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I 

交通路網設計問題之矛盾現象預測 

 

學生：李宜珊 指導教授：卓訓榮 教授 

 

國立交通大學運輸科技與管理學系﹙研究所﹚碩士班 

摘 要       
 

Braess 矛盾現象在運輸規劃和路網設計範疇裡，皆為一重要議題且已被廣泛討論。在

從事路網設計時，我們希望藉由新建道路或是提升道路容量來解決擁擠問題，但是

Braess 矛盾現象卻顯示，若沒有全盤作好路網敏感性分析，例如分析需求或是路段成

本函數對整個路網使用者的影響，所新建的道路可能會毫無用武之地；更甚之，使整

個路網之起迄成本更高。過去學者研究中，皆以最初 Braess 所提出簡單路網為基礎，

予以探究發生矛盾現象的原因，並給予建議預防。從以往的研究中，可發現 Braess 矛
盾現象發生原因會和路網結構、路段成本函數以及起訖點需求有關。本論文以

Dafermos 與 Nagurney 於 1984 年提出之預測矛盾現象公式為基礎，將其路網假設條件

放鬆，其假設條件為路網中，路徑數必須小於等於路段數加上起迄對數，使之模式能

應用於大型路網。 
 
關鍵字：Braess 矛盾現象、路網設計、運輸規劃、廣義反矩陣 
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The Prevalence of Braess’ Paradox in Transportation 

Network Design Problem 

 

Student：Yi-Shan Li Advisors：Dr. Hsun-Jung Cho 

Institute of Transportation Technology and Management 
National Chiao Tung University 

ABSTRACT 

In transportation planning and network design, Braess paradox problem has been 
discussed for many decades. Those researches were originated from the simple 
network illustrated by Braess. Many works devoted to seek efficient methods to avoid 
the occurrence of paradox problem or find some rules for network designers to refer. 
Under link-OD/path matrix is full column rank , i.e., the number of paths is less than 
the number of links plus origin/destination pairs, Dafermos and Nagurney (Dafermos 
and Nagurney,1984) derived the formulas to determine whether Braess’ paradox 
occurs in the network. Using their formula, transportation planners could foresee 
occurrence of Braess’ paradox before great capital investment in road construction. 
This study proposes generalized inverse approach to relax the full column rank 
assumption presented by Dafermos and Nagurney. Then the modified model could be 
applied to large networks. 

  

  Keywords: Braess’ paradox , Network design, Transportation planning, 
 Generalized inverse 
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1. Introduction 

“Network” is commonly used to describe a structure that can be either physical (e.g., 

streets and intersection) or conceptual (e.g., information lines and people). There are two 

elements in each of these networks: a set of points and line segments connecting these 

points. In standard terminology, these points of a network are referred to as nodes (or 

vertices) and the lines of a network as links (or edges). Each network link is typically 

associated with some impedance that affects the flow using it. Impedance can represent 

electrical resistance, time, costs, utility, or any other measure. When the flow involves 

people, the term “level of service” is usually used instead of “impedance”. The travel 

impedance, or level of service, associated with the links representing an urban network 

include many components, reflecting travel time, safety, cost of travel and others. However, 

the primary component is travel time, which is often used as the sole measure of link 

impedance. The level of service offered by many transportation systems is a function of the 

usage of these systems. Because of congestion, travel time on urban streets and intersections 

is an increasing function of flow. Thus, the performance function relates the travel time on 

each link to the flow traversing the link. Typically, the networks are “connected”, so it is 

possible to get from any node to any other node by following a path (or a route) through the 

network. A path is a sequence of directed links leading form one node to another. A pair of 

nodes is usually connected by more than one path. (Sheffi, [1]) 

Given a network, and assume that the number of travelers who wish to travel between 

a given origin point and a given destination point known. Furthermore, assume that these 

points are connected by several possible paths. The question of the interest here is how 

these travelers will be distributed among the possible paths. The problem is known as that 

of traffic assignment. The traffic assignment process is traditionally viewed as the final 
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stage of the four stage process used to model travel demand in transportation planning. 

After the Trip Generation, Trip Distribution, and Modal Split process, Traffic Assignment is 

to assign flows by various modes in given links to paths in transportation networks. 

Through traffic assignment techniques, not only all the link flows in a network can be 

estimated, but also travel cost between origin-destination (OD) pairs can be provided, which 

is used by trip distribution or modal split model. There are four traffic assignment 

techniques as follows (Meyer and Miller, [2]): 

(1) All-or-nothing assignment: 

This is the simplest approach involving the selection and loading between each 

origin and destination. Assume road capacity is unlimited, and link cost is fixed. 

For each OD pair, find the shortest path and assign all the travel demand into it. 

The method ignores the limitations imposed by restriction on the capacity of the 

network. Links may be allocated far greater flows than they are capable of 

carrying. 

(2) Equilibrium assignment 

The idea of equilibrium in the analysis of transportation networks arises from the 

dependence of the link travel time on the link flows. In 1952, Wardrop[3] 

proposed a concept of distributing the travel demand on a transportation network; 

that is, user equilibrium (UE). User equilibrium is that the costs on all paths used 

between any given OD pair are equal and not greater than the cost experienced by 

other travelers in an unused path between them. In practice, user equilibrium is 

generally considered as the more likely basis for network equilibrium. Initially, 

the computer power was not available to solve the equilibrium alignment problem 

and approximate methods were used to obtain equilibrium solutions, including 

capacity restrain assignment (is also called iterative assignment) and incremental 

assignment. Beckmann [4] showed that the equilibrium assignment problem could 
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be transformed into an equivalent optimization problem: if the cost on any link is 

a function of the flow and of no other flows, then the flows satisfying user 

equilibrium principle are unique and are the same as the following minimize a 

specified objective function as (1-1): 

dxxcZMInimize
ij

f

ij

ij

∑ ∫=
0

)(  (1-1) 

st. 

WwTh
wPp

wp ∈=∑
∈

   ,  (1.2) 

P,  php ∈≥ 0 , (1.3) 

where i, j represents two endpoint of link, ijf  is link(i,j) flows and ijc  is link(i,j) 

travel time function, which is only dependent on its flows. wT  is the OD demand 

between OD pair Ww∈ .(1.2) is the OD flow conservation constraint and (1.3) a 

nonnegativity constraint, here ∑
∈

=
Pp

pjipij ff ),,(δ  where pji ),,(δ =1 if path p uses 

link(i,j); and 0 otherwise. This could be solved using the Frank-Wolfe algorithm to 

combine the results of successive all-or-nothing assignment in an iterative manner. 

(3) Stochastic assignment:  

The second assignment technique is also called deterministic user equilibrium, 

because it assumes all travelers obtain perfect information on travel costs on any 

given path are perfect, resulting in making rational route choices. However, in real 

world, traveler can not always obtain the whole network information. This leads 

to development of stochastic assignment, in which link travel time function is 

viewed as random variables varying with users’ preferences, perception and 

experience. 

(4) Dynamic assignment:  
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Network flows will not vary with time in the above approaches. In static 

assignment techniques, these procedures assume that each vehicle is 

simultaneously located on every link on its chosen path and assign all flow 

simultaneously to all links on the chosen paths. It is unrealistic assumption 

obviously, but for many regional transportation planning applications, static 

assignment assumption is acceptable and can yield useful results. However, the 

static representation of network performance is not sufficiently accurate. A 

dynamic representation of route choice behavior and resulting network 

performance is required in which the movements of vehicles along their chosen 

paths is explicitly simulated through time. Dynamic assignment models may be 

either probabilistic in terms of the simulation of users’ route choices and/or 

determination of vehicles’ travel times along given links, or they can be 

deterministic.  

This research focus on equilibrium assignment problem, says, user equilibrium. Based 

on user equilibrium, it turns out that all users traveling with the same origin and destination 

incur the same travel cost in equilibrium, and is irrelevant to their originally chosen path. It 

is useful to predict how changes in the travel demand or network geometry will affect 

traveler costs. The congestion in a network resulting from user equilibrium flows is greater 

than the congestion that would exist if some central controller could assign all travelers 

between their origins and destinations. This would involve in that: whether road investment 

can alleviate traffic congestion or not is an issue cared about by transportation planners. In 

other words, when getting start to network design problem, the first thing is to define user 

behaviors, network performance function and budget limit. 

However, in 1968, Braess[5] presented an example of equilibrium assignment problem: 

adding an extra link associated with an OD pair in a network does not benefit travelers; that 
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is, the total travel time may increase. This phenomenon has become known as Braess’ 

paradox and is discussed below. (Nagurney, [6]) Figure 1.1 shows a simple network 

including one OD pair connecting by four links. The link performance functions for the four 

links are also presented below. 

111 50)( xxt += ,  222 50)( xxt += , 

333 10)( xxt = ,    444 10)( xxt = . (1.4) 

Assume there are 6 units of flow traveling between O and D. The user equilibrium 

flow pattern for the network can be solved by inspection. The link flow pattern would be 

34321 ==== xxxx  flow units. The associated link travel times are 531 =t , 532 =t , 

303 =t , 304 =t  time units and the path times are 8321 == cc  time units. The total travel 

time on the network is 498 (flow-time) units.  
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   q=6O D

Path Definition

Path 1

Path 2
 

Figure 1.1 Initial Braess’ Network 

Then add a new link connecting the two intermediate modes to the network. Figure 1.2 

shows the expanded network, the performance function for this new link and the new path 

(number 3) resulting from the addition of the link. 
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55 10 xt +=
 

Figure 1.2 the Expanded Braess’ Network 

The travel time on the unused path (path 3) is lower than the ones on the two used path 

so the travel demand need to be allocated again. The equilibrium flow pattern for the 

expanded network is give by the solution 21 =x , 22 =x , 43 =x , 44 =x , 25 =x  flow 

units and path travel times 9221 == cc  time units. So the total travel time on the new 

network is 552 (flow-time) units now. The addition of the new link has therefore made the 

situation worse. In practice, there is some evidence that this situation may occur: a case in 

Stuttgart. Major road investment in the city centre, in the vicinity of the Schlossplatz, failed 

to yield the benefits that had been expected. The benefits were only obtained when a cross 

street, the lower part of Königstrasse, was withdrawn from use by traffic. (Murchland, [7]) 

Braess’ paradox has given warning to many researchers: when involving this NDP, not 

every investment will benefit network users. This inspired many researchers dedicated to 

identifying corresponding causes of Braess’ paradox. Some devoted to developing 

mathematical models to predict the occurrence of Braess’ paradox, and some tried to find 

some rules for engineers when planning road construction. The purpose of this study is to 

relax the model for predicting Braess’ paradox by using generalized inverse approach. The 

model was proposed by Dafermos and Nagurney [8] in 1984. Their model was constrained 
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to the rank assumption. The rank assumption is that number of arcs plus number of OD 

pairs are larger than number of paths in the network. This is not suitable in real world. 

Generalized Inverse approach is used to modify limitation in the model such that it can 

conform to real situation. Without loss of generality, sensitivity analysis to equilibrium 

network analysis will be described to emphasize the close relationship between Braess’ 

paradox and sensitivity analysis before road investment 

The rest of this research is organized as follows. Chapter 2 briefly revisits literatures; 

chapter 3 introduces corresponding notations which will be used in the mathematical model, 

and then presents the model for predicting occurrence of Braess’ Paradox developed by 

Dafermos and Nagurney. Next, Chapter 4 shows generalized inverse matrix approach and 

the modified model, and Chapter 5 is discussions and conclusions along with the future 

research. 



 

- 9 - 

2. Literature Reviews 

Literature reviews are divided into five parts. Section 2.1 introduces network design 

problem according to its class and formulations. From section 2.2 to 2.7, we focus on 

Braess’ paradox basing on its characteristics, methods, purposes: section 2.2 shows Braess’ 

paradox and its extensions under different traffic assignment techniques; section 2.3 mainly 

illustrates mathematical model for predicting occurrence of network presents; section 2.4 

lays attention on routing game about Braess’ paradox; section 2.5 introduces sensitivity 

analysis in Braess’ paradox; section 2.6 introduces Braess’ paradox in non-transportation 

networks, such as queuing networks, telecommunication networks; and section 2.7 

discusses route guidance system in order to prevent from Braess’ paradox and summarizing 

all sections. 

 

2.1 Network Design Problem 

The network design problem has long been recognized to be one of the most difficult 

and challenging problems in transportation. Magnanti and Wong [9], Friesz [10], Yang and 

Bell [11], and Friesz and Shan [12] have reviewed models and algorithms for road network 

design problem. In this section, a brief introduction for network design problem will be 

presented. This is to emphasize the importance of sensitivity analysis before road 

investment in order to prevent occurrence of Braess’ paradox. Traditionally, network design 

problems seek an optimal network design in terms of additional facilities or capacity 

enhancements when the network flow pattern is constrained to be a static equilibrium. For 

example, Braess’ paradox requires static design models satisfy user equilibrium constraints. 

In detail, there are two kinds of NDP: discrete and continuous. A discrete form deals with 
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the adding new links or roadway segments to an existing road network which is called as 

the discrete network design problem (DNDP), and a continuous form deals with the optimal 

capacity expansion of existing links which is called as continuous network design problem 

(CNDP). No matter which form is, the objective of NDP is to optimize a given system 

performance measure such as to minimize total system total travel cost, while accounting 

for the user behaviors. NDP can be represented as a leader-follower game where the 

transportation planning departments as leaders, and the users who can choose the path freely 

as followers. It is assumed transportation planning managers can influence but not control 

user behavior. The interaction between the two players can be represented in the following 

bi-level programming problem (Friesz [10]; Yang and Bell [11]): 

(Upper level) ), F(Minimize ux
u

 

            0. ≤),(  uxGst  

where )(uxx =  is implicitly defined by 

(Lower level) ),f(Minimize ux
x

  

            0. ≤),(  uxgst . 

The whole bi-level NDP is to find an optimal capacity improvement *u such that the 

system objective function F is optimized subject to a given budget constraint while taking 

account of the user behavior. 

It is worth to emphasizing that the NDP must be solved with the network flow pattern 

constrained to user equilibrium (the lower level problem). Moreover, addition of a new road 

segment or capacity enhancement to a congested network without considering the response 

of the network users may increase system-wide congestion. This well-known phenomenon 

has been demonstrated by the Braess’ paradox. Therefore, it is essential to predict traffic 

pattern via a sound behavior model for the network design process. The user equilibrium 

problem with fixed demand can be formulated as (1.1)-(1.3). In addition to deterministic 
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user equilibrium, Chen and Alfa [13] and Davis [14] used the logit-based stochastic user 

equilibrium assignment approach formulating the lower level problem. The advantages for 

using stochastic user equilibrium assignment are that the path flows are uniquely 

determined and their derivatives with respect to the design variables can calculated. The 

upper level problem can be posed in a discrete or continuous form. Earlier studies have used 

discrete design variables (Leblanc, [15]; Boyce and Janson, [16]), but CNDP receives much 

more attention form transportation researchers. Abdulaal and Leblanc [17], and Dantzig et 

al. [18] assumed decision variables were continuous, which simplified the problems because 

it removed the combinational aspects and made the problem amenable to a number of 

nonlinear programming algorithms. Magnanti and Wong [9] presented a unified view of 

modeling the DNDP, and proposed a unifying framework for describing a number of 

algorithms such as Lagrange relaxation and dual ascent procedures in providing bounds for 

the special cases of the DNDP. Other techniques include branch and bound methods and 

other heuristics. Leblanc [15] applies the branch and bound approach for solving the DNDP 

with construction cost being a budget constraint. 

The following is a general form of DNDP (upper level problem) is written as follows 

(Magnanti and Wong [9]): 
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∑ ∑ ∑
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0  (2.1-2) 

Aall (i,j)yKff ijij
k

k
ijij ∈≤≡∑

∈

  
κ

 (2.1-3) 

S∈)( yf,  (2.1-4) 

κ.A, k)  all (i,j or , yf ij
k

ij ∈∈=≥ 100  (2.1-5) 

The discrete network design problem is to determine the best improvement to an existing 

transportation system. Thus, choose an optimal subset from a set of proposed link additions 

to an existing road network. The objective is to find that network configuration whose user 

equilibrium flow results in the smallest travel cost. Each proposed link has a cost of 

construction, ie., a budget is given which limits total expenses incurred. The basic 

ingredients of the model includes a set of nodes N and a set of links A that are available for 

designing a network. The model permits multiple commodities: let κ  denotes the set of 

commodities and for each κ∈k , let kR  denotes demand of commodity k to be shipped 

from its origin, denoted )O(k , to its destination, denoted D(k) . Let ijy  be a binary 

variable indicating whether or not link(i,j) is chosen as part of the network’s design. Let 

k
ijf  denotes the flow of commodity k on link (i,j). Then, )( ijy≡y  and )( k

ijf≡f  are 

vectors of design and flow variables. Let k
ijc  be the per unit routing cost on link(i,j) for 

commodity k, and ijF  denotes the fixed cost of constructing link(i,j). Most frequently, the 

demand and flows would be assumed unchanged over the lifetime of the network’s design 
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and the flow costs is net present values of the per unit routing costs evaluated over the 

network’s lifetime. Constraint (2.1-1) represents the usual network flow conservation 

equations. Constraint (2.1-2) , the forcing constraint, state that the total flow ijf  on link (i,j) 

of all commodities cannot exceed the capacity ijK  of the link if it is chosen as part of the 

network design. The set S includes any side constraints imposed either individually or 

jointly on the flow and design variables. The side constraints might model limitations 

imposed on resources shared by several links, such as a budget constraint: 

Bye
Aji

ijij ≤∑
∈),(

. (2.1-6) 

The coefficient ije  is the cost incurred if link(i,j) is constructed in the network design. 

With the budget side constraint (2.1-6) and no fixed costs in the objective function and 

uncapacitated link, the problem is often called the budget design problem. Without side 

constraints, this unconstrained, linear cost version of the problem is often referred as the 

fixed charge design problem. Several studies have developed solution methods for the fixed 

charge design problem (Balakeishnan et al.,[19]; Lamar et al.,[20]; Gendron et al., [21]; 

Holmberg and Hellstrand, [22]; Holmberg and Yuan,[23])  

CNDP is to determine the set of link capacity expansions where satisfying user 

equilibrium. Abdulaal and Leblanc [17] formulated the CNDP under deterministic user 

equilibrium as a bilevel programming model and proposed the Hooke-Jeeves algorithm to 

solve CNDP. Marcotte [24] presented heuristics for CNDP on the basis of system optimal 

approach and obtained good numerical results. However, this is not tested on large-scale 

networks generally. As for the development of solution methods to CNDP for practical use, 

Suwansirikul et al. [25] porposed a simple heuristic called Equilibrium Decomposed 

Optimization (EDO) and performed this heuristic on several example networks. Friesz et al. 

[26] used a simulated annealing approach to solve the multi-objective equilibrium network 
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design problem as a single level minimization problem; this approach is only suitable for 

small networks. Since the bilevel program for CNDP is non-convex and non-differentiable, 

Yang and Bell [27] conducted a survey of recent advances in transportation bilevel 

programming problems. Recently, Chiou [28] exploited a descent approach via the 

implementation of gradient-based methods to solve CNDP; Waller et al. [29] formulated 

CNDP as a linear model based on dynamic traffic assignment model that propagates traffic 

according to the cell transmission model. A major limitation of the static models is that they 

can not capture the traffic interaction among adjacent links and they assume steady-state 

time-invariant OD demean, which is unrealistic during the peak period and leads to 

suboptimal solutions. 

 

2.2 Braess’ Paradox and Others 

Since Braess presented the paradox, other researches have been intrigued, appearing 

frequently in textbooks and the popular science literatures. Smith [31] and Fisk [31] both 

presented phenomena similar to Braess’ paradox in transportation networks. Smith used a 

simple model where the network and the congestion characteristic are particular and showed 

the total travel time may be reduced by increasing travel time locally. This result is of 

particular relevance to towns with a good bypass or an outer ring road. Fisk ’s result is like 

Braess’ paradox but its variants are on travel demand: this study investigated the sensitivity 

of travel costs to change input flows in the user equilibrium problem. The result showed that 

when increasing input flows, both origin-destination and global travel costs may decrease, 

contradicting general intuition. The same phenomenon occurred in the two-mode 

equilibrium problem. The OD travel cost may decrease as a result of an increase in 

automobile input flows. Fisk and Pallottino [32] also illustrated the phenomenon using the 

City of Winnipeg network data, proving in real life it may occur. For a corridor with two 
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groups of users, Arnott et al. [33] showed that expanding capacity of an upstream bottleneck 

raises travel costs when reducing congestion upstream is more than offset by increased 

congestion downstream. Yang and Bell [34] demonstrated a capacity paradox which may be 

encountered in road network design. They showed that creating a new link in a road 

network may actually reduce the potential capacity of the network and this can be avoided 

by using the concept of network reserve capacity into network capacity improvement plans. 

The reserve capacity for a road network can be measured by how large a common multiplier 

can be applied to a given OD matrix subject to the flow on each link not exceeding its 

capacity when the multiplied OD matrix is allocated to the network which satisfies user 

equilibrium. Comparing with the capacity paradox, the occurrence of Braess’ paradox 

depends on the level of demand, which has been mentioned by Rilett and Van Aerde [35], 

Pas and Principio [36], and Penchina [37]. In fact, the above paradoxes are a direct 

consequence of the difference between the user equilibrium and system optimal assign 

solutions. When doing transportation planning, the objective is system optimal. System 

optimal means the average journey cost over all paths used is the minimum possible. 

However, inside rules are user equilibrium. Stewart [38] also showed this phenomenon: the 

user equilibrium flow does not necessarily minimize total cost. If the investment costs for 

an existing network can not be recovered, use of part of the network should be restricted or 

completely suppressed. Therefore if the user equilibrium is a good approximation of reality, 

there may be some planning strategies existing for a given network which yield 

improvements both for traffic and the environment.  

Paradoxes may not only occur in user equilibrium; Catoni and Pallottino [39] 

illustrated seeming paradoxes which may occur in different equilibrium models: in addition 

to the user equilibrium, system optimal 、 mixed behavior equilibrium with one 

non-cooperative player disposing of the whole demand and Cournot-Nash equilibrium with 

two players are also included. Florian [40] based on multipath stochastic assignment 
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methods, pointing out that a phenomenon similar to Braess’ paradox may occur with 

stochastic choice models that are not based on the logit function. Steinberg and Stone [41] 

presented a paradox in a congested network: if the congestion effect along a path is 

increased sufficiently, this can result in abandonment of a different path having the same 

origin and destination while the original path continued to be used. Akamatsu [42] used 

dynamic equilibrium assignment with a point queue model. The study analyzed dynamic 

flow patterns on two symmetrical networks: an evening-rush-hour network with 

one-to-many origin-destinations and a morning-rush-hour network with many-to-one 

origin-destinations. Finally, a dynamic version of Braess’ paradox is also identified. 

Nagurney et al. [43] developed an evolutionary variation inequality model with multiple 

classes of traffic and demonstrate its utility through the formulation and solution of a 

time-dependent Braess’ paradox. We summarize up above contents for reference (See Table 

2.2-1). 
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Table 2.2-1 Summary of Paradoxes in User Equilibrium models 

User equilibrium assignment Network type Demand pattern Travel cost function Results 

Smith [30] Specific Fixed Constant TC (local)↑, TTC↓. 

Fisk [31] Specific Fixed Linear Q↑, TTC↓. 

Stewart [38] Specific Fixed Linear Restrict on part of the network, TTC↓. 

Fisk and Pallottino [32] The City of Winnipeg Fixed BPR form Q↑, TTC↓. 

Steinberg and Stone [41] Specific Fixed Linear TC of path↑, abandon other path of the same OD. 

Arnott et al.[33] Specific Fixed Linear Expanding capacity of upstream bottleneck, TTC↑. 

Yang and Bell [34] Specific Fixed Linear Creating a new link, capacity of network↓.  

(Capacity paradox) 

Note. TC: total cost; TTC: Total travel cost; Q: input flows. 
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2.3 Avoidance of Braess’ Paradox  

This section is aimed at conditions of Braess’ paradox. Frank[44] analyzed the simple 

network as Figure 1.1, and showed its mathematical characterization. Necessary and 

sufficient conditions in terms of the link performance functions are obtained for the 

existence of Braess’ paradox. Steinberg and Zangwill [45] considered the network in which 

the travel cost on every link depends solely on the traffic load in that link and provided a 

formula expressing how the users’ cost associated with a particular OD pair changes with 

this OD pair is joined by a path. Dafermos and Nagurney [8] is similar to Steinberg and 

Zangwill [45] but fewer tedious calculations. They also derived formulas under certain 

conditions and used a specific matrix form to determine occurrence of Braess’ paradox 

when the matrix is positive semidefinite. Hagstrom and Abrams (2001) and Abrams and 

Hagstrom (2006) presented a natural generalization of Braess’ paradox to include 

multicommodity traffic flows with multiple origins and destinations. They characterized the 

occurrence of Braess’ paradox in terms of the solution of a mathematical program. Braess’ 

paradox occurs if and only if the equilibrium solution is not optimal for the mathematical 

form. However, when applied to the mathematical form the total number of linear programs 

that must be solved is no more than the number of nodes in the network, which limits the 

feasibility. Huang et al. [48] analyzed the equilibrium of a model incorporating a 

self-interest service provider and studied the performance gap between the user equilibrium 

and the system optimal in a network with a general topology. They provided a 

characterization of the user equilibrium of flow rates and routing decisions under the 

Wardrop assumption that each user is small and a full characterization of the “monopoly 

equilibrium”, i.e., profit-maximizing prices from the viewpoint of service-provider and the 

resulting allocations. At the monopoly prices, there can never be Braess’ paradox, so 

for-profit incentives appear sufficient to eliminate Braess’ paradox.  
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Milchtaich [49] listed network topologies which may not lead to Braess’ paradox. It 

showed that it is essentially the only kind of network in which Braess’ paradox can occur: a 

necessary and sufficient condition for the existence of some cost function for which the 

paradox occurs is that the network has embedded Wheatsone network. In networks without 

this property, so-called series-parallel networks, Braess’ paradox cannot occur. Morgan et al. 

[50] presented theory and experiments to investigate how network architecture affects 

route-choice behavior. They examined two paradoxes: Pigou-Knight-Down paradox and 

Braess’ paradox and identified two principles: the least congestible principle and the size 

principle. The former states that improvement should be made on the path least sensitive to 

congestion and the size principle states that adding costless links reduces travel time when 

there are a sufficiently large number of travelers on the network.  

 

2.4 Braess’ Paradox in Routing Games 

Many studies consider the problem of routing traffic to optimize the performance of a 

congested network. It may be expensive or impossible to regulate network traffic so as to 

implement am optimal assignment of routes. Generally assume each network user routes its 

traffic on the minimum-cost path available to it, such a selfish motivated assignment of 

traffic to path will not minimize the total system cost (the same concept as user equilibrium 

principle and non-cooperative game). Korilis et al. ([51]-[53]) and Altman et al. [54] studied 

strategies for adding new links and/or capacity to a network that guarantee to improve 

network performance. The result showed that capacity across the network rather than on a 

local scale (for example, single link) and upgrading network should be aimed at direct 

connections between the origin and destination. Altman et al. also studied routing in the 

framework of a non-cooperative game with selfish users in loss networks. They provided 

the mathematical models for both user equilibrium and Nash equilibrium in loss networks 
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and showed non-uniqueness of two situations even under the simplest topology of parallel 

links. 

Kameda [55, 56] , Lin et al. [57] and Roughgarden et al. [58, 59] quantified the 

degradation in network performance due to selfish routing. They proved that if the link 

performance function is a liner function of its congestion, then the total travel time of the 

paths chosen by selfish users is at most 4/3 times the minimum possible OD travel cost. 

While assume each link performance function is only to be continuous and non-decreasing 

in the link congestion, the total travel time of the paths chosen by unregulated selfish 

network users may be arbitrarily larger than the minimum possible OD travel cost but it is 

no more than the total travel time incurred by optimal routing twice as much traffic. 

Kameda [55] also compared with Cohen-Kelly-Jeffries networks; Cohen-Kelly-Jeffries 

networks are ones that contain multiple Braess networks, that is, networks that have 

multiple OD pairs. Valiant and Roughgarden [60] also showed the probability of occurrence 

of Braess’ paradox in a natural network model under the situation of selfish routing. With 

high probability as the number of vertices goes to infinity, there is a choice of traffic rate 

such that the removal of one or more edges can improve the travel time in an equilibrium 

flow. 

 

2.5 Braess’ Paradox and Network Sensitivity 

Dafermos and Nagurney [61]、Hallefjoed et al. [62], Pas and Principio [36], Yang [63] 

and Cho and Lo [64] all investigated that how changes in demand or link cost would affect 

trajectory for occurrence of Braess’ paradox. Dafermos and Nagurney [61] expressed the 

equilibrium condition (see equation (3.1-2) in section 3.1) as a variational inequality and 

analyzed how changes in the input data affect traffic equilibrium pattern and the incurred 



 

- 21 - 

travel cost. They showed even though increases in the demand may result in decrease in 

travel cost for some users of the network, an average travel cost will necessarily increase. 

On the other hand, they assume the addition of new paths means the new path was in the 

network all the time just because its cost was so high that no travelers use it. Therefore, they 

could discuss how changes in travel cost function affect equilibrium load pattern. If the 

travel cost function satisfies the monotonicity condition (see equation (3.1-1) in section 3.1) 

and that only one path is improved while others remain unchanged, the travel cost along the 

path will necessarily decrease while the flow on the path will increase, thus in this situation 

Braess’ paradox cannot occur. Hallefjord et al. [62] tried to clarify what a paradox really is 

in the case of elastic demand. They chose to view the problem as one of supply and demand 

of travel and discussed the interpretation of an elastic demand paradox in the case of single 

OD pair. A (weaker) type of paradox is that the improvement leads to a decrease in social 

surplus. 

Pas and Principio [36] and Cho and Lo [64] exploited travel cost parameters which 

were based on the initial Braess’ network, derived how changes in travel cost or demand 

resulted in occurrence or disappearance of Braess’ paradox. Pas and Principio analyzed the 

original Braess’ network and determined that Braess’ paradox occurs only in the total 

demand range from 2.58 to 8.89 units on the network. It is interesting to note that there is no 

flow on the new link once the demand reaches the upper limit of the range where Braess’ 

paradox occurs. They mentioned that if the road price is charged as marginal cost, Braess’ 

paradox will disappear. Figure 2.5-1 and figure 2.5-2 shows under different cost pricing, 

Braess’ paradox only occur in some demand range basing on parameters of travel cost 

functions. 
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From: [36] 

Figure 2.5-1 Average Cost Pricing 
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Figure 2.5-2 Marginal Cost Pricing 

 

Cho and Lo investigated under different situation: fixed and elastic demand, how 

changes in demand affect the trajectory for occurrence of Braess’ paradox. Under 

assumption that positive path flows before and after the path addition, figure 2.5-3 shows 
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occurrence of Braess’ paradox when demand is fixed. Folded line ABCDE is travel cost 

function of the expanded Braess’ network, and straight line FE is that of initial Braess’ 

network. When demand is more than point E, the new path would be abolished. 

 
From: [64] 

Figure 2.5-3 Travel Cost Changing with the Fixed Demand  

When in situation of elastic demand, assume demand in this period depends on the cost of 

the preceding period and travel cost depends on demand in this period; this is similar to 

cobweb theory.  Figure 2.5-4 and figure 2.5-5 illustrates divergence and convergence of 

travel cost changing with demand. 
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Figure 2.5-4 Travel Cost Changing with the Elastic Demand: Divergence  
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Figure 2.5-5 Travel Cost Changing with the Elastic Demand: Convergence  

 

Yang [63] presented a general framework for the quantitative analysis of the behavior 

of equilibrium flows with elastic demand according to the sensitivity analysis method 

developed by Tobin and Friesz [65]. Usually, the sensitivity analysis methods are designed 

to calculate the derivatives of decision variables and constraint multipliers with respect to a 

variety of perturbation parameters. Using the restriction approach proposed by Tobin and 

Friesz, he examined the effects of changes in link cost given that the link already exists in 

the networks, the same assumption as Defermos and Nagurney [8]. Figure 2.5-5 presents the 

derivatives of total cost incurred by all users with respect to the cost of the new link at 

various levels of travel demand. When demand > 8.0 units, the derivative will become 

positive; this means Braess’ paradox may occur if adding a new link (or the link is 

improved). Therefore, the selection of links for improvement must be done carefully.  



 

- 25 - 

From: [63] 

Figure 2.5-6 Derivatives of total cost with respect to capacity of new link  

at various levels of demand. 

 

2.6 Braess’ Paradox in Other networks 

Cohen and Kelly [66] gave an example of a queuing network in which added capacity 

leads to an increase in the mean transit time for everyone. Calvert et al. [67] continued the 

work of Cohen and Kelly but under a particular state-dependent routing scheme. Bean et al. 

([68, 69]) discussed the question of whether Braess’ paradox can occur in loss networks (for 

example, a circuit-switched telephone network) as in queuing networks. Loss networks are 

used to model many multi-resource access problems where requests for access that cannot 

be fully met are denied and lost. They consider two important performance measures: 

acceptance probabilities and surplus values and presented two simple explicitly analyzed 

examples of the occurrence of Braess’ paradox. One is a network operating under fixed 

routing, and the other concerns a network in which alternative routing is allowed. In Kelly 

[70], the paper described some examples from various fields including queuing networks 
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and transportation networks. He indicated how analogies with fundamental concepts such as 

energy and price can provide insights into the design of routing schemes for communication 

networks. 

Cohen and Horowitz [71] proposed a mechanical network analogue of Braess’ paradox. 

They showed for certain combinations of strength of springs, length of string and mass of 

weight, the weight will rise instead of dropping as could be expected. This behavior is also 

analogs in electrical, hydraulic and thermal networks. (Penchina et al,[72]) Kameda et al. [73] 

presented a case where a paradox similar to that of Braess’ paradox in a Nash equilibrium (for 

a large number of users) but does not appear in a user equilibrium (infinitely many users) in 

the same environment in distributed computer systems. Aashtiani and Poorzahedy [74] 

showed Braess’ paradox in the management of networks where the decision variables may be 

continuous in nature, such as the distribution or allocation of time or space. For example, the 

allocation of time to traffic approaching an intersection (time allocation) and the number of 

lanes to the directions of movement in a street (space allocation). This paper showed that in 

traffic signals, from a fixed-time to a traffic-sensitive device, may increase the travel cost for 

users of the network. 

2.7 Route Guidance System and Braess’ Paradox  

Rilett and Van Aerde [35] illustrated how Braess’ paradox may arise in Route 

Guidance System situations, when the addition of a low capacity link to the in-vehicle 

network data base can lead travelers to take apparent short-cuts, which in reality lead to a 

net increase in the level of traffic congestion. For certain traffic demand conditions, 

user-optimizing vehicles will fall in the Braess trap while an enhanced system-optimizing 

vehicle will avoid the trap. Turner and Wolpert [75] investigated the use of a multi-agent 

system to control routing of packages in a computer network using the so-called Collective 

Intelligence (COIN) formalism. They concluded that because agents may try to reduce their 
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individual routing times in a greedy way, then it resulted in increasing global time. Bazzan 

and Klügl [75] used a learning mechanism to allow drivers to adapt to the changes in the 

network. They discussed the effects of giving route recommendation to drivers in order to 

divert them to a situation in which the effects of Braess’ paradox are reduced. Bazzan and 

Klügl’s work is different from Turner and Wolpert’s ;they use the classical scenario 

proposed by Braess. Furthermore, the COIN formulism assumes that agents can be aligned 

with the global objective, and this is only possible in computer network in which router 

nodes have an aggregate knowledge that drivers in the traffic network do not have. 

In summary, some previous studies have shown ways of avoiding paradox. Other 

works have attempted to develop analysis models based on specific assumptions. Moreover, 

some studies have tried to find rules for designing network to avoid Braess’s paradox. Most 

of the above studies are based on the illustrated network presented by Braess, namely, a 

small network with four nodes and five links. Moreover, some studies investigated the 

degree of harm created by Baress’s paradox. These works indicated us that the performance 

improvement from link removal can be arbitrarily large in large networks. They provided us 

some ideas related to predicting the occurrence of Braess’s paradox in real networks, i.e. 

large-scale network.  

This study investigates the specific assumption demonstrated in the model of Dafermos 

and Nagureny [8], which was often presented in many corresponding researches: the 

number of paths of the network should be less than the number of links plus the number of 

OD pairs (called the rank assumption). This avoids general characteristic of large 

transportation networks. Thus, the above assumption resulted in less application in the 

theorem of forecasting the occurrence of Braess’ paradox presented by Dafermos and 

Nagureny [8]. Because in real world, paths usually exceed the number of links plus the 

number of OD pairs. In this paper, the specific assumption illustrated by Dafermos and 
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Nagureny is relaxed by using generalized inverse matrix method and an illustrative example 

is presented to demonstrate its feasibility. Notations and definitions are listed in next 

chapter and Dafermos and Nagurney’s model will also be briefly introduced. 
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3. Dafermos and Nagurney’s Model 

This chapter will introduce notations and Dafermos and Nagurney’s work on 

predicting occurrence of Braess’ paradox, including their assumptions and formula. 

 

3.1 Notations  

The real numbers, nonnegative real numbers, and positive real numbers are denoted 

respectively by .,, +++ RRR  

N ≜ set of nodes of the network. 

i, j∈N ≜ specific nodes in the network. 

A ≜ set of links of the network. 

a∈A ≜ a link in the network; a = (i, j). 

W ≜ set of OD pairs. 

w∈W ≜ an OD pair; w = (i, j). 

wP  ≜ set of paths between OD pair w. 

wPp∈  ≜ path between OD w. 

[ ]apΔ=Δ  ≜ link/path incidence matrix, where apΔ = 1 if link a is in path p, 0 otherwise. 

[ ]wpΛ=Λ  ≜ OD/path incidence matrix, where wpΛ = 1 if path p∈ wP , 0 otherwise. 

wT  ≜ number of trips between OD pair w. 

T = [ wT ] ω
++∈ R ≜ vectors of all trips. 
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ph  ≜ flow on path p. 

h = [ ph ] ρ
+∈ R ≜ vector of all path flows. 

af  ≜ flow on link a. 

f = [ af ] α
+∈ R ≜ vector of all link flows; note that .hf Δ=  

ca(f) ≜ cost on link a as a function of all link flows; the cost functions should satisfy the 

strong monotonicity condition: 

∈∀−≥−− fffffffcfc T ,))()()((
2

α s. (3.1-1) 

In common, we assume ca(f) is affine: ca(f) ∑
∈

+=
Ab

bab fg ha.1  

c(f) = [ca(f)] ≜ vector of link cost function. 

G  = [ abg ] ≜ the link cost Jacobian matrix; note it is positive definite. 

cp(h) ≜ cost on path p as a function of all path flows. 

c(h) = [cp(h)] ≜ vector of path cost function. 

Uw ≜ cost associated with OD pair w and a change in Uw denotes wU ′ . According to 

Wardrop’s principles, user equilibrium is described as 

.0  ,)( if

;)(    ,0If

=≥

=>

pwp

wpp

hUhc

Uhch
. (3.1-2) 

                                                 
1 This does not represent link cost function must be linear. Note that the only assumption for link 
cost function is strong monotonicity condition.  
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After path addition, some notations will be changed. 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ΔΔ
=

10
ˆ nΔ  ≜ the new link/path incidence matrix after adding a new path connecting an 

OD pair. 

Λ̂ = [ ]eΛ  ≜ the new OD pair/path incidence matrix after adding a new path connecting an 

OD pair.  

[ ]Tnhhh ′=′′  ≜ the new change in the equilibrium vector of path flows; h′  means change 

of the original path flow and nh is the new path flow. 

[ ]Tnfff ′=′′ ≜ the new change in the equilibrium vector of link flows; f ′  means change of 

the original link flow and nf is the new link flow. 

T
nccc ])()([)( fff ′=′′ ≜ the new change in the equilibrium link costs. 

⎥
⎦

⎤
⎢
⎣

⎡
=

g
0G

G
ˆ

ˆ  ≜ the new link cost Jacobian matrix after adding a new path connecting an OD 

pair. 

T
nccc ])(ˆ)(ˆ[)(ˆ hhh ′=′′  ≜  the new change in the equilibrium path costs; nc )(ˆ h  is the 

equilibrium cost of the new path. 

 

3.2 Dafermos and Nagurney’ Model 

Consider a network N, given the travel demand, and the case of affine cost function. 

Assume that the flow on each path of the network N, including the new path, is positive 

before and after the path addition. Now add a new path r which connects the OD pair 1w , 

and according to definitions in Section 3.1, we have the system as follows: 
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.)(ˆ)(ˆ,)(ˆ

ˆ

′′=′′′′=′′

−=′′′=′′

hfΔffG

ehhΛ,fhΔ

ccc T

n  (3.2-1) 

Since the flow in each path is positive before and after adding a new route, this leads to 

the following: 

rpPpeveryforUhc wwp ≠∈′=′ ,)( . (3.2-2) 

By combining (3.2-1) and (3.2-2), the model is constructed as follows: 

n

TT

h
e
ρ

U
h

0Λ

ΛGΔΔ
⎥⎦
⎤

⎢⎣
⎡
−
−

=⎥⎦
⎤

⎢⎣
⎡

′−
′

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
 (3.2-3) 

where 

n
T GΔΔ=ρ . (3.2-4) 

Assume T][ ΛΔ  is an m×n matrix of rank n, then it is implied that 

det 0
0

≠
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

Λ

ΛGΔΔ TT

. 

Therefore, we can apply Cramer’s rule to solve the system as (3.2-3). Let '
wiU  be change of 

the i-th OD pair, [ ]rrr AAAL K= , iΛ  be the Λ  marix with the i-th row removed, and 

1Λ  be the Λ  matrix with the first row removed, The change in each OD pair cost can be 

obtained through 

rTT

T
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TT

i
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⎡ Λ

Λ
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⎦

⎤
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⎣

⎡ Λ
Λ
Δ−ΔΔ

−=′ +

0
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0
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)1( 11  (3.2-5) 

then we can determine whether Braess paradox occurs. 

Under the assumption (3.1-1), the rank assumption and positive path flows including the 

new path, it follows that for [ GLG TT Δ−ΔΔ ] positive semidefinite, Braess’ paradox may 
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occur. Corresponding corollary states that joining an OD pair of a network by a new path 

containing none of the original links of the network will result in a decrease in travel cost 

for users of the OD pair. 
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4. The Modified Model 

This chapter illustrate using generalized inverse matrix approach relaxes the rank 

assumption proposed by Dafermos and Nagurney [8]. Section 4.1 introduces the main 

definitions and theorems of the generalized inverse matrix. Details could be referred in 

Graybill [76]. Section 4.2 illustrates generalized inverse matrix approach applies to traffic 

equilibrium models. Section 4.3 derives the modifier model basing on Dafermos and 

Nagurney’s. Final is a numerical example. 

 

4.1 Generalized Inverse Matrix Approach 

Definition 4.1 

Let [ ]TΛΔ  be an m×n matrix. If there exists an n×m matrix [ ] −TΛΔ , which satisfies 

the following four conditions, 

(i) [ ]TΛΔ [ ] −TΛΔ  is symmetric; 

(ii) [ ] −TΛΔ [ ]TΛΔ  is symmetric; 

(iii) [ ]TΛΔ [ ] −TΛΔ [ ]TΛΔ = [ ] ;TΛΔ  

(iv) [ ] −TΛΔ [ ]TΛΔ [ ] −TΛΔ = [ ] ;
−TΛΔ  

then it is a generalized inverse of [ ] .TΛΔ  

. 

Theorem 4.1 For any given matrix [ ]TΛΔ , there exists a unique generalized inverse 

matrix. 
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Proof: 

Assume that [ ] −T
1 ΛΔ and [ ] −T

2 ΛΔ are two generalized inverse of [ ]TΛΔ .This means that 

both [ ] −T
1 ΛΔ and [ ] −T

2 ΛΔ satisfy Definition 4.1. Multiplying 

[ ]TΛΔ = [ ]TΛΔ [ ] −T
1 ΛΔ [ ]TΛΔ on the right by [ ] −T

2
ΛΔ , we have 

[ ]TΛΔ [ ] −T

2
ΛΔ = [ ]TΛΔ [ ] −T

1 ΛΔ [ ]TΛΔ [ ] .
2

−TΛΔ  (4.1-1) 

By Definition 4.1,both the left-hand side and the right-hand side of (4.1-1) are symmetric. 

Hence 

[ ]TΛΔ [ ] −T
1 ΛΔ [ ]TΛΔ [ ] −T

2
ΛΔ = [ ] [ ] [ ] [ ]( ) .   21

−−− TTTT ΛΔΛΔΛΔΛΔ  (4.1-2) 

Then 

[ ]TΛΔ [ ] −T

2
ΛΔ = [ ]TΛΔ [ ] −T

1 ΛΔ [ ]TΛΔ [ ] −T

2
ΛΔ  

= [ ] [ ]( )[ ] [ ]( )[ ]TTTTT −−

21   ΛΔΛΔΛΔΛΔ = [ ] [ ]( ) [ ] [ ]( )TTTT
TT −−

12   ΛΔΛΔΛΔΛΔ  

= [ ] [ ]( )[ ] [ ]( )−− TTTT
12   ΛΔΛΔΛΔΛΔ = [ ]TΛΔ [ ] . 1

−TΛΔ  (4.1-3) 

Similarly, 

[ ] −T
1 ΛΔ [ ]TΛΔ = [ ] −T

2ΛΔ [ ] .TΛΔ  (4.1-4) 

By using (4.1-1) and (4.1-2) , we have 

[ ] −T
1 ΛΔ = [ ] −T

1 ΛΔ [ ]TΛΔ [ ] −T
1 ΛΔ = [ ] −T

2
ΛΔ [ ]TΛΔ [ ] −T

1 ΛΔ  

= [ ] −T

2
ΛΔ [ ]TΛΔ [ ] −T

2
ΛΔ = [ ] .

2

−TΛΔ  (4.1-5) 

The proof follows. 

 

Theorem 4.2 If [ ]TΛΔ  is an m × n matrix of rank m, then 

[ ] [ ]( ) [ ] [ ]( ) 1−−

⎟
⎠
⎞⎜

⎝
⎛=

TTTTTT ΛΔΛΔΛΔΛΔ and [ ] [ ] IΛΔΛΔ =
−TT . 
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Proof: 

By Definition 4.1(iii), [ ]TΛΔ [ ] −TΛΔ [ ]TΛΔ = [ ]TΛΔ , and then transpose each side, 

[ ] [ ] [ ]
T

TTT
⎟
⎠
⎞

⎜
⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛ −

ΛΔΛΔΛΔ = [ ]( ) ,
TTΛΔ  (4.1-6) 

[ ] [ ] [ ]( ) [ ]( ) ,
TTTT

T
TT ΛΔΛΔΛΔΛΔ =⎟
⎠
⎞

⎜
⎝
⎛ −

 (4.1-7) 

[ ] [ ]( ) [ ] [ ]( ) .
1−−

⎟
⎠
⎞⎜

⎝
⎛=

TTTTTT ΛΔΛΔΛΔΛΔ  (4.1-8) 

From (4.1-8), we can verify [ ] [ ] IΛΔΛΔ =
−TT easily. Hence the proof is complete. 

 

Theorem 4.3 Let [ ] gyΛΔ =T  be an m× n matrix, y be an n× 1 vector and g  be an m× 1 

vector. If the system of equation [ ] gyΛΔ =T  has a solution, then for each n×1 vector k, 

the vector  

0y ≜ [ ] [ ] [ ] .kΛΔΛΔIgΛΔ ⎟
⎠
⎞⎜

⎝
⎛ −+

−− TTT  (4.1-9) 

Moreover, each solution to the system can be written in the form of (4.1-9) . 

Proof: 

By Theorem 4.2, if [ ]TΛΔ is an m× n matrix of rank m, then [ ] [ ] IΛΔΛΔ =
−TT , and hence 

[ ] [ ] .ggTT =
−

ΛΔΛΔ Since we assume there is a solution to the system, first multiply (4.1-9) 

on the left by [ ]TΛΔ , we have 

[ ] [ ] [ ] [ ] [ ] [ ] .kΛΔΛΔIΛΔgΛΔΛΔyΛΔ 0 ⎟
⎠
⎞⎜

⎝
⎛ −+=

−− TTTTTT  (4.1-10) 

Since [ ] [ ] [ ] 0=⎟
⎠
⎞⎜

⎝
⎛ −

− TTT ΛΔΛΔIΛΔ and [ ] [ ] ggΛΔΛΔ =
−TT , this reduces [ ] gyΛΔ 0 =

T , 

and hence 0y  is a solution.  

Next assume that 0y  is any solution to the system. Since 0y  is a solution, we have 

[ ] gyΛΔ 0 =
T , and multiplying on the left by [ ] −TΛΔ gives 
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[ ] [ ] [ ] .0 0yΛΔΛΔgΛΔ TTT −−
−=  (4.1-11) 

Then add 0y to both sides of (4.1-11), this obtains 

[ ] [ ] [ ] [ ] [ ] [ ] ,)( 000000 yΛΔΛΔIyΛΔyΛΔΛΔyyΛΔy TTTTTT −−−−
−+=−+=

 (4.1-12) 

which is of the form of (4.1-9) with 0yk = , and the theorem is proved. 

 

Theorem 4.4 If A is an m× n matrix of rank m, y  be an n× 1 vector and g  be an m× 1 

vector, then the system [ ] gyΛΔ =T  has a solution 

[ ] [ ] [ ]( ) [ ] [ ] [ ]( ) [ ] .
11

kΛΔΛΔΛΔΛΔIgΛΔΛΔΛΔy0 ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛−+⎟

⎠
⎞

⎜
⎝
⎛=

−−
TTTTTTTTT

 (4.1-13) 

Proof: 

Theorem 4.4 can be proved by Theorem 4.2 and Theorem 4.3. 

 

4.2 Generalized Inverse Approach Application to Equilibrium 

Network Problems 

As mentioned before, Yang [63] based on the work by Tobin and Friesz [65] to develop 

his network sensitivity model. In section 4.2.1, we will summarize and introduce 

contribution by Tobin and Friesz [65] and Yang [63]. Section 4.2.2 extend to relax feasible 

solution sets by generalized inverse approach, which is also could be done by minimum 

distance method proposed by Cho and Lin [78]. 
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4.2.1 Sensitivity Analysis to Equilibrium Network Problems 

Before going on introducing sensitivity analysis to equilibrium network problem, there 

are some theorems which should be stated in advance. The following results are from Tobin 

[79] and are presented without proof. Let nn RRF →:  be continuous, let mn RRg →:  

be differentiable, and pn RRh →:  be liner affine. Define 

}00{ =≥∈= ,h(x)g(x)RxK n . (4.2.1-1) 

If we can find Kx* ∈  such that  

0)()( ≥− *T* xxxF   Kx∈∀ . (4.2.1-2) 

Inequality (4.2.1-2) is a variational inequality problem and *x  is a solution. 

Theorem 4.5 Necessary conditions for solution: If the vector Κx* ∈  is a solution to the 

variational inequality (4.2.1-2) and the gradients )( *
i xg∇ , i such that 0=)( *xgi , and 

)( *xhi∇ , i=1,…, p, are linearly independent, then there exists mR∈λ , pR∈μ  such that 

0))( * =∇−∇− μλ T*xhxgxF ()( T*  (4.2.1-3) 

0)( * =xgTλ  (4.2.1-4) 

0≥λ  (4.2.1-5) 

Theorem 4.6 Sufficient conditions for solution: If )(xgi  for i=1,..,m are concave and 

K∈*x , mR∈λ , pR∈μ  satisfy (4.2.1-3), (4.2.1-4) and (4.2.1-5), then *x  is a solution to 

the variational inequality (4.2.1-2). 

Theorem 4.7 Sufficient conditions for a locally unique solution: If the condition of 

Theorem 4.6 hold, and, in addition, if F are differentiable and  

0)( * >∇ yxFyT
 (4.2.1-6) 

for all 0≠y  such that 
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0)( * ≥∇ yxgi  for all I such that 0)( * =xgi  (4.2.1-7) 

0)( * =∇ yxgi  for all I such that 0>iλ  (4.2.1-8) 

0)( * =∇ yxhi  for i=1,…,p, (4.2.1-9) 

then *x is a locally unique solution to variational inequality (4.2.1-2). 

Let ),( εxF  be once continuously differentiable, let ),( εxg  be concave in x and twice 

continuously differentiable in ),( εx , and let ),( εxh  be linear affine in x and once 

continuously differentiable in ε . Consider the following perturbed variational inequality, 

denoted as )(εVI : Find )(* εε ∈x  such that 

0),(),( ** ≥εε ε xxxF T  for all )(εKx∈  where (4.2.1-10) 

}0),(,0),({)( =≥= εεε xhxgxK . (4.2.1-11) 

Theorem 4.8 Implicit function theorem: Let the conditions of Theorem 4.7 be satisfied for 

)0(VI  with )( *xF , )( *xg , )( *xh ,λ ,μ  replaced by )0,( *xF , )0,( *xg , )0,( *xh , *λ , *μ , 

respectively; with gradients )0,( *xgi∇ , i such that 0)0,( * =xgi  and )0,( *xhi∇ , pi ,...1= , 

linearly independent, and in addition, let the strict complementary slackness condition 

0* >iλ  where 0)0,( * =xgi  (4.2.1-12) 

be satisfied. Then 

a. *λ  and *μ  is unique; 

b. In a neighborhood of 0=ε , there exists a unique once continuously 

differentiable function TTTTx ])(,)(,)([ εμελε , where )(εx  is a locally unique 

solution to )(εVI  and )(ελ , )(εμ  are unique associated multipliers satisfying 

the conditions of Theorem 4.7 for a locally unique solution for )(εVI , and with 

[ ] [ ]TTTTTTTT xx *** ,,)0(,)0(,)0( μλμλ = . 

c. In a neighborhood of 0=ε , the set of binding inequality is unchanged , strict 
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complementary slackness holds, and the binding constraints gradients are linearly 

independent at )(εx . For 0=ε and [ ] [ ]TTTTTTTT xx *** ,,,, μλμλ = , by Theorem 

4.5: 

0),(),(),(
11

=∇−∇− ∑∑
==

p

i

T
ii

m

i

T
ii xhxgxF εμελε  (4.2.1-13) 

mixgii ,...,1,0),( ==ελ  (4.2.1-14) 

pixhi ,...,1,0),( ==ε . (4.2.1-15) 

Let the Jacobian matrix of the system (4.2.1-13), (4.2.1-14), and (4.2.1-15) with respect to 

),,( μλxy =  be denoted by *
yJ  and with respected to ε  as *

εJ . 

Corollary 4.1 Derivatives of the solution vector of )0(VI  with respect to ε : Under the 

assumptions of Theorem 4.8, the inverse of *
yJ  exists and the partial derivatives of 

),,( *** μλx  with respect to ε  are given by 

[ ] [ ] [ ]*1****
εεεεε μπ JJxy y

T
−=∇∇∇=∇

− . (4.2.1-16) 

Corollary 4.2 First-order approximation of solution to )(εVI  for ε Near Zero: Under 

assumptions of Theorem 4.8, a first-order approximation of [ ]TTTTx )(,)(,)( εμελε  in a 

neighborhood of 0=ε  is given by 

[ ] [ ]ε
μ
λ

εμ
ελ
ε

ε
*1*

*

*

*

)(
)(
)(

JJ
xx

y
−

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
, (4.2.1-17) 

where 

[ ] [ ])0(),0(),0(,, *** μλμλ xx = , (4.2.1-18) 

)0(*
yy JJ = , (4.2.1-19) 

)0(*
εε JJ = . (4.2.1-20) 

Equilibrium network flow problems could be represented in variational inequality form 
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(Dafermos, [80]): find Ω∈*f  such that 

0)()( ** ≥− fff Tc . (4.2.1-21) 

for all Ω∈f , where 

}0,,{ ≥=Λ=Δ=Ω hThfhf .  (4.2.1-22) 

If c(f) is strictly monotone, the equilibrium flow vector *f  is unique. In general, the 

perturbed equilibrium network flow problem can be written as follows: find )(* εf Ω∈ε  

such that 

0)(),( ** ≥− εε ffεf Tc   (4.2.1-23) 

for )(εf Ω∈ , where 

}0),(,{)( ≥=Λ=Δ=Ω hεThfhfε ,  (4.2.1-24) 

and ε  is a vector of perturbation parameters. Assume that ),( εxc  is continuously 

differentiable in ),( εx , and )(εT  is once continuously differentiable in ε . The 

equilibrium path flows are generally not unique and are contained in the convex polytope 

}0),(,{)( * ≥=Λ=Δ=Γ hεThfhfε ,  (4.2.1-25) 

where *f  solves (4.2.1-23) and (4.2.1-24). Because for any vector ε  the set of path flow 

solutions in )(εΓ  is a convex set, derivates of a solution *h  with respect to the 

perturbation parameters do not exist. If the perturbed variational inequality is written 

entirely in terms of h, then the perturbed variational inequality has the form: Find 

)(* εΩ∈h  such that 

0ˆ ≥− )hε)(h,(h **c  (4.2.1-26) 

for all )(εh Ω′∈ , where 

0}.h,T(εΛh{h(εΩ ≥==′ ))  (4.2.1-27) 

Tobin and Friesz [65] tried to select one particular path flow solution, in particular an 
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extreme point of )0(Γ , that is, *h  in which the number of paths with positive flows is 

equal to the rank of T][ ΛΔ , the same assumption as Dafermos and Nagurney [8]. Therefore, 

we can reduce the network under consideration to that which contains only arcs which have 

positive flow in the solution and consider only the paths on these arcs. Since *h  is a 

solution to the perturbed variational inequality (4.2-26) and (4.2-27) at 0=ε , by Theorem 

4.5 there exists a solution to the system 

0μΛλ,0)(hc T* =−−ˆ  (4.2.1-28) 

0h =*Tλ  (4.2.1-29) 

0T(0)Λh* =−  (4.2.1-30) 

0≥λ  (4.2.1-31) 

Since all path flow variables are positive in this restricted system and will remain so for 

perturbations in a neighborhood of 0, the nonnegativity constraints on h are not bind and 

may be eliminated without changing the solution in a neighborhood of 0. The system then 

reduce to  

0μΛ,0)(hc OT*o =−ˆ  (4.2.1-32) 

0T(0)hΛ *oO =− . (4.2.1-33) 

The Jocobian matrix of the system (4.2.1-32) and (4.2.1-33) with respect to ),( μho  and 

evaluated at 0ε =  is  

⎥
⎦

⎤
⎢
⎣

⎡ −∇
=

0Λ
Λ,0)(hc

J O

OT*o

μ,hO

ˆ
. (4.2.1-34) 

The Jocobian matrix of the system (4.2.1-32) and (4.2.1-33) with respect to ε  and 

evaluated at zero is 

⎥
⎦

⎤
⎢
⎣

⎡

∇−
∇

=
T(0)

,0)(hc
J

ε

*O
ε

ε

ˆ
. (4.2.1-35) 

Then 
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[ ] ε
1

μ,h
ε

O
ε JJ
μ

h
O

−=⎥
⎦

⎤
⎢
⎣

⎡

∇
∇

. (4.2.1-36) 

Yang [63] applied Tobin and Frieszs’ work, adding elastic demand to his sensitivity 

analysis to equilibrium network problem. The OD demand is assumed not to be fixed but 

rather a function of equilibrium OD travel cost between all OD pairs, i.e., 

wT = wD (U), Ww∈ , where U is a vector of the shortest path costs between all OD pairs. 

Let –D be strictly monotone, then demand function is invertible, )(1 T−= ww Du . The 

original problem was formulated as follows: Find ( ** T,f ) such that 

0)())()( ** ≥−−− − **1 TT(TDfff TTc  (4.2.1-37) 

for all Ω∈Tf, , where 

}{( 0hΛh,TΔh,fT)f, ≥===Ω . (4.2.1-38) 

Considering separable cost and demand functions, i.e., the travel cost on each link is 

independent of the flow on other links and the demand between an OD pair in the network 

depends on the travel cost between the OD pair only. The elastic-demand network 

equilibrium problem could be solved by the Frank-Wolfe convex combination method. 

(Sheffi, [1]) In the same way, the general perturbed variational inequality for equilibrium 

network problem for elastic demand could be written in the following: Find )(ε)T,(f ** Ω∈  

such that 

0)* ≥−−− −
ε

T*
ε

1*
ε

T*
ε T(Tε),(TD)f(fε),c(f  (4.2.1-39) 

for all )(),( εTf Ω∈ , where ε  is a vector of perturbation parameters. Assume that ε)c(f,  

and )ε(T,D 1−  are once continuously differentiable in ε , Yang(1997) adopted the 

restricted network equilibrium approach. It is assumed that a solution *T , *f , and 

*h existing to the above perturbed problem (4.2.1-39) for 0=ε  and ε)D(U,  and ε)c(f,  

are strongly monotone in U and f respectively. In addition, the demand between every OD 
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pair is strictly positive at equilibrium 0)( ** >= www UDT , Ww∈ . Finally, every link should 

carry positive flow. Let 0* >h  be a no degenerate extreme point in the region 

}{( *** 0hΛh,TΔh,fT)h, ≥===Ω  of equilibrium path flows. The necessary conditions 

for the perturbed network equilibrium problem in (4.2.1-39) at 0=ε  is that there exists a 

solution to the following system: 

0UΛλ,0)(hc T* =−−ˆ  (4.2.1-40) 

0=*Thλ  (4.2.1-41) 

0D(U,0)Λh* =−  (4.2.1-42) 

0h0,λ * ≥≥  (4.2.1-43) 

Under the situation of considering the nondegenerate extreme point of positive path flows 

solutions, the system then reduces to: 

0UΛ,0)(hc OT*o =−ˆ  (4.2.1-44) 

0D(U,0)hΛ *oO =− . (4.2.1-45) 

Differentiating both sides of the system of (4.2.1-44) and (4.2.1-45) with respect to the 

perturbation parameter ε , we obtain 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡

∇
∇−

⎥
⎦

⎤
⎢
⎣

⎡

∇−
−∇

==⎥
⎦

⎤
⎢
⎣

⎡

∇
∇

−
−

D(U,0)
,0)(hc

D(U,0)Λ
Λ,0)(hc

JJ
U
h

ε

*O
ε

1

U
O

OT*o
h

ε
1

,h
ε

O
ε

O U
.

 (4.2.1-46) 

Other derivatives such as that of OD demand in perturbation parameters could be obtained 

as  

U)D(U,)D(U,T εUεε ∇∇+∇=∇ 00 . (4.2.1-47) 

Finally it should be motioned that the above results of sensitivity analysis are 

independent of the choice of the nondengerate path flow solution, consistent in Tobin and 

Friesz [65]. 
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4.2.2 Relaxation on Feasible Solution Space of Sensitivity Analysis to 

Equilibrium Network Problem 

Although in section 4.2.1, we could have the derivatives of decision variables (link 

flows) and constraint multiplies (OD travel cost) with respect to a variety of perturbation 

parameters in demand function and link cost functions of the network equilibrium problem, 

there is still limited to the assumption: *h  in which the number of paths with positive 

flows is equal to the rank of T][ ΛΔ . 

Thus Cho[81] proposed generalized inverse approach to transform feasible path flow 

space to link flow space in traffic equilibrium models, avoiding the non-uniqueness problem. 

Assume the network includes paths of positive flow, and number of paths is larger than that 

of arcs. He cut link-path incidence matrix into two submatrices: ][ rO ΛΔ=Δ , letting 

[ ]ΛΔO be full of row rank and then derived derivatives of flow variables with respect to the 

perturbation parameters. From (4.2.1-25), we could have a solution 

k
Λ
Δ

ΛΛΔΛ
ΛΔΔΔ

Λ
Δ

I
T(ε
f

ΛΛΔΛ
ΛΔΔΔ

Λ
Δ

h(ε
o1

TOTO

TOOTOToO1

TOTO

TOOTOTo

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

−−

)
)  (4.2.2-1) 

where k is an arbitrary column vector which let )h(ε  is positive. Therefore, the feasible 

arc flows set could be written as follows: 

}){()( 0f,fh(εΔ
f
f

fε rr
r

O

≥=⎥
⎦

⎤
⎢
⎣

⎡
==Ω . (4.2.2-2) 

Let 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

2221

1211
1

TOTO

TOOTO

AA
AA

ΛΛΔΛ
ΛΔΔΔ

, (4.2.2-3) 

then 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+′=

)
)

T(ε
f

AA
AA

Λ
Δ

Ch(ε
o

2221

1211
To

 (4.2.2-4) 
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where 

k
Λ
Δ

AA
AA

Λ
Δ

kC
O

2221

1211
TO

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−=′ . (4.2.2-5) 

Therefore 

}
)

{()( 0f,f
T(ε
f

AA
AA

Λ
Δ

CΔ
f
f

fε r
o

2221

1211
To

r
r

O

≥=⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+′⎥

⎦

⎤
⎢
⎣

⎡
==Ω ;

 (4.2.2-6) 

let  

21
Tr

11
OTr

1 AΛΔAΔΔB += , (4.2.2-7) 

22
Tr

12
OTr

2 AΛΔAΔΔB += , (4.2.2-8) 

CΔC r ′= , (4.2.2-9) 

then [ ] }0f,fT(εBfBC
f
f

{(fΩ(ε) r
2

O
1r

O

≥=++⎥
⎦

⎤
⎢
⎣

⎡
== ) . According to theorem 4.5, for the 

system (4.2.1-24) there exists a solution as follows: 

0][)0,( * =−−− μλ TIBfc 1  (4.2.2-10) 

0* =fTλ  (4.2.2-11) 

[ ] r
2

O
1 fT(εBfBC =++ )  (4.2.2-12) 

0,0 * ≥≥ fλ ; (4.2.2-13) 

deleting the nonnegative constraints, the system is rewritten in the following: 

0][),( * =−− μTc IBεf 1  (4.2.2-14) 

[ ] 0) =−++ r
2

O
1 fT(εBfBC . (4.2.2-15) 

The Jocobian matrix of the system (4.2.2-14) and (4.2.2-15) with respect to )( μf,  and 

evaluated at 0=ε  is  

[ ] ⎥
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⎤
⎢
⎣
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−
−−∇

=
0IB

]IB[,0)c(f
J

1

T
2

*

μf, . (4.2.2-16) 

The Jocobian matrix of the system (4.2.2-14) and (4.2.2-15) with respect to ε  and 
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evaluated at zero is 

⎥
⎦

⎤
⎢
⎣

⎡

∇
∇

=
T(0)B

,0)c(f
J

ε2

*
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Then 

[ ] ε
1

μf,
ε

ε JJ
μ
f −=⎥
⎦

⎤
⎢
⎣

⎡
∇
∇

. (4.2.2-18) 

Although generalized inverse matrix approach could be used to relax limitation in 

network topology, it could not guarantee positive path flows when solving equilibrium 

network flow problems. Thus Cho and Lo [82] developed an algorithm to ensure positive 

path flows due to properties of generalized inverse matrix.  

In summary, Yang’s work could not apply to general network topology basing on 

specific assumption in restriction approach. Next, we start from Dafemos and Nagurney’s 

model. In section 4.3 we will modify their model, and from the modified model, extending 

to sensitivity analysis to equilibrium network problem.  

 

4.3 The Modified Model 

 

In this section, we come back to Dafermos and Nagurney’s model in Chapter 3. For 

convenience, we transform the model of Dafermos and Nagurney into a simpler form. 

[ ] [M]ΔGΔΔ =TT , [ ] [N]0Λ = , [ ] yUh =′−′ T , then 

.nh
e
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Ν
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Therefore, the inverse of ⎥
⎦

⎤
⎢
⎣

⎡
N
M

does not exist. Then partition ⎥
⎦

⎤
⎢
⎣

⎡
N
M

 as 
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 (4.3-2) 

here we let ⎥
⎦

⎤
⎢
⎣

⎡
o

o

Ν
Μ

 be full row rank by Gaussian-Jordan elimination. Therefore we rewrite 

(4.3-1), 
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According to Theorem 4.4, for an arbitrary column vector k,column vector y is obtained as 

follows: 
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where 
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k denotes an arbitrary column vector. 

Obviously, (4.3-4) should satisfy the rest of (4.3-3). Let [ ] ⎥
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Back to (4.3-4), the answer could be expanded as follows: 
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where [ ] [ ] [ ] [ ] 10T00T010T010T00T0T00T010T010T0
11 MMMN]NMMMMNN[NNMMMMMA −−−−−

−+= ; 

[ ] [ ] 10T010T00T0T00T010T0
12 ]NMMMMNN[NNMMMA −−−

−−= ; 
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Also let  

1n
0
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Let  
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Therefore, if all elements in [ 2kBDBD 2212 −+ ] are larger than zero, it means that adding 

a new path connecting a particular OD will not result in Braess’ paradox. 

However, the arbitrary vector k may not guarantee positive flows. Although in 

theorems, vector k is arbitrary. But this is not in transportation network. Negative path 

flows are meaningless. Therefore vector k which we need is that will ensure positive path 

flows. Numerous methods of solving the positive flow problem exist: for example, the 

algorithm presented in Cho and Lo [82] is applied to obtain vector k. The algorithm can 

guarantee this vector k ensure positive path flows.  

First we express equilibrium network flows as  
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Exploit Theorem .4.4, we have 
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Transform (4.3-11) as (4.3-12) for convenience as 
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Then a simplified version of the algorithm is presented as follows: 

Step 1:Assume all elements of k are the same. Rewrite (4.3-12) as (4.3-13), 
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Step 2: If there exists any 0ci = , check whether ia  is positive. After processing the 

problem of 0ci = , let 

],1[],[ min niMin i ∈∀= aa  (4.3-15) 

{ }0','\],1[ ],[ 'min =∋∈∀= ii iwhereiniMin ccc . (4.3-16) 

Step 3:Check minc  and if 0min ≠c , there are two situations, 
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i.  0min >c , select 0'thatsuch minmin =+ kk ' ca . If 0'≥k , then 

⎟⎟
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⎞
⎢
⎣

⎡
∞

−
∈∀ ,

min

min

c
ak satisfies the positive flow criterion. Otherwise, select any 

0≥k . 

ii. 0min <c , select 0thatsuch minmin =+ k'k ' ca . If 0'≥k , then 

⎥
⎦

⎤
⎜⎜
⎝

⎛ −
∞−∈∀

min

min,
c
ak . Otherwise, check two situations: 0>ic and 0<ic . 

From the intersection of the two situations, select 0≥+∋ kcak ii . 

Since Braess’ paradox is concerned with a tiny change in the network capacity, this 

study uses the network before the new path addition to obtain vector k. In next section, an 

illustrative example will be showed. The solution is an analysis solution, although vector k 

may lead to multiple solutions. However, the results from sensitivity analysis to equilibrium 

network problems could be applied to show that vector k would not affect the solution. In 

Cho and Lin [78], they exploited minimum distance method to prove the independency of 

the chosen path flow and the independency of the link/path incidence matrix in sensitivity 

analysis for equilibrium network flow problems. When choosing different path flow or 

different link/path incidence matrix, the network sensitivity analysis could get the same 

result. Tobin and Friesz [65] also proved similar theorem that different chosen path would 

not affect results for network sensitivity analysis. Combining the above results, vector k is 

independent of results for network sensitivity. The new added link can be considered as 

already exist in the network, but travel cost is too high to no traveler use it. In this way, 

addition of new link could be transformed into perturbations in link performance function 

and network sensitivity model could be formulated. 

In Chapter 2, we understand that Braess’ paradox depends on network topology, 

demand and link performance function. In the following, we tried to modify Yang’s work, in 
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the same way, by using generalized inverse approach to relax feasible link flow space. The 

perturbation network equilibrium is written as follows: 

Find ( ** T,f ) such that 

0)())()( ** ≥−−− − **1 TT(TDfff TTc  (4.3-17) 

for all Ω∈Tf, , where 

}{( 0hΛh,TΔh,fT)f, ≥===Ω . (4.3-18) 

Note here the demand between every OD pair is strictly positive at equilibrium 

0)( ** >= www UDT , Ww∈ .Let 

oo fh(εΔ =)  (4.3-19) 

ε)D(U,TεΛh ==)( , (4.3-20) 

where oΔ  is the matrix letting [ ]TΛΔo be full of row rank. )(εh  is path flows after 

perturbation. From theorem 4.4, )(εh  is obtained as (4.2-48), except for demand is 

function of OD cost and perturbation parameters: 
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If existing vector k which let )(εh  be positive, then feasible link flow space could be 

written as follows: 
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 (4.3-22) 

 

Let 
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 (4.3-26) 

let  
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OTr

1 EΛΔEΔΔG += , (4.3-27) 

22
Tr

12
OTr

2 EΛΔEΔΔG += , (4.3-28) 

FΔF r ′= , (4.3-29) 

then [ ] }0f,fε)D(U,GfGF
f
f

{fΩ(ε) r
2

O
1r

O

≥=++′⎥
⎦

⎤
⎢
⎣

⎡
== . According to theorem 4.5, for 

the system (4.3-16) there exists a solution as follows: 

0][)0,( * =−−− UIGfc 1
Tλ  (4.3-30) 

0* =fTλ  (4.3-31) 

[ ] r
2

O
1 fε)D(U,GfGF =++  (4.3-32) 

0,0 * ≥≥ fλ ; (4.3-33) 

The Jocobian matrix of the system from (4.3-30) to (4.3-33) with respect to )U(f,  

and evaluated at 0=ε  is  
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The Jocobian matrix of the system from (4.3-30) to (4.3-33) with respect to ε  and 

evaluated at zero is 
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Then 

[ ] ε
1

Uf,
ε

ε JJ
U
f −=⎥
⎦
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⎢
⎣

⎡
∇
∇

. (4.3-36) 

Through sensitivity analysis, the derivatives of link flows, OD demands, OD costs and 

other solution variables can obtained and expressed explicitly in terms of the equilibrium 

flow solutions. Therefore, we could analyze the expanded network assuming the new link is 

already in the network, finding out when demand or other variables varies, how the trend of 

change to travel cost moves. 
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4.4 Numerical Example 

In this section a simple numerical example is presented. This network, which is 

illustrated in Fig. 4.4-1 involves a set of 7 nodes, N={1,...,7} together with a set of 11 links, 

A={a1,…,a11},yielding a set of 17 possible paths, P1 ={p1,…,p17} between the single OD 

pair (1,7). 

 

 
Figure 4.4-1 Illustrated Network Comprising Seven Nodes and Eleven Links. 

 
Table 4.4-1 Link Performance Function 

c1=5f1 c2=10+2f2 c3=10+2f3 c4=2f4+50 c5=2f5+50 c6=2f6 

c7=2f7 c8=10+f8 c9=10+f9 c10=70+3.5f10 c11=5f11 c12=2+f12（if adding a new 
path） 

 

Based on link performance function as listed in Table 4.4-1, given number of trips 

between OD pair (1,7) is TT ]24[= , and all possible paths are defined as follows. 

Path 1: Link 1-Link 10, 

Path 2: Link 2-Link 4-Link 6 –Link 8- Link 10; 

Path 3: Link 2-Link 4-Link 6 –Link 9- Link 11; 

Path 4: Link 2-Link 4-Link 7 –Link 8- Link 11; 

Path 5: Link 2-Link 4-Link 7 –Link 9- Link 11; 

Path 6: Link 2-Link 5-Link 6 –Link 8- Link 11; 
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Path 7: Link 2-Link 5-Link 6 –Link 9- Link 11; 

Path 8: Link 2-Link 5-Link 7 –Link 8- Link 11; 

Path 9: Link 2-Link 5-Link 7 –Link 9- Link 11; 

Path 10: Link 3-Link 4-Link 6 –Link 8- Link 11; 

Path 11: Link 3-Link 4-Link 6 –Link 9- Link 11; 

Path 12: Link 3-Link 4-Link 7 –Link 8- Link 11; 

Path 13: Link 3-Link 4-Link 7 –Link 9- Link 11; 

Path 14: Link 3-Link 5-Link 6 –Link 8- Link 11; 

Path 15: Link 3-Link 5-Link 6 –Link 9- Link 11; 

Path 16: Link 3-Link 5-Link 7 –Link 8- Link 11; 

Path 17: Link 3-Link 5-Link 7 –Link 9- Link 11. 

The user equilibrium link flows before adding a path is 

[ ]T12126666666612=f , the modified model in section 4.3 is 

applied to clarify whether a paradox may occur. 

First, the algorithm developed by Cho and Lo is applied to obtain a column vector k. 

List all corresponding incidence matrices and express the equilibrium network form in 

Figure 4.4-1: 
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[ ]11111111111111111=Λ  (4.4-2) 
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 (4.4-6) 

After some manipulation, the outcome shows that vector k would not affect the final result. 

This finding suggests that when obtaining y, the existence of vector k could be neglected. 

This outcome would not affect the general case. Therefore, only the values of 

[ ]( ) [ ] TT  -- 0000 eρNM −  is required; a situation in which a positive change in OD cost 

occurs implies that the new path may lead to Braess’ paradox. 
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Second, all corresponding incidence matrices are listed as follows: 

[ ]Tr 10000000001=Δ  (4.4-7) 
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So (4.4-1), (4.4-2),(4.4-7) and (4.4-8) are inserted into (4.3-1) as (4.4-9): 
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 (4.4-9) 

The left matrix in (4.4-9) is partitioned to obtain the full row rank matrix as (4.4-10) 

and its corresponding right matrix as (4.4-11). 
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The final step involves inserting (4.4-10) and (4.4-11) into (4.3-4). Owing to ignorance 

of the existence of k, the terms behind the plus sign do not need to be calculated. 
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 (4.4-12) 

Following some manipulation [ ] nhy T100000000000000000 −=  is 

obtained. Because we assume positive path flows before and after path addition, nh  is 

always larger than zero, that is, the last element in vector y is less than 0. In this numerical 

example, it means that adding a new link a12 may lead to increase in travelers’ cost between 

OD pair (1, 7). Therefore adding a new link in this example network may result in Braess’ 

paradox. According to network sensitivity analysis, vector k would not affect final solutions, 

thus the algorithm for finding a column vector k could be eliminated. Only the form as 

(4.4-12) is needed to calculate when predicting occurrence of Braess’ paradox for one OD 

pair. 
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5. Discussions and Conclusions 

This study adopted Dafermos and Nagurney’s model and modified the specific 

assumption on the link/path incidence matrix. The rank assumption was relaxed by the 

generalized inverse matrix approach, thus overcoming restriction on small network. 

Moreover, the reasonability and usability of the modified model was demonstrated through 

a numerical example. We also applied generalized inverse approach to Yang (1997)’s work, 

which is about network sensitivity, modifying feasible link flow space. Applying some 

mathematical characteristics, we relaxed the rank assumption and cited previous results 

from sensitivity analysis method to complement shortcomings of the modified model. 

Dafermos and Nagurney’s model was based on equilibrium network problem, and their 

model was the first model which could determine occurrence of Braess’ paradox. However, 

the rank assumption reduces application in real world; the model can only be implemented 

simple networks. Generalized inverse matrix method is used to relax the rank assumption, 

so it is operable in every network. Otherwise, the arbitrary vector k may cause multiple 

solutions due to properties of generalized inverse matrix method. Here, we applied an 

algorithm for finding a set of vector k which could guarantee positive path flows. Note we 

do not develop a direct mechanism guaranteeing vector k is independent of results of the 

model.  

In Dafermos and Nagurney ’s model, the original link cost was not changed after path 

addition. This does not suit to real situation. Logically thinking, road investment should 

affect original network situation. On the other hand, model was formulated from path 

information, not link. Even if the restriction is removed, there is no idea about how many 

paths would be produced due to addition of the new link. But their model is suitable for 

planning process. It provided transportation planners concept about network design: joining 
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an OD pair of a network by a new path which contains none of the original links of the 

network will result in a decrease in travel cost for users of the OD pair. 

Future research may focus on several topics: one is to develop formulas for multiple 

OD pairs, which is inevitably complicated. How to design a simple and fast algorithm to 

conquer complexity of the problem is need to be explored. One is to construct sensitivity 

analysis based on k vector. Here we only cite others’ argument but not carry out practically. 

What if k vector calculated from the other positive path flows algorithm is not independent 

of the original algorithm? This will affect solutions. Therefore we should investigate 

sensitivity of vector k.  

Braess’ paradox told us sometimes we need to see things in different ways. Every 

seeming-good decision is not always good; from the other way, it may bring adverse effects. 

That is why we should do sensitivity analysis or simulation before any investments. 



 

- 64 - 

References 

1. Sheffi, Y., Urban transportation networks: equilibrium analysis with mathematical 

programming methods, New Jersey, Prentice-Hall, 1985. 

2. Meyer, M. D. and Miller, E. J., Urban transportation planning: a decision-oriented 

approach, McGraw Hill, 2001. 

3. Wardrop, G. J., Some theoretical aspects of road traffic research, in: Proceedings of the 

Institute of Civil Engineers, Vol.1, 1952, pp. 325-378. 

4. Beckmann, M., McGuire, C. B., and Winsten, C., Studies in the economics of 

transportation, New Haven Connecticut: Yale University press, 60-65, 1956. 

5. Braess, D., Über ein Paradoxon aus der Verkehrsplanung, Unternehmensforschung.12 

(1968) 258-268. 

6. Nagurney, A. and Wakolbinger, T., On a paradox of traffic planning.Translation from 

the original German by D. Braess, Transpn. Sci. 39 (2005) 446-450. 

7. Murchland, J. D., Short communication: Braess’s paradox of traffic flow, Transpn. Res. 

4 (1970) 391-394. 

8. Dafermos, S. and Nagurney, A., On some traffic equilibrium theory paradoxes, 

Transpn. Res. 18B (1984a) 101-110. 

9. Magnanti, T. L. and Wong, R. T., Network design and transportation planning models 

and algorithms, Transpn. Sci. 18 (1984) 1-55. 

10. Friesz, T. L., Transportation network equilibrium, design, and aggregation: key 

developments and research opportunities, Transpn. Res. 19A (1985) 413-427. 

11. Yang, H. and Bell, M. G. H., Models and algorithms for road network design: a review 

and some new developments, Transpn. Rev. 18 (3) (1998a) 257-278. 

12. Friesz, T. L. and Shan, S., An overview of nontraditional formulations of static and 

dynamic equilibrium network design, Transpn. Res. 35B (2001) 5-21. 

13. Chen, M. and Alfa, A. S., A network design algorithm using a stochastic incremental 

traffic assignment approach, Transpn. Sci. 25(3) (1991) 215-224. 

14. Davis, G. A., Exact local solution of the continuous network design problem via 

stochastic user equilibrium assignment, Transpn. Res. 28B(1) (1994) 61-75. 



 

- 65 - 

15. Leblanc, L. J., An algorithm for the discrete network design problem, Trans. Sci. 9 

(1975) 183-199. 

16. Boyce, D. E. and Janson, B. N., A discrete transportation network design problem with 

combined trip distribution and assignment, Transpn. Res. 14B (1980) 147-154. 

17. Abdulaal, M. and Leblanc, L. J., Continuous equilibrium network design models, 

Transpn. Res. 13B (1979) 19-32. 

18. Dantzig, G. B. and Maier, S. F., Formulating and solving the network design problem 

by decomposition, Transpn. Res. 13B (1979) 5-17. 

19. Balakrishnan, A., Magnanti, T. L., and Wong, R. T., A dual-ascent procedure for 

large-scale uncapacitated network design, Oper. Res. 37(5) (1989) 716-740. 

20. Lamar, B. W., Sheffi, Y., and Powell, W. B., A capacity improvement lower bound for 

fixed charge network design problems, Oper. Res. 38(4) (1990) 704-710. 

21. Gendron, B., Crainic, T. G., and Frangioni, A., Multicommodity capacitated network 

design, Telecommunications Network Planning, Kluwer Academics Publishers, 

ordrecht, 1998, pp. 1–19. 

22. Holmberg, K. and Hellstrand, J., Solving the uncapacitated network design problem by 

a lagrangean heuristic and branch-and-bound, Oper. Res. 46(2) (1998) 247-259. 

23. Holmberg, K. and Yuan, D., A lagrangian heuristic based branch-and-bound approach 

for the capacitated network design problem, Oper. Res. 48(3) (2000) 461-481. 

24. Marcotte, P., Network optimization with continuous control parameters, Transpn. Sci. 

17(2) (1983) 181-197. 

25. Suwansirikul C., Friesz, T. L., and Tobin, R. L., Equilibrium decomposed optimization 

heuristic for the continuous equilibrium network design problem, Transpn. Sci. 21(4) 

(1987) 254-263. 

26. Friesz, T. L., Cho, H. J., Mehta, N. J., Tobin, R. L. and Anandalingam, G., A simulated 

annealing approach to the network design problem with variational inequality 

constraints, Transpn. Sci. 26(1) (1992) 18-26. 

27. Yang, H. and Bell, M. G. H., Transport bilevel programming problems: recent 

methodological advances, Transpn. Res. 35B (2001) 1-4. 



 

- 66 - 

28. Chiou, S. W., Bilevel programming for the continuous transport network design 

ptoblem, Trandpn. Res. 39B (2005) 361-383. 

29. Waller, S. T., Mouskos, K. C., Kamaryiannis, D. and Ziliaskopoulos, A. Z., A linear 

model for the continuous network design problem, Comput.-Aided Civ. Infrastruct. 

Eng. 21 (2006) 334-345. 

30. Smith, M. J., In a road network, increasing delay locally can reduce delay globally, 

Transpn. Res.12B (1978) 419-422. 

31. Fisk, C., More paradoxes in the equilibrium assignment problem, Transpn. Res. 13B 

(1979) 305-309. 

32. Fisk, C. and Pallottino, S., Empirical evidence for equilibrium paradoxes with 

implications for optimal planning strategies, Transpn. Res. 15A (1981) 245-248. 

33. Arnott, R., Andre de Palma and Lindsey, R., Properties of dynamic traffic equilibrium 

involving bottlenecks, including a paradox and metering, Transpn Sci. 27(2) (1993) 

148-160. 

34. Yang, H. and Bell, M. G. H., A capacity paradox in network design and how to avoid it, 

Transpn. Res. 32A(7) (1998b) 539-545. 

35. Rilett, L. R. and Van Aerde, M. W., Modelling distributed real-time route guidance 

strategies in a traffic network that exhibits the Braess paradox, in: IEEE Vehicle 

Navigation and Information Systems Conference, Vol.2, 1991, pp. 577-587. 

36. Pas, E. I. and Principio, S. L. Braess’ paradox: some new insights, Transpn. Res. 31B 

(1997) 265-276. 

37. Penchina, C. M., Braess paradox: maximum penalty in a minimal critical network, 

Transpn. Res. 31A(5) (1997) 379-388. 

38. Stewart, N. F., Equilibrium vs. system-optimal flow: Some examples, Transpn. Res. 

14A (1980) 81-84.  

39. Catoni, S. and Pallottino, S., Traffic equilibrium paradoxes, Transpn. Sci. 25 (1991) 

240-244 

40. Florian, M., Utility, entropy and a “paradox” of traffic flow, Transpn. Res. 15A, (1981) 

327-330. 

41. Steinberg, R. and Stone, R. E., The prevalence of paradoxes in transportation 

equilibrium problems, Transpn. Sci. 22 (1988) 231-241. 



 

- 67 - 

42. Akamatsu, T., Dynamic traffic equilibrium assignment paradox, Transpn. Res. 34B 

(2000) 515-531. 

43. Nagurney, A., Parkes, D., Daniele, P., The internet, evolutionary variational 

inequalities, and the time-dependent Braess Paradox, Comput. Manag. Sci. 4(4) (2007) 

355-375. 

44. Frank, M., The Braess paradox, Math. Prog. 20 (1981) 283-302. 

45. Steinberg, R. and Zangwill, W. I., The prevalence of Braess’ paradox, Transpn. Sci. 17 

(1983) 301-318. 

46. Hagstrom, J. N. and Abrams, R. A., Characterizing Braess's paradox for traffic 

networks, in: Proceeding IEEE 2001 Conference on Intelligent Transportation Systems, 

2001, pp. 837-842.  

47. Abrams, R. A., Hagstrom, J. N., Improving traffic flows at no cost, in Mathematical 

and Computational Models for Congestion Charging, Springer US, 2006, pp. 1-22.  

48. Huang, X., Ozdaglar, A. E. and Acemoglu, D., Efficiency and Braess' Paradox under 

pricing in general networks, IEEE. J. Sel. Area. Comm. 24(5) (2006) 977-991. 

49. Milchtaich, I., Network topology and the efficiency of equilibrium, Game Econ. Behav. 

57 (2006) 321-346. 

50. Morgan, J., Orzen, H. and Sefton, M., Network architecture and traffic flows: 

experiments on the Pigou-Knight-Downs and Braess Paradoxes, Discussion Papers 

2007-05, The Centre for Decision Research and Experimental Economics, School of 

Economics, University of Nottingham. 

51. Korilis, Y. A., Lazar, A. A. and Orda, A., Architecting noncooperative networks, IEEE. 

J. Sel. Area. Comm. 13 (1995) 1241-1251. 

52. Korilis, Y. A., Lazar, A. A. and Orda, A., Capacity allocation under noncooperative 

routing, IEEE T. Automat. Contr. 42 (1997) 309-325. 

53. Korilis, Y. A., Lazar, A. A. and Orda, A., Avoiding the Braess paradox in 

non-cooperative networks, J. Appli. Probab. 36 (1999) 211-222. 

54. Altman; E., El Azouzi, R. and Pourtallier, O., Avoiding paradoxes in multi-agent 

competitive routing. Comput. Netw. 43(2) (2003) 133-146. 

55. Kameda, H., How harmful the paradox can be in Braess/Cohen-Kelly-Jeffries 

networks, in:Proceeding of IEEE INFOCOM New York , 2002. 



 

- 68 - 

56. Kameda, H., Bounds on benefits and harms of adding connections to noncooperative 

networks, Lect. Notes. Comput. Sc. 3042 (2006) 405-417. 

57. Lin, H., Roughgarden, T. and Tardos, É., A stronger bound on Braess's paradox, 

in:Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, 2004, pp. 

333-334. 

58. Roughgarden, T. and Tardos, E., How bad is selfish routing? J. ACM. 49(2) (2002) 

236-259. 

59. Roughgarden, T., On the severity of Braess's paradox: Designing networks for selfish 

users is hard, J. Compu. Sys. Sci. 72 (2006) 922-953. 

60. Valiant, G. and Roughgarden, T., Braess’s Paradox in large random graphs, in: 

Proceedings of the 7th ACM conference on Electronic commerce, 2006, pp. 296-305. 

61. Dafermos, S. and Nagurney, A., Sensitivity analysis for the asymmetric network 

equilibrium problem, Math. Program. 28 (1984b), 174-184. 

62. Hallefjord, A., Jornsten, K. and Story, S., Traffic equilibrium paradoxes when travel 

demand is elastic, Asia-Pacific J. of Oper. Res. 11 (1994) 41-50. 

63. Yang, H., Sensitivity analysis for the elastic-demand network equilibrium problem 

with applications, Trans. Res. 31B(1) (1997),55-70. 

64. Cho, H. J. and Lo, S. C., A study of Braess’ paradox in a variant demand network, 

Journal of the Chinese Institute of Transportation. 14(1) (2002) 67-85. 

65. Tobin, R. L. and Friesz, T. L., Sensitivity analysis for equilibrium network flows, 

Transpn. Sci. 22 (1988), 242-250. 

66. Cohen, J. E. and Kelly, F. P., A paradox of congestion in a queuing network, J. of 

Appli. Probab.27 (1990) 730-734. 

67. Calvert, B., Solomon, W. and Ziedins, I., Braess's paradox in a queuing network with 

state depending routing, J. Appli. Probab.34 (1997) 134-154. 

68. Bean, N. G. and Taylor, P. G., Can Braess's paradox occur in loss networks? 

University of Adelaide,1994. 

69. Bean, N. G., Kelly, F. P. and Taylor, P. G., Braess's paradox in loss networks, J. Appli. 

Probab.34 (1997) 155-159. 

70. Kelly, F. P., Network routing, Philos. Trans. R. So. London Ser. 337(1647) (1991) 

343-367. 



 

- 69 - 

71. Cohen, J. E. and Horowitz, P., Paradoxial behaviour of mechanical and electrical 

networks, Nature. 352 (1991) 699-701. 

72. Penchina, C. M. and Penchina, L. J., The Braess paradox in mechanical, traffic, and 

other networks, Am. J. Phys. 71 (2003) 479-482. 

73. Kameda, H., Altman, E. and Kozawa, T., A Case where a paradox like Braess's occurs 

in the Nash equilibrium but does not occur in the Wardrop equilibrium A situation of 

load balancing in distributed computer systems, in:Proceedings of the 38th IEEE 

Conference on Decision and Control, Phoenix, Arizona, USA,1999. 

74. Aashtiani, H. Z. and Poorzahedy, H., Braess' phenomenon in the management of 

networks and dissociation of equilibrium concepts, Transpn. Plan. Tech. 27(6) (2004) 

469-482. 

75. Tumer, K. and Wolpert, D., Collective intelligence and Braess' paradox, 

in:Proceedings of the Sixteenth National Conference on Artificial Intelligence ,2000, 

pp.104-109. 

76. Bazzan, A L C and Klügl, F., Case studies on the Braess Paradox: simulating route 

recommendation and learning in abstract and microscopic models, Transpn. Res. 

13C(4) (2005) 299-319. 

77. Graybill, F. A., An introduction to linear statistical models, New York, McGraw-Hill, 

1970. 

78. Cho, H. J. and Lin, P. W., The independency of the network information in the 

sensitivity analysis of the equilibrium network flow, Journal of the Chinese Institute of 

Transportation. 11(4) (1999) 73-86.  

79. Tobin, R. L., Sensitivity analysis for variational inequalities, J. Optim. Theory Appl. 

48(1) (1986) 191-204. 

80. Dafermos, S, Traffic equilibrium and variational inequalities, Trans. Sci. 14 (1980) 

42-54. 

81. Cho, H. J., Generalized inverse approach to sensitivity analysis of equilibrium network 

flow, Transportation Planning Journal. 120 (1991) 1-14. 

82. Cho, H. J. and Lo, S. C., A study of estimating nonnegative path flow by the properties 

of generalized inverse matrix, Journal of the Chinese Institute of Transportation. 11(2) 

(1999) 39-48. 


	Untitled



