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具有多項異常原因之    管制圖經濟設計 

 

學生：蘇珈儀                         指導教授：彭文理  博士 

國立交通大學管理學院 

工業工程與管理學系 

摘要 

本論文主要研究製程異常原因發生為多項異常原因之    管制圖經濟設計。研

究中製程生產方式分為斷續工件生產及連續流動生產兩種；製程失效機構則考慮指

數分配與韋氏分配兩種。根據生產方式及製程失效機構，在論文中共提出二項研究

主題：(1)連續流動生產且製程失效機構屬指數分配之    管制圖經濟設計，(2)斷續

生產且製程失效機構屬韋氏分配之    管制圖經濟設計。 

對於這兩種經濟設計模式，我們利用抽樣方法和成本結構來建構損失成本函數，

並在損失成本最小化下來找尋最佳的 n (樣本大小)，h (抽樣間隔時間)，k (管制界限

係數)。由於經濟設計模式進行敏感度研究，可以提供管理者或工程師了解輸入參數對

模式的影響。因此，我們也將對最佳的 n , h , k 值進行敏感度分析，藉此分析來了

解時間參數或成本參數的變動後，對於最佳 n , h , k 值之影響。最後，我們有提

供數值結果並討論之。 

除此之外，我們將對多項異常原因下僅一個異常發生之模式和多項異常原因下

有二個異常發生之模式進行比較分析，藉由數值結果可以得知考慮多項異常原因下

有二個異常發生之模式對於降低品質成本和增加其在斷續生產之競爭力是有一個

有用的方法。 

關鍵字：經濟設計，  管制圖，多項異常原因，韋氏衝擊模氏，指數衝擊模式，斷

續生產，連續流動生產。 



 

ii 
 

Economic Design of    Control Chart  

for Multiple Assignable Causes 

Student: Chia-Yi Su                            Advisors: Dr. W. L. Pearn 

Department of Industrial Engineering and Management, 

College of Management, National Chiao Tung University 

Abstract 

In this dissertation, we analyze the economic design of  x -control charts and 

extend the model for the case of multiple assignable causes to allow for the second 

occurrence of an assignable cause following the first occurrence. In addition, two process 

failure mechanisms are investigated in different manufacturing environments. One is the 

Exponential failure mechanism in a continuous flow process and another is the Weibull 

failure mechanism in a discrete part process.  

For those two models, the expected loss-cost functions are established by the 

sampling scheme and cost structure. Optimal values of the economic design parameters 

including the sampling size( n ), the sampling intervals ( h ) and control limit coefficient 

( k ) are determined by minimizing loss-cost functions. Because of sensitivity 

investigation on the model with critical input parameters may provide some answers for 

the model analyst. A sensitivity analysis is provided to discuss how the model can be 

affected by the time parameters or cost parameters in the investigated model. For 

illustration purpose, numerical results are also presented. 

Subsequently, we perform comparative analysis between the model that once an 

assignable cause occurs, no further assignable causes will occur and the modified model 

that allow for the second occurrence of an assignable cause following the first occurrence. 
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Our numerical investigations showed that a modified model should be helpful in 

reducing the quality cost and increasing competitiveness in a discrete part process. 

Key words: Continuous Flow Process, Discrete Part Process, Economic design, 

Exponential shock model, Multiple assignable causes, Weibull shock model, x -control 

chart. 
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Chapter 1 

Introduction 

Control charts are the most theoretical technology in magnificent seven. Control 

charts are the primary quality improvement tools in statistical process control (SPC), 

which used to establish and maintain statistical control of manufacturing process. The 

effective use of control charts are largely dependent upon their design. For this reason 

given above, control charts are practical subjects and play important roles in SPC. In 

Section 1.1, we describe the background of the control charts. Section1.2 is devoted to 

introduce inspection intervals principle. In Section 1.3, we relate our problem to earlier 

works in the literature. Section 1.4 shows the description of the models in this thesis. At 

the end of this chapter, the scope of the thesis is presented in Section 1.5. 

1.1 Background 

The control chart was originated in 1924 by Shewhart [37] as a means to 

differentiate between the normal, expected random causes and the special or assignable 

causes of the process variability. In the development of new processes or products, or in 

the restudy of existing ones, the Shewhart control charts are still the basic tools for 

establishing a state of statistical control ( Gibra [17] ). The    control chart is an online 

control tool used to detect the mean shifts of a process. When a    control chart is used 

to monitor the process mean, three questions are concerned by the quality control 

engineers. These are (1) How large a sample should be employed? (2) At what interval 

should the samples be taken? (3) What multiple of sigma should be used in determining 

the control limits? ( Duncan [14] ). Selection of these decision variables based on some 

subjective and/or objective criteria. Shewhart [37] developed the use of 3-sigma control 

limits as action limits. The justification of 3-sigma limits is based on empirical-economic 
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considerations rather than on a formal statistical basis. Shewhart settled on subgroup 

sizes of 4 or 5 for   - and  -charts and left the quality control engineer or other 

personnel. The design can affect the cost, statistical properties, and ultimately user 

confidence. Cost considerations are important for obvious reasons. 

The concept of an economic design was first introduced by Girshick and Rubin [18]. 

Although the optimal control rules in their model are too complex to have practical value, 

their work provided the basis for most cost-based models in control chart designs. The 

pioneer investigation of the economic design of an   -chart was made by Duncan [14]. 

He formulated an excellent model for the determination of the optimal parameters of an 

  -chart. 

However, these reviews are centered on piece part manufacturing. In continuous 

processes, there is not a well defined production unit. Almost any chemical, petroleum, 

bulk liquid, or otherwise semi-homogenized product is a case of this kind. The problem 

is compounded by the fact that the sample may have been taken from a vat or pipeline in 

which there is a homogeneous mixture resulting from flow or agitation. To pull   

samples instantaneously from a continuous flow process would usually result in ranges of 

zero, or in the range being an almost pure measure of test variation. Due to the number of 

such process, there is a need to develop appropriate quality control techniques for 

continuous flow processes. 

Koo and Case [23] first proposed an economic design of     control charts for 

using in monitoring continuous flow process, where the amount of time the process 

remains in control can be formulated as exponential distribution. A sampling scheme in a 

continuous flow process is to take one sample from the process at each sampling time 

and then combine   analytical results into a subgroup. That is considerably different 

from pulling   samples at one time as in a discrete piece-part process. 
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In practice, many production processes are affected by several assignable causes. 

Therefore, processes subject to single assignable cause are not common. In such situation, 

an investigation of the case where there is a multiplicity of assignable causes is therefore 

desirable. Duncan [15] has generalized his single assignable model to a situation in 

which there are s assignable causes, however, where different special causes will shift the 

process mean by different amounts. Duncan’s multiple causes model is divided into two 

types: Model I presents “a single occurrence” model. It is assumed that once assignable 

cause     occurs, the process remains in that other assignable causes occur no longer till 

assignable cause    is detected; Model II presents “double occurrence”. It is assumed 

that the model allows for the second occurrence of an assignable cause following the first 

occurrence.  

Many interesting research results are investigated on the process failure mechanism  

(see Duncan [14,15], Hu [21], Banerjee and Rahin [3]). Past work regarding process 

failure mechanism may be classified into three categories: (i) Exponential, (ii) Weibull, 

and (iii) Gamma. The time between occurrences of successive special causes are 

exponentially distributed with a specified mean value, and thus, a constant failure rate for 

the process is implied. Banerjee and Rahin [3] pointed out that the use of a constant 

sampling interval is counterintuitive in the case of a process with an increasing failure 

rate. A more realistic approach is to shorten the sampling interval because the process 

deteriorates further as time goes by. 

In this thesis, we deal with two process failure mechanisms in different 

manufacturing environments with multiple assignable causes. One is the Exponential 

failure mechanism in a continuous flow process and another is the Weibull failure 

mechanism in a piece-part process. For those two models, the expected loss-cost 

functions are established by the sampling scheme and cost structure. Optimal values of 
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the economic design parameters including the sampling size( n ), the sampling intervals 

( h ) and control limit coefficient ( k ) are determined by minimizing loss-cost functions. 

Analytical results for sensitivity analysis are also obtained. 

1.2 Inspection interval principle 

In this section, we introduce the inspection interval principle ( Banerjee and Rahim 

[3] ).We attempt to obtain a near-optimal solution by imposing some sort of restriction on 

the lengths of sampling intervals. In this connection, we note that the uniform sampling 

intervals for Markovian shock models provide a constant integrated hazard over each 

interval. Being motivate by this, we propose that the lengths of the sampling intervals 

should be chosen in such a way that the integrated hazard over each interval should be 

equal. 

The process is monitored by drawing random samples of size n at times 

1 1 2 1 2 3,  ,  ,  h h h h h h    and so on. Where jh  is the j th sampling interval. For 

convenience, let jW  be the time of the j th sample, 1 ,  1,  2,  j
j iiW h j   and 00 W . 

For a non-uniform sampling, the length of the sampling interval jh ( 1,  2,  j  ) is 

chosen such that the probability of a process shift in an interval, given no shift until the 

start of the interval, is constant for all intervals. This amounts to choosing the jh  such 

that the integrated hazard rate over each interval is constant. Specifically, the jh  is 

chosen such that 

1 1

0

( )  ( )  , 0,  1, 2, 
W Wj

W j

r t dt r t dt j


                        
 (1.1) 

and the Weibull hazard rate is defined by  

1( )r t t  .                            (1.2) 

Utilizing equations (1.1) and (1.2) and induction, one obtains 
1

1j
w j h , and therefore, 
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 1 1

1( 1)jh j j h    .                          (1.3) 

From the above Equation (1.3), the jh  is a non-increasing function of 1h . The jW  goes 

to infinity as j  goes to infinity. That is  321   hhh  and lim j
j

W


  . 

1.3 Literature Review 

The pioneer investigation of the economic design of x -control charts was made by 

Duncan [14]. He formulated an excellent model for the determination of the optimal 

parameters of x -control charts. These parameters ( the sample size, the time interval 

between taking successive samples, and the control limits ) were derived to maximize the 

approximate average net income of a process. He also made a number of specific 

assumptions. For example, he assumed an exponential time to failure of the process and 

that the process is subject to the occurrence of an assignable cause of variation which 

takes the form of a shift, of constant magnitude, in the process mean. The standard 

deviation is assumed to remain stable. Furthermore, he assumed that the process is not 

shut down while the search for the assignable cause is in progress. Since the work by 

Duncan, numerous authors have made a wide variety of changes to Duncan’s modeling 

assumptions, the distribution of the time of assignable cause, approach, and et al. on their 

economic design of process control charts. Earlier work in this area was summarized by 

Montgomery [27] and Vance [40]. Both are excellent references. Several works focusing 

on the economic design of    control charts will be discussed. 

1.3.1 Single special cause 

The classical model for the economic design of x -control charts subject to a single 

assignable cause was first introduced by Duncan [14]. An approximation to the optimal 

design was found. Goel, et al. [19] developed an algorithm to find the exact optimal 

solution of Duncan’s model by computer. Gibra [16] developed a model for the 
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determination of the optimal parameters of x -control charts. He assumed that the sum 

of times required to take, inspect a sample, compute and plot a sample average and to 

discover and eliminate the assignable cause has an Erlangian distribution. In Duncan’s 

model, the author assumed that the time to discover and eliminate the assignable cause is 

constant. 

Chiu and Wetherill [11] proposed a simple semi-economic scheme for the design of 

a control plan using an x -control chart. They simplified the loss-cost function proposed 

by Duncan by eliminating some insignificant terms. The essential characteristic of the 

semi-economic plan is to specify the probability of true alarms at a value of 0.9 or 0.95. 

They found that of the 25 semi-economic plans 17 were better than Duncan’s 

approximate plans and the remaining 8 showed a loss-cost within 1.7% above Duncan’s 

corresponding values. 

Lorenzen and Vance [25] provided one unified approach to the economic design of 

process control charts. They considered a general process model that applied to all 

control charts. Collani [13] discussed two process control strategies: (1) As soon as one 

sample average falls outside the control limits, the process is shut down and action is 

taken to search the assignable cause of variation. (2) The process is shut down in every h 

hours. The expected cost produced was given as investigating the assignable cause. 

Tagaras [39] considered the probability of shift, the correlation of process variance and 

mean, and error of measurement on the optimal design parameters. 

1.3.2 Warning limits 

Gordon and Weindling [20] presented the economic design of x -control charts 

with warning limits. They consider a single assignable cause model, and minimize the 

long run average cost per good part produced. Chiu and Cheung [10] presented a study 

which starts where Gordon and Weindling stop to investigate the economic design of x
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-control charts with both warning and action limits, based on a widely studied process 

model. They assumed that a search for the assignable cause is undertaken when either (1) 

any point exceeds the action limit, or (2) a run of N points fall between the action and 

warning limits. The loss-cost function is following Duncan’s [14] arguments with 

straightforward modifications. 

1.3.3 Joint economic designs 

Two charts are usually employed together to monitor the process. One is for 

monitoring the shift in the process mean; the other for monitoring the change in the 

process variation. In Duncan’s model, the standard deviation is assumed to remain stable. 

Saniga [34] was the first to study the joint economic design of    and   charts in which 

Duncan’s [14] approach is not used. He assumed that two shifts can occur during the 

production of a specified number of units. Therefore, the parameters of   chart are 

considered. Saniga [35] also investigated the sensitivity of the economic design to the 

type of process model using a discrete-time cost model developed by Barker [4]. 

Furthermore, Saniga [36] was the first considered an application of economic statistical 

principle to the joint design of an    and   charts. The objective is to minimize the 

expected total cost per unit time subject to constraints on the Type I error probability, 

Type II error probability and average time to signal (ATS). 

Still another useful paper is that of Rahim, et al. [33]. Their cost model for their 

economically-based    and variance charts followed the unified approach of Lorenzen 

and Vance [40]. The joint    and variance charts were compared to    and   charts. 

Results showed that the    and variance charts have lower cost and higher power. 

1.3.4 Non-Exponential process failure 

Most of the work of the economic design of quality control charts assume that the 
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underlying distribution of the process failure mechanism is exponential. That is, the times 

between occurrences of successive special causes are exponentially distributed with a 

specified mean value, and thus, a constant failure rate for the process is implied. For 

some processes that deteriorate with time, the exponential assumption may not be 

appropriate. 

Banerjee and Rahim [2] utilized a renewal theory approach to design and evaluate 

economically-based control charts. Examples were given for the situations where the 

distributions of the process failure mechanism was geometric and where it was Poisson. 

The case of the gamma shock model was also thoroughly discussed. They showed that 

certain non-Markovian models can be analyzed by adopting a renewal equation approach. 

However, the issue of nonuniform sampling scheme had not been addressed until 

Banerjee and Rahim [3] pointed out that the use of a constant sampling interval is 

counterintuitive in the case of a process with an increasing failure rate. Therefore, they 

proposed an economic model of the    chart under Weibull shock using a varying 

sampling interval. They compared three cases and found that increasing the frequency of 

sampling with the age of the system yields a lower operational cost per hour for an 

increasing failure rate Weibull distributed shock model. 

Parkhideh and Case [30] extended and generalized the model of Banerjee and 

Rahim [3] to develop six design parameters of economically-based dynamic x -control 

chart. They, in addition to adopting the rich Weibull failure mechanism, allowed the 

control chart design parameters to vary over time. Comparisons between the dynamic x

-control chart and the traditional x -control chart under a wide range of situations were 

made. They reported that the dynamic x -control chart is always superior to Duncan’s 

[14] x -control chart when the underlying distribution of the process failure mechanism 

is Weibull. Hiroshi and Rahim [24] simplified the dynamic model of Parkhideh and Case 
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[30] to develop three design parameters of economically-based dynamic x -control chart. 

Zhang and Berardi [45] proposed an economic statistical design model subject to 

constraints on the Type I error probability, power and average time to signal (ATS), 

which basically followed the model of Banerjee and Rahim [3]. In addition, Rahim [32] 

presented a FORTRAN program for the optimal economic design of x -control charts 

based on the economic model of Banerjee and Rahim [3]. 

Mcwillians [26] conducted a sensitivity analysis of the effects of misspecification of 

the underlying distribution of the process failure mechanism on the optimal control chart 

design parameters and the resulting operating loss. The Weibull distribution was selected 

to represent the underlying distribution of the process failure mechanism and it was 

implemented in Lorenzen and Vance’s [25] model. He found that the economic control 

chart design is not sensitive to the shape of the Weibull distribution. 

1.3.5 Multiple special causes 

Duncan [15] extended his single cause model [14] to develop an economic model 

for the x -control chart subject to a multiplicity of special causes. Each special cause 

produces a shift of know magnitude in the process mean. Two models designed Model I 

and Model II were considered. Model I assumes that once a special cause occurs, it 

continues to affect the process until it is detected and during this period it is undisturbed 

by the occurrence of other special causes. Model II allows for the second occurrence of a 

special cause following the first occurrence. This problem has also been addressed by 

several other researchers. All of them used only one set of control limits to maintain the 

process under control. There are situations, however, where different special causes will 

shift the process mean by different amounts; also, different cost and restoration 

procedures are required to repair the process for different shifts. 

Tagaras and Lee [38] applied the Model I of Duncan [15] to propose an economic 



 

10 

 

model of multiple control limits and correct procedures with multiple corresponding 

levels of process shifts. The criterion used for determining the design parameters was the 

expected loss per time unit. It was reported that the proposed model showed a significant 

improvement over the single-cause model. Jaraiedi and Zhuang [22] presented a 

computer program which followed the Model I of Duncan [15] to determine the optimal 

design parameters. Thus, Chung [12] simplified the Model I of Duncan [15] to develop 

the feasible solution of the design parameters. Chen and Yang [8] extended the time of 

occurrence of assignable causes in Duncan [15] multiplicity-cause model from 

exponential distribution to Weibull distribution. 

Arnold [1] applied Collani’s [13] alternative sampling policies to design a model of  

   control charts subject to a multiplicity of special causes and assumed that there are 

      states in which a process can exist. That is, there is one state    that indicates 

the process is in a state of statistical control and   states that indicate the process mean 

has shifted. 

1.3.6 Continuous flow process 

Most of the applications of x -control charts are in a piece-part manufacturing 

environment. Koo and Case [23] applied the x -control chart procedure to a continuous 

flow process and developed an economic model. The underlying distribution of the 

process failure mechanism is the exponential distribution. In their procedure, a sampling 

scheme is to take one sample from the process at each sampling time and then combine 

  analytical results into subgroup that is considerably different from pulling   samples 

at one time. Chen and Yang [6] modified Koo and Case [23] to develop an economic 

design of x -control charts with single assignable cause in a continuous flow process. 

They employed the Weibull distribution as the underlying distribution of the process 

failure mechanism. In addition, Chen and Yang [8] exposed an economic design of x



 

11 

 

-control chart with multiple assignable causes in a continuous flow process based on the 

Model I of Duncan [15]. They also assumed that the underlying distribution of the 

process failure mechanism is the Weibull distribution. 

More recently, focus on other control chart including Chen and Yang [7], Yang and 

Rahim [42], Zhang, et al. [44] provided fine reviews of the economic design of process 

control charts. Chen and Yang [7] proposed a model of a moving average control chart 

(MA control chart) with a Weibull failure mechanism from an economic viewpoint. In 

Zhang, et al.’s [44] paper, it is proposed to monitor the cumulative number of samples 

inspected until a nonconforming sample is encountered. An economic model is 

developed for designing such a generalized CCC chart. Yang and Rahim [42] extended 

the research which conducted by Banerjee and Rahim [3]. Their general approach is now 

applied to a multivariate control chart instead of a univariate control chart. A cost model 

for the economic statistical design of a Hotelling 2T  control chart is derived to deal 

with situations involving a Weibull shock model with an increasing failure rate. 

1.4 Problem Statement 

In this dissertation, we investigate the economic design of x -control charts for 

discrete part Weibull process and for continuous flow exponential process with multiple 

assignable causes.  

For discrete part Weibull process, samples of size   are drawn in every jh  hours 

of production, and the sample means are plotted on the x  control charts which has an 

control limit at         . The sampling method and plotting on x -control charts in 

a discrete part process is shown in Figure 1.1. And the average cycle length for discrete 

part process is illustrated in Figure 1.2. 
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Figure 1.1 Sampling method and plotting on x -control charts in a discrete part process 
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Figure 1.2 The average cycle length for discrete part process 

For continuous flow exponential process, sampling scheme is to take one sample 

from the process at each sampling time and then combine   analytical results into a 

subgroup. The sample means are plotted on x -control charts which has an control limit 

at         . The sampling method and plotting on x -control charts in a continuous 

flow process is shown in Figure 1.3. And the average cycle length for continuous flow 

process is illustrated in Figure 1.4. 
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Figure 1.3 Sampling method and plotting on x -control charts  

in a continuous flow process 

. . . . . . . . . .

In control Out of control

Assignable

Cause Detected

Assignable

Cause

Discovered Assignable

Cause

Removed

Assignable

AVGICT AVGOOCT

gnh (gn+j)h (gn+j+1)h (g+1)nh

i

e D

Cause

Occures

 

Figure 1.4 The average cycle length for continuous flow process 

We assume that there are s possible assignable causes and the occurrence time of 

any one assignable cause follows Weibull or Exponential distribution. The occurrences of 

s  assignable causes are independent to each other. Once assignable cause 
i

A  occurs, it 

continues to affect the process until it is detected by control chart, and during this period 

it is allowed for the second occurrence of an assignable cause following the first 

occurrence. The process at any time is either in control or out of control which resulted in 

a 
i

   shift amount in the process mean by the occurrence of the i th assignable cause 

i
A . Duncan [15] considered three different shape parameters (the 

i
 ’s are 
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non-increasing functions of the 
i

 ’s), they are J-shaped, rectangular and half-bell shaped. 

These distributions would cover the distribution most likely to meet in reality. Therefore, 

three prior distributions of 
i

  are considered. There are negative-exponential 

( (1 2)exp( 2)
i

 ), uniform and half-normal ( 2(1 2 )exp( (0.5 ) 2)
i

  ). Finally, to 

simplify the analysis, we assume that the joint effect of the two assignable causes is 

always to produce a shift of   in the process mean regardless of what two 

assignable causes occur jointly. Consequently, there is no need to consider the prior 

distribution of the second assignable causes.  

A production cycle begins when a new system is installed and ends when the 

process is brought back to an in-control state after a system failure is detected and 

repaired. The objective is to find optimal values for sample size, control limit coefficient, 

and sample interval such that the expected loss-cost per unit time is minimized. 

1.5 Scope of Dissertation 

The main purposes of this dissertation are to analyze: (i) the economic design of x

-control charts for discrete part Weibull process with multiple assignable causes; and (ii) 

the economic design of x -control charts for continuous flow exponential process with 

multiple assignable causes. This dissertation is organized by four chapters as follows: 

Chapter 1 is an introduction, which shows the background of the control charts, 

earlier studies on the economic design of x -control charts. The inspection interval 

principle relevant to this study is also presented. 

In Chapter 2, we study the economic design of x -control charts for discrete part 

Weibull process with multiple assignable causes. The expected cycle length and the total 

expected cost per cycle are derived by using the inspection intervals principle. Next, the 

expected loss-cost function is constructed by the ratio of the expected cycle length and 
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the total expected loss-cost per cycle. We determine the optimal design parameters ( n , 

k , and 1h  ) of the model to minimize the expected loss-cost function. In addition, 

comparison is also investigated. Finally, we provide numerical results among the optimal 

design parameters, the minimal expected loss-cost function and the specific value of 

design parameters. 

In Chapter 3, we consider another the economic design of x -control charts for 

continuous flow exponential process with multiple assignable causes. The occurrence 

time of any one assignable cause follows Exponential distribution. For such type of 

process, we construct the expected loss-cost function based on the the expected cycle 

length and the total expected loss-cost per cycle. In addition, the optimal design 

parameters ( n , k , and h  ) of the model can be analytically determined to minimize 

the expected loss-cost function. Finally, sensitivity analysis is investigated, and a 

numerical result is also provided. 

Chapter 4 presents some conclusions based on results of the investigation, and 

recommendations for the future investigations.  
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Chapter 2 

Economic Design of x -Control Charts for Discrete Part 

Weibull Process with Multiple Assignable Causes 

In this chapter, we study the economic design of x -control charts for discrete part 

Weibull process with multiple assignable causes. A modified version of Chen and Yang’s 

model [8] for the x -control charts is proposed to deal with situations involving the 

multiple assignable causes. In Chen and Yang’s model, it is assumed that once an 

assignable cause occurs, no further assignable causes will occur. To ascertain the effect of 

this assumption, a study is conducted in this chapter that allows for the second 

occurrence of an assignable cause following the first occurrence. For manufacturers, the 

economic objective of production is very important and has to be optimized. An 

economic approach is developed for the design of x -control charts. Therefore, we adopt 

Duncan’s multiple causes model [15], Banerjee and Rahim’s sampling scheme [3], and 

Chen and Yang’s cost structure [8] to develop a modified model. A modified model is the 

economic design of x -control charts for discrete part process with Weibull in control 

times which subjects to a multiplicity of assignable causes. 

This chapter is organized as follows: In Section 2.1, we give some basic definition 

and assumptions of the model under study and give some notations. Section 2.2 presents 

the formulation of the expected cycle length by using the inspection interval principle. In 

Section 2.3, we develop the total expected loss-cost per cycle. And the expected loss-cost 

function is constructed. In Section 2.4, we determine the optimal design parameters. 

Finally, in Section 2.5, a numerical example will be presented to compare the optimal 

results between the modified model and Chen and Yang’s model. 

2.1 Definitions, Assumptions and Notations 
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(1) The occurrence time of the i th assignable cause (denoted as iA , 1,  2,  ,  i s ) 

that the process remains in the in-control state follows a Weibull distribution and the 

probability density function is given by 

1( )  ,  0,  1,  0,  1,  2,  ,  .ti

i i if t t e t i s
                    (2.1) 

The hazard rate is 1( )  i ir t t   , where i , 1,  2,  ,  i s , is a scale parameter 

and   is a shape parameter. 

(2) The process is normally distributed and characterized by an in-control state 0 , 

because of the occurrence of an assignable cause i
A  which occurs at random, 

resulting in a shift in the mean from 0  to either 0 i    or 0 i   . Where 

0 ,  , and i  are, respectively, the process mean, the process standard deviation, 

and shift parameter. 

(3) The occurrence of the i th assignable cause i
A  does not affect the process 

variability, that is, the process mean and the process variability are independent. 

(4) The shift in the process mean is instantaneous. 

(5) The time to sample and to draw control point is negligible and production ceases 

during the searches and repair. 

(6) Define  ( 1,  2,  ,  ,  1,  2,  )ijp i s j   as a conditional probability that the i th 

assignable cause i
A  will occur during the sampling interval 1jh  , given that the 

cause i
A  is not occur at time jW , that is 

1

( ) ( )1

1
( )

( )
1 exp( ( ) )

( )

W j

W Wi j i ji
W j

ij i
Wi j

i
W j

f t dt e e
p h

ef t dt

  








  

 


   



.          (2.2) 

From the above Equation (2.2), the ijp  is a function of i , 1h , and   only. Let 

ij ip p , for 1,  2,  ,  ,  1,  2,  i s j  . 

(7) Define ijq  as a unconditional probability that the i th assignable cause i
A  will 
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1

0 0

1 1 1

1 1 (1 )

0 0

( ) ( )

1 1
( ) ( ) (1 ) ( ) (1 ) (1 ) ,

W j

i ij ij j i
W j

j j

W j
j

i i i i i pi
W j

j j i

q t W f t dt

t f t dt j h p p h p p A 

 

 

 


 

 




 

   

        

 

 

occur during the sampling interval 1jh  . The ijq  can be obtained from Equation 

(2.2). 

1

( ) (1 ) ,   for 1,  2,  ,  ,  1,  2,  
Wj

j

ij i ij ij
W j

q f t dt p p i s j


     .     (2.3) 

(8) Let ij  be the expected duration of the in-control period within the sampling 

interval 1jh  , given that the i th assignable cause i
A  occurred during this sampling 

interval, that is 

1

( ) ( )
W j

j i
W j

ij

ij

t W f t dt

q








.                          (2.4) 

Thus, the expected in-control time i  during any one sampling interval in which 

the transition is from an in-control state to an out-of-control state is given by 

 

  

(2.5) 

 

where 
1

( )
0
( 1) l

x
l

A l x



   , for 1x  , and ( )y  is gamma function, 1y  . 

In this chapter, the following notations shall be used in the formulation of the 

loss-cost function. 

n  － the sample size (decision variable) 

j
h  － the length of the j th sampling interval, where 01,  2,  ,  0j h   

(decision variable) 

k  － the control limit coefficient (decision variable) 

0Z  － the expected search time associated with the false alarm 

1Z  － the expected time to discover assignable cause i
A  once the cause i

A  
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2.2 Formulation of the expected cycle length 

We assume that there are s possible assignable causes and the occurrence time of 

any one assignable cause follows Weibull distribution. The occurrences of s  assignable 

causes are independent to each other. After being disturbed by an assignable cause i
A , 

the process will be affected by any other assignable causes. In the other hand, if the first 

assignable cause continues undetected, the second assignable cause (possibly a repetition 

has been detected 

2 iZ

 

－ the expected time to repair process once the cause i
A  has been 

discovered, where 1,  2,  ,  i s  

2Z 

 

－ the expected time to repair process once the joint assignable cause has 

been discovered 

0D  － the quality cost per unit time while producing in control 

Y  － the cost per false alarm while producing in control 

1iD

 

－ the quality cost per unit time while producing out of control owing to the 

occurrence of the i th assignable cause i
A , where 1,  2,  ,  i s  

1D 

 

－ the quality cost per unit time while producing out of control owing to the 

occurrence of the joint assignable cause 

iw  － the cost to locate and repair the i th assignable cause i
A , where 

1,  2,  ,  i s  

w  － the cost to locate and repair the joint assignable cause 

a  － the fixed sample cost 

b  － the cost per unit sampled 
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of the first) is assumed to occur at random in a later intervals.  

The occurrence time of the second assignable cause after the taking of the first 

sample being distributed Weibull with the mean 1(1 ) (1 1 )    and the probability 

density function of occurrence will be 1( )  ,  1,  0,  0tf t t e t
            . The 

process is assumed to be in one of the three states. It is (1) in a state of in control or (2) it 

has been disturbed by the occurrence of the i th assignable cause i
A  which produces a 

shift of i   in the process mean or (3) it has been disturbed by the occurrence of the 

second assignable cause following the first, the joint effect of which in every case is 

arbitrarily assumed to produce a shift of   in the process mean. The expected cycle 

length consists of three states, which can be derived as follows: 

(1) State 1: 

The probability at time t  in control is 

0

1 2 1 2( ) ( , , , ) ( ) ( ) ( ) t
s sP T t P A t A t A t P A t P A t P A t e

              ,  (2.6) 

where 10

s

i i  and then the probability density function of occurrence of multiple 

assignable causes will be 1

0 0 0 0( )  exp( ),  1,  0,  0f t t t t          , thus the 

average time in control is 1

0(1 ) (1 1 )   . 

Therefore, the process is in an in-control state and the expected time that the 

assignable cause will occur is 1

0(1 ) (1 1 )   . 

(2) State 2: 

The process has been disturbed by the occurrence of the first assignable cause and 

produces a shift of i   in the process mean. When the process is in State 2, it is 

assumed that no further disturbance occurs until after the first sample is taken. The 

process can be classified into two situations. 

Situation 1: 
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Consider Situation 1 for Figure 2.1. Situation 1 is the period that the second 

assignable cause will not to be occurring until assignable cause i
A  is detected. 

 

 

 

 

 

 

Let i  be the probability of type II error, that is, the probability that control point 

falls inside control limits after the occurrence of the first assignable cause. Thus, 

( ) ( )i i ik n k n       , where ( )   is the cumulative distribution of the 

standard normal.  

Define 1( )E T  as the expected time that is from the occurrence of the first 

assignable cause i
A  to the cause i

A  has detected, discovered, and removed, which can 

be expressed as: 

 

 

 

 

(2.7) 

where 1h

i ie
     , 11 hi

ip e
  , and i  is given by Equation (2.5). 
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Figure 2.1. The process of Situation 1 for State 2 in a discrete part process. 
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Situation 2: 

Consider Situation 2 for Figure 2.2. Situation 2 is the period that from the 

occurrence of the first assignable cause to the occurrence of the second assignable cause 

and during this period that the assignable cause i
A  is never to be detected. 

 

 

 

 

 

 

Let 2p  be the probability that the second assignable cause occurs between j iW   

and ( 1)j iW   . That is 

2

1 2

1

2 1
1

1

( )
1 exp( )

( )

W j

W Wj j

W j

W j

W j

f t dt e e
p h

ef t dt

  








   



  



 
     






.                    (2.8) 

From the above Equation (2.8), the 2p  is a function of  , 1h , and   only. Let 

2p p  . 

Define 2( )E T  as the expected time that is from the occurrence of the first 

assignable cause i
A  to the occurrence of the second assignable cause, which can be 

expressed as: 
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Figure 2.2. The process of Situation 2 for State 2 in a discrete part process. 
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(2.9) 

where 1h

i ie
    , 11 hi

ip e
  , and 

1

1 (1 )(1 ) (1 1 ) (1 ) ph p p A            . 

Let 2iAVGOOCT  be the expected time to detect the first assignable cause, once the 

i th assignable cause i
A  has occurred. To summarize the Situation 1 and 2, we obtain 

the 2iAVGOOCT  as following: 

2 1 1 2 2( ) ( )i iAVGOOCT E T Z Z E T    .                        (2.10) 

Then the average length of runs in State 2 resulting from the initial assignable cause 

i
A  , respectively, is. 

1 2[ 2] ( ) ( )E State E T E T  .                             (2.11) 

(3) State 3: 

 

 

 

 

 

Consider State 3 for Figure 2.3. State 3 is the period that from the occurrence of the 
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Figure 2.3. The process for State 3 in a discrete part process. 
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second assignable cause to the joint assignable cause detected. The joint effect is 

assumed to produce a shift of   in the process mean. Let the probability of detecting 

a shift of   be 0 , 0 ( ) ( )k n k n       . 

Define 2   ( 1,  2,  ,  )iP i s  as the probability that the second assignable cause will 

occur after the occurrence of the first assignable cause, which can be expressed as: 

 

 

(2.12) 

where 1h

i ie
    . 

Let 3iAVGOOCT  be the expected time of detecting the joint assignable cause. The 

expression for the 3iAVGOOCT  is given by 

 

 

 

(2.13) 

 

Let ( 3)E State  as the average length of runs in State 3 resulting from the initial 

assignable cause i
A  is 
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where 0 1

0 1 hp e
  . 

The expected number of false alarms per cycle before the process goes out of 

control will be   times the expected number of samples taken in the “in-control” period, 

where  2 1 ( )k   . The expected number of false alarms per cycle will thus be 1r  . 

Therefore, the expected time of finding false alarms will be 0 1(  )Z r  . 

The occurrence rate of the assignable cause i
A  in total s assignable causes is 

assumed to be 0i  . The average length of runs in some “out-of-control” state that 

result from the initial assignable cause i
A  is the sum of the average run length in State 2 

plus the average run length in State 3. The overall mean time for a cycle will thus be 

  01

0

10 0

1 1 1
( ) ( ) (1 ) ( 2) ( 3)

s
i

i

p
E T E State E State Z

p

 


  


       .      (2.16) 

2.3. Formulation of the expected loss-cost per cycle 

Based upon the above derivation of the expected cycle length, the ingredients of 

expected loss-cost per cycle ( )E C  are as follows: 

(1) The expected quality cost per cycle of in-control state is 

1

0

0

1 1
( ) (1 )D 

 
   .                                                (2.17) 

(2) The expected cost per cycle of out-of-control state is 

 1 2 1 3

1 0

s
i

i i i

i

D AVGOOCT D AVGOOCT




   .                            (2.18) 

(3) The expected cost per cycle to locate and repair the assignable cause is 

 2 2

1 0

(1 )
s

i

i i i

i

P w P w




    .                                          (2.19) 

(4) The expected sampling cost per cycle is 

1 2 3

1 0

( ) ( )
s

i

i i

i

a bn r r r




     .                                         (2.20) 
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(5) The expected cost per cycle of finding false alarms is 

1(  )Y r  .                                                       (2.21) 

(6) Let 2 ir  be the expected number of samples taken in State 2 when the assignable 

cause i
A  has occurred. Let 3ir  be the expected number of samples taken in State 3. 

The 2 ir  and 3ir  are expressed as Equation (2.22) and (2.23). 

 

 

 

 

 

(2.22) 

where 1exp( )i i h       . 

 

 

 

(2.23) 

To summarize, we obtain the expected loss-cost per cycle as following: 
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Finally, the expected loss-cost function ( )E A  is constructed by the ( )E T  and 

)(CE . Our objective is to find the optimal design parameters n , 
1

h  and k  to 

minimize the ( ) ( ) ( )E A E T E C  based on the given values of time, cost and shift 

parameters. 

2.4. Determination of optimal design parameters 

The parameters involving in the expected loss-cost function can be classified into 

cost parameters ( 0 1 1;  ;  ; ;  ; w ;  ;  i iY D D D w a b  ), time parameters ( 0 1 2 2Z ; ;  Z ; iZ Z  ), shift 

parameters ( ; i  ), Weibull distribution parameters ( ;  i  ) and design parameters 

( 1 ;   ;  n h L ). A numerical example is used to illustrate the performance of the model. We 

assume that $2000Y   per false alarm, 0 $210D   per unit time, 1 $4000D   per unit 

time, $20a   per sampled, $20b   per unit sampled, $1000w   per cycle, 0 1.25Z   

hours, 1 1.25Z   hours, 2 2Z   hours, 0.02  , 2   and they remain the same for 

the different assignable causes. iD1 , iw , iZ2 , and i  are taken to be a function of i  

and the rules of selection are as follows: 

(1) The i  is a non-increasing function of the i  for all i. When the cause i
A  occurs, 

0  will shift to 0 i   . 1iD  is proportional to the resulting increase in the 

percent of product outside specification ( 0 1 (3 ) ( 3 ) 1 (3 )i i i i            , 

for 1,  2,  ,  i s ). From the repeated production experiment, the more the 

occurrence of shift, the lower values of iw  and 2 iZ  are. 

(2) Assume the process exists seven assignable causes ( ,  1,  2,  ,  7)iA i  , those causes 

will produce 1 , 1.5 , 1.8 , 2 , 2.2 , 2.5 , and 3  shift amount, respectively, 

the occurrence of any one assignable cause are random and independent. 

(3) 2 iZ , 1iD , and iw  are functions of i . Assume that 2i  , 1iD , iw , and 2 iZ  are 

set to be $4000, $1000, and 2 hours. 
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(4) Owing to obtain i , we assume that 1 1 1 80s

i i iD D      . 

Let iPD  denoted the prior distribution of i  ( 1 2 3 71,  1.5,  1.8, ,  3       ). 

In this section, the negative-exponential, uniform, and half- normal distribution are 

considered for iPD . Let the prior distribution of 4 =2 be 4PD . We set up the values of 

the time parameters and the cost parameters for 4 =2 as “base case”, and in one set, i  

are chosen as proportional to iPD . According to the discussion of above (1), (2), (3), 

and (4) rules, we assume that 4( ) 1000i iw PD PD  , 2 4( ) 2i iZ PD PD  , 

1 0 04( ) 4000i iD     since 4 =2 and 1 1( )i iPD PD   . The values of iw , 2 iZ , 

and i  for different prior distributions and the values of 1iD  for different i  are 

displayed in Table 2.1. 

Table 2.1 

The set of cost and probability parameters.
a 

iA  i  0i  
iPD  

1iD  
2iZ  iw  3( 10 )i

  

iNE  iUn  iHN  iNE  iUn  iHN  iNE  iUn  iHN  iNE  iUn  iHN  

1 1 0.0228 0.303 0.143 0.352 575 3.29

3 

2 2.90

9 

1647 1000 1454 4.566 2.294 4.220 

2 1.5 0.0668 0.236 0.143 0.301 1684 2.56

5 

2 2.48

8 

1283 1000 1244 3.557 2.294 3.608 

3 1.8 0.1151 0.203 0.143 0.266 2901 1.10

3 

2 2.19

8 

1103 1000 1099 3.059 2.294 3.190 

4 2 0.1587 0.184 0.143 0.242 4000 2 2 2 1000 1000 1000 2.772 2.294 2.901 

5 2.2 0.2119 0.166 0.143 0.218 5341 1.80

4 

2 1.80

2 

902 1000 901 2.502 2.294 2.612 

6 2.5 0.3085 0.143 0.143 0.183 7776 1.55

4 

2 1.51

2 

777 1000 756 2.155 2.294 2.194 

7 3 0.5 0.112 0.143 0.130 12602 1.21

7 

2 1.07

4 

609 1000 537 1.689 2.294 1.557 
a

iNE , Negative-exponential; iUn , Uniform; iHN , Half-normal. 

2.5. Comparison with Chen and Yang’s model 

Chen and Yang [8] assumed once assignable cause i
A  occurs, it continues to affect 

the process until it is detected by the control chart, and during this period it is undisturbed 

by the occurrence of other assignable causes. Owing to compare the model, the computer 

program developed in this work is available from us. We used search technique which is 

developed by Rahim [32] to find the optimal values of the decision variables n , 1h , and 
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k . Table 2.2 compares the effect that variation in Weibull parameter values has on the 

economic design of x -control charts. With the same data, for several sets of  , cost 

comparisons between the modified model and Chen and Yang’s model for different sets 

of Weibull shape parameter. 

Table 2.2 indicates the following general conclusions: 

(1) When shape parameter   increases, the sampling interval 1h  and the expected 

loss-cost increase significantly and then decrease. 

(2) When shape parameter   increases, the control limit coefficient L  decrease, but 

there is no significant change on the sampling size n . 

(3) Comparisons between the modified model and Chen and Yang’s model, Chen and 

Yang’s model has smaller L value but larger 1h   than the modified model. Roughly, 

the range of difference of loss-cost between the two models is from 10% to 38%. and 

(4) When 1   (that is exponential distribution), the modified model will have larger 

loss-cost than Chen and Yang’s model. But there is no significant differences on  the 

control limit coefficient L  between the two models. 

(5) Among the economic design for three prior distributions, the half-normal prior 

distribution is the best while uniform prior distribution is the worse. The range of 

difference of loss-cost between half-normal and uniform prior distribution is from 3% 

to 12%.  

(6) For the modified model, possibly we should use charts with 2 sample size. 
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Table 2.2 

Optimal design parameters between the modified model and Chen and Yang’s model at 

three different prior distributions as   changes .
a
 

  Prior Distribution Model 
Optimal design 

( ) ( ) ( )E A E C E T  
n  1h  L  

1 

NE  
modified model 3 1.01 2.66 390.691 

Chen and Yang’s model 3 1.39 2.51 353.500 

Un  
modified model 2 0.83 2.61 384.760 

Chen and Yang’s model 3 1.39 2.59 346.356 

HN  
modified model 3 1.01 2.66 389.378 

Chen and Yang’s model 3 1.39 2.51 352.114 

1.5 

NE  
modified model 2 1.60 2.59 472.544 

Chen and Yang’s model 3 2.62 2.44 399.002 

Un  
modified model 2 1.59 2.66 482.880 

Chen and Yang’s model 3 2.60 2.56 398.134 

HN  
modified model 2 1.60 2.58 468.948 

Chen and Yang’s model 3 2.61 2.45 394.466 

2 

NE  
modified model 2 1.73 2.66 500.725 

Chen and Yang’s model 3 2.75 2.40 410.598 

Un  
modified model 2 1.72 2.72 526.204 

Chen and Yang’s model 3 2.73 2.53 411.885 

HN  
modified model 2 1.73 2.65 495.239 

Chen and Yang’s model 3 2.74 2.40 403.104 

3 

NE  
modified model 2 1.63 2.83 504.199 

Chen and Yang’s model 3 2.45 2.32 406.463 

Un  
modified model 2 1.61 2.86 546.441 

Chen and Yang’s model 3 2.42 2.47 405.930 

HN  
modified model 2 1.62 2.81 497.603 

Chen and Yang’s model 3 2.44 2.32 395.317 

4 

NE  
modified model 2 1.51 2.98 493.117 

Chen and Yang’s model 3 2.16 2.25 397.437 

Un  
modified model 2 1.49 3.00 543.670 

Chen and Yang’s model 3 2.13 2.41 393.925 

HN  
modified model 2 1.50 2.95 486.836 

Chen and Yang’s model 3 2.15 2.26 384.435 
a NE , Negative-exponential; Un , Uniform; HN , Half-normal. 
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Chapter 3 

Economic Design of x -Control Charts for Continuous Flow 
Process with Multiple Assignable Causes 

In this chapter, we study the economic design of x -control charts for continuous 

flow process with multiple assignable causes. A modified version of Koo and Case’s 

model [23] for the x -control charts is proposed to deal with situations involving the 

multiple assignable causes. In Koo and Case’s model [23], it is assumed that once an 

assignable cause occurs, no further assignable causes will occur. To ascertain the effect of 

this assumption, a study is made in this chapter that allows for the second occurrence of 

an assignable cause following the first occurrence. The probability of the assignable 

causes following exponential distribution and the process-failure mechanism having a 

fixed hazard rate. In addition, an economic approach is developed in this chapter for the 

design of x -control charts. Therefore, we adopt Duncan’s multiple causes model [15], 

Koo and Case’s sampling scheme [23] and cost structure of Koo et al. [24] to develop a 

modified model. A modified model is the economic design of x -control charts for 

continuous flow process which subjects to a multiplicity of special causes. Thus, the 

expected loss-cost function is presented and the optimal values of the design parameters 

( the sample size, the sampling interval and control limit coefficient ) are determined by 

minimizing the expected loss-cost function. 

This chapter is organized as follows: In Section 3.1, we give some basic definition 

and assumptions of the model under study and give some notations. In Section 3.2, we 

propose the formulation of the expected cycle length. Section 3.3 constructs the expected 

loss-cost function. In Section 3.4, we determine the optimal design parameters. Finally, 

sensitivity analysis are suggested in Section 3.5. 
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3.1 Definitions, Assumptions and Notations 

The definitions and assumptions considered in our model are as follows: 

(9) The occurrence time of the i th assignable cause (denoted as i
A , 1,  2,  ,  i s ) 

that the process remains in the in-control state follows an exponential distribution 

and the probability density function is given by 

( ) ,  0,   0,  1,  2,  ,  .ti

i i if t e t i s
                      (3.1) 

(2) The time at which the process goes out of control is distributed as the minimum of 

n independent exponentials with means   1 21 ,  1 ,  ,  1 n  and thus has an 

exponential distribution with mean 1/ , where  

                    



n

i
i

1

 .                                (3.2) 

(3) The process is normally distributed and characterized by an in-control state 0 , 

because of the occurrence of an assignable cause i
A  which occurs at random, 

resulting in a shift in the mean from 0  to either 0 i    or 0 i   , 

where 0 ,  , and i  are, respectively, the process mean, the process standard 

deviation, and shift parameter. 

(4) The occurrence of an assignable cause i
A  does not affect the process variability, 

that is, the process mean and the process variability are independent. 

(5) The process mean is not shifting slowly, but instantaneously. 

(6) The time to sample and draw control point is negligible and production ceases 

during the searches and repair. 

(7) Define   ( 1,2...., )ijp i s  as the probability that the assignable cause i
A  will 

occur during the sampling interval thj  and ( 1) stj  , that is 
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( 1) ( 1)

0

(1 )
,  for 1,  2,  ,  

1 1

j h t j h jh jh hi i i i i

jh i

ij nh t nh nhi i i

i

e dt e e e e
P i s

e dt e e

    

  





      

  





 
   

 
.    (3.3) 

When the process is out-of-control, the mean of the process will shift to 

0 i
   . If the shift occurs during the sampling interval thj  and ( 1) stj  , then 

the mean of the process in this subgroup will be 0 (( ) ) in j n       . Let the 

probabilities of detecting an assignable cause in a shift occurring subgroup and the 

next subsequent subgroups after the occurrence of assignable cause i
A  be 

i
P   

and 
i

P , respectively, 
i

P   and 
i

P  are formulated as follows: 


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n
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jn
k

n

jn
kPP  ,                  (3.4) 

   nknkP iii  1 ,                               (3.5) 

where ( )   is the cumulative density function of the standard normal 

distribution. 

(8) Let i  be the expected time between the samples taken just prior to the 

occurrence of assignable cause i
A  and the occurrence itself, that is 
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.  (3.6) 

(9) Define ˆ   ( 1,  2,  ,  )ijp i s  as the probability that a second assignable cause will 

occur during the sampling interval  thj  and ( 1) stj 
 
after the occurrence of 

assignable cause i
A , and  

ij
p is given by Equation (3.3), ˆ  

ij
p is the same formula 

with '  replacing 
i

 . 

Let the probabilities of detecting joint assignable causes in a shift occurring 

subgroup and the next subsequent subgroups be ˆ
iP  and ˆ

iP , respectively, ˆ
iP  

and ˆ
iP  are formulated as follows: 
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    ,(3.7) 

   ˆ 1
i

P k n k n       .                                (3.8) 

In this chapter, the following notations shall be used in the formulation of the 

loss-cost function. 

n  － the sample size (decision variable) 

h  － the interval between samples measured in hours (decision variable) 

k  － the control limit coefficient (decision variable) 

e  － the average time of sampling, inspecting, evaluating and plotting 

iD  － the average time taken to find assignable cause i
A  after a point has been 

found to fall outside the control limits , where 1,  2,  ,  i s  

D  － the average time taken to find the combined assignable causes after a point 

has fallen outside the control limits 

iM  － the increased loss per hour of operation due to the presence of assignable 

cause i
A  

M   － the additional loss per hour of operations when the process is in State 3 

T  － the average cost of looking for an assignable cause when a false alarm occurs 

iw  － the average cost of finding assignable cause i
A  when it occurs , where 

1,  2,  ,  i s  

w  － the average cost of finding the combined assignable causes, assumed to be 

independent of the assignable causes 
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0
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3.2 Formulation of the Expected Cycle Length 

We assume that there are s possible assignable causes. The occurrence time of any 

one assignable cause is assumed to be independently exponentially distributed with mean 

time 1/
i

  for 1,  2,  ,  i s . The occurrence time of the first assignable cause has a 

exponential distribution with mean time 1/  where   is the summation of 
i

  and 

the occurrence time of a second assignable cause has a exponential distribution with 

mean time '1/  where '  is a function of  . After being disturbed by an assignable 

cause i
A , the process will be affected by any other assignable causes. In the other hand, 

if the first assignable cause continues undetected, the second assignable cause (possibly a 

repetition of the first) is assumed to occur at random in a later intervals. 

The process is assumed to be in one of the three states. It is (1) in a state of 

in-control or (2) it has been disturbed by the occurrence of an assignable cause i
A  

which produces a shift of 
i

   in the process mean or (3) it has been disturbed by the 

occurrence of a second assignable cause following the first, the joint effect of which in 

every case is arbitrarily assumed to produce a shift of   in the process mean. The 

expected cycle length consists of three states, which can be derived as follows: 

(1) State 1: 

The probability at time t  in control is 

1 2 1 2( ) ( , , , ) ( ) ( ) ( ) t
s sP T t P A t A t A t P A t P A t P A t e              ,  (3.9) 

where 1

s

i i  and then the probability density function of occurrence of multiple 

assignable causes will be ( ) ,  0,  0tf t e t    , thus the average time in control is 

c  － the variable cost per item of sampling, inspecting, evaluating and plotting 

b  － the fixed cost per sampling of sampling, inspecting, evaluating and plotting 
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1/ . 

Therefore, the process is in an in-control state and the expected time that the 

assignable cause will occur is 1/ . 

(2) State 2: 

The process has been disturbed by the occurrence of the first assignable cause i
A  

and produces a shift of 
i

   in the process mean. When the process is in State 2, it is 

assumed that no further disturbance occurs until after the first sample is taken. The 

process can be classified into two situations. 

Situation 1: 

Consider Situation 1 for Figure 3.1. The process is the period that the second 

assignable cause will not to be occurring until assignable cause i
A  is detected. From the 

above Equations (3.4) and (3.5), the probability that a point falls outside the control 

limits at the first sampling interval or at the other sampling interval after the occurrence 

of the first assignable cause is iP   or 2(1 ) [(1 ) ] ,  2,  3,  nh nh r

i i iP e P e P r        . 

 

 

 

 

 

 

Then let the average time in Situation 1 be 
1

E . The 
1

E  is 
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Figure 3.1. The process of Situation 1 for State 2 in a continuous flow process. 
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(3.10) 

where (1 ) nh
iir P e     and nh

ii ePr  )1( . 

Situation 2:  

Consider Situation 2 for Figure 3.2. The process is from the occurrence of the first 

assignable i
A  to the occurrence of a second assignable cause, during the period that the 

cause i
A  is never to be detected. The conditional probability that a second assignable 

cause will occur between the first and the second subgroup is (1 )(1 )nh

iP e    , then will 

occur between the ( 1)r   and the ( 2)r   subgroup is 

1(1 )(1 )[(1 ) ] ,  1,  2,  nh nh r

i iP e P e r        . 

 

 

 

 

 

 

 

   Let the average time in Situation 2 be 
2

E . The 
2

E  is 

 

(3.11) 

where 
i

  is given by Equation (3.6),    is the same formula and definition with 

  replacing i . 
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Figure 3.2. The process of Situation 2 for State 2 in a continuous flow process. 
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It follows from what has been derived that the average time of State 2, respectively, 

is [ 2]E State . 

 

 

.   (3.12) 

 (3) State 3: 

Consider State 3 for Figure 3.3. State 3 is the period that from the occurrence of the 

first assignable i
A  to the joint assignable cause detected. The joint effect is to produce a 

shift of   in the process mean. Define       0 ( ) ( )k n k n  is the 

probability that a point falls inside the control limits after the occurrence of a second 

assignable cause, then the probability that the joint assignable cause detected is  01 . 

 

 

 

 

 

 

Let the probability on the first sampling interval of a point falling outside the control 

limits after the occurrence of joint effect be 
ˆ
iP  and the probability on the other 

sampling interval of a point falling outside the control limits after the occurrence of joint 

effect be 2ˆ ˆ ˆ(1 )(1 ) ,  for 2,  3,  r

i i iP P P r    . 

1 2

2 2
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Figure 3.3. The process for State 3 in a continuous flow process. 
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The D  is assumed to be independent of the assignable causes. The D  is not 

changed by the joint effect of cause i
A  and a second assignable cause. Then the average 

time of State 3 is given by ( 3)E State , will be 

 

 

 

 

.                (3.13) 

Summing up the various average time of State 1, State 2 and State 3. The overall 

mean time for a cycle will thus be 

 1
1

( ) ( 2) ( 3)

s

i
iE T E State E State


 



   .                     (3.14) 

3.3. Formulation of the Loss-Cost Function 

Based upon the above derivation of the expected cycle length, the ingredients of the 

expected loss-cost function per unit time ( )E C  are as follows: 

1. The average hourly loss when out of control is  

  
   1 1

1

( 2) ( 3)

( )

s s

i i
i i

iE State M E State M

L
E T

 

 
 

 
   

 .                       (3.15) 

2. The expected number of false alarms before the process goes out-of-control will be 

the probability of a false alarm (α) times the expected number of subgroups taken in 

an in-control period. Hence, the expected number (ENF) of false alarms per hour of 

operation will be       [exp( )/(1 exp( ))ENF nh nh . Thus, the average hourly 

false-alarm cost is 

2

( )

ENF T
L

E T


 .                                                    (3.16) 
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3. The average hourly cost of finding and repairing the assignable cause is 

1 1

3

1 1
1 1

1 1

( )

s s

i i
i i i ii i

i

i i

P r P r
W W

r r
L

E T

 

 
 

             
          

              .             (3.17) 

4. The average hourly cost of maintaining the control chart is 

4

b cn b c
L

nh nh h


   .                                              (3.18) 

To summarize, we obtain the expected loss-cost function as following: 

1 2 3 4( )E C L L L L    .                        (3.19) 

Finally, the expected loss-cost function ( )E C  is constructed. Our objective is to 

find the optimal design parameters n , h  and k  to minimize the ( )E C  based on the 

given values of time and cost parameters. 

3.4. Determination of Optimal Design Parameters 

In this section, we will find the optimal design parameters n , h , and k . The 

parameters involving in the expected loss-cost function ( ( )E C ) can be classified into 

cost parameters (T , b , c , iM , M , iW ,  W ), time parameters ( e , iD , D ), shift 

parameters (  i ,  ), exponential distribution parameters (  i ,  ) and design 

parameters ( n , h , k ). A numerical example will be used to illustrate of Koo and Case 

Model [23], value for T =2000, b =20, c =20, M =4000,  W =1000,  =2, 

=0.02, D =2, e =1.25 are not changed by assignable cause i
A . The iM , iW , iD  

and  i  are taken to be a function of,  i  
the rule of selection is as follows: 

(1) The  i  is a non-increasing function of  i . When the cause i
A  occurs,  0  shift 

to   0 i , iM  is proportional to the resulting increase in the percent of product 

outside specification (1 )i , where   (3 )i i . As  i  varies above and 
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below 2, the percent beyond specifications increases and decreases to cause 

corresponding variations in iM . 

(2) Assume the process exists seven assignable causes ( ,  1,  2,  ,  7)
i

A i  . Those 

causes will produce 1 , 1.5 , 1.8 , 2 , 2.2 , 2.5  and 3  shift and the 

occurrence of each assignable cause randomly and indecently produce single shift. 

(3) Like that iD , iM  and iW  are function of  i . For  i =2, iM , iW  and iD  is 

equal to 4000, 1000 and 2. 

(4) When the parameters, T , b , c  and e , are kept fixed, the numerical examples 

used. For example, the parameter   is varied from 1 to 1.5 to 2 to 2.5. The 

parameter   is varied from 0.005 to 0.01 to 0.02 to 0.04. Then D , M  and W  

are the same as iD , iM  and iW  of  i =2. Owing to obtain  i , assume 

    1 80s
i i iM M . 

(5) When the parameters,  ,  , D , M  and W , are kept fixed, the numerical 

examples used. For example, the parameter T  is varied from 1000 to 2000 to 3000. 

The parameter b  is varied from 10 to 20 to 30. The parameter c  is varied from 10 

to 20 to 30. The parameter e  is varied from 0.625 to 1.25 to 1.875. 

Let iPD  denoted prior distribution of  i       1 2 3 7( 1,  1.5,  1.8,  ,  3) . 

In this section, the negative-exponential, uniform and half- normal are considered for 

iPD . Prior distribution of 4 =2 is 4PD , we set up the time and cost values for 4 =2 

as “base case”, and in one set,  i  are chosen as proportional to iPD . According to the 

discussion of above (1), (2), (3), (4) and (5) rules, we have  4( ) 1000i iW PD PD , 

 4( ) 2i iD PD PD ,  4( ) 4000i iM PD PD , and   1 1( )i iPD PD . The values of 

iW , iD  and  i  for different prior distribution and the values of iM  for different  i  

are listed in Table 3.1. 
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Table 3.1 

The reference set of cost and probability parameters.
a 

iA  i  1 i  
iPD  

iM  
iD  iW  

3( 10 )i
  

iNE  iUn  iHN  iNE  iUn

 

iHN  iNE  iUn  iHN  iNE  iUn  iHN  

1 1 0.0228 0.303 0.143 0.352 575 3.293

3 

2 2.909 1647 1000 1454 4.566 2.294 4.220 

2 1.5 0.0668 0.236 0.143 0.301 1684 2.565 2 2.488 1283 1000 1244 3.557 2.294 3.608 

3 1.8 0.1151 0.203 0.143 0.266 2901 1.103 2 2.198 1103 1000 1099 3.059 2.294 3.190 

4 2 0.1587 0.184 0.143 0.242 4000 2 2 2 1000 1000 1000 2.772 2.294 2.901 

5 2.2 0.2119 0.166 0.143 0.218 5341 1.804 2 1.802 902 1000 901 2.502 2.294 2.612 

6 2.5 0.3085 0.143 0.143 0.183 7776 1.554 2 1.512 777 1000 756 2.155 2.294 2.194 

7 3 0.5 0.112 0.143 0.130 12602 1.217 2 1.074 609 1000 537 1.689 2.294 1.557 

a
iNE , Negative-exponential; iUn , Uniform; iHN , Half-normal. 

3.5. Sensitivity Analysis 

We used search technique which is developed by Rahim [32] to determine the 

optimal design parameters. The code was considered to minimize the expected loss-cost 

function ( )E C , and provides economically optimal values of n , h  and k . The effects 

of changes in the cost parameters on the minimum the expected loss-cost function ( )E C  

design are listed in Table 3.2 along with other data. 

(1) For =0, the value of ( )E C  is equal to the value of the model of Koo et al. [24]. 

Therefore, one result stood out clearly. It was noted that if   is decreased, the 

loss-cost of the model approaches to the loss-cost of the model of Koo et al. 

(2) With the same value of the parameters in both models, the loss-cost of the model is 

larger than the loss-cost of the model of Koo et al., but smaller than the loss-cost of 

Koo and Case’s Model. If the conservative designing point of view is applying, the 

multiplicity-cause model can replace the single-cause model. 

(3) T , b , c  and e  are kept fixed at the reference values listed in Table 3.2. Variation 

in  , D  and W  has little effect on the loss-cost, but variation in    and 

M  has their dominant effect on the loss-cost. 
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(4) Among the economic design for three prior distributions, the negative-exponential 

prior distribution is the best while uniform prior distribution is the worse. But the 

difference between the loss-cost for half-normal and negative-exponential prior 

distribution is less than 0.7%. 

(5) For the negative-exponential prior distribution, variation in   has its primary 

effect upon the optimal value of k . The sample size and the frequency of sampling 

are affected moderately. Thus, for large  , we should use charts with 2.5 sigma 

limits. 

(6) For the negative-exponential prior distribution, variation in M  has its dominant 

effect on the optimal value of k . When M  is relatively large, k  should be small; 

when M  is relatively small, k  should be large. Variation in M  has little effect 

on the optimal values of n  and h . 

(7)  ,  , M , D , and W  are kept fixed at the reference values listed in Table 

3.2. Variation in T  and b  has little effect on the loss-cost, but variation in c  and 

e  has more effect on the loss-cost. 

(8) For the negative-exponential prior distribution, variation in c  affects all three of 

the elements of design. For high values of c , the optimal design calls for taking 

small samples, possibly only samples of 2, at large intervals between samples and 

with control limits at low multiples of sigma. 

(9) For the negative-exponential prior distribution, variation in e  affects primarily the 

optimal value of k , possibly we should use charts with 2.5 sigma limits. It also has 

a moderate affect on the frequency of sampling. 
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Table 3.2 

Optimum design parameters for model at three different prior distributions
 a
 

T  b  c  e      M   D  W   Prior 

Distribution 

Optimal design loss- 

cost n  h  k  

2000 20 20 1.25 1 0.02 4000 2 1000 NE  3 0.362 2.471 429.260 

Un  3 0.352 2.568 442.129 

HN  3 0.365 2.495 431.020 

    1.5     NE  3 0.367 2.538 423.742 

Un  2 0.451 2.587 438.291 

HN  3 0.346 2.592 427.627 

    2     NE  3 0.368 2.557 422.427 

Un  2 0.433 2.621 437.589 

HN  2 0.464 2.498 428.724 

    2.5     NE  3 0.369 2.560 422.115 

Un  2 0.415 2.617 440.229 

HN  2 0.428 2.524 433.159 

    2 0.005 4000 2 1000 NE  2 0.483 2.512 417.650 

Un  2 0.442 2.637 433.239 

HN  2 0.464 2.504 421.480 

     0.01    NE  2 0.438 2.545 420.378 

Un  2 0.510 2.507 435.130 

HN  2 0.442 2.529 424.079 

     0.02    NE  2 0.487 2.445 425.596 

Un  2 0.433 2.621 437.589 

HN  2 0.464 2.498 428.724 

     0.04    NE  2 0.423 2.481 433.107 

Un  2 0.457 2.565 442.146 

HN  2 0.407 2.502 436.311 

    2 0.02 575 2 1000 NE  2 0.444 2.585 410.458 

Un  2 0.505 2.556 427.322 

HN  2 0.444 2.585 414.505 

      1684   NE  2 0.459 2.514 415.286 

Un  2 0.460 2.545 430.957 

HN  2 0.496 2.500 419.230 

      4000   NE  2 0.487 2.445 425.596 

         Un  2 0.433 2.621 437.589 

         HN  2 0.464 2.498 428.724 

      7776   NE  2 0.461 2.407 440.185 

         Un  2 0.455 2.518 447.608 

         HN  2 0.434 2.418 442.769 
a
NE , Negative-exponential; Un , Uniform; HN , Half-normal. 
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Table 3.2-(Continued)
 a

 

T  b  c  e      M   D  W   Prior 

Distribution 

Optimal design loss- 

cost n  h  k  

2000 20 20 1.25 2 0.02 4000 

 

3.3 

0.5 

2.9 

1000 NE  2 0.400 2.555 428.969 

       0.5  Un  2 0.416 2.619 435.097 

       2.9  HN  2 0.400 2.555 431.435 

       2.6  NE  2 0.400 2.555 427.119 

1 Un  2 0.483 2.565 435.798 

2.5 HN  2 0.487 2.445 430.322 

       2  NE  2 0.487 2.445 425.596 

2 Un  2 0.433 2.621 437.589 

2 HN  2 0.464 2.498 428.724 

       1.6  NE  2 0.429 2.527 423.969 

3 Un  2 0.433 2.621 439.453 

1.5 HN  2 0.429 2.527 427.420 

    2 0.02 4000 2 1647 NE  2 0.487 2.445 426.058 

250 Un  2 0.472 2.512 437.242 

1454 HN  2 0.487 2.445 429.413 

        1283 NE  2 0.487 2.445 425.798 

500 Un  2 0.472 2.512 437.362 

1244 HN  2 0.464 2.498 428.898 

        1000 NE  2 0.487 2.445 425.595 

1000 Un  2 0.433 2.621 437.589 

1000 HN  2 0.464 2.498 428.724 

        777 NE  2 0.487 2.445 425.437 

1500 Un  2 0.483 2.565 436.061 

756 HN  2 0.464 2.498 428.551 

1000 20 20 1.25 2 0.02 4000 2 1000 NE  2 0.436 2.250 410.201 

Un  2 0.493 2.389 424.369 

HN  2 0.436 2.250 413.827 

2000         NE  2 0.487 2.445 425.596 

Un  2 0.433 2.621 437.589 

HN  2 0.464 2.498 428.724 

3000         NE  3 0.315 2.756 433.948 

Un  2 0.432 2.697 446.118 

HN  3 0.324 2.761 437.141 

2000 10 20 1.25      NE  2 0.411 2.541 413.229 

Un  2 0.390 2.645 425.844 

HN  2 0.411 2.541 416.752 
a
NE , Negative-exponential; Un , Uniform; HN , Half-normal. 
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Table 3.2-(Continued)
 a

 

T  b  c  e      M   D  W   Prior 

Distribution 

Optimal design loss- 

cost n  h  k  

 20        NE  2 0.487 2.445 425.596 

         Un  2 0.433 2.621 437.589 

         HN  2 0.464 2.498 428.724 

 30        NE  2 0.465 2.486 435.951 

         Un  2 0.538 2.482 448.340 

         HN  2 0.445 2.506 439.800 

2000 20 10 1.25      NE  3 0.271 2.751 393.807 

         Un  3 0.288 2.722 408.808 

         HN  3 0.257 2.743 397.111 

  20       NE  2 0.487 2.445 425.596 

         Un  2 0.433 2.621 437.589 

         HN  2 0.464 2.498 428.724 

  30       NE  2 0.482 2.454 446.222 

         Un  2 0.569 2.486 458.027 

         HN  2 0.544 2.389 449.364 

2000 20 20 0.625      NE  2 0.432 2.522 382.936 

Un  2 0.467 2.563 393.987 

HN  2 0.432 2.498 428.724 

   1.25      NE  2 0.487 2.522 386.522 

Un  2 0.433 2.621 437.589 

HN  2 0.464 2.498 449.364 

   1.875      NE  2 0.464 2.498 466.341 

Un  2 0.472 2.512 480.262 

HN  2 0.464 2.498 469.766 
a
NE , Negative-exponential; Un , Uniform; HN , Half-normal. 
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Chapter 4 

Conclusions and Future Research 

In this thesis, we considered the economic design of x -control charts for discrete 

part Weibull process and for continuous flow exponential process with multiple 

assignable causes. Using the time elements and cost elements, we constructed the loss-cost 

function to determine the optimal values of the design parameters ( the sample size, the 

sampling interval and control limit coefficient ). Then we obtained the optimal solutions 

for those two models at the minimal loss-cost. Sensitivity analysis was conducted to 

investigate the effect of changes in the time elements or the cost elements on the optimal 

values. In this chapter, we make conclusions and provide possible extensions of the present 

work for the further research. 

4.1 Conclusions 

In Chapter 2, we investigated the optimal economic design of x -control charts for 

discrete part Weibull process with multiple assignable causes. We constructed the 

expected loss-cost function per unit time to determine the optimal values of the design 

parameters. A numerical example was provided to verify the effectiveness of the 

modified version as compared with the original model by Chen and Yang [8]. Through 

the comparison, we can indicated that the cost differences range for the original model 

and the modified version is from 10% to 38%. Such a model should be helpful in 

reducing the quality cost and increasing competitiveness in a discrete part process. 

In Chapter 3, we depict the detailed development of an economic model for the 

optimal design of x -control charts for continuous flow process. The process-failure 

mechanism is assumed with multiple assignable causes and each assignable cause 

follows an exponential distribution. Solutions of the optimal design parameters, n , h  
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and k , have been obtained according to the different values of the model parameters. 

Overall, this paper advances economically-based x -control charts to the important area 

of multiple assignable causes process in continuous flow process. 

4.2 Future Research 

We have considered the multiple assignable causes in economic design. Possible 

future work with respect to economically-based control chart techniques when 

monitoring continuous flow process or discrete part process are as follows: 

1. The same techniques developed in this thesis can be extended to other control 

chart methods such as: the CUSUM  ( cumulative sum ) control chart, MA 

( moving average ) control chart, etc. 

2. In discrete part Weibull process, we have analyzed that the model allows for the 

second occurrence of an assignable cause following the first occurrence. We may 

study that the model allows for the multiple occurrence of assignable causes 

following the first occurrence. 

3. In continuous flow process, we have investigated that the time of assignable cause 

follows a exponential distribution subjects to a multiple of assignable causes. We 

may study that the time of assignable cause follows Weibull distribution subjects 

to a multiple of assignable causes. Furthermore, the model allows for the multiple 

occurrence of assignable causes following the first occurrence. 
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