Abstract	l
Acknowledge	ementsIII
Table of Con	tentV
List of Table	sVIII
List of Figur	esIX
Chapter One	IR-VUV Photoionization Spectroscopy
1.1 Introduc	rtion1
	-Ultraviolet-Ionization Detected-Infrared Predissociation Spectroscopy D-IRPDS)4
	Photoionization Spectroscopy (IR-VUV-PI)5
	E S P S 9
Chapter Two	IR-VUV Photoionization Experiments
2.1 Introduc	etion
	JV-Ionization Detected-IR Predissociation (VUV-ID-IRPD)12
2.1.2 IR-	-VUV Photoionization (IR-VUV PI)13
2.2 The Bas	ic Concepts and Details of Construction of Experiments
2.2.1 Lig	ght Sources14
Co	herent VUV Laser Radiation14
2.2.1.1	VUV Radiation at 118 nm From Nonresonant Third-Harmonic Generation
(1)	Theory14
(2)	Experiment17
2.2.1.2	Tunable VUV Radiation Generated With Resonant Four-Wave Mixing18
(1)	Theory
(2)	Experiment
2.2.1.3	IR Optical Parametric Oscillator/Amplifier (OPO/OPA) Laser System 25

2.2.1.4 Photolysis Laser	28
2.2.2 Time-of-Flight Spectrometer	28
2.2.2.1 Supersonic Jet System	29
2.2.2.2 Linear Time-of-Flight Tube (TOF)	30
2.2.2.3 Microchannel Plate (MCP) Detector Assembly	31
2.2.2.4 The Total Flight Time	31
2.2.3 Data Acquisition	33
References	54
Chapter Three Infrared absorption of methanol clusters (CH ₃ OH) _n with recorded with a time-of-flight mass spectrometer using IR depletion and V	
3.1 Introduction	56
3.2 Experiments	58
3.3 Computational Details	
3.4 Results and Discussion	61
3.4.1 TOF Mass Spectrum of Methanol Clusters	61
3.4.2 Action Spectra as The IR Laser Is Turned	63
3.4.3 IR Spectra of (CH ₃ OH) _n	65
3.4.4 Spectral Assignments and Comparisons	69
3.5 Conclusion	73
References	83
Chapter Four Infrared spectrum of mass-selected CH ₃ S radical investig infrared + vacuum ultraviolet photoionization 4.1 Introduction	
4.2 Experiments	
4.3 Results and Discussion	
4.3.1 Photoionization Efficiency (PIE) Spectra of CH ₃ S	
C I	
4.3.3 IR-VUV spectrum of CH ₃ S	
4.4 Conclusion	
References	108

Chapter Five Vibrational Stark Spectral Studies of DMANB Doped in a P	MMA Film
5.1 Introduction	111
5.2 Theory	114
5.2.1 Effect of Electric Field on Absorption Spectra	114
5.2.2 Derive Values of $ \Delta \mu $ and $\Delta \overline{\alpha}$	117
5.3 Material and Methods	119
5.3.1 Sample Preparation	119
5.3.2 Rapid Scan FTIR	120
5.4 Results and Discussion	121
5.5 Conclusion	126
References	144
Appendix A	146
Appendix B	148

List of Tables

Table	pa	age
Table 2-1	Optimum pressures and conversion efficiencies for third-harmonic	
	generation.	.35
Table 2-2	Data sheet for type 1 BBO crystal used for doubling the 425.112 nm light	.36
Table 3-1	Comparison of experimental IR absorption wavenumbers (in cm ⁻¹) in the	
	OH-stretching region with theoretical results.	.74
Table 3-2	Comparison of experimental IR absorption wavenumbers (in cm ⁻¹) in the	
	CH-stretching region with theoretical results.	.76
Table 4-1	Vibrational wavenumbers (in cm ⁻¹) of CH ₃ S observed experimentally and	
	predicted quantum-chemically.	102
Table 5-1	Comparison of vibrational Stark effect data of the C≣N stretching mode	
	with literature values.	129

List of Figures

Figure	pa	ige
Figure 1-1	Two excitation schemes for IR-VUV ionization. (a) VUV-ionization	
	detected-IR predissociation spectroscopy (VUV-ID-IRPDS). (b) IR-VUV	
	photoionization spectroscopy (IR-VUV-PI)	8
Figure 2-1	(a) A schematic diagram of the experimental apparatus of VUV-ID-IRPDS	
	using 118 nm light as the VUV source. (b) Picture of the alignment of IR	
	and UV laser beams at the position of ionization region. The distance	
	between two beams is about 3 mm, when the delay time between IR and	
	VUV lights was set to be 30 ns. (c) The intensity of VUV light measured	
	with a copper photoelectric detector.	37
Figure 2-2	(a) The schematic diagram of the experimental apparatus of IR-VUV-PI	
	using a tunable VUV light. (b) The observed optogalvanic signal. When the	
	frequency of UV light is resonant with the two-photon Kr transition,	
	maximum optogalvanic signal is obtained	38
Figure 2-3	Schematic diagrams of (a) a nonresonant third harmonic generation process	
	at the fundamental laser frequency ω , where $\omega_1 = \omega_2 = \omega_3 = \omega$ and	
	$\omega_{VUV} = 3\omega$ and (b) a four-level system indicating the relevant energy levels	
	for both four-wave sum frequency at $2\omega_1 + \omega_2$, and four-wave difference	
	mixing at $2\omega_1-\omega_2$. The real levels are labeled $ a\rangle$, $ b\rangle$, $ c\rangle$, and $ g\rangle$, I. P.	
	= ionization potential and imaginary levels are present as solid line and	
	dashed line, respectively. Real levels are labeled $ a\rangle$, $ b\rangle$, $ c\rangle$, and $ g\rangle$. I.	
	P. = ionization potential.	39
Figure 2-4	The 118.2-nm output power as a function of the pressure of added Ar in the	
	tripling cell. The input 354.7-nm beam is in unfocused geometry. (From Ref.	
	9)	40
Figure 2-5	The phase-matching factors versus F_i $b\Delta k$ in the case of tight focusing, for	
	$b/L=0$ and $f/L=0.5$. (a) $F_{sum}(b\Delta k)$ versus $b\Delta k$. The upper trace is the	
	derivative of $F_{\text{sum}}(b\Delta k)$. (b) $F_{\text{diff}}(b\Delta k)$ versus $b\Delta k$. $F_{\text{sum}}(b\Delta k)$ and $F_{\text{diff}}(b\Delta k)$	
	are the phase-matching factor in sum- and difference-frequency schemes	41
Figure 2-6	Energy level diagrams of relevant atomic levels of nonlinear media of Hg,	

	Xe, Kr, and Ar for the generation of coherent VUV light via two-photon
	resonance four-wave sum and difference frequency mixing. The wavelength
	regions are indicated in nm. I.P. denotes the ionization limit of a non-linear
	medium
Figure 2-7	Wavelength dependence of the power of the VUV light produced by the
	difference frequency conversion ($\omega_{VUV}=2\omega_1-\omega_2$) in Kr. ω_1 is fixed at
	216.6 nm which is resonant with the two-photon Kr transition $4p-5p$ [5/2, 2].
	(a) ω_2 is in the range 540–737 nm produced by the fundamental output of
	the following laser dyes: a, Fluorescine 27; b, Rhodamine 6G; c, Rhodamine
	610; d, Rhodamine 620; e, Rhodamine 640; f, Sulforhodamine; g, DCM; and
	h, Pyridin 1. (b) ω_2 is in the range 416–550 nm produced by the fundamental
	output of the following laser dyes: i, Stilbene 420; j, Coumarin 440; k,
	Coumarin 460; l , Coumarin 480; m , Coumarin 500. (c) ω_2 is in the range
	272-360 nm produced by the second harmonic generation of with the same
	laser dyes as listed in (a). The VUV power is plotted in arbitrary units. The
	tuning curves are not displayed on the same scale. (From Ref. 14)43
Figure 2-8	A detailed schematic diagram for generation tunable VUV light by
	resonance enhanced four-wave difference frequency mixing ($\omega_{VUV} = 2\omega_1 -$
	ω_2) in a Kr/Ar gas cell via the Kr 4P->5P transition at 94,092.86 cm ⁻¹ (=
	$2\omega_1$). ω_1 (212.556 nm) is generated by doubling of the laser output from a
	Stilbene 420 dye (425.112 nm)
Figure 2-9	A schematic diagram for measurements of the optogalvanic spectra45
Figure 2-10	(a) The optogalvanic spectrum recorded with a Fe-Ne cell when scanning the
	grating position of the dye laser (ω_2) from 510.3 to 514.2 nm with a scan
	step of 0.025 nm. (b) Stick diagram of vacuum wavelength of transition
	lines of Ne and Fe atoms (from Ref. 25); only intense transitions are plotted46
Figure 2-11	Comparison of derivation from the true wavelength for the wavelength read
	out of a dye laser calibrated with an optogalvanic cell and a wavemeter47
Figure 2-12	Layout of the IR-OPO/OPA laser system (Laser Vision)
Figure 2-13	Output energy of the IR OPO/OPA system and the H_2 Raman shifter system
	in our lab
Figure 2-14	The interference spectrum of etalon B with NIR output from OPO cavity.
	The frequency of NIR was set at 12293 cm ⁻¹ . The spectrum was taken when

	the seeder of pumping YAG laser was turned on	50
Figure 2-15	(a) A schematic diagram for measurements of a photoacoustic spectrum. B.S.	
	is a 50:50 beam splitter. (b) FTIR spectrum (resolution = 0.5 cm ⁻¹) and	
	photoacoustic spectrum (broadband mode, resolution = 1.5 cm ⁻¹) of CH ₄	
	$(2900-3200 \text{ cm}^{-1})$, C_2H_2 $(3200-3350 \text{ cm}^{-1})$, and H_2O $(3500-3700 \text{ cm}^{-1})$.	
	The photoacoustic spectrum wasn't normalized with IR intensity.	51
Figure 2-16	A schematic diagram of the time-of-flight spectrometer (TOF)	52
Figure 2-17	Typical timing sequence in the IR-VUV photoionization measurement.	
	The time axis is not to scale and each device is triggered by the rise-edge	53
Figure 3-1	Time-of-flight mass spectra of a jet-cooled methanol cluster beam produced	
	from a mixture of $CH_3OH/He = (1/100)$ at a stagnation pressure of 850 Torr.	
	(a) ionization at 118 nm; (b) IR irradiation at 2950 cm ⁻¹ applied 200 ns	
	before ionization at 118 nm; (c) IR irradiation at 3150 cm ⁻¹ applied 200 ns	
	prior to ionization at 118 nm. The m/z values for $(CH_3OH)_nH^+$ and	
	$(CH_3OH)_n^+$ are indicated	78
Figure 3-2	Time-of-flight mass spectra (a) and action spectra (b) of a jet-cooled methanol cluster beam produced from a mixture of $CH_3OH/He = (5/1000)$ at	
	a stagnation pressure of 800 Torr. The action spectra were recorded on	
	monitoring the fractional variations in intensity of each mass channel as the	
	wavelength of the IR laser was scanned.	79
Figure 3-3	Reaction and ionization scheme of methanol clusters	
•	Infrared spectra of $(CH_3OH)_n$ for $n = 1-5$ derived from action spectra shown	
118012	in Figure 3-2 according to the dissociation and ionization mechanisms	
	described in text. M indicates CH ₃ OH. The spectrum of M ₆ was obtained in	
	a separate experiment in which (CH ₃ OH) ₆ has a higher concentration	81
Figure 3-5	Time-of-flight mass spectra (a) of a jet-cooled methanol cluster beam,	01
118410 3 0	produced from a mixture of $CH_3OH/He = (3/100)$ at a stagnation pressure of	
	1670 Torr, and IR spectra (b) of (CH ₃ OH) ₄ and (CH ₃ OH) ₅ obtained with the	
	fluence of IR radiation at 4 and 2.5 mJ mm ⁻² .	82
Figure 4-1	Normal modes of the CH ₃ S radicals. The a ₁ modes are described	
	approximately as the CH ₃ symmetric stretching (v ₁), the CH ₃ umbrella	

	motion (v_2) , and the C–S stretching (v_3) modes. The degenerate e modes are
	the CH_3 asymmetric stretching (ν_4), the CH_3 deformation (ν_5), and the HCS
	deformation (v ₆) modes
Figure 4-2	Photoionization efficiency spectra of CH ₃ S (a) in region 9.14-9.38 eV
	$(73,719-75,655 \text{ cm}^{-1})$ recorded with scan step 4 cm ⁻¹ , (b) in region
	9.2440-9.2635 eV (74,558-74,715 cm ⁻¹) with scan step 1 cm ⁻¹ , (c) in
	region 9.218-9.234 eV (74,348-74,477 cm ⁻¹) with scan step 1 cm ⁻¹ , and (d)
	in region 9.30-9.46 eV (75,010-76,300 cm ⁻¹) with scan step 4 cm ⁻¹ . The
	insets are first-order derivative spectra fitted with Gaussian functions. The
	energies of the maxima thus derived are indicated with thick blue arrows.
	The threshold energies are indicated with thin black arrows
Figure 4-3	(a) Photoionization efficiency spectra of CH ₃ SH in region 9.415–9.482 eV,
	and (b) its first-order derivative spectra fitted with Gaussian function105
Figure 4-4	Time-of-flight spectra of a supersonic jet of Ne containing 1 % CH ₃ SH. (a)
	ionization with VUV light at 134.84 nm (9.195 eV, 74,165cm ⁻¹), (b)
	ionization with VUV light at 134.84 nm and IR light at 2905 cm ⁻¹ applied
	200 ns before VUV light, (c) the jet was irradiated with light at 248 nm
	before ionization with VUV light at 134.84 nm, and (d) the jet was irradiated
	with light at 248 nm before ionization with VUV light at 134.84 nm and IR
	light at 2905 cm ⁻¹ applied 200 ns before VUV light. DMDS ⁺ indicate
	CH ₃ SSCH ₃ ⁺ 106
Figure 4-5	Comparison of IR spectra in regions 2790-3020 and 3200-3270 cm ⁻¹
	observed in IR-VUV photoionization experiments with the stick spectrum
	predicted quantum-chemically. (a) The change in intensity of the CH_3S^+
	signal was monitored while the wavenumber of the IR laser was tuned; the
	wavelength of the VUV laser was maintained at 134.84 nm. (b) Stick
	diagram of transition wavenumbers predicted in Ref.; the wavenumbers are
	scaled by 0.959 and the statures reflect predicted relative IR intensities.
	Vibrational transitions from CH ₃ S (X^2 E _{3/2}) are indicated in red and those
	from CH ₃ S (X^2 E _{1/2}) are in blue, with half stature to reflect likely population
	relative to CH ₃ S (X^2 E _{3/2}) upon photolysis of CH ₃ SH at 248 nm107

Figure 5-1 (a) Two possible mechanisms of intramolecular charge transfer process. The

	structures of twisted intramolecular charge transfer (TC1) state and the
	planar intramolecular charge transfer (PICT) state are shown. (b) Schematic
	illustration of the processes and states involved in the photophysics of
	DMABN according to the mechanism of twisted intramolecular charge
	transfer
Figure 5-2	Schematic illustration of effects of an applied electric field on the shape of
	an absorption line. (a) Molecules of which $\Delta \vec{\mu}$ (shown here for $\Delta \vec{\mu} > 0$) is
	oriented parallel or antiparallel to the electric field F have their transition
	energy shifted to smaller or greater energy, respectively. The consequence
	for the absorption spectrum (solid and dashed lines denote the spectrum
	without and with an applied electric field) is shown on the right: some
	orientational subpopulations are shifted to smaller energy, some to greater
	energy, and some remain the same, resulting in a broadened band. The Stark
	spectrum has a second derivative line shape as shown. (b) The applied field
	induces a dipole moment that is typically in the direction of the applied field,
	regardless of the orientation of the molecule. The absorption energy shifts
	towards smaller or greater energy depending on $\Delta\alpha > 0$ or $\Delta\alpha < 0$, and a
	line in the Stark spectrum has a positive or negative first-derivative shape 130
Figure 5-3	Chemical structures of PMMA and DMABN
Figure 5-4	Schematic illustration of the device. (a) The side view. (b) The top view 132
Figure 5-5	(a) Experimental setup for vibrational Stark spectroscopy. BS, FM, and MM
	represent the KBr beamsplitter, fixed mirror, and moving mirror,
	respectively. (b) Timing chart for the measurement using the DC electric
	field method in rapid-scan mode
Figure 5-6	(a) IR absorption spectrum and (b) vibrational Stark spectrum of PMMA (χ
	= 90°). The applied electric field is 0.875 MV cm^{-1}
Figure 5-7	(a) Vibrational Stark spectrum of PMMA in the C=O stretching region at
	three applied fields ($\chi=90^{\circ}$), $\mathbf{F}=0.75,0.875,\text{and}1.25~\text{MV cm}^{-1}.$ (b) The
	peak height of Stark signal as a function of the square of the applied electric
	field
Figure 5-8	(a) Vibrational Stark spectrum of PMMA in the C-O-C and C-C stretching
	region at three applied field ($\chi = 90^{\circ}$), $\mathbf{F} = 0.75$, 0.875, and 1.25 MV cm ⁻¹ .
	(b) The peak height of Stark signals at 1147 and 1239 cm ⁻¹ (marked * in (a))

	as a function of the square of the applied electric field	136
Figure 5-9	(a) IR absorption spectrum and (b) vibrational Stark spectrum of DMABN	
	doped in a PMMA film ($\chi=90^{\circ}).$ DMABN:PMMA=1:2. The applied	
	electric field is 1.0 MV cm ⁻¹ .	137
Figure 5-10	(a) Vibrational Stark spectra, under the condition of the magic angle,	
	collected with 200 and 700 loops. The applied electric field is $1.2~\mathrm{MV~cm}^{-1}$.	
	(b) The residual spectrum obtained on subtracting the spectrum for 200	
	loops from the twice spectrum for 700 loops.	138
Figure 5-11	Vibrational Stark spectra of DMABN doped in a PMMA film. (a) $\chi=90^{\circ}$	
	and (b) $\chi = 54.7^{\circ}$. The applied electric field is 1.2 MV cm ⁻¹	139
Figure 5-12	(a) Comparison of vibrational Stark spectrum (field on minus field off) and	
	simulated spectrum of PMMA for the C=O stretching mode ($\chi=90^{\circ}).$ The	
	applied electric field is 1.0 MV cm ⁻¹ . The red circles represent the data;	
	solid line represents a fit. (b) Absorption spectrum of PMMA. (c) Solid, dot,	
	and dashed dot lines are contributions of the zeroth-, first- and second-	
	derivatives	140
Figure 5-13	(a) Comparison of vibrational Stark spectrum and simulated spectrum of	
	DMABN for the C=N stretching mode ($\chi = 90^{\circ}$). The applied electric field	
	is 1.0 MV cm ⁻¹ . The red circles represent the data; solid line represents a fit.	
	(b) Absorption spectrum of DMABN. (c) Solid, dot, and dashed dot lines are	
	contributions of the zeroth-, first- and second- derivatives	141
Figure 5-14	(a) Comparison of vibrational Stark spectrum and simulated spectrum of	
	PMMA for the C=O stretching mode ($\chi = 54.7^{\circ}$). The applied electric field	
	is 1.4 MV cm ⁻¹ . The red circles represent the data; solid line represents a fit.	
	(b) Absorption spectrum of PMMA. (c) Solid, dot, and dashed dot lines are	
	contributions of the zeroth-, first- and second- derivatives.	142
Figure 5-15	(a) Comparison of vibrational Stark spectrum and simulated spectrum of	
	DMABN for the C \equiv N stretching mode ($\chi = 90^{\circ}$). The applied electric field	
	is 1.4 MV cm ⁻¹ . The red circles represent the data; solid line represents a fit.	
	(b) Absorption spectrum of PMMA. (c) Solid, dot, and dashed dot lines are	
	contributions of the zeroth-, first- and second- derivatives	143
Figure A-1	Comparison of the VSE spectrum and the simulated spectrum of DMABN	

doped in a PMMA film for the (a) C=O and (b) C \equiv N stretching modes. (χ =

	90°). The applied electric field is 1.2 MV cm ⁻¹ .	.147
Figure A-2	Comparison of the VSE spectrum and the simulated spectrum of DMABN	
	doped in a PMMA film for the (a) C=O and (b) C \equiv N stretching modes. (χ =	
	54.7°). The applied electric field is 1.4 MV cm ⁻¹ .	.147

