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Student: Ming-Jiea Lyu Advisor: Ming-Chai Li
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Abstract

In this dissertation, we investigate topological “dynamics of high-dimensional
systems which are perturbed from-a continuous map f of the following form F(x,y) =
(F(x),9(x,y)). First,.we show that-if the lower dimensional map.f has a snap-back
repeller, then the small C' perturbation of f also has a snap-back repeller.

Assume that g is locally ‘trapping~and the system is ‘along a one-parameter
continuous family {F.} such that Fo = F. We show that if f 1S a.one dimensional map
and has positive entropy, or s a high-dimensional. map and has a snap-back repeller
then {F.} has a positive topological entropy for all small parameter A. Also, we
show that if fis a C' diffeomorphism having a topologically crossing homoclinic point,
then {F .} has positive topological entropy for all A close enough to 0.

Moreover, we show that if f has covering relations determined by a transition
matrix A, then any small C’ perturbed system of F has a compact positively invariant
set restricted to which the perturbated system is topologically semi-conjugate to the
one-sided subshift of finite type induced by A. In addition, if the covering relations
satisfy a strong Liapunov condition and g is a contraction, we show that any small C'

perturbed homeomorphism of F has a compact invariant set restricted to which the



system is topologically conjugate to the two-sided subshift of finite type induced by
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1 Introduction

In this dissertation, we mainly study the perturbation from a map f on
the lower dimensional phase space, which has some dynamical properties
(positive topological entropy, snap-back repeller, topologically crossing ho-
moclinicity, covering relations determined by a transition matrix, etc.) to
continuous map G on a high dimensional space such that G is a small per-

turbation of the singular map F' which is one of the following cases:
(i) F(z) = f(z) e R™;
(i) F(z,y) = (f(z), g(¥)) eR™XR™;

(iii) F(z,y) = (f(x)g(z,y)) € R™ x R" and g(R™x S).C int(S) for some
compact set § € R"” homeomorphic to the closed unit ball in R", where

int(S) denote thesinterior of:S;

(iv) F(x,y) =(f(x),9(y)) € R™ x R" where g is a contraction on the
closed unit ball in R™ and has the unique fixed point.in the interior of

the unit ball.
The question we discussed is the following.
(#) Does G have chaotic dynamics?

The map G in cases (ii)-(iv) is considered as multidimensional perturba-
tion of f due to bigger dimension of phase space, while G in case (i) is a
usual perturbation of f and they have the same phase space. The singular
map F' in cases (ii)-(iv) can be considered as the skew product (f(z), ¢(z,y))
with different strength on trapping region of ¢(x,y): vertical contraction
q(z,y) = g(z) for case (ii), locally trapping ¢(R™ x S) C int(S) for case (iii),
and horizontal contraction for ¢(x,y) = g(y).

In 1975, Li and Yorke [18] introduced the mathematical definition of chaos

and established a very simple criterion: “period three implies chaos” for its
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existence in the real number. This criterion played a key role in predicting
and analyzing one-dimensional chaotic dynamical systems. In 1978, Marotto
[19] wanted to study chaos for higher dimensional discrete dynamical systems
and he proved that “if a differentiable map has a snap-back repeller then it
exhibits the sense of Li-Yorke chaos”. Based on Marotto’s argument, Blanco
Garcia [2] showed that a snap-back repeller implied positive topological en-
tropy. Here, in Section 2, we give a definition of snap-back repeller slightly
different from Marotto’s in [19, 23] so that it is independent of norms and the
mentioned results of Marotto and Blanco Garcia still hold obviously. Also
we use the implicit function theorem in Banach spaces to prove that any
small C! perturbation of a (possibly noninvertible) system with a snap-back
repeller has a snap-back repeller-and exhibits chaos. This establishes one
kind of result addressing question (#) in-case (i) for snap-back repeller, refer
to [13].

In Section 3-4, we focus on the results about topological entropy which is
a quantitative measurement of how chaotic a map is. In factyit is determined
by how many different orbits there are for a given map. "The methodology
we used to study the question (#) is based on the 'conecept of covering re-
lation which was introduced by Zgliczynski in-{33; 34}, see Section 3 for its
background and applications. ' [t allows one to prove the existence of pe-
riodic points, the symbolic dynamics and the positive topological entropy
without using hyperbolicity. Also, the persistence of covering relation under
small perturbation allow one to consider the multidimensional perturbation
of systems.

There are several existing literature investigating the question (#) about
topological entropy. For the case when f is an interval map and g =
0 in a real Banach space, Misiurewicz and Zgliczynski in [8] proved that
liminfy_o htop(F\) = hiop(f). For the planar case (ie. m = n = 1),

Marotto in [21] restricted perturbations to two types: the first one is that



Fi(z,y) = (p(z, y),z) and A € R and the other one that is F)\(z,y) =
(p(z, \y), g(Aaz,y)), A = (A1, A2) € R?, and the map y — ¢(0,y) has a
stable fixed point. Assuming the map z — ¢(x,0) is C' and has a snap-
back repeller, he showed that for all A near 0, the map F\ has a transverse
homoclinic point. His method relies heavily on the planar structure of the
map Fy and the Birkhoff-Smale transverse homoclinic point theorem. Also,
the results from [11, 17] about difference equations can be applied to ques-
tion (#) for the topological entropy, but these are in fact perturbations of
one-dimensional maps.

In subsection 4.1, we establish two kinds of tesults addressing question
(#) in cases (ii) and. (iii) for f having positivertopolegical entropy in one
dimensional spacesand snap-back repeller in higher dimensional space, along
a one-parameter, continuous-family {F) }such that F' = F, and G = F) with
small parameter A. First we show that if f is@ one-dimensional map (without
any additional @ssumption) then lim infy 5 Agep(F)) 2 hiop(f) (see Theorem
4.1 and 4.2). Second, we allow f tobe possibly high-dimensional map and
show that if f hasa snap-back repeller then /i, (£) > 0 forall A near enough
0 (see Theorems 4.9 and 4.10), refer to [16]. Moreover; as a by-product of
using covering relation; we give a new proof of Blanco Garcia’s result in [2]
that the existence of a snap-back repeller implies positive topological entropy
(see Proposition 4.8).

Theae results are applicable to a high-dimensional version of the Hénon-
like maps. Define a family of maps Hy(z,y) on R™ x R" with parameter

b € RY, by its components, for z = (21, ..., 7,,) and ¥y = (Y1, ..., Yn),

ZEZZGZ—ZE22+OZ(b)(PZ(I,y), ng,

1
1

NN

g]:gj(xvy)v J <TL,
where each a; is a constant, o;, ¢;, g; are real-valued continuous functions
and lim, 9 0;(b)/|b] = 0. If m = n = 1, one can reduce H, to the original

Hénon-map (z,y) — (a — 2% + by, x) and apply results from this paper as
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well as from [11, 17, 21]. For the general case when m > 1 and n > 1, we
assume that each g; is either dependent only on x or bounded (hence, the
conditions in form (ii) or (iii) are satisfied, respectively). At the singular
value b = 0, the first m components of Hy, i.e. T; = a; — x? for 1 <
1 < m, form a decoupled map from R™ into itself, and such a map has
a positive topological entropy or a snap-back repeller by choosing suitable
a;. By applying the results about topological entropy of multidimensional
perturbations with snap-back repellers on lower dimensional map, we get
that hop(Hp) > 0 for all b sufficiently near 0.

The idea of a topologically crossing intersection of two submanifolds is
from [5, 7, 8] (see subsection 4.2.1 for background). The methodology we use
to study the question (#) with-f having topologically crossing intersection is
based on the construction of topological horseshoe, given by Burns and Weiss
in [5], and the ‘con¢ept of covering relations. Topologically crossing homo-
clinicity guarantees existence of covering relations on which f has both topo-
logical contraction and expansion directions. Unlike the diseuss in subsection
4.1, the covering relations have only expansion direction for an interval map
f with positive topological entropy or a map [ with a snap-back repeller.
In subsection 4.2.2, we‘establish the results addressing question (#) in cases
(i)-(iii) for f being a C' ‘diffeornorphism with a hyperbolic periodic point
which has a topologically crossing homoclinic point, along a one-parameter
continuous family {F\}. We show that F) has positive topological entropy
for all A close to 0, refer to [14].

In subsection 4.3.1, we assume that f has covering relations determined
by a transition matrix A (see Definition 4.21) and show that for cases (i)-(iii),
if G is CY close to F, then G has an isolated invariant set to which the re-
striction G is topologically semi-conjugate to the one-sided subshift of finite
type, denote by o, and hence the topological entropy of G is greater than
the logarithm of the spectral radius of A (see Theorems 4.22-4.24). In addi-



tion, in subsection 4.3.2, if the covering relations satisfy the strong Liapunov
condition (see Definition 4.28), then we conclude that if a homeomorphism G
is O close to F, then G has an isolated invariant set to which the restriction
of GG is topologically conjugate to the two-side subshift of finite type, denote
by o4, for the cases (i) and (iv) provided that F' is a homeomorphism (see
Theorems 4.30 and 4.31), and for the case (ii) provided that G is perturbed
from F' along a one-parameter continuous family {F\} such that F' = I and
G = F, with small || # 0 (see Theorem 4.32), refer to [15].

In particular, one can apply the last_result to the Hénon-like like family
Fi(z,y) = (f(x) + p(\, z,9),¢(N 2, y)), where fiis the logistic map f(z) =
pr(l —x) with g > 4, paand g are C' continuous funetions of (), z,y) such
that F is a homeomorphism-for. A = 0, and A(0, z,y) =0 for all (z,y) and
q(0,2,y1) = q(0,a,ys) for all'zy; and ys. The map f has covering relations
which are determined by the 2 % 2 matrix with all entries one and satisfy the
strong Liapunov condition (see Example 4.29). Thus for sufficiently small
|A| # 0, the map:F) has an isolated invariant set on which FEy is topologically
conjugate to the 2-shift. By setting p(\,z,y) = Ay and ¢()\, x,y) = z, the

family F\ becomes the original Hénon family.



2 Snap-back repeller

In this section, we study the snap-back repellers. Recently, Marotto [23]
redefined snap-back repeller and stated that his early result in [19]: “a snap-
back repeller implies Li-Yorke chaos” is still correct. First, in here, we list

the Marotto’s definition of snap-back repeller in [23].

Definition 2.1 ([23], Definition 1). Suppose z is a fized point of a differ-
entiable map f with all eigenvalues of D f(z) exceeding 1 in magnitude, and
suppose there exists a point xo # z i a repelling neighborhood of z, such that
xy = 2z and det(D f(xy)). £ 0 for L. < k.< M, where xy, = fr(xo). Then z is
called a snap-back repeller-of f.

Marotto’s definition depend-on the norms of the phase space. Now we
give our definition of a snap-back repeller which is slightly different form

Marotto’s definition. It'is independent of norms.

Definition 2.2:7Let f : R¥ — R¥ be'a differentiable function. A fized point
wo for f is called a snap-back repeller if (i) all eigenvalues of D f(wy) are
greater than one in-absolute value and (1) there exists asequence {w_, }nen

such that w_y # wy, liM, secw_, = wg, and for alln € N, f(w_,) = w_n41

and det(D f(w_,)) # 0.

Based on Marotto’s argument, Blanco Garcia [2] showed a snap-back re-
peller implies positive topological entropy. The mentioned results of Marotto
and Blanco Garcia under our definition till hold. Roughly speaking, a snap-
back repeller of a map is a repelling fixed point associated with which there
is a transverse homoclinic point. Notice that if there exists a norm |- |, on R*
such that for some constants 6 > 0 and A > 1, one has that |f(z) — f(y)|. >
Az —yl. for all (z,y) € B(wy, ) where B(wp,d) = {x € R* : |z — wpl. < d},
then f is one-to-one on B(wy,d) and f(B(wq,d)) D B(wy,d); hence item (ii)
of Definition 2.2 can be satisfied if there is a point ¢ € B(wy,d) such that
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f™(q) = wo and det(Df™(q)) # 0 for some positive m. In fact, item (i)
implies that such a norm must exist (refer to [29, Theorem V.6.1]). Further-
more, if all eigenvalues of (D f(wp))? D f(wy) are greater than one, then such

a norm can be chosen to be the Euclidean norm on R* (see [12, Lemma 5]).

2.1 Preliminaries

In this subsection, we recalled the result about “a snap backer repeller im-
plies Li-Yorke Chaos” which was proved by Marotto in [19] and [23] and “a
snap-back repeller implies positive topological entropy” which was proved by
Blanco Garcia in [2].

First, we describe the mathematical senseof chaos introduced by Li and

Yorke in [18]:

Theorem 2.3 ([18], Theorem 1). Let J be anintervalin R and let F : J — J
be continuous. "Assume that there is-a point a € J, for which the points

b= Fl(a), c = F*(a) and d = F>(a),Satisfy
d<a<b<c(ord=a>b>c.

Then:

1. for every k € 1,2, ..., there is a periodic point in J having period k;

2. there is an uncountable set S C J (containing no periodic points), which

satisfies the following conditions:

(a) for every p, q € S with p # q,
limsup |[F"(p) — F"(q)| > 0

and

liminf [F"(p) — F"(q)| = 0;

n—o0



(b) for every p € S and periodic points q € J,

limsup |F"(p) — F"(q)| > 0.

n—oo

In [19], Marotto studied the Li-Yorke theorem to higher dimensional dis-

crete dynamical systems.

Theorem 2.4 ([19], Theorem 1). Let f : R* — R* possess a snap-back
repeller. Then f exhibits Li-Yorke chaos, that is, there exist

1. a positive integer N such that.ifan.> N is an integer, the map [ has a

point of period m;
2. an uncountable set’S containing no-periodic points of f such that
(a) if v, e § with x£7y, then

limsup | f*(z) <= f*“(y)| > 0;

n—0oo

(b) if x €S and y is aperiodic point for f, then

linsup | f#(@) = f"(y) | >0;

n—oo

(¢c) f(S)CS; and
3. an uncountable subset Sy of S such that if x, y € Sy, then
fiminf [/"(«) ~ "(4)] =0,

Next, we review the background of topological entropy. Let (X, d) be a
compact metric space and let f : X — X be a continuous map. For n € N,

the function

dn.s(2,y) = max d(f*(z), f*(y))

0k<n

measures the maximum distance between the first n iterates of x and y. For

n € Nand ¢ > 0, a set S C X is called (n,¢)-separated for f provided
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dn,f(x,y) > € for every pair of points z, y € S with x # y. The number of
different orbits of length n (as measured by ¢) is defined by

r(n, e, f) = max{#(S) : S C X is a (n, €)-separated set for f},

where #(5) is the number (cardinality) of elements in S. In order to measure

the growth rate of r(n, €, f) as n increases, we define

h(e, f) = limsup M.

n—oo n
Finally, we consider h(e, f) varies as € goes to 0 and define the topological

entropy of f as

Moreover, let f:' X — X-be a continuous function where X is a metric
space. Here, the topological-entropy of f is defined to be the supremum of
topological entrepies of f restricted to compact invariant sets. Refer to [29]
for more background.

Blanco Garcfa [2] proved that a‘snap-back repeller implies positive topo-

logical entropy.

Theorem 2.5 ([2], Theorem 1). Let F : R¥ — R*be a differentiable map.
If F' has a snap-back repeller, then Fhas positive topological entropy.

2.2 Persistence of snap-back repeller

In this subsection, we show the persistence of snap-back repeller for small C*
perturbations by using the implicit function theorem in Banach spaces (refer
to Lang’s textbook [31, Theorem 6.2.1]). Let k be a positive integer, | - |2 be
the Euclidean norm on R*, and || - || be the operator-norm on the space of

linear maps on R* induced by | - |s.

Theorem 2.6. Let f : R¥ — R¥ be a C' map on RF with a snap-back
repeller. If g is a C* map on R* such that |f — gla + ||Df — Dgl|2 is small

9



enough, then g has a snap-back repeller, exhibits Li-Yorke chaos, and has

positive entropy.

Proof. Let o be a snap-back repeller of f and {x_,},en be its correspond-
ing homoclinic orbit with x_; # x¢, lim, .. z_, = To, and for all n € N,
flx_,) = x_py1 and det(Df(x_,)) # 0. Since xy is a fixed point of f
and all eigenvalues D f(z) are greater than one in absolute value, there ex-
ists a norm | - |, on R* such that for some constants d; > 0 and Xy > 1,
one has that |f(x) — f(y)]« > Xolx — yl. for all z, y € B(xg,dy), where
B(xg,60) = {x € R* : |2 — 2¢]s < 6p}. Thus.f is one-to-one on B(xg, &)
and f(B(zo,00)) D B(&gs00).Let || - [|. denote the operator-norm in the
space of linear maps on'R* induced by |- J¢». Let Aj-be a constant with
1 < A\ < X and let U(f, Xo=2X1) denote the set of all € maps g on R¥ with
If —gl« +||Df.— Dgll. < Xo=A;.-Thenfor.any g€ U(f,\o — \1) and z,
y € B(xg, ), we have that

l9(z) —g@)lk > |f(@)=Ff@l=Ig= f)(z)+(g= Nyl (21)
> \[Ao = (Ao = A)lfz= gl = Mle =yl

hence, ¢ is one-to-one  on “B(xg,dy). Let § >"05 be a constant so that
{x_n}tnen C B(xo,0dp). Denote by W theclosure of B(zg,dp). Then W
is a compact subset of R*. Let S be the space of C! functions from W
to R¥ endowed with the usual C' topology de1 which is induced from the
norm | - |, on R*. Then S is a Banach space and the restriction of any C*
map g on R¥ to W, denoted by g|W, is in S. Since z, is a snap-back re-
peller of f and all eigenvalues of Df(xy) are greater than one in absolute
value, there exist positive constants s, 6; and a positive integer M such
that Ay < Ay < A, 01 < 0o, _pr € B(xg,01)\{wo}, det(DfM(xz_51)) # 0,
zo € int(fM(B(xo,01)\{z0})) and for all g € U(f, \o—A2) and = € B(zg,d1),

all eigenvalues of Dg(z) are greater than one in absolute value. Let A3 be a
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constant such that

Ao +0
max{)\g, %511} < A3 < Ag. (22)

Then for any g € Uy (f, Ao — A3), we have that g is one-to-one on B(xg, d1).
In addition, if € R* with |z — 24|, = 6;, by Equation (2.1) with \; replaced
by A3 and Equation (2.2), we get that

19(x) — w0l = [f(@) — 0|+ — [g(x) — f(2)]« > A361 — (Ao — A3) > 6.

Moreover, the continuity of ¢ implies that g(B(xg,01)) D B(wxo,d1). Let
V' = B(xg,01)\{zo} and Uy (f;A0—A3) = {g/W.: g € U(f, \o— A3)}. For the
first desired result, we need to show the existence of a snap-back repeller for
any g € Uy (f, \o—A3) near f. Define H : Uy (f, \o=A3)x W xV — RF@QR*
by H(g,z,y) = (g(z) = =, ¢™(y) — x). Then H(f,z¢, 2 3;)= 0 and H is C!
on its domain; refer to [10, Appendix Bl.-Since all eigenvalues of D f(x) are
greater than one'in absolute value, we have det(D f(xy) — Iy) # 0, where I},
denotes the identity matrix of size &; refer to [29, Lemma 'V.5.7.2]. By the
chain rule, det(DfFM(x_pd)). = T1E, det(Df(x_)) # 0. Hence, by writing
z = (z,y) € W x' ¥V, we have
det <88—Z(g, 2)|g=f. z(m,wM)) = det Df(xoj) ) b MO £ 0;
— 1k S (@ -wm)

refer to [28, Proposition 0.0]. By the implicit function theorem applied
to the function H, there exist positive constants A4, d2, 7 and a C' map
h @ Uw(f, o — A1) — B(xg,02) X B(x_p;,m) such that A3 < Ay < Ao,
dy < 01, B(x_p,m) C V., B(xg,d2) N B(x_pr,m) = 0, and for every g €
Uw (f, Ao — A1), one has that h(g) = (h1(g), ha(g)) is the unique solution for
the system of equations g(x) = z and g™ (y) = = in B(xo,d) x B(x_u, 1),
and det(DgM (hy(g))) # 0. In particular, h(f) = (zo, 7_as).

To conclude that the point hi(g) is a snap-back repeller of ¢, it remains

to show that hs(g) has a backward orbit converging to hi(g). Let g €
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Uw (f, Ao — M\4) and denote y_pr4; = g (ho(g)) for all 0 < i < M — 1. Then
y_a # hi(g) and g™ (y_pr) = hi(g). Since g is one-to-one on B(zg,d1),
9(B(z9,01)) D B(zo,61) and ho(g) € B(zg,91), we can define y_p—; =
G %(ha(g)) inductively for i > 1, where g=' = (g|B(z0,0;))"" denotes the
inverse of the restriction of g to B(xg,d;) and §g~¢ denotes the ith iterate of
g~'. Then the sequence {y_;}ien forms a backward orbit of hy(g) such that
Y_n € B(xg,d1) for all n > M. From Equation (2.1), we obtain that for any
x,y € B(xg,d1),

971 (@) — 47 W)k < A2 =yl (2.3)

By considering inequality. (2.3) inductively,.we haye that for any i > 1,

ly—nr—i — M@ =1 " (y-a) = G @)l <A1y nr — ha(9)l

This shows thatlimy, .. y—rn="h1(g).
Since the normss| - |, and | - |. on R* are‘equivalent, the proof of the first
desired result is now complete. The second and third assertions immediately

follow from Theorem 2.4 and 2:5. O

Notice that from the above proof of Theorem 2.6, it is sufficient to re-
quire a smallness of [f —gla.+ ||Df — Dgl||2 locally in a neighborhood of the
homoclinic orbit associated to the snap-back repeller, instead of globally in
RE.

As an immediate consequence of the above theorem, we have the following

result for a parametrized family.

Corollary 2.7. Let f,(z) be a one-parameter family of C* maps with variable
x € R¥ and parameter p € R. Assume that f,(z) is C' as a function jointly
of x and p and that f,, has a snap-back repeller. Then for all v sufficiently
close to g, the map f, has a snap-back repeller, exhibits Li-Yorke chaos,

and has positive topological entropy.
Next is another application to perturbations of a decoupled system.
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Corollary 2.8. Let f. : R¥ — R* be a one-parameter family of C* maps
with components (fe)i(x) = hi(z;) + €g:(x) for each 1 < i < k; here we
denote the variable x = (xy,...,x;) and the parameter € = (ey, ..., €;) in R¥,
If the number of snap-back repellers for each map h; is m; > 1, then for all

sufficiently small |€|, the number of snap-back repellers for the map fe is at

least T, m;.
Gardini et al. [6] studied the double logistic map Ty : R? — R? given by
Ty(,5) = (1— A+ 4hg(1 — ), (e Ay + el — ), A€ 0,1 (2.4)

therein the basins of attraction of the absorbing areas are determined to-
gether with their bifurcations. Moreover; it-was mentioned that 77 (x,y) =
(h?(x), h%(y)), where h(x) =4z(1—x), has a snap-back repeéller at the origin.
Therefore, applying Corollary 2.8, we have the following result.

Corollary 2.9. For all \ near one, thesecond iterate of system (2.4) has
a snap-back repeller, exhibits Li-Yorke chaos, and has positive topological

entropy.
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3 Covering relations

In this section, we give the background information about covering relations

and list some properties of the local Brouwer degree.

3.1 Background and applications

In this subsection, we introduce the definition and some applications of cov-
ering relation. Suppose that R™ has a norm |- |. For z € R™ and r > 0, we
denote B, (x,r) = {z € R™ : |z — x| <}, that is, the open ball of radius r
centered at the origin 0 in'R™; in short, we write B,, = B,,(0, 1), the open
unit ball in R™. Moreover; for a subset S of R™, let4S and 0S denote the
closure and the boundary of-S;-respectively. It will be always clear from the
context which noerm is used-

Now, we briefly recall some definitions froms[35}-concerning covering re-

lations.

Definition 3.1../35, Definition 6] An h-set in R™ is a quadruple consisting
of the following data:

e a nonempty compact subset M of R™,
o a pair of numbers w(M),s(M) €{0,1,...,m} with u(M)+ s(M) = m,

o o homeomorphism cy; : R™ — R™ = R*“M) 5 RSM) wyith cpr (M) =

BuM) x Bs(M) where S x T is the Cartesian product of sets S and T .

For simplicity, we will denote such an h-set by M and call cps the coordinate

chart of M ; furthermore, we use the following notations:

M, = Bu) x Bs(M) - N[~ = 9BYM) 5 Bs(M) - N+ = BuM) x 9B

M~ =cyf (M), and M = ¢} (M.

C
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A covering relation between two h-sets is defined as follow.

Definition 3.2. /35, Definition 7] Let M, N be h-sets in R™ with u(M) =
w(N) =u and s(M) = s(N) = s, f : M — R™ be a continuous map, and
fo=cnofocy : M, — R xR, We say M f-covers N, and write
M f
= N,

iof the following conditions are satisfied:

1. there exists a homotopy h.:{0y1}>x M, — R* x R® such that

h(0,z) = f(®) forxz.€ M., (3.1)
([0, 1], M) AN, = 0, (32)
h([0, 1];M)0 N = 0; (3.3)

2. there exists'a map ¢+ R* — R" such that

h(1,p, q) = (¢(p),0) for any p € B* and g€ B,
¢(0B*) ¢ R“\B%; and

3. there exists a nonzeroanteger w..such that the local Brouwer degree
deg(p, B*,0) of ¢ at 0%n B" is w; refer to [35, Appendiz] for its

properties.

Usually, we will be not interested in the values of w among covering
relations and we just write M L N instead of M L% N.

Next, we list two important results derived from the covering relations
which is proved by Zgliczyniski and Gidea in [35]. The first one is that a

closed loop of covering relations implies existence of a periodic point.

Theorem 3.3. [35, Theorem 9] Let {f;}F_, be a collection of continuous
maps on R™ and { M;}*_, be a collection of h-sets in R™ such that My, = M,
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and M; iy M, for 1 <i < k. Then there exists a point x € int(M,) such
that

fio ficio---0 fi(x) € int(Myq) fori=1,..k, and
feo femr00 fi(z) = .

The following one shows that a covering relation is persistent under C°

small perturbations.

Theorem 3.4. [35, Theorem 14] Let M and N be h-sets with u(M) =
u(N) = u and s(M) = s(N)'= s and let f,g : M — R™ be continuous.
Assume that M L% Nednd that'the coordinttechdrt cn satisfies a Lipschitz
condition. Then there etists € >0 such-that if |f(x)— g(x)| < € for all
€M then M 2= N.

Moreover, the following one shows that @ covering relation is persistent
under C° small'perturbations. This result slightly extendstheorem 3.4 by
dropping the Lipschitz condition of the coordinate chart.

Proposition 3.5. Let My and My be h-sets with w(Mi). = u(Ms) = u and
s(My) = s(My) = s and let f, g: My — R™ be continuous. Assume that

Moy Ve
Then there exists 0 > 0, such that if | f(z) — g(x)| < 0 for all x € M, then
My 2= M.

Proof. By using Theorem 3.4, there exists € > 0 such that if | f.(z)—g.(x)| < €
for all x € M, . then
My 2= M.

Since M, is compact, there exists r > 0 such that f(M;) C B,,(0,r).
If |[f(z) —g(x)] < 1 for all z € M, then g(M;) C B, (0,r+1). By

uniform continuity of ¢y, on B,,(0,r + 1), there exists &' > 0 such that

16



if 2,2/ € Bp(0,r+1) and |z — 2| < ¢’ then |can(2) — ea (2')] < €. Let
0 =min{d’, 1}. If |f(z) — g(z)| < 0 for all x € M then

max | fo() = ge(w)| = max|en, (f(x)) — ean (9(2))] < e

Thus M, 2= M. O

3.2 Properties of local Brouwer degree

In this subsection, we list some basic properties of local Brouwer degree; refer
to [30, Chapter III] for the proof. Let.n be apositive integer and 7' C R"

be an open and bounded set: Let ¢ : D — RZ be continuous, 7 C D and
q € R™ with g ¢ ¢(01L).

1. Integer property:
deg(o, T’ q) € Z;

2. Solution property: If deg(p;T,q) # 0, then there exists x € T such
that

p(r) = ¢

3. Invariance under hometopy: Let H :.0, 1] x D — R" be continuous.

Suppose that p ¢ H([0,1],d7"). Then for all A € [0, 1],

deg(Ho, T, p) = deg(Hx, T, p);

4. Local constant property: If p and ¢ lie in the same connected compo-

nent of R™\¢(9T), then
deg(, T, p) = deg(p, T q);

5. The excision property: Assume ¢~ '(q) N D C T, then

deg(p, T, q) = deg(p, D, q);
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6. Multiplication property: Let 1) : R® — R" be a continuous mappings
and A; be the components of R"\p(9T"). Then

deg(¢ o, T7 q) = Z deg(wu A’h q) deg(% T7 A’L)v
A

where deg(p, T, A;) = deg(p, T, q;) for some ¢; € A,;.

7. Addition property: If T' = |J,_; T;, where each T; is open, 0T; C 0T,

el

and the family {7;};c; are mutually disjoint, then

deg(# T, ) = T dea(p, D, );

1€l

8. If ¢ is C! andfor €ach x € ¥ (g) ML the Jacobian matrix of ¢ at z,
denoted by D¢, is nonsingular; then

deg(p,T,q) = Y sgn(det De,),

z€p~(g)NT

where sgn represents the sign function.

Form the above properties, we can derive the following proposition which

is used later.

Proposition 3.6. Let ¢ : R" = R"? be a C' map and p € R™ such that
Y~Y(p) consists of a single point and lies in a bounded connected component

A of R\ ¢(0T), and Dby is nonsingular. Then

deg(v o @, T, p) = sgn(det Dipy-1()) deg(p, T',v),

for any v € A.
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4 Topological dynamics for multidimensional

perturbations

In this section, the topological dynamics for multidimensional perturbations
of maps are studied. We investigate the question (#) with the lower dimen-
sional map, for cases(i)-(iii), which has positive topological entropy, snap-
back repeller, or topologically crossing homoclinicity and for cases (i)-(ii)

and (iv), which has covering relations determined by a transition matrix.

4.1 Snap-back repellers and one dimensional maps

In this subsection, we state our result-about the topological entropy of mul-
tidimensional perturbations-ef-a continuous map f on a lower dimensional
phase space, say. R/ to a continuous family of maps F) on a high-dimensional
space, say R™ X'R” where A € R’ is a_parameter, such that at A = 0, the
singular map Fp'is one of the cases (ii) and (iii) referred to question (#). The
case (i) with snap-back repeller on the on a lower dimensional phase space

is discussed in section 2.

4.1.1 One dimensional maps

First, we state the results for multidimensional perturbations of a one di-
mensional maps.
Let f be a continuous map on R. If the singular map Fy depends only

on the phase variable of f (refer to case (ii)), we have the following result.

Theorem 4.1. Let F\ be a one-parameter family of continuous maps on
R x R™ such that F\(x,y) is continuous as a function jointly of A € R* and
(x,y) € RxR™. Assume that Fo(z,y) = (f(x),g(x)) for all (z,y) € R x R",
where f : R — R and g : R — R™. Then Uminfy o hyp(F)) = hiop(f)-
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For the case when the singular map is locally trapping along the normal

direction (refer to case (iii)), we have the following.

Theorem 4.2. Let F\ be a one-parameter family of continuous maps on
R x R™ such that Fy(x,y) is continuous as a function jointly of X € R® and
(z,y) € RxR™. Assume that Fo(z,y) = (f(z), g(x,y)) for all (z,y) € RxR",
where f : R—=R, g : RxR" — R", and g(R x S) C int(S) for some
compact set S C R™ homeomorphic to the closed unit ball in R™. Then

lim inf)\ﬁo htop(F)\) > htop(f)'

In order to prove thecabove theorems: we need the following lemma,
which can be easy derived from [25]; see also Theorem 3.1 of Misiurewicz and
Zgliczyniski in [26). It says-that for continuous interval maps, the positive

topological entropy is realized by horseshoes.

Lemma 4.3. Let [ be a closed interval an Rand f : [ — I be a continuous
map with a positive topological entropy; i.e. hi,(f) > 0. “Then there exist
sequences {sy}rey and {t 224 of positive integers such that for each k € N
there exist s;, disjoint elosed intervals, Ni,...; Ny, which are h-sets in R and

¢ wi, 5 . .
satisfy the covering relations N; fk:’>’j N; with wi; € {—1,1} for all 1 < 1,

J < k; moreover, one has limy— ss(log(si)/ti) = Tuop(f).
Now we are ready to prove the Theorems 4.1 and 4.2.

Proof of Theorem 4.1. We only need to consider the case when f has a pos-
itive topological entropy. Let 0 be an arbitrary number such that 0 < § <
hiop(f). From Lemma 4.3, there exist k, p € N such that f* has p dis-
joint closed intervals, denoted by N/ = [ag;, ag;41] for 0 < @ < p — 1 with

ag < -+ < agp—1, which are h-sets satisfying
Tk w; s . .
Ni’fk:’>”N;forogzgp—landogjgp—l,
where w; ; = 1 or —1, and log(p)/k > 6.
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Set N’ = UP_yN!. Since g o f*' is continuous and N’ is compact, there
exists > 0 such that g o f*"'(N’) € B,(0,7). Set N; = N! x B,(0,r) for
0<i<p—land N = U N Then every N; is an h-set for 0 < ¢ < p—1 and
N is compact in R x R™. For A\ = 0, we have F¥(z,y) = (fk(x),go i 1(x)).
Hence there are covering relations:

F w”

N; Nifor0<i<p—land0<j<p—1

Since F¥(z) is uniformly continuous on a compact set, say [—1,1] x N, as a
function jointly of A and z, by using Theorem 3.4 for p? times while each CN;
is linear and satisfies the Lipschitz condition, there exists \g > 0 such that

if [A| < Ao then we have

F Wi, j

N; 2=7N; for0<i<p—1and 0.< ji<<p— 1.

Let m be a positive integer-and |A| < Ag. Consider any closed loop
Fk F¥
Ny, :> N, == <. = N, |
where every a; € {0,1,...p =1} and az-=-ag- By using Theorem 3.3, F¥
has a periodic point # = 2()\) € int(Ng, ) such that F¥7(x) = z. Since there
are p™ choices of such closed loops, F¥ has at least p™ periodic points in N.
These periodic points provide a (1, €)=separated set for Ff as long as € is a
positive number less than gaps of N/s; i.e. 0 < € < min{ay — ag(i-1)41 : 1 <
i < p—1}. Since m is arbitrarily chosen, we have hyo,(FY) > log(p) and so

hiop(E) = log(p)/k > 0. Therefore, liminfy g hop(Fr) = hiop(f)- O
The proof of the second main result is the following.

Proof of Theorem 4.2. Define Gy = (id,c) o F o (id,c)™!, where id denotes
the identity map on R and c¢ is a homeomorphism from S to B,. Then
the topological entropies of GG, and F\ are equal. By applying the above
argument to the family G, while the corresponding ¢, of a covering relation

N 22 M is the identity now, we have the desired result. O]
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4.1.2 Higher dimensional maps

In this subsection, we will study the topological entropy for multidimensional
perturbations of a higher dimensional map which has a snap-back repeller.

As the result of Theorem 3.3 and 3.4, we shall construct the a closed loop
of covering relations for the map. Throughout this subsection, we assume
that f : R™ — R™ is a C! map having a snap-back repeller z, associated
with a transverse homoclinic orbit. We shall construct two closed loops of
covering relations for f: the first one is from the snap-back repeller to a
homoclinic point then back to-the repeller, and the second one consists of
just one relation N, :f> N,.,where N, is one of the h-sets in the first closed
loop. Then we use the covering relations approach to.prove that f has a
positive topological entropy.

Let L be a linearization-of f at g, that is, L(z).= xo+ D f(x0)(z — xo)
for z € R™. Sinee all eigenvalues of D f(zg) aré greater than'one in absolute

value, there exist-a norm | - | on R” and a constant p.> 1 such that
|Df(x0)z| = plz| for z € R™. (4.1)

From now on, we keep this norm fixed.
For any r > 0 and z € R™, we-denote the closed ball with the center x

and radius r by

N(z,r) ={z} + Bn(0,7).
For any r > 0 we define an h-set N, , in R™ as follows: we set N, , = N(z,r),
cn,, (2) = (z —x)/r, u(Ngy,) = m and s(N,,) = 0. Since the point z, is a
fixed point for f and will play a distinguished role in the following, we will
write N, instead of N,,,. Next, we define a homotopy from the map f to L,

its linearization at x, as follows:

fu(z) = (1 —p)f(2) + pL(z) for p € [0,1] and z € R™. (4.2)
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It is easy to see that fo(z) = f(2), fi(z) = L(2) and Df,(2) = (1—p)Df(2)+
uDf(xo) for all 4 and z. This homotopy will be later used in covering
relations in the vicinity of the snap-back repeller.

First, we show that the size of the repulsion set for snap-back repeller x

can be chosen uniformly for all f, for u € [0, 1].
Lemma 4.4. Let = (p+1)/2. Then there exists ro > 0 such that for any
pe[0,1], 0 <r <rg, 2z € N, with |z — xo| = r, the following holds:

| fu(2) = @o| > Pr.
Proof. By using Taylor’s theorem with-an integral remainder, we have

fu(@) == fu(2) — fulxo) = €2 —w0),
where ,
C=C(p, 2,20)= / Df(xo +tle~ zq))dt:

By Equation (4:2), we get that :

C = Dfu(mo) = /0 (1 — w)Df(xo+ t(z — x9)) + pnD f (2o)dt — D f,.(o)

= /01(1 —m[Df(wo + Hz =w0)) — Dif(o)]dt. (4.3)
Since D f is continuous at.zy and p > 1, theresexists 7o > 0 such that if
ly — xo| < 7o then |Df(y) — Df(xg)| < (p—="1)/2. Hence, from Equation
(4.3), we have that for any p € [0, 1] and z € B,, (o, 7),

C = Df(w0)| < / (1= WD (o + (= — 20)) — Df (o) dt

1
p—1 p—1

< 1— dt < .
/0( W= 5

Therefore, by using Equation (4.1), we have that for any p € [0,1], 0 < r <

ro, 2 € N, with |z — zo| =1,

[fu(2) =20l = |C(z —m0)| = [(C' = D fulxo) + D fu(x0))(z — 20)]
2 [Df(xo)(z = xo)| = [(C' = Dfulxo))(z — 20)|

—1
> pr—p2 r = [fr.
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]

Throughout the rest of this subsection, we fix the two constants § and
ro as given in Lemma 4.4. In the following, we establish a covering relation

between two h-sets around the snap-back repeller.

Proposition 4.5. Let r and ry be two numbers satisfying 0 < r < ro and

0 <17y < PBr. Then the following covering relation holds:

N, =L N,

Proof. Define h(u, z) = cni, (fu(c]_\,i1 (2))- We need to check whether all con-
ditions for the covering relation N, :f> N,,. are satisfied. First we deal with
the conditions in the first item-of Definition 3.2. Condition (3.1) is implied
by fo = f, Condition (3.2)follows from Lemmia 4.4, and: since N} = 0,
Condition (3.3).is also satisfied.

Next, we define a map A on R™ by A(z) = (r/r1)Df(x¢)z. Then for

2 € B,,, we have

B e L(rz+ 7)) — &g & Dif (%o)(r2) Loz,

T1 1

Moreover, from Equation (4.1)uit.follows thatfor 2 € B,, with |z| =1,
pr.
A =z — = —>1
A=
Since A is linear, from the above equation we have that deg(A, B,,,0) =

+det(A) # 0. O

Next, we give a covering relation from the snap-back repeller xy to points

near xy, which will be homoclinic points near x( as the result is used later.

Lemma 4.6. Letr >0, > 0 and z; € R™ near xy satisfy that (|21 — xo| +
r)/B <r <re. Then

f
N, = N, ,,.
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Proof. As in the proof of Proposition 4.5, we set h(u, z) = cn, . (fu(cy(2)).
Again, we need to check all conditions for the covering relation N, L Nair-
Condition (3.1) is implied by fo = f, and since N}, = ), Condition
(3.3) is also satisfied.
To verify Condition (3.2), observe that it is equivalent to the following
one:

Fu(N2) O Ny, = 0 for € [0,1], (4.4)

From Lemma 4.4, it follows that for any z € N~ (hence |z — x¢| = 1),

|fu(2) — 21| = |ful2)eo 4= w0 = 21]24] fu(2) — 20| — |70 — 21

> Pr=lxo — 21| > |vo — 2l ¥ 1~ |0 — 21| = 11

This proves Equation (4.4)-
[t remains te.investigate-h(l, z)= Define a map A on.R™ by A(z) =
(rDf(x0)z + xo — 21 ) /1. Then A is affine and for z.€5,,,
h(1, 2)m L(rz —|—T:160) —21 _ %o+ Df(i(i)(rz) —la A2).
To prove that deg(A, B,,, 0) = det(Df (zp)) =1, it is sufficient to show that

the unique solution 2 =.(1/r)Df (x) " (21=2p) of the equation A(z) = 0 is in
B,,. To this end, observe that from Equation (4.1); we have | D f(z) ™| < p~*
and hence

|21 = 2ol _ |21 — xo| + 11

< 1.
pr Or

g1 -
2l < D f (o)™ |21 — ol <
O

The following lemma gives a covering relation from a homoclinic point to

the snap-back repeller.

Lemma 4.7. Assume that zg € R™ such that f*(z9) = zo for some integer
k> 0 and det(Df*(zy)) # 0. Then there exists R > 0 such that if 0 <r < R

then there is v = v(r) with 0 < v < rq such that for any 0 < ry < v, we have

fk
N, 2= N,,. (4.5)
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Proof. By continuity of f, there is R; > 0 such that

f¥(Bm(20, R1)) C Bu(20,70).

Define a homotopy as follows: for x € [0,1] and z € B,,(z0, R1),

9u(2) = (1= ) f*(2) + (D f*(20) (2 — 20) + o). (4.6)

Then g,(20) = zo and dg,(z) = (1 — u)Df*(z) + pD f*(z) for all u and z.
Since D f*(z) is nonsingular, there is a constant o > 0 such that for any
z € R™,

| D (Z0)2 = adl. (4.7)

Next, we show that there exist§ a positive number R < min{ Ry, 2ry/a}

such that for all {z— 2| < R-and p € [0,1], one has
«
|gu(2) — xo| > §|z—zo|. (4.8)

To this end, we-have to modify the proof of Lemma 4.4 a bit. By using

Taylor’s theorem with integral rémainder, we have

g#(Z) = &y = gu(2> - gu(ZO) = C(z6%0),
where .
C=C(u,z,z2) = / Dy, (20 + t(z — 2p))dt.
0
By Equation (4.6), we get that
1
C —Dg,(z) = / (1-— M)ka(ZQ +t(z—2)) + Mka(Zg>dt — Dg,(20)
0

_ /0 (1— WDf 0+ t(z — ) — Df¥(o)ldt.  (4.9)

Since D f* is continuous at zp, there exists R > 0 such that if |y — 29| < R
then

IDf*(y) = Df*(z0)] < /2.
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Hence, from (4.9), we have that for any p € [0,1] and z € B,, (20, R),
1
€= Dau(ao)l < [ (1= wIDHea +t(z — 20)) = Do)
0

1
< / (1—p)Sdt <
; 2

o] 2

Therefore, by using Equation (4.7), we obtain that for any p € [0,1] and
z € Bm(Zo, R),

|9u(2) — 20| = |C(z = 20)| = [(C = Dgp(z0) + Dgu(20))(z — 20)|
> [Dff(@)z =20l = (@ 5 Dg,(20))(z — z)|

> (@2 2Tz - z0f = ST
o — =) |2 — 2o = |2 — 20|
2 T2 \

Now we are ready to prove the desired covering relation (4.5). Let r be
a number with 0°< r < R-and let v = ar/2. ‘Let ry be a number with
0 <71y <w. Sinee @ >0 and R < 2rg/aywehave 0 < v <#5. We define a

homotopy h,, by
h(2= ey, (6 @) L 2 (0] and o€ B,

The conditions from:Definition 3.2 requiring the proof are only Condition
(3.2) and deg(hq, B, 0) 40 whilethe-others are clear. To verify Condition

(3.2), note that it is equivalent to the following one:

gu(N_ )N N,, =0 for p € [0,1]. (4.10)

20,7

From Equation (4.8), it follows that for any z € N_ . (hence [z — 2| = 7),
one has

a
|9u(2) — x| > §|Z — 20| > ra.
This proves Equation (4.10). Finally, since

hi(z) = —Df*(z)z,

T2
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we obtain that h; is a linear isomorphism; therefore
deg(hi, Bm,0) = det(Df*(z)) # 0.
O

The next proposition shows that the existence of a snap-back repeller as
defined in Definition 2.2 implies a positive topological entropy. In [2], Blanco
Garcia gave the same result based on Marotto’s definition of a snap-back
repeller and results in [19]. Here, we give a new proof by using covering

relations.
Proposition 4.8. The topological entropy of f is positive.

Proof. Let B and rp be as given.in Lemma 4.4. Since 7 is a.snap-back repeller
for f, there exists a sequence {Z_; }ien such that.r., # g, lim; ., z_; = xg
and for all i €N, f(zz) = 2 and det(Df(z—3))-# 0. Thus, there is
an integer k >=0 such that x_, € B(rq7y). By the chain rule, we have
det(Df*(x_;)) & 0. Furthermote, from Lemma 4.7, there exist positive

constants r;, and_ry such that r; < rg and

Bz, i) C B(wo, o), (4.11)
Nivsore Ny =10, (4.12)

k
NLU_k,Tk é NTb' (413)

Since § > 1, there exists the minimal positive integer a such that 5%, >
|1, — x| + 5. By the minimum of @ and Equation (4.11), we have 3 'r;, <
|z_y — x| + rr < ro. From Proposition 4.5 and Lemma 4.6, it follows that

we have the following chain of covering relations:
f f f f
Nrb — Ngrb — = N@a&rh —— Nm_kmk. (414)
Moreover, from Proposition 4.5, it also follows that
N, L N, (4.15)
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These covering relations are enough to produce symbolic dynamics and
a positive topological entropy as follows. Let w = max(a, k). It is sufficient
to construct an f?“-invariant set on which f** can be semi-conjugated onto
the shift map o : ¥ — 37, where ¥ = {0, 1}, the one-sided shift space
on two symbols with the standard Tikhonov (product) topology. By using
Equations (4.13)-(4.15), one can consider the following chains of covering

relations, each one of length 2w (which is counted by the number of iterates

of f):

/ f f /
Ny, = N,, = N,, = - . =N,
f f f f f f f
Nrb:>Nrb:>' :>N’Fb:>N5Tb:>"':>N5“717‘b:>Nl’fkvrk’
f* g f
N.Z’_k,'l‘k — N’I”b == N”"b R N”'b

L. N
k
No oy == N - =N AN, SN o1, =5 N,
Let us denote Ny = N,, and Ny = N, _, .. Then Nygand N, are disjoint due
to Equation (4:12). Define Z to be the set of points whose forward orbits

under 2% stay in' Ny U N, that is,
Z = {2 € Ny W Ny " f2(2) €N IV} for all i€ N},
Then Z is compact. On Z.we define a projection#« Z— 5 by
m(2); = j if'and ouly if f2“(2) € N;.

It is obvious that the map 7 is continuous and we have a semiconjugacy:
7o f =gon.

Finally, we shall show that 7 is onto. This gives us that the topological
entropy of f?* on Z is greater than or equal to log 2. Let a = (ag, ..., ;1) €
{0, 1}! for some positive integer I. By a suitable concatenation of the above
listed chains of covering relations and from Theorem 3.3, it follows that there

exists a point x, € N,, such that
[P (xa) € No, for0<i<l—1,
lew(l'a) = 7,
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It is clear that z, € Z and 7(z4) = (a,,...) € ¥5. Since « is arbitrarily
chosen, the set w(Z) contains all repeating sequences. From the density of

repeating sequences in X7, it follows that 7(Z) = X7 . O

Now, we list our main results about the multidimensional perturbations
of a higher dimensional map which has a snap-back repeller. First, if the
singular map depends only on the phase variable of a snap-back repeller, we

have the following result.

Theorem 4.9. Let F\ be a one-parameter family of continuous maps on
R™ x R™ such that Fy(x,q)"is contintous-as a/function jointly of A\ € R*
and (x,y) € R™ x R*." Assume that Fy(x,y) =(f(x)sg(x)) for all (x,y) €
R™ x R", where f + R™ — R™ is C' and has a snap-back repeller and
g :R™ — R™. Then F\ has a positive topological entropy for.all X sufficiently

close to 0.

When the singular map is locally trapping along the normal direction, we

have the following.

Theorem 4.10. Let Fy be a one-parameter family of continuous maps on
R™ x R"™ such that F\(z) is«continuous as a function jointly of X\ € R and
(z,y) € R™ x R". Assume that Folasy) = (f(x),g(z,y)) for all (x,y) €
R™ x R™, where f : R™ — R™ is C' and has a snap-back repeller, g :
R™ x R" — R", and g(R™ x S) C int(S) for some compact set S C R"
homeomorphic to the closed unit ball in R™. Then F has a positive topological

entropy for all A sufficiently close to 0.
Now, we begin to prove Theorem 4.9 and 4.10.

Proof of Theorem 4.9. From the proof of Proposition 4.8, we have a positive

integer a such that the following closed loop of covering relations holds:

f f f f f*
= -+ = Nga-1,, == Ny , . = N,
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By adding the normal direction to the above h-sets and using the persis-
tence of covering relation, we shall construct a closed loop of covering re-
lations for F), similar to the above loop for f. Recall that the singular
map Fy is of the form Fy(x,y) = (f(x),g9(x)) € R™ x R*". Set N =
(U8 Ngir,) U (UE_o f1{(Ny_, ). Since g is continuous and N is compact,
there exists > 0 such that g(N) C B,(0,7). Let us define the correspond-
ing h-sets in R™ x R" as follows. For i = 0,1,...,a — 1, we define h-sets

Nii,, in R™ x R" by N, = Ngip, X By(0,7), u(Ngi,,) = m, s(Ng;,. ) =n

and CNY, (z,y) = (en,,, (2),y/r). Moreover, we define an h-set N . in
747-b Tb —K>»
R™xR" by Ny . = Nu_ji, X Bu(0,7), u(N;L 40).=m, s(N;_, ) =nand

eny () = (en, g (@)59/7).

T_ T

Observe that we have the-following closed loop of covering relations for

Fo.

Lemma 4.11.yThe following covering relations hold:

Fo Fo / Fo / F(? !
— s —> N,Ba_lTb — Nx_kﬂ’k — N’/‘b’

: . . . , F3
Proof of Lemma 4.11. For each covering relation-under consideration N' =

M’ with j = 1 or kyga homotopy h : 0,1] X B,, X B, ~R™™" by

fgs o).

~

b )

r

where h is the homotopy from the corresponding covering relation N L .

Then we have

~

h0,z,y) = (h(0,2)), %g o f77 ey (x))
= (ewe Pocrtlol oo F @) ) = (Fu(o)

Since A([0,1],N"~) c h([0,1],N~) x R", we get that Condition (3.2) in
Definition 3.2 follows from the analogous Condition for h. Condition (3.3) is
satisfied due to

h([0,1] x B,, x B,) C R™ x B,.
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Finally, note that

~

h(1,z,y) = (h(1,x),0).
Therefore, the other conditions in Definition 3.2 are also satisfied. O

From Theorem 3.4, there exists Ag > 0 such that if |A| < A¢ then the

following chain of covering relations holds for F):

VR DY VR DY / Fy Fi / Fy / Fy /
N,, = N,, = Ng,, = -+ == Nga-1,, = N, = N,

T_kTk Ty

(4.16)

Similar to the proof of Proposition 4.8, covering relations listed in (4.16)
are sufficient to produce the symbolic dynamicstand a positive topological

entropy for Fy with |A]'< Ag. This completes the proof of Theorem 4.9. [

Proof of Theorem 4.10. Define G = (id, ¢) o F) o.(id,¢)~", where id denotes
the identity map on'R* and-c-is-a homeomorphism from S to B,. Then the

conclusion follows from the above argument applied to G . [

4.2 Topologically crossing homoclinicity

In this subsection; we discuss the topological entropy for multidimensional

perturbations of topologically crossing homoclinicity.

4.2.1 Background

First, we introduce some definition and results. Let f : R™ — R™ be a
diffeomorphism with a hyperbolic periodic point p at which the stable and
unstable subspaces have dimensions u and s, respectively. Let |- | be a norm
on R™. The stable and unstable manifolds of p are defined to be W*(p) =
{w €R™: [f(2) = f"(p)] — 0 as n — oo} and W(p) = {z € R™ : | () —
f"(p)| — 0 as n — —oo}, respectively. The deleted stable and unstable
manifold of p are given by W*(p) = W*(p)\{p} and W*(p) = W*(p)\{p},

respectively. An intersection of Ws(p) and W (p) is called a homoclinic point
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of p. For nonempty subsets A, B of R™, we denote d(A, B) = inf{|x — y| :
2 € A and y € B}. Here, we are mainly concern the case when WW#(p) and

W (p) has a topologically crossing intersection which is defined as follows.

Definition 4.12. /8, Definition 3] Consider R™ as an m-dimensional ori-
ented manifold, and let W* and W* be two oriented C* submanifolds of R™
with dimensions u and s, respectively, such that u + s = m. We say that
W and W? have a topologically crossing intersection if there are compact
embedded C' submanifold V* of W* and V* of W* with dimensions u and s
and with boundaries OV* and.OV? (with respect.to W* and W*¥), respectively,
such that

1. Ve NV =40 0VE=1;

2. For every 0. < ¢ < min{d(QV*“; V*)yd(V*, 0V *)}, there exists a homo-
topy h : [0, 1] x R™ — R™ satisfying the following:

(a) h(0,z) = x for all x€ R™ and the map x — h(l,x) is an embed-
ding,

(b) |h(t,z) —z| <eforalz e V*UV?® andallt € [0,1];
(¢) h(1,V*) and V¥ are transverse submanifolds; and

(d) the oriented intersection number of h(1,V*) and V*, denoted by
I(h(1,V*),V?®), is nonzero, where I(A, B) for two oriented sub-
manifolds A and B of R™ with dim A + dim B = m is defined
by

I(A,B)= Y L(A,B),

z€ANB

and I,(A, B) is +1 or —1 depending on whether the orientation
induced on T, ADT, B agrees or not with the orientation on T, R™,

respectively.
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In this case, the submanifolds V* and V* will be referred as a good pair for

the topological crossing between W and W?.

There is a relation between a topological crossing and the local Brouwer
degree. Let V* and V?® be a good pair for a topological crossing intersection
between oriented submanifolds W* and W?* of an oriented manifold W with
dim(W) = m, dim(W*) = u, dim(W?*) = s, and u + s = m. Assume that
there exist a closed neighborhood U of V* N V* in W and local coordinates
(z,y) on U such that V* C U, V* C U, U = B, x By, V* = {(z,y) €
B, x By : x =0}, and V* = {(x) € B,/x/Bs.: © € B,}, where 1 is a C!
parametrization of V. Let m,+R" x R® =R be the projection given by
mu(x,y) = x. The following lemma:says the docal'Brouwer degree and the

oriented intersection number-are identical.

Lemma 4.13. /8, Lemma 3] Under the above assumptions and notations, we
have that (i) inR", the origin 0 & m,((0B,)); (1) deg(m, 04, By, 0) is well
defined; and (iii)deg(m, o 1, B,y0) = I(h(1,V*),V?), where I(h(1,V*),V?)
is the oriented intersection number of h(1, V") and V3 for any homotopy h

as given in Definition 4.12.

4.2.2 Results

In this subsection, we state our results about the positive topological entropy
derived from the topologically crossing homoclinicity. First, we see the result

about perturbations of a map.

Theorem 4.14. Let F) be a one-parameter family of continuous maps on
R™ such that Fy(z) is continuous as a function jointly of X € R® and x € R™,
where X is a parameter. Assume that Fo(x) = f(x) for all x € R™, where
f:R™ = R™ is a O diffeomorphism with a hyperbolic periodic point which

has a topologically crossing homoclinic point. Then there exist an integer

34



N > 0 and a number \g > 0 such that both f and F\ with |\| < Ao have
topological entropies at least log(2)/N.

Next, if the singular map Fy depends only on the phase variable of f, we

have the following result.

Theorem 4.15. Let F) be a one-parameter family of continuous maps on
R™ x R¥ such that Fy(z,y) is continuous as a function jointly of A € RY,
r € R™ and y € R*, where X is a parameter. Assume that Fy(x,y) =
(f(x),g(x)) € R™ x R¥ for all x € R™ and y € R*, where f : R™ — R™ is a
C' diffeomorphism with a hypérbolic periodic point which has a topologically
crossing homoclinic point,-and g : R™ — R"is.a continuous function. Then
there exist an integer N> 0 and a nuwmber Xog > 0 such that both f and F)

with |A| < Ao have.topological-entropies at least log(2)/N.

For the case when the singular map is askew product-map locally trapping

along the second variable,; we have the following.

Theorem 4.16. Let Fy be a_one-parameter family of continuous maps on
R™ x R¥ such that Fy(z,y) is continuous as! a function jointly of A € RY,
r € R™ and y € R, where \ is a parameter. ~Assume that Fy(z,y) =
(f(x),g(z,y)) € R™ xRE for allax € R™ andy € RE where f: R™ — R™ is
a Ct diffeomorphism with a hyperbolic periodic point which has a topologically
crossing homoclinic point, and g : R™ x R¥ — R* is continuous on R™ x S
and g(R™ x S) C int(S) for some compact set S C R¥ homeomorphic to
the closed unit ball in R¥. Then there exist an integer N > 0 and a number
Ao > 0 such that both f and F\ with |\| < Ao have topological entropies at
least log(2)/N.

Denote by p the hyperbolic periodic point of f. Without loss of gen-
erality, we may assume that p is a fixed point. Set u = dim W*(p) and
s = dim W*(p). Since W*(p) and W*(p) have a topologically crossing inter-

section, we have u + s = m. Let us fix a basis of R such that the Jacobian
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matrix D f, of f at p preserves the splitting R = R*@R®. By the Hartman-
Grobman Theorem, there exist a closed neighborhood U of p and a homeo-
morphism ¢ of U into R™ such that ¢(p) = (0,0) and ¢(f(z)) = Df,(¢(2))
for z € U. In order to simply our notation, we assume p = (0,0) and
¢ = id, the identity map on R™. Thus f is a linear map on U. Write
f(z,y) = (Lyx, Lgy) for (z,y) € U, where L, is a u X u matrix with all
eigenvalues greater than one in absolute value and L, is an s X s matrix with
all eigenvalues less than one in absolute value. There exist norms | - |, and
| - |s on R* and R?®, respectively, and constants p; > 1 and 0 < py < 1 such
that

|Lux|y = pr1|vle and | Lsy|s <palylsfora € R% andy € R®. (4.17)

Since all normston R™ are equivalent, we may ‘assume U = B, x B, and
define the norm |- | on R™ to be the maximum norm of the norms | - |, and
| - |s on R* and R*. Notice that later we still need local coordinates while
verifying h-sets'in U as requiredin Definition 3.1. In order to prove the main
results we need some lemmas. First, we recall the following lemma in [5]; for

readers’ convenience, we repeat their proof below.

Lemma 4.17. [5, Lemma/1.4J) Let V=bea compact subset of W*(p) Nint(U).
Suppose we are given positive constants p and £ satisfying 0 < p < 1 and

0<e<d(V,0U). Then for any large enough n € N the following hold:

1. f7™(V) C By(0,p) x {0}; and

2. if (2,0) € f(V) then f"({x} x By) is in U and has diameter less
than e, where the diameter of a bounded set E C R™ is defined to be
sup{|z —y|: z,y € E}.

Proof. Since V- C W*(p), there exists a positive integer ny such that f~"1 (V) C

B, x {0}. Since f is a C! diffeomorphism , we can take a constant K such
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that K > sup{||Df"| : z € U} and ¢/(2K) < 1. Let ny be an arbitrary

positive integer such that

ny > max{log(p™")/log(p1),log(c/(2K))/ log(p2)}- (4.18)

Since f is linear and preserves the splitting R* x R® on U, Equations (4.17)
and (4.18) imply f~™"2(V) C f~"(B, x {0}) C B,(0,p) x {0}. This
concludes item 1 of the desired result by considering n = n; +ns. For item 2,
let (x,0) € f~™ (V) and y € B,. Again Equations (4.17) and (4.18) imply
f(a,y) = (L2(x), L2 (y) € {Lg2 @)} < By(0,/(2K)) C U. Take any two
points in {z} x By, say w.= (2;y1)-andv= (2, y5). Then f"2(w), f2(v) € U
and | f"2(w) — [ (v)|= [£52(y1) — L2*(y2)| <€/ By the choice of K, we
get that | f™ 772 (w),— i (v)li< K|f™(w) — f"2(v)] <'e. By considering

n = ny + ng, werhave the desired result. O

Since the submanifolds 1W*(p) and 1¥(p) have a topological crossing in-
tersection, there exist a point g # pandtwo compact embedded submanifolds
vV of W(p) and V* of W4(p) such-that- V" and V* form'a good pair, and
q € V*N Vs Weanay assume-that both sets V" and V*are in int(U), and
V" has no intersection with the subspace R* x {0}; based on the following

lemma.

Lemma 4.18. For any sufficiently integer n € N, there exist submanifolds
VY of W(p) and V* of W*(p) such that V* and V* form a good pair with the
same oriented intersection number as good pair V* and V=, V* C f(V"),

Vec Vo), and V¥ UV? Cint(U).

Proof. First, we show that f*(V*) and f™(V*) form a good pair for n € N.
Since f is a C! diffeomorphism, f*(V*) and f"(V*) are compact embedded
C' submanifolds of W*(p) and W*(p), respectively. Since V* C W*(p),
Vs C W (p), and VNV = V¥NAV® = (), we also have df"(V*)Nf(V*) =
VR A0 (V) = 0.
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Let ¢ be a constant such that
0 < ¢ <min{d(df"(V*), f*(V?)),d(f"(V*),0f*(V*))}.

Since f" is continuous on the compact set V*UV*  there exists a constant
e such that 0 < ¢ < min{d(OV*,V?),d(V*,0V*)} and if z, y € V* U V*
with |z — y| < € then |f"(z) — f"(y)| < . Since V* and V* form a good
pair, for such an e, there exists a homotopy hq satisfying item (2a)-(2d) of
Definition 4.12. Define a homotopy h,, = f™ o hgo f~". It is obviously true
that h,(0,-) = id and h,(1,-) is an-embedding. By item (2b) of Definition
412, for z € fM(V*) U fA(V5) and-t-€-[051], we have

|hn (8, 2) 5 20 = " (ho (6 F7 @) = " (FIU(R))| < 6.

Moreover, h, (1, f*(V")) and—f"(V/*) are transverse submanifolds and the
oriented interseetion number I(h, (1, f*(V*)sf"(V?®)) = L(ho(1,V*),V?) is
nonzero. Thus, f*(V*) C W¥%p) and f«(V*) C W*(p) form-a good pair.

If f7(V*")yu f(V°) C int(U), then we are done by taking V* = (V")
and Vo = f™(V¥®). Otherwise, since p-is-a hyperbolic fixed point with
topologically crossing homoclinic point(s) in V*¥* which has nonzero
oriented intersection number, by letting n-large enough, there exists g €
V* N V? such that if we denote by V* and V;? the connected components of
fr (V)N (Bu(0,4/5)) x (Bs(0,4/5)) and f(V*) N (Bu(0,4/5)) x (Bs(0,4/5))
containing the point f"(gq), respectively, OV * NV = V¥ N oV = ) and
I(h, (1, V), V) = I(h,(1, f(V*)); f*(V*)). Repeating the above argument,
we have that V* ¢ W*(p) and V> C W*(p) form a good pair with the same

oriented intersection number as the good pair V* and V*. We have finished

the proof of the desired result. O]

Set Vo = V. Since m,(q) = 0, there is a constant 7 such that 0 <n < 1

and B,(0,n) C m,(V2)\7,(0V3). Denote V; = B, (0,n) x {0}.
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We shall construct two disjoint h-sets. Let p be a constant such that
0 < p <mn Denote R = B,(0,p) x B,. Let ¢ > 0 be so small that the
closed neighborhoods of V; and V; are disjoint and contain in int(U) and

that the closed e-neighborhoods of V" and 0B, (0,7n) x {0} are contained
in int(U) \ R. Then

e < min{d(V;,0U),d(V5,0U)}.

By applying Lemma 4.17 to V; and V5, we can pick a common integer N such
that f~ (V1) U f7V(12) C Bu(0, p) x {0} and if (2,0) € f~N (V1) U f~¥(V2)
then f¥({x} x B,) is in U and has diameter less than . Write f~"(q) =
(qo,0). Since f is a diffsomorphism, £~V (V}) and f~Y(V43) are disjoint. More-
over, since f is C', Vo is'a C' submianifold of W (p) and hence there exists a
C* diffeomorphistin ¢ from R to R* such that (0, (f N (¥(z)))) =  for all
x € B,, where ynis a CL parametrization of V4 on B, such-that V5 = ¢(B,)
and ¥(0) = ¢ (mentioned in Lemma 4:13)« Since f(x,y) = (L,z, Lyy) for
(x,y) € U under the Hartman-Grobman linearization setting at the begin-
ning of this subsection, we have f=N (Vi) = L7" (B,(0,7)) x {0}. Define
My = 7, (f N (V1)) X By and My = m,(f=(V4)) % Bg; or equivalently define
M, = L7V (B, (0,n)) % Byand M, = m,(f~N(¢(By))) X B,. Then M; and
M, are disjoint h-sets with w(My) =u(Ms) = u, s(M;) = s(My) = s, and
ey (z,y) = (L2 /n,y) and ey, (2, y) = (((),y) for all (x,y) € R* x R?,

Next, we show that there are covering relations among M; and M.
Lemma 4.19. The following covering relations hold:
N o
M; = M; fori,j € {1,2}.
Proof. Define a homotopy H on R™ from fV(xz,y) to m, o f¥(z,0) by
H(t,z,y) = (1= ) f"(z,y) + t(m(f" (2,0)),0),

for (z,y) € R* x R® and t € [0,1]. For 4, j € {1,2}, we set a homotopy h’
induced from H by hl(t,z,y) = en, (H(t, ¢y (x,y))) for (z,y) € R* X R® and
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t €[0,1], and define A/ (z) = m,(hl(1,2,0)) for z € R*. Since h(1,z,y) is
independent of y and lies on the subspace R* x {0}, we get that h{ (L,z,y) =
(Al(z),0) for z € R*. Moreover, by the choice of N, we have

H(t, M7 )N M; =0 and H(t, M;) N M} =0 for t € [0, 1].

It follows that Condition 1 and 2 of Definition 3.2 are satisfied with h = A’
and ¢ = Ag :

For Condition 3 of Definition 3.2, we first show that deg(Ag , Bu,0) # 0
fori =1 and j € {1,2}. By the definition of homeomorphisms c,/,, we get
that f~ o cyp (U) C U and f¥ o.cyp(U)-C U. Hence on B,, the map A}
is linear and the map.A? is C', in fact, they are of the following forms: for

T € By,

A (@)
Ai(w)

Tulhi(1,2,0)) = LuNx,
Wu(h%(lv*%o)) 4 C(W’)

Since L, is a u xa matrix with all eigenvalues greater than one in absolute
value, by item 8 of the properties of local Brouwer degree listed in subsection
3.2, we get
deg(A], By, 0)=.sgn(det(L)) # 0.
The choice of N implies 7, (f ™ (V2)) C B.(0,p) C B,(0,n) and hence the
equation ((z) = 0 has a unique solution, namely ¢o, and gy € B,(0,7). Since
7 (f~N(V3)) is a u-dimensional C! submanifold, 0 is a regular value for ¢
and sgn(det D(,,) # 0. It follows from items 8 again and Proposition 3.6
that
deg(A3, B,,0) = sgn(det D¢,,) - 1 # 0.
Next, we shall show that deg(A?, B,,0) # 0 for i = 2 and j € {1,2}

as applications of Lemma 4.13. By the definitions of the homeomorphisms
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car, and the linearization of f on U, we get that for € B,,
Ay(x) = pom, 09(z),
Aj(z) = om0 (),

where ¢ is a map on R* defined by ¢(z) = LYz /n. By the choice of 7, there
exists a bounded connected component, namely A, of R* \ 7, (¢(0B,) such

that 0 = ¢=1(0) € A. Since ¢ is linear, Proposition 3.6 implies that
deg(A}, B,,0) = deg(p o T, 01, By, 0) = sgn(det(LY /n)) deg(m, o 1, By, 0)

Note that ¢ is a parametrization of V5. Since V5 and V* form a good pair
with the oriented oriemtation number not zero, by Lemma 4.13, we have
deg(m, o1, By, 0).#0: Therefore, deg(A3, B,,0) # 0.

Similarly, by the choices-ofn and N, we get (7(0) = ¢g € A. Since ( is
C*, Proposition'3.6 gives us that

deg(A3, By, 0).= deg(C o m, 0 1sB,0) = sgn(det D¢, ) deg(r, o ¥, B,,0).

It follows that deg(A43,B.,,0) # 0.
We have finished the proof of the desired result. n

Finally, we are in position to prove our theorems.

Proof of Theorem /.14. By applying Lemma 4.19 and Proposition 3.5, there
exists A\g > 0 such that if |\| < Ao then

FN
Mi :/\> Mj for for Z,] S {1,2}
Let 6 be a positive integer and |A| < Ag. Consider any closed loop
Y FY FY
M;, = M;, = --- = M,,,

with each i, € {1,2} and ip = ig. By using Theorem 3.3, F}¥ has a periodic
point = x()\) € int(M;,) such that FN%(x) = x. Since there are 2/ choices
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of such closed loops, F}¥ has at least 2/ periodic points in M; U M,. These
periodic points provide a (6, §)-separated set for F}¥ as long as ¢ is a positive
number less than the distance of M; and Ms. Since 6 is arbitrarily chosen,

we have hiop(FYY) > log(2) and so hp(Fy) = log(2)/N > 0. O

Proof of Theorem /4.15. Since g is continuous on M; U My and M; U M, is
compact, there exists a positive constant r such that g(M; U M) C B (0,r).

Let us define the corresponding h-sets in R™x R* as follows. For i = 1,2,

we define h-sets M/ in R™ x R* by M! = M; x B(0,r) with u(M]) = u,
s(Mj) = s+ k, and eyp(z,y,2) = (enm, (2,9)52/r) for € RY, y € R®, and
z € Rk, O

Lemma 4.20. The following. covering relations hold:
FN
Mi==-Mj for isj € {1,2}.

Proof. Let 1,5 € {1,2} be arbitrary. We define a homotopy

. . 1—¢ L
h(t5, s 2) = (W (swsy)s——g0fT ' (31 (2.9))),

. N
where h! is the hometopy. for the covering relation’ M; L M;. Then we

have

(0, 2,,2) = (W0, 7.9), -9 0 /¥ (e3 (. 9))
= (en 0 Y 0 (2.9), ~g 0S¥ ez (2.9)))
= (B2,

Since A ([0,1], M") € h1(]0,1], M;")x R* and hZ([0,1] x B,, x By) C R™ x
By, Condition 1 and 2 of Definition 3.2 are satisfied follows from the anal-
ogous properties for hz stated in the proof of Theorem 4.14. Finally, notice
that

W (1,2,y,2) = (hl(1,2,y),0).
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Therefore, Condition 3 of Definition 3.2 is satisfied.
By applying Lemma 4.20 and Proposition 3.5, there exists Ay > 0 such
that if |A\| < Ao then the following covering relations hold for F}:

N
M 225 M for i, j € {1,2}. (4.19)

As in the proof of Theorem 4.14, the covering relations listed in Equation

(4.19) implies the hyop(Fh) = log(2)/N > 0 with |A| < Ao. O

Proof of Theorem 4.16. Define G = (id, c)o Fyo(id,c)™!, where c is a home-
omorphism from S to Bj. Theén the topological entropies of G and Fy are
equal. By applying the above ‘argument as in-the proof of Theorem 4.15 to
the family G while the ¢orresponding ey of @ covering relation N S0 M s
the identity mapswe have the-desired result. O

4.3 Liapunov condition

In this subsection, we study the topological dynamics for multidimensional
perturbations of high-dimensional systems with-covering relation determined
by a transition matrix or satisfy a strong Liapunov.condition in addition on

the lower dimensional phase space.

4.3.1 Covering relations determined by a transition matrix

Here, we will state the definition of the covering relations determined by a
transition matrix and list the related main results of the topological dynamics
for multidimensional perturbations of high-dimensional systems.

First, we introduce the transition matrix. By a transition matriz, it means
that a square matrix satisfies (i) all entries are either zero or one, and (ii)
all row sums and column sums are are greater than or equal to one. For a
transition matrix A, let p(A) denote the spectral radius of A. Then p(A) > 1

and moreover, if A is irreducible and not a permutation, then p(A) > 1. Let
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Y (resp. X4) be the space of all allowable one-sided (resp. two sided)
sequences for the matrix A with a usual metric, and let o} : X} — T}
(resp. 04 : ¥4 — X4) be the one-sided (resp. two sided) subshift of finite
type for A. Then hiop(0)) = hiop(ca) = log(p(A)). Refer to [29] for more
background.

Next, we define covering relation determined by a transition matrix.

Definition 4.21. Let A = [a;]1<ij<y be a transition matriz and f be a
continuous map on R™. We say that f has covering relations determined by

A if the following conditions are satisfied:
1. there are v pairwise disjoint h-sets { M}y inR™;
2. if a;; = 1 them the covering relation M; L M; holds.

It is easy to,sce that thelogisticmaps f(z) = pz (1l — x)with u > 4 has
covering relations determined by the 2 x 2 matrix with all entries one on
intervals [—e,1/2'— 6] and [1/2 4 0,1 + €] as h-sets, where 0'< e < p/4 —1
and 0 < 0 < [(uf/d—1— e)u]2

Now, we begin.to state the main theorems of covering relation determined

by a transition matrix.

Theorem 4.22. Let f be @ continuous-map on R™ having covering relations
determined by a transition matriz A. If g is a continuous map on R™ with

lg — f| small enough, then hi,,(g) = log(p(A)).

If the singular map F' depends only on the phase variable of f, we have

the following result about multidimensional perturbations.

Theorem 4.23. Let F(z,y) = (f(x),g(z)) € R™ x R* for all z € R™ and
y € R*, where f : R™ — R™ is a continuous map having covering relations
determined by a transition matriz A, and g : R™ — R* is a continuous

function. If G is a continuous map on R™ x R* with |G — F| small enough,

then hiy(G) = log(p(A)).
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For the case when the singular map is a skew product locally trapping

along the second variable, we have the following.

Theorem 4.24. Let F(z,y) = (f(z),9(z,y)) € R™ x R* for all x € R™
and y € R¥, where f : R™ — R™ is a continuous map having covering
relations determined by a transition matriz A, and g : R™ x RF — RF s
a continuous function such that g(R™ x S) C int(S) for some compact set

S C R¥ homeomorphic to the closed unit ball in R*. If G is a continuous

map on R™ x R* with |G — F| small enough, then hy,(G) = log(p(A)).

In order to prove the above results, we need a proposition which is de-
scribed that a continuous map having covering relations determined by a
transition matrix is topologically semi-conjugate to a one-sided subshift of
finite type. A variant version of the this result was stated without proof in

[7, Corollary 5.9

Proposition 4.25. Let f : R™ — R™ be a continuous map-which has cover-
ing relations determined by a transition matriz A. Then there exists a com-
pact subset A of R™ such that A is mazwmal positive invariant for [ in the
union of the h-sets (with respect to A) and f|A is topologically semi-conjugate

+
tooy.

Proof. For convenience, we denote by {M;}._, the h-sets with covering re-
lations for f determined by A as in Definition 4.21, and write we write

s = (80, 51,...) for s € £}, Define

A, = U (ﬁ f_Z(MSZ)> forn >0, and A = ﬂ A,

sesh \i=0 n>0

Then A is the set of all points whose forward orbits, following allowable
sequences in Y}, stay in U]_; M;. Thus A is maximal positive invariant set
for f in U]_;M; with respect to A. Since each M; is compact and f is

continuous, the set N7, f~*(M,,) is compact for all n > 0 and s € X7} Since

i
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the number of sets M;’s is n and the intersection NI, f~*(M,,) involves only
the first n + 1 digits of s € X7, that is, (so, s1,...,8,), there are at most
Nt sets NP f~H(Ms,) for all s € X¥, although the set X7 itself might be
uncountable. Thus the set A,, is a union of finitely many compact sets and
hence is compact for all n > 0. Therefore, A is compact.

For semi-conjugacy, we define h : A — X} by h(z) = s for 2 € A,
where f"(z) € M, for all n > 0. By the pairwise disjointness of M;’s
and the definition of A, the map h is well defined. It is easy to show that
oaoh = ho f. Next, we show that A is continuous on A. Let z € A, h(z) = s
and {z,}>°, be a sequencein A such that z, = zas n — oco. Since M,’s are
pairwise disjoint and.compact, there exists ny € N such that z, € M, for all
n = ng. By the continuity of-f. there exists n; € N such that n; > ny and
f(zn) € Mg, for.all n > ny.—By using the same process inductively, we get
that for each 7 >0, there exist there exists nj € N such.that f7(z,) € M, for
all n > n; and 00K j < i. This proves that h(z,) — s as n — oo. Therefore,
h is continuouson A.

To prove that-h is onto, wemeed the following lemma.

Lemma 4.26. Fortany.s.€ ¥4, the intersection Nysof "(Ms,) is nonempty.

Proof. Let s € Y4. First, we prove that the intersection N, f~*(M,,) is
nonempty for all n > 0 by applying Theorem 3.3 to a closed loop of covering
relations. Let n > 0. Then we have the loop of covering relations M, L
M, L. L M;,, . The loop becomes closed by adding a covering relation
M, =% M,, with a homotopy h : [0, 1]x M, . — R*xR?, where u = u(M,,),
s =s(Ms,), g : R* x R® — R" x R* is defined by g.(p,q) = (2p,0) for all
(pq) € R*xR*, g = ¢j. 0gcoen,, and h(t,p,q) = ge(p.q) for t €
[0,1] and (p,q) € M, .. It follows from Theorem 3.3 that there exists z €
int(Ms,) such that f'(z) € int(M,,) for 0 < ¢ < n. Thus z € NP, f 4 (M,,).

Therefore, the intersection N, f~*(Ms,) is nonempty for all n > 0. Since
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{Nn_, f7H(M,,)}°2, is a nested sequence of nonempty compact subsets of R™,

the set Ny>of~"(Ms,) is nonempty. O

Finally, we show that A is onto. Let s € ¥ 4. Then there exists z &
Nnsof " (Ms,) from Lemma 4.26. By the definitions of A and h, we have
that z € A and h(z) = s. This proves that h is onto. We have finished the
proof of Proposition 4.25. O]

Now, we begin to prove the results for covering relation determined by a
transition matrix. In the following, we write A = [a;;]1<ij<, and denote by
{M;}]_, the pairwise disjoint h-sets with covering relations for f determined

by A.

Proof of Theorem 4:22. Since-the dimension of A is 5, there are at most n?
choices of the covering relations-M; . M. By Proposition 3.5, if g : R™ —
R™ is a continuous map with |g — f| small'enough, then ¢ has covering rela-
tions on h-sets {M;}_; determined by A. By applying Propesition 4.25 to the
map g, there exists a compact subset A, of R"™ such that /A4 is positive invari-
ant for g and g|Ay is topologically semi-conjugate to the one-sided subshift of

finite type 0. Therefore; hiop(g) = hiop(g|Ay) = hioglay) = log(p(A)). O

Proof of Theorem 4.23. Let M = Ul M;. Since ¢ is continuous and M is
compact, there exists r > 0 such that g(M) C Bi(0,7). Fori € {1,...,n},
we define h-sets M/ in R™ x R¥ by M! = M; x By(0,r), with u(M!) =
u(M;), s(M) = s(M;) +n and cyp(w,y) = (ca(2),y/r) for z € R™ and
y € R*. Suppose a;; = 1. Then M; L M; implies M| L M by defining a

homotopy H : [0,1] x B,, x By, — R™* as follows
11—t
H(t,l’,y) = h(tvx)7Tg(CMl(x) )

where h is the homotopy for the covering relation M; L M;. This shows

that I has covering relations on {M;}"_, determined by A. By applying
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Theorem 4.22 to the map F on R™ x R* we get that if G is a continuous
map on R™ x R* with |G — F| small enough, then there exists a compact
subset Ag of R™™* such that Ag is positively invariant for g and g|Ag is
topologically semi-conjugate to the one-sided subshift of finite type of. [

Proof of Theorem 4.24. Define F' = (id,¢) o F o (id,¢)~", where id denotes
the identity map on R™ and ¢ is a homeomorphism form S to Bj. Then the

conclusion follows from the above argument. O

4.3.2 Liapunov and strong Liapunowv condition

In this subsection, we will introduce covering relations with the the Liapunov
and strong Liapunoev conditions determined by a transition matrix and list
the related maintresults of the topological dynamics for-multidimensional
perturbations of high-dimensional systems. Here, we will let | - | denote the
Euclidean norm and || -|| denote the operator norm on the space of linear
maps induced by | - |.

In the following, we slightly modify.the.cone condition for a covering
relation given by Zgliezynski in[36, Definition 11] and furthermore, we define

the strong Liapunov«¢ondition. First, We define a quadratic form on a h-set

K in R™ to be of the form
Qi (x,y) = Px(z) — Qr(y) for all (x,y) € RUE) x R¥K), (4.20)

where Py : R*®) — R and Qg : R*¥) — R are positive definite quadratic
forms. Note that a quadratic form on R" is a function () defined on R"
whose value at a vector z in R" can be computed by an expression of the
form Q(z) = 27Sz, where S is an n X n symmetric matrix and 27 denotes

the transpose of z; refer to [27].

Definition 4.27. Let Q) and Qn be quadratic forms on h-sets M and N,
respectively, as in Equation (4.20). We say that a covering relation M LN
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satisfies the Liapunov condition (resp. the strong Liapunov condition) with
respect to the pair (Qn, Q) if there exists @ > 0 (resp. 8 > 0) such that for
any u,v € M, with u # v,

Qn(fe(u) = fe(v) = Qui(u —v) > 8 lu—vl*. (4.21)

As a Liapunov function, a sequence of quadratic forms has scalar values
strictly monotone along the difference of two orbits. More precisely, consider
covering relations M; L M; ., satisfying the Liapunov condition with re-
spect to the pair (Qar,, Qu,,,) of quadnatic forms for all 7 > 0. If u, v are
two points such that f(u); f'(v) & M;zand f'(u) # f*(v) for all i > 0, then
the sequence {Qns, (fiu) =1 (v)}52, is strictly increasinig. This property will

play an import role while we prove conjugacy results.

Definition 4.28. Let A =la;;|1<ij<y be atransition matriz and f be a
continuous map_on R™." We say that f has covering relations with the Lia-
punov conditions (resp. the strong Liapunov condition) determined by A if

the following conditions are satisfied;

1. there are n pairwise disjoint h-sets {M;}}_, 4n/R™; on each M; there

exists a quadratic form Quwg,. as in Equation (4.20).

2. if aj; = 1 then the covering relation M; L M; holds and satisfies the

Liapunov condition (resp. the strong Liapunov condition) with respect

to the pair (Qu,, Qur;); and

3. if a;; = 1 then the coordinate chart cy, and cy; is a Ct diffeomor-

phisms.

The Liapunov condition is for detection of chaos (see Proposition 4.33
below), while the strong Liapunov condition is for stability of chaos under

small C*! perturbations as follows.
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Next, we use the logistic map once again as an example of map has
covering relations with the Liapunov conditions (resp. the strong Liapunov

condition) determined by a transition matrix.

Example 4.29. Let us show that the logistic map f(x) = px(l — x) with
(>4 has covering relations with the strong Liapunov condition determined
by the 2 x 2 matriz with all entries one. Set (i) h-sets My = [—€,1/2—6] and
My = [1/240, 1+¢€], where 0 < 2e < ;L/4—1 and 0 < § < [(,u/4—1—e);f1]1/2;

(ii) the coordinate charts 4 = cyr, (u ([ p(t ful/z_é p(t)dt) and
u = cy,(u) = f1/2+5p (t)dt = fHG ( )dt), where p(t) = [(t + 2¢)(1 —
2¢ — )] fort € (—26, L+ 2¢),and o = f_1£2_5 fl/;iép t)dt; and

(iii) quadratic forms Qur(u) = Quul(u) = u?s. Wath a_help of the Schwarz
lemma and the idea of the Poincaré norm, in Proposition 4.10 of [29], it
is shown that there exists X—> 1 such that if wy f(u) € My U M, then

p(fu)|f (u)| =Ap(u). Let Cy be a positwe constant such that p(t) > Cy for
allt € MyUMs e Then for any w, v &€ My dMs; we have'| f p(t)dt] = Cylu—v|.
Since chy (u) = 2a7 p(u), there exists Cy >0 such that |y (u)| < Co for all
u € M; and i = 1, 2. Therefore, the strong Liapunov condition holds

>
<

Qs (few) = fe(0)) — Quy, (@ — D)
= (CMi © f(u) —Cpy © f(?}))2 B (ch (u) — CM; (U))2

- (2a1 /f :()U) p(t)dt>2 — (2a1 vup(t)dt)Q
4a2(N? = 1) (/vu p(t)dt>2

> 402\ = 1)Ciu —v|* = 402 (N = 1)C,C5 % lu — v|*.

WV

In the followings, we list our results of covering relations with the the

Liapunov and strong Liapunov conditions.

Theorem 4.30. Let f : R™ — R™ be a C' homeomorphism having cover-

ing relations with the strong Liapunov condition determined by a transition
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matriz A. If g is a C* homeomorphism on R™ with |g — f| + ||Dg — Df]|
small enough, then there exists a compact subset A, of R™ such that A, is

invariant for g and g|A, is topologically conjugate to o 4.

For small C! perturbations of a direct product contracting along the

second variable, we have the following result.

Theorem 4.31. Let F(x,y) = (f(x),9(y)) € R™ x RF be a C* homeomor-
phism for all z € R™ andy € R*, where f : R™ — R™ has covering relations
with the strong Liapunov condition determined by a transition matrixz A, and
g : RF — R¥ is a contraction-an the closed unit ball By, such that g(By) C By.
If G is a C* homeomaorphism on R™* with"|G'< EF| + ||DG — DF|| small
enough, then there‘exists a compact subset A of R 5 such that Ag is in-

variant for G and.G|A¢g is topologically conjugate to oy.

Finally, for ‘a”onesparameter family of maps with.the singular map F

depends only on'the phase variable of f, we have the following result.

Theorem 4.32. Let F) be a one<parameter family of maps on R™ x R*
satisfying (i) Fx(@,y) is O continuous as afunction jointly of A € R, x €
R™ and y € R, where A is a parameter; (i) F\<is a homeomorphism on
R™ x R* provided X # 0; and(iii) Fo(z,y)=(f(x), g(x)) € R™ x R* for
all z € R™ and y € R, where f : R™ — R™ has covering relations with
the strong Liapunov condition determined by a transition matriz A, and g :
R™ — R¥. Then for each \ sufficiently close to 0, there exists a compact
subset Ay of R™* such that if X # 0 then Ay is invariant for Fy and Fy|Ay
is topologically conjugate to o4, while Ay is positively invariant for Fy and

Fy|Ag is topologically semi-conjugate to o

In order to prove the main results, we need the following proposition which
is stated that a homeomorphism having covering relations with the Liapunov
condition determined by a transition matrix is topologically conjugate to a

two-sided subshift of finite type.
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Proposition 4.33. Let f : R™ — R™ be a homeomorphism which has cover-
ing relations with the Liapunov condition determined by a transition matrix
A. Then there exists a compact subset A of R™ such that A is mazimal in-
variant for f in the interior of the union of the h-sets (with respect to A)

and f|A is topologically conjugate to o4.

Proof. We denote by {M;}]_; the h-sets with covering relations and the Li-
apunov condition for f determined by A as in Definition 4.28, and write

s=1(...,5_1,50,81,...) for s € ¥ 4. Define

A, = U (ﬁ fZ(MS)> form.2 0, and A = ﬂAn.

SEX A \i=—n n>0

Define h : A — X iby h(z)-=-s-for =z € A, where f"(z) € M, for all n € Z.
By using the same argument-as in the proof of Proposition 4.25, we have
that A is a maximal compact invariant setfor  in U!_; M, with respect to A
and h is a topological semi-conjugacy. Moreover, the covering relations for f
on h-sets implies that any boundary point of a h-set can not have a full orbit
staying in h-setsi” Therefore, A is maximal invariant for f in U]_;int(M;)
with respect to A.

To prove that h is one towene, we need-the following lemma, which is

guaranteed by the Liapunov condition.

Lemma 4.34. For any s € X4, the intersection Nyezf~" (M, ) consists of a

single point.

Proof. Let s € ¥ 4. Then, similar to the proof of Lemma 4.26, we have that
the intersection Nyezf~"(Ms,) is nonempty. Next, we show the uniqueness
of the intersection by contradiction. Assume that u, v € Ny,ezf~"(M,,) with
u # v. Since f is a homeomorphism, f"(u) and f™(v) are different points

lying in the same h-set M, for all n € Z. By the covering relation with the
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Liapunov condition, we have that for all n € 7Z,

Qu.,,, (ear, o8 (W) =car, 0™ () > Qs (enr, of () —ear,, of "(v).

(4.22)
That is, the value of Qyy,, at the point cpy, o f™(u) —cpr,, © f"(v) is strictly
increasing as n € Z increases. It follows that there exits j € Z such that
Qur, (e, © fI(u) = ey, © P(0)) #0.

First, we consider the case when
Qum,, (cu,; © f(u) — ¢y, © fi(v)) > 0. (4.23)

By using the compactness of theunion Ul My, sequentially twice for two

(e.@)
n=0

subsequences, say {f"V 7 (u)}, and {f"@OH (v)}2,, with the limits, say @

sequences, both sequences { /"7 (u) and { [ (v)}°, have convergent

and v in U]_; M;; respectively-By the fact that M;'s are pairwise disjoint and
compact, and f(u), f™(v) € M,, for all n€ Z, there existsa € N such that
SO (u), frOH @), @ and v are allin the same h-set,namely M, . for all
i > «. By the continuity of f, the points f(u) and f(v) are limits of sequences
{fr@++1 (y) } 2 fand { fr @O (@) )22, respectively. Again by the same fact
as above, there exists a integer 3 > « such that frER+1(qy), frO+H+1(y),
f(u) and f(v) are all in.the same h-set, namely M for all ¢« > 3. For

and Ny = M,

Sn(B)+i+1°

n(B)+j+1

convenience, we denote Ny = Msn@ .

By Equation (4.22), we get that for all i > 3,
Qno ey o [ (W) — ey o f1OH () > Qua,, (ear,, © f(w) —ear,; 0 f(v))
By letting 7 — oo, it follows from the continuity of @)y, and cy, that
Qno (e (@) = ey (D)) = Qua,, (ear,, © f(u) = ear,; 0 ().

Thus from Equation (4.23), we have Qn,(cn, (@) — cn,(v)) > 0 and hence
u # v. Since f(u), f(v) € Ny, the Liapunov condition implies that

QNl (CNl © f(ﬂ) —CnN; © f(@)) > QN()(CNO(a) - CNO(,D))' (424)
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Because that f*0+7+1(y) and f*O+7+1(y) converge to f(@) and f(v), respec-
tively, and both (), and cy, are continuous, we obtain that for some large

e
QN1 (CN1 © fn('y)-i—j-i-l (U,) —CN; © fn(7)+j+1 (U)) > QNO (CNU (’ﬁ) — CNy (’D))

By using Equation (4.22), we get that for all i > v+ 1,
Qno(engof " (u)—engo f* D (1) > Qu, (en, o f* P (w) —epy o f" O (v))

Letting ¢ — oo, it follows from.the continuity of ), and cy, that

Qo (eng (@) = eng(D)) ZQn, (e, 0 frH M) £ cy, o frOHH (1)),

Together with Equation (4.24),-this leads to a contradiction.

For the case when Qu, (ar.. o fI(u) =cpy,, 2/ (v)) <0, by working on the
backward orbits of v and v, that is, replacing n and n(i) by —n and —n(7)
in the above argument, it leads to.a contradiction.

Therefore, theintersection M,z f " (M, ) consisting of asingle point. We

have done the proof of the desired result. O

By using Lemma 4:34, we.can easily prove.that h is one to one. Indeed,
let s € ¥4 and h(z1) = h(2s)/= s forzg;25€ A. Then 21, 29 € Nyezf " (M,,)
and hence z; = 2.

Because that the sets A and ¥4 are compact and h is a continuous and
one to one function, it follows that h is a homeomorphism. This completes

the proof of Proposition 4.33. O

Now, we begin to prove the main results for with covering relation with
the Liapunov condition determined by a transition matrix. In the following,
we write A = [a;j]1<i j<y and denote by {M;}]; the pairwise disjoint h-sets
with covering relations for f determined by A. For each h-set M;, let Quy,

be the quadratic form for the strong cone condition of f.
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Proof of Theorem 4.30. Suppose a;; = 1. Then M; L M; holds. By Propo-
sition 3.5, if |g — f| is small enough, then M; =% M; holds. Assume that
such a map g is C''. Before proving that M; == M; satisfies the strong Li-
apunov condition, let us have some observations. Since M; L M; satisfies
the strong Liapunov condition, there exists 6; ; > 0 such that for z, y € M,
with x # y,

Qu, (fo(2) = fo(y)) > Qur(z —y) + 00 |z —y|*. (4.25)

For a =i, j, let S, be the m x m symmetric matrix such that Q, (z) =

2T S,z for z € R™. Since. f, g and cyp-are.C for z, y € M, ., we can define

1 1
B, = /O Dtz — ) diEC /0 Bgell + t(z — ))dt.

Then |E,, — Ciyl < ||Dfe—Dyg.|l. Singe both'fe and ¢. are C' on the
compact set Mgy there exists §; > 0 suchithat |E, | + |Coyl < G; for all z,
y € M; .. Thus

| BN, SO fSTCP
< |ELSiER — €1 ,Si By + 10, ,SiEdy €7 ,SiCoyl
< BillSil D fe=Pyell - (4.26)

Now we check the strong Liapunov condition for M; == M;. Let u, v €

M; . with v # v. By the mean value theorem for integrals, we have that

fc(u> - fc(v) = Eu,v(u - U) and gc(u) - gc(v) = Cu,v(u - U)' Thus,

Qur,; (fe(u) = fe(v)) — Qur; (ge(uw) — ge(v))
= (u— U)T(EiijEu,v — CiUSqu,v)(u — ).

From Equation (4.26), we obtain that

|Qur; (fe(u) = fe(v)) = Qur;(9e(w) — ge(v))]
< BillSiIIDfe = Dgell [u =]
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Imposing Equation (4.25), we get that

Q1 (9e(u) = ge(v))
> Qup,(fe(w) = fe(v) = 1Qur; (fe(u) — fe(v) — Qar; (ge(u) — ge(v))]
> Quiy(u—0) + 05 [u— 0" = B[S |Dfe = Dygel fu —vf*
= Qui(u =)+ (0:; = Bi Sl 1D fe — Dgell) [u = v|*.

Finally, we denote
0i = 0i; — B IS;ll |1Dfe — Dyell -

Then éw is independent of w, v € M, .. Since ¢y is C! diffeomorphism and
M, is compact for aw= i, g, we have that || D fo—Dgg| approaches to zero
as ||Df — Dyg|| tends to zero.-Therefore, if [|[Df —~ Dg|| is.small enough, then
éi,j > 0 and hence M, == M;-satisfies the strong Liapunov.condition.

Since there are at'most 7 choices of paits (2, 7); from the above, we get
that if ¢ is a 0% continuous map with |g= f| + ||[Dg — Df]| small enough,
then g has covering relations with the strong Liapunov condition determined
by A. In addition; if such maps g are C'' homeomorphisms, then we have
the desired result, by applying Proposition 4.33 and the fact that the strong

Liapunov condition implies the Liapunov condition. ]

Proof of Theorem 4.31. Suppose a;; = 1. Then the covering relation M; L
M; holds. First, we show that there is a corresponding covering relation for
F on h-sets. For a =i, j, let M! = M, x By. Then each M/, is an h-set with
evr (2,y) = (emy (), y), u(M}) = u(M,), and s(M}) = s(M,) + k. Define a
homotopy H : [0,1] x B,, x By, — R™* by

H<t7$vy) = (h(tam)a (1 - t)g(y>>7

where h is the homotopy for the covering relation M; L M;. Then for all
z € B, and y € By, we have

H(O’x>y) = (h(Oax)ag(y)) = (CMj ofo C]_\/[li(m)ag(y)) = Fc(as,y), and
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H(1,z,y) = (h(1,2),0).

Thus we have that M/ = M; follows from M,; N M;.

Next, we show that the strong Liapunov condition is satisfied for M/ N
M. For a =i, j, define the quadratic form Qur (z,y) = Qun, () — ly|°. Let
(z1,91), (v2,2) € M, with (z1,41) # (72,92). Since M; L M, satisfies
the strong Liapunov condition, there exists 6; ; > 0 such that Qaz, (fe(z1) —
fe(z2)) > Qup, (1 — 22) + 6, |71 — x2|2 if x1 # x5, Since g is a contraction

on By, there exists 0 < v < 1 such that

lg(@) = gly2)l < oly = wel -

Thus no matter what a7 18 equal to 25 or not,.we get that

Qury (E((d, y1)) =L, Y2))) = Qua (21, 1) = (22, 2))
= Que (ol )= Te(@2); 9(0n) = 9(U2)) = Quarllry = L2, y1 — 112))
= Qu,(flan) — fo(22)) = laly) =alye)|* — Qir. (w1 — x2)

+ 1 =l
> 0,5 lo =@+ (=02 | =l

> ém |(z1, 1) — ($2792)|27

where 6;; = min{6; ;,1 — 7%} /2 > 0. Thus M = M satisfies the strong
cone condition. Since the number of pairs (4, 7) is finite, F' has covering rela-
tions with the strong Liapunov condition determined by A. From Theorem

4.30, the desired result follows. O

Proof of Theorem 4.32. By the continuity of g on the compact union U;_, M;,
there exists r > 0 such that g(U]_; M;) C Bg(r). For each o € {1,2,...,n},
since g and cﬁa are C'!, the composition ¢ o cﬁa satisfies the Lipschitz con-
dition on the compact set M, ., i.e., there exists L, > 0 such that for all z,
x9 € M, .,

g0 cat (21) = gocxf (w2)| < La |21 — 2]
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For i, j € {1,2,...,n} with a;; = 1, we have that M, L M; holds and
satisfies the strong Liapunov condition. Thus there exists ¢; ; > 0 such that
Qu, (fe(r1) — fe(z2)) > Qur (w1 — 22) + 05 |21 — x2|2 if x1, z3 € M, with
21 # x5, Take a real number § such that 0 < 6 < min{6;,;/(1 + L2/r?) : i,
je{Ll,2,....n}, a;; = 1}.

Suppose a;; = 1. For a € {3, j}, let M) = M, x m Then each M/
is an h-set with cy (z,y) = (car, (%), y/7), u(M) = uw(M,), and s(M}) =
s(Ma) + k. Define a quadratic form on M}, by Qu (2, y) = Qum, () — 0 |y|>.
Then M/ Lo, M holds for a homotepy H : [0,1] X By, x B, — R™"* defined
by

1—t 4
H(t2y) = (h(t, 2), —— g(Chp@))),
where h is the homotopy for-the covering. relation M; \ € M;. Furthermore,
we check the strong Liapunov-condition.Let (21, 41), (Z2,42) € M, with
(z1,91) # (22,72). Then

Therefore, M! Lo, ar  satisfies the strong Liapunov condition.

By the finiteness of the pair (z,7), Fo has covering relations with the
strong Liapunov eondition determined by A.. By Propesition 4.25, there
exists a compact subset Ay of R™* such that Ag'is pesitively invariant for
Fy and Fy|A, is topologically scmiseonjugate t0 ¢ 1. Since Fy(z,y) is C' in
the triple (A, z,y) of variables, by using the same argument as in the proof of
Theorem 4.30, there exists Ag > 0 such that for all A with |[A\| < Ao, the map
F\ has covering relation with the strong Liapunov condition determined by
A. Since F is a homeomorphism on R™** provided A # 0, by Proposition
4.33, if 0 < |A| < A¢ then there exists a compact subset Ay of R™™* such
that A, is invariant for F\ and F\|A, is topologically conjugate to 4. We

have finished the proof of the theorem. O
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5 Conclusion
Conclude from this dissertation, we mention some possible future works.

e As the construction of the covering relation, it’s interesting to consider

the chaotic dynamics for some nonuniformly hyperbolic systems.

Barreira and Valls [3] consider sequences of Lipschitz maps A,, + fn
such that the linear parts A,, admit a nonuniform exponential di-
chotomy, and establish the existence of a unique sequence of topological
conjugacies between the maps A, + f,,,» Also, in [4], they study the re-
lation between nonuniform exponential dichotomy and strict Lyapunov
sequences. Given such a sequence, they obtain thestable and unstable
subspaces from the intersection of images and preimages of the cones
defined by each element of the sequence. ' Use the ideas of nonuni-
form exponential dichotomy and strict<Lyapunov sequences, we want
to construet the covering relations with strong Liapunov condition for

the nonunifermly hyperbolic systems.

e [t is possible to use thefixed point index theorem to extend the results

to the Banach space.

Misiurewicz and Zgliczyriski [8] use the covering relation in real banach
space and the fixed point index theorem to give the result to rigorous
estimate topological entropy in case of a one dimensional model (i.e. f
is in one dimensional space) where the full system is in infinite dimen-
sional real Banach space. As the construction of covering relations in
subsection 4.1.2 for map which has a snap-back repeller, we want to
extend the result for the compact map which has a snap-back repeller
in the real Banach space. Moreover, we want to apply the result to

some differential equations.
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