considered as multidimensional perturba-

tion of f due to bigger dimension of phase space, while G in case (i) is a

usual perturbation of f and they have the same phase space. The singular

map F in cases (ii)-(iv) can be considered as the skew product (f(x), q(x, y))

with different strength on trapping region of q(x, y): vertical contraction

q(x, y) = g(x) for case (ii), locally trapping q(Rm×S) ⊂ int(S) for case (iii),

and horizontal contraction for q(x, y) = g(y).

In 1975, Li and Yorke [18] introduced the mathematical definition of chaos

and established a very simple criterion: “period three implies chaos” for its
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existence in the real number. This criterion played a key role in predicting

and analyzing one-dimensional chaotic dynamical systems. In 1978, Marotto

[19] wanted to study chaos for higher dimensional discrete dynamical systems

and he proved that “if a differentiable map has a snap-back repeller then it

exhibits the sense of Li-Yorke chaos”. Based on Marotto’s argument, Blanco

Garćıa [2] showed that a snap-back repeller implied positive topological en-

tropy. Here, in Section 2, we give a definition of snap-back repeller slightly

different from Marotto’s in [19, 23] so that it is independent of norms and the

mentioned results of Marotto and Blanco Garćıa still hold obviously. Also

we use the implicit function theorem in Banach spaces to prove that any

small C1 perturbation of a (possibly noninvertible) system with a snap-back

repeller has a snap-back repeller and exhibits chaos. This establishes one

kind of result addressing question (#) in case (i) for snap-back repeller, refer

to [13].

In Section 3-4, we focus on the results about topological entropy which is

a quantitative measurement of how chaotic a map is. In fact, it is determined

by how many different orbits there are for a given map. The methodology

we used to study the question (#) is based on the concept of covering re-

lation which was introduced by Zgliczyński in [33, 34], see Section 3 for its

background and applications. It allows one to prove the existence of pe-

riodic points, the symbolic dynamics and the positive topological entropy

without using hyperbolicity. Also, the persistence of covering relation under

small perturbation allow one to consider the multidimensional perturbation

of systems.

There are several existing literature investigating the question (#) about

topological entropy. For the case when f is an interval map and g =

0 in a real Banach space, Misiurewicz and Zgliczyński in [8] proved that

lim infλ→0 htop(Fλ) > htop(f). For the planar case (ie. m = n = 1),

Marotto in [21] restricted perturbations to two types: the first one is that
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Fλ(x, y) = (ϕ(x, λy), x) and λ ∈ R and the other one that is Fλ(x, y) =

(ϕ(x, λ1y), g(λ2x, y)), λ = (λ1, λ2) ∈ R2, and the map y 7→ g(0, y) has a

stable fixed point. Assuming the map x 7→ ϕ(x, 0) is C1 and has a snap-

back repeller, he showed that for all λ near 0, the map Fλ has a transverse

homoclinic point. His method relies heavily on the planar structure of the

map F0 and the Birkhoff-Smale transverse homoclinic point theorem. Also,

the results from [11, 17] about difference equations can be applied to ques-

tion (#) for the topological entropy, but these are in fact perturbations of

one-dimensional maps.

In subsection 4.1, we establish two kinds of results addressing question

(#) in cases (ii) and (iii) for f having positive topological entropy in one

dimensional space and snap-back repeller in higher dimensional space, along

a one-parameter continuous family {Fλ} such that F = F0 and G = Fλ with

small parameter λ. First we show that if f is a one-dimensional map (without

any additional assumption) then lim infλ→0 htop(Fλ) > htop(f) (see Theorem

4.1 and 4.2). Second, we allow f to be possibly high-dimensional map and

show that if f has a snap-back repeller then htop(Fλ) > 0 for all λ near enough

0 (see Theorems 4.9 and 4.10), refer to [16]. Moreover, as a by-product of

using covering relation, we give a new proof of Blanco Garcia’s result in [2]

that the existence of a snap-back repeller implies positive topological entropy

(see Proposition 4.8).

Theae results are applicable to a high-dimensional version of the Hénon-

like maps. Define a family of maps Hb(x, y) on Rm × Rn, with parameter

b ∈ R`, by its components, for x = (x1, ..., xm) and y = (y1, ..., yn), x̄i = ai − x2
i + oi(b)ϕi(x, y), 1 6 i 6 m,

ȳj = gj(x, y), 1 6 j 6 n,

where each ai is a constant, oi, ϕi, gj are real-valued continuous functions

and limb→0 oi(b)/|b| = 0. If m = n = 1, one can reduce Hb to the original

Hénon-map (x, y) 7→ (a − x2 + by, x) and apply results from this paper as
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well as from [11, 17, 21]. For the general case when m > 1 and n > 1, we

assume that each gj is either dependent only on x or bounded (hence, the

conditions in form (ii) or (iii) are satisfied, respectively). At the singular

value b = 0, the first m components of H0, i.e. x̄i = ai − x2
i for 1 6

i 6 m, form a decoupled map from Rm into itself, and such a map has

a positive topological entropy or a snap-back repeller by choosing suitable

ai. By applying the results about topological entropy of multidimensional

perturbations with snap-back repellers on lower dimensional map, we get

that htop(Hb) > 0 for all b sufficiently near 0.

The idea of a topologically crossing intersection of two submanifolds is

from [5, 7, 8] (see subsection 4.2.1 for background). The methodology we use

to study the question (#) with f having topologically crossing intersection is

based on the construction of topological horseshoe, given by Burns and Weiss

in [5], and the concept of covering relations. Topologically crossing homo-

clinicity guarantees existence of covering relations on which f has both topo-

logical contraction and expansion directions. Unlike the discuss in subsection

4.1, the covering relations have only expansion direction for an interval map

f with positive topological entropy or a map f with a snap-back repeller.

In subsection 4.2.2, we establish the results addressing question (#) in cases

(i)-(iii) for f being a C1 diffeomorphism with a hyperbolic periodic point

which has a topologically crossing homoclinic point, along a one-parameter

continuous family {Fλ}. We show that Fλ has positive topological entropy

for all λ close to 0, refer to [14].

In subsection 4.3.1, we assume that f has covering relations determined

by a transition matrix A (see Definition 4.21) and show that for cases (i)-(iii),

if G is C0 close to F , then G has an isolated invariant set to which the re-

striction G is topologically semi-conjugate to the one-sided subshift of finite

type, denote by σ+
A , and hence the topological entropy of G is greater than

the logarithm of the spectral radius of A (see Theorems 4.22-4.24). In addi-
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tion, in subsection 4.3.2, if the covering relations satisfy the strong Liapunov

condition (see Definition 4.28), then we conclude that if a homeomorphism G

is C1 close to F , then G has an isolated invariant set to which the restriction

of G is topologically conjugate to the two-side subshift of finite type, denote

by σA, for the cases (i) and (iv) provided that F is a homeomorphism (see

Theorems 4.30 and 4.31), and for the case (ii) provided that G is perturbed

from F along a one-parameter continuous family {Fλ} such that F = F0 and

G = Fλ with small |λ| 6= 0 (see Theorem 4.32), refer to [15].

In particular, one can apply the last result to the Hénon-like like family

Fλ(x, y) = (f(x) + p(λ, x, y), q(λ, x, y)), where f is the logistic map f(x) =

µx(1 − x) with µ > 4, p and q are C1 continuous functions of (λ, x, y) such

that Fλ is a homeomorphism for λ = 0, and h(0, x, y) = 0 for all (x, y) and

q(0, x, y1) = q(0, x, y2) for all x, y1 and y2. The map f has covering relations

which are determined by the 2×2 matrix with all entries one and satisfy the

strong Liapunov condition (see Example 4.29). Thus for sufficiently small

|λ| 6= 0, the map Fλ has an isolated invariant set on which Fλ is topologically

conjugate to the 2-shift. By setting p(λ, x, y) = λy and q(λ, x, y) = x, the

family Fλ becomes the original Hénon family.
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2 Snap-back repeller

In this section, we study the snap-back repellers. Recently, Marotto [23]

redefined snap-back repeller and stated that his early result in [19]: “a snap-

back repeller implies Li-Yorke chaos” is still correct. First, in here, we list

the Marotto’s definition of snap-back repeller in [23].

Definition 2.1 ([23], Definition 1). Suppose z is a fixed point of a differ-

entiable map f with all eigenvalues of Df(z) exceeding 1 in magnitude, and

suppose there exists a point x0 6= z in a repelling neighborhood of z, such that

xM = z and det(Df(xk)) 6= 0 for 1 6 k 6 M , where xk = fk(x0). Then z is

called a snap-back repeller of f .

Marotto’s definition depend on the norms of the phase space. Now we

give our definition of a snap-back repeller which is slightly different form

Marotto’s definition. It is independent of norms.

Definition 2.2. Let f : Rk → Rk be a differentiable function. A fixed point

w0 for f is called a snap-back repeller if (i) all eigenvalues of Df(w0) are

greater than one in absolute value and (ii) there exists a sequence {w−n}n∈N

such that w−1 6= w0, limn→∞w−n = w0, and for all n ∈ N, f(w−n) = w−n+1

and det(Df(w−n)) 6= 0.

Based on Marotto’s argument, Blanco Garćıa [2] showed a snap-back re-

peller implies positive topological entropy. The mentioned results of Marotto

and Blanco Garćıa under our definition till hold. Roughly speaking, a snap-

back repeller of a map is a repelling fixed point associated with which there

is a transverse homoclinic point. Notice that if there exists a norm | · |∗ on Rk

such that for some constants δ > 0 and λ > 1, one has that |f(x)− f(y)|∗ >
λ|x− y|∗ for all (x, y) ∈ B(w0, δ) where B(w0, δ) = {x ∈ Rk : |x−w0|∗ < δ},
then f is one-to-one on B(w0, δ) and f(B(w0, δ)) ⊃ B(w0, δ); hence item (ii)

of Definition 2.2 can be satisfied if there is a point q ∈ B(w0, δ) such that
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fm(q) = w0 and det(Dfm(q)) 6= 0 for some positive m. In fact, item (i)

implies that such a norm must exist (refer to [29, Theorem V.6.1]). Further-

more, if all eigenvalues of (Df(w0))TDf(w0) are greater than one, then such

a norm can be chosen to be the Euclidean norm on Rk (see [12, Lemma 5]).

2.1 Preliminaries

In this subsection, we recalled the result about “a snap backer repeller im-

plies Li-Yorke Chaos” which was proved by Marotto in [19] and [23] and “a

snap-back repeller implies positive topological entropy” which was proved by

Blanco Garćıa in [2].

First, we describe the mathematical sense of chaos introduced by Li and

Yorke in [18]:

Theorem 2.3 ([18], Theorem 1). Let J be an interval in R and let F : J → J

be continuous. Assume that there is a point a ∈ J , for which the points

b = F (a), c = F 2(a) and d = F 3(a), satisfy

d 6 a < b < c ( or d > a > b > c).

Then:

1. for every k ∈ 1, 2, . . ., there is a periodic point in J having period k;

2. there is an uncountable set S ⊂ J (containing no periodic points), which

satisfies the following conditions:

(a) for every p, q ∈ S with p 6= q,

lim sup
n→∞

|F n(p)− F n(q)| > 0

and

lim inf
n→∞

|F n(p)− F n(q)| = 0;

7



(b) for every p ∈ S and periodic points q ∈ J ,

lim sup
n→∞

|F n(p)− F n(q)| > 0.

In [19], Marotto studied the Li-Yorke theorem to higher dimensional dis-

crete dynamical systems.

Theorem 2.4 ([19], Theorem 1). Let f : Rk → Rk possess a snap-back

repeller. Then f exhibits Li-Yorke chaos, that is, there exist

1. a positive integer N such that if m > N is an integer, the map f has a

point of period m;

2. an uncountable set S containing no periodic points of f such that

(a) if x, y ∈ S with x 6= y, then

lim sup
n→∞

|fn(x)− fn(y)| > 0;

(b) if x ∈ S and y is a periodic point for f , then

lim sup
n→∞

|fn(x)− fn(y)| > 0;

(c) f(S) ⊂ S; and

3. an uncountable subset S0 of S such that if x, y ∈ S0, then

lim inf
n→∞

|fn(x)− fn(y)| = 0.

Next, we review the background of topological entropy. Let (X, d) be a

compact metric space and let f : X → X be a continuous map. For n ∈ N,

the function

dn,f (x, y) = max
06k<n

d(fk(x), fk(y))

measures the maximum distance between the first n iterates of x and y. For

n ∈ N and ε > 0, a set S ⊂ X is called (n, ε)-separated for f provided

8



dn,f (x, y) > ε for every pair of points x, y ∈ S with x 6= y. The number of

different orbits of length n (as measured by ε) is defined by

r(n, ε, f) = max{#(S) : S ⊂ X is a (n, ε)-separated set for f},

where #(S) is the number (cardinality) of elements in S. In order to measure

the growth rate of r(n, ε, f) as n increases, we define

h(ε, f) = lim sup
n→∞

log(r(n, ε, f))

n
.

Finally, we consider h(ε, f) varies as ε goes to 0 and define the topological

entropy of f as

htop(f) = lim
ε→0+

h(ε, f).

Moreover, let f : X → X be a continuous function where X is a metric

space. Here, the topological entropy of f is defined to be the supremum of

topological entropies of f restricted to compact invariant sets. Refer to [29]

for more background.

Blanco Garćıa [2] proved that a snap-back repeller implies positive topo-

logical entropy.

Theorem 2.5 ([2], Theorem 1). Let F : Rk → Rk be a differentiable map.

If F has a snap-back repeller, then F has positive topological entropy.

2.2 Persistence of snap-back repeller

In this subsection, we show the persistence of snap-back repeller for small C1

perturbations by using the implicit function theorem in Banach spaces (refer

to Lang’s textbook [31, Theorem 6.2.1]). Let k be a positive integer, | · |2 be

the Euclidean norm on Rk, and || · ||2 be the operator-norm on the space of

linear maps on Rk induced by | · |2.

Theorem 2.6. Let f : Rk → Rk be a C1 map on Rk with a snap-back

repeller. If g is a C1 map on Rk such that |f − g|2 + ||Df −Dg||2 is small

9



enough, then g has a snap-back repeller, exhibits Li-Yorke chaos, and has

positive entropy.

Proof. Let x0 be a snap-back repeller of f and {x−n}n∈N be its correspond-

ing homoclinic orbit with x−1 6= x0, limn→∞ x−n = x0, and for all n ∈ N,

f(x−n) = x−n+1 and det(Df(x−n)) 6= 0. Since x0 is a fixed point of f

and all eigenvalues Df(x0) are greater than one in absolute value, there ex-

ists a norm | · |∗ on Rk such that for some constants δ0 > 0 and λ0 > 1,

one has that |f(x) − f(y)|∗ > λ0|x − y|∗ for all x, y ∈ B(x0, δ0), where

B(x0, δ0) = {x ∈ Rk : |x − x0|∗ < δ0}. Thus f is one-to-one on B(x0, δ0)

and f(B(x0, δ0)) ⊃ B(x0, δ0). Let || · ||∗ denote the operator-norm in the

space of linear maps on Rk induced by | · |∗. Let λ1 be a constant with

1 < λ1 < λ0 and let U(f, λ0−λ1) denote the set of all C1 maps g on Rk with

|f − g|∗ + ||Df − Dg||∗ < λ0 − λ1. Then for any g ∈ U(f, λ0 − λ1) and x,

y ∈ B(x0, δ0), we have that

|g(x)− g(y)|∗ > |f(x)− f(y)|∗ − |(g − f)(x)− (g − f)(y)|∗ (2.1)

> [λ0 − (λ0 − λ1)]|x− y|∗ = λ1|x− y|∗;

hence, g is one-to-one on B(x0, δ0). Let δ > δ0 be a constant so that

{x−n}n∈N ⊂ B(x0, δ0). Denote by W the closure of B(x0, δ0). Then W

is a compact subset of Rk. Let S be the space of C1 functions from W

to Rk endowed with the usual C1 topology dC1 which is induced from the

norm | · |∗ on Rk. Then S is a Banach space and the restriction of any C1

map g on Rk to W , denoted by g|W , is in S. Since x0 is a snap-back re-

peller of f and all eigenvalues of Df(x0) are greater than one in absolute

value, there exist positive constants λ2, δ1 and a positive integer M such

that λ1 < λ2 < λ0, δ1 < δ0, x−M ∈ B(x0, δ1)\{x0}, det(DfM(x−M)) 6= 0,

x0 ∈ int(fM(B(x0, δ1)\{x0})) and for all g ∈ U(f, λ0−λ2) and x ∈ B(x0, δ1),

all eigenvalues of Dg(x) are greater than one in absolute value. Let λ3 be a

10



constant such that

max{λ2,
λ0 + δ1

1 + δ1

} < λ3 < λ0. (2.2)

Then for any g ∈ UW (f, λ0 − λ3), we have that g is one-to-one on B(x0, δ1).

In addition, if x ∈ Rk with |x−x0|∗ = δ1, by Equation (2.1) with λ1 replaced

by λ3 and Equation (2.2), we get that

|g(x)− x0|∗ > |f(x)− x0|∗ − |g(x)− f(x)|∗ > λ3δ1 − (λ0 − λ3) > δ1.

Moreover, the continuity of g implies that g(B(x0, δ1)) ⊃ B(x0, δ1). Let

V = B(x0, δ1)\{x0} and UW (f, λ0−λ3) = {g|W : g ∈ U(f, λ0−λ3)}. For the

first desired result, we need to show the existence of a snap-back repeller for

any g ∈ UW (f, λ0−λ3) near f . Define H : UW (f, λ0−λ3)×W×V → Rk⊕Rk

by H(g, x, y) = (g(x)− x, gM(y)− x). Then H(f, x0, x−M) = 0 and H is C1

on its domain; refer to [10, Appendix B]. Since all eigenvalues of Df(x0) are

greater than one in absolute value, we have det(Df(x0)− Ik) 6= 0, where Ik

denotes the identity matrix of size k; refer to [29, Lemma V.5.7.2]. By the

chain rule, det(DfM(x−M)) =
∏M

i=1 det(Df(x−i)) 6= 0. Hence, by writing

z = (x, y) ∈ W × V , we have

det

(
∂H

∂z
(g, z)|g=f, z=(x0,xM )

)
= det

 Df(x0)− Ik 0

−Ik DfM(x−M)

 6= 0;

refer to [28, Proposition 0.0]. By the implicit function theorem applied

to the function H, there exist positive constants λ4, δ2, η and a C1 map

h : UW (f, λ0 − λ4) → B(x0, δ2) × B(x−M , η) such that λ3 < λ4 < λ0,

δ2 < δ1, B(x−M , η) ⊂ V , B(x0, δ2) ∩ B(x−M , η) = ∅, and for every g ∈
UW (f, λ0 − λ4), one has that h(g) ≡ (h1(g), h2(g)) is the unique solution for

the system of equations g(x) = x and gM(y) = x in B(x0, δ2) × B(x−M , η),

and det(DgM(h2(g))) 6= 0. In particular, h(f) = (x0, x−M).

To conclude that the point h1(g) is a snap-back repeller of g, it remains

to show that h2(g) has a backward orbit converging to h1(g). Let g ∈
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UW (f, λ0 − λ4) and denote y−M+i = gi(h2(g)) for all 0 6 i 6 M − 1. Then

y−M 6= h1(g) and gM(y−M) = h1(g). Since g is one-to-one on B(x0, δ1),

g(B(x0, δ1)) ⊃ B(x0, δ1) and h2(g) ∈ B(x0, δ1), we can define y−M−i =

ĝ−i(h2(g)) inductively for i > 1, where ĝ−1 = (g|B(x0, δ1))−1 denotes the

inverse of the restriction of g to B(x0, δ1) and ĝ−i denotes the ith iterate of

ĝ−1. Then the sequence {y−i}i∈N forms a backward orbit of h1(g) such that

y−n ∈ B(x0, δ1) for all n > M . From Equation (2.1), we obtain that for any

x, y ∈ B(x0, δ1),

|ĝ−1(x)− ĝ−1(y)|∗ < λ−1
1 |x− y|∗ (2.3)

By considering inequality (2.3) inductively, we have that for any i > 1,

|y−M−i − h1(g)|∗ = |ĝ−i(y−M)− ĝ−i(h1(g))|∗ < λ−i1 |y−M − h1(g)|∗.

This shows that limn→∞ y−n = h1(g).

Since the norms | · |2 and | · |∗ on Rk are equivalent, the proof of the first

desired result is now complete. The second and third assertions immediately

follow from Theorem 2.4 and 2.5.

Notice that from the above proof of Theorem 2.6, it is sufficient to re-

quire a smallness of |f − g|2 + ||Df −Dg||2 locally in a neighborhood of the

homoclinic orbit associated to the snap-back repeller, instead of globally in

Rk.

As an immediate consequence of the above theorem, we have the following

result for a parametrized family.

Corollary 2.7. Let fµ(x) be a one-parameter family of C1 maps with variable

x ∈ Rk and parameter µ ∈ R. Assume that fµ(x) is C1 as a function jointly

of x and µ and that fµ0 has a snap-back repeller. Then for all µ sufficiently

close to µ0, the map fµ has a snap-back repeller, exhibits Li-Yorke chaos,

and has positive topological entropy.

Next is another application to perturbations of a decoupled system.
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Corollary 2.8. Let fε : Rk → Rk be a one-parameter family of C1 maps

with components (fε)i(x) = hi(xi) + εigi(x) for each 1 6 i 6 k; here we

denote the variable x = (x1, ..., xk) and the parameter ε = (ε1, ..., εk) in Rk.

If the number of snap-back repellers for each map hi is mi > 1, then for all

sufficiently small |ε|, the number of snap-back repellers for the map fε is at

least
∏M

i=1mi.

Gardini et al. [6] studied the double logistic map Tλ : R2 → R2 given by

Tλ(x, y) = (1− λ)x+ 4λy(1− y), (1− λ)y + 4λx(1− x)), λ ∈ [0, 1]; (2.4)

therein the basins of attraction of the absorbing areas are determined to-

gether with their bifurcations. Moreover, it was mentioned that T 2
1 (x, y) =

(h2(x), h2(y)), where h(x) = 4x(1−x), has a snap-back repeller at the origin.

Therefore, applying Corollary 2.8, we have the following result.

Corollary 2.9. For all λ near one, the second iterate of system (2.4) has

a snap-back repeller, exhibits Li-Yorke chaos, and has positive topological

entropy.
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3 Covering relations

In this section, we give the background information about covering relations

and list some properties of the local Brouwer degree.

3.1 Background and applications

In this subsection, we introduce the definition and some applications of cov-

ering relation. Suppose that Rm has a norm | · |. For x ∈ Rm and r > 0, we

denote Bm(x, r) = {z ∈ Rm : |z − x| < r}, that is, the open ball of radius r

centered at the origin 0 in Rm; in short, we write Bm = Bm(0, 1), the open

unit ball in Rm. Moreover, for a subset S of Rm, let S and ∂S denote the

closure and the boundary of S, respectively. It will be always clear from the

context which norm is used.

Now, we briefly recall some definitions from [35] concerning covering re-

lations.

Definition 3.1. [35, Definition 6] An h-set in Rm is a quadruple consisting

of the following data:

• a nonempty compact subset M of Rm,

• a pair of numbers u(M), s(M) ∈ {0, 1, ...,m} with u(M) + s(M) = m,

• a homeomorphism cM : Rm → Rm = Ru(M) × Rs(M) with cM(M) =

Bu(M) ×Bs(M), where S × T is the Cartesian product of sets S and T .

For simplicity, we will denote such an h-set by M and call cM the coordinate

chart of M ; furthermore, we use the following notations:

Mc = Bu(M) ×Bs(M), M−
c = ∂Bu(M) ×Bs(M), M+

c = Bu(M) × ∂Bs(M),

M− = c−1
M (M−

c ), and M+ = c−1
M (M+

c ).
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A covering relation between two h-sets is defined as follow.

Definition 3.2. [35, Definition 7] Let M, N be h-sets in Rm with u(M) =

u(N) = u and s(M) = s(N) = s, f : M → Rm be a continuous map, and

fc = cN ◦ f ◦ c−1
M : Mc → Ru × Rs. We say M f -covers N , and write

M
f

=⇒ N,

if the following conditions are satisfied:

1. there exists a homotopy h : [0, 1]×Mc → Ru × Rs such that

h(0, x) = fc(x) for x ∈Mc, (3.1)

h([0, 1],M−
c ) ∩Nc = ∅, (3.2)

h([0, 1],Mc) ∩N+
c = ∅; (3.3)

2. there exists a map ϕ : Ru → Ru such that

h(1, p, q) = (ϕ(p), 0) for any p ∈ Bu and q ∈ Bs,

ϕ(∂Bu) ⊂ Ru\Bu; and

3. there exists a nonzero integer w such that the local Brouwer degree

deg(ϕ,Bu, 0) of ϕ at 0 in Bu is w; refer to [35, Appendix] for its

properties.

Usually, we will be not interested in the values of w among covering

relations and we just write M
f

=⇒ N instead of M
f,w
=⇒ N .

Next, we list two important results derived from the covering relations

which is proved by Zgliczyński and Gidea in [35]. The first one is that a

closed loop of covering relations implies existence of a periodic point.

Theorem 3.3. [35, Theorem 9] Let {fi}ki=1 be a collection of continuous

maps on Rm and {Mi}ki=1 be a collection of h-sets in Rm such that Mk+1 = M1
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and Mi
fi

=⇒ Mi+1 for 1 6 i 6 k. Then there exists a point x ∈ int(M1) such

that

fi ◦ fi−1 ◦ · · · ◦ f1(x) ∈ int(Mi+1) for i = 1, ...k, and

fk ◦ fk−1 ◦ · · · ◦ f1(x) = x.

The following one shows that a covering relation is persistent under C0

small perturbations.

Theorem 3.4. [35, Theorem 14] Let M and N be h-sets with u(M) =

u(N) = u and s(M) = s(N) = s and let f, g : M → Rm be continuous.

Assume that M
f,w
=⇒ N and that the coordinate chart cN satisfies a Lipschitz

condition. Then there exists ε > 0 such that if |f(x)− g(x)| < ε for all

x ∈M then M
g,w
=⇒ N .

Moreover, the following one shows that a covering relation is persistent

under C0 small perturbations. This result slightly extends theorem 3.4 by

dropping the Lipschitz condition of the coordinate chart.

Proposition 3.5. Let M1 and M2 be h-sets with u(M1) = u(M2) = u and

s(M1) = s(M2) = s and let f , g : M1 → Rm be continuous. Assume that

M1
f,w
=⇒M2.

Then there exists δ > 0, such that if |f(x)− g(x)| < δ for all x ∈M1 then

M1
g,w
=⇒M2.

Proof. By using Theorem 3.4, there exists ε > 0 such that if |fc(x)−gc(x)| < ε

for all x ∈M1,c then

M1
g,w
=⇒M2.

Since M1 is compact, there exists r > 0 such that f(M1) ⊂ Bm(0, r).

If |f(x) − g(x)| < 1 for all x ∈ M1, then g(M1) ⊂ Bm(0, r + 1). By

uniform continuity of cM2 on Bm(0, r + 1), there exists δ′ > 0 such that
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if z, z′ ∈ Bm(0, r + 1) and |z − z′| < δ′ then |cM2(z) − cM2(z
′)| < ε. Let

δ = min{δ′, 1}. If |f(x)− g(x)| < δ for all x ∈M1 then

max
x∈M1,c

|fc(x)− gc(x)| = max
x∈M1

|cM2(f(x))− cM2(g(x))| < ε.

Thus M1
g,w
=⇒M2.

3.2 Properties of local Brouwer degree

In this subsection, we list some basic properties of local Brouwer degree; refer

to [30, Chapter III] for the proof. Let n be a positive integer and T ⊂ Rn

be an open and bounded set. Let ϕ : D → Rn be continuous, T̄ ⊂ D and

q ∈ Rn with q /∈ ϕ(∂T ).

1. Integer property:

deg(ϕ, T, q) ∈ Z;

2. Solution property: If deg(ϕ, T, q) 6= 0, then there exists x ∈ T such

that

ϕ(x) = q;

3. Invariance under homotopy: Let H : [0, 1] × D → Rn be continuous.

Suppose that p /∈ H([0, 1], ∂T ). Then for all λ ∈ [0, 1],

deg(H0, T, p) = deg(Hλ, T, p);

4. Local constant property: If p and q lie in the same connected compo-

nent of Rn\ϕ(∂T ), then

deg(ϕ, T, p) = deg(ϕ, T, q);

5. The excision property: Assume ϕ−1(q) ∩D ⊂ T, then

deg(ϕ, T, q) = deg(ϕ,D, q);
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6. Multiplication property: Let ψ : Rn → Rn be a continuous mappings

and ∆i be the components of Rn\ϕ(∂T ). Then

deg(ψ ◦ ϕ, T, q) =
∑
∆i

deg(ψ,∆i, q) deg(ϕ, T,∆i);

where deg(ϕ, T,∆i) = deg(ϕ, T, qi) for some qi ∈ ∆i.

7. Addition property: If T =
⋃
i∈I Ti, where each Ti is open, ∂Ti ⊂ ∂T ,

and the family {Ti}i∈I are mutually disjoint, then

deg(ϕ, T, q) =
∑
i∈I

deg(ϕ,D, q);

8. If ϕ is C1 and for each x ∈ ϕ−1(q) ∩ T the Jacobian matrix of ϕ at x,

denoted by Dϕx, is nonsingular, then

deg(ϕ, T, q) =
∑

x∈ϕ−1(q)∩T

sgn(detDϕx),

where sgn represents the sign function.

Form the above properties, we can derive the following proposition which

is used later.

Proposition 3.6. Let ψ : Rn → Rn be a C1 map and p ∈ Rn such that

ψ−1(p) consists of a single point and lies in a bounded connected component

∆ of Rn \ ϕ(∂T ), and Dψψ−1(p) is nonsingular. Then

deg(ψ ◦ ϕ, T, p) = sgn(detDψψ−1(p)) deg(ϕ, T, v),

for any v ∈ ∆.
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4 Topological dynamics for multidimensional

perturbations

In this section, the topological dynamics for multidimensional perturbations

of maps are studied. We investigate the question (#) with the lower dimen-

sional map, for cases(i)-(iii), which has positive topological entropy, snap-

back repeller, or topologically crossing homoclinicity and for cases (i)-(ii)

and (iv), which has covering relations determined by a transition matrix.

4.1 Snap-back repellers and one dimensional maps

In this subsection, we state our result about the topological entropy of mul-

tidimensional perturbations of a continuous map f on a lower dimensional

phase space, say Rm, to a continuous family of maps Fλ on a high-dimensional

space, say Rm × Rn, where λ ∈ R` is a parameter, such that at λ = 0, the

singular map F0 is one of the cases (ii) and (iii) referred to question (#). The

case (i) with snap-back repeller on the on a lower dimensional phase space

is discussed in section 2.

4.1.1 One dimensional maps

First, we state the results for multidimensional perturbations of a one di-

mensional maps.

Let f be a continuous map on R. If the singular map F0 depends only

on the phase variable of f (refer to case (ii)), we have the following result.

Theorem 4.1. Let Fλ be a one-parameter family of continuous maps on

R× Rn such that Fλ(x, y) is continuous as a function jointly of λ ∈ R` and

(x, y) ∈ R×Rn. Assume that F0(x, y) = (f(x), g(x)) for all (x, y) ∈ R×Rn,

where f : R→ R and g : R→ Rn. Then lim infλ→0 htop(Fλ) > htop(f).
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For the case when the singular map is locally trapping along the normal

direction (refer to case (iii)), we have the following.

Theorem 4.2. Let Fλ be a one-parameter family of continuous maps on

R× Rn such that Fλ(x, y) is continuous as a function jointly of λ ∈ R` and

(x, y) ∈ R×Rn. Assume that F0(x, y) = (f(x), g(x, y)) for all (x, y) ∈ R×Rn,

where f : R→ R, g : R× Rn → Rn, and g(R × S) ⊂ int(S) for some

compact set S ⊂ Rn homeomorphic to the closed unit ball in Rn. Then

lim infλ→0 htop(Fλ) > htop(f).

In order to prove the above theorems, we need the following lemma,

which can be easy derived from [25]; see also Theorem 3.1 of Misiurewicz and

Zgliczyński in [26]. It says that for continuous interval maps, the positive

topological entropy is realized by horseshoes.

Lemma 4.3. Let I be a closed interval in R and f : I → I be a continuous

map with a positive topological entropy, i.e. htop(f) > 0. Then there exist

sequences {sk}∞k=1 and {tk}∞k=1 of positive integers such that for each k ∈ N

there exist sk disjoint closed intervals, N1, ..., Nsk , which are h-sets in R and

satisfy the covering relations Ni
f tk ,wi,j
=⇒ Nj with wi,j ∈ {−1, 1} for all 1 6 i,

j 6 k; moreover, one has limk→∞(log(sk)/tk) = htop(f).

Now we are ready to prove the Theorems 4.1 and 4.2.

Proof of Theorem 4.1. We only need to consider the case when f has a pos-

itive topological entropy. Let δ be an arbitrary number such that 0 < δ <

htop(f). From Lemma 4.3, there exist k, p ∈ N such that fk has p dis-

joint closed intervals, denoted by N ′i = [a2i, a2i+1] for 0 6 i 6 p − 1 with

a0 < · · · < a2p−1, which are h-sets satisfying

N ′i
f tk ,wi,j
=⇒ N ′j for 0 6 i 6 p− 1 and 0 6 j 6 p− 1,

where wi,j = 1 or −1, and log(p)/k > δ.
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Set N ′ = ∪p−1
i=0N

′
i . Since g ◦ fk−1 is continuous and N ′ is compact, there

exists r > 0 such that g ◦ fk−1(N ′) ⊂ Bn(0, r). Set Ni = N ′i × Bn(0, r) for

0 6 i 6 p−1 and N = ∪p−1
i=0Ni. Then every Ni is an h-set for 0 6 i 6 p−1 and

N is compact in R×Rn. For λ = 0, we have F k
0 (x, y) = (fk(x), g ◦ fk−1(x)).

Hence there are covering relations:

Ni

Fk0 ,wi,j=⇒ Nj for 0 6 i 6 p− 1 and 0 6 j 6 p− 1.

Since F k
λ (z) is uniformly continuous on a compact set, say [−1, 1]×N , as a

function jointly of λ and z, by using Theorem 3.4 for p2 times while each cNj

is linear and satisfies the Lipschitz condition, there exists λ0 > 0 such that

if |λ| < λ0 then we have

Ni

Fkλ ,wi,j=⇒ Nj for 0 6 i 6 p− 1 and 0 6 j 6 p− 1.

Let m be a positive integer and |λ| < λ0. Consider any closed loop

Nα0

Fkλ=⇒ Nα1

Fkλ=⇒ · · ·
Fkλ=⇒ Nαm ,

where every αi ∈ {0, 1, ...p − 1} and αm = α0. By using Theorem 3.3, F k
λ

has a periodic point x = x(λ) ∈ int(Nα0) such that F km
λ (x) = x. Since there

are pm choices of such closed loops, F k
λ has at least pm periodic points in N .

These periodic points provide a (m, ε)-separated set for F k
λ as long as ε is a

positive number less than gaps of N ′is, i.e. 0 < ε < min{a2i − a2(i−1)+1 : 1 6

i 6 p− 1}. Since m is arbitrarily chosen, we have htop(F k
λ ) > log(p) and so

htop(Fλ) > log(p)/k > δ. Therefore, lim infλ→0 htop(Fλ) > htop(f).

The proof of the second main result is the following.

Proof of Theorem 4.2. Define Gλ = (id, c) ◦ Fλ ◦ (id, c)−1, where id denotes

the identity map on R and c is a homeomorphism from S to Bn. Then

the topological entropies of Gλ and Fλ are equal. By applying the above

argument to the family Gλ while the corresponding cM of a covering relation

N
Gλ,w=⇒ M is the identity now, we have the desired result.
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4.1.2 Higher dimensional maps

In this subsection, we will study the topological entropy for multidimensional

perturbations of a higher dimensional map which has a snap-back repeller.

As the result of Theorem 3.3 and 3.4, we shall construct the a closed loop

of covering relations for the map. Throughout this subsection, we assume

that f : Rm → Rm is a C1 map having a snap-back repeller x0 associated

with a transverse homoclinic orbit. We shall construct two closed loops of

covering relations for f : the first one is from the snap-back repeller to a

homoclinic point then back to the repeller, and the second one consists of

just one relation Nr
f

=⇒ Nr, where Nr is one of the h-sets in the first closed

loop. Then we use the covering relations approach to prove that f has a

positive topological entropy.

Let L be a linearization of f at x0, that is, L(z) = x0 + Df(x0)(z − x0)

for z ∈ Rm. Since all eigenvalues of Df(x0) are greater than one in absolute

value, there exist a norm | · | on Rm and a constant ρ > 1 such that

|Df(x0)z| > ρ|z| for z ∈ Rm. (4.1)

From now on, we keep this norm fixed.

For any r > 0 and x ∈ Rm, we denote the closed ball with the center x

and radius r by

N(x, r) = {x}+Bm(0, r).

For any r > 0 we define an h-set Nx,r in Rm as follows: we set Nx,r = N(x, r),

cNx,r(z) = (z − x)/r, u(Nx,r) = m and s(Nx,r) = 0. Since the point x0 is a

fixed point for f and will play a distinguished role in the following, we will

write Nr instead of Nx0,r. Next, we define a homotopy from the map f to L,

its linearization at x0, as follows:

fµ(z) = (1− µ)f(z) + µL(z) for µ ∈ [0, 1] and z ∈ Rm. (4.2)
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It is easy to see that f0(z) = f(z), f1(z) = L(z) and Dfµ(z) = (1−µ)Df(z)+

µDf(x0) for all µ and z. This homotopy will be later used in covering

relations in the vicinity of the snap-back repeller.

First, we show that the size of the repulsion set for snap-back repeller x0

can be chosen uniformly for all fµ for µ ∈ [0, 1].

Lemma 4.4. Let β = (ρ+ 1)/2. Then there exists r0 > 0 such that for any

µ ∈ [0, 1], 0 < r 6 r0, z ∈ Nr with |z − x0| = r, the following holds:

|fµ(z)− x0| > βr.

Proof. By using Taylor’s theorem with an integral remainder, we have

fµ(z)− x0 = fµ(z)− fµ(x0) = C(z − x0),

where

C = C(µ, z, x0) =

∫ 1

0

Dfµ(x0 + t(z − x0))dt.

By Equation (4.2), we get that

C −Dfµ(x0) =

∫ 1

0

(1− µ)Df(x0 + t(z − x0)) + µDf(x0)dt−Dfµ(x0)

=

∫ 1

0

(1− µ)[Df(x0 + t(z − x0))−Df(x0)]dt. (4.3)

Since Df is continuous at x0 and ρ > 1, there exists r0 > 0 such that if

|y − x0| 6 r0 then |Df(y) − Df(x0)| < (ρ − 1)/2. Hence, from Equation

(4.3), we have that for any µ ∈ [0, 1] and z ∈ Bm(x0, r),

|C −Dfµ(x0)| 6
∫ 1

0

(1− µ)|Df(x0 + t(z − x0))−Df(x0)|dt

<

∫ 1

0

(1− µ)
ρ− 1

2
dt 6

ρ− 1

2
.

Therefore, by using Equation (4.1), we have that for any µ ∈ [0, 1], 0 < r 6

r0, z ∈ Nr with |z − x0| = r,

|fµ(z)− x0| = |C(z − x0)| = |(C −Dfµ(x0) +Dfµ(x0))(z − x0)|

> |Df(x0)(z − x0)| − |(C −Dfµ(x0))(z − x0)|

> ρr − ρ− 1

2
r = βr.
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Throughout the rest of this subsection, we fix the two constants β and

r0 as given in Lemma 4.4. In the following, we establish a covering relation

between two h-sets around the snap-back repeller.

Proposition 4.5. Let r and r1 be two numbers satisfying 0 < r 6 r0 and

0 < r1 6 βr. Then the following covering relation holds:

Nr
f

=⇒ Nr1.

Proof. Define h(µ, z) = cNr1 (fµ(c−1
Nr1

(z)). We need to check whether all con-

ditions for the covering relation Nr
f

=⇒ Nr1 . are satisfied. First we deal with

the conditions in the first item of Definition 3.2. Condition (3.1) is implied

by f0 = f , Condition (3.2) follows from Lemma 4.4, and since N+
r1

= ∅,
Condition (3.3) is also satisfied.

Next, we define a map A on Rm by A(z) = (r/r1)Df(x0)z. Then for

z ∈ Bm, we have

h(1, z) =
L(rz + x0)− x0

r1

=
Df(x0)(rz)

r1

= A(z).

Moreover, from Equation (4.1) it follows that for z ∈ Bm with |z| = 1,

|A(z)| > ρr

r1

>
ρr

βr
> 1.

Since A is linear, from the above equation we have that deg(A,Bm, 0) =

± det(A) 6= 0.

Next, we give a covering relation from the snap-back repeller x0 to points

near x0, which will be homoclinic points near x0 as the result is used later.

Lemma 4.6. Let r > 0, r1 > 0 and z1 ∈ Rm near x0 satisfy that (|z1−x0|+
r1)/β < r < r0. Then

Nr
f

=⇒ Nz1,r1.
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Proof. As in the proof of Proposition 4.5, we set h(µ, z) = cNz1,r1 (fµ(c−1
Nr

(z)).

Again, we need to check all conditions for the covering relation Nr
f

=⇒ Nz1,r1 .

Condition (3.1) is implied by f0 = f , and since N+
z1,r1

= ∅, Condition

(3.3) is also satisfied.

To verify Condition (3.2), observe that it is equivalent to the following

one:

fµ(N−r ) ∩Nz1,r1 = ∅ for µ ∈ [0, 1]. (4.4)

From Lemma 4.4, it follows that for any z ∈ N−r (hence |z − x0| = r),

|fµ(z)− z1| = |fµ(z)− x0 + x0 − z1| > |fµ(z)− x0| − |x0 − z1|

> βr − |x0 − z1| > |x0 − z1|+ r1 − |x0 − z1| = r1.

This proves Equation (4.4).

It remains to investigate h(1, z). Define a map A on Rm by A(z) =

(rDf(x0)z + x0 − z1)/r1. Then A is affine and for z ∈ Bm,

h(1, z) =
L(rz + x0)− z1

r1

=
x0 +Df(x0)(rz)− z1

r1

= A(z).

To prove that deg(A,Bm, 0) = det(Df(x0)) = ±1, it is sufficient to show that

the unique solution ẑ = (1/r)Df(x0)−1(z1−x0) of the equation A(z) = 0 is in

Bm. To this end, observe that from Equation (4.1), we have |Df(x0)−1| 6 ρ−1

and hence

|ẑ| 6 1

r
|Df(x0)−1| · |z1 − x0| 6

|z1 − x0|
ρr

<
|z1 − x0|+ r1

βr
< 1.

The following lemma gives a covering relation from a homoclinic point to

the snap-back repeller.

Lemma 4.7. Assume that z0 ∈ Rm such that fk(z0) = x0 for some integer

k > 0 and det(Dfk(z0)) 6= 0. Then there exists R > 0 such that if 0 < r < R

then there is v ≡ v(r) with 0 < v < r0 such that for any 0 < r2 6 v, we have

Nz0,r
fk

=⇒ Nr2. (4.5)
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Proof. By continuity of f , there is R1 > 0 such that

fk(Bm(z0, R1)) ⊂ Bm(x0, r0).

Define a homotopy as follows: for µ ∈ [0, 1] and z ∈ Bm(z0, R1),

gµ(z) = (1− µ)fk(z) + µ(Dfk(z0)(z − z0) + x0). (4.6)

Then gµ(z0) = x0 and dgµ(z) = (1 − µ)Dfk(z) + µDfk(z0) for all µ and z.

Since Dfk(z0) is nonsingular, there is a constant α > 0 such that for any

z ∈ Rm,

|Dfk(z0)z| > α|z|. (4.7)

Next, we show that there exists a positive number R < min{R1, 2r0/α}
such that for all |z − z0| < R and µ ∈ [0, 1], one has

|gµ(z)− x0| >
α

2
|z − z0|. (4.8)

To this end, we have to modify the proof of Lemma 4.4 a bit. By using

Taylor’s theorem with integral remainder, we have

gµ(z)− x0 = gµ(z)− gµ(z0) = C(z − z0),

where

C = C(µ, z, z0) =

∫ 1

0

Dgµ(z0 + t(z − z0))dt.

By Equation (4.6), we get that

C −Dgµ(z0) =

∫ 1

0

(1− µ)Dfk(z0 + t(z − z0)) + µDfk(z0)dt−Dgµ(z0)

=

∫ 1

0

(1− µ)[Dfk(z0 + t(z − z0))−Dfk(z0)]dt. (4.9)

Since Dfk is continuous at z0, there exists R > 0 such that if |y − z0| < R

then

|Dfk(y)−Dfk(z0)| < α/2.
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Hence, from (4.9), we have that for any µ ∈ [0, 1] and z ∈ Bm(z0, R),

|C −Dgµ(x0)| 6
∫ 1

0

(1− µ)|Dfk(z0 + t(z − z0))−Dfk(z0)|dt

<

∫ 1

0

(1− µ)
α

2
dt 6

α

2
.

Therefore, by using Equation (4.7), we obtain that for any µ ∈ [0, 1] and

z ∈ Bm(z0, R),

|gµ(z)− x0| = |C(z − z0)| = |(C −Dgµ(z0) +Dgµ(z0))(z − z0)|

> |Dfk(z0)(z − z0)| − |(C −Dgµ(z0))(z − z0)|

>
(
α− α

2

)
|z − z0| =

α

2
|z − z0|.

Now we are ready to prove the desired covering relation (4.5). Let r be

a number with 0 < r < R and let v = αr/2. Let r2 be a number with

0 < r2 6 v. Since α > 0 and R < 2r0/α, we have 0 < v < r0. We define a

homotopy hµ by

hµ(z) = cNr2 (gµ(c−1
Nz0,r

(z))) for µ ∈ [0, 1] and z ∈ Bm.

The conditions from Definition 3.2 requiring the proof are only Condition

(3.2) and deg(h1, Bm, 0) 6= 0 while the others are clear. To verify Condition

(3.2), note that it is equivalent to the following one:

gµ(N−z0,r) ∩Nr2 = ∅ for µ ∈ [0, 1]. (4.10)

From Equation (4.8), it follows that for any z ∈ N−z0,r (hence |z − z0| = r),

one has

|gµ(z)− x0| >
α

2
|z − z0| > r2.

This proves Equation (4.10). Finally, since

h1(z) =
r

r2

Dfk(z0)z,
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we obtain that h1 is a linear isomorphism; therefore

deg(h1, Bm, 0) = det(Dfk(z0)) 6= 0.

The next proposition shows that the existence of a snap-back repeller as

defined in Definition 2.2 implies a positive topological entropy. In [2], Blanco

Garcia gave the same result based on Marotto’s definition of a snap-back

repeller and results in [19]. Here, we give a new proof by using covering

relations.

Proposition 4.8. The topological entropy of f is positive.

Proof. Let β and r0 be as given in Lemma 4.4. Since x0 is a snap-back repeller

for f , there exists a sequence {x−i}i∈N such that x−1 6= x0, limi→∞ x−i = x0

and for all i ∈ N, f(x−i) = x−i+1 and det(Df(x−i)) 6= 0. Thus, there is

an integer k > 0 such that x−k ∈ B(x0, r0). By the chain rule, we have

det(Dfk(x−k)) 6= 0. Furthermore, from Lemma 4.7, there exist positive

constants rk and rb such that rb < r0 and

B(x−k, rk) ⊂ B(x0, r0), (4.11)

Nx−k,rk ∩Nrb = ∅, (4.12)

Nx−k,rk

fk

=⇒ Nrb . (4.13)

Since β > 1, there exists the minimal positive integer a such that βarb >

|x−k−x0|+rk. By the minimum of a and Equation (4.11), we have βa−1rb 6

|x−k − x0| + rk < r0. From Proposition 4.5 and Lemma 4.6, it follows that

we have the following chain of covering relations:

Nrb

f
=⇒ Nβrb

f
=⇒ · · · f

=⇒ Nβa−1rb

f
=⇒ Nx−k,rk . (4.14)

Moreover, from Proposition 4.5, it also follows that

Nrb

f
=⇒ Nrb . (4.15)
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These covering relations are enough to produce symbolic dynamics and

a positive topological entropy as follows. Let w = max(a, k). It is sufficient

to construct an f 2w-invariant set on which f 2w can be semi-conjugated onto

the shift map σ : Σ+
2 → Σ+

2 , where Σ+
2 = {0, 1}N, the one-sided shift space

on two symbols with the standard Tikhonov (product) topology. By using

Equations (4.13)-(4.15), one can consider the following chains of covering

relations, each one of length 2w (which is counted by the number of iterates

of f):

Nrb

f
=⇒ Nrb

f
=⇒ Nrb

f
=⇒ · · · f

=⇒ Nrb ,

Nrb

f
=⇒ Nrb

f
=⇒ · · · f

=⇒ Nrb

f
=⇒ Nβrb

f
=⇒ · · · f

=⇒ Nβa−1rb

f
=⇒ Nx−k,rk ,

Nx−k,rk

fk

=⇒ Nrb

f
=⇒ Nrb

f
=⇒ · · · f

=⇒ Nrb ,

Nx−k,rk

fk

=⇒ Nrb

f
=⇒ · · · f

=⇒ Nrb

f
=⇒ Nβrb

f
=⇒ · · · f

=⇒ Nβa−1rb

f
=⇒ Nx−k,rk .

Let us denote N0 = Nrb and N1 = Nx−k,rk . Then N0 and N1 are disjoint due

to Equation (4.12). Define Z to be the set of points whose forward orbits

under f 2w stay in N0 ∪N1, that is,

Z = {z ∈ N0 ∪N1 : f 2iw(z) ∈ N0 ∪N1 for all i ∈ N}.

Then Z is compact. On Z we define a projection π : Z → Σ+
2 by

π(z)i = j if and only if f 2iw(z) ∈ Nj.

It is obvious that the map π is continuous and we have a semiconjugacy:

π ◦ f 2w = σ ◦ π.

Finally, we shall show that π is onto. This gives us that the topological

entropy of f 2w on Z is greater than or equal to log 2. Let α = (α0, ..., αl−1) ∈
{0, 1}l for some positive integer l. By a suitable concatenation of the above

listed chains of covering relations and from Theorem 3.3, it follows that there

exists a point xα ∈ Nα0 such that

f 2iw(xα) ∈ Nαi for 0 6 i 6 l − 1,

f 2lw(xα) = xα.
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It is clear that xα ∈ Z and π(xα) = (α, α, ...) ∈ Σ+
2 . Since α is arbitrarily

chosen, the set π(Z) contains all repeating sequences. From the density of

repeating sequences in Σ+
2 , it follows that π(Z) = Σ+

2 .

Now, we list our main results about the multidimensional perturbations

of a higher dimensional map which has a snap-back repeller. First, if the

singular map depends only on the phase variable of a snap-back repeller, we

have the following result.

Theorem 4.9. Let Fλ be a one-parameter family of continuous maps on

Rm × Rn such that Fλ(x, y) is continuous as a function jointly of λ ∈ R`

and (x, y) ∈ Rm × Rn. Assume that F0(x, y) = (f(x), g(x)) for all (x, y) ∈
Rm × Rn, where f : Rm → Rm is C1 and has a snap-back repeller and

g : Rm → Rn. Then Fλ has a positive topological entropy for all λ sufficiently

close to 0.

When the singular map is locally trapping along the normal direction, we

have the following.

Theorem 4.10. Let Fλ be a one-parameter family of continuous maps on

Rm × Rn such that Fλ(z) is continuous as a function jointly of λ ∈ R` and

(x, y) ∈ Rm × Rn. Assume that F0(x, y) = (f(x), g(x, y)) for all (x, y) ∈
Rm × Rn, where f : Rm → Rm is C1 and has a snap-back repeller, g :

Rm × Rn → Rn, and g(Rm × S) ⊂ int(S) for some compact set S ⊂ Rn

homeomorphic to the closed unit ball in Rn. Then Fλ has a positive topological

entropy for all λ sufficiently close to 0.

Now, we begin to prove Theorem 4.9 and 4.10.

Proof of Theorem 4.9. From the proof of Proposition 4.8, we have a positive

integer a such that the following closed loop of covering relations holds:

Nrb

f
=⇒ Nrb

f
=⇒ Nβrb

f
=⇒ · · · f

=⇒ Nβa−1rb

f
=⇒ Nx−k,rk

fk

=⇒ Nrb ,
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By adding the normal direction to the above h-sets and using the persis-

tence of covering relation, we shall construct a closed loop of covering re-

lations for Fλ, similar to the above loop for f . Recall that the singular

map F0 is of the form F0(x, y) = (f(x), g(x)) ∈ Rm × Rn. Set N =

(∪a−1
i=0Nβirb) ∪ (∪ki=0f

i(Nx−k,rk)). Since g is continuous and N is compact,

there exists r > 0 such that g(N) ⊂ Bn(0, r). Let us define the correspond-

ing h-sets in Rm × Rn as follows. For i = 0, 1, ..., a − 1, we define h-sets

N ′βirb in Rm × Rn by N ′βirb = Nβirb × Bn(0, r), u(N ′βirb) = m, s(N ′βirb) = n

and cN ′
βirb

(x, y) = (cNβirb
(x), y/r). Moreover, we define an h-set N ′x−k,rk in

Rm×Rn by N ′x−k,rk = Nx−k,rk×Bn(0, r), u(N ′x−k,rk) = m, s(N ′x−k,rk) = n and

cN ′x−k,rk (x, y) = (cNx−k,rk (x), y/r).

Observe that we have the following closed loop of covering relations for

F0.

Lemma 4.11. The following covering relations hold:

N ′rb
F0=⇒ N ′rb

F0=⇒ N ′βrb
F0=⇒ · · · F0=⇒ N ′βa−1rb

F0=⇒ N ′x−k,rk
Fk0=⇒ N ′rb,

Proof of Lemma 4.11. For each covering relation under consideration N ′
F j0=⇒

M ′ with j = 1 or k, a homotopy ĥ : [0, 1]×Bm ×Bn → Rm+n by

ĥ(µ, x, y) =

(
h(µ, x),

1− µ
r

g ◦ f j−1(c−1
N (x))

)
,

where h is the homotopy from the corresponding covering relation N
fj

=⇒M .

Then we have

ĥ(0, x, y) = (h(0, x)) ,
1

r
g ◦ f j−1(c−1

N (x))

=

(
cM ◦ f j ◦ c−1

N (x),
1

r
g ◦ f j−1(c−1

N (x))

)
= (F j

0 )c(x, y).

Since ĥ([0, 1], N ′,−) ⊂ h([0, 1], N−) × Rn, we get that Condition (3.2) in

Definition 3.2 follows from the analogous Condition for h. Condition (3.3) is

satisfied due to

ĥ([0, 1]×Bm ×Bn) ⊂ Rm ×Bn.
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Finally, note that

ĥ(1, x, y) = (h(1, x), 0).

Therefore, the other conditions in Definition 3.2 are also satisfied.

From Theorem 3.4, there exists λ0 > 0 such that if |λ| < λ0 then the

following chain of covering relations holds for Fλ:

N ′rb
Fλ=⇒ N ′rb

Fλ=⇒ N ′βrb
Fλ=⇒ · · · Fλ=⇒ N ′βa−1rb

Fλ=⇒ N ′x−k,rk
Fkλ=⇒ N ′rb , (4.16)

Similar to the proof of Proposition 4.8, covering relations listed in (4.16)

are sufficient to produce the symbolic dynamics and a positive topological

entropy for Fλ with |λ| < λ0. This completes the proof of Theorem 4.9.

Proof of Theorem 4.10. Define Gλ = (id, c) ◦ Fλ ◦ (id, c)−1, where id denotes

the identity map on Rk and c is a homeomorphism from S to Bn. Then the

conclusion follows from the above argument applied to Gλ.

4.2 Topologically crossing homoclinicity

In this subsection, we discuss the topological entropy for multidimensional

perturbations of topologically crossing homoclinicity.

4.2.1 Background

First, we introduce some definition and results. Let f : Rm → Rm be a

diffeomorphism with a hyperbolic periodic point p at which the stable and

unstable subspaces have dimensions u and s, respectively. Let | · | be a norm

on Rm. The stable and unstable manifolds of p are defined to be W s(p) =

{x ∈ Rm : |fn(x)− fn(p)| → 0 as n→∞} and W u(p) = {x ∈ Rm : |fn(x)−
fn(p)| → 0 as n → −∞}, respectively. The deleted stable and unstable

manifold of p are given by Ŵ s(p) = W s(p)\{p} and Ŵ u(p) = W u(p)\{p},
respectively. An intersection of Ŵ s(p) and Ŵ u(p) is called a homoclinic point
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of p. For nonempty subsets A,B of Rm, we denote d(A,B) = inf{|x − y| :

x ∈ A and y ∈ B}. Here, we are mainly concern the case when Ŵ s(p) and

Ŵ u(p) has a topologically crossing intersection which is defined as follows.

Definition 4.12. [8, Definition 3] Consider Rm as an m-dimensional ori-

ented manifold, and let W u and W s be two oriented C1 submanifolds of Rm

with dimensions u and s, respectively, such that u + s = m. We say that

W u and W s have a topologically crossing intersection if there are compact

embedded C1 submanifold V u of W u and V s of W s with dimensions u and s

and with boundaries ∂V u and ∂V s (with respect to W u and W s), respectively,

such that

1. ∂V u ∩ V s = V u ∩ ∂V s = ∅;

2. For every 0 < ε < min{d(∂V u, V s), d(V u, ∂V s)}, there exists a homo-

topy h : [0, 1]× Rm → Rm satisfying the following:

(a) h(0, x) = x for all x ∈ Rm and the map x 7→ h(1, x) is an embed-

ding;

(b) |h(t, x)− x| < ε for all x ∈ V u ∪ V s and all t ∈ [0, 1];

(c) h(1, V u) and V s are transverse submanifolds; and

(d) the oriented intersection number of h(1, V u) and V s, denoted by

I(h(1, V u), V s), is nonzero, where I(A,B) for two oriented sub-

manifolds A and B of Rm with dimA + dimB = m is defined

by

I(A,B) =
∑

x∈A∩B

Ix(A,B),

and Ix(A,B) is +1 or −1 depending on whether the orientation

induced on TxA⊕TxB agrees or not with the orientation on TxRm,

respectively.

33



In this case, the submanifolds V u and V s will be referred as a good pair for

the topological crossing between W u and W s.

There is a relation between a topological crossing and the local Brouwer

degree. Let V u and V s be a good pair for a topological crossing intersection

between oriented submanifolds W u and W s of an oriented manifold W with

dim(W ) = m, dim(W u) = u, dim(W s) = s, and u + s = m. Assume that

there exist a closed neighborhood U of V u ∩ V s in W and local coordinates

(x, y) on U such that V u ⊂ U, V s ⊂ U, U = Bu × Bs, V
s = {(x, y) ∈

Bu × Bs : x = 0}, and V u = {ψ(x) ∈ Bu × Bs : x ∈ Bu}, where ψ is a C1

parametrization of V u. Let πu : Ru × Rs → Ru be the projection given by

πu(x, y) = x. The following lemma says the local Brouwer degree and the

oriented intersection number are identical.

Lemma 4.13. [8, Lemma 3] Under the above assumptions and notations, we

have that (i) in Ru, the origin 0 /∈ πu(ψ(∂Bu)); (ii) deg(πu ◦ψ,Bu, 0) is well

defined; and (iii) deg(πu ◦ ψ,Bu, 0) = I(h(1, V u), V s), where I(h(1, V u), V s)

is the oriented intersection number of h(1, V u) and V s for any homotopy h

as given in Definition 4.12.

4.2.2 Results

In this subsection, we state our results about the positive topological entropy

derived from the topologically crossing homoclinicity. First, we see the result

about perturbations of a map.

Theorem 4.14. Let Fλ be a one-parameter family of continuous maps on

Rm such that Fλ(x) is continuous as a function jointly of λ ∈ R` and x ∈ Rm,

where λ is a parameter. Assume that F0(x) = f(x) for all x ∈ Rm, where

f : Rm → Rm is a C1 diffeomorphism with a hyperbolic periodic point which

has a topologically crossing homoclinic point. Then there exist an integer
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N > 0 and a number λ0 > 0 such that both f and Fλ with |λ| < λ0 have

topological entropies at least log(2)/N .

Next, if the singular map F0 depends only on the phase variable of f, we

have the following result.

Theorem 4.15. Let Fλ be a one-parameter family of continuous maps on

Rm × Rk such that Fλ(x, y) is continuous as a function jointly of λ ∈ R`,

x ∈ Rm and y ∈ Rk, where λ is a parameter. Assume that F0(x, y) =

(f(x), g(x)) ∈ Rm ×Rk for all x ∈ Rm and y ∈ Rk, where f : Rm → Rm is a

C1 diffeomorphism with a hyperbolic periodic point which has a topologically

crossing homoclinic point, and g : Rm → Rk is a continuous function. Then

there exist an integer N > 0 and a number λ0 > 0 such that both f and Fλ

with |λ| < λ0 have topological entropies at least log(2)/N .

For the case when the singular map is a skew product map locally trapping

along the second variable, we have the following.

Theorem 4.16. Let Fλ be a one-parameter family of continuous maps on

Rm × Rk such that Fλ(x, y) is continuous as a function jointly of λ ∈ R`,

x ∈ Rm and y ∈ Rk, where λ is a parameter. Assume that F0(x, y) =

(f(x), g(x, y)) ∈ Rm×Rk for all x ∈ Rm and y ∈ Rk, where f : Rm → Rm is

a C1 diffeomorphism with a hyperbolic periodic point which has a topologically

crossing homoclinic point, and g : Rm × Rk → Rk is continuous on Rm × S
and g(Rm × S) ⊂ int(S) for some compact set S ⊂ Rk homeomorphic to

the closed unit ball in Rk. Then there exist an integer N > 0 and a number

λ0 > 0 such that both f and Fλ with |λ| < λ0 have topological entropies at

least log(2)/N .

Denote by p the hyperbolic periodic point of f . Without loss of gen-

erality, we may assume that p is a fixed point. Set u = dimW u(p) and

s = dimW s(p). Since Ŵ u(p) and Ŵ s(p) have a topologically crossing inter-

section, we have u+ s = m. Let us fix a basis of Rm such that the Jacobian
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matrix Dfp of f at p preserves the splitting Rm = Ru⊕Rs. By the Hartman-

Grobman Theorem, there exist a closed neighborhood U of p and a homeo-

morphism ϕ of U into Rm such that ϕ(p) = (0, 0) and ϕ(f(z)) = Dfp(ϕ(z))

for z ∈ U . In order to simply our notation, we assume p = (0, 0) and

ϕ = id, the identity map on Rm. Thus f is a linear map on U . Write

f(x, y) = (Lux, Lsy) for (x, y) ∈ U, where Lu is a u × u matrix with all

eigenvalues greater than one in absolute value and Ls is an s× s matrix with

all eigenvalues less than one in absolute value. There exist norms | · |u and

| · |s on Ru and Rs, respectively, and constants ρ1 > 1 and 0 < ρ2 < 1 such

that

|Lux|u > ρ1|x|u and |Lsy|s 6 ρ2|y|s for x ∈ Ru and y ∈ Rs. (4.17)

Since all norms on Rm are equivalent, we may assume U = Bu × Bs and

define the norm | · | on Rm to be the maximum norm of the norms | · |u and

| · |s on Ru and Rs. Notice that later we still need local coordinates while

verifying h-sets in U as required in Definition 3.1. In order to prove the main

results we need some lemmas. First, we recall the following lemma in [5]; for

readers’ convenience, we repeat their proof below.

Lemma 4.17. [5, Lemma 1.4] Let V be a compact subset of W u(p)∩ int(U).

Suppose we are given positive constants ρ and ε satisfying 0 < ρ < 1 and

0 < ε < d(V, ∂U). Then for any large enough n ∈ N the following hold:

1. f−n(V ) ⊂ Bu(0, ρ)× {0}; and

2. if (x, 0) ∈ f−n(V ) then fn({x} × Bs) is in U and has diameter less

than ε, where the diameter of a bounded set E ⊂ Rm is defined to be

sup{|x− y| : x, y ∈ E}.

Proof. Since V ⊂ W u(p), there exists a positive integer n1 such that f−n1(V ) ⊂
Bu × {0}. Since f is a C1 diffeomorphism , we can take a constant K such
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that K > sup{‖Dfn1
z ‖ : z ∈ U} and ε/(2K) < 1. Let n2 be an arbitrary

positive integer such that

n2 > max{log(ρ−1)/ log(ρ1), log(ε/(2K))/ log(ρ2)}. (4.18)

Since f is linear and preserves the splitting Ru × Rs on U , Equations (4.17)

and (4.18) imply f−n1−n2(V ) ⊂ f−n2(Bu × {0}) ⊂ Bu(0, ρ) × {0}. This

concludes item 1 of the desired result by considering n = n1 +n2. For item 2,

let (x, 0) ∈ f−n1−n2(V ) and y ∈ Bs. Again Equations (4.17) and (4.18) imply

fn2(x, y) = (Ln2
u (x), Ln2

s (y)) ∈ {Ln2
u (x)} × Bs(0, ε/(2K)) ⊂ U . Take any two

points in {x}×Bs, say w = (x, y1) and v = (x, y2). Then fn2(w), fn2(v) ∈ U
and |fn2(w)− fn2(v)| = |Ln2

s (y1)− Ln2
s (y2)| 6 ε/K. By the choice of K, we

get that |fn1+n2(w) − fn1+n2(v)| < K|fn2(w) − fn2(v)| 6 ε. By considering

n = n1 + n2, we have the desired result.

Since the submanifolds Ŵ u(p) and Ŵ s(p) have a topological crossing in-

tersection, there exist a point q 6= p and two compact embedded submanifolds

V u of Ŵ u(p) and V s of Ŵ s(p) such that V u and V s form a good pair, and

q ∈ V u ∩ V s. We may assume that both sets V u and V s are in int(U), and

V u has no intersection with the subspace Ru × {0}, based on the following

lemma.

Lemma 4.18. For any sufficiently integer n ∈ N, there exist submanifolds

V u
n of Ŵ u(p) and V u

n of Ŵ s(p) such that V u
n and V s

n form a good pair with the

same oriented intersection number as good pair V u and V s, V u
n ⊂ fn(V u),

V s
n ⊂ fn(V s), and V u

n ∪ V s
n ⊂ int(U).

Proof. First, we show that fn(V u) and fn(V s) form a good pair for n ∈ N.

Since f is a C1 diffeomorphism, fn(V u) and fn(V s) are compact embedded

C1 submanifolds of Ŵ u(p) and Ŵ s(p), respectively. Since V u ⊂ Ŵ u(p),

V s ⊂ Ŵ s(p), and ∂V u∩V s = V u∩∂V s = ∅, we also have ∂fn(V u)∩fn(V s) =

fn(V u) ∩ ∂fn(V s) = ∅.
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Let δ be a constant such that

0 < δ < min{d(∂fn(V u), fn(V s)), d(fn(V u), ∂fn(V s))}.

Since fn is continuous on the compact set V u∪V s, there exists a constant

ε such that 0 < ε < min{d(∂V u, V s), d(V u, ∂V s)} and if x, y ∈ V u ∪ V s

with |x − y| < ε then |fn(x) − fn(y)| < δ. Since V u and V s form a good

pair, for such an ε, there exists a homotopy h0 satisfying item (2a)-(2d) of

Definition 4.12. Define a homotopy hn = fn ◦ h0 ◦ f−n. It is obviously true

that hn(0, ·) = id and hn(1, ·) is an embedding. By item (2b) of Definition

4.12, for z ∈ fn(V u) ∪ fn(V s) and t ∈ [0, 1], we have

|hn(t, z)− z| = |fn(h0(t, f−n(z)))− fn(f−n(z))| < δ.

Moreover, hn(1, fn(V u)) and fn(V s) are transverse submanifolds and the

oriented intersection number I(hn(1, fn(V u)), fn(V s)) = I(h0(1, V u), V s) is

nonzero. Thus, fn(V u) ⊂ Ŵ u(p) and fn(V s) ⊂ Ŵ s(p) form a good pair.

If fn(V u) ∪ fn(V s) ⊂ int(U), then we are done by taking V u
n = fn(V u)

and V s
n = fn(V s). Otherwise, since p is a hyperbolic fixed point with

topologically crossing homoclinic point(s) in V u ∩ V s which has nonzero

oriented intersection number, by letting n large enough, there exists q ∈
V u ∩ V s such that if we denote by V u

n and V s
n the connected components of

fn(V u)∩ (Bu(0, 4/5))× (Bs(0, 4/5)) and fn(V s)∩ (Bu(0, 4/5))× (Bs(0, 4/5))

containing the point fn(q), respectively, ∂V u
n ∩ V s

n = V u
n ∩ ∂V s

n = ∅ and

I(hn(1, V u
n ), V s

n ) = I(hn(1, fn(V u)); fn(V s)). Repeating the above argument,

we have that V u
n ⊂ Ŵ u(p) and V s

n ⊂ Ŵ s(p) form a good pair with the same

oriented intersection number as the good pair V u and V s. We have finished

the proof of the desired result.

Set V2 = V u. Since πu(q) = 0, there is a constant η such that 0 < η < 1

and Bu(0, η) ⊂ πu(V2)\πu(∂V2). Denote V1 = Bu(0, η)× {0}.
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We shall construct two disjoint h-sets. Let ρ be a constant such that

0 < ρ < η. Denote R = Bu(0, ρ) × Bs. Let ε > 0 be so small that the

closed neighborhoods of V1 and V2 are disjoint and contain in int(U) and

that the closed ε-neighborhoods of ∂V u and ∂Bu(0, η) × {0} are contained

in int(U) \R. Then

ε < min{d(V1, ∂U), d(V2, ∂U)}.

By applying Lemma 4.17 to V1 and V2, we can pick a common integer N such

that f−N(V1) ∪ f−N(V2) ⊂ Bu(0, ρ)× {0} and if (x, 0) ∈ f−N(V1) ∪ f−N(V2)

then fN({x} × Bs) is in U and has diameter less than ε. Write f−N(q) =

(q0, 0). Since f is a diffeomorphism, f−N(V1) and f−N(V2) are disjoint. More-

over, since f is C1, V2 is a C1 submanifold of Ŵ u(p) and hence there exists a

C1 diffeomorphism ζ from Ru to Ru such that ζ(πu(f
−N(ψ(x)))) = x for all

x ∈ Bu, where ψ is a C1 parametrization of V2 on Bu such that V2 = ψ(Bu)

and ψ(0) = q (mentioned in Lemma 4.13). Since f(x, y) = (Lux, Lsy) for

(x, y) ∈ U under the Hartman-Grobman linearization setting at the begin-

ning of this subsection, we have f−N(V1) = L−Nu (Bu(0, η)) × {0}. Define

M1 = πu(f
−N(V1))×Bs and M2 = πu(f

−N(V2))×Bs; or equivalently define

M1 = L−Nu (Bu(0, η)) × Bs and M2 = πu(f
−N(ψ(Bu))) × Bs. Then M1 and

M2 are disjoint h-sets with u(M1) = u(M2) = u, s(M1) = s(M2) = s, and

cM1(x, y) = (LNu x/η, y) and cM2(x, y) = (ζ(x), y) for all (x, y) ∈ Ru × Rs.

Next, we show that there are covering relations among M1 and M2.

Lemma 4.19. The following covering relations hold:

Mi
fN

=⇒Mj for i, j ∈ {1, 2}.

Proof. Define a homotopy H on Rm from fN(x, y) to πu ◦ fN(x, 0) by

H(t, x, y) = (1− t)fN(x, y) + t(πu(f
N(x, 0)), 0),

for (x, y) ∈ Ru × Rs and t ∈ [0, 1]. For i, j ∈ {1, 2}, we set a homotopy hji

induced from H by hji (t, x, y) = cMj
(H(t, c−1

Mi
(x, y))) for (x, y) ∈ Ru×Rs and
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t ∈ [0, 1], and define Aji (x) = πu(h
j
i (1, x, 0)) for x ∈ Ru. Since hji (1, x, y) is

independent of y and lies on the subspace Ru×{0}, we get that hji (1, x, y) =

(Aji (x), 0) for x ∈ Ru. Moreover, by the choice of N , we have

H(t,M−
i ) ∩Mj = ∅ and H(t,Mi) ∩M+

j = ∅ for t ∈ [0, 1].

It follows that Condition 1 and 2 of Definition 3.2 are satisfied with h = hji

and ϕ = Aji .

For Condition 3 of Definition 3.2, we first show that deg(Aji , Bu, 0) 6= 0

for i = 1 and j ∈ {1, 2}. By the definition of homeomorphisms cMi
, we get

that fN ◦ c−1
M1

(U) ⊂ U and fN ◦ c−1
M2

(U) ⊂ U . Hence on Bu, the map A1
1

is linear and the map A2
1 is C1, in fact, they are of the following forms: for

x ∈ Bu,

A1
1(x) = πu(h

1
1(1, x, 0)) = LNu x,

A2
1(x) = πu(h

2
1(1, x, 0)) = ζ(ηx).

Since Lu is a u× u matrix with all eigenvalues greater than one in absolute

value, by item 8 of the properties of local Brouwer degree listed in subsection

3.2, we get

deg(A1
1, Bu, 0) = sgn(det(LNu )) 6= 0.

The choice of N implies πu(f
−N(V2)) ⊂ Bu(0, ρ) ⊂ Bu(0, η) and hence the

equation ζ(x) = 0 has a unique solution, namely q0, and q0 ∈ Bu(0, η). Since

πu(f
−N(V2)) is a u-dimensional C1 submanifold, 0 is a regular value for ζ

and sgn(detDζq0) 6= 0. It follows from items 8 again and Proposition 3.6

that

deg(A2
1, Bu, 0) = sgn(detDζq0) · 1 6= 0.

Next, we shall show that deg(Aji , Bu, 0) 6= 0 for i = 2 and j ∈ {1, 2}
as applications of Lemma 4.13. By the definitions of the homeomorphisms
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cMi
and the linearization of f on U , we get that for x ∈ Bu,

A1
2(x) = ϕ ◦ πu ◦ ψ(x),

A2
2(x) = ζ ◦ πu ◦ ψ(x),

where ϕ is a map on Ru defined by ϕ(x) = LNu x/η. By the choice of η, there

exists a bounded connected component, namely ∆, of Ru \ πu(ψ(∂Bu) such

that 0 = ϕ−1(0) ∈ ∆. Since ϕ is linear, Proposition 3.6 implies that

deg(A1
2, Bu, 0) = deg(ϕ ◦ πu ◦ ψ,Bu, 0) = sgn(det(LNu /η)) deg(πu ◦ ψ,Bu, 0)

Note that ψ is a parametrization of V2. Since V2 and V s form a good pair

with the oriented orientation number not zero, by Lemma 4.13, we have

deg(πu ◦ ψ,Bu, 0) 6= 0. Therefore, deg(A1
2, Bu, 0) 6= 0.

Similarly, by the choices of η and N , we get ζ−1(0) = q0 ∈ ∆. Since ζ is

C1, Proposition 3.6 gives us that

deg(A2
2, Bu, 0) = deg(ζ ◦ πu ◦ ψ,Bu, 0) = sgn(detDζq0) deg(πu ◦ ψ,Bu, 0).

It follows that deg(A2
2, Bu, 0) 6= 0.

We have finished the proof of the desired result.

Finally, we are in position to prove our theorems.

Proof of Theorem 4.14. By applying Lemma 4.19 and Proposition 3.5, there

exists λ0 > 0 such that if |λ| < λ0 then

Mi

FNλ=⇒Mj for for i, j ∈ {1, 2}.

Let θ be a positive integer and |λ| < λ0. Consider any closed loop

Mi0

FNλ=⇒Mi1

FNλ=⇒ · · ·
FNλ=⇒Miθ ,

with each iα ∈ {1, 2} and iθ = i0. By using Theorem 3.3, FN
λ has a periodic

point x = x(λ) ∈ int(Mi0) such that FNθ
λ (x) = x. Since there are 2θ choices
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of such closed loops, FN
λ has at least 2θ periodic points in M1 ∪M2. These

periodic points provide a (θ, δ)-separated set for FN
λ as long as δ is a positive

number less than the distance of M1 and M2. Since θ is arbitrarily chosen,

we have htop(FN
λ ) > log(2) and so htop(Fλ) > log(2)/N > 0.

Proof of Theorem 4.15. Since g is continuous on M1 ∪M2 and M1 ∪M2 is

compact, there exists a positive constant r such that g(M1∪M2) ⊂ Bk(0, r).

Let us define the corresponding h-sets in Rm× Rk as follows. For i = 1, 2,

we define h-sets M ′
i in Rm × Rk by M ′

i = Mi × Bk(0, r) with u(M ′
i) = u,

s(M ′
i) = s + k, and cM ′i (x, y, z) = (cMi

(x, y), z/r) for x ∈ Ru, y ∈ Rs, and

z ∈ Rk.

Lemma 4.20. The following covering relations hold:

M ′
i

FN0=⇒M ′
j for i, j ∈ {1, 2}.

Proof. Let i, j ∈ {1, 2} be arbitrary. We define a homotopy

ĥji (t, x, y, z) = (hji (t, x, y),
1− t
r

g ◦ fN−1(c−1
Mi

(x, y))),

where hji is the homotopy for the covering relation Mi
fN

=⇒ Mj. Then we

have

ĥji (0, x, y, z) = (hji (0, x, y),
1

r
g ◦ fN−1(c−1

Mi
(x, y)))

= (cMj
◦ fN ◦ c−1

Mi
(x, y),

1

r
g ◦ fN−1(c−1

Mi
(x, y)))

= (FN
0 )c(x, y, z).

Since ĥji ([0, 1],M ′,−
i ) ⊂ hji ([0, 1],M−

i )× Rk and ĥji ([0, 1]×Bm ×Bk) ⊂ Rm ×
Bk, Condition 1 and 2 of Definition 3.2 are satisfied follows from the anal-

ogous properties for hji stated in the proof of Theorem 4.14. Finally, notice

that

ĥji (1, x, y, z) = (hji (1, x, y), 0).
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Therefore, Condition 3 of Definition 3.2 is satisfied.

By applying Lemma 4.20 and Proposition 3.5, there exists λ0 > 0 such

that if |λ| < λ0 then the following covering relations hold for FN
λ :

M ′
i

FNλ=⇒M ′
j for i, j ∈ {1, 2}. (4.19)

As in the proof of Theorem 4.14, the covering relations listed in Equation

(4.19) implies the htop(Fλ) > log(2)/N > 0 with |λ| < λ0.

Proof of Theorem 4.16. Define Gλ = (id, c)◦Fλ◦(id, c)−1, where c is a home-

omorphism from S to Bk. Then the topological entropies of Gλ and Fλ are

equal. By applying the above argument as in the proof of Theorem 4.15 to

the family Gλ while the corresponding cM of a covering relation N
Gλ=⇒M is

the identity map, we have the desired result.

4.3 Liapunov condition

In this subsection, we study the topological dynamics for multidimensional

perturbations of high-dimensional systems with covering relation determined

by a transition matrix or satisfy a strong Liapunov condition in addition on

the lower dimensional phase space.

4.3.1 Covering relations determined by a transition matrix

Here, we will state the definition of the covering relations determined by a

transition matrix and list the related main results of the topological dynamics

for multidimensional perturbations of high-dimensional systems.

First, we introduce the transition matrix. By a transition matrix, it means

that a square matrix satisfies (i) all entries are either zero or one, and (ii)

all row sums and column sums are are greater than or equal to one. For a

transition matrix A, let ρ(A) denote the spectral radius of A. Then ρ(A) > 1

and moreover, if A is irreducible and not a permutation, then ρ(A) > 1. Let
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Σ+
A (resp. ΣA) be the space of all allowable one-sided (resp. two sided)

sequences for the matrix A with a usual metric, and let σ+
A : Σ+

A → Σ+
A

(resp. σA : ΣA → ΣA) be the one-sided (resp. two sided) subshift of finite

type for A. Then htop(σ+
A) = htop(σA) = log(ρ(A)). Refer to [29] for more

background.

Next, we define covering relation determined by a transition matrix.

Definition 4.21. Let A = [aij]16i,j6γ be a transition matrix and f be a

continuous map on Rm. We say that f has covering relations determined by

A if the following conditions are satisfied:

1. there are γ pairwise disjoint h-sets {Mi}γi=1 in Rm;

2. if aij = 1 then the covering relation Mi
f

=⇒Mj holds.

It is easy to see that the logistic maps f(x) = µx(1− x) with µ > 4 has

covering relations determined by the 2 × 2 matrix with all entries one on

intervals [−ε, 1/2 − δ] and [1/2 + δ, 1 + ε] as h-sets, where 0 < ε < µ/4 − 1

and 0 < δ < [(µ/4− 1− ε)µ−1]1/2.

Now, we begin to state the main theorems of covering relation determined

by a transition matrix.

Theorem 4.22. Let f be a continuous map on Rm having covering relations

determined by a transition matrix A. If g is a continuous map on Rm with

|g − f | small enough, then htop(g) > log(ρ(A)).

If the singular map F depends only on the phase variable of f , we have

the following result about multidimensional perturbations.

Theorem 4.23. Let F (x, y) = (f(x), g(x)) ∈ Rm × Rk for all x ∈ Rm and

y ∈ Rk, where f : Rm → Rm is a continuous map having covering relations

determined by a transition matrix A, and g : Rm → Rk is a continuous

function. If G is a continuous map on Rm ×Rk with |G− F | small enough,

then htop(G) > log(ρ(A)).
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For the case when the singular map is a skew product locally trapping

along the second variable, we have the following.

Theorem 4.24. Let F (x, y) = (f(x), g(x, y)) ∈ Rm × Rk for all x ∈ Rm

and y ∈ Rk, where f : Rm → Rm is a continuous map having covering

relations determined by a transition matrix A, and g : Rm × Rk → Rk is

a continuous function such that g(Rm × S) ⊂ int(S) for some compact set

S ⊂ Rk homeomorphic to the closed unit ball in Rk. If G is a continuous

map on Rm × Rk with |G− F | small enough, then htop(G) > log(ρ(A)).

In order to prove the above results, we need a proposition which is de-

scribed that a continuous map having covering relations determined by a

transition matrix is topologically semi-conjugate to a one-sided subshift of

finite type. A variant version of the this result was stated without proof in

[7, Corollary 5.9].

Proposition 4.25. Let f : Rm → Rm be a continuous map which has cover-

ing relations determined by a transition matrix A. Then there exists a com-

pact subset Λ of Rm such that Λ is maximal positive invariant for f in the

union of the h-sets (with respect to A) and f |Λ is topologically semi-conjugate

to σ+
A .

Proof. For convenience, we denote by {Mi}ηi=1 the h-sets with covering re-

lations for f determined by A as in Definition 4.21, and write we write

s = (s0, s1, . . .) for s ∈ Σ+
A. Define

Λn =
⋃
s∈Σ+

A

(
n⋂
i=0

f−i(Msi)

)
for n > 0, and Λ =

⋂
n>0

Λn.

Then Λ is the set of all points whose forward orbits, following allowable

sequences in Σ+
A, stay in ∪ηi=1Mi. Thus Λ is maximal positive invariant set

for f in ∪ηi=1Mi with respect to A. Since each Mi is compact and f is

continuous, the set ∩ni=0f
−i(Msi) is compact for all n > 0 and s ∈ Σ+

A. Since
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the number of sets Mi’s is η and the intersection ∩ni=0f
−i(Msi) involves only

the first n + 1 digits of s ∈ Σ+
A, that is, (s0, s1, . . . , sn), there are at most

ηn+1 sets ∩ni=0f
−i(Msi) for all s ∈ Σ+

A, although the set Σ+
A itself might be

uncountable. Thus the set Λn is a union of finitely many compact sets and

hence is compact for all n > 0. Therefore, Λ is compact.

For semi-conjugacy, we define h : Λ → Σ+
A by h(z) = s for z ∈ Λ,

where fn (z) ∈ Msn for all n > 0. By the pairwise disjointness of Mi’s

and the definition of Λ, the map h is well defined. It is easy to show that

σA ◦h = h◦f . Next, we show that h is continuous on Λ. Let z ∈ Λ, h(z) = s

and {zn}∞n=1 be a sequence in Λ such that zn → z as n→∞. Since Mi’s are

pairwise disjoint and compact, there exists n0 ∈ N such that zn ∈Ms0 for all

n > n0. By the continuity of f , there exists n1 ∈ N such that n1 > n0 and

f(zn) ∈ Ms1 for all n > n1. By using the same process inductively, we get

that for each i > 0, there exist there exists ni ∈ N such that f j(zn) ∈Msj for

all n > ni and 0 6 j 6 i. This proves that h(zn)→ s as n→∞. Therefore,

h is continuous on Λ.

To prove that h is onto, we need the following lemma.

Lemma 4.26. For any s ∈ ΣA, the intersection ∩n>0f
−n(Msn) is nonempty.

Proof. Let s ∈ ΣA. First, we prove that the intersection ∩ni=0f
−i(Msi) is

nonempty for all n > 0 by applying Theorem 3.3 to a closed loop of covering

relations. Let n > 0. Then we have the loop of covering relations Ms0

f
=⇒

Ms1

f
=⇒ · · · f

=⇒Msn . The loop becomes closed by adding a covering relation

Msn

g
=⇒Ms0 with a homotopy h : [0, 1]×Msn,c → Ru×Rs, where u = u(Msn),

s = s(Msn), gc : Ru × Rs → Ru × Rs is defined by gc(p, q) = (2p, 0) for all

(p, q) ∈ Ru × Rs, g = c−1
Ms0
◦ gc ◦ cMsn

, and h(t, p, q) = gc(p, q) for t ∈
[0, 1] and (p, q) ∈ Msn,c. It follows from Theorem 3.3 that there exists z ∈
int(Ms0) such that f i(z) ∈ int(Msi) for 0 6 i 6 n. Thus z ∈ ∩ni=0f

−i(Msi).

Therefore, the intersection ∩ni=0f
−i(Msi) is nonempty for all n > 0. Since
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{∩ni=0f
−i(Msi)}∞n=0 is a nested sequence of nonempty compact subsets of Rm,

the set ∩n>0f
−n(Msn) is nonempty.

Finally, we show that h is onto. Let s ∈ ΣA. Then there exists z ∈
∩n>0f

−n(Msn) from Lemma 4.26. By the definitions of Λ and h, we have

that z ∈ Λ and h(z) = s. This proves that h is onto. We have finished the

proof of Proposition 4.25.

Now, we begin to prove the results for covering relation determined by a

transition matrix. In the following, we write A = [aij]16i,j6η and denote by

{Mi}ηi=1 the pairwise disjoint h-sets with covering relations for f determined

by A.

Proof of Theorem 4.22. Since the dimension of A is η, there are at most η2

choices of the covering relations Mi
f

=⇒Mj. By Proposition 3.5, if g : Rm →
Rm is a continuous map with |g − f | small enough, then g has covering rela-

tions on h-sets {Mi}ηi=1 determined by A. By applying Proposition 4.25 to the

map g, there exists a compact subset Λg of Rm such that Λg is positive invari-

ant for g and g|Λg is topologically semi-conjugate to the one-sided subshift of

finite type σ+
A . Therefore, htop(g) > htop(g|Λg) > htop(σ+

A) = log(ρ(A)).

Proof of Theorem 4.23. Let M = ∪ηi=1Mi. Since g is continuous and M is

compact, there exists r > 0 such that g(M) ⊂ Bk(0, r). For i ∈ {1, . . . , η},
we define h-sets M ′

i in Rm × Rk by M ′
i = Mi × Bk(0, r), with u(M ′

i) =

u(Mi), s(M
′
i) = s(Mi) + n and cM ′i (x, y) = (cMi

(x), y/r) for x ∈ Rm and

y ∈ Rk. Suppose aij = 1. Then Mi
f

=⇒Mj implies M ′
i

F
=⇒M ′

j by defining a

homotopy H : [0, 1]×Bm ×Bk → Rm+k as follows

H(t, x, y) =

(
h(t, x),

1− t
r

g(c−1
Mi

(x)

)
,

where h is the homotopy for the covering relation Mi
f

=⇒ Mj. This shows

that F has covering relations on {M ′
i}
η
i=1 determined by A. By applying
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Theorem 4.22 to the map F on Rm × Rk, we get that if G is a continuous

map on Rm × Rk with |G− F | small enough, then there exists a compact

subset ΛG of Rm+k such that ΛG is positively invariant for g and g|Λg is

topologically semi-conjugate to the one-sided subshift of finite type σ+
A .

Proof of Theorem 4.24. Define F̂ = (id, c) ◦ F ◦ (id, c)−1, where id denotes

the identity map on Rm and c is a homeomorphism form S to Bk. Then the

conclusion follows from the above argument.

4.3.2 Liapunov and strong Liapunov condition

In this subsection, we will introduce covering relations with the the Liapunov

and strong Liapunov conditions determined by a transition matrix and list

the related main results of the topological dynamics for multidimensional

perturbations of high-dimensional systems. Here, we will let | · | denote the

Euclidean norm and || · || denote the operator norm on the space of linear

maps induced by | · |.
In the following, we slightly modify the cone condition for a covering

relation given by Zgliczyński in [36, Definition 11] and furthermore, we define

the strong Liapunov condition. First, We define a quadratic form on a h-set

K in Rm to be of the form

QK(x, y) = PK(x)−QK(y) for all (x, y) ∈ Ru(K) × Rs(K), (4.20)

where PK : Ru(K) → R and QK : Rs(K) → R are positive definite quadratic

forms. Note that a quadratic form on Rn is a function Q defined on Rn

whose value at a vector z in Rn can be computed by an expression of the

form Q(z) = zTSz, where S is an n × n symmetric matrix and zT denotes

the transpose of z; refer to [27].

Definition 4.27. Let QM and QN be quadratic forms on h-sets M and N ,

respectively, as in Equation (4.20). We say that a covering relation M
f

=⇒ N
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satisfies the Liapunov condition (resp. the strong Liapunov condition) with

respect to the pair (QM , QN) if there exists θ > 0 (resp. θ > 0) such that for

any u, v ∈Mc with u 6= v,

QN(fc(u)− fc(v))−QM(u− v) > θ |u− v|2 . (4.21)

As a Liapunov function, a sequence of quadratic forms has scalar values

strictly monotone along the difference of two orbits. More precisely, consider

covering relations Mi
f

=⇒ Mi+1 satisfying the Liapunov condition with re-

spect to the pair (QMi
, QMi+1

) of quadratic forms for all i > 0. If u, v are

two points such that f i(u), f i(v) ∈Mi,c and f i(u) 6= f i(v) for all i > 0, then

the sequence {QMi
(f i(u)−f i(v)}∞i=0 is strictly increasing. This property will

play an import role while we prove conjugacy results.

Definition 4.28. Let A = [aij]16i,j6η be a transition matrix and f be a

continuous map on Rm. We say that f has covering relations with the Lia-

punov conditions (resp. the strong Liapunov condition) determined by A if

the following conditions are satisfied;

1. there are η pairwise disjoint h-sets {Mi}ηi=1 in Rm; on each Mi there

exists a quadratic form QMi
as in Equation (4.20).

2. if aij = 1 then the covering relation Mi
f

=⇒ Mj holds and satisfies the

Liapunov condition (resp. the strong Liapunov condition) with respect

to the pair (QMi
, QMj

); and

3. if aij = 1 then the coordinate chart cMi
and cMj

is a C1 diffeomor-

phisms.

The Liapunov condition is for detection of chaos (see Proposition 4.33

below), while the strong Liapunov condition is for stability of chaos under

small C1 perturbations as follows.
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Next, we use the logistic map once again as an example of map has

covering relations with the Liapunov conditions (resp. the strong Liapunov

condition) determined by a transition matrix.

Example 4.29. Let us show that the logistic map f(x) = µx(1 − x) with

µ > 4 has covering relations with the strong Liapunov condition determined

by the 2×2 matrix with all entries one. Set (i) h-sets M1 = [−ε, 1/2−δ] and

M2 = [1/2+δ, 1+ε], where 0 < 2ε < µ/4−1 and 0 < δ < [(µ/4−1−ε)µ−1]1/2;

(ii) the coordinate charts ū = cM1(u) = α−1(
∫ u
−ε ρ(t)dt −

∫ 1/2−δ
u

ρ(t)dt) and

ū = cM2(u) = α−1(
∫ u

1/2+δ
ρ(t)dt −

∫ 1+ε

u
ρ(t)dt), where ρ(t) = [(t + 2ε)(1 −

2ε − t)]−1 for t ∈ (−2ε, 1 + 2ε), and α =
∫ 1/2−δ
−ε ρ(t)dt =

∫ 1+ε

1/2+δ
ρ(t)dt; and

(iii) quadratic forms QM1(ū) = QM2(ū) = ū2. With a help of the Schwarz

lemma and the idea of the Poincaré norm, in Proposition 4.10 of [29], it

is shown that there exists λ > 1 such that if u, f(u) ∈ M1 ∪ M2, then

ρ(f(u))|f ′(u)| > λρ(u). Let C1 be a positive constant such that ρ(t) > C1 for

all t ∈M1∪M2. Then for any u, v ∈M1∪M2 we have |
∫ u
v
ρ(t)dt| > C1|u−v|.

Since c′Mi
(u) = 2α−1ρ(u), there exists C2 > 0 such that |c′Mi

(u)| 6 C2 for all

u ∈Mi and i = 1, 2. Therefore, the strong Liapunov condition holds

QMi
(fc(ū)− fc(v̄))−QMj

(ū− v̄)

= (cMi
◦ f(u)− cMi

◦ f(v))2 − (cMj
(u)− cMj

(v))2

=

(
2α−1

∫ f(u)

f(v)

ρ(t)dt

)2

−
(

2α−1

∫ u

v

ρ(t)dt

)2

> 4α−2(λ2 − 1)

(∫ u

v

ρ(t)dt

)2

> 4α−2(λ2 − 1)C1|u− v|2 > 4α−2(λ2 − 1)C1C
−2
2 |u− v|2.

In the followings, we list our results of covering relations with the the

Liapunov and strong Liapunov conditions.

Theorem 4.30. Let f : Rm → Rm be a C1 homeomorphism having cover-

ing relations with the strong Liapunov condition determined by a transition
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matrix A. If g is a C1 homeomorphism on Rm with |g − f | + ‖Dg −Df‖
small enough, then there exists a compact subset Λg of Rm such that Λg is

invariant for g and g|Λg is topologically conjugate to σA.

For small C1 perturbations of a direct product contracting along the

second variable, we have the following result.

Theorem 4.31. Let F (x, y) = (f(x), g(y)) ∈ Rm × Rk be a C1 homeomor-

phism for all x ∈ Rm and y ∈ Rk, where f : Rm → Rm has covering relations

with the strong Liapunov condition determined by a transition matrix A, and

g : Rk → Rk is a contraction on the closed unit ball Bk such that g(Bk) ⊂ Bk.

If G is a C1 homeomorphism on Rm+k with |G− F | + ‖DG−DF‖ small

enough, then there exists a compact subset ΛG of Rm+k such that ΛG is in-

variant for G and G|ΛG is topologically conjugate to σA.

Finally, for a one-parameter family of maps with the singular map F

depends only on the phase variable of f , we have the following result.

Theorem 4.32. Let Fλ be a one-parameter family of maps on Rm × Rk

satisfying (i) Fλ(x, y) is C1 continuous as a function jointly of λ ∈ R`, x ∈
Rm and y ∈ Rk, where λ is a parameter; (ii) Fλ is a homeomorphism on

Rm × Rk provided λ 6= 0; and (iii) F0(x, y) = (f(x), g(x)) ∈ Rm × Rk for

all x ∈ Rm and y ∈ Rk, where f : Rm → Rm has covering relations with

the strong Liapunov condition determined by a transition matrix A, and g :

Rm → Rk. Then for each λ sufficiently close to 0, there exists a compact

subset Λλ of Rm+k such that if λ 6= 0 then Λλ is invariant for Fλ and Fλ|Λλ

is topologically conjugate to σA, while Λ0 is positively invariant for F0 and

F0|Λ0 is topologically semi-conjugate to σ+
A .

In order to prove the main results, we need the following proposition which

is stated that a homeomorphism having covering relations with the Liapunov

condition determined by a transition matrix is topologically conjugate to a

two-sided subshift of finite type.
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Proposition 4.33. Let f : Rm → Rm be a homeomorphism which has cover-

ing relations with the Liapunov condition determined by a transition matrix

A. Then there exists a compact subset Λ of Rm such that Λ is maximal in-

variant for f in the interior of the union of the h-sets (with respect to A)

and f |Λ is topologically conjugate to σA.

Proof. We denote by {Mi}ηi=1 the h-sets with covering relations and the Li-

apunov condition for f determined by A as in Definition 4.28, and write

s = (. . . , s−1, s0, s1, . . .) for s ∈ ΣA. Define

Λn =
⋃
s∈ΣA

(
n⋂

i=−n

f−i(Msi)

)
for n > 0, and Λ =

⋂
n>0

Λn.

Define h : Λ→ ΣA by h(z) = s for z ∈ Λ, where fn(z) ∈ Msn for all n ∈ Z.

By using the same argument as in the proof of Proposition 4.25, we have

that Λ is a maximal compact invariant set for f in ∪ηi=1Mi with respect to A

and h is a topological semi-conjugacy. Moreover, the covering relations for f

on h-sets implies that any boundary point of a h-set can not have a full orbit

staying in h-sets. Therefore, Λ is maximal invariant for f in ∪ηi=1int(Mi)

with respect to A.

To prove that h is one to one, we need the following lemma, which is

guaranteed by the Liapunov condition.

Lemma 4.34. For any s ∈ ΣA, the intersection ∩n∈Zf
−n(Msn) consists of a

single point.

Proof. Let s ∈ ΣA. Then, similar to the proof of Lemma 4.26, we have that

the intersection ∩n∈Zf
−n(Msn) is nonempty. Next, we show the uniqueness

of the intersection by contradiction. Assume that u, v ∈ ∩n∈Zf
−n(Msn) with

u 6= v. Since f is a homeomorphism, fn(u) and fn(v) are different points

lying in the same h-set Msn for all n ∈ Z. By the covering relation with the
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Liapunov condition, we have that for all n ∈ Z,

QMsn+1
(cMsn+1

◦fn+1(u)−cMsn+1◦fn+1(v)) > QMsn
(cMsn

◦fn(u)−cMsn
◦fn(v)).

(4.22)

That is, the value of QMsn
at the point cMsn

◦ fn(u)− cMsn
◦ fn(v) is strictly

increasing as n ∈ Z increases. It follows that there exits j ∈ Z such that

QMsj
(cMsj

◦ f j(u)− cMsj
◦ f j(v)) 6= 0.

First, we consider the case when

QMsj
(cMsj

◦ f j(u)− cMsj
◦ f j(v)) > 0. (4.23)

By using the compactness of the union ∪ηi=1Mi, sequentially twice for two

sequences, both sequences {fn+j(u)}∞n=0 and {fn+j(v)}∞n=0 have convergent

subsequences, say {fn(i)+j(u)}∞i=0 and {fn(i)+j(v)}∞i=0, with the limits, say ū

and v̄ in ∪ηi=1Mi, respectively. By the fact that Mi’s are pairwise disjoint and

compact, and fn(u), fn(v) ∈Msn for all n ∈ Z, there exists α ∈ N such that

fn(i)+j(u), fn(i)+j(v), ū and v̄ are all in the same h-set, namely Msn(α)+j
for all

i > α. By the continuity of f , the points f(ū) and f(v̄) are limits of sequences

{fn(i)+j+1(u)}∞i=0 and {fn(i)+j+1(v)}∞i=0, respectively. Again by the same fact

as above, there exists a integer β > α such that fn(i)+j+1(u), fn(i)+j+1(v),

f(ū) and f(v̄) are all in the same h-set, namely Msn(β)+j+1
for all i > β. For

convenience, we denote N0 = Msn(α)+j
and N1 = Msn(β)+j+1

.

By Equation (4.22), we get that for all i > β,

QN0(cN0 ◦ fn(i)+j(u)− cN0 ◦ fn(i)+j(v)) > QMsj
(cMsj

◦ f j(u)− cMsj
◦ f j(v))

By letting i→∞, it follows from the continuity of QN0 and cN0 that

QN0(cN0(ū)− cN0(v̄)) > QMsj
(cMsj

◦ f j(u)− cMsj
◦ f j(v)).

Thus from Equation (4.23), we have QN0(cN0(ū) − cN0(v̄)) > 0 and hence

ū 6= v̄. Since f(ū), f(v̄) ∈ N1, the Liapunov condition implies that

QN1(cN1 ◦ f(ū)− cN1 ◦ f(v̄)) > QN0(cN0(ū)− cN0(v̄)). (4.24)
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Because that fn(i)+j+1(u) and fn(i)+j+1(v) converge to f(ū) and f(v̄), respec-

tively, and both QN1 and cN1 are continuous, we obtain that for some large

γ,

QN1(cN1 ◦ fn(γ)+j+1(u)− cN1 ◦ fn(γ)+j+1(v)) > QN0(cN0(ū)− cN0(v̄)).

By using Equation (4.22), we get that for all i > γ + 1,

QN0(cN0◦fn(i)+j(u)−cN0◦fn(i)+j(v)) > QN1(cN1◦fn(γ)+j+1(u)−cN1◦fn(γ)+j+1(v))

Letting i→∞, it follows from the continuity of QN0 and cN0 that

QN0(cN0(ū)− cN0(v̄)) > QN1(cN1 ◦ fn(γ)+j+1(u)− cN1 ◦ fn(γ)+j+1(v)).

Together with Equation (4.24), this leads to a contradiction.

For the case when QMsj
(cMsj

◦f j(u)−cMsj
◦f j(v)) < 0, by working on the

backward orbits of u and v, that is, replacing n and n(i) by −n and −n(i)

in the above argument, it leads to a contradiction.

Therefore, the intersection ∩n∈Zf
−n(Msn) consisting of a single point. We

have done the proof of the desired result.

By using Lemma 4.34, we can easily prove that h is one to one. Indeed,

let s ∈ ΣA and h(z1) = h(z2) = s for z1, z2 ∈ Λ. Then z1, z2 ∈ ∩n∈Zf
−n(Msn)

and hence z1 = z2.

Because that the sets Λ and ΣA are compact and h is a continuous and

one to one function, it follows that h is a homeomorphism. This completes

the proof of Proposition 4.33.

Now, we begin to prove the main results for with covering relation with

the Liapunov condition determined by a transition matrix. In the following,

we write A = [aij]16i,j6η and denote by {Mi}ηi=1 the pairwise disjoint h-sets

with covering relations for f determined by A. For each h-set Mi, let QMi

be the quadratic form for the strong cone condition of f.
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Proof of Theorem 4.30. Suppose aij = 1. Then Mi
f

=⇒Mj holds. By Propo-

sition 3.5, if |g − f | is small enough, then Mi
g

=⇒ Mj holds. Assume that

such a map g is C1. Before proving that Mi
g

=⇒ Mj satisfies the strong Li-

apunov condition, let us have some observations. Since Mi
f

=⇒ Mj satisfies

the strong Liapunov condition, there exists θi,j > 0 such that for x, y ∈Mi,c

with x 6= y,

QMj
(fc(x)− fc(y)) > QMi

(x− y) + θi,j |x− y|2 . (4.25)

For α = i, j, let Sα be the m×m symmetric matrix such that QMα(z) =

zTSαz for z ∈ Rm. Since f, g and cMi
are C1, for x, y ∈Mi,c, we can define

Ex,y =

∫ 1

0

Dfc(y + t(x− y))dt and Cx,y =

∫ 1

0

Dgc(y + t(x− y))dt.

Then |Ex,y − Cx,y| 6 ‖Dfc −Dgc‖ . Since both fc and gc are C1 on the

compact set Mi,c, there exists βi > 0 such that |Ex,y| + |Cx,y| < βi for all x,

y ∈Mi,c. Thus

|ET
x,ySjEx,y − CT

x,ySjCx,y|

6 |ET
x,ySjEx,y − CT

x,ySjEx,y|+ |CT
x,ySjEx,y − CT

x,ySjCx,y|

6 βi ‖Sj‖ ‖Dfc −Dgc‖ . (4.26)

Now we check the strong Liapunov condition for Mi
g

=⇒ Mj. Let u, v ∈
Mi,c with u 6= v. By the mean value theorem for integrals, we have that

fc(u)− fc(v) = Eu,v(u− v) and gc(u)− gc(v) = Cu,v(u− v). Thus,

QMj
(fc(u)− fc(v))−QMj

(gc(u)− gc(v))

= (u− v)T (ET
u,vSjEu,v − CT

u,vSjCu,v)(u− v).

From Equation (4.26), we obtain that

|QMj
(fc(u)− fc(v))−QMj

(gc(u)− gc(v))|

6 βi ‖Sj‖ ‖Dfc −Dgc‖ |u− v|2 .
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Imposing Equation (4.25), we get that

QMj
(gc(u)− gc(v))

> QMj
(fc(u)− fc(v))− |QMj

(fc(u)− fc(v))−QMj
(gc(u)− gc(v))|

> QMi
(u− v) + θi,j |u− v|2 − βi ‖Sj‖ ‖Dfc −Dgc‖ |u− v|2

= QMi
(u− v) + (θi,j − βi ‖Sj‖ ‖Dfc −Dgc‖) |u− v|2 .

Finally, we denote

θ̂i,j = θi,j − βi ‖Sj‖ ‖Dfc −Dgc‖ .

Then θ̂i,j is independent of u, v ∈Mi,c. Since cMα is C1 diffeomorphism and

Mα is compact for α = i, j, we have that ‖Dfc −Dgc‖ approaches to zero

as ‖Df −Dg‖ tends to zero. Therefore, if ‖Df −Dg‖ is small enough, then

θ̂i,j > 0 and hence Mi
g

=⇒Mj satisfies the strong Liapunov condition.

Since there are at most η2 choices of pairs (i, j), from the above, we get

that if g is a C1 continuous map with |g − f | + ‖Dg −Df‖ small enough,

then g has covering relations with the strong Liapunov condition determined

by A. In addition, if such maps g are C1 homeomorphisms, then we have

the desired result, by applying Proposition 4.33 and the fact that the strong

Liapunov condition implies the Liapunov condition.

Proof of Theorem 4.31. Suppose aij = 1. Then the covering relation Mi
f

=⇒
Mj holds. First, we show that there is a corresponding covering relation for

F on h-sets. For α = i, j, let M ′
α = Mα×Bk. Then each M ′

α is an h-set with

cM ′α(x, y) = (cMα(x), y), u(M ′
α) = u(Mα), and s(M ′

α) = s(Mα) + k. Define a

homotopy H : [0, 1]×Bm ×Bk → Rm+k by

H(t, x, y) = (h(t, x), (1− t)g(y)),

where h is the homotopy for the covering relation Mi
f

=⇒ Mj. Then for all

x ∈ Bm and y ∈ Bk, we have

H(0, x, y) = (h(0, x), g(y)) = (cMj
◦ f ◦ c−1

Mi
(x), g(y)) = Fc(x, y), and
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H(1, x, y) = (h(1, x), 0).

Thus we have that M ′
i

F
=⇒M ′

j follows from Mi
f

=⇒Mj.

Next, we show that the strong Liapunov condition is satisfied for M ′
i

F
=⇒

M ′
j. For α = i, j, define the quadratic form QM ′α(x, y) = QMα(x)− |y|2. Let

(x1, y1), (x2, y2) ∈ M ′
i,c with (x1, y1) 6= (x2, y2). Since Mi

f
=⇒ Mj satisfies

the strong Liapunov condition, there exists θi,j > 0 such that QMj
(fc(x1) −

fc(x2)) > QMi
(x1 − x2) + θi,j |x1 − x2|2 if x1 6= x2. Since g is a contraction

on Bk, there exists 0 < γ < 1 such that

|g(y1)− g(y2)| 6 γ |y1 − y2| .

Thus no matter what x1 is equal to x2 or not, we get that

QM ′j
(Fc((x1, y1))− Fc((x2, y2)))−QM ′i

((x1, y1)− (x2, y2))

= QM ′j
((fc(x1)− fc(x2), g(y1)− g(y2))−QM ′i

((x1 − x2, y1 − y2))

= QMj
(fc(x1)− fc(x2))− |g(y1)− g(y2)|2 −QMi

(x1 − x2)

+ |y1 − y2|2

> θi,j |x1 − x2|2 + (1− γ2) |y1 − y2|2

> θ̂i,j |(x1, y1)− (x2, y2)|2 ,

where θ̂i,j = min{θi,j, 1 − γ2}/2 > 0. Thus M ′
i

F
=⇒ M ′

j satisfies the strong

cone condition. Since the number of pairs (i, j) is finite, F has covering rela-

tions with the strong Liapunov condition determined by A. From Theorem

4.30, the desired result follows.

Proof of Theorem 4.32. By the continuity of g on the compact union ∪ηi=1Mi,

there exists r > 0 such that g(∪ηi=1Mi) ⊂ Bk(r). For each α ∈ {1, 2, . . . , η},
since g and c−1

Mα
are C1, the composition g ◦ c−1

Mα
satisfies the Lipschitz con-

dition on the compact set Mα,c, i.e., there exists Lα > 0 such that for all x1,

x2 ∈Mα,c, ∣∣g ◦ c−1
Mα

(x1)− g ◦ c−1
Mα

(x2)
∣∣ 6 Lα |x1 − x2| .
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For i, j ∈ {1, 2, . . . , η} with aij = 1, we have that Mi
f

=⇒ Mj holds and

satisfies the strong Liapunov condition. Thus there exists θi,j > 0 such that

QMj
(fc(x1) − fc(x2)) > QMi

(x1 − x2) + θi,j |x1 − x2|2 if x1, x2 ∈ Mi,c with

x1 6= x2. Take a real number θ̂ such that 0 < θ̂ < min{θi,j/(1 + L2
i /r

2) : i,

j ∈ {1, 2, . . . , η}, aij = 1}.
Suppose aij = 1. For α ∈ {i, j}, let M ′

α = Mα × Bk(r). Then each M ′
α

is an h-set with cM ′α(x, y) = (cMα(x), y/r), u(M ′
α) = u(Mα), and s(M ′

α) =

s(Mα) + k. Define a quadratic form on M ′
α by QM ′α(x, y) = QMα(x)− θ̂ |y|2.

Then M ′
i

F0=⇒M ′
j holds for a homotopy H : [0, 1]×Bm×Bk → Rm+k defined

by

H(t, x, y) = (h(t, x),
1− t
r

g(c−1
Mi

(x))),

where h is the homotopy for the covering relation Mi
f

=⇒Mj. Furthermore,

we check the strong Liapunov condition. Let (x1, y1), (x2, y2) ∈ M ′
i,c with

(x1, y1) 6= (x2, y2). Then

Therefore, M ′
i

F0=⇒M ′
j satisfies the strong Liapunov condition.

By the finiteness of the pair (i, j), F0 has covering relations with the

strong Liapunov condition determined by A. By Proposition 4.25, there

exists a compact subset Λ0 of Rm+k such that Λ0 is positively invariant for

F0 and F0|Λ0 is topologically semi-conjugate to σ+
A . Since Fλ(x, y) is C1 in

the triple (λ, x, y) of variables, by using the same argument as in the proof of

Theorem 4.30, there exists λ0 > 0 such that for all λ with |λ| < λ0, the map

Fλ has covering relation with the strong Liapunov condition determined by

A. Since Fλ is a homeomorphism on Rm+k provided λ 6= 0, by Proposition

4.33, if 0 < |λ| < λ0 then there exists a compact subset Λλ of Rm+k such

that Λλ is invariant for Fλ and Fλ|Λλ is topologically conjugate to σA. We

have finished the proof of the theorem.
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5 Conclusion

Conclude from this dissertation, we mention some possible future works.

• As the construction of the covering relation, it’s interesting to consider

the chaotic dynamics for some nonuniformly hyperbolic systems.

Barreira and Valls [3] consider sequences of Lipschitz maps Am + fm

such that the linear parts Am admit a nonuniform exponential di-

chotomy, and establish the existence of a unique sequence of topological

conjugacies between the maps Am+fm. Also, in [4], they study the re-

lation between nonuniform exponential dichotomy and strict Lyapunov

sequences. Given such a sequence, they obtain the stable and unstable

subspaces from the intersection of images and preimages of the cones

defined by each element of the sequence. Use the ideas of nonuni-

form exponential dichotomy and strict Lyapunov sequences, we want

to construct the covering relations with strong Liapunov condition for

the nonuniformly hyperbolic systems.

• It is possible to use the fixed point index theorem to extend the results

to the Banach space.

Misiurewicz and Zgliczyński [8] use the covering relation in real banach

space and the fixed point index theorem to give the result to rigorous

estimate topological entropy in case of a one dimensional model (i.e. f

is in one dimensional space) where the full system is in infinite dimen-

sional real Banach space. As the construction of covering relations in

subsection 4.1.2 for map which has a snap-back repeller, we want to

extend the result for the compact map which has a snap-back repeller

in the real Banach space. Moreover, we want to apply the result to

some differential equations.
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