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The Prevalence of Braess’ Paradox in Transportation

Network Design Problem

Student : Yi-Shan Li Advisors : Dr. Hsun-Jung Cho
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ABSTRACT

In transportation planning and network :design, Braess paradox problem has been
discussed for many decades. ,;Those researches were originated from the simple
network illustrated by Braess.-Many works devoted to seek efficient methods to avoid
the occurrence of paradox proeblem or find some rules for network designers to refer.
Under link-OD/path matrix is=full columnirank , i.e., the number of paths is less than
the number of links plus origin/destination pairs, Dafermos and Nagurney (Dafermos
and Nagurney,1984) derived the formulas to determine whether Braess’ paradox
occurs in the network. Using their formula, transportation planners could foresee
occurrence of Braess’ paradox before great capital investment in road construction.
This study proposes generalized inverse approach to relax the full column rank
assumption presented by Dafermos and Nagurney. Then the modified model could be
applied to large networks.

Keywords: Braess’ paradox , Network design, Transportation planning,
Generalized inverse
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1. Introduction

“Network” is commonly used to describe a structure that can be either physical (e.g.,
streets and intersection) or conceptual (e.g., information lines and people). There are two
elements in each of these networks: a set of points and line segments connecting these
points. In standard terminology, these points of a network are referred to as nodes (or
vertices) and the lines of a network as links (or edges). Each network link is typically
associated with some impedance that affects the flow using it. Impedance can represent
electrical resistance, time, costs, utility, or any other measure. When the flow involves
people, the term “level of service” is usually used instead of “impedance”. The travel
impedance, or level of service, associated with. the links representing an urban network
include many components, reflecting travel time, safety, cost of travel and others. However,
the primary component is travel time, which is often used as the sole measure of link
impedance. The level of service offered by many transportation systems is a function of the
usage of these systems. Because of congestion, travel time on urban streets and intersections
is an increasing function of flow. Thus, the performance function relates the travel time on
each link to the flow traversing the link. Typically, the networks are “connected”, so it is
possible to get from any node to any other node by following a path (or a route) through the
network. A path is a sequence of directed links leading form one node to another. A pair of

nodes is usually connected by more than one path. (Sheffi, [1])

Given a network, and assume that the number of travelers who wish to travel between
a given origin point and a given destination point known. Furthermore, assume that these
points are connected by several possible paths. The question of the interest here is how
these travelers will be distributed among the possible paths. The problem is known as that

of traffic assignment. The traffic assignment process is traditionally viewed as the final
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stage of the four stage process used to model travel demand in transportation planning.

After the Trip Generation, Trip Distribution, and Modal Split process, Traffic Assignment is

to assign flows by various modes in given links to paths in transportation networks.

Through traffic assignment techniques, not only all the link flows in a network can be

estimated, but also travel cost between origin-destination (OD) pairs can be provided, which

is used by trip distribution or modal split model. There are four traffic assignment

techniques as follows (Meyer and Miller, [2]):

(1)

@)

All-or-nothing assignment:

This is the simplest approach involving the selection and loading between each
origin and destination. Assume road capacity is unlimited, and link cost is fixed.
For each OD pair, find the shortest path and assign all the travel demand into it.
The method ignores the limitations impesed by restriction on the capacity of the
network. Links may be allocated far greater flows than they are capable of
carrying.

Equilibrium assignment

The idea of equilibrium in the analysis of transportation networks arises from the
dependence of the link travel time on the link flows. In 1952, Wardrop[3]
proposed a concept of distributing the travel demand on a transportation network;
that is, user equilibrium (UE). User equilibrium is that the costs on all paths used
between any given OD pair are equal and not greater than the cost experienced by
other travelers in an unused path between them. In practice, user equilibrium is
generally considered as the more likely basis for network equilibrium. Initially,
the computer power was not available to solve the equilibrium alignment problem
and approximate methods were used to obtain equilibrium solutions, including
capacity restrain assignment (is also called iterative assignment) and incremental
assignment. Beckmann [4] showed that the equilibrium assignment problem could
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be transformed into an equivalent optimization problem: if the cost on any link is
a function of the flow and of no other flows, then the flows satisfying user
equilibrium principle are unique and are the same as the following minimize a

specified objective function as (1-1):

fy
Mlnimize Z = z Ic[j (x)dx (1-1)
i 0
St.
th:Tw, weW (1.2)
peP,
h,20, peP, (1.3)

where 7, j represents two endpoint of link, £, is link(i,/) flows and ¢, is link(i,)

travel time function, which’is'only dependent on its flows. T is the OD demand
between OD pair w e W .(1.2)'is the.OD._flow conservation constraint and (1.3) a

nonnegativity constraint, here"f, :zfp5(i,j),p where &, ; ,

=1 if path p uses

peP
link(i,j); and 0 otherwise. This:could be solved using the Frank-Wolfe algorithm to
combine the results of successive all-or-nothing assignment in an iterative manner.
(3) Stochastic assignment:
The second assignment technique is also called deterministic user equilibrium,
because it assumes all travelers obtain perfect information on travel costs on any
given path are perfect, resulting in making rational route choices. However, in real
world, traveler can not always obtain the whole network information. This leads
to development of stochastic assignment, in which link travel time function is
viewed as random variables varying with users’ preferences, perception and
experience.

(4) Dynamic assignment:



Network flows will not vary with time in the above approaches. In static
assignment techniques, these procedures assume that each vehicle is
simultaneously located on every link on its chosen path and assign all flow
simultaneously to all links on the chosen paths. It is unrealistic assumption
obviously, but for many regional transportation planning applications, static
assignment assumption is acceptable and can yield useful results. However, the
static representation of network performance is not sufficiently accurate. A
dynamic representation of route choice behavior and resulting network
performance is required in which the movements of vehicles along their chosen
paths is explicitly simulated through time. Dynamic assignment models may be
either probabilistic in terms of the simulation of users’ route choices and/or
determination of vehicles’ travel times along given links, or they can be

deterministic.

This research focus on equilibrium-assignment problem, says, user equilibrium. Based
on user equilibrium, it turns out that all'users-traveling with the same origin and destination
incur the same travel cost in equilibrium, and is irrelevant to their originally chosen path. It
is useful to predict how changes in the travel demand or network geometry will affect
traveler costs. The congestion in a network resulting from user equilibrium flows is greater
than the congestion that would exist if some central controller could assign all travelers
between their origins and destinations. This would involve in that: whether road investment
can alleviate traffic congestion or not is an issue cared about by transportation planners. In
other words, when getting start to network design problem, the first thing is to define user

behaviors, network performance function and budget limit.

However, in 1968, Braess[5] presented an example of equilibrium assignment problem:

adding an extra link associated with an OD pair in a network does not benefit travelers; that



is, the total travel time may increase. This phenomenon has become known as Braess’
paradox and is discussed below. (Nagurney, [6]) Figure 1.1 shows a simple network
including one OD pair connecting by four links. The link performance functions for the four
links are also presented below.

t(x)=50+x, ¢, (x,)=50+x,,

t3(x3) =10x;, t,(x,) =10x,. (1.4)

Assume there are 6 units of flow traveling between O and D. The user equilibrium

flow pattern for the network can be solved by inspection. The link flow pattern would be

x, =x, =x, =x, =3 flow units. The associated link travel times are 7, =53, ¢, =53,
t, =30, t, =30 time units and the path times are ¢, =c, =83 time units. The total travel

time on the network is 498 (flow-time) units.
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Path Definition
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Path 2
Figure 1.1 Initial Braess’ Network

Then add a new link connecting the two intermediate modes to the network. Figure 1.2
shows the expanded network, the performance function for this new link and the new path

(number 3) resulting from the addition of the link.
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Added link: %5 =10+ x,

Figure 1.2 the Expanded Braess’ Network

The travel time on the unused path (path 3) is lower than the ones on the two used path
so the travel demand need to be allocated again. The equilibrium flow pattern for the
expanded network is give by the solution x, =2,-x, =2, x, =4, x, =4, x, =2 flow
units and path travel times ¢, =c;=92 time.units.-So the total travel time on the new
network is 552 (flow-time) units:inow. The-addition of the new link has therefore made the
situation worse. In practice, there is‘some-evidence that this situation may occur: a case in
Stuttgart. Major road investment in the city centre, in the vicinity of the Schlossplatz, failed
to yield the benefits that had been expected. The benefits were only obtained when a cross

street, the lower part of Konigstrasse, was withdrawn from use by traffic. (Murchland, [7])

Braess’ paradox has given warning to many researchers: when involving this NDP, not
every investment will benefit network users. This inspired many researchers dedicated to
identifying corresponding causes of Braess’ paradox. Some devoted to developing
mathematical models to predict the occurrence of Braess’ paradox, and some tried to find
some rules for engineers when planning road construction. The purpose of this study is to
relax the model for predicting Braess’ paradox by using generalized inverse approach. The

model was proposed by Dafermos and Nagurney [8] in 1984. Their model was constrained



to the rank assumption. The rank assumption is that number of arcs plus number of OD
pairs are larger than number of paths in the network. This is not suitable in real world.
Generalized Inverse approach is used to modify limitation in the model such that it can
conform to real situation. Without loss of generality, sensitivity analysis to equilibrium
network analysis will be described to emphasize the close relationship between Braess’

paradox and sensitivity analysis before road investment

The rest of this research is organized as follows. Chapter 2 briefly revisits literatures;
chapter 3 introduces corresponding notations which will be used in the mathematical model,
and then presents the model for predicting occurrence of Braess’ Paradox developed by
Dafermos and Nagurney. Next, Chapter 4 shows generalized inverse matrix approach and
the modified model, and Chapter 5 is discussions and conclusions along with the future

research.



2. Literature Reviews

Literature reviews are divided into five parts. Section 2.1 introduces network design
problem according to its class and formulations. From section 2.2 to 2.7, we focus on
Braess’ paradox basing on its characteristics, methods, purposes: section 2.2 shows Braess’
paradox and its extensions under different traffic assignment techniques; section 2.3 mainly
illustrates mathematical model for predicting occurrence of network presents; section 2.4
lays attention on routing game about Braess’ paradox; section 2.5 introduces sensitivity
analysis in Braess’ paradox; section 2.6 introduces Braess’ paradox in non-transportation
networks, such as queuing networks, telecommunication networks; and section 2.7
discusses route guidance system in order to prevent from Braess’ paradox and summarizing

all sections.

2.1 Network Design Problem

The network design problem has long been recognized to be one of the most difficult
and challenging problems in transportation. Magnanti and Wong [9], Friesz [10], Yang and
Bell [11], and Friesz and Shan [12] have reviewed models and algorithms for road network
design problem. In this section, a brief introduction for network design problem will be
presented. This is to emphasize the importance of sensitivity analysis before road
investment in order to prevent occurrence of Braess’ paradox. Traditionally, network design
problems seek an optimal network design in terms of additional facilities or capacity
enhancements when the network flow pattern is constrained to be a static equilibrium. For
example, Braess’ paradox requires static design models satisfy user equilibrium constraints.

In detail, there are two kinds of NDP: discrete and continuous. A discrete form deals with
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the adding new links or roadway segments to an existing road network which is called as
the discrete network design problem (DNDP), and a continuous form deals with the optimal
capacity expansion of existing links which is called as continuous network design problem
(CNDP). No matter which form is, the objective of NDP is to optimize a given system
performance measure such as to minimize total system total travel cost, while accounting
for the user behaviors. NDP can be represented as a leader-follower game where the
transportation planning departments as leaders, and the users who can choose the path freely
as followers. It is assumed transportation planning managers can influence but not control
user behavior. The interaction between the two players can be represented in the following
bi-level programming problem (Friesz [10]; Yang and Bell [11]):

(Upper level) Minimize F(x,u)

st. G(x,u)=0
where x = x(u) zis implicitly defined by

(Lower level) Minimize f(x,a)

st. g(x,u) <0

The whole bi-level NDP is to find an optimal capacity improvement u’such that the
system objective function F' is optimized subject to a given budget constraint while taking

account of the user behavior.

It is worth to emphasizing that the NDP must be solved with the network flow pattern
constrained to user equilibrium (the lower level problem). Moreover, addition of a new road
segment or capacity enhancement to a congested network without considering the response
of the network users may increase system-wide congestion. This well-known phenomenon
has been demonstrated by the Braess’ paradox. Therefore, it is essential to predict traffic
pattern via a sound behavior model for the network design process. The user equilibrium

problem with fixed demand can be formulated as (1.1)-(1.3). In addition to deterministic
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user equilibrium, Chen and Alfa [13] and Davis [14] used the logit-based stochastic user
equilibrium assignment approach formulating the lower level problem. The advantages for
using stochastic user equilibrium assignment are that the path flows are uniquely
determined and their derivatives with respect to the design variables can calculated. The
upper level problem can be posed in a discrete or continuous form. Earlier studies have used
discrete design variables (Leblanc, [15]; Boyce and Janson, [16]), but CNDP receives much
more attention form transportation researchers. Abdulaal and Leblanc [17], and Dantzig et
al. [18] assumed decision variables were continuous, which simplified the problems because
it removed the combinational aspects and made the problem amenable to a number of
nonlinear programming algorithms. Magnanti and Wong [9] presented a unified view of
modeling the DNDP, and proposed a unifying framework for describing a number of
algorithms such as Lagrange relaxation and dual-ascent procedures in providing bounds for
the special cases of the DNDP.-Other techniques:include branch and bound methods and
other heuristics. Leblanc [15] applies thebranch-and bound approach for solving the DNDP

with construction cost being a budget constraint:

The following is a general form of DNDP (upper level problem) is written as follows

(Magnanti and Wong [9]):
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Minimize ) Y ¢, [+ D Fy, (2.1-1)

Kk (i,j)ed (i,j)ed

St.

R, ifi=00)
D=2 =1-R, ifi=Dk) allk ek
o e 0 otherwise

o (2.1-2)
f,=2./ <K,y, all(ij)eA (2.1-3)
kekx

(fy)esS (2.1-4)
f,yk >0,y,=00rl all(ijje A ke (2.1-5)

The discrete network design problem is to determine the best improvement to an existing
transportation system. Thus, choose an optimal subset from a set of proposed link additions
to an existing road network. The:objective is to find that network configuration whose user
equilibrium flow results in the:smallest-travels cost. Each proposed link has a cost of
construction, ie., a budget is given whichlimits total expenses incurred. The basic
ingredients of the model includes a set of nodes N and a set of links 4 that are available for

designing a network. The model permits multiple commodities: let x denotes the set of

commodities and for each k €k, let R, denotes demand of commodity % to be shipped

from its origin, denoted O(k), to its destination, denoted D(k). Let y, be a binary

variable indicating whether or not link(i,7) is chosen as part of the network’s design. Let

fy." denotes the flow of commodity k on link (i/). Then, y=(y,) and fs(fy.") are
vectors of design and flow variables. Let c;‘ be the per unit routing cost on link(i,j) for
commodity k, and F, denotes the fixed cost of constructing link(i,j). Most frequently, the

demand and flows would be assumed unchanged over the lifetime of the network’s design
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and the flow costs is net present values of the per unit routing costs evaluated over the

network’s lifetime. Constraint (2.1-1) represents the usual network flow conservation

equations. Constraint (2.1-2) , the forcing constraint, state that the total flow f.j on link (i,))

)

of all commodities cannot exceed the capacity K, of the link if it is chosen as part of the

network design. The set S includes any side constraints imposed either individually or
jointly on the flow and design variables. The side constraints might model limitations
imposed on resources shared by several links, such as a budget constraint:

Zeijyl.j <B. (2.1-6)

(i.j)ed

The coefficient e, is the cost incurred if link(i,) is constructed in the network design.

With the budget side constraint (2.1-6) and ,no fixed costs in the objective function and
uncapacitated link, the problem is oftensecalled. the' .budget design problem. Without side
constraints, this unconstrained, linear cost version of:the problem is often referred as the
fixed charge design problem. Several studies-have developed solution methods for the fixed
charge design problem (Balakeishnan‘et al.,[19]; Lamar et al.,[20]; Gendron et al., [21];

Holmberg and Hellstrand, [22]; Holmberg and Yuan,[23])

CNDP is to determine the set of link capacity expansions where satisfying user
equilibrium. Abdulaal and Leblanc [17] formulated the CNDP under deterministic user
equilibrium as a bilevel programming model and proposed the Hooke-Jeeves algorithm to
solve CNDP. Marcotte [24] presented heuristics for CNDP on the basis of system optimal
approach and obtained good numerical results. However, this is not tested on large-scale
networks generally. As for the development of solution methods to CNDP for practical use,
Suwansirikul et al. [25] porposed a simple heuristic called Equilibrium Decomposed
Optimization (EDO) and performed this heuristic on several example networks. Friesz et al.

[26] used a simulated annealing approach to solve the multi-objective equilibrium network
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design problem as a single level minimization problem; this approach is only suitable for
small networks. Since the bilevel program for CNDP is non-convex and non-differentiable,
Yang and Bell [27] conducted a survey of recent advances in transportation bilevel
programming problems. Recently, Chiou [28] exploited a descent approach via the
implementation of gradient-based methods to solve CNDP; Waller et al. [29] formulated
CNDP as a linear model based on dynamic traffic assignment model that propagates traffic
according to the cell transmission model. A major limitation of the static models is that they
can not capture the traffic interaction among adjacent links and they assume steady-state
time-invariant OD demean, which is unrealistic during the peak period and leads to

suboptimal solutions.

2.2 Braess’ Paradox and.Others

Since Braess presented the-paradox,-other researches have been intrigued, appearing
frequently in textbooks and the popular.science literatures. Smith [31] and Fisk [31] both
presented phenomena similar to Braess’ paradox in transportation networks. Smith used a
simple model where the network and the congestion characteristic are particular and showed
the total travel time may be reduced by increasing travel time locally. This result is of
particular relevance to towns with a good bypass or an outer ring road. Fisk ’s result is like
Braess’ paradox but its variants are on travel demand: this study investigated the sensitivity
of travel costs to change input flows in the user equilibrium problem. The result showed that
when increasing input flows, both origin-destination and global travel costs may decrease,
contradicting general intuition. The same phenomenon occurred in the two-mode
equilibrium problem. The OD travel cost may decrease as a result of an increase in
automobile input flows. Fisk and Pallottino [32] also illustrated the phenomenon using the
City of Winnipeg network data, proving in real life it may occur. For a corridor with two
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groups of users, Arnott et al. [33] showed that expanding capacity of an upstream bottleneck
raises travel costs when reducing congestion upstream is more than offset by increased
congestion downstream. Yang and Bell [34] demonstrated a capacity paradox which may be
encountered in road network design. They showed that creating a new link in a road
network may actually reduce the potential capacity of the network and this can be avoided
by using the concept of network reserve capacity into network capacity improvement plans.
The reserve capacity for a road network can be measured by how large a common multiplier
can be applied to a given OD matrix subject to the flow on each link not exceeding its
capacity when the multiplied OD matrix is allocated to the network which satisfies user
equilibrium. Comparing with the capacity paradox, the occurrence of Braess’ paradox
depends on the level of demand, which has been mentioned by Rilett and Van Aerde [35],
Pas and Principio [36], and Penchina [37]. In fact, the above paradoxes are a direct
consequence of the difference between' the user equilibrium and system optimal assign
solutions. When doing transportation. planning,. the -objective is system optimal. System
optimal means the average journey cest over all paths used is the minimum possible.
However, inside rules are user equilibrium. Stewart [38] also showed this phenomenon: the
user equilibrium flow does not necessarily minimize total cost. If the investment costs for
an existing network can not be recovered, use of part of the network should be restricted or
completely suppressed. Therefore if the user equilibrium is a good approximation of reality,
there may be some planning strategies existing for a given network which vyield

improvements both for traffic and the environment.

Paradoxes may not only occur in user equilibrium; Catoni and Pallottino [39]
illustrated seeming paradoxes which may occur in different equilibrium models: in addition
to the user equilibrium, system optimal -~ mixed behavior equilibrium with one
non-cooperative player disposing of the whole demand and Cournot-Nash equilibrium with

two players are also included. Florian [40] based on multipath stochastic assignment
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methods, pointing out that a phenomenon similar to Braess’ paradox may occur with
stochastic choice models that are not based on the logit function. Steinberg and Stone [41]
presented a paradox in a congested network: if the congestion effect along a path is
increased sufficiently, this can result in abandonment of a different path having the same
origin and destination while the original path continued to be used. Akamatsu [42] used
dynamic equilibrium assignment with a point queue model. The study analyzed dynamic
flow patterns on two symmetrical networks: an evening-rush-hour network with
one-to-many origin-destinations and a morning-rush-hour network with many-to-one
origin-destinations. Finally, a dynamic version of Braess’ paradox is also identified.
Nagurney et al. [43] developed an evolutionary variation inequality model with multiple
classes of traffic and demonstrate its utility through the formulation and solution of a
time-dependent Braess’ paradox. We summarize up.above contents for reference (See Table

2.2-1).
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Table 2.2-1 Summary of Paradoxes in User Equilibrium models

User equilibrium assignment Network type Demand pattern Travel cost function Results

Smith [30] Specific Fixed Constant TC (local) 1, TTC | .

Fisk [31] Specific Fixed Linear Qt,TTC|.

Stewart [38] Specific Fixed Linear Restrict on part of the network, TTC | .

Fisk and Pallottino [32] The City of Winnipeg Fixed BPR form Q1t,TTC).

Steinberg and Stone [41] Specific Fixed Linear TC of path 1, abandon other path of the same OD.
Arnott et al.[33] Specific Rixed Linear Expanding capacity of upstream bottleneck, TTC 1 .
Yang and Bell [34] Specific Fixed Linear Creating a new link, capacity of network | .

(Capacity paradox)

Note. TC: total cost; TTC: Total travel cost; Q: input flows.
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2.3 Avoidance of Braess’ Paradox

This section is aimed at conditions of Braess’ paradox. Frank[44] analyzed the simple
network as Figure 1.1, and showed its mathematical characterization. Necessary and
sufficient conditions in terms of the link performance functions are obtained for the
existence of Braess’ paradox. Steinberg and Zangwill [45] considered the network in which
the travel cost on every link depends solely on the traffic load in that link and provided a
formula expressing how the users’ cost associated with a particular OD pair changes with
this OD pair is joined by a path. Dafermos and Nagurney [8] is similar to Steinberg and
Zangwill [45] but fewer tedious calculations. They also derived formulas under certain
conditions and used a specific matrix form to determine occurrence of Braess’ paradox
when the matrix is positive semidefinite, Hagstrom and Abrams (2001) and Abrams and
Hagstrom (2006) presented a=natural generalization of Braess’ paradox to include
multicommaodity traffic flows with multiplesorigins and destinations. They characterized the
occurrence of Braess’ paradox in terms of the solution of a mathematical program. Braess’
paradox occurs if and only if the equilibrium solution is not optimal for the mathematical
form. However, when applied to the mathematical form the total number of linear programs
that must be solved is no more than the number of nodes in the network, which limits the
feasibility. Huang et al. [48] analyzed the equilibrium of a model incorporating a
self-interest service provider and studied the performance gap between the user equilibrium
and the system optimal in a network with a general topology. They provided a
characterization of the user equilibrium of flow rates and routing decisions under the
Wardrop assumption that each user is small and a full characterization of the “monopoly
equilibrium”, i.e., profit-maximizing prices from the viewpoint of service-provider and the
resulting allocations. At the monopoly prices, there can never be Braess’ paradox, so

for-profit incentives appear sufficient to eliminate Braess’ paradox.
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Milchtaich [49] listed network topologies which may not lead to Braess’ paradox. It
showed that it is essentially the only kind of network in which Braess’ paradox can occur: a
necessary and sufficient condition for the existence of some cost function for which the
paradox occurs is that the network has embedded Wheatsone network. In networks without
this property, so-called series-parallel networks, Braess’ paradox cannot occur. Morgan et al.
[50] presented theory and experiments to investigate how network architecture affects
route-choice behavior. They examined two paradoxes: Pigou-Knight-Down paradox and
Braess’ paradox and identified two principles: the least congestible principle and the size
principle. The former states that improvement should be made on the path least sensitive to
congestion and the size principle states that adding costless links reduces travel time when

there are a sufficiently large number of travelers on the network.

2.4 Braess’ Paradox in Routing-Games

Many studies consider the problem-of routing traffic to optimize the performance of a
congested network. It may be expensive or impossible to regulate network traffic so as to
implement am optimal assignment of routes. Generally assume each network user routes its
traffic on the minimum-cost path available to it, such a selfish motivated assignment of
traffic to path will not minimize the total system cost (the same concept as user equilibrium
principle and non-cooperative game). Korilis et al. ([51]-[53]) and Altman et al. [54] studied
strategies for adding new links and/or capacity to a network that guarantee to improve
network performance. The result showed that capacity across the network rather than on a
local scale (for example, single link) and upgrading network should be aimed at direct
connections between the origin and destination. Altman et al. also studied routing in the
framework of a non-cooperative game with selfish users in loss networks. They provided

the mathematical models for both user equilibrium and Nash equilibrium in loss networks
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and showed non-uniqueness of two situations even under the simplest topology of parallel

links.

Kameda [55, 56] , Lin et al. [57] and Roughgarden et al. [58, 59] quantified the
degradation in network performance due to selfish routing. They proved that if the link
performance function is a liner function of its congestion, then the total travel time of the
paths chosen by selfish users is at most 4/3 times the minimum possible OD travel cost.
While assume each link performance function is only to be continuous and non-decreasing
in the link congestion, the total travel time of the paths chosen by unregulated selfish
network users may be arbitrarily larger than the minimum possible OD travel cost but it is
no more than the total travel time incurred by optimal routing twice as much traffic.
Kameda [55] also compared with Cohen-Kelly-Jeffries networks; Cohen-Kelly-Jeffries
networks are ones that contain multiple Braess mnetworks, that is, networks that have
multiple OD pairs. Valiant and Roughgarden [60] also:showed the probability of occurrence
of Braess’ paradox in a natural network medel-under the situation of selfish routing. With
high probability as the number of vertices.goes to infinity, there is a choice of traffic rate
such that the removal of one or more edges can improve the travel time in an equilibrium

flow.

2.5 Braess’ Paradox and Network Sensitivity

Dafermos and Nagurney [61] ~ Hallefjoed et al. [62], Pas and Principio [36], Yang [63]
and Cho and Lo [64] all investigated that how changes in demand or link cost would affect
trajectory for occurrence of Braess’ paradox. Dafermos and Nagurney [61] expressed the
equilibrium condition (see equation (3.1-2) in section 3.1) as a variational inequality and

analyzed how changes in the input data affect traffic equilibrium pattern and the incurred
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travel cost. They showed even though increases in the demand may result in decrease in
travel cost for some users of the network, an average travel cost will necessarily increase.
On the other hand, they assume the addition of new paths means the new path was in the
network all the time just because its cost was so high that no travelers use it. Therefore, they
could discuss how changes in travel cost function affect equilibrium load pattern. If the
travel cost function satisfies the monotonicity condition (see equation (3.1-1) in section 3.1)
and that only one path is improved while others remain unchanged, the travel cost along the
path will necessarily decrease while the flow on the path will increase, thus in this situation
Braess’ paradox cannot occur. Hallefjord et al. [62] tried to clarify what a paradox really is
in the case of elastic demand. They chose to view the problem as one of supply and demand
of travel and discussed the interpretation of an elastic demand paradox in the case of single
OD pair. A (weaker) type of paradex is that the improvement leads to a decrease in social

surplus.

Pas and Principio [36] and;Choand-l-0-{64] exploited travel cost parameters which
were based on the initial Braess’ network;-derived how changes in travel cost or demand
resulted in occurrence or disappearance of Braess’ paradox. Pas and Principio analyzed the
original Braess’ network and determined that Braess’ paradox occurs only in the total
demand range from 2.58 to 8.89 units on the network. It is interesting to note that there is no
flow on the new link once the demand reaches the upper limit of the range where Braess’
paradox occurs. They mentioned that if the road price is charged as marginal cost, Braess’
paradox will disappear. Figure 2.5-1 and figure 2.5-2 shows under different cost pricing,
Braess’ paradox only occur in some demand range basing on parameters of travel cost

functions.
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Figure 2.5-2 Marginal Cost Pricing

Cho and Lo investigated under different situation: fixed and elastic demand, how
changes in demand affect the trajectory for occurrence of Braess’ paradox. Under

assumption that positive path flows before and after the path addition, figure 2.5-3 shows
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occurrence of Braess’ paradox when demand is fixed. Folded line ABCDE is travel cost
function of the expanded Braess’ network, and straight line FE is that of initial Braess’

network. When demand is more than point E, the new path would be abolished.
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Figure 2.5-3 Travel Cost Changing with the Fixed Demand

When in situation of elastic demand, assume demand. in this period depends on the cost of
the preceding period and travel-cost depends on demand in this period; this is similar to
cobweb theory. Figure 2.5-4 and figure 2.5-5 illustrates divergence and convergence of

travel cost changing with demand.
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Figure 2.5-4 Travel Cost Changing with the Elastic Demand: Divergence
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Figure 2.5-5 Travel Cost Changing with the Elastic Demand: Convergence

Yang [63] presented a general framework for the quantitative analysis of the behavior
of equilibrium flows with elastic demand -according to the sensitivity analysis method
developed by Tobin and Friesz [65]. Usually, the sensitivity analysis methods are designed
to calculate the derivatives of decision variables and constraint multipliers with respect to a
variety of perturbation parameters. Using the restriction approach proposed by Tobin and
Friesz, he examined the effects of changes in link cost given that the link already exists in
the networks, the same assumption as Defermos and Nagurney [8]. Figure 2.5-5 presents the
derivatives of total cost incurred by all users with respect to the cost of the new link at
various levels of travel demand. When demand > 8.0 units, the derivative will become
positive; this means Braess’ paradox may occur if adding a new link (or the link is

improved). Therefore, the selection of links for improvement must be done carefully.
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Figure 2.5-6 Derivatives of total cost with respect to capacity of new link

at variods-levels of demand.

2.6 Braess’ Paradox in Other networks

Cohen and Kelly [66] gave an example of a queuing network in which added capacity
leads to an increase in the mean transit time for everyone. Calvert et al. [67] continued the
work of Cohen and Kelly but under a particular state-dependent routing scheme. Bean et al.
([68, 69]) discussed the question of whether Braess’ paradox can occur in loss networks (for
example, a circuit-switched telephone network) as in queuing networks. Loss networks are
used to model many multi-resource access problems where requests for access that cannot
be fully met are denied and lost. They consider two important performance measures:
acceptance probabilities and surplus values and presented two simple explicitly analyzed
examples of the occurrence of Braess’ paradox. One is a network operating under fixed
routing, and the other concerns a network in which alternative routing is allowed. In Kelly

[70], the paper described some examples from various fields including queuing networks
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and transportation networks. He indicated how analogies with fundamental concepts such as
energy and price can provide insights into the design of routing schemes for communication

networks.

Cohen and Horowitz [71] proposed a mechanical network analogue of Braess’ paradox.
They showed for certain combinations of strength of springs, length of string and mass of
weight, the weight will rise instead of dropping as could be expected. This behavior is also
analogs in electrical, hydraulic and thermal networks. (Penchina et al,[72]) Kameda et al. [73]
presented a case where a paradox similar to that of Braess’ paradox in a Nash equilibrium (for
a large number of users) but does not appear in a user equilibrium (infinitely many users) in
the same environment in distributed computer systems. Aashtiani and Poorzahedy [74]
showed Braess’ paradox in the management of networks where the decision variables may be
continuous in nature, such as the distribution or allocation of time or space. For example, the
allocation of time to traffic approaching an intersection (time allocation) and the number of
lanes to the directions of movement in a street-(space allocation). This paper showed that in
traffic signals, from a fixed-time to a‘traffic-sensitive device, may increase the travel cost for

users of the network.

2.7 Route Guidance System and Braess’ Paradox

Rilett and Van Aerde [35] illustrated how Braess’ paradox may arise in Route
Guidance System situations, when the addition of a low capacity link to the in-vehicle
network data base can lead travelers to take apparent short-cuts, which in reality lead to a
net increase in the level of traffic congestion. For certain traffic demand conditions,
user-optimizing vehicles will fall in the Braess trap while an enhanced system-optimizing
vehicle will avoid the trap. Turner and Wolpert [75] investigated the use of a multi-agent
system to control routing of packages in a computer network using the so-called Collective

Intelligence (COIN) formalism. They concluded that because agents may try to reduce their
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individual routing times in a greedy way, then it resulted in increasing global time. Bazzan
and Kliigl [75] used a learning mechanism to allow drivers to adapt to the changes in the
network. They discussed the effects of giving route recommendation to drivers in order to
divert them to a situation in which the effects of Braess’ paradox are reduced. Bazzan and
Kliigl’s work is different from Turner and Wolpert’s ;they use the classical scenario
proposed by Braess. Furthermore, the COIN formulism assumes that agents can be aligned
with the global objective, and this is only possible in computer network in which router

nodes have an aggregate knowledge that drivers in the traffic network do not have.

In summary, some previous studies have shown ways of avoiding paradox. Other
works have attempted to develop analysis models based on specific assumptions. Moreover,
some studies have tried to find rules for designing network to avoid Braess’s paradox. Most
of the above studies are based onsthe illustrated network presented by Braess, namely, a
small network with four nodes:and five links. Moreover, some studies investigated the
degree of harm created by Baress’s paradox:-iFhese works indicated us that the performance
improvement from link removal can be arbitrarily large in large networks. They provided us
some ideas related to predicting the occurrence of Braess’s paradox in real networks, i.e.

large-scale network.

This study investigates the specific assumption demonstrated in the model of Dafermos
and Nagureny [8], which was often presented in many corresponding researches: the
number of paths of the network should be less than the number of links plus the number of
OD pairs (called the rank assumption). This avoids general characteristic of large
transportation networks. Thus, the above assumption resulted in less application in the
theorem of forecasting the occurrence of Braess’ paradox presented by Dafermos and
Nagureny [8]. Because in real world, paths usually exceed the number of links plus the

number of OD pairs. In this paper, the specific assumption illustrated by Dafermos and
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Nagureny is relaxed by using generalized inverse matrix method and an illustrative example
is presented to demonstrate its feasibility. Notations and definitions are listed in next

chapter and Dafermos and Nagurney’s model will also be briefly introduced.
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3. Dafermos and Nagurney’s Model

This chapter will introduce notations and Dafermos and Nagurney’s work on

predicting occurrence of Braess’ paradox, including their assumptions and formula.

3.1 Notations

The real numbers, nonnegative real numbers, and positive real numbers are denoted

respectively by R,R,,R ..

N £ set of nodes of the network.

i, je N £ specific nodes in the network.

A # set of links of the network.

aeA £ alink in the network; a = (i, j).

W £ set of OD pairs.

we W £ an OD pair; w = (i, )).

P, = set of paths between OD pair w.

pe P, = path between OD w.

A= [Aapj = link/path incidence matrix, where A, = 1 if link @ is in path p, 0 otherwise.
A= [AWPJ £ OD/path incidence matrix, where A,,=1ifpathpe p,, 0 otherwise.
T, 2 number of trips between OD pair w.

w

T=[7,]e R’ % vectors of all trips.

++
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h, = flow on path p.

h=[%,]e R’ = vector of all path flows.

f, & flowon link a.

f=[7 ]e R*% vector of all link flows; note that f = Ah.

c.(f) £ cost on link a as a function of all link flows; the cost functions should satisfy the
strong monotonicity condition:
— — —2 —
(c(f)=c() (f =Nz f - F| Vf.fes. (3.1-1)

In common, we assume c,(f) is affine: c,(f) = Zgubfb +ht
bed

c(f) = [ca()] £ vector of link cost function.

G =[g,] # the link cost Jacobian matrix;-note it is-positive definite.
c,(h) £ cost on path p as a function of allxpathiflows.

c(h) = [c,(h)] & vector of path cost function.

U, £ cost associated with OD pair w and a change in U, denotes U’ . According to

Wardrop’s principles, user equilibrium is described as

Ifh,>0, ¢, (h)=U,;

: (3.1-2)
if c,(h)2U,, h, =0.

' This does not represent link cost function must be linear. Note that the only assumption for link

cost function is strong monotonicity condition.
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After path addition, some notations will be changed.

A:{AOA;} £ the new link/path incidence matrix after adding a new path connecting an

OD pair.
A :[A|e] £ the new OD pair/path incidence matrix after adding a new path connecting an
OD pair.
h" = [h’|hn]T £ the new change in the equilibrium vector of path flows; h’ means change

of the original path flow and h, is the new path flow.

f" = [f'fn ]Té the new change in the equilibrium vector of link flows; f' means change of

the original link flow and f, is the new link flow.

c(f)" = [c(f)'|c(f)n]T £ the new change in the equilibrium link costs.

~ | Gl0 . . ; : .
G-= [Tw £ the new link cost-Jacobian‘matrix after adding a new path connecting an OD
g

pair.
A

E(h)”:[é(h)’|é(h)n]T £ the new change in the equilibrium path costs; c¢(h), is the

equilibrium cost of the new path.

3.2 Dafermos and Nagurney’ Model

Consider a network N, given the travel demand, and the case of affine cost function.
Assume that the flow on each path of the network A, including the new path, is positive
before and after the path addition. Now add a new path » which connects the OD pairw,,

and according to definitions in Section 3.1, we have the system as follows:
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Ah"=f", Ah'=—h e

R . (3.2-1)
GE" =c(f)", ATc(f)" = &(h)".

Since the flow in each path is positive before and after adding a new route, this leads to

the following:
c,(h)=U, foreverypeP, p+r. (3.2-2)

By combining (3.2-1) and (3.2-2), the model is constructed as follows:

ATGAIAT ' _
SR
A |0 -U’ —-e
where
p=A"GA,. (3.2-4)

Assume [A|A]T is an mxn matrix of rank n, then it.is implied that

T T
det| A GAlA -
A [0

Therefore, we can apply Cramer’s rule to'solve the system as (3.2-3). Let U, be change of

the i-th OD pair, L = lA, ArJ, A, be the A marix with the i-th row removed, and

Ar

A, bethe A matrix with the first row removed, The change in each OD pair cost can be

obtained through

A'GA-A'GL|A!
0

AT
O:|

then we can determine whether Braess paradox occurs.

det{ A
Ul = (1" l

T
det{A GA
A

(3.2-5)

Under the assumption (3.1-1), the rank assumption and positive path flows including the

new path, it follows that for [A’GA — A"GL ] positive semidefinite, Braess’ paradox may
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occur. Corresponding corollary states that joining an OD pair of a network by a new path
containing none of the original links of the network will result in a decrease in travel cost

for users of the OD pair.
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4. The Modified Model

This chapter illustrate using generalized inverse matrix approach relaxes the rank
assumption proposed by Dafermos and Nagurney [8]. Section 4.1 introduces the main
definitions and theorems of the generalized inverse matrix. Details could be referred in
Graybill [76]. Section 4.2 illustrates generalized inverse matrix approach applies to traffic
equilibrium models. Section 4.3 derives the modifier model basing on Dafermos and

Nagurney’s. Final is a numerical example.

4.1 Generalized Inverse Matrix Approach

Definition 4.1

Let [A|A] be an mxn mafrix. If there-exists an'nxm matrix [AJA]", which satisfies
the following four conditions,
(i) [AA] [AJA]" is symmetric;
(i) [A|A]" [AJA] is symmetric;
(ii) [AlA] [AJA] Al =[AlA];
(v) (AL [AlA] [A] =[alA];

then it is a generalized inverse of [AA]"

Theorem 4.1 For any given matrix [A|A]T, there exists a unique generalized inverse

matrix.
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Proof:

Assume that [A|A]7 and [A|A]Z are two generalized inverse of [A|A] . This means that
both  [A|A]7” and  [A|A]Z"  satisfy  Definition 41  Multiplying
[A|A] =[AlA] [A|A]7 [AJA] on the right by [A|A] ", we have

AT [5AT =IWAT [SAT: [WAT AT @1

By Definition 4.1,both the left-hand side and the right-hand side of (4.1-1) are symmetric.

Hence
AT [8A]7 [NAT (AT = (AT [sA]7 TAIA]TaAlL ). @i-2)
Then
[AIA] [AAL = (A AT AT [Ma]” [alA]
- llaT I [ Tl =T vl ) (waT Tl |
=T [aATs [NATTAATEINAT [aalr (41-3)
Similarly,
[AA]T [ajA] =[aA] [AIAT. (4.1-4)

By using (4.1-1) and (4.1-2) , we have
WA =[AlA] [AAT [AlA]T=[alA] [alA] [AlA]
=[AlA] [AlA] [AA] =[aA] (4.1-5)

The proof follows.

Theorem 42 If [A|A] is an m x »n matrix of rank m, then
WAL = (AT T (AT (AT ) “and (5Tl =1,
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Proof:

By Definition 4.1(iii), [A|A]" [A|A]" [A|A] =[A|A]", and then transpose each side,
(I3AT (IsAT ToAT )] =(aaT ). @19
(I8AT 8T | (AT T = (aaT T, 417
WA = (T f (AT (al )

From (4.1-8), we can verify [A|A]T [A|A]T_ =1 easily. Hence the proof is complete.

(4.1-8)

Theorem 4.3 Let [A|A]Ty =g be an mxn matrix, y be an nx I vector and g be an mx I

vector. If the system of equation [A|A]Ty =g has a solution, then for each nx1 vector k,
the vector

vo2[AlA] g+ (1 SIS [A|A]Tj k. (4.1-9)
Moreover, each solution to the system can be written'in the form of (4.1-9) .

Proof:
By Theorem 4.2, if [A|A] is an mx n matrix of rank m, then[A|A[ [A|A]" =1, and hence
[AIA] [AJA]" g = g. Since we assume there is a solution to the system, first multiply (4.1-9)
onthe leftby [A|A]", we have
[AA] y, =[AlA] [AJA] g+ [AlA] (I - [A|A]T_[A|A]Tj k. (4.1-10)
Since [A|A]T(I - [A|A]T_[A|A]T) —0and [A|A]'[A|JA] g=g, this reduces[A|lA]'y, =g,

and hence vy, isasolution.

Next assume that y, is any solution to the system. Since y, is a solution, we have

[A|A]Ty0 =g, and multiplying on the left by [A|A]T_gives
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o=[AlA] g-[AlA] [A/A] y,. (4.1-11)
Thenadd y,to both sides of (4.1-11), this obtains
Yo = [A|A]T_Y0 Yo~ [A|A]T_ [A|A]TYO = [A|A]T_YO +(I- [A|A]T_ [A|A]T Yo
(4.1-12)

which is of the form of (4.1-9) with k =y,, and the theorem is proved.

Theorem 4.4 If A is an mx n matrix of rank m, y be an nx 1 vector and g be an mx 1

vector, then the system [A|A]1y =g hasasolution

vo=[A A]’[[A| AT ([A|A]Tyj_lg ¥ {1 - [AIA]T([AP‘]T ([A|A]T”_1[A|A]T} k.

(4.1-13)
Proof:

Theorem 4.4 can be proved by-Theorem 4.2.and Theorem 4.3.

4.2 Generalized Inverse Approach Application to Equilibrium

Network Problems

As mentioned before, Yang [63] based on the work by Tobin and Friesz [65] to develop

his network sensitivity model. In section 4.2.1, we will summarize and introduce

contribution by Tobin and Friesz [65] and Yang [63]. Section 4.2.2 extend to relax feasible

solution sets by generalized inverse approach, which is also could be done by minimum

distance method proposed by Cho and Lin [78].
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4.2.1 Sensitivity Analysis to Equilibrium Network Problems

Before going on introducing sensitivity analysis to equilibrium network problem, there

are some theorems which should be stated in advance. The following results are from Tobin
[79] and are presented without proof. Let F': R" — R" be continuous, let g:R" — R"

be differentiable, and %#: R" — R’ be liner affine. Define

K={xeR"

g(x)>0,h(x)=0}. (4.2.1-1)
If we can find x™ e K such that
F(x) (x-x)>0 VxeK. (4.2.1-2)

Inequality (4.2.1-2) is a variational inequality problem and x~ is a solution.

Theorem 4.5 Necessary conditions'for solution: If.the vector x e K is a solution to the

variational inequality (4.2.1-2) ‘and-the gradientsVg.(x"), i such that g.(x')=0, and

Vh(x"),i=1,..., p, are linearly independent, then there exists AeR", ueR” such that

F(x)-Vg(x)' A-Vh(x) u=0 (4.2.1-3)
Fg(x)=0 (4.2.1-4)
220 (4.2.1-5)

Theorem 4.6 Sufficient conditions for solution: If g, (x) for i=1,.,m are concave and

X €K,AeR", ueR’ satisfy (4.2.1-3), (4.2.1-4) and (4.2.1-5), then x" is a solution to

the variational inequality (4.2.1-2).
Theorem 4.7 Sufficient conditions for a locally unique solution: If the condition of

Theorem 4.6 hold, and, in addition, if /" are differentiable and
y'VF(x")y>0 (4.2.1-6)

forall y=#0 such that
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Vi (x)720 forall I such that g, (x*) =0 (4.2.1-7)
Ve (x)y=0 tor all I such that 2, >0 (4.2.1-8)
Vh.(x")y=0 fori=1,...,p, (4.2.1-9)

then x’is a locally unique solution to variational inequality (4.2.1-2).

Let F(x,&) be once continuously differentiable, let g(x,&) be concave in x and twice
continuously differentiable in (x,&), and let hi(x,e) be linear affine in x and once

continuously differentiable in &. Consider the following perturbed variational inequality,

denoted as VI(g): Find x. e (&) such that
F(x.,&)" (x,x,)>0 forallx € K(g) where (4.2.1-10)

K(e) ={x|g(x, &) > 0,(x, €)= OF; (4.2.1-11)
Theorem 4.8 Implicit function theorem: Let the conditions of Theorem 4.7 be satisfied for
vI(0) with F(x"),g(x"),h(x" YA, ureplaced by F(x",0),g(x",0),h(x",0), 4", 1",
respectively; with gradients Vg, (x",0) isuehthat g (x",00=0 and Vi (x ,0),i=1..p,
linearly independent, and in addition, let the strict complementary slackness condition
4 >0 where g,(x,0)=0 (4.2.1-12)
be satisfied. Then
a. A and g isunique;
b. Inaneighborhood of &=0, there exists a unique once continuously
differentiable function [x(¢)", A(e)", u(e)"]", where x(&) is a locally unique
solutionto VI(e) and A(e), wu(e) are unique associated multipliers satisfying

the conditions of Theorem 4.7 for a locally unique solution for Vi(g), and with

[x©)", 20, @) | =[x, 27, 1] .
c. Inaneighborhood of &=0, the set of binding inequality is unchanged , strict
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complementary slackness holds, and the binding constraints gradients are linearly

independent at x(¢). For e=0and [x" A", 4" [ =[x, 27, 4" | , by Theorem

4.5:
F(x,¢&) - i/ingi (x,6)" — f wVh(x,e) =0 (4.2.1-13)
i=1 =1
A.g/(x,¢)=0, i=1..,m (4.2.1-14)
h(x,&) =0, i=1..p. (4.2.1-15)

Let the Jacobian matrix of the system (4.2.1-13), (4.2.1-14), and (4.2.1-15) with respect to

v =(x,4, 1) be denoted by J; and with respectedto & as J..
Corollary 4.1 Derivatives of the solution vector of VI(Q) with respect to & : Under the
assumptions of Theorem 4.8, the inverse of J; exists and the partial derivatives of
(x", A7, 17) withrespectto & aregivensby

voy=v.x vz vl =rlEs] (4.2.1-16)
Corollary 4.2 First-order approximation of solution to VI(g) for & Near Zero: Under

assumptions of Theorem 4.8, a first-order approximation of [x(g)T )", ,u(g)T]T ina

neighborhood of &=0 is given by

x(&) x
M@ |=| & |+ T ]e. (4.2.1-17)
u(e) | |

where
[X*’/I*’,U*]: [x(O),/‘L(O),,u(O)], (4.2.1-18)
J, =J,(0) (4.2.1-19)
J. =J,(0). (4.2.1-20)

Equilibrium network flow problems could be represented in variational inequality form
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(Dafermos, [80]): find " € Q such that
c(f) (f-£7)>0. (4.2.1-21)

forall feQ, where

Q={f[Ah =f,Ah =T, h >0} (4.2.1-22)
If c(f) is strictly monotone, the equilibrium flow vector f~ is unique. In general, the
perturbed equilibrium network flow problem can be written as follows: find f; € Q(g)
such that

c(f, &) (F-£)>0 (4.2.1-23)
for feQ(e), where

Q(e) ={f|Ah = f,Ah = T(¢);h > 0}, (4.2.1-24)
and ¢ is a vector of perturbation parameters. Assume that c(x,e) is continuously

differentiable in (x,g) , and =T(¢) Is.-once continuously differentiable in ¢ . The
equilibrium path flows are generally not unique and-are contained in the convex polytope
T'(e) ={f{Ah =f",Ah = T(g),h > 0}, (4.2.1-25)
where f~ solves (4.2.1-23) and (4.2.1-24). Because for any vector ¢ the set of path flow
solutions in T'(g) is a convex set, derivates of a solution h” with respect to the
perturbation parameters do not exist. If the perturbed variational inequality is written
entirely in terms of h, then the perturbed variational inequality has the form: Find
h™ € Q(¢) such that
¢(h’,e)(h—h")>0 (4.2.1-26)

forall heQ'(g), where
Q'(¢) = {h/Ah = T(¢),h > 0}. (4.2.1-27)

Tobin and Friesz [65] tried to select one particular path flow solution, in particular an
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extreme point of I'(0), that is, h™ in which the number of paths with positive flows is

equal to the rank of [A|A]T, the same assumption as Dafermos and Nagurney [8]. Therefore,

we can reduce the network under consideration to that which contains only arcs which have
positive flow in the solution and consider only the paths on these arcs. Since h™ is a
solution to the perturbed variational inequality (4.2-26) and (4.2-27) at ¢ =0, by Theorem

4.5 there exists a solution to the system

¢h’,0)-L-A"p=0 (4.2.1-28)
A =0 (4.2.1-29)
Ah" —T(0)=0 (4.2.1-30)
A0 (4.2.1-31)

Since all path flow variables are positive in this restricted system and will remain so for
perturbations in a neighborhood of 0, the nonnegativity constraints on h are not bind and
may be eliminated without changing the solution in a neighborhood of 0. The system then
reduce to

¢"(h",0)-A°"n=0 (4.2.1-32)

A°h” -T(0)=0. (4.2.1-33)
The Jocobian matrix of the system (4.2.1-32) and (4.2.1-33) with respect to (h°,p) and

evaluated at ¢=0 is

_|vem,0 A%
Jho,u_[ K o | (4.2.1-34)

The Jocobian matrix of the system (4.2.1-32) and (4.2.1-33) with respectto & and

evaluated at zero is

J = Vﬁéo(h*’“)} . (4.2.1-35)
~V,T(0)

Then
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rvh:} = [Jh(,," }IJS . (4.2.1-36)

Yang [63] applied Tobin and Frieszs’ work, adding elastic demand to his sensitivity
analysis to equilibrium network problem. The OD demand is assumed not to be fixed but
rather a function of equilibrium OD travel cost between all OD pairs, i.e.,

T =D, (U),weW , where U is a vector of the shortest path costs between all OD pairs.
Let -D be strictly monotone, then demand function is invertible, u, =D, ~(T). The
original problem was formulated as follows: Find (f*,T") such that

c(f) (fF-£7)-D(T)(T-T) 20 (4.2.1-37)
forall £f,T €€, where

Q ={(f, T)|f =Ah, T = Ahzh> 0} (4.2.1-38)

Considering separable cost and demand functions; i.€:; the travel cost on each link is
independent of the flow on other-links and the demand-between an OD pair in the network
depends on the travel cost between'the OD pair only. The elastic-demand network
equilibrium problem could be solved by the Frank-Wolfe convex combination method.
(Sheffi, [1]) In the same way, the general perturbed variational inequality for equilibrium
network problem for elastic demand could be written in the following: Find (f*,T") € Q(g)
such that

e(f,,e)" £, )-D(T,,e)"(T-T,) >0 (4.2.1-39)
forall (f,T) e Q(g), where € isa vector of perturbation parameters. Assume that c(f,€)
and D' (T,g) are once continuously differentiable in €, Yang(1997) adopted the
restricted network equilibrium approach. It is assumed that a solution T", f", and

h” existing to the above perturbed problem (4.2.1-39) for €=0 and D(U,g) and c(f,€)

are strongly monotone in U and f respectively. In addition, the demand between every OD
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pair is strictly positive at equilibrium 7, =D, (U.)>0, weW . Finally, every link should

W

carry positive flow. Let h” >0 be a no degenerate extreme point in the region

" =Ah,T" = Ah,h > 0} of equilibrium path flows. The necessary conditions

for the perturbed network equilibrium problem in (4.2.1-39) at € =0 is that there exists a

solution to the following system:

c¢h’,0)-L-A"U=0 (4.2.1-40)
A"™h" =0 (4.2.1-41)
Ah” —D(U,0)=0 (4.2.1-42)
A>0,h" >0 (4.2.1-43)

Under the situation of considering the nondegenerate extreme point of positive path flows
solutions, the system then reduces to;
¢’(h",00-A°"U =0 (4.2.1-44)
A°h” -D(U,0)=0. (4.2.1-45)
Differentiating both sides of the systemof (4.2.1-44)"and (4.2.1-45) with respect to the
perturbation parameter €, we obtain
{v ho} b . T, { . (h 0) —A° T[— Vsco(h*,O)}
" -V,D(U,0) V.D(U,0)
(4.2.1-46)
Other derivatives such as that of OD demand in perturbation parameters could be obtained
as
V.T =V, D(U,0)+V,DU,0)V,U. (4.2.1-47)
Finally it should be motioned that the above results of sensitivity analysis are
independent of the choice of the nondengerate path flow solution, consistent in Tobin and

Friesz [65].
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4.2.2 Relaxation on Feasible Solution Space of Sensitivity Analysis to
Equilibrium Network Problem

Although in section 4.2.1, we could have the derivatives of decision variables (link
flows) and constraint multiplies (OD travel cost) with respect to a variety of perturbation
parameters in demand function and link cost functions of the network equilibrium problem,

there is still limited to the assumption: h”™ in which the number of paths with positive

flows is equal to the rank of [A[A]".

Thus Cho[81] proposed generalized inverse approach to transform feasible path flow
space to link flow space in traffic equilibrium models, avoiding the non-uniqueness problem.

Assume the network includes paths of positive flow, and number of paths is larger than that

of arcs. He cut link-path incidencesmatrixzinto two submatrices: A =[A°|A"], letting

[AO|A]be full of row rank and then derived derivatives of flow variables with respect to the
perturbation parameters. From (4:2.1-25);we-could have a solution
AO T AOAOT AOAT -1 fO Ao T AOAOT AOAT -1 AO
h(g) = . o1 T + T- o or . k (4.2.2-1)
Al |A°A AA T(e) Al |A°A AA A
where k is an arbitrary column vector which let h(g) is positive. Therefore, the feasible

arc flows set could be written as follows:

(0]
Q(s) ={(f = ﬁ }Arh(a) =f",f >0}, (4.2.2-2)
Let
AT ACATT A, A, (4223
APACT  AAT A, A, o
then
Ao T A A fo
h(a)=C’+{ H " “}[ } (4.2.2-4)
A A, A, T(€)
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where

o]T o
A, A
c-k-|2 no A AT (4.2.2-5)
A A21 A22 A
Therefore
£° ATTA, AT £
Qe) ={(f = A"l C'+ e =f",f > 0};
f Al Ay Ap|T()
(4.2.2-6)
let
B, =A"A°TA +ATATA,,, (4.2.2-7)
B,=A"A°"A, +A"ATA,,, (4.2.2-8)
C=A"C, (4.2.2-9)

(0]
then Q(e) = {(f = {ffr }‘C +B,f° +B,[T()] = f",£2 0} . According to theorem 4.5, for the

system (4.2.1-24) there exists a solution asfollows:

c(f,00-1-[B, =“I} u=0 (4.2.2-10)
At =0 (4.2.2-11)
C+B,f° +B,[T(e)]=f" (4.2.2-12)
220,f >0; (4.2.2-13)

deleting the nonnegative constraints, the system is rewritten in the following:
o(f",e)-[B, -1 u=0 (4.2.2-14)
C+B,f° +B,[T(g)]-f" =0. (4.2.2-15)
The Jocobian matrix of the system (4.2.2-14) and (4.2.2-15) with respect to (f,p) and

evaluated at €¢=0 is

ve(f’,00 —[B, —1II'
I = .

=@, 1] 0 (4.2.2-16)

The Jocobian matrix of the system (4.2.2-14) and (4.2.2-15) with respectto & and
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evaluated at zero is

g | V0 (4.2.2-17)
BZVST(O)
Then
sz 1
{Vsu} =[5, ], (4.2.2-18)

Although generalized inverse matrix approach could be used to relax limitation in
network topology, it could not guarantee positive path flows when solving equilibrium
network flow problems. Thus Cho and Lo [82] developed an algorithm to ensure positive

path flows due to properties of generalized inverse matrix.

In summary, Yang’s work could not _apply to general network topology basing on
specific assumption in restriction approach.Next, we start from Dafemos and Nagurney’s
model. In section 4.3 we will modify their model, and from the modified model, extending

to sensitivity analysis to equilibrium network problen.

4.3 The Modified Model

In this section, we come back to Dafermos and Nagurney's model in Chapter 3. For

convenience, we transform the model of Dafermos and Nagurney into a simpler form.

[A"GAIAT |= M1, [Alo] = NI, [n]- U] =y, then
Ml _[-p] _
W[ o

M| M
Therefore, the inverse of {N does not exist. Then partition {N} as
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M o
(2 (4.3-2)
N M’
_Nr -

MO
here we let {N" } be full row rank by Gaussian-Jordan elimination. Therefore we rewrite

(4.3-1),

y=|=——=-1|h,. (4.3-3)
=]
N’ L—e] |

According to Theorem 4.4, for an arbitrary column vector k,column vector y is obtained as

PR
VIR

k denotes an arbitrary column vector.

follows:

where

M’ M°
Obviously, (4.3-4) should satisfy the rest of (4.3-3). Let {N’ } = [11 /12]{N0 } the fact

) ) ) ) MO Mr
can be fulfilled owing to linear relation between N© and N’ :
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v el
+ {[zl zz]mj -4, ,12]{

e

n

h [P

NO

T
M‘?

M° |
N° |

M° |
NO
_MO
NO

Back to (4.3-4), the answer could be expanded as follows:

y
M’ | M’

r 07

MO
N0

o7

MO
NO

I]

A
A

MO
NO

M0
N0

11

21

A12
AZZ

M0
NO

MO
N0

I

a7

qT

-1

-1

L —¢€

_—} h +{I-

(4.3-7)

where A, = [MOMOT Tl + [MOMOT ]‘IMONOT[NONT _NOMT [MOMOT ]“IMONOT]—INOMOT [MOMOT ]‘1 ;

Alz — _[MOMOT TIMONOT [NONT _ NOMOT [MOMOT IIMONOT]*I ;

A21 — _[NONOT _ NOMOT [MOMOT TIMONOT ]>] NOMOT [MOMOT :|>l ;

A _ [NONOT _NOMOT [MOMOT]ilMONOT}
22

Also let
B, =—p’h, +Kk,;
B, =-¢"h, +k,.

1
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Then
_ Mo ' All A12 Bl kl 43 8
YN | |A, A, lB, | K, | (4.3-8)
21 22 2 2

D, =M""A,, +N""A,,;

217

Let

D,=M"A,+N"A,,.

_'D1 B, K,
r<louloi ]

'D,B, +D B, -k,
| D,B, +D,B, —kj

Then

. (4.3-9)

Therefore, if all elements in [ D, B+ D, B3~k ] are larger than zero, it means that adding

a new path connecting a particular OD will not result in Braess’ paradox.

However, the arbitrary vector k*may not.guarantee positive flows. Although in
theorems, vector k is arbitrary. But this"is not in transportation network. Negative path
flows are meaningless. Therefore vector k which we need is that will ensure positive path
flows. Numerous methods of solving the positive flow problem exist: for example, the
algorithm presented in Cho and Lo [82] is applied to obtain vector k. The algorithm can
guarantee this vector k ensure positive path flows.

First we express equilibrium network flows as

Red

Exploit Theorem .4.4, we have

A T APAYT  APACT -1 £ A T APAYT  AOACT -1 A°
h: A() AOAOT AOAOT T[) + I_ AO AOAOT AOAOT AO

(4.3-11)

~
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Transform (4.3-11) as (4.3-12) for convenience as

a, +(1-b,,)xk, —=b,, xk, —...—b,, xk, |
a, +b,, xk, +(1-b,,)xk, —...—b,, xk,
h= : : (4.3-12)

la, -b,, xk, —b, xk, —...+(1-b_)xk, |

where

[AO} {AWT AOAOT {fo}[al a, ... a,|, (4.3-13)

AO AoAOT AOAOT

] )
A | [APAT ACAT (A b, b, .. Db
{ }|: 04 0T 0 0T:| l: :Iz 2 ez . (4.3-14)
A’A A'A A : : :

Then a simplified version of the algorithmris presented as follows:

Step 1:Assume all elements-ofik are the same. Rewrite (4.3-12) as (4.3-13),

a,+c¢, xk
_ a,+C,xk (4.3-13)
a,+c,xk
where
1-b, -by,-...-by,
1-b, -b,-...-b
e, ¢, ..oc =" " * o, (4.3-14)

1-b,, -bn; -...-b,,
Step 2: If there exists any ¢, =0, check whether a, is positive. After processing the
problem of c, =0, let
a,,, =Min[a,],Vie[l,n] (4.3-15)
Cin =Min[c,],Vie {[1, n)\i', wherei's ¢, = O}. (4.3-16)

Step 3:Check ¢, andif ¢, #0, there are two situations,
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i. ¢, >0,select k'suchthata . +c, k'=0.If k'>0,then

vk e {_ Armin ,ooJ satisfies the positive flow criterion. Otherwise, select any
C

min

k>0.

ii. ¢, <0,select k'suchthata,  +c, . k'=0.If k'>0,then

VK € (—oo,_a—m‘”} . Otherwise, check two situations: ¢, >0and ¢, <0.
C

min
From the intersection of the two situations, select k>a, +¢,k>0.

Since Braess’ paradox is concerned with a tiny change in the network capacity, this
study uses the network before the new path addition to obtain vector k. In next section, an
illustrative example will be showed. The solution is an analysis solution, although vector k
may lead to multiple solutions. However, the results:from sensitivity analysis to equilibrium
network problems could be applied ito show that vector. k would not affect the solution. In
Cho and Lin [78], they exploited ' minimum-chistance method to prove the independency of
the chosen path flow and the independency-of the link/path incidence matrix in sensitivity
analysis for equilibrium network flow problems. When choosing different path flow or
different link/path incidence matrix, the network sensitivity analysis could get the same
result. Tobin and Friesz [65] also proved similar theorem that different chosen path would
not affect results for network sensitivity analysis. Combining the above results, vector k is
independent of results for network sensitivity. The new added link can be considered as
already exist in the network, but travel cost is too high to no traveler use it. In this way,
addition of new link could be transformed into perturbations in link performance function

and network sensitivity model could be formulated.

In Chapter 2, we understand that Braess’ paradox depends on network topology,

demand and link performance function. In the following, we tried to modify Yang’s work, in
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the same way, by using generalized inverse approach to relax feasible link flow space. The

perturbation network equilibrium is written as follows:
Find (f*,T") such that

cf)Y f-f)-D(T)'(T-T)>0 (4.3-17)
forall f,T € Q, where
Q ={(f, T)[f =Ah, T = Ah,h > 0}. (4.3-18)
Note here the demand between every OD pair is strictly positive at equilibrium

T =D,(U,)>0, wel .Let

A’h(g) =f° (4.3-19)

Ah(e) =T =D(U,¢), (4.3-20)
where A’ is the matrix letting [A“A]T be full of row rank. h(g) is path flows after
perturbation. From theorem 4.4, “h(g) s obtained as (4.2-48), except for demand is

function of OD cost and perturbation parameters:

Ao T AOAOT AOAT =1 fO AO T AOAOT AOAT =1 AO
h(e) = + 1- k.
A | [A°A°T  AAT | | D(U,¢) A | |ACA°T  AAT A
(4.3-21)

If existing vector k which let h(g) be positive, then feasible link flow space could be

written as follows:

fO
O(e) ={f _Lr}

AO T AOAOT AOAT -1 fO
A" ( . T +
A | [ACAOT  AAT | | D(U,)

Ao T AOAOT AOAT -1 Aﬂ (4.3-22)
- o 8 k)=f,f >0},
A||ATA AA A

Let
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then
T
h,=F+ AT En En r*
A E21 Ezz D(U,¢)
where
T
F!=k_ AO E]] E12 AO k
A EZ] E22 A
Therefore
T
f° A° E
Qe) ={f = A" F'+ .
fr A | |E,
let

G,=A"A”"E,, +A'A"E,,;
G, =A"A°"E, +NA'E,,,

F=A"F',

(4.3-23)

(4.3-24)

(4.3-25)

ﬂ—fr,f>0};

(4.3-26)

(4.3-27)
(4.3-28)

(4.3-29)

O .
then Q(e) = {f = [fr }‘F' +G,f° + G,[D(U,8)| = f",f > 0} . According to theorem 4.5, for

the system (4.3-16) there exists a solution as follows:
c(f’,00-1-[G, -I'U=0
At =0
F+G,f° +G,[D(U,g)|=1"

A>0,f>0;

The Jocobian matrix of the system from (4.3-30) to (4.3-33) with respect to (f,U)

and evaluatedat € =0 is
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I, _[Vc(f 0 -G, -1 } (4.3-34)

G, -1 -vD,0)

The Jocobian matrix of the system from (4.3-30) to (4.3-33) with respectto ¢ and

evaluated at zero is

J. { Viel,0) } (4.3-35)
G,V.D(U,z)
Then
V.f i
{vgu} — 3113, (4.3-36)

Through sensitivity analysis, the derivatives of link flows, OD demands, OD costs and
other solution variables can obtained and expressed explicitly in terms of the equilibrium
flow solutions. Therefore, we could.analyze the expanded network assuming the new link is
already in the network, finding out when demand or. other variables varies, how the trend of

change to travel cost moves.
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4.4 Numerical Example

In this section a simple numerical example is presented. This network, which is
illustrated in Fig. 4.4-1 involves a set of 7 nodes, N={1,...,7} together with a set of 11 links,
A={a,,...,ann},yielding a set of 17 possible paths, P; ={p,...,p17} between the single OD

pair (1,7).

ajp,, if added

as as az a9

Figure 4.4-1 Illustrated Network Comprising Seven Nodes and Eleven Links.

Table 4.4-1-Link Performance Function

c1=54 | 2=10+2f, | c3=10+2f3 | c4=2f3+50 | cs=2f3+50 c6=2fs
c7=2f7 | cg=10+f3 c9=10+fy | c10=70+3.5f10 | c11=5f11 c12=2+f12 (if adding a new
path )

Based on link performance function as listed in Table 4.4-1, given number of trips
between OD pair (1,7) is T =[24]", and all possible paths are defined as follows.

Path 1: Link 1-Link 10,

Path 2: Link 2-Link 4-Link 6 —Link 8- Link 10;

Path 3: Link 2-Link 4-Link 6 —Link 9- Link 11;

Path 4: Link 2-Link 4-Link 7 —Link 8- Link 11;

Path 5: Link 2-Link 4-Link 7 —Link 9- Link 11;

Path 6: Link 2-Link 5-Link 6 —Link 8- Link 11;
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Path 7: Link 2-Link 5-Link 6 —Link 9- Link 11;

Path 8: Link 2-Link 5-Link 7 —Link 8- Link 11;

Path 9: Link 2-Link 5-Link 7 —Link 9- Link 11;

Path 10: Link 3-Link 4-Link 6 —Link 8- Link 11;
Path 11: Link 3-Link 4-Link 6 —Link 9- Link 11,
Path 12: Link 3-Link 4-Link 7 —Link 8- Link 11;
Path 13: Link 3-Link 4-Link 7 —Link 9- Link 11;
Path 14: Link 3-Link 5-Link 6 —Link 8- Link 11;
Path 15: Link 3-Link 5-Link 6 —Link 9- Link 11;
Path 16: Link 3-Link 5-Link 7 —Link 8- Link 11,
Path 17: Link 3-Link 5-Link 7 —Link 9- Link 11.

The user equilibrium link flows before adding a path is
f=[12 6 6 6 6 6 6 66 12 12| -the modified model in section 4.3 is
applied to clarify whether a paradox may occur.

First, the algorithm developed by Cho and Lo is applied to obtain a column vector k.
List all corresponding incidence matrices and express the equilibrium network form in

Figure 4.4-1:

(4.4-1)

>

Il
O P O O O O O O O o k-
R OO PFrr OPFr O Fr O Fr O
o L OO0k O Fr O P+ O
R OO Fr kb OO Fr O Fr O
R O P Ok O O Fr O P+ O
bR OO pPFrr OkFr PP O O L, o
R O r OOk, kB OO L, O
b O Ok, kb O Fr O O P+ O
R Ok Ok, O Fr OO Fr O
R OO kP, OFkr O Fr F» OO
b O PFrr OO0 kL O Fr +»r O O
b O O kP, BB O O PFrLr +— O O
R O Fr O FLr O O FrP +—» O O
R OO PP Ok, kB O Fr OO
R O L OO Fr Fkr O PFr OO
o ok, kb OkFr O Fr OO
R O L OPFrr OPFr O Fr OO

a1
g
1



A=l 1111111111111111 (4.4-2)

1000000000O0O0O0O0O0TO0DO
01111111100000000
000000000111 111111
011110000111 1000°0
00000111100001111
{A}h:01100110011001100h
A 0001100110011 0011
01010101010101010
00101010101010101
1000000000O0O0O0OO0O0O0DO
011111111111 11111
171111111111 111111]
=12 6 6 6 6 6 6 6 6 12 12 24
(4.4-3)
b =BT D
{A“T[A“A” A“A“T}I{AO}_ b
A" [ACATT ACAY | A : W
by b, ...b;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
N6 Ae s Mo %6 %6 %6 _%6 6 %6 %6 _%6 %6 _%6 /16 _%6
Mo Ao Mo Ao Mo He He Mo M He He Hs He Mo e Mo
Mo Mo Ao o Mo Mo Ho He Mo Hs s Mo Mo He He He
%6 6 Ao s _%6 %6 %6 %6 /16 %6 %6 16 _%6 _%6 /16 %6
A6 %6 %6 _%6 %6 %6 %6 16 %6 _%6 _%6 _46 %6 16 %6 _%6
Yo Ho Mo Mo He Ao He He Hs M He Mo Mo Ue He He
%6 _%6 6 %6 %6 16 %6 %6 _%6 _%6 %6 _%6 %6 _%6 16 %6

%6 %6 Ao %6 %6 %6 %6 _%6 _%6 _%6 %6 _%6 %6 %6 6
%6 Ho Hs He Mo He Mo He He He 3 Mo Mo M He
6 N6 s e _%6 %6 _%6 _%6 6 %6 16 Ho %6 %6 /16 /16
%6 %6 6 %6 _%6 _%6 %6 _%6 16 %6 N6 Ao %6 _%6 %6 %6
e M Ho Yo Hs He He Ho He Ho Yo Ao He He He s
%6 _%6 /16 _%6 %6 16 /16 _%6 6 %6 %6 /16 %6 %6 16 %6
Mo Mo Ho Mo Mo o He Ho Mo Ho Mo Mo o K He Hs
He e Ho Mo Mo He He He He He e Mo He He Ao s
e Mo He Mo Mo He Mo s He Mo He e Mo He s 6 |

(4.4-4)
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e h h h ok Y %

__46 Bk h %6_ _%_

After some manipulation, the outcome shows that vector k would not affect the final result.
This finding suggests that when obtaining y, the existence of vector k could be neglected.

This outcome would not affect the general case. Therefore, only the values of
([MONO]T)_ [-p°-¢°]” is required; a situation in which a positive change in OD cost

occurs implies that the new path may lead to Braess’ paradox.
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Second, all corresponding incidence matrices are listed as follows:

A,=L 00000000 O01f (4.4-7)
500000000 0 O]
02000000O0 0 O
00200000O0O0TO
000200000 O0TDO0
000020000 0 O

G=|0 00002000 0 0 (4.4-8)
000000200 0O
0000O0O0O010 0 O
0000O0O0O0O0O1 0 O
000O0O0OOOOUOTZ 350
00000O0O0O0O0 O 5

So (4.4-1), (4.4-2),(4.4-7) and (4.4-8) are inserted into (4.3-1) as (4.4-9):

I
1
1

850 0 0 0 0 0 0 0 03000 0 0 0 1] [-5
0 121110 9 10 9 8 710 9/98/7 8-7 6 5 1| |-5
0 1112 9 10 9 10 7 8 9 10 7.8 7 -8 5 6 1| |-5
0 109 1211 8 7 10 9 8 /7210 9 65 8 7 1| |-5
0 91011127 8 9 10.7°8 9105 6 7 8 1| |-5
0 109 8 7 121110 9 8 %6510 9 8 7 1| |-5
0 9107 811129 107 8 5 6 9 10 7 8 1| |-5
0 8 7109109 12116 5 8 7 8 7 10 9 1| |-5
0 78 91091011125 6 7 8 7 8 9 101| |-5
0109 8 7 8 7 6 512111090 109 8 7 1/ |-5"
0 9107 8 7 85 611129 10 9 10 7 8 1| |-5
0 87109 65 8 7109 12118 7 10 9 1| |-5
0 7891056 7 8 91011127 8 9 101| |-5
0 87 6512009 8 7109 8 7121110 9 1| |-5
0 7 856 9107 8 9107 8 1112 9 101| |-5
0 6 58 7 8 7109 8 7109 109 12111 |-5
0567878091078 910091011121 |5 &9
1 1111111111111 1110 [-]

The left matrix in (4.4-9) is partitioned to obtain the full row rank matrix as (4.4-10)

and its corresponding right matrix as (4.4-11).
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85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]
0 12 1110 9 10 9 8 7 10 9 8 7 8 7 6 5 1

0 10 9 1211 8 7 10 9 8 7 10 9 6 5 8 7 1
m]|o 9 2011127 8 9107 8 91056 7 8 1
{NU}:09107811129107856910781
0 8 7 10 9 10 9 1211 6 5 8 7 8 7 10 9 1
010 9 8 7 8 7 6 6 12 11 10 9 10 9 8 7 1
101111 1 111 1 111 1 1 1 1 0]
(4.4-10)

{_—ﬂ h =[-5-5-5-5-5-5-5-1]'h_ (4.4-11)

The final step involves inserting (4.4-10) and (4.4-11) into (4.3-4). Owing to ignorance

of the existence of k, the terms behind the plus sign do not need to be calculated.

MO_—po
- — 1 h
Y {N"}[—J '
=0 0 0 0000 05000000000 —1h,
(4.4-12)

Following some manipulation’y=0-0:000 00000000000 00 —1]'h, is

obtained. Because we assume positive path flows before and after path addition, h is
always larger than zero, that is, the last element in vector y is less than 0. In this numerical
example, it means that adding a new link a;; may lead to increase in travelers’ cost between
OD pair (1, 7). Therefore adding a new link in this example network may result in Braess’
paradox. According to network sensitivity analysis, vector k would not affect final solutions,
thus the algorithm for finding a column vector k could be eliminated. Only the form as
(4.4-12) is needed to calculate when predicting occurrence of Braess’ paradox for one OD

pair.
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5. Discussions and Conclusions

This study adopted Dafermos and Nagurney’s model and modified the specific
assumption on the link/path incidence matrix. The rank assumption was relaxed by the
generalized inverse matrix approach, thus overcoming restriction on small network.
Moreover, the reasonability and usability of the modified model was demonstrated through
a numerical example. We also applied generalized inverse approach to Yang (1997)’s work,
which is about network sensitivity, modifying feasible link flow space. Applying some
mathematical characteristics, we relaxed the rank assumption and cited previous results

from sensitivity analysis method to complement shortcomings of the modified model.

Dafermos and Nagurney’s modelwas basedon equilibrium network problem, and their
model was the first model which-could determine.occurrence of Braess’ paradox. However,
the rank assumption reduces application in-real world; the model can only be implemented
simple networks. Generalized inverse matrix method is used to relax the rank assumption,
so it is operable in every network. Otherwise, the arbitrary vector k may cause multiple
solutions due to properties of generalized inverse matrix method. Here, we applied an
algorithm for finding a set of vector k which could guarantee positive path flows. Note we
do not develop a direct mechanism guaranteeing vector k is independent of results of the

model.

In Dafermos and Nagurney ’s model, the original link cost was not changed after path
addition. This does not suit to real situation. Logically thinking, road investment should
affect original network situation. On the other hand, model was formulated from path
information, not link. Even if the restriction is removed, there is no idea about how many
paths would be produced due to addition of the new link. But their model is suitable for
planning process. It provided transportation planners concept about network design: joining
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an OD pair of a network by a new path which contains none of the original links of the

network will result in a decrease in travel cost for users of the OD pair.

Future research may focus on several topics: one is to develop formulas for multiple
OD pairs, which is inevitably complicated. How to design a simple and fast algorithm to
conquer complexity of the problem is need to be explored. One is to construct sensitivity
analysis based on k vector. Here we only cite others’” argument but not carry out practically.
What if k vector calculated from the other positive path flows algorithm is not independent
of the original algorithm? This will affect solutions. Therefore we should investigate

sensitivity of vector k.

Braess’ paradox told us sometimes we need to see things in different ways. Every
seeming-good decision is not always good; from the other way, it may bring adverse effects.

That is why we should do sensitivity analysis-orsimulation before any investments.
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